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Complex Number System C
Proposition 1. Addition is a binary operation on C.

Proof. Let z, w ∈ C.
Since z ∈ C, then there exist a, b ∈ R such that z = a+ bi.
Since w ∈ C, then there exist c, d ∈ R such that w = c+ di.
Thus, z + w = (a+ c) + (b+ d)i.
Since a+ c ∈ R and b+ d ∈ R, then z + w ∈ C.
Therefore, C is closed under addition, so addition of complex numbers is a

binary operation on C.

Theorem 2. algebraic properties of addition over C
1. z1 + (z2 + z3) = (z1 + z2) + z3 for all z1, z2, z3 ∈ C. (associative)
2. z1 + z2 = z2 + z1 for all z1, z2 ∈ C. (commutative)
3. z + 0 = 0 + z = z for all z ∈ C. (additive identity)
4. z + (−z) = (−z) + z = 0 for all z ∈ C. (additive inverses)

Proof. We prove addition is associative.
Let z1, z2, z3 ∈ C.
Then z1 = a+ bi and z2 = c+ di and z3 = e+ fi for some a, b, c, d, e, f ∈ R.
Observe that

(z1 + z2) + z3 = [(a+ bi) + (c+ di)] + (e+ fi)

= [(a+ c) + (b+ di)] + (e+ fi)

= [(a+ c) + e] + [(b+ d) + f ]i

= [a+ (c+ e)] + [b+ (d+ f)]i

= (a+ bi) + [(c+ e) + (d+ f)i]

= (a+ bi) + [(c+ di) + (e+ fi)]

= z1 + (z2 + z3).

Therefore, addition is associative.



Proof. We prove addition is commutative.
Let z1, z2 ∈ C.
Then z1 = a+ bi and z2 = c+ di for some a, b, c, d ∈ R.
Observe that

z1 + z2 = (a+ bi) + (c+ di)

= (a+ c) + (b+ d)i

= (c+ a) + (d+ b)i

= (c+ di) + (a+ bi)

= z2 + z1.

Therefore, addition is commutative.

Proof. We prove z + 0 = 0 + z = z for all z ∈ C.
Let z ∈ C.
Then z = x+ yi for some x, y ∈ R.
Observe that

z + 0 = (x+ yi) + (0 + 0i)

= (x+ 0) + (y + 0)i

= x+ yi

= z

= x+ yi

= (0 + x) + (0 + y)i

= (0 + 0i) + (x+ yi)

= 0 + z.

Therefore, z + 0 = z = 0 + z.

Proof. We prove z + (−z) = (−z) + z = 0 for all z ∈ C.
Let z ∈ C.
Then z = x+ yi for some x, y ∈ R.
Since x ∈ R, then −x ∈ R.
Since y ∈ R, then −y ∈ R.
Let −z = −x− yi.
Since −x ∈ R and −y ∈ R, then −z ∈ C.
Observe that

z + (−z) = −z + z

= (−x− yi) + (x+ yi)

= (−x+ x) + (−y + y)i

= 0 + 0i

= 0.

Therefore, z + (−z) = (−z) + z = 0.
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Proposition 3. Multiplication is a binary operation on C.

Proof. Let z, w ∈ C.
Since z ∈ C, then there exist a, b ∈ R such that z = a+ bi.
Since w ∈ C, then there exist c, d ∈ R such that w = c+ di.
Observe that

zw = (a+ bi)(c+ di)

= ac+ adi+ bci+ bdi2

= ac+ adi+ bci+ bd(−1)

= ac+ adi+ bci− bd
= (ac− bd) + (adi+ bci)

= (ac− bd) + (ad+ bc)i.

Thus, zw = (ac− bd) + (ad+ bc)i.
Since R is closed under addition, subtraction, and multiplication, then ac−

bd ∈ R and ad+ bc ∈ R.
Hence, zw ∈ C, so C is closed under multiplication.
Therefore, multiplication of complex numbers is a binary operation on C.

Theorem 4. algebraic properties of multiplication over C
1. z1 · (z2 · z3) = (z1 · z2) · z3 for all z1, z2, z3 ∈ C. (associative)
2. z1 · z2 = z2 · z1 for all z1, z2 ∈ C. (commutative)
3. z · 1 = 1 · z = z for all z ∈ C. (multiplicative identity)
4. z · 0 = 0 · z = 0 for all z ∈ C.
5. z1 · (z2 + z3) = z1 · z2 + z1 · z3 for all z1, z2, z3 ∈ C. (left distributive)
6. (z1 + z2) · z3 = z1 · z3 + z2 · z3 for all z1, z2, z3 ∈ C. (right distributive)

Proof. We prove multiplication is associative.
Let z1, z2, z3 ∈ C.
Then z1 = a+ bi and z2 = c+ di and z3 = e+ fi for some a, b, c, d, e, f ∈ R.
Observe that

(z1 · z2) · z3 = [(a+ bi)(c+ di)](e+ fi)

= [(ac− bd) + (ad+ bc)i] · (e+ fi)

= [(ac− bd)e− (ad+ bc)f ] + [(ac− bd)f + (ad+ bc)e]i

= (ace− bde− adf − bcf) + (acf − bdf + ade+ bce)i

= (ace− bed− adf − bcf) + (acf − bdf + aed+ bce)i

= (ace− bed− adf − bcf) + (acf + aed+ bce− bdf)i

= (ace− adf − bcf − bed) + (acf + aed+ bce− bdf)i

= [a(ce− df)− b(cf + ed)] + [(a(cf + ed) + b(ce− df)]i

= (a+ bi) · [(ce− df) + (cf + ed)i]

= (a+ bi) · [(c+ di) · (e+ fi)]

= z1 · (z2 · z3).
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Therefore, multiplication is associative.

Proof. We prove multiplication is commutative.
Let z1, z2 ∈ C.
Then z1 = a+ bi and z2 = c+ di for some a, b, c, d ∈ R.
Observe that

z1 · z2 = (a+ bi) · (c+ di)

= (ac− bd) + ad+ bc)i

= (ca− db) + (da+ cb)i

= (ca− db) + (cb+ da)i

= (c+ di) · (a+ bi)

= z2 · z1.

Therefore, multiplication is commutative.

Proof. We prove z · 1 = 1 · z = z for all z ∈ C.
Let z ∈ C.
Then z = x+ yi for some x, y ∈ R.
Since 1 = 1 + 0i, then 1 ∈ C.
Observe that

z · 1 = 1 · z
= (1 + 0i) · (x+ yi)

= (1 · x− 0 · y) + (1 · y + 0 · x)i

= (x− 0) + (y + 0)i

= x+ yi

= z.

Therefore, z · 1 = 1 · z = z.

Proof. We prove z · 0 = 0 · z = 0 for all z ∈ C.
Let z ∈ C.
Then z = x+ yi for some x, y ∈ R.
Since 0 = 0 + 0i, then 0 ∈ C.
Observe that

z · 0 = 0 · z
= (0 + 0i) · (x+ yi)

= (0x− 0y) + (0y + 0x)i

= (0− 0) + (0 + 0)i

= 0 + 0i

= 0.

Therefore, z · 0 = 0 · z = 0.
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Proof. We prove z1 · (z2 + z3) = z1 · z2 + z1 · z3.
Let z1, z2, z3 ∈ C.
Then z1 = a+ bi and z2 = c+ di and z3 = e+ fi for some a, b, c, d, e, f ∈ R.
Observe that

z1 · (z2 + z3) = (a+ bi) · [(c+ di) + (e+ fi)]

= (a+ bi) · [(c+ e) + (d+ f)i]

= [a(c+ e)− b(d+ f)] + [a(d+ f) + b(c+ e)]i

= (ac+ ae− bd− bf) + (ad+ af + bc+ be)i

= (ac− bd+ ae− bf) + (ad+ bc+ af + be)i

= [(ac− bd) + (ae− bf)] + [(ad+ bc) + (af + be)]i

= [(ac− bd) + (ad+ bc)i] + [(ae− bf) + (af + be)i]

= (a+ bi) · (c+ di) + (a+ bi) · (e+ fi)

= z1 · z2 + z1 · z3.

Therefore, multiplication is left distributive over addition.

Proof. We prove (z1 + z2) · z3 = z1 · z3 + z2 · z3.
Let z1, z2, z3 ∈ C.
Then z1 = a+ bi and z2 = c+ di and z3 = e+ fi for some a, b, c, d, e, f ∈ R.
Observe that

(z1 + z2) · z3 = [(a+ bi) + (c+ di)] · (e+ fi)

= [(a+ e) + (b+ d)i] · (e+ fi)

= [(a+ e)e− (b+ d)f ] + [(a+ c)f + (b+ d)e]i

= (ae+ ce− bf − df) + (af + cf + be+ de)i

= (ae− bf + ce− df) + (af + be+ cf + de)i

= [(ae− bf) + (ce− df)] + [(af + be) + (cf + de)]i

= [(ae− bf) + (af + be)i] + [(ce− df) + (cf + de)i]

= (a+ bi) · (e+ fi) + (c+ di) · (e+ fi)

= z1 · z3 + z2 · z3.

Therefore, multiplication is right distributive over addition.

Proposition 5. Multiplication of complex numbers in polar form
Let z1 = |z1| ·(cos θ1 + i sin θ1) and z2 = |z2| ·(cos θ2 + i sin θ2) be two complex

numbers in polar form.
The product is z1 · z2 = |z1| · |z2| · (cos(θ1 + θ2) + i sin(θ1 + θ2)).
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Proof. Observe that

z1 · z2 = [|z1| · (cos θ1 + i sin θ1)] · [|z2| · (cos θ2 + i sin θ2)]

= |z1| · |z2| · (cos θ1 + i sin θ1) · (cos θ2 + i sin θ2)

= |z1| · |z2| · [[(cos θ1)(cos θ2)− (sin θ1)(sin θ2)] + [(cos θ1) · (sin θ2) + (sin θ1) · (cos θ2)]i]

= |z1| · |z2| · [[cos(θ1 + θ2)] + [(cos θ1) · (sin θ2) + (sin θ1) · (cos θ2)]i]

= |z1| · |z2| · [[cos(θ1 + θ2)] + [(sin θ1) · (cos θ2) + (cos θ1) · (sin θ2)]i]

= |z1| · |z2| · [[cos(θ1 + θ2)] + [sin(θ1 + θ2)]i]

= |z1| · |z2| · (cos(θ1 + θ2) + i · sin(θ1 + θ2)).

Therefore, z1 · z2 = |z1| · |z2| · (cos(θ1 + θ2) + i sin(θ1 + θ2)).

Proposition 6. Multiplicative inverse of a complex number
Let z ∈ C and z 6= 0.
The multiplicative inverse of z is 1

z ∈ C∗ and 1
z = z̄

|z|2 and z · 1
z = 1

z · z = 1.

Proof. Since z ∈ C, then z = x+ yi for some x, y ∈ R.
Thus, z̄ = x− yi and |z|2 = x2 + y2.
Since z = 0 if and only if x = 0 = y, then x = 0 = y if and only if z = 0.
Since x− yi = 0 if and only if x = 0 = y and x = 0 = y if and only if z = 0,

then x− yi = 0 if and only if z = 0.
Hence, x− yi 6= 0 if and only if z 6= 0.
Since z 6= 0, then we conclude x− yi 6= 0.
Thus, x−yi

x−yi = 1.
Observe that

1

z
=

1

z
· 1

=
1

x+ yi
· x− yi
x− yi

=
1(x− yi)

(x+ yi) · (x− yi)

=
x− yi
x2 + y2

=
z̄

|z|2
.

We prove 1
z ∈ C∗.

Since |z| ∈ R, then |z| ≥ 0.
Since z 6= 0, then |z| 6= 0, so |z| > 0.
Thus, |z|2 > 0, so |z|2 6= 0.
Since |z|2 ∈ R and |z|2 = x2 + y2 and |z|2 6= 0, then x2 + y2 ∈ R and

x2 + y2 6= 0.
Since x− yi ∈ C and x2 + y2 ∈ R and x2 + y2 6= 0, then x−yi

x2+y2 ∈ C.

Since x−yi
x2+y2 ∈ C and x− yi 6= 0 and x2 + y2 6= 0, then x−yi

x2+y2 ∈ C∗.
Since 1

z = x−yi
x2+y2 , then this implies 1

z ∈ C∗.
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Since z 6= 0 and z = x+ yi, then x+ yi 6= 0, so x+yi
x+yi = 1.

Observe that

z · 1

z
=

1

z
· z

=
1

x+ yi
· (x+ yi)

=
1(x+ yi)

x+ yi

=
x+ yi

x+ yi
= 1.

Therefore, z · 1
z = 1

z · z = 1.

Proposition 7. Division of complex numbers in polar form
Let z1 = |z1| ·(cos θ1 + i sin θ1) and z2 = |z2| ·(cos θ2 + i sin θ2) be two complex

numbers in polar form with z2 6= 0.

The quotient is z1
z2

= |z1|
|z2| · (cos(θ1 − θ2) + i sin(θ1 − θ2)).

Proof. Observe that

z1

z2
=
|z1| · (cos θ1 + i sin θ1)

|z2| · (cos θ2 + i sin θ2)

=
|z1|
|z2|
· cos θ1 + i sin θ1

cos θ2 + i sin θ2

=
|z1|
|z2|
· cos θ1 + i sin θ1

cos θ2 + i sin θ2
· cos θ2 − i sin θ2

cos θ2 − i sin θ2

=
|z1|
|z2|
· (cos θ1 + i sin θ1)(cos θ2 − i sin θ2)

(cos θ2 + i sin θ2)(cos θ2 − i sin θ2)

=
|z1|
|z2|
· (cos θ1 · cos θ2 + sin θ1 · sin θ2) + [cos θ1(− sin θ2) + sin θ1(cos θ2)]i

(cos θ2)2 + (sin θ2)2

=
|z1|
|z2|
· (cos θ1 · cos θ2 + sin θ1 · sin θ2) + [sin θ1(cos θ2)− cos θ1(sin θ2)]i

(sin θ2)2 + (cos θ2)2

=
|z1|
|z2|
· cos(θ1 − θ2) + i(sin(θ1 − θ2)

1

=
|z1|
|z2|
· (cos(θ1 − θ2) + i(sin(θ1 − θ2)).

Therefore, z1
z2

= |z1|
|z2| · (cos(θ1 − θ2) + i sin(θ1 − θ2)).

Proposition 8. Properties of complex modulus
Let z ∈ C. Then
1. |z| ∈ R and |z| ≥ 0.
2. |z| = 0 iff z = 0.
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3. | − z| = |z|.
4. |z̄| = |z|.
5. |zw| = |z| · |w| for all z, w ∈ C.

6. | zw | =
|z|
|w| for all z, w ∈ C and w 6= 0.

7. |zn| = |z|n for all n ∈ Z+.
8. |z + w| ≤ |z|+ |w| for all z, w ∈ C (triangle inequality)
9. |z − w| ≥ ||z| − |w|| for all z, w ∈ C (reverse triangle inequality)

Proof. We prove 1.
Since z ∈ C, then z = x+ yi for some x, y ∈ R.
Since |z| = x2 + y2 and x, y ∈ R and R is closed under addition and multi-

plication, then |z| ∈ R.
Since |z| ∈ R, then |z| ≥ 0.

Proof. We prove 2.
We prove |z| = 0 iff z = 0.

We prove if z = 0, then |z| = 0.
Suppose z = 0.
Then |z| = |0| = 0, so |z| = 0.

Conversely, we prove if |z| = 0, then z = 0 by contrapositive.
Suppose z 6= 0.
We must prove |z| 6= 0.
Since z ∈ C, then z = x+ yi for some x, y ∈ R.
Since z = 0 if and only if x = 0 and y = 0, then z 6= 0 if and only if either

x 6= 0 or y 6= 0.
Since z 6= 0, then we conclude either x 6= 0 or y 6= 0.
We consider these cases separately.
Case 1: Suppose x 6= 0.
Then x2 > 0.
Since x2 > 0 and y2 ≥ 0, then x2 + y2 > 0, so

√
x2 + y2 > 0.

Since |z| =
√
x2 + y2, then |z| > 0, so |z| 6= 0.

Case 2: Suppose y 6= 0.
Then y2 > 0.
Since x2 ≥ 0 and y2 > 0, then x2 + y2 > 0, so

√
x2 + y2 > 0.

Since |z| =
√
x2 + y2, then |z| > 0, so |z| 6= 0.

Therefore, in all cases, |z| 6= 0, as desired.

Proof. We prove 3.
We prove | − z| = |z|.
Since z ∈ C, then z = x+ yi for some x, y ∈ R.
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Observe that

| − z| = | − (x+ yi)|
= | − x− yi|
= | − x+ (−y)i|
=

√
(−x)2 + (−y)2

=
√
x2 + y2

= |z|.

Therefore, | − z| = |z|.

Proof. We prove 4.
We prove |z̄| = |z|.
Since z ∈ C, then z = x+ yi for some x, y ∈ R.
Observe that

z̄ = |x− yi|
= |x+ (−y)i|
=

√
x2 + (−y)2

=
√
x2 + y2

= |z|.

Therefore, |z̄| = |z|.

Proof. We prove 5.
We prove |zw| = |z| · |w| for all z, w ∈ C.
Let z, w ∈ C.
Then z = a+ bi and w = c+ di for some a, b, c, d ∈ R.
Observe that

|zw| = |(a+ bi)(c+ di)|
= |(ac− bd) + (ad+ bc)i|
=

√
(ac− bd)2 + (ad+ bc)2

=
√

((ac)2 − 2(ac)(bd) + (bd)2) + ((ad)2 + 2(ad)(bc) + (bc)2)

=
√

(a2c2 − 2abcd+ b2d2) + (a2d2 + 2abcd+ b2c2)

=
√
a2c2 + b2d2 + a2d2 + b2c2

=
√

(a2c2 + a2d2) + (b2d2 + b2c2)

=
√

(a2c2 + a2d2) + (b2c2 + b2d2)

=
√
a2(c2 + d2) + b2(c2 + d2)

=
√

(a2 + b2)(c2 + d2)

=
√
a2 + b2 ·

√
c2 + d2

= |z| · |w|.
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Therefore, |zw| = |z| · |w|.

Proof. We prove 6.

We prove | zw | =
|z|
|w| for all z, w ∈ C and w 6= 0.

Let z, w ∈ C and w 6= 0.
Since z ∈ C, then z = a+ bi for some a, b ∈ R.
Since w ∈ C, then w = c+ di for some c, d ∈ R.
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Observe that

| z
w
| = |a+ bi

c+ di
|

= |a+ bi

c+ di
· c− di
c− di

|

= | (a+ bi)(c− di)
(c+ di)(c− di)

|

= | (ac+ bd) + (−ad+ bc)i

c2 + d2
|

= | (ac+ bd) + (bc− ad)i

c2 + d2
|

= | 1

c2 + d2
· [(ac+ bd) + (bc− ad)i]|

= | 1

c2 + d2
| · |(ac+ bd) + (bc− ad)i|

=
1

|c2 + d2|
· |(ac+ bd) + (bc− ad)i|

=
1

|c2 + d2|
·
√

(ac+ bd)2 + (bc− ad)2

=
1

|c2 + d2|
·
√

[(ac)2 + 2(ac)(bd) + (bd)2] + [(bc)2 − 2(bc)(ad) + (ad)2]

=
1

|c2 + d2|
·
√

(a2c2 + 2abcd+ b2d2) + (b2c2 − 2abcd+ a2d2)

=
1

|c2 + d2|
·
√
a2c2 + b2d2 + b2c2 + a2d2

=
1

|c2 + d2|
·
√

(a2 + b2)(c2 + d2)

=
1

|c2 + d2|
·
√

(a2 + b2) ·
√
c2 + d2

=
1√

(c2 + d2)2
·
√
a2 + b2 ·

√
c2 + d2

=
1√

(c2 + d2) · (c2 + d2)
·
√
a2 + b2 ·

√
c2 + d2

=
1√

c2 + d2 ·
√
c2 + d2

·
√
a2 + b2 ·

√
c2 + d2

=
1√

c2 + d2
· 1√

c2 + d2
·
√
a2 + b2 ·

√
c2 + d2

=

√
a2 + b2√
c2 + d2

=
|a+ b|
|c+ di|

=
|z|
|w|

.
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Therefore, | zw | =
|z|
|w| .

Proof. We prove 7.
We prove |zn| = |z|n for all n ∈ Z+ for all z ∈ C.
Let z ∈ C.
We prove |zn| = |z|n for all n ∈ Z+ by induction on n.
Define predicate p(n) : |zn| = |z|n over Z.
Basis:
Since |z1| = |z| = |z|1, then p(1) is true.
Induction:
Let k ∈ Z+ such that p(k) is true.
Then |zk| = |z|k.
Observe that

|zk+1| = |zk · z|
= |zk| · |z|
= |z|k · |z|
= |z|k+1.

Thus, |zk+1| = |z|k+1, so p(k + 1) is true.
Hence, p(k) implies p(k + 1) for all k ∈ Z+.
Since p(1) is true and p(k) implies p(k+ 1) for all k ∈ Z+, then by induction

p(n) is true for all n ∈ Z+.
Therefore, |zn| = |z|n for all n ∈ Z+.

Proof. We prove 8.
We prove |z + w| ≤ |z|+ |w| for all z, w ∈ C.
Let z, w ∈ C.
Then
TODO

Proposition 9. Properties of complex conjugate
1. Re(z̄) = Re(z) and Im(z̄) = −Im(z) for all z ∈ C.
2. z̄ = z for all z ∈ C. (conjugate of a conjugate)
3. Re(z) = z+z̄

2 for all z ∈ C.
4. Im(z) = z−z̄

2i for all z ∈ C.
5. z · z̄ = |z|2 for all z ∈ C. (Product of complex conjugates is an absolute

square.)
6. Re(α · z) = α · Re(z) and Im(α · z) = α · Im(z) for all α ∈ R, z ∈ C.

(scalar multiple)
7. z + w = z̄ + w̄ for all z, w ∈ C. (conjugate of sum is sum of conjugates)
8. z − w = z̄ − w̄ for all z, w ∈ C. (conjugate of difference is difference of

conjugates)
9. z · w = z̄ · w̄ for all z, w ∈ C. (conjugate of product is product of conju-

gates)
10. z

w = z̄
w̄ for all z, w ∈ C, w 6= 0. (conjugate of quotient is quotient of

conjugates)
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Proof. We prove 1.
Let z ∈ C.
Then z = x+ yi for some x, y ∈ R and z̄ = x− yi.
Since Re(z̄) = x = Re(z), then Re(z̄) = Re(z).
Since Im(z̄) = −y = −Im(z), then Im(z̄) = −Im(z).

Proof. We prove 2.
Let z ∈ C.
Then z = x+ yi for some x, y ∈ R.
Since z = x+ yi, then z̄ = x− yi.
Since z̄ = x− yi, then z̄ = x+ yi = z.
Therefore, z̄ = z.

Proof. We prove 3.
Observe that

z + z̄ = (x+ yi) + (x− yi)
= (x+ x) + (y − y)i

= 2x+ 0i

= 2x+ 0

= 2x

= 2 ·Re(z).

Therefore, z + z̄ = 2 ·Re(z), so Re(z) = z+z̄
2 .

Proof. We prove 4.
Observe that

z − z̄ = (x+ yi)− (x− yi)
= (x− x) + (y − (−y))i

= 0 + 2yi

= 2yi

= 2i · Im(z).

Therefore, z − z̄ = 2i · Im(z), so Im(z) = z−z̄
2i .

Proof. We prove 5.
Observe that

z · z̄ = (x+ yi) · (x− yi)
= x2 − xyi+ xyi− y2(i2)

= x2 − y2(i2)

= x2 − y2(−1)

= x2 + y2

= |z|2.
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Therefore, z · z̄ = |z|2.

Proof. We prove 6.
Let α ∈ R and z ∈ C.
Since z ∈ C, then z = x+ yi for some x, y ∈ R.
Observe that

Re(αz) = Re(α(x+ yi))

= Re(αx+ αyi)

= αx

= α ·Re(z).

Therefore, Re(αz) = α ·Re(z).
Observe that

Im(αz) = Im(α(x+ yi))

= Im(αx+ αyi)

= αy

= α · Im(z).

Therefore, Im(αz) = α · Im(z).

Proof. TODO We must prove 7,8,9, and 10!

Theorem 10. DeMoivre formula
For all θ ∈ R and all n ∈ Z+, the following identity is true.
(cos θ + i sin θ)n = cos(nθ) + i sin(nθ).

Proof. Let θ ∈ R.
We prove (cos θ + i sin θ)n = cos(nθ) + i sin(nθ) for all n ∈ Z+ by induction

on n.
Define predicate p(n) : (cos θ + i sin θ)n = cos(nθ) + i sin(nθ) over Z.
Basis:
Observe that

(cos θ + i sin θ)1 = cos θ + i sin θ

= cos(1θ) + i sin(1θ).

Therefore, p(1) is true.
Induction:
Let k ∈ Z+ such that p(k) is true.
Then (cos θ + i sin θ)k = cos(kθ) + i sin(kθ).
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Observe that

(cos θ + i sin θ)k+1 = (cos θ + i sin θ)k · (cos θ + i sin θ)

= (cos(kθ) + i sin(kθ)) · (cos θ + i sin θ)

= [cos(kθ) · cos θ − sin(kθ) · sin θ] + [cos(kθ) · sin θ + sin(kθ) · cos θ]i

= [cos(kθ) · cos θ − sin(kθ) · sin θ] + [sin(kθ) · cos θ + cos(kθ) · sin θ]
= cos(kθ + θ) + sin(kθ + θ)i

= cos(k + 1)θ + i sin(k + 1)θ.

Thus, cos θ + i sin θ)k+1 = cos(k + 1)θ + i sin(k + 1)θ, so p(k + 1) is true.
Hence, p(k) implies p(k + 1) for all k ∈ Z+.
Since p(1) is true and p(k) implies p(k+ 1) for all k ∈ Z+, then by induction

p(n) is true for all n ∈ Z+.
Therefore, (cos θ + i sin θ)n = cos(nθ) + i sin(nθ) for all n ∈ Z+.

Proposition 11. Arithmetic operations on complex numbers in polar
form

Multiplication
1. (r1e

iθ1)(r2e
iθ2) = (r1r2)ei(θ1+θ2). (multiply absolute values, add angles)

Reciprocal
2. 1

reiθ
= ( 1

r )e−iθ.
Division
3. r1e

iθ1

r2eiθ2
= ( r1r2 )ei(θ1−θ2). (divide absolute values, subtract angles)

nth power
4. (reiθ)n = rn · einθ for any integer n.
Complex conjugation
5. reiθ = re−iθ.

Proof. TODO

Theorem 12. (C,+, ·) is a field.

Proof. TODO

Complex exponential function

Proposition 13. existence and uniqueness of complex exponential func-
tion

There is a unique function f : C→ C such that f ′(z) = f(z) and f(0) = 1.

Proof. TODO

Proposition 14. Properties of complex exponential function
The function f : C→ C defined by f(z) = ez for all z ∈ C has the following

properties.
1. The derivative of ez is ez.

15



2. e0 = 1.
3. ez+w = ez · ew for all z, w ∈ C.
4. (ez)n = enz for all z,∈ C and for all n ∈ Z.

Proof. TODO

Theorem 15. Euler’s formula
The function f : C→ C defined by f(z) = ez for all z ∈ C has the following

property:
eiθ = cos θ + i sin θ for all θ ∈ R.

Proof. TODO

Corollary 16. |eiθ| = 1 for all θ ∈ R.

Proof. Let θ ∈ R.
Then

|eiθ| = | cos θ + i sin θ|
=

√
(cos θ)2 + (sin θ)2

=
√

(sin θ)2 + (cos θ)2

=
√

1

= 1.

Therefore, |eiθ| = 1.

REMOVE THE UN-NEEDED ITEMS FROM BELOW TO CLEAN UP
OUR complex analysis notes.

Ordered Fields

Proposition 17. Positivity of Q is well defined.

Proof. To prove positivity of Q is well defined, let m
n ,

m′

n′ ∈ Q.
Then m,n ∈ Z and n 6= 0 and m′, n′ ∈ Z and n′ 6= 0.
We must prove if (m,n) ∼ (m′, n′), then m

n is positive iff m′

n′ is positive.
Let (m,n) ∼ (m′, n′).

Then m
n = m′

n′ and mn′ = nm′ and n, n′ 6= 0.

Since (m,n) ∼ (m′, n′), then (m′, n′) ∼ (m,n), so m′

n′ = m
n .

We prove if m
n is positive, then m′

n′ is positive.
Suppose m

n is positive.
Then there exist positive integers a and b such that m

n = a
b .

Since m′

n′ = m
n = a

b , then there exist positive integers a and b such that
m′

n′ = a
b .

Therefore, m′

n′ is positive.
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Conversely, we prove if m′

n′ is positive, then m
n is positive.

Suppose m′

n′ is positive.

Then there exist positive integers c and d such that m′

n′ = c
d .

Since m
n = m′

n′ = c
d , then there exist positive integers c and d such that

m
n = c

d .
Therefore, m

n is positive.

Proposition 18. (Q,+, ·) is an ordered field.

Proof. Observe that (Q,+, ·) is a field.
Let Q+ be the set of all positive rational numbers.
Then Q+ = {ab ∈ Q : a, b ∈ Z+}, so Q+ ⊂ Q.
Since 1 ∈ Z+, then 1

1 ∈ Q+, so Q+ is not empty.
To prove Q is an ordered field, we must prove Q+ is closed under addition

and multiplication of Q and the trichotomy law holds.
Let u, v ∈ Q+.
Then there exist positive integers a, b, c, d such that u = a

b and v = c
d .

We prove Q+ is closed under addition in Q.
Since a, b, c, d ∈ Z+, then ad, bc, bd ∈ Z+, by closure of Z+ under multipli-

cation.
Thus, ad+ bc ∈ Z+, by closure of Z+ under addition.
Observe that u+ v = a

b + c
d = ad+bc

bd .

Therefore, there exist positive integers ad+bc and bd such that u+v = ad+bc
bd ,

so u+ v is positive.

We prove Q+ is closed under multiplication in Q.
Since a, b, c, d ∈ Z+, then ac ∈ Z+ and bd ∈ Z+, by closure of Z+ under

multiplication.
Observe that uv = a

b
c
d = ac

bd .
Therefore, there exist positive integers ac and bd such that uv = ac

bd , so uv
is positive.

To prove trichotomy, we must prove exactly one of the following holds: q ∈
Q+, q = 0, −q ∈ Q+ for every q ∈ Q.

Let q ∈ Q.
Then there exist integers a, b with b 6= 0 such that q = a

b .
By trichotomy of Z, either a > 0 or a = 0 or a < 0.
We consider these cases separately.
Case 1: Suppose a = 0.
Since b 6= 0, then q = a

b = 0
b = 0.

Therefore, q = 0.
Case 2: Suppose a > 0.
Then a ∈ Z+.
Since b 6= 0, then either b > 0 or b < 0.
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If b > 0, then b ∈ Z+.
Hence, a ∈ Z+ and b ∈ Z+.
Therefore, a

b = q ∈ Q+.
If b < 0, then −b ∈ Z+.
Hence, a ∈ Z+ and −b ∈ Z+.
Therefore a

−b = −ab = −q ∈ Q+.
Case 3: Suppose a < 0.
Then −a ∈ Z+.
Since b 6= 0, then either b > 0 or b < 0.
If b > 0, then b ∈ Z+.
Hence, −a ∈ Z+ and b ∈ Z+.
Therefore, −ab = −ab = −q ∈ Q+.
If b < 0, then −b ∈ Z+.
Hence, −a ∈ Z+ and −b ∈ Z+.
Therefore −a−b = a

b = q ∈ Q+.

Hence, either q ∈ Q+ or q = 0 or −q ∈ Q+.
Therefore, the trichotomy law holds.

Proposition 19. Let F be an ordered field with positive subset P . Then
1. 1 ∈ P .
2. if x ∈ P , then x−1 ∈ P .
3. if x, y ∈ P , then x

y ∈ P .

4. if x ∈ F and x 6= 0, then x2 ∈ P .
5. if x ∈ P , then nx ∈ P for all n ∈ N.

Proof. We prove 1.
Since F is an ordered field, then either 1 ∈ P or 1 = 0 or −1 ∈ P .
Since F is a field, then 1 6= 0.
Suppose −1 ∈ P .
Since F is a ring, then (−1)(−1) = −(−1) = 1 ∈ P .
Thus, −1 ∈ P and 1 ∈ P , a violation of trichotomy.
Hence, −1 6∈ P .
Since 1 6= 0 and −1 6∈ P , then we must conclude 1 ∈ P .

Proof. We prove 2.
Suppose x ∈ P .
Then x 6= 0.
Since F is a field, then every nonzero element of F has a multiplicative

inverse in F , so x−1 ∈ F .
Either x−1 ∈ P or x−1 = 0 or −x−1 ∈ P .
Since F is a division ring and x 6= 0, then x−1 6= 0.
Suppose −x−1 ∈ P .
Since x ∈ P and −x−1 ∈ P , then x(−x−1) ∈ P , so x(−x−1) = −(xx−1) =

−1 ∈ P .
Hence, 1 ∈ P and −1 ∈ P , a violation of trichotomy.
Thus, −x−1 6∈ P .
Since x−1 6= 0 and −x−1 6∈ P , then we conclude x−1 ∈ P .
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Proof. We prove 3.
Let x, y ∈ P .
Since y ∈ P , then y−1 ∈ P .
Since x ∈ P and y−1 ∈ P , then xy−1 = x

y ∈ P , by closure of P under
multiplication in F .

Proof. We prove 4.
Suppose x ∈ F and x 6= 0.
By trichotomy, either x ∈ P or x = 0 or −x ∈ P .
Since x 6= 0, then either x ∈ P or −x ∈ P .
We consider these cases separately.
Case 1: Suppose x ∈ P .
Then x2 = xx ∈ P , by closure of P under multiplication in F .
Case 2: Suppose −x ∈ P .
Then x2 = xx = (−x)(−x) ∈ P , by closure of P under multiplication in F .
Therefore, in all cases, x2 ∈ P .

Proof. We prove 5.
Let x ∈ P .
Let S = {n ∈ N : nx ∈ P}.
We prove S = N by induction on n.
Basis:
Since 1x = x ∈ P , then 1 ∈ S.
Induction:
Suppose k ∈ S.
Then k ∈ N and kx ∈ P .
Since kx ∈ P and x ∈ P , then kx + x ∈ P , by closure of P under addition

in F , so (k + 1)x = kx+ x ∈ P .
Since k ∈ N, then k + 1 ∈ N.
Since k+1 ∈ N and (k+1)x ∈ P , then k+1 ∈ S, so k ∈ S implies k+1 ∈ S.
Hence, by induction, S = N,
Therefore, nx ∈ P for all n ∈ N.

Proposition 20. Let F be an ordered field with positive subset P . Then for all
a, b ∈ F

1. a > 0 iff a ∈ P .
2. a < 0 iff −a ∈ P .
3. a < b iff b− a > 0.

Proof. We prove 1.
Let a ∈ F .
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Observe that

a > 0 ⇔ 0 < a

⇔ a− 0 ∈ P
⇔ a+ (−0) ∈ P
⇔ a+ 0 ∈ P
⇔ a ∈ P.

Therefore, a > 0 iff a ∈ P .

Proof. We prove 2.
Let a ∈ F .
Observe that a < 0 iff 0− a ∈ P iff 0 + (−a) ∈ P iff −a ∈ P .
Therefore, a < 0 iff −a ∈ P .

Proof. We prove 3.
Let a ∈ F .
Observe that a < b iff b− a ∈ P iff b− a > 0.
Therefore, a < b iff b− a > 0.

Lemma 21. Let (F,+, ·, <) be an ordered field with a, b ∈ F .
If a > 0 and b < 0, then ab < 0.

Proof. Suppose a > 0 and b < 0.
Let P be the positive subset of F .
Then a ∈ P and −b ∈ P .
Hence, by closure of P under multiplication, a(−b) ∈ P .
Since F is a ring, then −(ab) = a(−b), so −(ab) ∈ P .
Therefore, ab < 0.

Proposition 22. positivity of a product in an ordered field
Let (F,+, ·, <) be an ordered field with a, b ∈ F . Then
1. ab > 0 iff either a > 0 and b > 0 or a < 0 and b < 0.
2. ab < 0 iff either a > 0 and b < 0 or a < 0 and b > 0.

Proof. We prove 1.
Let P be the positive subset of F .
Suppose either a > 0 and b > 0 or a < 0 and b < 0.
We consider these cases separately.
Case 1: Suppose a > 0 and b > 0.
Then a ∈ P and b ∈ P .
Hence, by closure of P under multiplication, ab ∈ P .
Therefore, ab > 0.
Case 2: Suppose a < 0 and b < 0.
Then −a ∈ P and −b ∈ P .
Hence, by closure of P under multiplication, (−a)(−b) ∈ P .
Since F is a ring, then ab = (−a)(−b), so ab ∈ P .
Therefore, ab > 0.
Thus, in all cases, ab > 0, as desired.
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Conversely, suppose ab > 0.
If a = 0, then ab = 0b = 0.
Thus, ab > 0 and ab = 0, a violation of trichotomy.
Therefore, a 6= 0, so either a > 0 or a < 0.
We consider these cases separately.
Case 1: Suppose a > 0.
Then a ∈ P , so a−1 ∈ P .
Hence, a−1 > 0.
Since a−1 > 0 and ab > 0, then b = 1 · b = (a−1 · a)b = a−1 · (ab) > 0.
Therefore, a > 0 and b > 0.
Case 2: Suppose a < 0.
Then −a ∈ P , so (−a)−1 ∈ P .
Hence, 1

−a ∈ P , so − 1
a ∈ P .

Thus, −(a−1) ∈ P , so a−1 < 0.
Since ab > 0 and a−1 < 0, then by the previous lemma b = 1·b = (a−1 ·a)b =

a−1 · (ab) = ab · a−1 < 0.
Therefore, a < 0 and b < 0.
Thus, either a > 0 and b > 0 or a < 0 and b < 0, as desired.

Proof. We prove 2.
Suppose either a > 0 and b < 0 or a < 0 and b > 0.
We consider these cases separately.
Case 1: Suppose a > 0 and b < 0.
Then by the previous lemma, ab < 0.
Case 2: Suppose a < 0 and b > 0.
Then b > 0 and a < 0, so by the previous lemma, ab = ba < 0.
Therefore, in all cases, ab < 0, as desired.

Conversely, suppose ab < 0.
Then −(ab) > 0.
Since F is a ring, then a(−b) = −(ab), so a(−b) > 0.
Hence, by 1, either a > 0 and −b > 0 or a < 0 and −b < 0.
Thus, either a > 0 and −(−b) < 0 or a < 0 and −(−b) > 0.
Therefore, either a > 0 and b < 0 or a < 0 and b > 0, as desired.

Corollary 23. Let (F,+, ·, <) be an ordered field.
Let a, b ∈ F .
Then a

b > 0 iff ab > 0.

Proof. Suppose a
b > 0.

Then b 6= 0, so 1
b 6= 0.

Since a
b = a · 1

b , then a · 1
b > 0.

Thus, either a > 0 and 1
b > 0 or a < 0 and 1

b < 0.
We consider these cases separately.
Case 1: Suppose a > 0 and 1

b > 0.
Since 1

b > 0, then 1
1
b

> 0, so b > 0.
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Since a > 0 and b > 0, then ab > 0.
Case 2: Suppose a < 0 and 1

b < 0.
Since 1

b < 0, then 1
−b > 0, so 1

1
−b

> 0.

Thus, −b > 0.
Since a < 0, then −a > 0.
Thus, ab = (−a)(−b) > 0, so ab > 0.
Therefore, in all cases, ab > 0, as desired.

Conversely, suppose ab > 0.
Then either a > 0 and b > 0 or a < 0 and b < 0.
We consider these cases separately.
Case 1: Suppose a > 0 and b > 0.
Since b > 0, then 1

b > 0.
Since a > 0 and 1

b > 0, then a
b = a · 1

b > 0.
Case 2: Suppose a < 0 and b < 0.
Since b < 0, then −b > 0, so − 1

b > 0.
Since a < 0, then −a > 0.
Hence, a

b = (−a)(− 1
b ) > 0.

Therefore, in all cases, a
b > 0, as desired.

Theorem 24. ordered fields satisfy transitivity and trichotomy laws
Let (F,+, ·, <) be an ordered field. Then
1. a < a is false for all a ∈ F . (Therefore, < is not reflexive.)
2. For all a, b, c ∈ F , if a < b and b < c, then a < c. (< is transitive)
3. For every a ∈ F , exactly one of the following is true (trichotomy):
i. a > 0
ii. a = 0
iii. a < 0
4. For every a, b ∈ F , exactly one of the following is true (trichotomy):
i. a > b
ii. a = b
iii. a < b

Proof. We prove 1.
Let a ∈ F .
We must prove a < a is false.
Since a < a iff a− a ∈ P iff 0 ∈ P and 0 6∈ P , then a < a is false.

Proof. We prove 2.
Let a, b, c ∈ F such that a < b and b < c.
Since a < b, then b− a ∈ P .
Since b < c, then c− b ∈ P .
Hence, (c− b) + (b− a) ∈ P , by closure of P under addition of F .
Observe that (c− b) + (b− a) = c+ (−b+ b)− a = c+ 0− a = c− a.
Therefore, c− a ∈ P , so a < c.
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Proof. We prove 3.
Let a ∈ F .
By trichotomy, exactly one of the following is true: a ∈ P , a = 0, −a ∈ P .
Observe that a ∈ P iff a > 0 and −a ∈ P iff a < 0.
Therefore, exactly one of the following is true: a > 0, a = 0, a < 0.

Proof. We prove 4.
Let a, b ∈ F .
Since F is a ring, then F is closed under subtraction, so a− b ∈ F .
Since F is an ordered field, then by trichotomy, exactly one of the following

is true: a− b ∈ P , a− b = 0, −(a− b) ∈ P .
Observe that a− b ∈ P iff b < a iff a > b.
Observe that a− b = 0 iff a = b.
Observe that −(a− b) ∈ P iff −a+ b ∈ P iff b− a ∈ P iff a < b.
Therefore, exactly one of the following is true: a > b, a = b, a < b.

Corollary 25. Let (F,+, ·, <) be an ordered field.
Let a, b ∈ F .
If 0 < a < b, then 0 < 1

b <
1
a .

Proof. Suppose 0 < a < b.
Then 0 < a and a < b, so 0 < b.
Since b > 0, then b ∈ P , so 1

b ∈ P .
Hence, 1

b > 0.
Since a > 0 and b > 0, then a ∈ P and b ∈ P , so ab ∈ P .
Since a < b, then b− a ∈ P .
Thus, b−a

ab ∈ P , so b−a
ab > 0.

Hence, 1
a −

1
b > 0, so 1

b <
1
a .

Therefore, 0 < 1
b <

1
a , as desired.

Theorem 26. order is preserved by the field operations in an ordered
field

Let (F,+, ·, <) be an ordered field.
Let a, b, c, d ∈ F .
1. If a < b, then a+ c < b+ c. (preserves order for addition)
2. If a < b, then a− c < b− c. (preserves order for subtraction)
3. If a < b and c > 0, then ac < bc. (preserves order for multiplication by a

positive element)
4. If a < b and c < 0, then ac > bc. (reverses order for multiplication by a

negative element)
5. If a < b and c > 0, then a

c <
b
c . (preserves order for division by a positive

element)

Proof. Let P be the positive subset of F .
We prove 1.
Suppose a < b.
Then b− a ∈ P .
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Observe that b − a = (b − a) + 0 = (b − a) + (c − c) = b − a + c − c =
b+ c− a− c = (b+ c)− (a+ c).

Therefore, (b+ c)− (a+ c) ∈ P , so a+ c < b+ c.

Proof. We prove 2.
Suppose a < b.
Since c ∈ F , then −c ∈ F .
Therefore, a+ (−c) < b+ (−c), so a− c < b− c.

Proof. We prove 3.
Suppose a < b and c > 0.
Since a < b, then b− a ∈ P .
Since c > 0, then c ∈ P .
Hence, (b− a)c ∈ P , by closure of P under multiplication of F .
Since (b− a)c = bc− ac, then bc− ac ∈ P , so ac < bc.

Proof. We prove 4.
Suppose a < b and c < 0.
To prove ac > bc, we must prove bc < ac, i.e. ac− bc ∈ P .
Since a < b, then b− a ∈ P .
Since c < 0, then −c ∈ P .
Hence, (b− a)(−c) ∈ P , by closure of P under multiplication of F .
Observe that (b− a)(−c) = b(−c)− a(−c) = −bc+ ac = ac− bc.
Therefore, ac− bc ∈ P , as desired.

Proof. We prove 5.
Suppose a < b and c > 0.
Since c > 0, then 1

c > 0.
Since a < b and 1

c > 0, then a · 1
c < b · 1

c .

Therefore, a
c <

b
c .

Proposition 27. Let (F,+, ·, <) be an ordered field.
Let a, b, c, d ∈ F .
1. If a < b and c < d, then a+ c < b+ d. (adding inequalities is valid)
2. If 0 < a < b and 0 < c < d, then 0 < ac < bd.

Proof. We prove 1.
Suppose a < b and c < d.
Since a < b, then a+ c < b+ c.
Since c < d, then c+ b < d+ b, so b+ c < b+ d.
Since a+ c < b+ c and b+ c < b+ d, then a+ c < b+ d.

Proof. We prove 2.
Suppose 0 < a < b and 0 < c < d.
We must prove 0 < ac < bd.
Since 0 < a < b, then 0 < a and a < b and 0 < b.
Since 0 < c < d, then 0 < c and c < d.
Since a > 0 and c > 0, then ac > 0.
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Since a < b and c > 0, then ac < bc.
Since c < d and b > 0, then bc < bd.
Therefore, ac < bc and bc < bd, so ac < bd.
Hence, 0 < ac and ac < bd, so 0 < ac < bd, as desired.

Proposition 28. Let (F,+, ·, <) be an ordered field.
Let a

b ,
c
d ∈ F with b, d > 0.

Then a
b <

c
d iff ad < bc.

Proof. We must prove a
b <

c
d iff ad < bc.

We prove if a
b <

c
d , then ad < bc.

Suppose a
b <

c
d .

Then c
d −

a
b ∈ P , so cb−da

db ∈ P .

Hence, cb−da
db > 0.

Since b > 0 and d > 0, then db > 0.
We multiply by positive db to get cb− da > 0.
Thus, cb > da, so da < cb.
Therefore, ad < bc, as desired.
Conversely, we prove if ad < bc, then a

b <
c
d .

Suppose ad < bc.
Since b > 0, then we divide by positive b to get ad

b < c.
Since d > 0, then we divide by positive d to get a

b <
c
d , as desired.

Theorem 29. density of ordered fields
Between any two distinct elements of an ordered field is a third element.

Proof. Let (F,+, ·, <) be an ordered field.
Since 1 ∈ F and 0 ∈ F and 1 6= 0, then F contains at least two elements.
Let a and b be distinct elements of F .
Then a ∈ F and b ∈ F and a 6= b.
We must prove there is at least one element c of F such that a < c < b.
Since a 6= b, then either a < b or a > b.
Without loss of generality, assume a < b.
Since a ∈ F and b ∈ F , then by closure of F under addition, a+ b ∈ F .
Since 1 ∈ F , then by closure of F under addition, 1 + 1 ∈ F .
Define 2 to be 1 + 1.
Then 2 ∈ F and 2 = 1 + 1.
Since 1 > 0, then 1 + 1 > 0, so 2 > 0.
Let c = a+b

2 .

Since a+ b ∈ F and 2 6= 0, then a+b
2 ∈ F , so c ∈ F .

Since a < b, then a+ a < a+ b and a+ b < b+ b.
Thus, 2a < a+ b and a+ b < 2b.
Since 2 > 0, we divide by 2 to get a < a+b

2 and a+b
2 < b, so a < a+b

2 < b.
Therefore, a < c < b, as desired.

Corollary 30. ordered fields are infinite
An ordered field contains an infinite number of elements.
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Proof. Let F be an ordered field.
We prove F is infinite by contradiction.
Suppose F is not infinite.
Then F is finite, so F contains a finite number of elements.
Let n be the number of distinct elements of F .
Since 1 6= 0 in every field, then every field contains at least two distinct

elements.
Therefore, n ∈ N and n ≥ 2.
Let a1, a2, ..., an be the elements of F arranged so that the ai element is in

the ith position in the order defined by < over F for each i = 1, 2, ..., n.
Then F = {a1, a2, ..., an} and a1 < a2 < ... < an.
Since a1 ∈ F and a2 ∈ F and a1 < a2, then a1 and a2 are distinct elements

of the ordered field F .
Therefore, by the density of F , there exists at least one element b ∈ F such

that a1 < b < a2.
Hence, a1 < b and b < a2.

We prove b 6= ai for each i = 1, 2, ..., n.
Since a1 < b, then a1 6= b, so b 6= a1.
Since b < a2, then b 6= a2.
Since b < a2 and a2 < ai for each i such that 2 < i ≤ n, then b < ai for each

i such that 2 < i ≤ n.
Thus, b 6= ai for each i such that 2 < i ≤ n.
Therefore, b 6= ai for each i = 1, 2, ..., n, so b 6∈ F .
Hence, we have b ∈ F and b 6∈ F , a contradiction.
Therefore, F is not finite, so F is infinite.

Theorem 31. ordered fields are totally ordered
Let (F,+, ·,≤) be an ordered field. Then
1. ≤ is a partial order over F . Therefore, (F,≤) is a poset.
2. ≤ is a total order over F .

Proof. We prove 1.

Let x ∈ F .
Since equality is reflexive, then x = x.
Hence, x = x or x < x, so x < x or x = x.
Therefore, x ≤ x, so ≤ is reflexive.

Let x, y ∈ F such that x ≤ y and y ≤ x.
Suppose x 6= y.
Since x ≤ y and x 6= y, then x < y.
Since y ≤ x and y 6= x, then y < x.
Thus, x < y and x > y, a violation of trichotomy.
Hence, x = y.
Therefore, ≤ is antisymmetric.
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Let x, y, z ∈ F such that x ≤ y and y ≤ z.
Since x ≤ y and y ≤ z, then x < y or x = y and y < z or y = z.
Hence, either both x < y or x = y and y < z, or both x < y or x = y and

y = z.
Thus, either x < y and y < z or x = y and y < z or x < y and y = z or

x = y and y = z.
Therefore, there are 4 cases to consider.
Case 1: Suppose x < y and y < z.
Since < is transitive, then x < z.
Case 2: Suppose x < y and y = z.
Then x < z.
Case 3: Suppose x = y and y < z.
Then x < z.
Case 4: Suppose x = y and y = z.
Then x = z.
Thus, in all cases, either x < z or x = z, so x ≤ z.
Therefore, ≤ is transitive.

Since ≤ is reflexive, antisymmetric, and transitive, then ≤ is a partial order
over F , so (F,≤) is a poset.

Proof. We prove 2.
Since (F,≤) is a poset, then ≤ is a total order over F iff either x ≤ y or

y ≤ x for all x, y ∈ F .
Thus, to prove ≤ is a total order, we must prove either x ≤ y or y ≤ x for

all x, y ∈ F .
Let x, y ∈ F .
To prove x ≤ y or y ≤ x, assume x ≤ y is false.
We must prove y ≤ x.
Since x ≤ y is false, then x is not less than y and x 6= y.
Hence, by trichotomy, x > y.
Therefore, y < x, so y ≤ x, as desired.

Proposition 32. Let (F,+, ·,≤) be an ordered field. Then
1. x2 = 0 iff x = 0.
2. x2 > 0 iff x 6= 0.
3. x2 ≥ 0 for all x ∈ F .

Proof. Since F is an ordered field, then let P be the positive subset of F .
We prove 1.
Let x ∈ F .
We must prove x2 = 0 iff x = 0.
We prove if x = 0, then x2 = 0.
Suppose x = 0.
Then x2 = 02 = 0, so x2 = 0, as desired.
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Conversely, we prove if x2 = 0, then x = 0 by contrapositive.
Suppose x 6= 0.
Then x2 ∈ P .
Since x2 ∈ P iff x2 > 0, then x2 > 0.
Hence, x2 6= 0, as desired.

Proof. We prove 2.
Let x ∈ F .
We must prove x2 > 0 iff x 6= 0.
We prove if x 6= 0, then x2 > 0.
Suppose x 6= 0.
Then x2 ∈ P .
Since x2 ∈ P iff x2 > 0, then x2 > 0, as desired.

Conversely, we prove if x2 > 0, then x 6= 0 by contrapositive.
Suppose x = 0.
Then x2 = 02 = 0 ≤ 0, so x2 ≤ 0, as desired.

Proof. We prove 3.
Let x ∈ F .
Then either x = 0 or x 6= 0.
We consider these cases separately.
Case 1: Suppose x = 0.
Since x2 = 0 iff x = 0, then x2 = 0.
Case 2: Suppose x 6= 0.
Since x2 > 0 iff x 6= 0, then x2 > 0.
Thus, in all cases, either x2 > 0 or x2 = 0.
Therefore, x2 ≥ 0, as desired.

Absolute value in an ordered field

Lemma 33. Let F be an ordered field. Let x ∈ F .
1. If x < 0, then 1

x < 0.
2. If x 6= 0, then | 1x | =

1
|x| .

Proof. We prove 1.
Let x ∈ F .
Suppose x < 0.
Then x 6= 0.
Since F is a field and x 6= 0, then 1

x ∈ F , so x · 1
x = 1.

Either 1
x > 0 or 1

x = 0 or 1
x < 0.

Suppose 1
x = 0.

Then 1 = x · 1
x = x · 0 = 0, so 1 = 0.

But, 1 6= 0 in an ordered field, so 1
x 6= 0.
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Suppose 1
x > 0.

Since 1
x > 0 and x < 0, then 1 = 1

x · x < 0, so 1 < 0, a contradiction.
Hence, 1

x cannot be greater than zero.
Therefore, 1

x < 0.

Proof. We prove 2.
Let x ∈ F .
Suppose x 6= 0.
Then either x > 0 or x < 0.
We consider these cases separately.
Case 1: Suppose x > 0.
Then 1

x > 0.
Therefore, | 1x | =

1
x = 1

|x| .

Case 2: Suppose x < 0.
Then 1

x < 0.
Therefore, | 1x | = −

1
x = 1

−x = 1
|x| .

Theorem 34. arithmetic operations and absolute value
Let F be an ordered field. For all a, b ∈ F
1. |ab| = |a||b|.
2. if b 6= 0, then |ab | =

|a|
|b| .

3. |a|2 = a2.
4. if a 6= 0, then |an| = |a|n for all n ∈ Z.

Proof. We prove 1.
Let a, b ∈ F .
Either a or b is zero or neither a nor b is zero.
Hence, either a = 0 or b = 0 or a 6= 0 and b 6= 0.
Thus, either a = 0 or b = 0, or a > 0 or a < 0 and b > 0 or b < 0.
Hence, either a = 0 or b = 0 or both a > 0 and b > 0 or both a > 0 and

b < 0 or both a < 0 and b > 0 or both a < 0 and b < 0.
We consider these cases separately.
We must prove |ab| = |a||b|.
Case 1: Suppose a = 0.
Then

|ab| = |0 · b|
= |0|
= 0

= 0 · |b|
= |0||b|
= |a||b|.

Case 2: Suppose b = 0.

29



Then

|ab| = |a · 0|
= |0|
= 0

= |a| · 0
= |a||0|
= |a||b|.

Case 3: Suppose a > 0 and b > 0.
Then |a| = a and |b| = b.
Since a > 0 and b > 0, then ab > 0.
Hence, |ab| = ab.
Therefore,

|ab| = ab

= |a||b|.

Case 4: Suppose a > 0 and b < 0.
Then |a| = a and |b| = −b.
Since a > 0 and b < 0, then ab < 0.
Hence, |ab| = −ab.
Therefore,

|ab| = −ab
= a(−b)
= |a||b|.

Case 5: Suppose a < 0 and b > 0.
Then |a| = −a and |b| = b.
Since a < 0 and b > 0, then ab < 0.
Hence, |ab| = −ab.
Therefore,

|ab| = −ab
= (−a)b

= |a||b|.

Case 6: Suppose a < 0 and b < 0.
Then |a| = −a and |b| = −b.
Since a < 0 and b < 0, then ab > 0.
Hence, |ab| = ab.
Therefore,

|ab| = ab

= (−a)(−b)
= |a||b|.
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Therefore, in all cases, |ab| = |a||b|.

Proof. We prove 2.
Let a, b ∈ F .
Suppose b 6= 0.
Then b−1 = 1

b 6= 0, so

|a
b
| = |ab−1|

= |a · 1

b
|

= |a| · |1
b
|

= |a| · 1

|b|

=
|a|
|b|
.

Proof. We prove 3.
Let a ∈ F .
We must prove |a|2 = a2.
Either a = 0 or a 6= 0.
We consider these cases separately.
Case 1: Suppose a = 0.
Then

|a|2 = |0|2

= 02

= a2.

Case 2: Suppose a 6= 0.
Then a2 ∈ F+, so a2 > 0.
Hence,

|a|2 = |a||a|
= |aa|
= |a2|
= a2.

Therefore, in all cases, |a|2 = a2, as desired.

Proof. We prove 4.
Let a ∈ F with a 6= 0.
To prove |an| = |a|n for all n ∈ Z, we prove |an| = |a|n for all positive

integers n and |a0| = |a|0 and |an| = |a|n for all negative integers n.
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We prove |a0| = |a|0.
Since a 6= 0, then |a0| = |1| = 1 = |a|0.
Therefore, |a0| = |a|0.

We prove |an| = |a|n for all n ∈ N by induction on n.
Let S = {n ∈ N : |an| = |a|n}.
Basis:
Since |a1| = |a| = |a|1, then 1 ∈ S.
Induction:
Suppose k ∈ S.
Then k ∈ N and |ak| = |a|k.
Since k ∈ N, then k + 1 ∈ N.
Observe that

|ak+1| = |aka|
= |ak||a|
= |a|k|a|
= |a|k+1.

Since k + 1 ∈ N and |ak+1| = |a|k+1, then k + 1 ∈ S.
Thus, k ∈ S implies k + 1 ∈ S.
Since 1 ∈ S and k ∈ S implies k + 1 ∈ S, then by PMI, S = N.
Therefore, |an| = |a|n for all n ∈ N.

We prove |an| = |a|n for all negative integers n.
Let n be an arbitrary negative integer.
Then n ∈ Z and n < 0.
Since n ∈ Z, then −n ∈ Z and −n > 0.
Let k = −n.
Then k ∈ Z and k > 0 and n = −k.
Since k ∈ Z and k > 0, then k is a positive integer, so |ak| = |a|k.
Since a 6= 0, then ak 6= 0.
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Observe that

|an| = |a−k|

= | 1

ak
|

=
1

|ak|

=
1

|a|k

=
1

|a|−n

=
1
1
|a|n

= |a|n.

Therefore, |an| = |a|n.

Theorem 35. properties of the absolute value function
Let (F,+, ·,≤) be an ordered field.
Let a, k ∈ F and k > 0. Then
1. |a| ≥ 0.
2. |a| = 0 iff a = 0.
3. | − a| = |a|.
4. −|a| ≤ a ≤ |a|.
5. |a| < k iff −k < a < k.
6. |a| > k iff a > k or a < −k.
7. |a| = k iff a = k or a = −k.

Proof. We prove 1.
Let a ∈ F .
Either a > 0 or a = 0 or a < 0.
We consider these cases separately.
We must prove either |a| > 0 or |a| = 0.
Case 1: Suppose a > 0.
Then |a| = a > 0.
Case 2: Suppose a = 0.
Then |a| = a = 0.
Case 3: Suppose a < 0.
Since −a > 0 iff −a ∈ F+ iff a < 0 and a < 0, then −a > 0.
Since a < 0, then |a| = −a > 0.
Therefore, in all cases, |a| ≥ 0.

Proof. We prove 2.
Let a ∈ F .
We must prove |a| = 0 iff a = 0.
We prove if a = 0, then |a| = 0.
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Suppose a = 0.
Then |a| = a = 0.
Conversely, we prove if |a| = 0, then a = 0 by contrapositive.
Suppose a 6= 0.
We must prove |a| 6= 0.
Since a 6= 0, then either a > 0 or a < 0.
In either case |a| > 0.
Therefore, by trichotomy, |a| 6= 0, as desired.

Proof. We prove 3.
Let a ∈ F .
We must prove | − a| = |a|.
Either a > 0 or a = 0 or a < 0.
We consider these cases separately.
Case 1: Suppose a > 0.
Then −a < 0.
Therefore, | − a| = −(−a) = a = |a|.
Case 2: Suppose a = 0.
Then | − a| = | − 0| = |0| = |a|.
Case 3: Suppose a < 0.
Then −a > 0 and |a| = −a.
Therefore, | − a| = −a = |a|.
Hence, in all cases, | − a| = |a|.

Proof. We prove 4.
Let a ∈ F .
To prove −|a| ≤ a ≤ |a|, we must prove −|a| ≤ a and a ≤ |a|.
Either a ≥ 0 or a < 0.
We consider these cases separately.
Case 1: Suppose a ≥ 0.
Then |a| = a and −a ≤ 0.
Since a ≤ a and a = |a|, then a ≤ |a|, as desired.
Since −a ≤ 0 and 0 ≤ a, then −a ≤ a, so −|a| ≤ a, as desired.
Case 2: Suppose a < 0.
Then |a| = −a and −a > 0.
Since a < 0 and 0 < −a, then a < −a = |a|, so a ≤ |a|, as desired.
Since a ≤ a, then −(−a) ≤ a, so −|a| ≤ a, as desired.

Proof. We prove 5.
Let a, k ∈ F with k > 0.
We must prove |a| < k iff −k < a < k.
We prove if |a| < k, then −k < a < k.
Suppose |a| < k.
We must prove −k < a and a < k.
Either a ≥ 0 or a < 0.
We consider these cases separately.
Case 1: Suppose a ≥ 0.
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Then a = |a| < k.
Therefore, a < k, as desired.
Since k > 0, then −k < 0.
Since −k < 0 and 0 ≤ a, then −k < a, as desired.
Case 2: Suppose a < 0.
Since a < 0 and 0 < k, then a < k, as desired.
Since |a| < k, then k > |a| = −a, so k > −a.
Therefore, −k < a, as desired.

Conversely, we prove if −k < a < k, then |a| < k.
Suppose −k < a < k.
Then −k < a and a < k.
We must prove |a| < k.
Either a ≥ 0 or a < 0.
We consider these cases separately.
Case 1: Suppose a ≥ 0.
Then |a| = a < k.
Therefore, |a| < k, as desired.
Case 2: Suppose a < 0.
Since −k < a, then k > −a = |a|, so k > |a|.
Therefore, |a| < k, as desired.

Proof. We prove 6.
Let a, k ∈ F with k > 0.
We must prove |a| > k iff a > k or a < −k.

We prove if |a| > k, then a > k or a < −k.
Suppose |a| > k.
Either a ≥ 0 or a < 0.
We consider these cases separately.
Case 1: Suppose a ≥ 0.
Then a = |a| > k.
Case 2: Suppose a < 0.
Then −a = |a| > k, so −a > k.
Hence, a < −k.
Therefore, either a > k or a < −k, as desired.

Conversely, to prove if a > k or a < −k, then |a| > k, we must prove both if
a > k, then |a| > k and if a < −k, then |a| > k.

We first prove if a > k, then |a| > k.
Suppose a > k.
Since a > k and k > 0, then a > 0.
Therefore, |a| = a > k.
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We next prove if a < −k, then |a| > k.
Suppose a < −k.
Then −a > k.
Since −a > k and k > 0, then −a > 0.
Hence, a < 0.
Therefore, |a| = −a > k.

Proof. We prove 7.
Let a, k ∈ F with k > 0.
We must prove |a| = k iff a = k or a = −k.

To prove if a = k or a = −k, then |a| = k, we must prove both if a = k, then
|a| = k and if a = −k, then |a| = k.

We first prove if a = k, then |a| = k.
Suppose a = k.
Since k > 0, then |k| = k.
Therefore, |a| = |k| = k.

We next prove if a = −k, then |a| = k.
Suppose a = −k.
Since k > 0, then −k < 0, so a < 0.
Therefore, |a| = −a = k.

Conversely, we prove if |a| = k, then either a = k or a = −k.
Suppose |a| = k.
Either a ≥ 0 or a < 0.
We consider these cases separately.
Case 1: Suppose a ≥ 0.
Then k = |a| = a, so a = k.
Case 2: Suppose a < 0.
Then −a = |a| = k, so −a = k.
Hence, a = −k.
Therefore, either a = k or a = −k, as desired.

Theorem 36. triangle inequality
Let (F,+, ·,≤) be an ordered field.
Let a, b ∈ F . Then |a+ b| ≤ |a|+ |b|.

Proof. Let a, b ∈ F .
Since a ∈ F , then −|a| ≤ a ≤ |a|.
Since b ∈ F , then −|b| ≤ b ≤ |b|.
We add these inequalities to get −(|a|+ |b|) ≤ a+ b ≤ |a|+ |b|.
Therefore, |a+ b| ≤ |a|+ |b|.

Corollary 37. Let (F,+, ·,≤) be an ordered field. Then
1. |a− b| ≥ |a| − |b| and |a− b| ≥ |b| − |a| for all a, b ∈ F .
2. ||a| − |b|| ≤ |a− b| ≤ |a|+ |b| for all a, b ∈ F .
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Proof. We prove 1.
Let a, b ∈ F .
Since |a| = |(a−b)+b| ≤ |a−b|+|b|, then |a| ≤ |a−b|+|b|, so |a|−|b| ≤ |a−b|.
Hence, |a− b| ≥ |a| − |b|, so |a− b| ≥ |a| − |b| for all a, b ∈ F .

Since |a − b| ≥ |a| − |b| for all a, b ∈ F , then in particular, if we switch roles
of a and b, we have |b− a| ≥ |b| − |a|.

Therefore, |a− b| ≥ |b| − |a|.

Proof. We prove 2.
Let a, b ∈ F .
We first prove ||a| − |b|| ≤ |a− b|.
Since |a− b| ≥ |a| − |b|, then |a| − |b| ≤ |a− b|.
Since |a− b| ≥ |b| − |a|, then −|a− b| ≤ |a| − |b|.
Thus, −|a−b| ≤ |a|−|b| and |a|−|b| ≤ |a−b|, so −|a−b| ≤ |a|−|b| ≤ |a−b|.
Therefore, ||a| − |b|| ≤ |a− b|.

We next prove |a− b| ≤ |a|+ |b|.
Since |a− b| = |a+ (−b)| ≤ |a|+ | − b| = |a|+ |b|, then |a− b| ≤ |a|+ |b|.
Therefore, ||a| − |b|| ≤ |a− b| ≤ |a|+ |b|.

Corollary 38. generalized triangle inequality
Let (F,+, ·,≤) be an ordered field.
Let n ∈ N.
Let x1, x2, ..., xn ∈ F . Then
|x1 + x2 + ...+ xn| ≤ |x1|+ |x2|+ ...+ |xn|.

Proof. Define predicate p(n) : |x1 + x2 + ...+ xn| ≤ |x1|+ |x2|+ ...+ |xn| over
N.

We prove p(n) for all n ∈ N by induction on n.
Basis: Since |x1| = |x1|, then |x1| ≤ |x1|.
Therefore, p(1) is true.
Induction: Let n ∈ N such that p(n) is true.
Then |x1 + x2 + ...+ xn| ≤ |x1|+ |x2|+ ...+ |xn|.
To prove p(n+ 1) is true, we must prove
|x1 + x2 + ...+ xn+1| ≤ |x1|+ |x2|+ ...+ |xn+1|.
Observe that

|x1 + x2 + ...+ xn+1| = |(x1 + x2 + ...+ xn) + xn+1|
≤ |x1 + x2 + ...+ xn|+ |xn+1|
≤ |x1|+ |x2|+ ...+ |xn|+ |xn+1|.

Thus, p(n+ 1) is true, so p(n) implies p(n+ 1) for all n ∈ N.
Hence, by induction, p(n) is true for all n ∈ N.
Therefore, |x1 + x2 + ...+ xn| ≤ |x1|+ |x2|+ ...+ |xn| for all n ∈ N.

37



Boundedness of sets in an ordered field

Theorem 39. A subset S of an ordered field F is bounded in F iff S is bounded
above and below in F .

Proof. Let S be a subset of an ordered field F .
We prove if S is bounded in F , then S is bounded above and below in F .
Suppose S is bounded in F .
Then there exists b ∈ F such that |x| ≤ b for all x ∈ S.
Thus, −b ≤ x ≤ b for all x ∈ S, so −b ≤ x and x ≤ b for all x ∈ S.
Hence, −b ≤ x for all x ∈ S and x ≤ b for all x ∈ S.
Since b ∈ F and x ≤ b for all x ∈ S, then b is an upper bound of S, so S is

bounded above in F .
Since −b ∈ F and −b ≤ x for all x ∈ S, then −b is a lower bound of S, so S

is bounded below in F .
Conversely, we prove if S is bounded above and below in F , then S is

bounded in F .
Suppose S is bounded above and below in F .
Then there is at least one upper and lower bound of S in F .
Let M be an upper bound of S in F .
Let m be a lower bound of S in F .
To prove S is bounded, we must prove there exists b ∈ F such that |x| ≤ b

for all x ∈ S.
Let b = max{|M |, |m|}.
Then |m| ≤ b and |M | ≤ b.
Since |M |, |m| ∈ F and either b = |M | or b = |m|, then b ∈ F .
Let x ∈ S.
Since m is a lower bound of S and M is an upper bound of S, then m ≤

x ≤M .
Since |m| ≤ b, then −|m| ≥ −b.
Observe that
−b ≤ −|m| ≤ m ≤ x ≤M ≤ |M | ≤ b.
Hence, −b ≤ x ≤ b, so |x| ≤ b, as desired.

Proposition 40. Every element of an ordered field is an upper and lower bound
of ∅.

Proof. Let (F,+, ·,≤) be an ordered field.
Since ≤ is a partial order over F , then (F,≤) is a partially ordered set.
Since every element of a partially ordered set is an upper and lower bound

of ∅, then in particular, every element of (F,≤) is an upper and lower bound of
∅.

Proposition 41. A subset of a bounded set is bounded.
Let A be a bounded subset of an ordered field F .
If B ⊂ A, then B is bounded in F .
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Proof. Suppose B ⊂ A.
Let x ∈ B.
Since B ⊂ A, then x ∈ A.
Since A is bounded in F , then there exists M ∈ F such that |x| ≤M for all

x ∈ A.
Since x ∈ A, then |x| ≤M .
Since x is arbitrary, then |x| ≤M for all x ∈ B.
Therefore, there is M ∈ F such that |x| ≤M for all x ∈ B, so B is bounded

in F .

Proposition 42. A union of bounded sets is bounded.
Let A and B be subsets of an ordered field F .
If A and B are bounded, then A ∪B is bounded.

Proof. Suppose A and B are bounded.
Either A = ∅ or A 6= ∅ and either B = ∅ or B 6= ∅.
Hence, either A = ∅ and B = ∅ or A = ∅ and B 6= ∅ or A 6= ∅ and B = ∅ or

A 6= ∅ and B 6= ∅.
Thus, we have 4 cases to consider:
Case 1: Suppose A = ∅ and B = ∅.
Then A ∪B = ∅ ∪ ∅ = ∅.
Since the empty set is bounded, then A ∪B is bounded.
Case 2: Suppose A = ∅ and B 6= ∅.
Then A ∪B = ∅ ∪B = B.
Since B is bounded, then A ∪B is bounded.
Case 3: Suppose A 6= ∅ and B = ∅.
Then A ∪B = A ∪ ∅ = A.
Since A is bounded, then A ∪B is bounded.
Case 4: Suppose A 6= ∅ and B 6= ∅.
Since A 6= ∅, then there exists a ∈ A.
Since A ⊂ A ∪B, then a ∈ A ∪B, so A ∪B 6= ∅.
Since A is bounded, then there exists α ∈ F such that |x| ≤ α for all x ∈ A.
Since B is bounded, then there exists β ∈ F such that |x| ≤ β for all x ∈ B.
Let S = {α, β}.
Let γ = maxS.
Let x ∈ A ∪B be given.
Then either x ∈ A or x ∈ B.
We consider these cases separately.
Case 4a: Suppose x ∈ A.
Then |x| ≤ α.
Since α ≤ maxS, then |x| ≤ maxS.
Case 4b: Suppose x ∈ B.
Then |x| ≤ β.
Since β ≤ maxS, then |x| ≤ maxS.
Hence, in all cases, |x| ≤ maxS.
Thus, there exists maxS such that |x| ≤ maxS for all x ∈ A ∪B, so A ∪B

is bounded.
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Theorem 43. uniqueness of least upper bound in an ordered field
A least upper bound of a subset of an ordered field, if it exists, is unique.

Proof. Let S be a subset of an ordered field F .
We prove if a least upper bound of S exists, then it is unique.
Suppose a least upper bound of S exists in F .
Then there is at least one least upper bound of S in F .
Uniqueness:
To prove a least upper bound is unique, let L1 and L2 be least upper bounds

of S in F .
We must prove L1 = L2.
Since L1 is a least upper bound of S, then L1 is an upper bound of S and

L1 ≤M for any upper bound M of S.
Since L2 is a least upper bound of S, then L2 is an upper bound of S and

L2 ≤M for any upper bound M of S.
Since L1 ≤M for any upper bound M of S and L2 is an upper bound of S,

then L1 ≤ L2.
Since L2 ≤M for any upper bound M of S and L1 is an upper bound of S,

then L2 ≤ L1.
Since L1 ≤ L2 and L2 ≤ L1, then by the anti-symmetric property of ≤, we

have L1 = L2.

Theorem 44. uniqueness of greatest lower bound in an ordered field
A greatest lower bound of a subset of an ordered field, if it exists, is unique.

Proof. Let S be a subset of an ordered field F .
We prove if a greatest lower bound of S exists, then it is unique.
Suppose a greatest lower bound of S exists in F .
Then there is at least one greatest lower bound of S in F .
Uniqueness:
To prove a greatest lower bound is unique, let L1 and L2 be greatest lower

bounds of S in F .
We must prove L1 = L2.
Since L1 is a greatest lower bound of S, then L1 is a lower bound of S and

M ≤ L1 for any lower bound M of S.
Since L2 is a greatest lower bound of S, then L2 is a lower bound of S and

M ≤ L2 for any lower bound M of S.
Since M ≤ L2 for any lower bound M of S and L1 is a lower bound of S,

then L1 ≤ L2.
Since M ≤ L1 for any lower bound M of S and L2 is a lower bound of S,

then L2 ≤ L1.
Since L1 ≤ L2 and L2 ≤ L1, then by the anti-symmetric property of ≤, we

have L1 = L2.

Proposition 45. 1. There is no least upper bound of ∅ in an ordered field.
2. There is no greatest lower bound of ∅ in an ordered field.
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Proof. Let F be an ordered field.
We prove 1 by contradiction.
Suppose there is a least upper bound of ∅ in F .
Let b be the least upper bound of ∅ in F .
Then b ∈ F and no element of F less than b is an upper bound of ∅.
Since b− 1 ∈ F and b− 1 < b, then this implies b− 1 is not an upper bound

of ∅.
Since every element of F is an upper bound of ∅ and b − 1 ∈ F , then b − 1

is an upper bound of ∅.
Thus, we have b− 1 is an upper bound of ∅ and b− 1 is not an upper bound

of ∅, a contradiction.
Therefore, there is no least upper bound of ∅ in F .

Proof. We prove 2 by contradiction.
Suppose there is a greatest lower bound of ∅ in F .
Let b be the greatest lower bound of ∅ in F .
Then b ∈ F and no element of F greater than b is a lower bound of ∅.
Since b+ 1 ∈ F and b+ 1 > b, then this implies b+ 1 is not a lower bound

of ∅.
Since every element of F is a lower of ∅ and b+ 1 ∈ F , then b+ 1 is a lower

bound of ∅.
Thus, we have b+ 1 is a lower bound of ∅ and b+ 1 is not a lower bound of

∅, a contradiction.
Therefore, there is no greatest lower bound of ∅ in F .

Theorem 46. approximation property of suprema and infima
Let S be a subset of an ordered field F .
1. If supS exists, then (∀ε > 0)(∃x ∈ S)(supS − ε < x ≤ supS).
2. If inf S exists, then (∀ε > 0)(∃x ∈ S)(inf S ≤ x < inf S + ε).

Proof. We prove 1.
Suppose supS exists.
Then supS ∈ F .
Let ε > 0 be given.
Then supS + ε > supS, so supS > supS − ε.
Since supS is the least upper bound of S, then supS ≤ B for every upper

bound B of S, so there is no upper bound B of S such that supS > B.
Since supS > supS − ε, then this implies supS − ε cannot be an upper

bound of S.
Hence, there exists x ∈ S such that x > supS − ε.
Since supS is an upper bound of S and x ∈ S, then x ≤ supS.
Therefore, supS − ε < x ≤ supS.

Proof. We prove 2.
Suppose inf S exists.
Then inf S ∈ F .
Let ε > 0 be given.
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Then inf S + ε > inf S.
Since inf S is the greatest lower bound of S, then B ≤ inf S for every lower

bound B of S, so there is no lower bound B of S such that B > inf S.
Since inf S + ε > inf S, then this implies inf S + ε cannot be a lower bound

of S.
Hence, there exists x ∈ S such that x < inf S + ε.
Since inf S is a lower bound of S and x ∈ S, then inf S ≤ x.
Therefore, inf S ≤ x < inf S + ε.

Proposition 47. Let S be a subset of an ordered field F .
If supS and inf S exist, then inf S ≤ supS.

Proof. Suppose supS and inf S exist.
Then supS ∈ F and inf S ∈ F and S 6= 0.
Let x ∈ S be given.
Since inf S is a lower bound of S and x ∈ S, then inf S ≤ x.
Since supS is an upper bound of S and x ∈ S, then x ≤ supS.
Therefore, inf S ≤ x ≤ supS, so inf S ≤ supS.

Proposition 48. Let S be a subset of an ordered field F .
Let −S = {−s : s ∈ S}.
1. If inf S exists, then sup(−S) = − inf S.
2. If supS exists, then inf(−S) = − supS.

Proof. We prove 1.
Suppose inf S exists.
Then inf S ∈ F and S 6= ∅.
Since S 6= ∅, then there exists s ∈ S, so −s ∈ −S.
Hence, the set −S is not empty.
Let x ∈ −S.
Then there exists s ∈ S such that x = −s.
Since inf S is a lower bound of S and s ∈ S, then inf S ≤ s, so − inf S ≥ −s.
Thus, − inf S ≥ x, so x ≤ − inf S.
Therefore, − inf S is an upper bound of −S.

We prove − inf S is the least upper bound of −S.
Let ε > 0.
Since inf S is the greatest lower bound of S and inf S+ε > inf S, then inf S+ε

is not a lower bound of S, so there exists s′ ∈ S such that s′ < inf S + ε.
Hence, there exists −s′ ∈ −S such that −s′ > − inf S − ε.
Therefore, − inf S is the least upper bound of −S, so sup(−S) = − inf S.

Proof. We prove 2.
Suppose supS exists.
Then supS ∈ F and S 6= ∅.
Since S 6= ∅, then there exists s ∈ S, so −s ∈ −S.
Hence, the set −S is not empty.
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Let x ∈ −S.
Then there exists s ∈ S such that x = −s.
Since supS is an upper bound of S and s ∈ S, then s ≤ supS, so −s ≥

− supS.
Thus, x ≥ − supS, so − supS ≤ x.
Therefore, − supS is a lower bound of −S.

We prove − supS is the greatest lower bound of −S.
Let ε > 0.
Since supS is the least upper bound of S and supS−ε < supS, then supS−ε

is not an upper bound of S, so there exists s′ ∈ S such that s′ > supS − ε.
Hence, there exists −s′ ∈ −S such that −s′ < − supS + ε.
Therefore, − supS is the greatest lower bound of −S, so inf(−S) = − supS.

Lemma 49. Let S be a subset of an ordered field F .
Let k ∈ F .
Let K = {k}.
Let k + S = {k + s : s ∈ S}.
Let K + S = {k + s : k ∈ K, s ∈ S}. Then
1. supK = k.
2. inf K = k.
3. k + S = K + S.

Proof. We prove 1.
Since k ≤ k, then k is an upper bound of K.
Let M be an arbitrary upper bound of K.
Then k ≤M .
Since k is an upper bound of K and k ≤M , then k is the least upper bound

of K, so k = supK.

Proof. We prove 2.
Since k ≤ k, then k is a lower bound of K.
Let M be an arbitrary lower bound of K.
Then M ≤ k.
Since k is a lower bound of K and M ≤ k, then k is the greatest lower bound

of K, so k = inf K.

Proof. We prove 3.
Let x ∈ k + S.
Then there exists s ∈ S such that x = k + s.
Since k ∈ K and s ∈ S and x = k + s, then x ∈ K + S.
Therefore, k + S is a subset of K + S.

Let y ∈ K + S.
Then there exists s ∈ S such that y = k + s, so y ∈ k + S.
Therefore, K + S is a subset of k + S.
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Since k + S is a subset of K + S and K + S is a subset of k + S, then
k + S = K + S.

Proposition 50. additive property of suprema and infima
Let A and B be subsets of an ordered field F .
Let A+B = {a+ b : a ∈ A, b ∈ B}.
1. If supA and supB exist, then sup(A+B) = supA+ supB.
2. If inf A and inf B exist, then inf(A+B) = inf A+ inf B.

Proof. We prove 1.
Suppose supA and supB exist in F .
Since supA exists in F , then A 6= ∅, so there exists a ∈ A.
Since supB exists in F , then B 6= ∅, so there exists b ∈ B.
Thus, there exists a+ b ∈ A+B, so the set A+B is not empty.
Let c ∈ A+B.
Then there exist a ∈ A and b ∈ B such that c = a+ b.
Since a ∈ A and supA is an upper bound of A, then a ≤ supA.
Since b ∈ B and supB is an upper bound of B, then b ≤ supB.
Hence, a+ b ≤ supA+ supB.
Thus, c ≤ supA+ supB.
Therefore, supA+ supB is an upper bound of A+B.

We prove supA+ supB is the least upper bound of A+B.
Let ε > 0.
Then ε

2 > 0.
Since supA is the least upper bound of A, then there exists x ∈ A such that

x > supA− ε
2 .

Since supB is the least upper bound of B, then there exists y ∈ B such that
y > supB − ε

2 .
Thus, x+ y > (supA− ε

2 ) + (supB − ε
2 ).

Hence, there exists x+ y ∈ A+B such that x+ y > (supA+ supB)− ε.
Therefore, supA+supB is the least upper bound of A+B, so supA+supB =

sup(A+B).

Proof. We prove 2.
Suppose inf A and inf B exist in F .
Since inf A exists in F , then A 6= ∅, so there exists a ∈ A.
Since inf B exists in F , then B 6= ∅, so there exists b ∈ B.
Thus, there exists a+ b ∈ A+B, so the set A+B is not empty.
Let c ∈ A+B.
Then there exist a ∈ A and b ∈ B such that c = a+ b.
Since a ∈ A and inf A is a lower bound of A, then inf A ≤ a.
Since b ∈ B and inf B is a lower bound of B, then inf B ≤ b.
Hence, inf A+ inf B ≤ a+ b.
Thus, inf A+ inf B ≤ c.
Therefore, inf A+ inf B is a lower bound of A+B.
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We prove inf A+ inf B is the greatest lower bound of A+B.
Let ε > 0.
Then ε

2 > 0.
Since inf A is the greatest lower bound of A, then there exists x ∈ A such

that x < inf A+ ε
2 .

Since inf B is the greatest lower bound of B, then there exists y ∈ B such
that y < inf B + ε

2 .
Thus, x+ y < (inf A+ ε

2 ) + (inf B + ε
2 ).

Hence, there exists x+ y ∈ A+B such that x+ y < (inf A+ inf B) + ε.
Therefore, inf A+inf B is the greatest lower bound of A+B, so inf A+inf B =

inf(A+B).

Corollary 51. Let S be a subset of an ordered field F .
Let k ∈ F .
Let k + S = {k + s : s ∈ S}.
1. If supS exists, then sup(k + S) = k + supS.
2. If inf S exists, then inf(k + S) = k + inf S.

Proof. We prove 1.
Suppose supS exists.
Let K = {k}.
Then supK = k.
Let K + S = {k + s : k ∈ K, s ∈ S}.
Then k + S = K + S.
Therefore,

k + supS = supK + supS

= sup(K + S)

= sup(k + S).

Proof. We prove 2.
Suppose inf S exists.
Let K = {k}.
Then inf K = k.
Let K + S = {k + s : k ∈ K, s ∈ S}.
Then k + S = K + S.
Therefore,

k + inf S = inf K + inf S

= inf(K + S)

= inf(k + S).
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Corollary 52. Let A and B be subsets of an ordered field F .
Let A−B = {a− b : a ∈ A, b ∈ B}.
If supA and inf B exist, then sup(A−B) = supA− inf B.

Proof. Suppose supA and inf B exist.
Then A 6= ∅ and B 6= ∅.
Let −B = {−b : b ∈ B}.
Since inf B exists, then sup(−B) = − inf B.
Let A+ (−B) = {a+ b : a ∈ A, b ∈ −B}.

We first prove A−B = A+ (−B).
Let x ∈ A−B.
Then x = a− b for some a ∈ A and b ∈ B.
Since b ∈ B, then −b ∈ −B.
Since a ∈ A and −b ∈ −B, then a+ (−b) = a− b = x ∈ A+ (−B).
Thus, A−B ⊂ A+ (−B).

Let y ∈ A+ (−B).
Then y = a+ b for some a ∈ A and b ∈ −B.
Since b ∈ −B, then b = −b′ for some b′ ∈ B.
Since a ∈ A and b′ ∈ B, then a− b′ = a+ b = y ∈ A−B.
Thus, A+ (−B) ⊂ A−B.
Since A−B ⊂ A+ (−B) and A+ (−B) ⊂ A−B, then A−B = A+ (−B).
Therefore,

sup(A−B) = sup(A+ (−B))

= supA+ sup(−B)

= supA− inf B.

Proposition 53. comparison property of suprema and infima
Let A and B be subsets of an ordered field F such that A ⊂ B.
1. If supA and supB exist, then supA ≤ supB.
2. If inf A and inf B exist, then inf B ≤ inf A.

Proof. We prove 1.
Suppose supA and supB exist.
Since supA exists, then A is not empty.
Let x ∈ A.
Since A ⊂ B, then x ∈ B.
Since supB is an upper bound of B, then x ≤ supB.
Hence, supB is an upper bound of A.
Since supA is the least upper bound of A, then supA ≤ supB.
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Proof. We prove 2.
Suppose inf A and inf B exist.
Since inf A exists, then A is not empty.
Let x ∈ A.
Since A ⊂ B, then x ∈ B.
Since inf B is a lower bound of B, then inf B ≤ x.
Hence, inf B is a lower bound of A.
Since inf A is the greatest lower bound of A, then inf B ≤ inf A.

Proposition 54. scalar multiple property of suprema and infima
Let S be a subset of an ordered field F .
Let k ∈ F .
Let kS = {ks : s ∈ S}.
1. If k > 0 and supS exists, then sup(kS) = k supS.
2. If k > 0 and inf S exists, then inf(kS) = k inf S.
3. If k < 0 and inf S exists, then sup(kS) = k inf S.
4. If k < 0 and supS exists, then inf(kS) = k supS.

Proof. We prove 1.
Suppose k > 0 and supS exists.
Since supS exists, then S 6= ∅, so there exists s ∈ S.
Hence, ks ∈ kS, so the set kS is not empty.
Let x ∈ kS.
Then there exists s ∈ S such that x = ks.
Since supS is an upper bound of S and s ∈ S, then s ≤ supS.
Since k > 0, then ks ≤ k supS, so x ≤ k supS.
Therefore, k supS is an upper bound of kS.

We prove k supS is the least upper bound of kS.
Let ε > 0.
Since k > 0, then ε

k > 0.
Since supS is the least upper bound of S, then there exists s′ ∈ S such that

s′ > supS − ε
k .

Since k > 0, then there exists ks′ ∈ kS such that ks′ > k supS − ε.
Therefore, k supS is the least upper bound of kS, so k supS = sup(kS).

Proof. We prove 2.
Suppose k > 0 and inf S exists.
Since inf S exists, then S 6= ∅, so there exists s ∈ S.
Hence, ks ∈ kS, so the set kS is not empty.
Let x ∈ kS.
Then there exists s ∈ S such that x = ks.
Since inf S is a lower bound of S and s ∈ S, then inf S ≤ s.
Since k > 0, then k inf S ≤ ks, so k inf S ≤ x.
Therefore, k inf S is a lower bound of kS.
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We prove k inf S is the greatest lower bound of kS.
Let ε > 0.
Since k > 0, then ε

k > 0.
Since inf S is the greatest lower bound of S, then there exists s′ ∈ S such

that s′ < inf S + ε
k .

Since k > 0, then there exists ks′ ∈ kS such that ks′ < k inf S + ε.
Therefore, k inf S is the greatest lower bound of kS, so k inf S = inf(kS).

Proof. We prove 3.
Suppose k < 0 and inf S exists.
Since k < 0, then −k > 0.
Since −k > 0 and inf S exists, then inf(−kS) = −k inf S.
Since inf(−kS) exists, then sup(−(−kS)) = − inf(−kS).
Therefore, sup(kS) = −(−k inf S) = k inf S.

Proof. We prove 4.
Suppose k < 0 and supS exists.
Since k < 0, then −k > 0.
Since −k > 0 and supS exists, then sup(−kS) = −k supS.
Since sup(−kS) exists, then inf(−(−kS)) = − sup(−kS).
Therefore, inf(kS) = −(−k supS) = k supS.

Proposition 55. sufficient conditions for existence of supremum and
infimum in an ordered field

Let S be a subset of an ordered field F .
1. If maxS exists, then supS = maxS.
2. If minS exists, then inf S = minS.

Proof. We prove 1.
Suppose maxS exists in F .
Since (F,≤) is a partially ordered set and S ⊂ F and maxS exists, then

supS = maxS.

Proof. We prove 2.
Suppose minS exists in F .
Since (F,≤) is a partially ordered set and S ⊂ F and minS exists, then

inf S = minS.

Proposition 56. Let S be a subset of an ordered field F .
Let −S = {−s : s ∈ S}.
1. If minS exists, then max(−S) = −minS.
2. If maxS exists, then min(−S) = −maxS.

Proof. We prove 1.
Suppose minS exists.
Then minS ∈ S, so −minS ∈ −S.
Hence, the set −S is not empty.
Let x ∈ −S.
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Then there exists s ∈ S such that x = −s.
Since minS is a lower bound of S and s ∈ S, then minS ≤ s.
Hence, −minS ≥ −s, so −minS ≥ x.
Thus, x ≤ −minS.
Therefore, −minS is an upper bound of −S.
Since −minS ∈ −S and −minS is an upper bound of −S, then −minS =

max(−S).

Proof. We prove 2.
Suppose maxS exists.
Then maxS ∈ S, so −maxS ∈ −S.
Hence, the set −S is not empty.
Let x ∈ −S.
Then there exists s ∈ S such that x = −s.
Since maxS is an upper bound of S and s ∈ S, then s ≤ maxS.
Hence, −s ≥ −maxS, so x ≥ −maxS.
Thus, −maxS ≤ x.
Therefore, −maxS is a lower bound of −S.
Since −maxS ∈ −S and −maxS is a lower bound of −S, then −maxS =

min(−S).

Lemma 57. Let A and B be nonempty subsets of an ordered field F .
Then u ∈ F is an upper bound of A∪B iff u is an upper bound of A and B.

Proof. We prove if u is an upper bound of A ∪B, then u is an upper bound of
A and B.

Suppose u is an upper bound of A ∪B in F .
Since A is not empty, then there is at least one element in A.
Let x ∈ A.
Since A ⊂ A ∪B, then x ∈ A ∪B.
Since u is an upper bound of A ∪B, then x ≤ u.
Therefore, x ≤ u for all x ∈ A, so u is an upper bound of A.

Since B is not empty, then there is at least one element in B.
Let x ∈ B.
Since B ⊂ A ∪B, then x ∈ A ∪B.
Since u is an upper bound of A ∪B, then x ≤ u.
Therefore, x ≤ u for all x ∈ B, so u is an upper bound of B.

Proof. Conversely, we prove if u is an upper bound of A and B, then u is an
upper bound of A ∪B.

Suppose u is an upper bound of A and B in F .
Since A is not empty, then there is at least one element in A.
Let a ∈ A.
Since A ⊂ A ∪B, then a ∈ A ∪B.
Hence, A ∪B is not empty.
Let x ∈ A ∪B.
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Then either x ∈ A or x ∈ B.
We consider these cases separately.
Case 1: Suppose x ∈ A.
Since u is an upper bound of A, then x ≤ u.
Case 2: Suppose x ∈ B.
Since u is an upper bound of B, then x ≤ u.
Hence, in all cases, x ≤ u.
Therefore, u is an upper bound of A ∪B, as desired.

Proposition 58. Let A and B be subsets of an ordered field F .
If supA and supB exist, then sup(A ∪B) = max {supA, supB}.

Proof. Suppose supA and supB exist.
Then A 6= ∅ and B 6= ∅.
Let S = {supA, supB}.
Since supA ∈ F and supB ∈ F , then S ⊂ F .
Since supA ∈ S and supB ∈ S and either supA ≤ supB or supB ≤ supA,

then either maxS = supB or maxS = supA.
Hence, maxS ∈ F and supA ≤ maxS and supB ≤ maxS.
We prove maxS is an upper bound of A ∪B.
Since A 6= ∅, let a ∈ A.
Since A ⊂ A ∪B, then a ∈ A ∪B, so A ∪B is not empty.
Let x ∈ A ∪B.
Then either x ∈ A or x ∈ B.
We consider these cases separately.
Case 1: Suppose x ∈ A.
Since supA is an upper bound of A, then x ≤ supA.
Since supA ≤ maxS, then x ≤ maxS.
Case 2: Suppose x ∈ B.
Since supB is an upper bound of B, then x ≤ supB.
Since supB ≤ maxS, then x ≤ maxS.
Hence, in all cases, x ≤ maxS.
Since x ≤ maxS for all x ∈ A∪B, then maxS is an upper bound of A∪B.

To prove maxS is the least upper bound of A ∪ B, let M be an arbitrary
upper bound of A ∪B.

Since A 6= ∅ and B 6= ∅ and M is an upper bound of A ∪ B, then M is an
upper bound of A and B.

We must prove maxS ≤M .
Since M is an upper bound of A and supA is the least upper bound of A,

then supA ≤M .
Since M is an upper bound of B and supB is the least upper bound of B,

then supB ≤M .
Since either maxS = supA or maxS = supB, then this implies maxS ≤M .
Therefore, maxS is the least upper bound of A ∪ B, so maxS = sup(A ∪

B).
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Lemma 59. Let A and B be subsets of an ordered field F .
If maxA and maxB exist in F , then max(A ∪B) = max {maxA,maxB}.

Proof. Suppose maxA and maxB exist in F .
Let S = {maxA,maxB}.
Since maxA ∈ S and maxB ∈ S and either maxA ≤ maxB or maxB ≤

maxA, then either maxB is the maximum of S or maxA is the maximum of S.
Hence, maxS exists.
Since either maxS = maxA or maxS = maxB and maxA ∈ A and maxB ∈

B, then either maxS ∈ A or maxS ∈ B.
Hence, maxS ∈ A ∪B.
Since maxS is the maximum of S, then maxA ≤ maxS and maxB ≤ maxS.
We prove maxS is an upper bound of A ∪B.
Since maxA is the maximum of A, then maxA ∈ A, so A is not empty.
Let a ∈ A.
Since A ⊂ A ∪B, then a ∈ A ∪B.
Hence, A ∪B is not empty.
Let x ∈ A ∪B.
Then either x ∈ A or x ∈ B.
We consider these cases separately.
Case 1: Suppose x ∈ A.
Since maxA is an upper bound of A, then x ≤ maxA.
Thus, x ≤ maxA and maxA ≤ maxS, so x ≤ maxS.
Case 2: Suppose x ∈ B.
Since maxB is an upper bound of B, then x ≤ maxB.
Thus, x ≤ maxB and maxB ≤ maxS, so x ≤ maxS.
Hence, in all cases, x ≤ maxS.
Therefore, maxS is an upper bound of A ∪B.
Thus, maxS ∈ A ∪ B and maxS is an upper bound of A ∪ B, so maxS =

max(A ∪B), as desired.

Theorem 60. Every nonempty finite subset of an ordered field has a maximum.

Proof. Let F be an ordered field.
Define the predicate p(n) over N to be the statement:
If a subset S of F contains exactly n elements, then maxS exists.
We prove p(n) is true for all n ∈ N by induction on n.
Basis:
Since F is a field, then F is not empty, so there is at least one element of F .
Let x be an element of F .
Let S = {x}.
Since x ∈ F , then S ⊂ F .
Clearly, S contains exactly one element.
Since x ∈ S and x ≤ x, then x is the maximum of S.
Thus, maxS exists.
Therefore, p(1) is true.
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Thus, if S is any subset of F that contains exactly one element, then maxS
exists.

Induction:
Let n ∈ N such that p(n) is true.
Then if a subset S of F contains exactly n elements, then maxS exists.
To prove p(n+ 1) follows, we must prove if a subset A of F contains exactly

n+ 1 elements, then maxA exists.
Since F is an ordered field, then F is infinite, so F contains infinitely many

elements.
Hence, there exist a finite number of elements of F .
In particular, there exist exactly n+ 1 elements of F .
Let A be a subset of F that contains exactly n+ 1 elements.
Then there exist x1, ..., xn, xn+1 elements of F such thatA = {x1, ..., xn, xn+1}

and A ⊂ F .
Let B = {x1, ..., xn} and B′ = {xn+1}.
Then B ⊂ A and B′ ⊂ A and A = B∪B′ and B contains exactly n elements

and B′ contains exactly one element.
Since B ⊂ A ⊂ F , then B ⊂ F .
Thus, B is a subset of F and contains exactly n elements, so by the induction

hypothesis, maxB exists.
Since B′ ⊂ A ⊂ F , then B′ ⊂ F .
Thus, B′ is a subset of F and contains exactly one element, so maxB′ exists.
Since maxB and maxB′ exist, then max(B ∪B′) = max{maxB,maxB′}.
Thus, maxA = max{maxB,maxB′}, so maxA exists.
Thus, p(n+ 1) is true.
Hence, p(n) implies p(n+ 1) for all n ∈ N.
Since p(1) is true and p(n) implies p(n+ 1) for all n ∈ N, then by induction

p(n) is true for all n ∈ N.
Thus, for all n ∈ N, if a subset S of F contains exactly n elements, then

maxS exists.
Hence, if S is a nonempty finite subset of F , then maxS exists.
Therefore, if S is a nonempty finite subset of F , then S has a maximum.
Thus, every nonempty finite subset of an ordered field has a maximum, as

desired.

Complete ordered fields

Theorem 61. greatest lower bound property in a complete ordered field
Every nonempty subset of a complete ordered field F that is bounded below

in F has a greatest lower bound in F .

Proof. Let S be a nonempty subset of a complete ordered field F that is bounded
below in F .

We must prove inf S exists in F .
Let −S = {−s : s ∈ S}.
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Since S ⊂ F , then −S ⊂ F .
Since S is not empty, then there is at least one element of S.
Let x ∈ S.
Then −x ∈ −S, so −S 6= ∅.
Let t ∈ −S.
Then there exists s ∈ S such that t = −s.
Since S is bounded below in F , then there is a lower bound of S in F .
Let L be a lower bound of S in F .
Since L is a lower bound of S and s ∈ S, then L ≤ s, so −L ≥ −s.
Hence, −L ≥ t, so t ≤ −L for all t ∈ −S.
Therefore, −L is an upper bound of −S, so −S is bounded above in F .
Thus, −S is a nonempty subset of F bounded above in F .
Since F is complete, then sup(−S) exists in F .
Hence, inf(−(−S)) = − sup(−S), so inf(S) = − sup(−S).
Therefore, we conclude inf(S) exists in F .

Proposition 62. There is no rational number x such that x2 = 2.

Proof. Suppose there is a rational number x such that x2 = 2.
Then there exist a pair of integers p and q with q 6= 0 such that x = p

q .
Surely, if such a pair exists, then a pair exists having no common factors

greater than 1.
Therefore, assume p and q have no common factors greater than 1.

Observe that 2 = x2 = (pq )2 = p2

q2 .

Thus, p2 = 2q2, so p2 is even.
Since an integer n2 is even if and only if n is even, then in particular, p2 is

even iff p is even.
Thus, p is even.
Hence, p = 2m for some integer m.
Therefore, 2q2 = (2m)2 = 4m2, so q2 = 2m2.
Hence, q2 is even, so q is even.
Since p and q are both even, then 2 is a common factor of both p and q

and is greater than 1; but this contradicts the assumption that p and q have no
common factors greater than 1.

Hence, no such pair of integers exist.
Therefore, there is no rational number x such that x2 = 2.

Proposition 63. Let A and B be subsets of R such that supA and supB exist
in R.

If A ∩B 6= ∅, then sup(A ∩B) ≤ min {supA, supB}.
Moreover, if A and B are bounded intervals such that A ∩ B 6= ∅, then

sup(A ∩B) = min {supA, supB}.

Proof. Suppose A ∩B 6= ∅.
Since A ⊂ R and B ⊂ R, then A ∩B ⊂ R.
Let S = {supA, supB}.
Since supA ∈ R and supB ∈ R, then S ⊂ R.
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Since supA ∈ S and supB ∈ S and either supA ≤ supB or supB ≤ supA,
then either supA = minS or supB = minS.

Hence, minS ∈ R and minS ≤ supA and minS ≤ supB.
We prove minS is an upper bound of A ∩B in R.
Since A ∩B is not empty, let x ∈ A ∩B.
Then x ∈ A and x ∈ B.
Either supA = minS or supB = minS.
We consider these cases separately.
Case 1: Suppose supA = minS.
Since x ∈ A and supA is an upper bound of A, then x ≤ supA.
Thus, x ≤ minS.
Case 2: Suppose supB = minS.
Since x ∈ B and supB is an upper bound of B, then x ≤ supB.
Thus, x ≤ minS.
Hence, in all cases, x ≤ minS.
Therefore, minS is an upper bound of A ∩B in R.
Thus, A ∩B is bounded above in R.
Since A ∩B is a nonempty subset of R and is bounded above in R and R is

complete, then A ∩B has a least upper bound in R.
Therefore, sup(A ∩B) is the least upper bound of A ∩B in R.
Since sup(A ∩ B) is the least upper bound of A ∩ B and minS is an upper

bound of A ∩B, then sup(A ∩B) ≤ minS, as desired.

We prove if A and B are bounded intervals such that A ∩ B 6= ∅, then
sup(A ∩B) = min {supA, supB}.

Suppose A and B are bounded intervals such that A ∩B 6= ∅.
Since A and B are intervals, then A ⊂ R and B ⊂ R.
Since A is bounded, then A is bounded above and below in R.
Since B is bounded, then B is bounded above and below in R.
Since A ∩B 6= ∅, then let x ∈ A ∩B.
Then x ∈ A and x ∈ B.
Hence, A is not empty and B is not empty.
Since A is a nonempty subset of R that is bounded above in R, then A has

a least upper bound in R.
Therefore, supA is the least upper bound of A in R.
Since A is a nonempty subset of R that is bounded below in R, then A has

a greatest lower bound in R.
Therefore, inf A is the greatest lower bound of A in R.
Since B is a nonempty subset of R that is bounded above in R, then B has

a least upper bound in R.
Therefore, supB is the least upper bound of B in R.
Since B is a nonempty subset of R that is bounded below in R, then B has

a greatest lower bound in R.
Therefore, inf B is the greatest lower bound of B in R.
Let S = {supA, supB}.
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Since A and B are subsets of R and supA and supB exist in R and A∩B 6= ∅,
then sup(A ∩B) ≤ minS.

We must prove sup(A ∩B) = minS.
Since minS is an upper bound of A ∩B, then A ∩B has at least one upper

bound in R.
Let K be an arbitrary upper bound of A ∩B in R.
Then K ∈ R.
We must prove minS ≤ K.
Suppose for the sake of contradiction minS > K.
Then K < minS.
Since x ∈ A ∩B and K is an upper bound of A ∩B, then x ≤ K.
Hence, x ≤ K < minS.
Since minS ≤ supA, then x ≤ K < minS ≤ supA, so x ≤ K < supA.
Since A is an interval and supA is the least upper bound of A, then if x ∈ A,

then c ∈ A if x ≤ c < supA.
Since A is an interval and x ∈ A and x ≤ K < supA, then K ∈ A.
Since minS ≤ supB, then x ≤ K < minS ≤ supB, so x ≤ K < supB.
Since B is an interval and supB is the least upper bound of B, then if x ∈ B,

then c ∈ B if x ≤ c < supB.
Since B is an interval and x ∈ B and x ≤ K < supB, then K ∈ B.
Either supA = minS or supB = minS.
We consider these cases separately.
Case 1: Suppose minS = supA.
Since K ∈ A and K < K+supA

2 < supA, then K+supA
2 ∈ A.

Since minS = supA, then K < K+minS
2 < supA and K+minS

2 ∈ A.

Thus, K+minS
2 ∈ A and K+minS

2 > K.
Since minS ≤ supB, then either minS < supB or minS = supB.
Suppose minS < supB.
Since minS = supA, then supA < supB.
Since K ∈ B and K < minS < supB, then minS ∈ B.
Since B is an interval and K ∈ B and minS ∈ B and K < K+minS

2 < minS,

then K+minS
2 ∈ B.

Thus, K+minS
2 ∈ B and K+minS

2 > K.
Suppose minS = supB.
Since K ∈ B and K < K+supB

2 < supB, then K+supB
2 ∈ B.

Since supB = minS, then K < K+minS
2 < supB and K+minS

2 ∈ B.

Thus, K+minS
2 ∈ B and K+minS

2 > K.

Thus, in either case K+minS
2 ∈ B and K+minS

2 > K.

Since K+minS
2 ∈ A and K+minS

2 ∈ B, then K+minS
2 ∈ A ∩B.

Hence, there exists K+minS
2 ∈ A ∩B such that K+minS

2 > K.
But, this contradicts the fact that K is an upper bound of A ∩B.
Therefore, minS 6= supA.
Case 2: Suppose minS = supB.
Since K ∈ B and K < K+supB

2 < supB, then K+supB
2 ∈ B.

Since minS = supB, then K < K+minS
2 < supB and K+minS

2 ∈ B.
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Thus, K+minS
2 ∈ B and K+minS

2 > K.
Since minS ≤ supA, then either minS < supA or minS = supA.
Suppose minS < supA.
Since minS = supB, then supB < supA.
Since K ∈ A and K < minS < supA, then minS ∈ A.
Since A is an interval and K ∈ A and minS ∈ A and K < K+minS

2 < minS,

then K+minS
2 ∈ A.

Thus, K+minS
2 ∈ A and K+minS

2 > K.
Suppose minS = supA.
Since K ∈ A and K < K+supA

2 < supA, then K+supA
2 ∈ A.

Since supA = minS, then K < K+minS
2 < supA and K+minS

2 ∈ A.

Thus, K+minS
2 ∈ A and K+minS

2 > K.

Thus, in either case K+minS
2 ∈ A and K+minS

2 > K.

Since K+minS
2 ∈ A and K+minS

2 ∈ B, then K+minS
2 ∈ A ∩B.

Hence, there exists K+minS
2 ∈ A ∩B such that K+minS

2 > K.
But, this contradicts the fact that K is an upper bound of A ∩B.
Therefore, minS 6= supA.
Thus, in either case, minS 6= supA and minS 6= supB.
This contradicts the fact that either minS = supA or minS = supB.
Hence, minS cannot be greater than K.
Therefore, minS ≤ K, so minS is the least upper bound of A ∩B.
Thus, minS = sup(A ∩B), as desired.

Archimedean ordered fields

Theorem 64. Archimedean property of Q
The field (Q,+, ·,≤) is Archimedean ordered.

Proof. Let a, b ∈ Q such that b > 0.
We must prove there exists n ∈ N such that n > a

b .
Either a ≤ 0 or a > 0.
We consider these cases separately.
Case 1: Suppose a ≤ 0.
Let n = 1.
Then n ∈ N.
Since a ≤ 0 and b > 0, then a

b ≤ 0 < 1 = n.
Therefore, there exists n ∈ N such that n > a

b .
Case 2: Suppose a > 0.
Since a ∈ Q and a > 0, then there exist r, s ∈ Z+ such that a = r

s .
Since b ∈ Q and b > 0, then there exist t, v ∈ Z+ such that b = t

v .
Let n = rv(rv + 1).
Since r, v ∈ Z+ and Z+ is closed under addition and multiplication, then

n ∈ Z+, so n ∈ N.
Since s, t ∈ Z+, then s ≥ 1 and t ≥ 1, so st ≥ 1.
Since r, v ∈ Z+, then r ≥ 1 and v ≥ 1, so rv ≥ 1.
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Since rv ≥ 1, then rv + 1 ≥ 2 > 1, so rv + 1 > 1.
Since rv + 1 > 1 and st ≥ 1, then (rv + 1)st > 1.

Since nb
a =

rv(rv+1) tv
r
s

= r(rv+1)t
r
s

= r(rv+1)st
r = (rv + 1)st > 1, then nb

a > 1.

Since a > 0, then nb > a.
Since b > 0, then n > a

b .
Therefore, there exists n ∈ N such that n > a

b .

Theorem 65. Archimedean property of R
A complete ordered field is necessarily Archimedean ordered.

Proof. Let F be a complete ordered field.
To prove F is Archimedean ordered, let a, b ∈ F with b > 0.
We must prove there exists n ∈ Z+ such that nb > a.
We prove by contradiction.
Suppose there does not exist a positive integer n such that nb > a.
Then nb ≤ a for all positive integers n.
Let S be the set of all positive integer multiples of b.
Then S = {nb : n ∈ Z+}.
Since b = 1b and 1 ∈ Z+, then b ∈ S, so S is not empty.
Let s ∈ S.
Then there exists n ∈ Z+ such that s = nb.
Since b ∈ F+ and n ∈ N, then s = nb ∈ F+.
Since s ∈ F+ and F+ ⊂ F , then s ∈ F , so S ⊂ F .
Since n ∈ Z+, then by hypothesis, nb ≤ a, so s ≤ a.
Therefore, a is an upper bound of S in F , so S is bounded above in F .
Hence, S is a nonempty subset of F that is bounded above in F .
Since F is complete, then S has a least upper bound in F .
Let supS be the least upper bound of S in F .
Since b > 0 = supS − supS, then supS + b > supS, so supS > supS − b.
Since supS− b < supS, then supS− b is not an upper bound of S, so there

exists x ∈ S such that x > supS − b.
Since x ∈ S, then there exists m ∈ Z+ such that x = mb, so mb > supS− b.
Hence, (m+ 1)b = mb+ b > supS.
Since m+ 1 ∈ Z+, then (m+ 1)b ∈ S.
Hence, there exists (m+ 1)b ∈ S such that (m+ 1)b > supS.
But, this contradicts the fact that supS is an upper bound of S.
Therefore, there does exist a positive integer n such that nb > a, as desired.

Theorem 66. N is unbounded in an Archimedean ordered field.
Let F be an Archimedean ordered field.
Then for every x ∈ F , there exists n ∈ N such that n > x.

Proof. Since F is a field, then 1 ∈ F , so F 6= ∅.
Let x ∈ F be arbitrary.
Since F is Archimedean and x ∈ F and 1 > 0, then there exists n ∈ N such

that n · 1 > x.
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Therefore, there exists n ∈ N such that n > x.

Proposition 67. Let F be an Archimedean ordered field.
For every positive ε ∈ F , there exists n ∈ N such that 1

n < ε.

Proof. Let ε be a positive element of F .
Then ε > 0.
Since F is Archimedean ordered and 1 ∈ F and ε > 0, then there exists

n ∈ N such that nε > 1.
Since n ∈ N, then n > 0, so ε > 1

n .
Therefore, there exists n ∈ N such that 1

n < ε.

Lemma 68. Each real number lies between two consecutive integers
For each real number x there is a unique integer n such that n ≤ x < n+ 1.

Solution. We must prove: (∀x ∈ R)(∃!n ∈ Z)(n ≤ x < n+ 1).

Proof. Existence:
Let x be an arbitrary real number.
We must prove there is an integer n such that n ≤ x < n+ 1.
Let S = {n ∈ Z : n ≤ x}.
Suppose for the sake of contradiction S = ∅.
Then there is no integer n such that n ≤ x.
Hence, n > x for every integer n, so for every integer n, x < n.
Thus, x is a lower bound of Z, so Z is bounded below in R.
Since Z 6= ∅ and Z is bounded below in R, then by completeness of R, inf Z

exists.
Since inf Z + 1 is not a lower bound of Z, then there exists t ∈ Z such that

t < inf Z + 1.
Thus, t− 1 < inf Z.
Since t ∈ Z, then t− 1 ∈ Z.
Hence, we have t− 1 ∈ Z and t− 1 < inf Z.
This contradicts the fact that inf Z is a lower bound of Z.
Therefore, S 6= ∅.

Let s ∈ S be given.
Then s ∈ Z and s ≤ x.
Thus, s ≤ x for all s ∈ S, so x is an upper bound of S.
Hence, S is bounded above in R.
Since S 6= ∅ and S is bounded above in R, then by completeness of R, supS

exists.
Since supS − 1 is not an upper bound of S, then there exists n ∈ S such

that n > supS − 1.
Thus, n+ 1 > supS.
Since n ∈ S, then n ∈ Z and n ≤ x.
Since supS is an upper bound of S, then if n ∈ S, then n ≤ supS.
Hence, if n > supS, then n 6∈ S.
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Since n+ 1 > supS, then we conclude n+ 1 6∈ S.
Since n+1 ∈ S iff n+1 ∈ Z and n+1 ≤ x, then n+1 6∈ S iff either n+1 6∈ Z

or n+ 1 > x.
Thus, either n+ 1 6∈ Z or n+ 1 > x.
Since s ∈ Z, then n+ 1 ∈ Z.
Hence, we conclude n+ 1 > x.
Therefore, there exists n ∈ Z such that n ≤ x < n+ 1.

Proof. Uniqueness:
Let x ∈ R.
We must prove there is a unique integer n such that n ≤ x < n+ 1.
Suppose there exist integers m and n such that m ≤ x < m+ 1 and n ≤ x <

n+ 1.
To prove uniqueness, we must prove m = n.
Since m ≤ x < m+ 1, then m ≤ x and x < m+ 1.
Since n ≤ x < n+ 1, then n ≤ x and x < n+ 1.
By trichotomy, either m < n or m = n or m > n.

Suppose m < n.
Then n−m > 0.
Since m and n are integers, then n−m ≥ 1.
Hence, n ≥ m+ 1, so m+ 1 ≤ n.
Since m+ 1 ≤ n ≤ x, then m+ 1 ≤ x.
Thus, we have m+ 1 ≤ x and m+ 1 > x, a violation of trichotomy.
Therefore, m cannot be less than n.

Suppose m > n.
Then m− n > 0.
Since m and n are integers, then m− n ≥ 1.
Hence, m ≥ n+ 1, so n+ 1 ≤ m.
Since n+ 1 ≤ m and m ≤ x, then n+ 1 ≤ x.
Thus, we have n+ 1 ≤ x and n+ 1 > x, a violation of trichotomy.
Therefore, m cannot be greater than n.
Hence, we must conclude m = n, as desired.

Theorem 69. Q is dense in R
For every a, b ∈ R with a < b, there exists q ∈ Q such that a < q < b.

Proof. Let a and b be real numbers with a < b.
Then b− a > 0.
By the Archimedean property of R, there exists a positive integer n such

that 1
n < b− a.

Since n > 0, then 1 < bn− an, so an+ 1 < bn.
Since every real number lies between two consecutive integers, then in par-

ticular, the real number an lies between two consecutive integers.
Hence, there exists an integer m such that m ≤ an < m+ 1.
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Thus, m ≤ an and an < m+ 1.
Since m ≤ an, then m+ 1 ≤ an+ 1.
Since m+ 1 ≤ an+ 1 and an+ 1 < bn, then m+ 1 < bn.
Hence, an < m+ 1 and m+ 1 < bn.
Since n > 0, then a < m+1

n and m+1
n < b, so a < m+1

n < b.
Let q = m+1

n .
Since m+ 1, n ∈ Z and n 6= 0, then q ∈ Q.
Therefore, there exists q ∈ Q such that a < q < b, as desired.

Corollary 70. between any two distinct real numbers is a nonzero
rational number

For every a, b ∈ R with a < b, there exists q ∈ Q such that q 6= 0 and
a < q < b.

Proof. Let a, b ∈ R such that a < b.
Either it is the case that a < 0 < b or not.
We consider these cases separately.
Case 1: Suppose a < 0 < b.
Then a < 0 and 0 < b.
Since Q is dense in R and 0 < b, then there exists q ∈ Q such that 0 < q < b.
Hence, 0 < q, so q 6= 0.
Since a < 0 and 0 < q < b, then a < 0 < q < b, so a < q < b.
Case 2: Suppose it is not the case that a < 0 < b.
Then it is not the case that a < 0 and 0 < b, so either a ≥ 0 or 0 ≥ b.
We consider these cases separately.
Case 2a: Suppose a ≥ 0.
Since Q is dense in R and a < b, then there exists q ∈ Q such that a < q < b.
Hence, a < q.
Since 0 ≤ a and a < q, then 0 < q, so q 6= 0.
Case 2b: Suppose 0 ≥ b.
Since Q is dense in R and a < b, then there exists q ∈ Q such that a < q < b.
Hence, q < b.
Since q < b and b ≤ 0, then q < 0, so q 6= 0.
Therefore, in all cases, there exists q ∈ Q such that q 6= 0 and a < q < b, as

desired.

Existence of square roots in R
Proposition 71. A square root of a negative real number does not exist in R.

Proof. Let x be a negative real number.
Then x ∈ R and x < 0.
Suppose a square root of x exists in R.
Then there is a real number y such that y2 = x.
Hence, y2 < 0.
Since R is an ordered field, then r2 ≥ 0 for all r ∈ R.
In particular, y2 ≥ 0.
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Thus, we have y2 < 0 and y2 ≥ 0, a violation of trichotomy.
Therefore, a square root of x does not exist in R.

Proposition 72. Zero is the unique square root of 0.

Proof. Clearly, 0 is a real number and 02 = 0.
Therefore, 0 is a square root of 0.
To prove 0 is a unique square root of 0, suppose there is a real number x

that is a square root of 0.
Then x ∈ R and x2 = 0.
We must prove x = 0.
Since R is an ordered field, then x2 = 0 iff x = 0.
Since x2 = 0, then we conclude x = 0, as desired.

Lemma 73. Let F be an ordered field.
Let a, b ∈ F .
If 0 < a < b, then 0 < a2 < ab < b2.

Proof. Suppose 0 < a < b.
Then 0 < a and a < b, so 0 < b.
Since 0 < a and a > 0, then a0 < aa, so 0 < a2.
Since a < b and a > 0, then aa < ab, so a2 < ab.
Since a < b and b > 0, then ab < bb, so ab < b2.
Therefore, 0 < a2 and a2 < ab and ab < b2, so 0 < a2 < ab < b2, as

desired.

Lemma 74. Let F be an ordered field.
Let a ∈ F .
If |a| < ε for all ε > 0, then a = 0.

Proof. Suppose |a| < ε for all ε > 0.
Since |a| ≥ 0, then either |a| > 0 or |a| = 0.
Suppose |a| > 0.
Then |a| < |a|, a contradiction.
Therefore, |a| = 0, so a = 0, as desired.

Proof. We must prove (∀ε > 0)(|a| < ε)→ (a = 0).
We prove by contrapositive.
Suppose a 6= 0.

Let ε = |a|
2 .

Since |a| ≥ 0 and a 6= 0, then |a| > 0, so |a|2 > 0.
Hence, ε > 0.

Since 1 ≥ 1/2 and |a| > 0, then |a| ≥ |a|2 = ε.
Therefore, there exists ε > 0 such that |a| ≥ ε, as desired.

Theorem 75. existence and uniqueness of positive square roots
Let r ∈ R.
A unique positive square root of r exists in R iff r > 0.
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Proof. We prove if a unique positive square root of r exists in R, then r > 0.
Suppose there exists a unique positive square root of r in R.
Let x be the unique positive square root of r in R.
Then x ∈ R and x > 0 and x2 = r.
Since R is an ordered field and x > 0, then x2 > 0, so r > 0, as desired.

Proof. Conversely, we prove if r > 0, then a unique positive square root of r
exists in R.

Suppose r > 0.
To prove a unique positive square root of r exists in R, we must prove there

exists a unique α ∈ R such that α > 0 and α2 = r.
Thus, we must prove:
1. Existence:
There exists α ∈ R such that α > 0 and α2 = r.
2. Uniqueness:
If α and β are positive square roots of r, then α = β.

Proof. Uniqueness:
We prove if α and β are positive square roots of r, then α = β.
Suppose α and β are positive square roots of r.
Since α is a positive square root of r, then α ∈ R and α > 0 and α2 = r.
Since β is a positive square root of r, then β ∈ R and β > 0 and β2 = r.
Since α2 = r = β2, then α2 = β2, so α2 − β2 = 0.
Hence, (α+ β)(α− β) = 0, so either α+ β = 0 or α− β = 0.
Thus, either α = −β or α = β.
Suppose α = −β.
Since β > 0, then −β < 0, so α < 0.
Thus, we have α < 0 and α > 0, a violation of trichotomy.
Hence, α 6= −β.
Therefore, α = β, as desired.

Proof. Existence:
We prove there exists α ∈ R such that α > 0 and α2 = r.
Let S = {x ∈ R : x > 0, x2 ≤ r}.
Clearly, S ⊂ R.
We prove S is not empty.
Let A = {1, r}.
Since 1 ∈ A and r ∈ A and either 1 ≤ r or r ≤ 1, then either minA = 1 or

minA = r, so minA exists in R.
Since minA is a lower bound of A and 1 ∈ A, then minA ≤ 1.
Since either minA = 1 or minA = r and 1 > 0 and r > 0, then minA > 0.
Since minA ≤ 1 and minA > 0, then (minA)2 ≤ minA.
Since minA is a lower bound of A and r ∈ A, then minA ≤ r.
Thus, (minA)2 ≤ minA ≤ r, so (minA)2 ≤ r.
Since minA > 0, then (minA)2 > 0.
Since minA ∈ R and (minA)2 > 0 and (minA)2 ≤ r, then minA ∈ S.
Therefore S is not empty.
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Since 1 ∈ A and r ∈ A and either 1 ≤ r or r ≤ 1, then either maxA = r or
maxA = 1, so maxA exists in R.

Let x ∈ R.
To prove maxA is an upper bound of S, we must prove if x ∈ S, then

x ≤ maxA.
We prove by contrapositive.
Suppose x > maxA.
We must prove x 6∈ S.
Since maxA is an upper bound of A and 1 ∈ A, then 1 ≤ maxA.
Thus, x > maxA ≥ 1 > 0, so x > 1 and x > 0 and maxA > 0.
Since x > maxA and x > 0, then x2 > xmaxA.
Since x > 1 and maxA > 0, then xmaxA > maxA.
Thus, x2 > xmaxA > maxA, so x2 > maxA.
Since maxA is an upper bound of A and r ∈ A, then r ≤ maxA.
Since x2 > maxA and maxA ≥ r, then x2 > r.
Since x ∈ R and x2 > r, then x 6∈ S, as desired.
Therefore, maxA is an upper bound of S, so S is bounded above in R.
Since S is a nonempty subset of R and is bounded above in R and R is

complete, then S has a least upper bound in R.
Let α be the least upper bound of S in R.
Then α ∈ R and α is an upper bound of S.

We prove α > 0.
Since α is an upper bound of S and minA ∈ S, then minA ≤ α.
Since 0 < minA and minA ≤ α, then 0 < α, so α > 0, as desired.

We prove α2 = r.
Either α2 < r or α2 = r or α2 > r.

Suppose α2 < r.

Let δ = min{1, r−α
2

2α+1}.
Since α2 < r, then r − α2 > 0.

Since α > 0, then 2α+ 1 > 0, so r−α2

2α+1 > 0.
Thus, δ > 0.
We prove α+ δ ∈ S.
Since α > 0 and δ > 0, then α+ δ > 0.
Since δ ≤ 1, then 0 < δ ≤ 1, so δ2 ≤ δ.
Since δ ≤ r−α2

2α+1 and 2α+ 1 > 0, then 2αδ + δ ≤ r − α2.
Thus,

(α+ δ)2 = α2 + 2αδ + δ2

≤ α2 + 2αδ + δ

≤ α2 + r − α2

= r.
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Since α+ δ > 0 and (α+ δ)2 ≤ r, then α+ δ ∈ S.
Since δ > 0, then α+ δ > α.
Thus, there exists α+ δ ∈ S such that α+ δ > α.
This contradicts the fact that α is an upper bound of S.
Therefore, α2 cannot be less than r.

Suppose α2 > r.

Let ε = min{α, α
2−r
2α }.

Since α2 > r, then α2 − r > 0.

Since α > 0, then α2−r
2α > 0, so ε > 0.

We prove (α− ε)2 > r.

Since ε ≤ α2−r
2α , then 2αε ≤ α2 − r, so r ≤ α2 − 2αε.

Since ε > 0, then ε2 > 0.
Thus,

(α− ε)2 = α2 − 2αε+ ε2

> α2 − 2αε

≥ r.

Hence, (α− ε)2 > r.
Let x ∈ S.
Then x > 0 and x2 ≤ r.
Suppose for the sake of contradiction x > α− ε.
Since ε ≤ α, then 0 ≤ α− ε.
Thus, 0 ≤ α− ε < x, so (α− ε)2 < x2.
Since x2 ≤ r, then (α− ε)2 < r.
But, this contradicts the fact (α− ε)2 > r.
Therefore, x ≤ α− ε.
Thus, there exists ε > 0 such that x ≤ α − ε for each x ∈ S, so α − ε is an

upper bound of S.
Since α − ε < α, then this contradicts the fact that α is the least upper

bound of S.
Hence, α2 cannot be greater than r.
Since α2 cannot be less than r and α2 cannot be greater than r, then we

must conclude α2 = r.

Proposition 76. Let x ∈ R.
Then

√
x ∈ R iff x ≥ 0.

Proof. We first prove if x ≥ 0, then
√
x ∈ R.

Suppose x ≥ 0.
Then x > 0 or x = 0.
We consider these cases separately.
Case 1: Suppose x = 0.
Since

√
x =
√

0 = 0 and 0 ∈ R, then
√
x ∈ R.

Case 2: Suppose x > 0.
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Then a unique positive square root of x exists in R.
Thus, there is a unique y ∈ R such that y2 = x.
Since x > 0 and y is a positive square root of x, then y =

√
x.

Since
√
x = y and y ∈ R, then

√
x ∈ R.

Therefore, in either case,
√
x ∈ R.

Proof. Conversely, we prove if
√
x ∈ R, then x ≥ 0.

Suppose
√
x ∈ R.

Let y =
√
x.

Since y is the nonnegative square root of x, then y ∈ R and y2 = x and
y ≥ 0.

Since y ≥ 0, then either y > 0 or y = 0.
We consider these cases separately.
Case 1: Suppose y = 0.
Then x = y2 = 02 = 0, so x = 0.
Case 2: Suppose y > 0.
Since y ∈ R and y > 0, then y2 > 0.
Thus, x = y2 > 0, so x > 0.
Therefore, in either case, x ≥ 0.

Proposition 77. Let x ∈ R.
Then

√
x ≥ 0 iff x ≥ 0.

Proof. We first prove if x ≥ 0, then
√
x ≥ 0.

Suppose x ≥ 0.
Then x > 0 or x = 0.
We consider these cases separately.
Case 1: Suppose x = 0.
Then

√
x =
√

0 = 0.
Case 2: Suppose x > 0.
Then a unique positive square root of x exists in R.
Thus, there is a unique y ∈ R such that y2 = x and y > 0.
Since x > 0 and y is a positive square root of x, then y =

√
x.

Thus,
√
x = y > 0.

Therefore, in either case,
√
x ≥ 0.

Proof. Conversely, we prove if
√
x ≥ 0, then x ≥ 0.

Suppose
√
x ≥ 0.

Then x > 0 or x = 0.
We consider these cases separately.
Case 1: Suppose

√
x = 0.

Let y =
√
x.

Since y is the square root of x, then y ∈ R and y2 = x.
Since y =

√
x = 0, then y = 0.

Thus, x = y2 = y · y = 0 · 0 = 0, so x = 0.
Case 2: Suppose

√
x > 0.

Let y =
√
x.
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Since y is the square root of x, then y ∈ R and y2 = x.
Since y =

√
x > 0, then y > 0.

Since y ∈ R and y > 0, then y2 > 0.
Thus, x = y2 > 0, so x > 0.
Therefore, in either case, x ≥ 0.

Proposition 78. Let a, b ∈ R with a ≥ 0 and b ≥ 0.
Then

√
a =
√
b iff a = b.

Proof. Since a ≥ 0, then there exists a real number x ≥ 0 such that x2 = a and
x =
√
a.

Since b ≥ 0, then there exists a real number y ≥ 0 such that y2 = b and
y =
√
b.

We prove if
√
a =
√
b, then a = b.

Suppose
√
a =
√
b.

Then x = y.
Hence, a = x2 = xx = xy = yy = y2 = b, so a = b, as desired.

Proof. Conversely, we prove if a = b, then
√
a =
√
b.

Either both x = 0 and y = 0, or x 6= 0 or y 6= 0.
We consider these cases separately.
Case 1: Suppose x = 0 and y = 0.
Then

√
a = x = 0 = y =

√
b, so

√
a =
√
b.

Hence, the implication if a = b, then
√
a =
√
b is trivially true.

Case 2: Suppose either x 6= 0 or y 6= 0.
We consider these cases separately.
Case 2a: Suppose x 6= 0.
Since x ≥ 0 and x 6= 0, then x > 0.
Since x > 0 and y ≥ 0, then x+ y > 0.
Case 2b: Suppose y 6= 0.
Since y ≥ 0 and y 6= 0, then y > 0.
Since x ≥ 0 and y > 0, then x+ y > 0.
Thus, in either case, x+ y > 0, so x+ y 6= 0.
We prove if a = b, then

√
a =
√
b by contrapositive.

Suppose
√
a 6=
√
b.

Then x 6= y, so x− y 6= 0.
Since x − y 6= 0 and x + y 6= 0, then x2 − y2 = (x − y)(x + y) 6= 0, so

x2 − y2 6= 0.
Therefore, a− b 6= 0, so a 6= b, as desired.

Proposition 79. Let a, b ∈ R.
If a ≥ 0 and b ≥ 0, then

√
ab =

√
a
√
b.

Proof. Suppose a ≥ 0 and b ≥ 0.
Then ab ≥ 0, so the square root of ab exists.
Since a ≥ 0, then the square root of a exists, so

√
a ≥ 0 and

√
a ·
√
a = a.

Since b ≥ 0, then the square root of b exists, so
√
b ≥ 0 and

√
b ·
√
b = b.
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Since
√
a ≥ 0 and

√
b ≥ 0, then

√
a
√
b ≥ 0.

Observe that

(
√
a ·
√
b)2 = (

√
a ·
√
b)(
√
a ·
√
b)

=
√
a · (
√
b ·
√
a) ·
√
b

=
√
a · (
√
a ·
√
b) ·
√
b

= (
√
a ·
√
a)(
√
b ·
√
b)

= ab.

Since
√
a ·
√
b ≥ 0 and (

√
a ·
√
b)2 = ab and the square root is unique, then√

a ·
√
b is the square root of ab.

Therefore,
√
ab =

√
a
√
b, as desired.

Proposition 80. Let x ∈ R. Then
1.
√
x = 0 iff x = 0.

2.
√
x2 = |x|.

Proof. We prove 1.
We prove if x = 0, then

√
x = 0.

Suppose x = 0.
Then

√
x =
√

0 = 0.
Conversely, we prove if

√
x = 0, then x = 0.

Suppose
√
x = 0.

Then there exists y ∈ R such that y2 = x and y = 0.
Hence, x = y2 = 02 = 0, so x = 0, as desired.

Proof. We prove 2.
We must prove

√
x2 = |x|.

Either x ≥ 0 or x < 0.
We consider these cases separately.
Case 1: Suppose x ≥ 0.
Then x2 ≥ 0, so the square root of x2 exists in R.
Since |x| = x ≥ 0 and |x|2 = x2 and the square root is unique, then

√
x2 =

|x|.
Case 2: Suppose x < 0.
Then x2 > 0, so the square root of x2 exists in R.
Since |x| = −x > 0 and |x|2 = (−x)2 = x2 and the square root is unique,

then
√
x2 = |x|.

Therefore, in all cases,
√
x2 = |x|, as desired.

Lemma 81. Let x ∈ R.

If x > 0, then
√

1
x = 1√

x
.

Proof. Suppose x > 0.
Then 1

x > 0, so the square root of 1
x exists.

Since x > 0, then
√
x > 0, so 1√

x
> 0.
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Observe that

(
1√
x

)2 =
1√
x
· 1√

x

=
1 · 1√
x ·
√
x

=
1√
x · x

=
1√
x2

=
1

|x|

=
1

x
.

Since 1√
x
> 0 and ( 1√

x
)2 = 1

x and the square root is unique, then 1√
x

is the

square root of 1
x .

Therefore,
√

1
x = 1√

x
.

Proposition 82. Let a, b ∈ R.

If a ≥ 0 and b > 0, then
√

a
b =

√
a√
b

.

Proof. Suppose a ≥ 0 and b > 0.
Since b > 0, then 1

b > 0.
Since a ≥ 0 and 1

b > 0 and b > 0, then

√
a

b
=

√
a · 1

b

=
√
a ·

√
1

b

=
√
a · 1√

b

=

√
a√
b
.

Lemma 83. Let a, b ∈ R.
If 0 < a ≤ b, then 0 < a2 ≤ b2.

Proof. Suppose 0 < a ≤ b.
Then 0 < a and a ≤ b.
Since a ≤ b, then either a < b or a = b.
We consider these cases separately.
Case 1: Suppose a < b.
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Since 0 < a and a < b, then 0 < a < b.
Therefore, 0 < a2 < b2.
Case 2: Suppose a = b.
Since a > 0, then a2 > 0.
Since b = a, then b2 = a2.
Therefore, 0 < a2 and a2 = b2, so 0 < a2 = b2.

Proposition 84. Let a, b ∈ R.
Then 0 < a < b iff 0 <

√
a <
√
b.

Proof. We prove if 0 < a < b, then 0 <
√
a <
√
b.

Suppose 0 < a < b.
Then 0 < a and a < b, so 0 < b.
Since a > 0, then

√
a > 0.

Since b > 0, then
√
b > 0.

Suppose
√
a ≥
√
b.

Then 0 <
√
b ≤
√
a.

Hence, by the previous lemma 0 < (
√
b)2 ≤ (

√
a)2, so 0 < b ≤ a.

Thus, b ≤ a, so a ≥ b.
Therefore, we have a < b and a ≥ b, a violation of trichotomy.
Hence,

√
a <
√
b.

Thus 0 <
√
a and

√
a <
√
b, so 0 <

√
a <
√
b, as desired.

Proof. Conversely, we prove if 0 <
√
a <
√
b, then 0 < a < b.

Suppose 0 <
√
a <
√
b.

Since 0 <
√
a <
√
b and 0 <

√
a <
√
b, then 0 < (

√
a)2 < (

√
b)2.

Therefore, 0 < a < b, as desired.

Corollary 85. Let x ∈ R.
1. If 0 < x < 1, then 0 < x2 < x <

√
x < 1.

2. If x > 1, then 1 <
√
x < x < x2.

Proof. We prove 1.
Suppose 0 < x < 1.
Then 0 < x and x < 1.
Since 0 < x and x > 0, then 0 < x2.
Since x < 1 and x > 0, then x2 < x.
Since 0 < x2 and x2 < x, then 0 < x2 < x.
Thus, 0 <

√
x2 <

√
x.

Since x > 0, then
√
x2 = |x| = x.

Hence, 0 < x <
√
x, so x <

√
x.

Since 0 < x < 1, then 0 <
√
x <
√

1.
Thus, 0 <

√
x < 1, so

√
x < 1.

Hence, 0 < x2 and x2 < x and x <
√
x and

√
x < 1.

Therefore, 0 < x2 < x <
√
x < 1, as desired.
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Proof. We prove 2.
Suppose x > 1.
Then x > 1 > 0, so x > 0.
Since 0 < 1 < x, then 0 <

√
1 <
√
x.

Hence, 0 < 1 <
√
x, so 1 <

√
x.

Since 1 < x and x > 0, then x < x2.
Since 0 < x and x < x2, then 0 < x < x2.
Hence, 0 <

√
x <
√
x2 = |x| = x.

Thus, 0 <
√
x < x, so

√
x < x.

Thus, 1 <
√
x and

√
x < x and x < x2.

Therefore, 1 <
√
x < x < x2, as desired.

Proposition 86. the additive inverse of an irrational number is irra-
tional

Let a ∈ R.
If a is irrational, then −a is irrational.

Proof. We prove by contrapositive.
Suppose −a is rational.
Then −a ∈ Q, so −(−a) ∈ Q.
Therefore, a ∈ Q, so a is rational, as desired.

Proposition 87. the sum of a rational and irrational number is irra-
tional

Let a, b ∈ R.
If a is rational and b is irrational, then a+ b is irrational.

Proof. We prove by contrapositive.
Suppose a is rational and a+ b is rational.
Since a is rational, then a ∈ Q, so −a ∈ Q.
Since a+ b is rational, then a+ b ∈ Q.
Hence, by closure of Q under addition, −a+(a+ b) = (−a+a)+ b = 0+ b =

b ∈ Q.
Therefore, b is rational, as desired.

Proposition 88. the reciprocal of an irrational number is irrational
Let a ∈ R.
If a is irrational, then 1

a is irrational.

Proof. We prove by contrapositive.
Suppose 1

a is rational.
Then 1

a ∈ Q and a 6= 0.
Hence, 1

a 6= 0, so ( 1
a )−1 = a ∈ Q.

Therefore, a is rational, as desired.

Proposition 89. the product of a nonzero rational and irrational num-
ber is irrational

Let a, b ∈ R.
If a is a nonzero rational and b is irrational, then ab is irrational.
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Proof. We prove by contrapositive.
Suppose a is a nonzero rational and ab is rational.
Since a is a nonzero rational, then a 6= 0 and a ∈ Q, so 1

a ∈ Q.
Since ab is rational, then ab ∈ Q.
Hence, by closure of Q under multiplication, 1

a (ab) = ( 1
aa)b = 1b = b ∈ Q.

Therefore, b is rational, as desired.

Corollary 90. the quotient of a nonzero rational and irrational num-
ber is irrational

Let a, b ∈ R.
If a is a nonzero rational and b is irrational, then a

b is irrational.

Proof. Suppose a is a nonzero rational and b is irrational.
Since b is irrational, then 1

b is irrational.
Since a is a nonzero rational and 1

b is irrational, then a · 1
b = a

b is irrational,
as desired.

Proposition 91. R−Q is dense in Q
For every a, b ∈ Q with a < b, there exists r ∈ R−Q such that a < r < b.

Proof. Let a, b ∈ Q such that a < b.
Then a−

√
2 < b−

√
2.

Since Q is dense in R, then there exists q ∈ Q such that a−
√

2 < q < b−
√

2.
Thus, a < q +

√
2 < b.

Let r = q +
√

2.
Since q is rational and

√
2 is irrational, then q +

√
2 = r is irrational.

Therefore, r ∈ R−Q and a < r < b, as desired.

Solution. We consider the midpoint between a and b.
Since the midpoint is equidistant from a and b and the distance between a

and b is b− a, then the midpoint is a+ (b− a)/2.
Since

√
2 is irrational, we can adjust this slightly to create a potential irra-

tional number a+ b−a
2

√
2 between a and b.

We shall prove this number thus constructed is irrational and between a and
b.

Proof. Let a, b ∈ Q with a < b.
Then b− a > 0.
Let r = a+ b−a

2

√
2.

We must prove r ∈ R and r 6∈ Q and a < r and r < b.

Since a, b ∈ Q, then b− a ∈ Q, so b−a
2 ∈ Q.

Thus, b−a
2

√
2 ∈ R, so a+ b−a

2

√
2 = r ∈ R.
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We prove r 6∈ Q by contradiction.
Suppose r ∈ Q.
Since r = a+ b−a

2

√
2, then r − a = b−a

2

√
2, so 2(r − a) = (b− a)

√
2.

Since b− a > 0, then b− a 6= 0.

Thus, 2(r−a)
b−a =

√
2.

Since a, b, r ∈ Q and b− a 6= 0, then by closure of Q under subtraction and

multiplication, 2(r−a)
b−a ∈ Q.

Hence,
√

2 ∈ Q.
But, this contradicts the fact that

√
2 6∈ Q.

Therefore, r 6∈ Q.

We prove a < r.
Since r = a+ b−a

2

√
2, then r − a = b−a

2

√
2.

Since b− a > 0, then b−a
2

√
2 > 0, so r − a > 0.

Therefore, r > a, so a < r.

We prove r < b.

Since
√

2 < 2, then
√

2
2 < 1.

Since b− a > 0, then we multiply by b− a to get b−a
2

√
2 < b− a.

Therefore, a+ b−a
2

√
2 < b, so r < b.

Proposition 92. R−Q is dense in R
For every a, b ∈ R with a < b, there exists r ∈ R−Q such that a < r < b.

Proof. Let a, b ∈ R such that a < b.
Then a−

√
2 < b−

√
2.

Since Q is dense in R, then there exists q ∈ Q such that a−
√

2 < q < b−
√

2.
Thus, a < q +

√
2 < b.

Let r = q +
√

2.
Since q is rational and

√
2 is irrational, then q +

√
2 = r is irrational.

Therefore, r ∈ R−Q and a < r < b, as desired.
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