Complex Analysis Theory

Jason Sass

July 16, 2023

Complex Number System \mathbb{C}

Proposition 1. Addition is a binary operation on \mathbb{C} .

Proof. Let $z, w \in \mathbb{C}$.

Since $z \in \mathbb{C}$, then there exist $a, b \in \mathbb{R}$ such that z = a + bi. Since $w \in \mathbb{C}$, then there exist $c, d \in \mathbb{R}$ such that w = c + di. Thus, z + w = (a + c) + (b + d)i. Since $a + c \in \mathbb{R}$ and $b + d \in \mathbb{R}$, then $z + w \in \mathbb{C}$. Therefore \mathbb{C} is closed under addition so addition of complex number

Therefore, \mathbb{C} is closed under addition, so addition of complex numbers is a binary operation on \mathbb{C} .

Theorem 2. algebraic properties of addition over \mathbb{C}

1. $z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$ for all $z_1, z_2, z_3 \in \mathbb{C}$. (associative) 2. $z_1 + z_2 = z_2 + z_1$ for all $z_1, z_2 \in \mathbb{C}$. (commutative) 3. z + 0 = 0 + z = z for all $z \in \mathbb{C}$. (additive identity) 4. z + (-z) = (-z) + z = 0 for all $z \in \mathbb{C}$. (additive inverses)

Proof. We prove addition is associative.

Let $z_1, z_2, z_3 \in \mathbb{C}$. Then $z_1 = a + bi$ and $z_2 = c + di$ and $z_3 = e + fi$ for some $a, b, c, d, e, f \in \mathbb{R}$. Observe that

$$\begin{aligned} (z_1 + z_2) + z_3 &= [(a + bi) + (c + di)] + (e + fi) \\ &= [(a + c) + (b + di)] + (e + fi) \\ &= [(a + c) + e] + [(b + d) + f]i \\ &= [a + (c + e)] + [b + (d + f)]i \\ &= (a + bi) + [(c + e) + (d + f)i] \\ &= (a + bi) + [(c + di) + (e + fi)] \\ &= z_1 + (z_2 + z_3). \end{aligned}$$

Therefore, addition is associative.

Proof. We prove addition is commutative.

Let $z_1, z_2 \in \mathbb{C}$. Then $z_1 = a + bi$ and $z_2 = c + di$ for some $a, b, c, d \in \mathbb{R}$. Observe that

$$z_1 + z_2 = (a + bi) + (c + di)$$

= $(a + c) + (b + d)i$
= $(c + a) + (d + b)i$
= $(c + di) + (a + bi)$
= $z_2 + z_1$.

Therefore, addition is commutative.

Proof. We prove z + 0 = 0 + z = z for all $z \in \mathbb{C}$. Let $z \in \mathbb{C}$. Then z = x + yi for some $x, y \in \mathbb{R}$. Observe that

$$z + 0 = (x + yi) + (0 + 0i)$$

= $(x + 0) + (y + 0)i$
= $x + yi$
= z
= $x + yi$
= $(0 + x) + (0 + y)i$
= $(0 + 0i) + (x + yi)$
= $0 + z$.

Therefore, z + 0 = z = 0 + z.

Proof. We prove z + (-z) = (-z) + z = 0 for all $z \in \mathbb{C}$. Let $z \in \mathbb{C}$. Then z = x + yi for some $x, y \in \mathbb{R}$. Since $x \in \mathbb{R}$, then $-x \in \mathbb{R}$. Since $y \in \mathbb{R}$, then $-y \in \mathbb{R}$. Let -z = -x - yi. Since $-x \in \mathbb{R}$ and $-y \in \mathbb{R}$, then $-z \in \mathbb{C}$. Observe that

$$z + (-z) = -z + z$$

= $(-x - yi) + (x + yi)$
= $(-x + x) + (-y + y)i$
= $0 + 0i$
= $0.$

Therefore, z + (-z) = (-z) + z = 0.

Proposition 3. Multiplication is a binary operation on \mathbb{C} .

Proof. Let $z, w \in \mathbb{C}$.

Since $z \in \mathbb{C}$, then there exist $a, b \in \mathbb{R}$ such that z = a + bi. Since $w \in \mathbb{C}$, then there exist $c, d \in \mathbb{R}$ such that w = c + di. Observe that

$$zw = (a+bi)(c+di)$$

= $ac + adi + bci + bdi^2$
= $ac + adi + bci + bd(-1)$
= $ac + adi + bci - bd$
= $(ac - bd) + (adi + bci)$
= $(ac - bd) + (ad + bc)i$.

Thus, zw = (ac - bd) + (ad + bc)i.

Since \mathbb{R} is closed under addition, subtraction, and multiplication, then $ac - bd \in \mathbb{R}$ and $ad + bc \in \mathbb{R}$.

Hence, $zw \in \mathbb{C}$, so \mathbb{C} is closed under multiplication.

Therefore, multiplication of complex numbers is a binary operation on \mathbb{C} . \Box

Theorem 4. algebraic properties of multiplication over \mathbb{C}

1. $z_1 \cdot (z_2 \cdot z_3) = (z_1 \cdot z_2) \cdot z_3$ for all $z_1, z_2, z_3 \in \mathbb{C}$. (associative) 2. $z_1 \cdot z_2 = z_2 \cdot z_1$ for all $z_1, z_2 \in \mathbb{C}$. (commutative) 3. $z \cdot 1 = 1 \cdot z = z$ for all $z \in \mathbb{C}$. (multiplicative identity) 4. $z \cdot 0 = 0 \cdot z = 0$ for all $z \in \mathbb{C}$. 5. $z_1 \cdot (z_2 + z_3) = z_1 \cdot z_2 + z_1 \cdot z_3$ for all $z_1, z_2, z_3 \in \mathbb{C}$. (left distributive) 6. $(z_1 + z_2) \cdot z_3 = z_1 \cdot z_3 + z_2 \cdot z_3$ for all $z_1, z_2, z_3 \in \mathbb{C}$. (right distributive)

Proof. We prove multiplication is associative.

Let $z_1, z_2, z_3 \in \mathbb{C}$.

Then $z_1 = a + bi$ and $z_2 = c + di$ and $z_3 = e + fi$ for some $a, b, c, d, e, f \in \mathbb{R}$. Observe that

$$\begin{aligned} (z_1 \cdot z_2) \cdot z_3 &= [(a+bi)(c+di)](e+fi) \\ &= [(ac-bd) + (ad+bc)i] \cdot (e+fi) \\ &= [(ac-bd)e - (ad+bc)f] + [(ac-bd)f + (ad+bc)e]i \\ &= (ace-bde-adf-bcf) + (acf-bdf+ade+bce)i \\ &= (ace-bed-adf-bcf) + (acf-bdf+aed+bce)i \\ &= (ace-bed-adf-bcf) + (acf+aed+bce-bdf)i \\ &= (ace-adf-bcf-bed) + (acf+aed+bce-bdf)i \\ &= [a(ce-df)-b(cf+ed)] + [(a(cf+ed)+b(ce-df)]i \\ &= (a+bi) \cdot [(ce-df) + (cf+ed)i] \\ &= (a+bi) \cdot [(c+di) \cdot (e+fi)] \\ &= z_1 \cdot (z_2 \cdot z_3). \end{aligned}$$

Therefore, multiplication is associative.

Proof. We prove multiplication is commutative.

Let $z_1, z_2 \in \mathbb{C}$. Then $z_1 = a + bi$ and $z_2 = c + di$ for some $a, b, c, d \in \mathbb{R}$. Observe that

$$z_1 \cdot z_2 = (a+bi) \cdot (c+di)$$

= $(ac-bd) + ad + bc)i$
= $(ca-db) + (da+cb)i$
= $(ca-db) + (cb+da)i$
= $(c+di) \cdot (a+bi)$
= $z_2 \cdot z_1$.

Therefore, multiplication is commutative.

Proof. We prove $z \cdot 1 = 1 \cdot z = z$ for all $z \in \mathbb{C}$. Let $z \in \mathbb{C}$. Then z = x + yi for some $x, y \in \mathbb{R}$. Since 1 = 1 + 0i, then $1 \in \mathbb{C}$. Observe that

$$\begin{aligned} z \cdot 1 &= 1 \cdot z \\ &= (1+0i) \cdot (x+yi) \\ &= (1 \cdot x - 0 \cdot y) + (1 \cdot y + 0 \cdot x)i \\ &= (x-0) + (y+0)i \\ &= x+yi \\ &= z. \end{aligned}$$

Therefore, $z \cdot 1 = 1 \cdot z = z$.

Proof. We prove $z \cdot 0 = 0 \cdot z = 0$ for all $z \in \mathbb{C}$. Let $z \in \mathbb{C}$. Then z = x + yi for some $x, y \in \mathbb{R}$. Since 0 = 0 + 0i, then $0 \in \mathbb{C}$. Observe that

$$z \cdot 0 = 0 \cdot z$$

= $(0 + 0i) \cdot (x + yi)$
= $(0x - 0y) + (0y + 0x)i$
= $(0 - 0) + (0 + 0)i$
= $0 + 0i$
= $0.$

Therefore, $z \cdot 0 = 0 \cdot z = 0$.

Proof. We prove $z_1 \cdot (z_2 + z_3) = z_1 \cdot z_2 + z_1 \cdot z_3$.

Let $z_1, z_2, z_3 \in \mathbb{C}$.

Then $z_1 = a + bi$ and $z_2 = c + di$ and $z_3 = e + fi$ for some $a, b, c, d, e, f \in \mathbb{R}$. Observe that

$$\begin{aligned} z_1 \cdot (z_2 + z_3) &= (a + bi) \cdot [(c + di) + (e + fi)] \\ &= (a + bi) \cdot [(c + e) + (d + f)i] \\ &= [a(c + e) - b(d + f)] + [a(d + f) + b(c + e)]i \\ &= (ac + ae - bd - bf) + (ad + af + bc + be)i \\ &= (ac - bd + ae - bf) + (ad + bc + af + be)i \\ &= [(ac - bd) + (ae - bf)] + [(ad + bc) + (af + be)]i \\ &= [(ac - bd) + (ad + bc)i] + [(ae - bf) + (af + be)i] \\ &= (a + bi) \cdot (c + di) + (a + bi) \cdot (e + fi) \\ &= z_1 \cdot z_2 + z_1 \cdot z_3. \end{aligned}$$

Therefore, multiplication is left distributive over addition.

Proof. We prove $(z_1 + z_2) \cdot z_3 = z_1 \cdot z_3 + z_2 \cdot z_3$. Let $z_1, z_2, z_3 \in \mathbb{C}$.

Then $z_1 = a + bi$ and $z_2 = c + di$ and $z_3 = e + fi$ for some $a, b, c, d, e, f \in \mathbb{R}$. Observe that

Therefore, multiplication is right distributive over addition.

Proposition 5. Multiplication of complex numbers in polar form

Let $z_1 = |z_1| \cdot (\cos \theta_1 + i \sin \theta_1)$ and $z_2 = |z_2| \cdot (\cos \theta_2 + i \sin \theta_2)$ be two complex numbers in polar form.

The product is $z_1 \cdot z_2 = |z_1| \cdot |z_2| \cdot (\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)).$

Proof. Observe that

$$\begin{aligned} z_1 \cdot z_2 &= [|z_1| \cdot (\cos \theta_1 + i \sin \theta_1)] \cdot [|z_2| \cdot (\cos \theta_2 + i \sin \theta_2)] \\ &= |z_1| \cdot |z_2| \cdot (\cos \theta_1 + i \sin \theta_1) \cdot (\cos \theta_2 + i \sin \theta_2) \\ &= |z_1| \cdot |z_2| \cdot [[(\cos \theta_1)(\cos \theta_2) - (\sin \theta_1)(\sin \theta_2)] + [(\cos \theta_1) \cdot (\sin \theta_2) + (\sin \theta_1) \cdot (\cos \theta_2)]i] \\ &= |z_1| \cdot |z_2| \cdot [[\cos(\theta_1 + \theta_2)] + [(\cos \theta_1) \cdot (\sin \theta_2) + (\sin \theta_1) \cdot (\cos \theta_2)]i] \\ &= |z_1| \cdot |z_2| \cdot [[\cos(\theta_1 + \theta_2)] + [(\sin \theta_1) \cdot (\cos \theta_2) + (\cos \theta_1) \cdot (\sin \theta_2)]i] \\ &= |z_1| \cdot |z_2| \cdot [[\cos(\theta_1 + \theta_2)] + [\sin(\theta_1 + \theta_2)]i] \\ &= |z_1| \cdot |z_2| \cdot (\cos(\theta_1 + \theta_2) + i \cdot \sin(\theta_1 + \theta_2)). \end{aligned}$$
Therefore, $z_1 \cdot z_2 = |z_1| \cdot |z_2| \cdot (\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)).$

Proposition 6. Multiplicative inverse of a complex number

Let $z \in \mathbb{C}$ and $z \neq 0$. The multiplicative inverse of z is $\frac{1}{z} \in \mathbb{C}^*$ and $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$ and $z \cdot \frac{1}{z} = \frac{1}{z} \cdot z = 1$. Proof. Since $z \in \mathbb{C}$, then z = x + yi for some $x, y \in \mathbb{R}$. Thus, $\overline{z} = x - yi$ and $|z|^2 = x^2 + y^2$. Since z = 0 if and only if x = 0 = y, then x = 0 = y if and only if z = 0. Since x - yi = 0 if and only if x = 0 = y and x = 0 = y if and only if z = 0, then x - yi = 0 if and only if z = 0. Hence, $x - yi \neq 0$ if and only if $z \neq 0$. Since $z \neq 0$, then we conclude $x - yi \neq 0$. Thus, $\frac{x - yi}{x - yi} = 1$. Observe that $\frac{1}{z} = \frac{1}{z} \cdot 1$ $= \frac{1}{z} \cdot \frac{x - yi}{z}$

$$= \frac{x+yi}{x+yi} \cdot \frac{x-yi}{x-yi}$$
$$= \frac{1(x-yi)}{(x+yi) \cdot (x-yi)}$$
$$= \frac{x-yi}{x^2+y^2}$$
$$= \frac{\overline{z}}{|z|^2}.$$

We prove $\frac{1}{z} \in \mathbb{C}^*$. Since $|z| \in \mathbb{R}$, then $|z| \ge 0$. Since $z \ne 0$, then $|z| \ne 0$, so |z| > 0. Thus, $|z|^2 > 0$, so $|z|^2 \ne 0$. Since $|z|^2 \in \mathbb{R}$ and $|z|^2 = x^2 + y^2$ and $|z|^2 \ne 0$, then $x^2 + y^2 \in \mathbb{R}$ and $x^2 + y^2 \ne 0$. Since $x - yi \in \mathbb{C}$ and $x^2 + y^2 \in \mathbb{R}$ and $x^2 + y^2 \ne 0$, then $\frac{x - yi}{x^2 + y^2} \in \mathbb{C}$. Since $\frac{x - yi}{x^2 + y^2} \in \mathbb{C}$ and $x - yi \ne 0$ and $x^2 + y^2 \ne 0$, then $\frac{x - yi}{x^2 + y^2} \in \mathbb{C}^*$. Since $\frac{1}{z} = \frac{x - yi}{x^2 + y^2}$, then this implies $\frac{1}{z} \in \mathbb{C}^*$. Since $z \neq 0$ and z = x + yi, then $x + yi \neq 0$, so $\frac{x+yi}{x+yi} = 1$. Observe that

$$z \cdot \frac{1}{z} = \frac{1}{z} \cdot z$$
$$= \frac{1}{x + yi} \cdot (x + yi)$$
$$= \frac{1(x + yi)}{x + yi}$$
$$= \frac{x + yi}{x + yi}$$
$$= 1.$$

Therefore, $z \cdot \frac{1}{z} = \frac{1}{z} \cdot z = 1$.

Proposition 7. Division of complex numbers in polar form

Let $z_1 = |z_1| \cdot (\cos \theta_1 + i \sin \theta_1)$ and $z_2 = |z_2| \cdot (\cos \theta_2 + i \sin \theta_2)$ be two complex numbers in polar form with $z_2 \neq 0$.

The quotient is
$$\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} \cdot (\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)).$$

Proof. Observe that

$$\begin{aligned} \frac{z_1}{z_2} &= \frac{|z_1| \cdot (\cos \theta_1 + i \sin \theta_1)}{|z_2| \cdot (\cos \theta_2 + i \sin \theta_2)} \\ &= \frac{|z_1|}{|z_2|} \cdot \frac{\cos \theta_1 + i \sin \theta_1}{\cos \theta_2 + i \sin \theta_2} \\ &= \frac{|z_1|}{|z_2|} \cdot \frac{\cos \theta_1 + i \sin \theta_1}{\cos \theta_2 + i \sin \theta_2} \cdot \frac{\cos \theta_2 - i \sin \theta_2}{\cos \theta_2 - i \sin \theta_2} \\ &= \frac{|z_1|}{|z_2|} \cdot \frac{(\cos \theta_1 + i \sin \theta_1)(\cos \theta_2 - i \sin \theta_2)}{(\cos \theta_2 + i \sin \theta_2)(\cos \theta_2 - i \sin \theta_2)} \\ &= \frac{|z_1|}{|z_2|} \cdot \frac{(\cos \theta_1 \cdot \cos \theta_2 + \sin \theta_1 \cdot \sin \theta_2) + [\cos \theta_1(-\sin \theta_2) + \sin \theta_1(\cos \theta_2)]i}{(\cos \theta_2)^2 + (\sin \theta_2)^2} \\ &= \frac{|z_1|}{|z_2|} \cdot \frac{(\cos \theta_1 \cdot \cos \theta_2 + \sin \theta_1 \cdot \sin \theta_2) + [\sin \theta_1(\cos \theta_2) - \cos \theta_1(\sin \theta_2)]i}{(\sin \theta_2)^2 + (\cos \theta_2)^2} \\ &= \frac{|z_1|}{|z_2|} \cdot \frac{\cos(\theta_1 - \theta_2) + i(\sin(\theta_1 - \theta_2))}{1} \\ &= \frac{|z_1|}{|z_2|} \cdot (\cos(\theta_1 - \theta_2) + i(\sin(\theta_1 - \theta_2)). \end{aligned}$$

Therefore, $\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} \cdot (\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)).$

Proposition 8. Properties of complex modulus

Let $z \in \mathbb{C}$. Then 1. $|z| \in \mathbb{R}$ and $|z| \ge 0$. 2. |z| = 0 iff z = 0.

3. |-z| = |z|. 4. $|\bar{z}| = |z|$. 5. $|zw| = |z| \cdot |w|$ for all $z, w \in \mathbb{C}$. 6. $\left|\frac{z}{w}\right| = \frac{|z|}{|w|}$ for all $z, w \in \mathbb{C}$ and $w \neq 0$. 7. $|z^n| = |z|^n$ for all $n \in \mathbb{Z}^+$. 8. $|z+w| \leq |z| + |w|$ for all $z, w \in \mathbb{C}$ (triangle inequality) 9. $|z - w| \ge ||z| - |w||$ for all $z, w \in \mathbb{C}$ (reverse triangle inequality) *Proof.* We prove 1. Since $z \in \mathbb{C}$, then z = x + yi for some $x, y \in \mathbb{R}$. Since $|z| = x^2 + y^2$ and $x, y \in \mathbb{R}$ and \mathbb{R} is closed under addition and multiplication, then $|z| \in \mathbb{R}$. Since $|z| \in \mathbb{R}$, then $|z| \ge 0$. Proof. We prove 2. We prove |z| = 0 iff z = 0. We prove if z = 0, then |z| = 0. Suppose z = 0. Then |z| = |0| = 0, so |z| = 0. Conversely, we prove if |z| = 0, then z = 0 by contrapositive. Suppose $z \neq 0$. We must prove $|z| \neq 0$. Since $z \in \mathbb{C}$, then z = x + yi for some $x, y \in \mathbb{R}$. Since z = 0 if and only if x = 0 and y = 0, then $z \neq 0$ if and only if either $x \neq 0$ or $y \neq 0$. Since $z \neq 0$, then we conclude either $x \neq 0$ or $y \neq 0$. We consider these cases separately. Case 1: Suppose $x \neq 0$. Then $x^2 > 0$. Since $x^2 > 0$ and $y^2 \ge 0$, then $x^2 + y^2 > 0$, so $\sqrt{x^2 + y^2} > 0$. Since $|z| = \sqrt{x^2 + y^2}$, then |z| > 0, so $|z| \neq 0$. Case 2: Suppose $y \neq 0$. Then $y^2 > 0$. Since $x^2 \ge 0$ and $y^2 > 0$, then $x^2 + y^2 > 0$, so $\sqrt{x^2 + y^2} > 0$. Since $|z| = \sqrt{x^2 + y^2}$, then |z| > 0, so $|z| \neq 0$. Therefore, in all cases, $|z| \neq 0$, as desired. Proof. We prove 3.

We prove |-z| = |z|. Since $z \in \mathbb{C}$, then z = x + yi for some $x, y \in \mathbb{R}$. Observe that

$$\begin{aligned} |-z| &= |-(x+yi)| \\ &= |-x-yi| \\ &= |-x+(-y)i| \\ &= \sqrt{(-x)^2+(-y)^2} \\ &= \sqrt{x^2+y^2} \\ &= |z|. \end{aligned}$$

Therefore, |-z| = |z|.

Proof. We prove 4.

We prove $|\bar{z}| = |z|$. Since $z \in \mathbb{C}$, then z = x + yi for some $x, y \in \mathbb{R}$. Observe that

$$\begin{array}{rcl} \bar{z} & = & |x - yi| \\ & = & |x + (-y)i| \\ & = & \sqrt{x^2 + (-y)^2} \\ & = & \sqrt{x^2 + y^2} \\ & = & |z|. \end{array}$$

Therefore, $|\bar{z}| = |z|$.

Proof. We prove 5.

We prove $|zw| = |z| \cdot |w|$ for all $z, w \in \mathbb{C}$. Let $z, w \in \mathbb{C}$. Then z = a + bi and w = c + di for some $a, b, c, d \in \mathbb{R}$. Observe that

$$\begin{split} |zw| &= |(a+bi)(c+di)| \\ &= |(ac-bd) + (ad+bc)i| \\ &= \sqrt{(ac-bd)^2 + (ad+bc)^2} \\ &= \sqrt{((ac)^2 - 2(ac)(bd) + (bd)^2) + ((ad)^2 + 2(ad)(bc) + (bc)^2)} \\ &= \sqrt{(a^2c^2 - 2abcd + b^2d^2) + (a^2d^2 + 2abcd + b^2c^2)} \\ &= \sqrt{a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2} \\ &= \sqrt{(a^2c^2 + a^2d^2) + (b^2d^2 + b^2c^2)} \\ &= \sqrt{(a^2c^2 + a^2d^2) + (b^2c^2 + b^2d^2)} \\ &= \sqrt{a^2(c^2 + a^2d^2) + (b^2c^2 + d^2d^2)} \\ &= \sqrt{a^2(c^2 + d^2) + b^2(c^2 + d^2)} \\ &= \sqrt{a^2 + b^2} \cdot \sqrt{c^2 + d^2} \\ &= |z| \cdot |w|. \end{split}$$

Therefore, $|zw| = |z| \cdot |w|$.

Proof. We prove 6. We prove $|\frac{z}{w}| = \frac{|z|}{|w|}$ for all $z, w \in \mathbb{C}$ and $w \neq 0$. Let $z, w \in \mathbb{C}$ and $w \neq 0$. Since $z \in \mathbb{C}$, then z = a + bi for some $a, b \in \mathbb{R}$. Since $w \in \mathbb{C}$, then w = c + di for some $c, d \in \mathbb{R}$.

Observe that

$$\begin{aligned} |\frac{z}{w}| &= |\frac{a+bi}{c+di}| \\ &= |\frac{a+bi}{c+di}| \\ &= |\frac{a+bi}{c+di}| \frac{c-di}{c-di}| \\ &= |\frac{(a+bd)+(c-ad+bc)i}{c^2+d^2}| \\ &= |\frac{(ac+bd)+(bc-ad)i}{c^2+d^2}| \\ &= |\frac{ac+bd}{c^2+d^2}| \cdot [(ac+bd)+(bc-ad)i]| \\ &= |\frac{1}{c^2+d^2}| \cdot [(ac+bd)+(bc-ad)i] \\ &= \frac{1}{|c^2+d^2|} \cdot \sqrt{(ac+bd)^2+(bc-ad)^2} \\ &= \frac{1}{|c^2+d^2|} \cdot \sqrt{(ac+bd)^2+(bc-ad)^2} \\ &= \frac{1}{|c^2+d^2|} \cdot \sqrt{(ac+bd)^2+(bc-ad)^2} \\ &= \frac{1}{|c^2+d^2|} \cdot \sqrt{(ac^2+2abcd+b^2d^2)+(b^2c^2-2abcd+a^2d^2)} \\ &= \frac{1}{|c^2+d^2|} \cdot \sqrt{(a^2c^2+b^2d^2+b^2c^2+a^2d^2} \\ &= \frac{1}{|c^2+d^2|} \cdot \sqrt{(a^2+b^2)(c^2+d^2)} \\ &= \frac{1}{|c^2+d^2|} \cdot \sqrt{(a^2+b^2)(c^2+d^2)} \\ &= \frac{1}{\sqrt{(c^2+d^2)^2}} \cdot \sqrt{a^2+b^2} \cdot \sqrt{c^2+d^2} \\ &= \frac{1}{\sqrt{(c^2+d^2)^2}} \cdot \sqrt{a^2+b^2} \cdot \sqrt{c^2+d^2} \\ &= \frac{1}{\sqrt{c^2+d^2}} \cdot \frac{1}{\sqrt{c^2+d^2}} \cdot \sqrt{a^2+b^2} \cdot \sqrt{c^2+d^2} \\ &= \frac{1}{\sqrt{c^2+d^2}} \cdot \frac{1}{\sqrt{c^2+d^2}} \cdot \sqrt{a^2+b^2} \cdot \sqrt{c^2+d^2} \\ &= \frac{1}{\sqrt{c^2+d^2}} \cdot \frac{1}{\sqrt{c^2+d^2}} \cdot \sqrt{a^2+b^2} \cdot \sqrt{c^2+d^2} \\ &= \frac{1}{\sqrt{c^2+d^2}} \cdot \frac{1}{\sqrt{c^2+d^2}} \cdot \sqrt{a^2+b^2} \cdot \sqrt{c^2+d^2} \\ &= \frac{1}{|c^2+d^2|} \cdot \frac{1}{\sqrt{c^2+d^2}} \cdot \sqrt{a^2+b^2} \cdot \sqrt{c^2+d^2} \\ &= \frac{1}{|c^2+d^2|} \cdot \frac{1}{\sqrt{c^2+d^2}} \cdot \sqrt{a^2+b^2} \cdot \sqrt{c^2+d^2} \\ &= \frac{1}{|c^2+d^2|} \cdot \frac{1}{|c^2+d^2|} \cdot \sqrt{a^2+b^2} \cdot \sqrt{c^2+d^2} \\ &= \frac{1}{|c^2+d^2|} \cdot \frac{1}{|c^2+d^2|} \cdot \sqrt{a^2+d^2} \cdot \sqrt{a^2+b^2} \cdot \sqrt{c^2+d^2} \\ &= \frac{1}{|c^2+d^2|} \cdot \frac{1}{|c^2+d^2|} \cdot \sqrt{a^2+b^2} \cdot \sqrt{c^2+d^2} \\ &= \frac{1}{|c^2+d^2|} \cdot \frac{1}{|c^2+d^2|} \cdot \frac{1}{|c^2+d^2|} \cdot \sqrt{a^2+b^2} \cdot \sqrt{c^2+d^2} \\ &= \frac{1}{|c^2+d^2|} \cdot \frac{1}{|c^2+d^2|} \cdot \sqrt{a^2+b^2} \cdot \sqrt{c^2+d^2} \\ &= \frac{1}{|c^2+d^2|} \cdot \frac{1}{|c^2+d^2|} \cdot \frac{1}{|c^2+d^2|} \cdot \frac{1}{|c^2+d^2|} \cdot \frac{1}{|c^2+d^2|} \\ &= \frac{1}{|c^2+d^2|} \cdot \frac{1$$

Therefore, $\left|\frac{z}{w}\right| = \frac{|z|}{|w|}$.

Proof. We prove 7.

We prove $|z^n| = |z|^n$ for all $n \in \mathbb{Z}^+$ for all $z \in \mathbb{C}$. Let $z \in \mathbb{C}$. We prove $|z^n| = |z|^n$ for all $n \in \mathbb{Z}^+$ by induction on n. Define predicate $p(n): |z^n| = |z|^n$ over \mathbb{Z} . **Basis**: Since $|z^1| = |z| = |z|^1$, then p(1) is true. Induction: Let $k \in \mathbb{Z}^+$ such that p(k) is true. Then $|z^k| = |z|^k$. Observe that

$$|z^{k+1}| = |z^k \cdot z|$$

= $|z^k| \cdot |z|$
= $|z|^k \cdot |z|$
= $|z|^{k+1}$.

Thus, $|z^{k+1}| = |z|^{k+1}$, so p(k+1) is true.

Hence, p(k) implies p(k+1) for all $k \in \mathbb{Z}^+$.

Since p(1) is true and p(k) implies p(k+1) for all $k \in \mathbb{Z}^+$, then by induction p(n) is true for all $n \in \mathbb{Z}^+$.

Therefore, $|z^n| = |z|^n$ for all $n \in \mathbb{Z}^+$.

Proof. We prove 8.

We prove $|z+w| \leq |z|+|w|$ for all $z, w \in \mathbb{C}$. Let $z, w \in \mathbb{C}$. Then TODO

Proposition 9. Properties of complex conjugate

1. $Re(\bar{z}) = Re(z)$ and $Im(\bar{z}) = -Im(z)$ for all $z \in \mathbb{C}$.

2. $\overline{\overline{z}} = z$ for all $z \in \mathbb{C}$. (conjugate of a conjugate)

3. $Re(z) = \frac{z+\overline{z}}{2}$ for all $z \in \mathbb{C}$. 4. $Im(z) = \frac{z-\overline{z}}{2i}$ for all $z \in \mathbb{C}$. 5. $z \cdot \overline{z} = |z|^2$ for all $z \in \mathbb{C}$. (Product of complex conjugates is an absolute square.)

6. $Re(\alpha \cdot z) = \alpha \cdot Re(z)$ and $Im(\alpha \cdot z) = \alpha \cdot Im(z)$ for all $\alpha \in \mathbb{R}, z \in \mathbb{C}$. (scalar multiple)

7. $\overline{z+w} = \overline{z} + \overline{w}$ for all $z, w \in \mathbb{C}$. (conjugate of sum is sum of conjugates)

8. $\overline{z-w} = \overline{z} - \overline{w}$ for all $z, w \in \mathbb{C}$. (conjugate of difference is difference of conjugates)

9. $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$ for all $z, w \in \mathbb{C}$. (conjugate of product is product of conjugates)

10. $\frac{\overline{z}}{w} = \frac{\overline{z}}{\overline{w}}$ for all $z, w \in \mathbb{C}, w \neq 0$. (conjugate of quotient is quotient of conjugates)

Proof. We prove 1. Let $z \in \mathbb{C}$. Then z = x + yi for some $x, y \in \mathbb{R}$ and $\overline{z} = x - yi$. Since $Re(\overline{z}) = x = Re(z)$, then $Re(\overline{z}) = Re(z)$. Since $Im(\overline{z}) = -y = -Im(z)$, then $Im(\overline{z}) = -Im(z)$.

 $\begin{array}{l} \textit{Proof. We prove 2.} \\ \text{Let } z \in \mathbb{C}. \\ \text{Then } z = x + yi \text{ for some } x, y \in \mathbb{R}. \\ \text{Since } z = x + yi, \text{ then } \bar{z} = x - yi. \\ \text{Since } \bar{z} = x - yi, \text{ then } \bar{\overline{z}} = x + yi = z. \\ \text{Therefore, } \overline{\overline{z}} = z. \end{array}$

Proof. We prove 3.

Observe that

$$z + \overline{z} = (x + yi) + (x - yi)$$
$$= (x + x) + (y - y)i$$
$$= 2x + 0i$$
$$= 2x + 0$$
$$= 2x$$
$$= 2 \cdot Re(z).$$

Therefore, $z + \overline{z} = 2 \cdot Re(z)$, so $Re(z) = \frac{z + \overline{z}}{2}$.

Proof. We prove 4. Observe that

$$z - \overline{z} = (x + yi) - (x - yi)$$

$$= (x - x) + (y - (-y))i$$

$$= 0 + 2yi$$

$$= 2yi$$

$$= 2i \cdot Im(z).$$

Therefore, $z - \overline{z} = 2i \cdot Im(z)$, so $Im(z) = \frac{z - \overline{z}}{2i}$.

 $\mathit{Proof.}$ We prove 5.

Observe that

$$z \cdot \bar{z} = (x + yi) \cdot (x - yi)$$

= $x^2 - xyi + xyi - y^2(i^2)$
= $x^2 - y^2(i^2)$
= $x^2 - y^2(-1)$
= $x^2 + y^2$
= $|z|^2$.

Therefore, $z \cdot \overline{z} = |z|^2$.

Proof. We prove 6.

Let $\alpha \in \mathbb{R}$ and $z \in \mathbb{C}$. Since $z \in \mathbb{C}$, then z = x + yi for some $x, y \in \mathbb{R}$. Observe that

$$Re(\alpha z) = Re(\alpha(x+yi))$$

= $Re(\alpha x + \alpha yi)$
= αx
= $\alpha \cdot Re(z).$

Therefore, $Re(\alpha z) = \alpha \cdot Re(z)$. Observe that

$$Im(\alpha z) = Im(\alpha(x + yi))$$

= $Im(\alpha x + \alpha yi)$
= αy
= $\alpha \cdot Im(z).$

Therefore, $Im(\alpha z) = \alpha \cdot Im(z)$.

Proof. TODO We must prove 7,8,9, and 10!

Theorem 10. DeMoivre formula

For all $\theta \in \mathbb{R}$ and all $n \in \mathbb{Z}^+$, the following identity is true. $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta).$

Proof. Let $\theta \in \mathbb{R}$.

We prove $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$ for all $n \in \mathbb{Z}^+$ by induction on n.

Define predicate $p(n) : (\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$ over \mathbb{Z} . Basis:

Observe that

$$(\cos \theta + i \sin \theta)^1 = \cos \theta + i \sin \theta$$
$$= \cos(1\theta) + i \sin(1\theta).$$

Therefore, p(1) is true. **Induction:** Let $k \in \mathbb{Z}^+$ such that p(k) is true. Then $(\cos \theta + i \sin \theta)^k = \cos(k\theta) + i \sin(k\theta)$. Observe that

$$\begin{aligned} (\cos\theta + i\sin\theta)^{k+1} &= (\cos\theta + i\sin\theta)^k \cdot (\cos\theta + i\sin\theta) \\ &= (\cos(k\theta) + i\sin(k\theta)) \cdot (\cos\theta + i\sin\theta) \\ &= [\cos(k\theta) \cdot \cos\theta - \sin(k\theta) \cdot \sin\theta] + [\cos(k\theta) \cdot \sin\theta + \sin(k\theta) \cdot \cos\theta]i \\ &= [\cos(k\theta) \cdot \cos\theta - \sin(k\theta) \cdot \sin\theta] + [\sin(k\theta) \cdot \cos\theta + \cos(k\theta) \cdot \sin\theta] \\ &= \cos(k\theta + \theta) + \sin(k\theta + \theta)i \\ &= \cos(k + 1)\theta + i\sin(k + 1)\theta. \end{aligned}$$

Thus, $\cos \theta + i \sin \theta)^{k+1} = \cos(k+1)\theta + i \sin(k+1)\theta$, so p(k+1) is true. Hence, p(k) implies p(k+1) for all $k \in \mathbb{Z}^+$.

Since p(1) is true and p(k) implies p(k+1) for all $k \in \mathbb{Z}^+$, then by induction p(n) is true for all $n \in \mathbb{Z}^+$.

Therefore, $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$ for all $n \in \mathbb{Z}^+$.

Proposition 11. Arithmetic operations on complex numbers in polar form

 $\begin{array}{l} Multiplication \\ 1. \ (r_1e^{i\theta_1})(r_2e^{i\theta_2}) = (r_1r_2)e^{i(\theta_1+\theta_2)}. \ (multiply \ absolute \ values, \ add \ angles) \\ Reciprocal \\ 2. \ \frac{1}{re^{i\theta}} = (\frac{1}{r})e^{-i\theta}. \\ Division \\ 3. \ \frac{r_1e^{i\theta_1}}{r_2e^{i\theta_2}} = (\frac{r_1}{r_2})e^{i(\theta_1-\theta_2)}. \ (divide \ absolute \ values, \ subtract \ angles) \\ n^{th} \ power \\ 4. \ (re^{i\theta})^n = r^n \cdot e^{in\theta} \ for \ any \ integer \ n. \\ Complex \ conjugation \\ 5. \ \overline{re^{i\theta}} = re^{-i\theta}. \end{array}$

Proof. TODO

Theorem 12. $(\mathbb{C}, +, \cdot)$ is a field.

Proof. TODO

Complex exponential function

Proposition 13. existence and uniqueness of complex exponential function

There is a unique function $f : \mathbb{C} \to \mathbb{C}$ such that f'(z) = f(z) and f(0) = 1.

Proof. TODO

Proposition 14. Properties of complex exponential function

The function $f : \mathbb{C} \to \mathbb{C}$ defined by $f(z) = e^z$ for all $z \in \mathbb{C}$ has the following properties.

1. The derivative of e^z is e^z .

2. $e^0 = 1$. 3. $e^{z+w} = e^z \cdot e^w$ for all $z, w \in \mathbb{C}$. 4. $(e^z)^n = e^{nz}$ for all $z, \in \mathbb{C}$ and for all $n \in \mathbb{Z}$.

Proof. TODO

Theorem 15. Euler's formula

The function $f : \mathbb{C} \to \mathbb{C}$ defined by $f(z) = e^z$ for all $z \in \mathbb{C}$ has the following property:

 $e^{i\theta} = \cos\theta + i\sin\theta$ for all $\theta \in \mathbb{R}$.

Proof. TODO

Corollary 16. $|e^{i\theta}| = 1$ for all $\theta \in \mathbb{R}$.

Proof. Let $\theta \in \mathbb{R}$.

Then

$$|e^{i\theta}| = |\cos\theta + i\sin\theta|$$

= $\sqrt{(\cos\theta)^2 + (\sin\theta)^2}$
= $\sqrt{(\sin\theta)^2 + (\cos\theta)^2}$
= $\sqrt{1}$
= 1.

Therefore, $|e^{i\theta}| = 1$.

REMOVE THE UN-NEEDED ITEMS FROM BELOW TO CLEAN UP OUR complex analysis notes.

Ordered Fields

Proposition 17. Positivity of \mathbb{Q} is well defined.

Proof. To prove positivity of \mathbb{Q} is well defined, let $\frac{m}{n}, \frac{m'}{n'} \in \mathbb{Q}$. Then $m, n \in \mathbb{Z}$ and $n \neq 0$ and $m', n' \in \mathbb{Z}$ and $n' \neq 0$. We must prove if $(m, n) \sim (m', n')$, then $\frac{m}{n}$ is positive iff $\frac{m'}{n'}$ is positive. Let $(m, n) \sim (m', n')$. Then $\frac{m}{n} = \frac{m'}{n'}$ and mn' = nm' and $n, n' \neq 0$. Since $(m, n) \sim (m', n')$, then $(m', n') \sim (m, n)$, so $\frac{m'}{n'} = \frac{m}{n}$. We prove if $\frac{m}{n}$ is positive, then $\frac{m'}{n'}$ is positive. Suppose $\frac{m}{n}$ is positive. Then there exist positive integers a and b such that $\frac{m}{n} = \frac{a}{b}$. Since $\frac{m'}{n'} = \frac{m}{n} = \frac{a}{b}$, then there exist positive integers a and b such that $\frac{m'}{n'} = \frac{a}{b}$.

Conversely, we prove if $\frac{m'}{n'}$ is positive, then $\frac{m}{n}$ is positive.

Suppose $\frac{m'}{n'}$ is positive.

Then there exist positive integers c and d such that $\frac{m'}{n'} = \frac{c}{d}$.

Since $\frac{m}{n} = \frac{m'}{n'} = \frac{c}{d}$, then there exist positive integers c and d such that $\frac{m}{n} = \frac{c}{d}$.

Therefore, $\frac{m}{n}$ is positive.

Proposition 18. $(\mathbb{Q}, +, \cdot)$ is an ordered field.

Proof. Observe that $(\mathbb{Q}, +, \cdot)$ is a field.

Let \mathbb{Q}^+ be the set of all positive rational numbers.

Then $\mathbb{Q}^+ = \{ \frac{a}{b} \in \mathbb{Q} : a, b \in \mathbb{Z}^+ \}$, so $\mathbb{Q}^+ \subset \mathbb{Q}$.

Since $1 \in \mathbb{Z}^+$, then $\frac{1}{1} \in \mathbb{Q}^+$, so \mathbb{Q}^+ is not empty.

To prove \mathbb{Q} is an ordered field, we must prove \mathbb{Q}^+ is closed under addition and multiplication of \mathbb{Q} and the trichotomy law holds.

Let $u, v \in \mathbb{Q}^+$.

Then there exist positive integers a, b, c, d such that $u = \frac{a}{b}$ and $v = \frac{c}{d}$.

We prove \mathbb{Q}^+ is closed under addition in \mathbb{Q} .

Since $a, b, c, d \in \mathbb{Z}^+$, then $ad, bc, bd \in \mathbb{Z}^+$, by closure of \mathbb{Z}^+ under multiplication.

Thus, $ad + bc \in \mathbb{Z}^+$, by closure of \mathbb{Z}^+ under addition.

Observe that $u + v = \frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$.

Therefore, there exist positive integers ad+bc and bd such that $u+v = \frac{ad+bc}{bd}$, so u+v is positive.

We prove \mathbb{Q}^+ is closed under multiplication in \mathbb{Q} .

Since $a, b, c, d \in \mathbb{Z}^+$, then $ac \in \mathbb{Z}^+$ and $bd \in \mathbb{Z}^+$, by closure of \mathbb{Z}^+ under multiplication.

Observe that $uv = \frac{a}{b}\frac{c}{d} = \frac{ac}{bd}$.

Therefore, there exist positive integers ac and bd such that $uv = \frac{ac}{bd}$, so uv is positive.

To prove trichotomy, we must prove exactly one of the following holds: $q \in \mathbb{Q}^+$, $q = 0, -q \in \mathbb{Q}^+$ for every $q \in \mathbb{Q}$. Let $q \in \mathbb{Q}$. Then there exist integers a, b with $b \neq 0$ such that $q = \frac{a}{b}$. By trichotomy of \mathbb{Z} , either a > 0 or a = 0 or a < 0. We consider these cases separately. **Case 1:** Suppose a = 0. Since $b \neq 0$, then $q = \frac{a}{b} = \frac{0}{b} = 0$. Therefore, q = 0. **Case 2:** Suppose a > 0. Then $a \in \mathbb{Z}^+$. Since $b \neq 0$, then either b > 0 or b < 0.

If b > 0, then $b \in \mathbb{Z}^+$. Hence, $a \in \mathbb{Z}^+$ and $b \in \mathbb{Z}^+$. Therefore, $\frac{a}{b} = q \in \mathbb{Q}^+$. If b < 0, then $-b \in \mathbb{Z}^+$. Hence, $a \in \mathbb{Z}^+$ and $-b \in \mathbb{Z}^+$. Therefore $\frac{a}{-b} = -\frac{a}{b} = -q \in \mathbb{Q}^+$. Case 3: Suppose a < 0. Then $-a \in \mathbb{Z}^+$. Since $b \neq 0$, then either b > 0 or b < 0. If b > 0, then $b \in \mathbb{Z}^+$. Hence, $-a \in \mathbb{Z}^+$ and $b \in \mathbb{Z}^+$. Therefore, $\frac{-a}{b} = -\frac{a}{b} = -q \in \mathbb{Q}^+$. If b < 0, then $-b \in \mathbb{Z}^+$. Hence, $-a \in \mathbb{Z}^+$ and $-b \in \mathbb{Z}^+$. Therefore $\frac{-a}{-b} = \frac{a}{b} = q \in \mathbb{Q}^+$. Hence, either $q \in \mathbb{Q}^+$ or q = 0 or $-q \in \mathbb{Q}^+$. Therefore, the trichotomy law holds. **Proposition 19.** Let F be an ordered field with positive subset P. Then

1. $1 \in P$. 2. if $x \in P$, then $x^{-1} \in P$. 3. if $x, y \in P$, then $\frac{x}{y} \in P$. 4. if $x \in F$ and $x \neq 0$, then $x^2 \in P$. 5. if $x \in P$, then $nx \in P$ for all $n \in \mathbb{N}$. Proof. We prove 1. Since F is an ordered field, then either $1 \in P$ or 1 = 0 or $-1 \in P$. Since F is a field, then $1 \neq 0$. Suppose $-1 \in P$. Since F is a ring, then $(-1)(-1) = -(-1) = 1 \in P$. Thus, $-1 \in P$ and $1 \in P$, a violation of trichotomy. Hence, $-1 \notin P$. Since $1 \neq 0$ and $-1 \notin P$, then we must conclude $1 \in P$. *Proof.* We prove 2. Suppose $x \in P$. Then $x \neq 0$. Since F is a field, then every nonzero element of F has a multiplicative inverse in F, so $x^{-1} \in F$. Either $x^{-1} \in P$ or $x^{-1} = 0$ or $-x^{-1} \in P$. Since F is a division ring and $x \neq 0$, then $x^{-1} \neq 0$. Suppose $-x^{-1} \in P$. Since $x \in P$ and $-x^{-1} \in P$, then $x(-x^{-1}) \in P$, so $x(-x^{-1}) = -(xx^{-1}) = -(xx^{-1}$ $-1 \in P$. Hence, $1 \in P$ and $-1 \in P$, a violation of trichotomy. Thus, $-x^{-1} \notin P$. Since $x^{-1} \neq 0$ and $-x^{-1} \notin P$, then we conclude $x^{-1} \in P$. *Proof.* We prove 3. Let $x, y \in P$. Since $y \in P$, then $y^{-1} \in P$. Since $x \in P$ and $y^{-1} \in P$, then $xy^{-1} = \frac{x}{y} \in P$, by closure of P under multiplication in F.

Proof. We prove 4. Suppose $x \in F$ and $x \neq 0$. By trichotomy, either $x \in P$ or x = 0 or $-x \in P$. Since $x \neq 0$, then either $x \in P$ or $-x \in P$. We consider these cases separately. **Case 1:** Suppose $x \in P$. Then $x^2 = xx \in P$, by closure of P under multiplication in F. **Case 2:** Suppose $-x \in P$. Then $x^2 = xx = (-x)(-x) \in P$, by closure of P under multiplication in F. Therefore, in all cases, $x^2 \in P$.

Proof. We prove 5.

Let $x \in P$. Let $S = \{n \in \mathbb{N} : nx \in P\}$. We prove $S = \mathbb{N}$ by induction on n. **Basis:** Since $1x = x \in P$, then $1 \in S$. **Induction:** Suppose $k \in S$. Then $k \in \mathbb{N}$ and $kx \in P$. Since $kx \in P$ and $x \in P$, then $kx + x \in P$, by closure of P under addition in F, so $(k + 1)x = kx + x \in P$. Since $k \in \mathbb{N}$, then $k + 1 \in \mathbb{N}$. Since $k + 1 \in \mathbb{N}$ and $(k+1)x \in P$, then $k+1 \in S$, so $k \in S$ implies $k+1 \in S$. Hence, by induction, $S = \mathbb{N}$, Therefore, $nx \in P$ for all $n \in \mathbb{N}$.

Proposition 20. Let F be an ordered field with positive subset P. Then for all $a, b \in F$

1. a > 0 iff $a \in P$. 2. a < 0 iff $-a \in P$. 3. a < b iff b - a > 0.

Proof. We prove 1. Let $a \in F$. Observe that

$$\begin{array}{rcl} a>0 &\Leftrightarrow& 0$$

Therefore, a > 0 iff $a \in P$. *Proof.* We prove 2. Let $a \in F$. Observe that a < 0 iff $0 - a \in P$ iff $0 + (-a) \in P$ iff $-a \in P$. Therefore, a < 0 iff $-a \in P$. Proof. We prove 3. Let $a \in F$. Observe that a < b iff $b - a \in P$ iff b - a > 0. Therefore, a < b iff b - a > 0. **Lemma 21.** Let $(F, +, \cdot, <)$ be an ordered field with $a, b \in F$. If a > 0 and b < 0, then ab < 0. *Proof.* Suppose a > 0 and b < 0. Let P be the positive subset of F. Then $a \in P$ and $-b \in P$. Hence, by closure of P under multiplication, $a(-b) \in P$. Since F is a ring, then -(ab) = a(-b), so $-(ab) \in P$. Therefore, ab < 0. Proposition 22. positivity of a product in an ordered field Let $(F, +, \cdot, <)$ be an ordered field with $a, b \in F$. Then 1. ab > 0 iff either a > 0 and b > 0 or a < 0 and b < 0. 2. ab < 0 iff either a > 0 and b < 0 or a < 0 and b > 0. *Proof.* We prove 1. Let P be the positive subset of F. Suppose either a > 0 and b > 0 or a < 0 and b < 0. We consider these cases separately. Case 1: Suppose a > 0 and b > 0. Then $a \in P$ and $b \in P$. Hence, by closure of P under multiplication, $ab \in P$. Therefore, ab > 0. Case 2: Suppose a < 0 and b < 0. Then $-a \in P$ and $-b \in P$. Hence, by closure of P under multiplication, $(-a)(-b) \in P$. Since F is a ring, then ab = (-a)(-b), so $ab \in P$. Therefore, ab > 0. Thus, in all cases, ab > 0, as desired.

Conversely, suppose ab > 0. If a = 0, then ab = 0b = 0. Thus, ab > 0 and ab = 0, a violation of trichotomy. Therefore, $a \neq 0$, so either a > 0 or a < 0. We consider these cases separately. Case 1: Suppose a > 0. Then $a \in P$, so $a^{-1} \in P$. Hence, $a^{-1} > 0$. Since $a^{-1} > 0$ and ab > 0, then $b = 1 \cdot b = (a^{-1} \cdot a)b = a^{-1} \cdot (ab) > 0$. Therefore, a > 0 and b > 0. Case 2: Suppose a < 0. Then $-a \in P$, so $(-a)^{-1} \in P$. Hence, $\frac{1}{-a} \in P$, so $-\frac{1}{a} \in P$. Thus, $-(a^{-1}) \in P$, so $a^{-1} < 0$. Since ab > 0 and $a^{-1} < 0$, then by the previous lemma $b = 1 \cdot b = (a^{-1} \cdot a)b =$ $a^{-1} \cdot (ab) = ab \cdot a^{-1} < 0.$ Therefore, a < 0 and b < 0. Thus, either a > 0 and b > 0 or a < 0 and b < 0, as desired. *Proof.* We prove 2. Suppose either a > 0 and b < 0 or a < 0 and b > 0. We consider these cases separately. Case 1: Suppose a > 0 and b < 0. Then by the previous lemma, ab < 0. Case 2: Suppose a < 0 and b > 0. Then b > 0 and a < 0, so by the previous lemma, ab = ba < 0. Therefore, in all cases, ab < 0, as desired. Conversely, suppose ab < 0. Then -(ab) > 0. Since F is a ring, then a(-b) = -(ab), so a(-b) > 0. Hence, by 1, either a > 0 and -b > 0 or a < 0 and -b < 0. Thus, either a > 0 and -(-b) < 0 or a < 0 and -(-b) > 0. Therefore, either a > 0 and b < 0 or a < 0 and b > 0, as desired. **Corollary 23.** Let $(F, +, \cdot, <)$ be an ordered field. Let $a, b \in F$. Then $\frac{a}{b} > 0$ iff ab > 0. *Proof.* Suppose $\frac{a}{b} > 0$. Then $b \neq 0$, so $\frac{1}{b} \neq 0$. Since $\frac{a}{b} = a \cdot \frac{1}{b}$, then $a \cdot \frac{1}{b} > 0$. Thus, either a > 0 and $\frac{1}{b} > 0$ or a < 0 and $\frac{1}{b} < 0$. We consider these cases separately. **Case 1:** Suppose a > 0 and $\frac{1}{b} > 0$. Since $\frac{1}{b} > 0$, then $\frac{1}{1} > 0$, so b > 0.

Since a > 0 and b > 0, then ab > 0. **Case 2:** Suppose a < 0 and $\frac{1}{b} < 0$. Since $\frac{1}{b} < 0$, then $\frac{1}{-b} > 0$, so $\frac{1}{\frac{1}{-b}} > 0$. Thus, -b > 0. Since a < 0, then -a > 0. Thus, ab = (-a)(-b) > 0, so ab > 0. Therefore, in all cases, ab > 0, as desired.

```
Conversely, suppose ab > 0.

Then either a > 0 and b > 0 or a < 0 and b < 0.

We consider these cases separately.

Case 1: Suppose a > 0 and b > 0.

Since b > 0, then \frac{1}{b} > 0.

Since a > 0 and \frac{1}{b} > 0, then \frac{a}{b} = a \cdot \frac{1}{b} > 0.

Case 2: Suppose a < 0 and b < 0.

Since b < 0, then -b > 0, so -\frac{1}{b} > 0.

Since a < 0, then -a > 0.

Hence, \frac{a}{b} = (-a)(-\frac{1}{b}) > 0.

Therefore, in all cases, \frac{a}{b} > 0, as desired.
```

Theorem 24. ordered fields satisfy transitivity and trichotomy laws

Let $(F, +, \cdot, <)$ be an ordered field. Then 1. a < a is false for all $a \in F$. (Therefore, < is not reflexive.) 2. For all $a, b, c \in F$, if a < b and b < c, then a < c. (< is transitive) 3. For every $a \in F$, exactly one of the following is true (trichotomy): *i.* a > 0*ii.* a = 0*iii.* a < 04. For every $a, b \in F$, exactly one of the following is true (trichotomy): i. a > b*ii.* a = b*iii.* a < bProof. We prove 1. Let $a \in F$. We must prove a < a is false. Since a < a iff $a - a \in P$ iff $0 \in P$ and $0 \notin P$, then a < a is false. *Proof.* We prove 2. Let $a, b, c \in F$ such that a < b and b < c. Since a < b, then $b - a \in P$. Since b < c, then $c - b \in P$. Hence, $(c-b) + (b-a) \in P$, by closure of P under addition of F.

Observe that (c-b) + (b-a) = c + (-b+b) - a = c + 0 - a = c - a. Therefore, $c-a \in P$, so a < c.

Proof. We prove 3. Let $a \in F$. By trichotomy, exactly one of the following is true: $a \in P$, $a = 0, -a \in P$. Observe that $a \in P$ iff a > 0 and $-a \in P$ iff a < 0. Therefore, exactly one of the following is true: a > 0, a = 0, a < 0. *Proof.* We prove 4. Let $a, b \in F$. Since F is a ring, then F is closed under subtraction, so $a - b \in F$. Since F is an ordered field, then by trichotomy, exactly one of the following is true: $a - b \in P$, a - b = 0, $-(a - b) \in P$. Observe that $a - b \in P$ iff b < a iff a > b. Observe that a - b = 0 iff a = b. Observe that $-(a-b) \in P$ iff $-a+b \in P$ iff $b-a \in P$ iff a < b. Therefore, exactly one of the following is true: a > b, a = b, a < b. **Corollary 25.** Let $(F, +, \cdot, <)$ be an ordered field. Let $a, b \in F$. If 0 < a < b, then $0 < \frac{1}{b} < \frac{1}{a}$. *Proof.* Suppose 0 < a < b. Then 0 < a and a < b, so 0 < b. Since b > 0, then $b \in P$, so $\frac{1}{b} \in P$. Hence, $\frac{1}{b} > 0$. Since a > 0 and b > 0, then $a \in P$ and $b \in P$, so $ab \in P$. Since a < b, then $b - a \in P$. Thus, $\frac{b-a}{ab} \in P$, so $\frac{b-a}{ab} > 0$. Hence, $\frac{1}{a} - \frac{1}{b} > 0$, so $\frac{1}{b} < \frac{1}{a}$. Therefore, $0 < \frac{1}{b} < \frac{1}{a}$, as desired.

Theorem 26. order is preserved by the field operations in an ordered field

Let $(F, +, \cdot, <)$ be an ordered field. Let $a, b, c, d \in F$. 1. If a < b, then a + c < b + c. (preserves order for addition) 2. If a < b, then a - c < b - c. (preserves order for subtraction) 3. If a < b and c > 0, then ac < bc. (preserves order for multiplication by a positive element)

4. If a < b and c < 0, then ac > bc. (reverses order for multiplication by a negative element)

5. If a < b and c > 0, then $\frac{a}{c} < \frac{b}{c}$. (preserves order for division by a positive element)

Proof. Let P be the positive subset of F.

We prove 1. Suppose a < b.

Then $b - a \in P$.

Observe that b - a = (b - a) + 0 = (b - a) + (c - c) = b - a + c - c =b + c - a - c = (b + c) - (a + c).Therefore, $(b+c) - (a+c) \in P$, so a+c < b+c. Proof. We prove 2. Suppose a < b. Since $c \in F$, then $-c \in F$. Therefore, a + (-c) < b + (-c), so a - c < b - c. Proof. We prove 3. Suppose a < b and c > 0. Since a < b, then $b - a \in P$. Since c > 0, then $c \in P$. Hence, $(b-a)c \in P$, by closure of P under multiplication of F. Since (b-a)c = bc - ac, then $bc - ac \in P$, so ac < bc. *Proof.* We prove 4. Suppose a < b and c < 0. To prove ac > bc, we must prove bc < ac, i.e. $ac - bc \in P$. Since a < b, then $b - a \in P$. Since c < 0, then $-c \in P$. Hence, $(b-a)(-c) \in P$, by closure of P under multiplication of F. Observe that (b - a)(-c) = b(-c) - a(-c) = -bc + ac = ac - bc. Therefore, $ac - bc \in P$, as desired. *Proof.* We prove 5. Suppose a < b and c > 0. Since c > 0, then $\frac{1}{c} > 0$. Since a < b and $\frac{1}{c} > 0$, then $a \cdot \frac{1}{c} < b \cdot \frac{1}{c}$. Therefore, $\frac{a}{c} < \frac{b}{c}$. **Proposition 27.** Let $(F, +, \cdot, <)$ be an ordered field. Let $a, b, c, d \in F$. 1. If a < b and c < d, then a + c < b + d. (adding inequalities is valid) 2. If 0 < a < b and 0 < c < d, then 0 < ac < bd. Proof. We prove 1. Suppose a < b and c < d. Since a < b, then a + c < b + c. Since c < d, then c + b < d + b, so b + c < b + d. Since a + c < b + c and b + c < b + d, then a + c < b + d. Proof. We prove 2. Suppose 0 < a < b and 0 < c < d. We must prove 0 < ac < bd. Since 0 < a < b, then 0 < a and a < b and 0 < b. Since 0 < c < d, then 0 < c and c < d. Since a > 0 and c > 0, then ac > 0.

Since a < b and c > 0, then ac < bc. Since c < d and b > 0, then bc < bd. Therefore, ac < bc and bc < bd, so ac < bd. Hence, 0 < ac and ac < bd, so 0 < ac < bd, as desired. **Proposition 28.** Let $(F, +, \cdot, <)$ be an ordered field. Let $\frac{a}{b}, \frac{c}{d} \in F$ with b, d > 0. Then $\frac{a}{b} < \frac{c}{d}$ iff ad < bc. *Proof.* We must prove $\frac{a}{b} < \frac{c}{d}$ iff ad < bc. We prove if $\frac{a}{b} < \frac{c}{d}$, then ad < bc. Suppose $\frac{a}{b} < \frac{c}{d}$. Then $\frac{c}{d} - \frac{a}{b} \in P$, so $\frac{cb-da}{db} \in P$. Hence, $\frac{cb-da}{db} > 0$. Since b > 0 and d > 0, then db > 0. We multiply by positive db to get cb - da > 0. Thus, cb > da, so da < cb. Therefore, ad < bc, as desired. Conversely, we prove if ad < bc, then $\frac{a}{b} < \frac{c}{d}$. Suppose ad < bc. Since b > 0, then we divide by positive b to get $\frac{ad}{b} < c$. Since d > 0, then we divide by positive d to get $\frac{a}{b} < \frac{c}{d}$, as desired.

Theorem 29. density of ordered fields

Between any two distinct elements of an ordered field is a third element.

Proof. Let $(F, +, \cdot, <)$ be an ordered field. Since $1 \in F$ and $0 \in F$ and $1 \neq 0$, then F contains at least two elements. Let a and b be distinct elements of F. Then $a \in F$ and $b \in F$ and $a \neq b$. We must prove there is at least one element c of F such that a < c < b. Since $a \neq b$, then either a < b or a > b. Without loss of generality, assume a < b. Since $a \in F$ and $b \in F$, then by closure of F under addition, $a + b \in F$. Since $1 \in F$, then by closure of F under addition, $1 + 1 \in F$. Define 2 to be 1 + 1. Then $2 \in F$ and 2 = 1 + 1. Since 1 > 0, then 1 + 1 > 0, so 2 > 0. Let $c = \frac{a+b}{2}$. Since $a + b \in F$ and $2 \neq 0$, then $\frac{a+b}{2} \in F$, so $c \in F$. Since a < b, then a + a < a + b and a + b < b + b. Thus, 2a < a + b and a + b < 2b. Since 2 > 0, we divide by 2 to get $a < \frac{a+b}{2}$ and $\frac{a+b}{2} < b$, so $a < \frac{a+b}{2} < b$. Therefore, a < c < b, as desired.

Corollary 30. ordered fields are infinite

An ordered field contains an infinite number of elements.

Proof. Let F be an ordered field.

We prove F is infinite by contradiction.

Suppose F is not infinite.

Then F is finite, so F contains a finite number of elements.

Let n be the number of distinct elements of F.

Since $1 \neq 0$ in every field, then every field contains at least two distinct elements.

Therefore, $n \in \mathbb{N}$ and $n \geq 2$.

Let $a_1, a_2, ..., a_n$ be the elements of F arranged so that the a_i element is in the *i*th position in the order defined by < over F for each i = 1, 2, ..., n.

Then $F = \{a_1, a_2, ..., a_n\}$ and $a_1 < a_2 < ... < a_n$.

Since $a_1 \in F$ and $a_2 \in F$ and $a_1 < a_2$, then a_1 and a_2 are distinct elements of the ordered field F.

Therefore, by the density of F, there exists at least one element $b \in F$ such that $a_1 < b < a_2$.

Hence, $a_1 < b$ and $b < a_2$.

We prove $b \neq a_i$ for each i = 1, 2, ..., n. Since $a_1 < b$, then $a_1 \neq b$, so $b \neq a_1$. Since $b < a_2$, then $b \neq a_2$. Since $b < a_2$ and $a_2 < a_i$ for each i such that $2 < i \le n$, then $b < a_i$ for each i such that $2 < i \le n$. Thus, $b \neq a_i$ for each i such that $2 < i \le n$. Therefore, $b \neq a_i$ for each i = 1, 2, ..., n, so $b \notin F$. Hence, we have $b \in F$ and $b \notin F$, a contradiction. Therefore, F is not finite, so F is infinite.

Theorem 31. ordered fields are totally ordered

Let $(F, +, \cdot, \leq)$ be an ordered field. Then 1. \leq is a partial order over F. Therefore, (F, \leq) is a poset. 2. \leq is a total order over F.

Proof. We prove 1.

Let $x \in F$. Since equality is reflexive, then x = x. Hence, x = x or x < x, so x < x or x = x. Therefore, $x \le x$, so \le is reflexive.

Let $x, y \in F$ such that $x \leq y$ and $y \leq x$. Suppose $x \neq y$. Since $x \leq y$ and $x \neq y$, then x < y. Since $y \leq x$ and $y \neq x$, then y < x. Thus, x < y and x > y, a violation of trichotomy. Hence, x = y. Therefore, \leq is antisymmetric. Let $x, y, z \in F$ such that $x \leq y$ and $y \leq z$.

Since $x \le y$ and $y \le z$, then x < y or x = y and y < z or y = z.

Hence, either both x < y or x = y and y < z, or both x < y or x = y and y = z.

Thus, either x < y and y < z or x = y and y < z or x < y and y = z or x = y and y = z.

Therefore, there are 4 cases to consider. Case 1: Suppose x < y and y < z.

Since < is transitive, then x < z. Case 2: Suppose x < y and y = z.

Then x < z.

Case 3: Suppose x = y and y < z.

Then x < z.

Case 4: Suppose x = y and y = z. Then x = z.

Thus, in all cases, either x < z or x = z, so $x \leq z$. Therefore, \leq is transitive.

Since \leq is reflexive, antisymmetric, and transitive, then \leq is a partial order over F, so (F, \leq) is a poset.

Proof. We prove 2.

Since (F, \leq) is a poset, then \leq is a total order over F iff either $x \leq y$ or $y \leq x$ for all $x, y \in F$.

Thus, to prove \leq is a total order, we must prove either $x \leq y$ or $y \leq x$ for all $x, y \in F$.

Let $x, y \in F$. To prove $x \leq y$ or $y \leq x$, assume $x \leq y$ is false. We must prove $y \leq x$. Since $x \leq y$ is false, then x is not less than y and $x \neq y$. Hence, by trichotomy, x > y. Therefore, y < x, so $y \leq x$, as desired.

Proposition 32. Let $(F, +, \cdot, \leq)$ be an ordered field. Then

1. $x^2 = 0$ iff x = 0. 2. $x^2 > 0$ iff $x \neq 0$. 3. $x^2 \ge 0$ for all $x \in F$.

Proof. Since F is an ordered field, then let P be the positive subset of F. We prove 1. Let $x \in F$. We must prove $x^2 = 0$ iff x = 0. We prove if x = 0, then $x^2 = 0$. Suppose x = 0. Then $x^2 = 0^2 = 0$, so $x^2 = 0$, as desired.

Conversely, we prove if $x^2 = 0$, then x = 0 by contrapositive. Suppose $x \neq 0$. Then $x^2 \in P$. Since $x^2 \in P$ iff $x^2 > 0$, then $x^2 > 0$. Hence, $x^2 \neq 0$, as desired. Proof. We prove 2. Let $x \in F$. We must prove $x^2 > 0$ iff $x \neq 0$. We prove if $x \neq 0$, then $x^2 > 0$. Suppose $x \neq 0$. Then $x^2 \in P$. Since $x^2 \in P$ iff $x^2 > 0$, then $x^2 > 0$, as desired. Conversely, we prove if $x^2 > 0$, then $x \neq 0$ by contrapositive. Suppose x = 0. Then $x^2 = 0^2 = 0 < 0$, so $x^2 < 0$, as desired. Proof. We prove 3. Let $x \in F$. Then either x = 0 or $x \neq 0$. We consider these cases separately. Case 1: Suppose x = 0. Since $x^2 = 0$ iff x = 0, then $x^2 = 0$. Case 2: Suppose $x \neq 0$. Since $x^2 > 0$ iff $x \neq 0$, then $x^2 > 0$. Thus, in all cases, either $x^2 > 0$ or $x^2 = 0$. Therefore, $x^2 \ge 0$, as desired.

Absolute value in an ordered field

Lemma 33. Let F be an ordered field. Let $x \in F$. 1. If x < 0, then $\frac{1}{x} < 0$. 2. If $x \neq 0$, then $\left|\frac{1}{x}\right| = \frac{1}{|x|}$.

Proof. We prove 1. Let $x \in F$. Suppose x < 0. Then $x \neq 0$. Since F is a field and $x \neq 0$, then $\frac{1}{x} \in F$, so $x \cdot \frac{1}{x} = 1$. Either $\frac{1}{x} > 0$ or $\frac{1}{x} = 0$ or $\frac{1}{x} < 0$.

Suppose $\frac{1}{x} = 0$. Then $1 = x \cdot \frac{1}{x} = x \cdot 0 = 0$, so 1 = 0. But, $1 \neq 0$ in an ordered field, so $\frac{1}{x} \neq 0$. Suppose $\frac{1}{x} > 0$. Since $\frac{1}{x} > 0$ and x < 0, then $1 = \frac{1}{x} \cdot x < 0$, so 1 < 0, a contradiction. Hence, $\frac{1}{x}$ cannot be greater than zero. Therefore, $\frac{1}{x} < 0$. *Proof.* We prove 2. Let $x \in F$. Suppose $x \neq 0$. Then either x > 0 or x < 0. We consider these cases separately. **Case 1:** Suppose x > 0. Then $\frac{1}{x} > 0$. Therefore, $|\frac{1}{x}| = \frac{1}{x} = \frac{1}{|x|}$. **Case 2:** Suppose x < 0. Then $\frac{1}{x} < 0$. Therefore, $|\frac{1}{x}| = -\frac{1}{x} = \frac{1}{-x} = \frac{1}{|x|}$. **Theorem 34.** arithmetic operations and absolute value

Let F be an ordered field. For all $a, b \in F$ 1. |ab| = |a||b|. 2. if $b \neq 0$, then $|\frac{a}{b}| = \frac{|a|}{|b|}$. 3. $|a|^2 = a^2$. 4. if $a \neq 0$, then $|a^n| = |a|^n$ for all $n \in \mathbb{Z}$.

 $\begin{array}{l} \textit{Proof.} \mbox{ We prove 1.} \\ \mbox{Let } a,b \in F. \\ \mbox{Either } a \mbox{ or } b \mbox{ is zero or neither } a \mbox{ nor } b \mbox{ is zero.} \\ \mbox{Hence, either } a = 0 \mbox{ or } b = 0 \mbox{ or } a \neq 0 \mbox{ and } b \neq 0. \\ \mbox{Thus, either } a = 0 \mbox{ or } b = 0, \mbox{ or } a < 0 \mbox{ and } b > 0 \mbox{ or } b < 0. \\ \mbox{Hence, either } a = 0 \mbox{ or } b = 0 \mbox{ or both } a > 0 \mbox{ and } b > 0 \mbox{ or both } a > 0 \mbox{ and } b < 0. \\ \mbox{Hence, either } a < 0 \mbox{ and } b > 0 \mbox{ or both } a < 0 \mbox{ and } b < 0. \\ \mbox{We consider these cases separately.} \end{array}$

We must prove |ab| = |a||b|. **Case 1:** Suppose a = 0. Then

$$|ab| = |0 \cdot b|$$

= |0|
= 0
= 0 \cdot |b|
= |0||b|
= |a||b|.

Case 2: Suppose b = 0.

Then

$$|ab| = |a \cdot 0|$$

= |0|
= 0
= |a| \cdot 0
= |a||0|
= |a||b|.

Case 3: Suppose a > 0 and b > 0. Then |a| = a and |b| = b. Since a > 0 and b > 0, then ab > 0. Hence, |ab| = ab. Therefore,

$$\begin{aligned} |ab| &= ab \\ &= |a||b|. \end{aligned}$$

Case 4: Suppose a > 0 and b < 0. Then |a| = a and |b| = -b. Since a > 0 and b < 0, then ab < 0. Hence, |ab| = -ab. Therefore,

$$|ab| = -ab$$

= $a(-b)$
= $|a||b|.$

Case 5: Suppose a < 0 and b > 0. Then |a| = -a and |b| = b. Since a < 0 and b > 0, then ab < 0. Hence, |ab| = -ab. Therefore,

$$\begin{aligned} |ab| &= -ab \\ &= (-a)b \\ &= |a||b|. \end{aligned}$$

Case 6: Suppose a < 0 and b < 0. Then |a| = -a and |b| = -b. Since a < 0 and b < 0, then ab > 0. Hence, |ab| = ab. Therefore,

$$|ab| = ab$$

= $(-a)(-b)$
= $|a||b|.$

Therefore, in all cases, |ab| = |a||b|.

Proof. We prove 2. Let $a, b \in F$. Suppose $b \neq 0$. Then $b^{-1} = \frac{1}{b} \neq 0$, so

$$\begin{aligned} |\frac{a}{b}| &= |ab^{-1}| \\ &= |a \cdot \frac{1}{b}| \\ &= |a| \cdot |\frac{1}{b}| \\ &= |a| \cdot \frac{1}{|b|} \\ &= \frac{|a|}{|b|}. \end{aligned}$$

Proof. We prove 3. Let $a \in F$. We must prove $|a|^2 = a^2$. Either a = 0 or $a \neq 0$. We consider these cases separately. **Case 1:** Suppose a = 0. Then

$$|a|^2 = |0|^2$$

= 0²
= a².

Case 2: Suppose $a \neq 0$. Then $a^2 \in F^+$, so $a^2 > 0$. Hence,

$$|a|^2 = |a||a|$$

= $|aa|$
= $|a^2|$
= a^2 .

Therefore, in all cases, $|a|^2 = a^2$, as desired.

Proof. We prove 4.

Let $a \in F$ with $a \neq 0$.

To prove $|a^n| = |a|^n$ for all $n \in \mathbb{Z}$, we prove $|a^n| = |a|^n$ for all positive integers n and $|a^0| = |a|^0$ and $|a^n| = |a|^n$ for all negative integers n.

We prove $|a^0| = |a|^0$. Since $a \neq 0$, then $|a^0| = |1| = 1 = |a|^0$. Therefore, $|a^0| = |a|^0$.

We prove $|a^n| = |a|^n$ for all $n \in \mathbb{N}$ by induction on n. Let $S = \{n \in \mathbb{N} : |a^n| = |a|^n\}$. Basis: Since $|a^1| = |a| = |a|^1$, then $1 \in S$. Induction: Suppose $k \in S$. Then $k \in \mathbb{N}$ and $|a^k| = |a|^k$. Since $k \in \mathbb{N}$, then $k + 1 \in \mathbb{N}$. Observe that

$$|a^{k+1}| = |a^{k}a|$$

= |a^{k}||a|
= |a|^{k}|a|
= |a|^{k+1}.

Since $k + 1 \in \mathbb{N}$ and $|a^{k+1}| = |a|^{k+1}$, then $k + 1 \in S$. Thus, $k \in S$ implies $k + 1 \in S$. Since $1 \in S$ and $k \in S$ implies $k + 1 \in S$, then by PMI, $S = \mathbb{N}$. Therefore, $|a^n| = |a|^n$ for all $n \in \mathbb{N}$.

We prove $|a^n| = |a|^n$ for all negative integers n. Let n be an arbitrary negative integer. Then $n \in \mathbb{Z}$ and n < 0. Since $n \in \mathbb{Z}$, then $-n \in \mathbb{Z}$ and -n > 0. Let k = -n. Then $k \in \mathbb{Z}$ and k > 0 and n = -k. Since $k \in \mathbb{Z}$ and k > 0, then k is a positive integer, so $|a^k| = |a|^k$. Since $a \neq 0$, then $a^k \neq 0$. Observe that

$$\begin{aligned} |a^{n}| &= |a^{-k}| \\ &= |\frac{1}{a^{k}}| \\ &= \frac{1}{|a^{k}|} \\ &= \frac{1}{|a|^{k}} \\ &= \frac{1}{|a|^{-n}} \\ &= \frac{1}{\frac{1}{|a|^{n}}} \\ &= |a|^{n}. \end{aligned}$$

Therefore, $|a^n| = |a|^n$.

Theorem 35. properties of the absolute value function

Let $(F, +, \cdot, \leq)$ be an ordered field. Let $a, k \in F$ and k > 0. Then 1. $|a| \ge 0$. 2. |a| = 0 iff a = 0. 3. |-a| = |a|. 4. $-|a| \le a \le |a|$. 5. |a| < k iff -k < a < k. 6. |a| > k iff a > k or a < -k. 7. |a| = k iff a = k or a = -k. Proof. We prove 1. Let $a \in F$. Either a > 0 or a = 0 or a < 0. We consider these cases separately. We must prove either |a| > 0 or |a| = 0. Case 1: Suppose a > 0. Then |a| = a > 0. Case 2: Suppose a = 0. Then |a| = a = 0. Case 3: Suppose a < 0. Since -a > 0 iff $-a \in F^+$ iff a < 0 and a < 0, then -a > 0. Since a < 0, then |a| = -a > 0. Therefore, in all cases, $|a| \ge 0$. *Proof.* We prove 2.

Let $a \in F$. We must prove |a| = 0 iff a = 0. We prove if a = 0, then |a| = 0.

Then |a| = a = 0. Conversely, we prove if |a| = 0, then a = 0 by contrapositive. Suppose $a \neq 0$. We must prove $|a| \neq 0$. Since $a \neq 0$, then either a > 0 or a < 0. In either case |a| > 0. Therefore, by trichotomy, $|a| \neq 0$, as desired. *Proof.* We prove 3. Let $a \in F$. We must prove |-a| = |a|. Either a > 0 or a = 0 or a < 0. We consider these cases separately. Case 1: Suppose a > 0. Then -a < 0. Therefore, |-a| = -(-a) = a = |a|. Case 2: Suppose a = 0. Then |-a| = |-0| = |0| = |a|. Case 3: Suppose a < 0. Then -a > 0 and |a| = -a. Therefore, |-a| = -a = |a|. Hence, in all cases, |-a| = |a|. Proof. We prove 4. Let $a \in F$. To prove $-|a| \le a \le |a|$, we must prove $-|a| \le a$ and $a \le |a|$. Either $a \ge 0$ or a < 0. We consider these cases separately. Case 1: Suppose $a \ge 0$. Then |a| = a and $-a \leq 0$. Since $a \leq a$ and a = |a|, then $a \leq |a|$, as desired. Since $-a \leq 0$ and $0 \leq a$, then $-a \leq a$, so $-|a| \leq a$, as desired. Case 2: Suppose a < 0. Then |a| = -a and -a > 0. Since a < 0 and 0 < -a, then a < -a = |a|, so $a \leq |a|$, as desired. Since $a \leq a$, then $-(-a) \leq a$, so $-|a| \leq a$, as desired. Proof. We prove 5. Let $a, k \in F$ with k > 0. We must prove |a| < k iff -k < a < k. We prove if |a| < k, then -k < a < k. Suppose |a| < k. We must prove -k < a and a < k. Either $a \ge 0$ or a < 0. We consider these cases separately. Case 1: Suppose $a \ge 0$.

Suppose a = 0.

Then a = |a| < k. Therefore, a < k, as desired. Since k > 0, then -k < 0. Since -k < 0 and $0 \le a$, then -k < a, as desired. **Case 2:** Suppose a < 0. Since a < 0 and 0 < k, then a < k, as desired. Since |a| < k, then k > |a| = -a, so k > -a. Therefore, -k < a, as desired.

Conversely, we prove if -k < a < k, then |a| < k. Suppose -k < a < k. Then -k < a and a < k. We must prove |a| < k. Either $a \ge 0$ or a < 0. We consider these cases separately. **Case 1:** Suppose $a \ge 0$. Then |a| = a < k. Therefore, |a| < k, as desired. **Case 2:** Suppose a < 0. Since -k < a, then k > -a = |a|, so k > |a|. Therefore, |a| < k, as desired.

Proof. We prove 6. Let $a, k \in F$ with k > 0. We must prove |a| > k iff a > k or a < -k.

We prove if |a| > k, then a > k or a < -k. Suppose |a| > k. Either $a \ge 0$ or a < 0. We consider these cases separately. **Case 1:** Suppose $a \ge 0$. Then a = |a| > k. **Case 2:** Suppose a < 0. Then -a = |a| > k, so -a > k. Hence, a < -k. Therefore, either a > k or a < -k, as desired.

Conversely, to prove if a > k or a < -k, then |a| > k, we must prove both if a > k, then |a| > k and if a < -k, then |a| > k.

We first prove if a > k, then |a| > k. Suppose a > k. Since a > k and k > 0, then a > 0. Therefore, |a| = a > k.

We next prove if a < -k, then |a| > k. Suppose a < -k. Then -a > k. Since -a > k and k > 0, then -a > 0. Hence, a < 0. Therefore, |a| = -a > k. Proof. We prove 7. Let $a, k \in F$ with k > 0. We must prove |a| = k iff a = k or a = -k. To prove if a = k or a = -k, then |a| = k, we must prove both if a = k, then |a| = k and if a = -k, then |a| = k. We first prove if a = k, then |a| = k. Suppose a = k. Since k > 0, then |k| = k. Therefore, |a| = |k| = k. We next prove if a = -k, then |a| = k. Suppose a = -k. Since k > 0, then -k < 0, so a < 0. Therefore, |a| = -a = k. Conversely, we prove if |a| = k, then either a = k or a = -k. Suppose |a| = k. Either $a \ge 0$ or a < 0. We consider these cases separately. Case 1: Suppose $a \ge 0$. Then k = |a| = a, so a = k. Case 2: Suppose a < 0. Then -a = |a| = k, so -a = k. Hence, a = -k. Therefore, either a = k or a = -k, as desired. Theorem 36. triangle inequality Let $(F, +, \cdot, \leq)$ be an ordered field. Let $a, b \in F$. Then $|a + b| \le |a| + |b|$. *Proof.* Let $a, b \in F$. Since $a \in F$, then $-|a| \leq a \leq |a|$. Since $b \in F$, then $-|b| \leq b \leq |b|$. We add these inequalities to get $-(|a| + |b|) \le a + b \le |a| + |b|$. Therefore, $|a+b| \leq |a|+|b|$. **Corollary 37.** Let $(F, +, \cdot, \leq)$ be an ordered field. Then 1. $|a - b| \ge |a| - |b|$ and $|a - b| \ge |b| - |a|$ for all $a, b \in F$.

2. $||a| - |b|| \le |a - b| \le |a| + |b|$ for all $a, b \in F$.

Proof. We prove 1. Let $a, b \in F$.

Since $|a| = |(a-b)+b| \le |a-b|+|b|$, then $|a| \le |a-b|+|b|$, so $|a|-|b| \le |a-b|$. Hence, $|a-b| \ge |a|-|b|$, so $|a-b| \ge |a|-|b|$ for all $a, b \in F$.

Since $|a - b| \ge |a| - |b|$ for all $a, b \in F$, then in particular, if we switch roles of a and b, we have $|b - a| \ge |b| - |a|$. Therefore, $|a - b| \ge |b| - |a|$.

Proof. We prove 2.

Let $a, b \in F$. We first prove $||a| - |b|| \le |a - b|$. Since $|a - b| \ge |a| - |b|$, then $|a| - |b| \le |a - b|$. Since $|a - b| \ge |b| - |a|$, then $-|a - b| \le |a| - |b|$. Thus, $-|a - b| \le |a| - |b|$ and $|a| - |b| \le |a - b|$, so $-|a - b| \le |a| - |b| \le |a - b|$. Therefore, $||a| - |b|| \le |a - b|$.

We next prove $|a - b| \le |a| + |b|$. Since $|a - b| = |a + (-b)| \le |a| + |-b| = |a| + |b|$, then $|a - b| \le |a| + |b|$. Therefore, $||a| - |b|| \le |a - b| \le |a| + |b|$.

Corollary 38. generalized triangle inequality

Let $(F, +, \cdot, \leq)$ be an ordered field. Let $n \in \mathbb{N}$. Let $x_1, x_2, ..., x_n \in F$. Then $|x_1 + x_2 + ... + x_n| \leq |x_1| + |x_2| + ... + |x_n|$.

Proof. Define predicate $p(n): |x_1 + x_2 + \ldots + x_n| \le |x_1| + |x_2| + \ldots + |x_n|$ over \mathbb{N} .

We prove p(n) for all $n \in \mathbb{N}$ by induction on n. **Basis:** Since $|x_1| = |x_1|$, then $|x_1| \leq |x_1|$. Therefore, p(1) is true. **Induction:** Let $n \in \mathbb{N}$ such that p(n) is true. Then $|x_1 + x_2 + \ldots + x_n| \leq |x_1| + |x_2| + \ldots + |x_n|$. To prove p(n+1) is true, we must prove $|x_1 + x_2 + \ldots + x_{n+1}| \leq |x_1| + |x_2| + \ldots + |x_{n+1}|$. Observe that

$$\begin{aligned} |x_1 + x_2 + \dots + x_{n+1}| &= |(x_1 + x_2 + \dots + x_n) + x_{n+1}| \\ &\leq |x_1 + x_2 + \dots + x_n| + |x_{n+1}| \\ &\leq |x_1| + |x_2| + \dots + |x_n| + |x_{n+1}|. \end{aligned}$$

Thus, p(n+1) is true, so p(n) implies p(n+1) for all $n \in \mathbb{N}$.

Hence, by induction, p(n) is true for all $n \in \mathbb{N}$.

Therefore, $|x_1 + x_2 + ... + x_n| \le |x_1| + |x_2| + ... + |x_n|$ for all $n \in \mathbb{N}$.

Boundedness of sets in an ordered field

Theorem 39. A subset S of an ordered field F is bounded in F iff S is bounded above and below in F.

Proof. Let S be a subset of an ordered field F. We prove if S is bounded in F, then S is bounded above and below in F. Suppose S is bounded in F. Then there exists $b \in F$ such that |x| < b for all $x \in S$. Thus, $-b \le x \le b$ for all $x \in S$, so $-b \le x$ and $x \le b$ for all $x \in S$. Hence, -b < x for all $x \in S$ and x < b for all $x \in S$. Since $b \in F$ and $x \leq b$ for all $x \in S$, then b is an upper bound of S, so S is bounded above in F. Since $-b \in F$ and $-b \leq x$ for all $x \in S$, then -b is a lower bound of S, so S is bounded below in F. Conversely, we prove if S is bounded above and below in F, then S is bounded in F. Suppose S is bounded above and below in F. Then there is at least one upper and lower bound of S in F. Let M be an upper bound of S in F. Let m be a lower bound of S in F. To prove S is bounded, we must prove there exists $b \in F$ such that $|x| \leq b$ for all $x \in S$. Let $b = \max\{|M|, |m|\}.$ Then $|m| \leq b$ and $|M| \leq b$. Since $|M|, |m| \in F$ and either b = |M| or b = |m|, then $b \in F$. Let $x \in S$. Since m is a lower bound of S and M is an upper bound of S, then $m < \infty$ $x \leq M$. Since $|m| \leq b$, then $-|m| \geq -b$. Observe that $-b \le -|m| \le m \le x \le M \le |M| \le b.$ Hence, $-b \le x \le b$, so $|x| \le b$, as desired.

Proposition 40. Every element of an ordered field is an upper and lower bound of \emptyset .

Proof. Let $(F, +, \cdot, \leq)$ be an ordered field.

Since \leq is a partial order over F, then (F, \leq) is a partially ordered set.

Since every element of a partially ordered set is an upper and lower bound of \emptyset , then in particular, every element of (F, \leq) is an upper and lower bound of \emptyset .

Proposition 41. A subset of a bounded set is bounded.

Let A be a bounded subset of an ordered field F. If $B \subset A$, then B is bounded in F.

Proof. Suppose $B \subset A$. Let $x \in B$. Since $B \subset A$, then $x \in A$. Since A is bounded in F, then there exists $M \in F$ such that $|x| \leq M$ for all $x \in A$. Since $x \in A$, then $|x| \leq M$. Since x is arbitrary, then $|x| \leq M$ for all $x \in B$. Therefore, there is $M \in F$ such that $|x| \leq M$ for all $x \in B$, so B is bounded in F. Proposition 42. A union of bounded sets is bounded. Let A and B be subsets of an ordered field F. If A and B are bounded, then $A \cup B$ is bounded. *Proof.* Suppose A and B are bounded. Either $A = \emptyset$ or $A \neq \emptyset$ and either $B = \emptyset$ or $B \neq \emptyset$. Hence, either $A = \emptyset$ and $B = \emptyset$ or $A = \emptyset$ and $B \neq \emptyset$ or $A \neq \emptyset$ and $B = \emptyset$ or $A \neq \emptyset$ and $B \neq \emptyset$. Thus, we have 4 cases to consider: **Case 1:** Suppose $A = \emptyset$ and $B = \emptyset$. Then $A \cup B = \emptyset \cup \emptyset = \emptyset$. Since the empty set is bounded, then $A \cup B$ is bounded. **Case 2:** Suppose $A = \emptyset$ and $B \neq \emptyset$. Then $A \cup B = \emptyset \cup B = B$. Since B is bounded, then $A \cup B$ is bounded. **Case 3:** Suppose $A \neq \emptyset$ and $B = \emptyset$. Then $A \cup B = A \cup \emptyset = A$. Since A is bounded, then $A \cup B$ is bounded. **Case 4:** Suppose $A \neq \emptyset$ and $B \neq \emptyset$. Since $A \neq \emptyset$, then there exists $a \in A$. Since $A \subset A \cup B$, then $a \in A \cup B$, so $A \cup B \neq \emptyset$. Since A is bounded, then there exists $\alpha \in F$ such that $|x| \leq \alpha$ for all $x \in A$. Since B is bounded, then there exists $\beta \in F$ such that $|x| \leq \beta$ for all $x \in B$. Let $S = \{\alpha, \beta\}.$ Let $\gamma = \max S$. Let $x \in A \cup B$ be given. Then either $x \in A$ or $x \in B$. We consider these cases separately. **Case 4a:** Suppose $x \in A$. Then $|x| \leq \alpha$. Since $\alpha \leq \max S$, then $|x| \leq \max S$. **Case 4b:** Suppose $x \in B$. Then $|x| \leq \beta$. Since $\beta < \max S$, then $|x| < \max S$. Hence, in all cases, $|x| \leq \max S$. Thus, there exists max S such that $|x| \leq \max S$ for all $x \in A \cup B$, so $A \cup B$ is bounded.

Theorem 43. uniqueness of least upper bound in an ordered field

A least upper bound of a subset of an ordered field, if it exists, is unique.

Proof. Let S be a subset of an ordered field F.

We prove if a least upper bound of S exists, then it is unique.

Suppose a least upper bound of S exists in F.

Then there is at least one least upper bound of S in F.

Uniqueness:

To prove a least upper bound is unique, let L_1 and L_2 be least upper bounds of S in F.

We must prove $L_1 = L_2$.

Since L_1 is a least upper bound of S, then L_1 is an upper bound of S and $L_1 \leq M$ for any upper bound M of S.

Since L_2 is a least upper bound of S, then L_2 is an upper bound of S and $L_2 \leq M$ for any upper bound M of S.

Since $L_1 \leq M$ for any upper bound M of S and L_2 is an upper bound of S, then $L_1 \leq L_2$.

Since $L_2 \leq M$ for any upper bound M of S and L_1 is an upper bound of S, then $L_2 \leq L_1$.

Since $L_1 \leq L_2$ and $L_2 \leq L_1$, then by the anti-symmetric property of \leq , we have $L_1 = L_2$.

Theorem 44. uniqueness of greatest lower bound in an ordered field A greatest lower bound of a subset of an ordered field, if it exists, is unique.

Proof. Let S be a subset of an ordered field F.

We prove if a greatest lower bound of S exists, then it is unique.

Suppose a greatest lower bound of S exists in F.

Then there is at least one greatest lower bound of S in F.

Uniqueness:

To prove a greatest lower bound is unique, let L_1 and L_2 be greatest lower bounds of S in F.

We must prove $L_1 = L_2$.

Since L_1 is a greatest lower bound of S, then L_1 is a lower bound of S and $M \leq L_1$ for any lower bound M of S.

Since L_2 is a greatest lower bound of S, then L_2 is a lower bound of S and $M \leq L_2$ for any lower bound M of S.

Since $M \leq L_2$ for any lower bound M of S and L_1 is a lower bound of S, then $L_1 \leq L_2$.

Since $M \leq L_1$ for any lower bound M of S and L_2 is a lower bound of S, then $L_2 \leq L_1$.

Since $L_1 \leq L_2$ and $L_2 \leq L_1$, then by the anti-symmetric property of \leq , we have $L_1 = L_2$.

Proposition 45. 1. There is no least upper bound of Ø in an ordered field.
2. There is no greatest lower bound of Ø in an ordered field.

Proof. Let F be an ordered field.

We prove 1 by contradiction.

Suppose there is a least upper bound of \emptyset in F.

Let b be the least upper bound of \emptyset in F.

Then $b \in F$ and no element of F less than b is an upper bound of \emptyset .

Since $b - 1 \in F$ and b - 1 < b, then this implies b - 1 is not an upper bound of \emptyset .

Since every element of F is an upper bound of \emptyset and $b - 1 \in F$, then b - 1 is an upper bound of \emptyset .

Thus, we have b-1 is an upper bound of \emptyset and b-1 is not an upper bound of \emptyset , a contradiction.

Therefore, there is no least upper bound of \emptyset in F.

Proof. We prove 2 by contradiction.

Suppose there is a greatest lower bound of \emptyset in F.

Let b be the greatest lower bound of \emptyset in F.

Then $b \in F$ and no element of F greater than b is a lower bound of \emptyset .

Since $b + 1 \in F$ and b + 1 > b, then this implies b + 1 is not a lower bound of \emptyset .

Since every element of F is a lower of \emptyset and $b+1 \in F$, then b+1 is a lower bound of \emptyset .

Thus, we have b + 1 is a lower bound of \emptyset and b + 1 is not a lower bound of \emptyset , a contradiction.

Therefore, there is no greatest lower bound of \emptyset in F.

Theorem 46. approximation property of suprema and infima

Let S be a subset of an ordered field F.

1. If sup S exists, then $(\forall \epsilon > 0)(\exists x \in S)(\sup S - \epsilon < x \le \sup S)$.

2. If inf S exists, then $(\forall \epsilon > 0) (\exists x \in S) (\inf S \le x < \inf S + \epsilon)$.

Proof. We prove 1.

Suppose $\sup S$ exists.

Then $\sup S \in F$.

Let $\epsilon > 0$ be given.

Then $\sup S + \epsilon > \sup S$, so $\sup S > \sup S - \epsilon$.

Since sup S is the least upper bound of S, then sup $S \leq B$ for every upper bound B of S, so there is no upper bound B of S such that sup S > B.

Since $\sup S > \sup S - \epsilon$, then this implies $\sup S - \epsilon$ cannot be an upper bound of S.

Hence, there exists $x \in S$ such that $x > \sup S - \epsilon$.

Since sup S is an upper bound of S and $x \in S$, then $x \leq \sup S$. Therefore, sup $S - \epsilon < x \leq \sup S$.

Proof. We prove 2.

Suppose $\inf S$ exists. Then $\inf S \in F$. Let $\epsilon > 0$ be given. Then $\inf S + \epsilon > \inf S$.

Since $\inf S$ is the greatest lower bound of S, then $B \leq \inf S$ for every lower bound B of S, so there is no lower bound B of S such that $B > \inf S$. Since $\inf S + \epsilon > \inf S$, then this implies $\inf S + \epsilon$ cannot be a lower bound of S.

Hence, there exists $x \in S$ such that $x < \inf S + \epsilon$. Since $\inf S$ is a lower bound of S and $x \in S$, then $\inf S \le x$. Therefore, $\inf S \le x < \inf S + \epsilon$.

Proposition 47. Let S be a subset of an ordered field F. If $\sup S$ and $\inf S$ exist, then $\inf S \leq \sup S$.

Proof. Suppose $\sup S$ and $\inf S$ exist.

Then $\sup S \in F$ and $\inf S \in F$ and $S \neq 0$. Let $x \in S$ be given. Since $\inf S$ is a lower bound of S and $x \in S$, then $\inf S \leq x$. Since $\sup S$ is an upper bound of S and $x \in S$, then $x \leq \sup S$. Therefore, $\inf S \leq x \leq \sup S$, so $\inf S \leq \sup S$.

Proposition 48. Let S be a subset of an ordered field F. Let $-S = \{-s : s \in S\}$. 1. If $\inf S$ exists, then $\sup(-S) = -\inf S$. 2. If $\sup S$ exists, then $\inf(-S) = -\sup S$. Proof. We prove 1. Suppose $\inf S$ exists. Then $\inf S \in F$ and $S \neq \emptyset$. Since $S \neq \emptyset$, then there exists $s \in S$, so $-s \in -S$. Hence, the set -S is not empty. Let $x \in -S$. Then there exists $s \in S$ such that x = -s. Since $\inf S$ is a lower bound of S and $s \in S$, then $\inf S \leq s$, so $-\inf S \geq -s$. Thus, $-\inf S \geq x$, so $x \leq -\inf S$.

Therefore, $-\inf S$ is an upper bound of -S.

We prove $-\inf S$ is the least upper bound of -S. Let $\epsilon > 0$. Since $\inf S$ is the greatest lower bound of S and $\inf S + \epsilon > \inf S$, then $\inf S + \epsilon$ is not a lower bound of S, so there exists $s' \in S$ such that $s' < \inf S + \epsilon$. Hence, there exists $-s' \in -S$ such that $-s' > -\inf S - \epsilon$. Therefore, $-\inf S$ is the least upper bound of -S, so $\sup(-S) = -\inf S$. \Box

Proof. We prove 2. Suppose $\sup S$ exists. Then $\sup S \in F$ and $S \neq \emptyset$. Since $S \neq \emptyset$, then there exists $s \in S$, so $-s \in -S$. Hence, the set -S is not empty.

Let $x \in -S$. Then there exists $s \in S$ such that x = -s. Since sup S is an upper bound of S and $s \in S$, then $s \leq \sup S$, so $-s \geq s$ $-\sup S$. Thus, $x \ge -\sup S$, so $-\sup S \le x$. Therefore, $-\sup S$ is a lower bound of -S. We prove $-\sup S$ is the greatest lower bound of -S. Let $\epsilon > 0$. Since $\sup S$ is the least upper bound of S and $\sup S - \epsilon < \sup S$, then $\sup S - \epsilon$ is not an upper bound of S, so there exists $s' \in S$ such that $s' > \sup S - \epsilon$. Hence, there exists $-s' \in -S$ such that $-s' < -\sup S + \epsilon$. Therefore, $-\sup S$ is the greatest lower bound of -S, so $\inf(-S) = -\sup S$. **Lemma 49.** Let S be a subset of an ordered field F. Let $k \in F$. *Let* $K = \{k\}$ *.* Let $k + S = \{k + s : s \in S\}.$ Let $K + S = \{k + s : k \in K, s \in S\}$. Then 1. $\sup K = k$. 2. $\inf K = k$. 3. k + S = K + S. Proof. We prove 1. Since $k \leq k$, then k is an upper bound of K. Let M be an arbitrary upper bound of K. Then $k \leq M$. Since k is an upper bound of K and $k \leq M$, then k is the least upper bound of K, so $k = \sup K$. *Proof.* We prove 2. Since $k \leq k$, then k is a lower bound of K. Let M be an arbitrary lower bound of K. Then $M \leq k$. Since k is a lower bound of K and $M \leq k$, then k is the greatest lower bound of K, so $k = \inf K$. Proof. We prove 3. Let $x \in k + S$. Then there exists $s \in S$ such that x = k + s. Since $k \in K$ and $s \in S$ and x = k + s, then $x \in K + S$. Therefore, k + S is a subset of K + S.

Let $y \in K + S$. Then there exists $s \in S$ such that y = k + s, so $y \in k + S$. Therefore, K + S is a subset of k + S. Since k + S is a subset of K + S and K + S is a subset of k + S, then k + S = K + S.

Proposition 50. additive property of suprema and infima

Let A and B be subsets of an ordered field F. Let $A + B = \{a + b : a \in A, b \in B\}$. 1. If $\sup A$ and $\sup B$ exist, then $\sup(A + B) = \sup A + \sup B$. 2. If $\inf A$ and $\inf B$ exist, then $\inf(A + B) = \inf A + \inf B$. Proof. We prove 1. Suppose $\sup A$ and $\sup B$ exist in F. Since $\sup A$ exists in F, then $A \neq \emptyset$, so there exists $a \in A$. Since $\sup B$ exists in F, then $B \neq \emptyset$, so there exists $b \in B$. Thus, there exists $a + b \in A + B$, so the set A + B is not empty. Let $c \in A + B$. Then there exist $a \in A$ and $b \in B$ such that c = a + b. Since $a \in A$ and $\sup A$ is an upper bound of A, then $a \leq \sup A$. Since $b \in B$ and $\sup B$ is an upper bound of B, then $b \leq \sup B$. Hence, $a + b \leq \sup A + \sup B$. Thus, $c \leq \sup A + \sup B$.

Therefore, $\sup A + \sup B$ is an upper bound of A + B.

We prove $\sup A + \sup B$ is the least upper bound of A + B. Let $\epsilon > 0$. Then $\frac{\epsilon}{2} > 0$.

Since sup A is the least upper bound of A, then there exists $x \in A$ such that $x > \sup A - \frac{\epsilon}{2}$.

Since sup B is the least upper bound of B, then there exists $y \in B$ such that $y > \sup B - \frac{\epsilon}{2}$.

Thus, $x + y > (\sup A - \frac{\epsilon}{2}) + (\sup B - \frac{\epsilon}{2}).$

Hence, there exists $x + y \in A + B$ such that $x + y > (\sup A + \sup B) - \epsilon$. Therefore, $\sup A + \sup B$ is the least upper bound of A + B, so $\sup A + \sup B = \sup(A + B)$.

Proof. We prove 2.

Suppose $\inf A$ and $\inf B$ exist in F. Since $\inf A$ exists $\inf F$, then $A \neq \emptyset$, so there exists $a \in A$. Since $\inf B$ exists $\inf F$, then $B \neq \emptyset$, so there exists $b \in B$. Thus, there exists $a + b \in A + B$, so the set A + B is not empty. Let $c \in A + B$. Then there exist $a \in A$ and $b \in B$ such that c = a + b. Since $a \in A$ and $\inf A$ is a lower bound of A, then $\inf A \leq a$. Since $b \in B$ and $\inf B$ is a lower bound of B, then $\inf B \leq b$. Hence, $\inf A + \inf B \leq a + b$. Thus, $\inf A + \inf B \leq c$. Therefore, $\inf A + \inf B$ is a lower bound of A + B. We prove $\inf A + \inf B$ is the greatest lower bound of A + B. Let $\epsilon > 0$.

Then $\epsilon > 0$.

Then $\frac{\epsilon}{2} > 0$.

Since $\inf A$ is the greatest lower bound of A, then there exists $x \in A$ such that $x < \inf A + \frac{\epsilon}{2}$.

Since $\inf B$ is the greatest lower bound of B, then there exists $y \in B$ such that $y < \inf B + \frac{\epsilon}{2}$.

Thus, $x + y < (\inf A + \frac{\epsilon}{2}) + (\inf B + \frac{\epsilon}{2}).$

Hence, there exists $x + y \in A + B$ such that $x + y < (\inf A + \inf B) + \epsilon$. Therefore, $\inf A + \inf B$ is the greatest lower bound of A + B, so $\inf A + \inf B = \inf(A + B)$.

Corollary 51. Let S be a subset of an ordered field F. Let $k \in F$. Let $k + S = \{k + s : s \in S\}$. 1. If $\sup S$ exists, then $\sup(k + S) = k + \sup S$. 2. If $\inf S$ exists, then $\inf(k + S) = k + \inf S$.

Proof. We prove 1.

Suppose $\sup S$ exists. Let $K = \{k\}$. Then $\sup K = k$. Let $K + S = \{k + s : k \in K, s \in S\}$. Then k + S = K + S. Therefore,

$$k + \sup S = \sup K + \sup S$$
$$= \sup(K + S)$$
$$= \sup(k + S).$$

- 1	_	

Proof. We prove 2. Suppose $\inf S$ exists. Let $K = \{k\}$. Then $\inf K = k$. Let $K + S = \{k + s : k \in K, s \in S\}$. Then k + S = K + S. Therefore,

$$k + \inf S = \inf K + \inf S$$
$$= \inf(K + S)$$
$$= \inf(k + S).$$

Corollary 52. Let A and B be subsets of an ordered field F. Let $A - B = \{a - b : a \in A, b \in B\}$. If $\sup A$ and $\inf B$ exist, then $\sup(A - B) = \sup A - \inf B$.

Proof. Suppose sup A and $\inf B$ exist. Then $A \neq \emptyset$ and $B \neq \emptyset$. Let $-B = \{-b : b \in B\}$. Since $\inf B$ exists, then $\sup(-B) = -\inf B$. Let $A + (-B) = \{a + b : a \in A, b \in -B\}$.

We first prove A - B = A + (-B). Let $x \in A - B$. Then x = a - b for some $a \in A$ and $b \in B$. Since $b \in B$, then $-b \in -B$. Since $a \in A$ and $-b \in -B$, then $a + (-b) = a - b = x \in A + (-B)$. Thus, $A - B \subset A + (-B)$.

Let $y \in A + (-B)$. Then y = a + b for some $a \in A$ and $b \in -B$. Since $b \in -B$, then b = -b' for some $b' \in B$. Since $a \in A$ and $b' \in B$, then $a - b' = a + b = y \in A - B$. Thus, $A + (-B) \subset A - B$. Since $A - B \subset A + (-B)$ and $A + (-B) \subset A - B$, then A - B = A + (-B). Therefore,

$$sup(A - B) = sup(A + (-B))$$

= sup A + sup(-B)
= sup A - inf B.

Proposition 53. comparison property of suprema and infima

Let A and B be subsets of an ordered field F such that $A \subset B$. 1. If $\sup A$ and $\sup B$ exist, then $\sup A < \sup B$.

2. If $\inf A$ and $\inf B$ exist, then $\inf B \leq \inf A$.

Proof. We prove 1.

Suppose $\sup A$ and $\sup B$ exist. Since $\sup A$ exists, then A is not empty. Let $x \in A$. Since $A \subset B$, then $x \in B$. Since $\sup B$ is an upper bound of B, then $x \leq \sup B$. Hence, $\sup B$ is an upper bound of A. Since $\sup A$ is the least upper bound of A, then $\sup A \leq \sup B$. Proof. We prove 2. Suppose $\inf A$ and $\inf B$ exist. Since $\inf A$ exists, then A is not empty. Let $x \in A$. Since $A \subset B$, then $x \in B$. Since $\inf B$ is a lower bound of B, then $\inf B \leq x$. Hence, $\inf B$ is a lower bound of A. Since $\inf A$ is the greatest lower bound of A, then $\inf B \leq \inf A$.

Proposition 54. scalar multiple property of suprema and infima

Let S be a subset of an ordered field F. Let $k \in F$. Let $kS = \{ks : s \in S\}$. 1. If k > 0 and $\sup S$ exists, then $\sup(kS) = k \sup S$. 2. If k > 0 and $\inf S$ exists, then $\inf(kS) = k \inf S$. 3. If k < 0 and $\inf S$ exists, then $\sup(kS) = k \inf S$. 4. If k < 0 and $\sup S$ exists, then $\inf(kS) = k \sup S$.

Proof. We prove 1.

Suppose k > 0 and $\sup S$ exists. Since $\sup S$ exists, then $S \neq \emptyset$, so there exists $s \in S$. Hence, $ks \in kS$, so the set kS is not empty. Let $x \in kS$. Then there exists $s \in S$ such that x = ks. Since $\sup S$ is an upper bound of S and $s \in S$, then $s \leq \sup S$. Since k > 0, then $ks \leq k \sup S$, so $x \leq k \sup S$. Therefore, $k \sup S$ is an upper bound of kS.

We prove $k \sup S$ is the least upper bound of kS. Let $\epsilon > 0$. Since k > 0, then $\frac{\epsilon}{k} > 0$. Since $\sup S$ is the least upper bound of S, then there exists $s' \in S$ such that $s' > \sup S - \frac{\epsilon}{k}$. Since k > 0, then there exists $ks' \in kS$ such that $ks' > k \sup S - \epsilon$. Therefore, $k \sup S$ is the least upper bound of kS, so $k \sup S = \sup(kS)$. \Box

Proof. We prove 2.

Suppose k > 0 and $\inf S$ exists. Since $\inf S$ exists, then $S \neq \emptyset$, so there exists $s \in S$. Hence, $ks \in kS$, so the set kS is not empty. Let $x \in kS$. Then there exists $s \in S$ such that x = ks. Since $\inf S$ is a lower bound of S and $s \in S$, then $\inf S \leq s$. Since k > 0, then $k \inf S \leq ks$, so $k \inf S \leq x$. Therefore, $k \inf S$ is a lower bound of kS. We prove $k \inf S$ is the greatest lower bound of kS. Let $\epsilon > 0$. Since k > 0, then $\frac{\epsilon}{k} > 0$. Since $\inf S$ is the greatest lower bound of S, then there exists $s' \in S$ such that $s' < \inf S + \frac{\epsilon}{k}$. Since k > 0, then there exists $ks' \in kS$ such that $ks' < k \inf S + \epsilon$. Therefore, $k \inf S$ is the greatest lower bound of kS, so $k \inf S = \inf(kS)$. \Box *Proof.* We prove 3. Suppose k < 0 and $\inf S$ exists. Since k < 0, then -k > 0.

Since -k > 0 and $\inf S$ exists, then $\inf(-kS) = -k \inf S$. Since $\inf(-kS)$ exists, then $\sup(-(-kS)) = -\inf(-kS)$. Therefore, $\sup(kS) = -(-k \inf S) = k \inf S$.

Proof. We prove 4.

Suppose k < 0 and $\sup S$ exists. Since k < 0, then -k > 0. Since -k > 0 and $\sup S$ exists, then $\sup(-kS) = -k \sup S$. Since $\sup(-kS)$ exists, then $\inf(-(-kS)) = -\sup(-kS)$. Therefore, $\inf(kS) = -(-k \sup S) = k \sup S$.

 \square

Proposition 55. sufficient conditions for existence of supremum and infimum in an ordered field

Let S be a subset of an ordered field F. 1. If $\max S$ exists, then $\sup S = \max S$. 2. If $\min S$ exists, then $\inf S = \min S$.

Proof. We prove 1.

Suppose $\max S$ exists in F.

Since (F, \leq) is a partially ordered set and $S \subset F$ and max S exists, then $\sup S = \max S$.

Proof. We prove 2.

Suppose $\min S$ exists in F.

Since (F, \leq) is a partially ordered set and $S \subset F$ and min S exists, then $\inf S = \min S$.

Proposition 56. Let S be a subset of an ordered field F.

Let $-S = \{-s : s \in S\}$. 1. If min S exists, then max $(-S) = -\min S$. 2. If max S exists, then min $(-S) = -\max S$.

Proof. We prove 1. Suppose min S exists. Then min $S \in S$, so $-\min S \in -S$. Hence, the set -S is not empty. Let $x \in -S$. Then there exists $s \in S$ such that x = -s. Since min S is a lower bound of S and $s \in S$, then min $S \leq s$. Hence, $-\min S \geq -s$, so $-\min S \geq x$. Thus, $x \leq -\min S$. Therefore, $-\min S$ is an upper bound of -S. Since $-\min S \in -S$ and $-\min S$ is an upper bound of -S, then $-\min S = \max(-S)$.

Proof. We prove 2.

Suppose max S exists. Then max $S \in S$, so $-\max S \in -S$. Hence, the set -S is not empty. Let $x \in -S$. Then there exists $s \in S$ such that x = -s. Since max S is an upper bound of S and $s \in S$, then $s \le \max S$. Hence, $-s \ge -\max S$, so $x \ge -\max S$. Thus, $-\max S \le x$. Therefore, $-\max S$ is a lower bound of -S. Since $-\max S \in -S$ and $-\max S$ is a lower bound of -S, then $-\max S = \min(-S)$.

Lemma 57. Let A and B be nonempty subsets of an ordered field F.

Then $u \in F$ is an upper bound of $A \cup B$ iff u is an upper bound of A and B.

Proof. We prove if u is an upper bound of $A \cup B$, then u is an upper bound of A and B.

Suppose u is an upper bound of $A \cup B$ in F. Since A is not empty, then there is at least one element in A. Let $x \in A$. Since $A \subset A \cup B$, then $x \in A \cup B$. Since u is an upper bound of $A \cup B$, then $x \leq u$. Therefore, $x \leq u$ for all $x \in A$, so u is an upper bound of A.

Since B is not empty, then there is at least one element in B. Let $x \in B$. Since $B \subset A \cup B$, then $x \in A \cup B$. Since u is an upper bound of $A \cup B$, then $x \leq u$. Therefore, $x \leq u$ for all $x \in B$, so u is an upper bound of B.

Proof. Conversely, we prove if u is an upper bound of A and B, then u is an upper bound of $A \cup B$.

Suppose u is an upper bound of A and B in F. Since A is not empty, then there is at least one element in A. Let $a \in A$. Since $A \subset A \cup B$, then $a \in A \cup B$. Hence, $A \cup B$ is not empty. Let $x \in A \cup B$. Then either $x \in A$ or $x \in B$. We consider these cases separately. **Case 1:** Suppose $x \in A$. Since u is an upper bound of A, then $x \leq u$. **Case 2:** Suppose $x \in B$. Since u is an upper bound of B, then $x \leq u$. Hence, in all cases, $x \leq u$. Therefore, u is an upper bound of $A \cup B$, as desired.

Proposition 58. Let A and B be subsets of an ordered field F. If $\sup A$ and $\sup B$ exist, then $\sup(A \cup B) = \max \{\sup A, \sup B\}$.

Proof. Suppose $\sup A$ and $\sup B$ exist. Then $A \neq \emptyset$ and $B \neq \emptyset$. Let $S = {\sup A, \sup B}.$ Since $\sup A \in F$ and $\sup B \in F$, then $S \subset F$. Since $\sup A \in S$ and $\sup B \in S$ and either $\sup A \leq \sup B$ or $\sup B \leq \sup A$, then either max $S = \sup B$ or max $S = \sup A$. Hence, $\max S \in F$ and $\sup A \leq \max S$ and $\sup B \leq \max S$. We prove max S is an upper bound of $A \cup B$. Since $A \neq \emptyset$, let $a \in A$. Since $A \subset A \cup B$, then $a \in A \cup B$, so $A \cup B$ is not empty. Let $x \in A \cup B$. Then either $x \in A$ or $x \in B$. We consider these cases separately. **Case 1:** Suppose $x \in A$. Since $\sup A$ is an upper bound of A, then $x \leq \sup A$. Since $\sup A \leq \max S$, then $x \leq \max S$. Case 2: Suppose $x \in B$. Since $\sup B$ is an upper bound of B, then $x \leq \sup B$. Since $\sup B \leq \max S$, then $x \leq \max S$. Hence, in all cases, $x \leq \max S$. Since $x \leq \max S$ for all $x \in A \cup B$, then $\max S$ is an upper bound of $A \cup B$.

To prove max S is the least upper bound of $A \cup B$, let M be an arbitrary upper bound of $A \cup B$.

Since $A \neq \emptyset$ and $B \neq \emptyset$ and M is an upper bound of $A \cup B$, then M is an upper bound of A and B.

We must prove $\max S \leq M$.

Since M is an upper bound of A and $\sup A$ is the least upper bound of A, then $\sup A \leq M$.

Since M is an upper bound of B and $\sup B$ is the least upper bound of B, then $\sup B \leq M$.

Since either max $S = \sup A$ or max $S = \sup B$, then this implies max $S \leq M$. Therefore, max S is the least upper bound of $A \cup B$, so max $S = \sup(A \cup B)$. **Lemma 59.** Let A and B be subsets of an ordered field F. If max A and max B exist in F, then $\max(A \cup B) = \max\{\max A, \max B\}$. *Proof.* Suppose $\max A$ and $\max B$ exist in F. Let $S = \{\max A, \max B\}.$ Since $\max A \in S$ and $\max B \in S$ and either $\max A \leq \max B$ or $\max B \leq$ $\max A$, then either $\max B$ is the maximum of S or $\max A$ is the maximum of S. Hence, $\max S$ exists. Since either max $S = \max A$ or max $S = \max B$ and max $A \in A$ and max $B \in A$ B, then either $\max S \in A$ or $\max S \in B$. Hence, $\max S \in A \cup B$. Since max S is the maximum of S, then max $A \leq \max S$ and max $B \leq \max S$. We prove max S is an upper bound of $A \cup B$. Since max A is the maximum of A, then max $A \in A$, so A is not empty. Let $a \in A$. Since $A \subset A \cup B$, then $a \in A \cup B$. Hence, $A \cup B$ is not empty. Let $x \in A \cup B$. Then either $x \in A$ or $x \in B$. We consider these cases separately. **Case 1:** Suppose $x \in A$. Since $\max A$ is an upper bound of A, then $x \leq \max A$. Thus, $x \leq \max A$ and $\max A \leq \max S$, so $x \leq \max S$. Case 2: Suppose $x \in B$. Since $\max B$ is an upper bound of B, then $x \leq \max B$. Thus, $x \leq \max B$ and $\max B \leq \max S$, so $x \leq \max S$. Hence, in all cases, $x \leq \max S$. Therefore, max S is an upper bound of $A \cup B$. Thus, $\max S \in A \cup B$ and $\max S$ is an upper bound of $A \cup B$, so $\max S =$ $\max(A \cup B)$, as desired.

Theorem 60. Every nonempty finite subset of an ordered field has a maximum.

Proof. Let F be an ordered field. Define the predicate p(n) over \mathbb{N} to be the statement: If a subset S of F contains exactly n elements, then n

If a subset S of F contains exactly n elements, then max S exists. We prove p(n) is true for all $n \in \mathbb{N}$ by induction on n. **Basis:** Since F is a field, then F is not empty, so there is at least one element of F. Let x be an element of F. Let $S = \{x\}$. Since $x \in F$, then $S \subset F$. Clearly, S contains exactly one element. Since $x \in S$ and $x \leq x$, then x is the maximum of S. Thus, max S exists. Therefore, p(1) is true. Thus, if S is any subset of F that contains exactly one element, then $\max S$ exists.

Induction:

Let $n \in \mathbb{N}$ such that p(n) is true.

Then if a subset S of F contains exactly n elements, then max S exists.

To prove p(n+1) follows, we must prove if a subset A of F contains exactly n+1 elements, then max A exists.

Since F is an ordered field, then F is infinite, so F contains infinitely many elements.

Hence, there exist a finite number of elements of F.

In particular, there exist exactly n + 1 elements of F.

Let A be a subset of F that contains exactly n + 1 elements.

Then there exist $x_1, ..., x_n, x_{n+1}$ elements of F such that $A = \{x_1, ..., x_n, x_{n+1}\}$ and $A \subset F$.

Let $B = \{x_1, ..., x_n\}$ and $B' = \{x_{n+1}\}.$

Then $B \subset A$ and $B' \subset A$ and $A = B \cup B'$ and B contains exactly n elements and B' contains exactly one element.

Since $B \subset A \subset F$, then $B \subset F$.

Thus, B is a subset of F and contains exactly n elements, so by the induction hypothesis, max B exists.

Since $B' \subset A \subset F$, then $B' \subset F$.

Thus, B' is a subset of F and contains exactly one element, so max B' exists. Since max B and max B' exist, then max $(B \cup B') = \max\{\max B, \max B'\}$. Thus, max $A = \max\{\max B, \max B'\}$, so max A exists.

Thus, p(n+1) is true.

Hence, p(n) implies p(n+1) for all $n \in \mathbb{N}$.

Since p(1) is true and p(n) implies p(n+1) for all $n \in \mathbb{N}$, then by induction p(n) is true for all $n \in \mathbb{N}$.

Thus, for all $n \in \mathbb{N}$, if a subset S of F contains exactly n elements, then max S exists.

Hence, if S is a nonempty finite subset of F, then max S exists.

Therefore, if S is a nonempty finite subset of F, then S has a maximum.

Thus, every nonempty finite subset of an ordered field has a maximum, as desired. $\hfill \Box$

Complete ordered fields

Theorem 61. greatest lower bound property in a complete ordered field

Every nonempty subset of a complete ordered field F that is bounded below in F has a greatest lower bound in F.

Proof. Let S be a nonempty subset of a complete ordered field F that is bounded below in F.

We must prove $\inf S$ exists in F.

Let $-S = \{-s : s \in S\}.$

Since $S \subset F$, then $-S \subset F$. Since S is not empty, then there is at least one element of S. Let $x \in S$. Then $-x \in -S$, so $-S \neq \emptyset$. Let $t \in -S$. Then there exists $s \in S$ such that t = -s. Since S is bounded below in F, then there is a lower bound of S in F. Let L be a lower bound of S in F. Since L is a lower bound of S and $s \in S$, then L < s, so -L > -s. Hence, $-L \ge t$, so $t \le -L$ for all $t \in -S$. Therefore, -L is an upper bound of -S, so -S is bounded above in F. Thus, -S is a nonempty subset of F bounded above in F. Since F is complete, then $\sup(-S)$ exists in F. Hence, $\inf(-(-S)) = -\sup(-S)$, so $\inf(S) = -\sup(-S)$. Therefore, we conclude $\inf(S)$ exists in F.

Proposition 62. There is no rational number x such that $x^2 = 2$.

Proof. Suppose there is a rational number x such that $x^2 = 2$.

Then there exist a pair of integers p and q with $q \neq 0$ such that $x = \frac{p}{q}$.

Surely, if such a pair exists, then a pair exists having no common factors greater than 1.

Therefore, assume p and q have no common factors greater than 1.

Observe that $2 = x^2 = (\frac{p}{q})^2 = \frac{p^2}{q^2}$. Thus, $p^2 = 2q^2$, so p^2 is even.

Since an integer n^2 is even if and only if n is even, then in particular, p^2 is even iff p is even.

Thus, p is even.

Hence, p = 2m for some integer m.

Therefore, $2q^2 = (2m)^2 = 4m^2$, so $q^2 = 2m^2$.

Hence, q^2 is even, so q is even.

Since p and q are both even, then 2 is a common factor of both p and q and is greater than 1; but this contradicts the assumption that p and q have no common factors greater than 1.

Hence, no such pair of integers exist.

Therefore, there is no rational number x such that $x^2 = 2$.

Proposition 63. Let A and B be subsets of \mathbb{R} such that $\sup A$ and $\sup B$ exist in \mathbb{R} .

If $A \cap B \neq \emptyset$, then $\sup(A \cap B) \le \min \{\sup A, \sup B\}$.

Moreover, if A and B are bounded intervals such that $A \cap B \neq \emptyset$, then $\sup(A \cap B) = \min \{\sup A, \sup B\}.$

Proof. Suppose $A \cap B \neq \emptyset$.

Since $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$, then $A \cap B \subset \mathbb{R}$. Let $S = {\sup A, \sup B}.$ Since $\sup A \in \mathbb{R}$ and $\sup B \in \mathbb{R}$, then $S \subset \mathbb{R}$. Since $\sup A \in S$ and $\sup B \in S$ and either $\sup A \leq \sup B$ or $\sup B \leq \sup A$, then either $\sup A = \min S$ or $\sup B = \min S$.

Hence, $\min S \in \mathbb{R}$ and $\min S \leq \sup A$ and $\min S \leq \sup B$. We prove $\min S$ is an upper bound of $A \cap B$ in \mathbb{R} . Since $A \cap B$ is not empty, let $x \in A \cap B$. Then $x \in A$ and $x \in B$. Either $\sup A = \min S$ or $\sup B = \min S$. We consider these cases separately. **Case 1:** Suppose $\sup A = \min S$. Since $x \in A$ and $\sup A$ is an upper bound of A, then $x \leq \sup A$. Thus, $x \leq \min S$. **Case 2:** Suppose $\sup B = \min S$. Since $x \in B$ and $\sup B$ is an upper bound of B, then $x \leq \sup B$. Thus, $x \leq \min S$. Hence, in all cases, $x \leq \min S$. Therefore, $\min S$ is an upper bound of $A \cap B$ in \mathbb{R} . Thus, $A \cap B$ is bounded above in \mathbb{R} .

Since $A \cap B$ is a nonempty subset of \mathbb{R} and is bounded above in \mathbb{R} and \mathbb{R} is complete, then $A \cap B$ has a least upper bound in \mathbb{R} .

Therefore, $\sup(A \cap B)$ is the least upper bound of $A \cap B$ in \mathbb{R} .

Since $\sup(A \cap B)$ is the least upper bound of $A \cap B$ and $\min S$ is an upper bound of $A \cap B$, then $\sup(A \cap B) \leq \min S$, as desired.

We prove if A and B are bounded intervals such that $A \cap B \neq \emptyset$, then $\sup(A \cap B) = \min \{\sup A, \sup B\}$.

Suppose A and B are bounded intervals such that $A \cap B \neq \emptyset$.

Since A and B are intervals, then $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$.

Since A is bounded, then A is bounded above and below in \mathbb{R} .

Since B is bounded, then B is bounded above and below in \mathbb{R} .

Since $A \cap B \neq \emptyset$, then let $x \in A \cap B$.

Then $x \in A$ and $x \in B$.

Hence, A is not empty and B is not empty.

Since A is a nonempty subset of \mathbb{R} that is bounded above in \mathbb{R} , then A has a least upper bound in \mathbb{R} .

Therefore, $\sup A$ is the least upper bound of A in \mathbb{R} .

Since A is a nonempty subset of \mathbb{R} that is bounded below in \mathbb{R} , then A has a greatest lower bound in \mathbb{R} .

Therefore, $\inf A$ is the greatest lower bound of A in \mathbb{R} .

Since B is a nonempty subset of \mathbb{R} that is bounded above in \mathbb{R} , then B has a least upper bound in \mathbb{R} .

Therefore, $\sup B$ is the least upper bound of B in \mathbb{R} .

Since B is a nonempty subset of \mathbb{R} that is bounded below in \mathbb{R} , then B has a greatest lower bound in \mathbb{R} .

Therefore, $\inf B$ is the greatest lower bound of B in \mathbb{R} .

Let $S = {\sup A, \sup B}.$

Since A and B are subsets of \mathbb{R} and $\sup A$ and $\sup B$ exist in \mathbb{R} and $A \cap B \neq \emptyset$, then $\sup(A \cap B) \leq \min S$. We must prove $\sup(A \cap B) = \min S$. Since min S is an upper bound of $A \cap B$, then $A \cap B$ has at least one upper bound in \mathbb{R} . Let K be an arbitrary upper bound of $A \cap B$ in \mathbb{R} . Then $K \in \mathbb{R}$. We must prove min $S \leq K$. Suppose for the sake of contradiction $\min S > K$. Then $K < \min S$. Since $x \in A \cap B$ and K is an upper bound of $A \cap B$, then $x \leq K$. Hence, $x \leq K < \min S$. Since $\min S \leq \sup A$, then $x \leq K < \min S \leq \sup A$, so $x \leq K < \sup A$. Since A is an interval and sup A is the least upper bound of A, then if $x \in A$, then $c \in A$ if $x \leq c < \sup A$. Since A is an interval and $x \in A$ and $x < K < \sup A$, then $K \in A$. Since $\min S \leq \sup B$, then $x \leq K < \min S \leq \sup B$, so $x \leq K < \sup B$. Since B is an interval and sup B is the least upper bound of B, then if $x \in B$, then $c \in B$ if $x \leq c < \sup B$. Since B is an interval and $x \in B$ and $x \leq K < \sup B$, then $K \in B$. Either $\sup A = \min S$ or $\sup B = \min S$. We consider these cases separately. Case 1: Suppose $\min S = \sup A$. Since $K \in A$ and $K < \frac{K + \sup A}{2} < \sup A$, then $\frac{K + \sup A}{2} \in A$. Since $\min S = \sup A$, then $K < \frac{K + \min S}{2} < \sup A$ and $\frac{K + \min S}{2} \in A$. Thus, $\frac{K + \min S}{2} \in A$ and $\frac{K + \min S}{2} > K$. Since $\min \overline{S} \leq \sup B$, then either $\min S < \sup B$ or $\min S = \sup B$. Suppose $\min S < \sup B$. Since $\min S = \sup A$, then $\sup A < \sup B$. Since $K \in B$ and $K < \min S < \sup B$, then $\min S \in B$. Since B is an interval and $K \in B$ and $\min S \in B$ and $K < \frac{K + \min S}{2} < \min S$, then $\frac{K + \min S}{2} \in B$. Thus, $\frac{K+\min S}{2} \in B$ and $\frac{K+\min S}{2} > K$. Suppose $\min S = \sup B$. Since $K \in B$ and $K < \frac{K + \sup B}{2} < \sup B$, then $\frac{K + \sup B}{2} \in B$. Since $\sup B = \min S$, then $K < \frac{K + \min S}{2} < \sup B$ and $\frac{K + \min S}{2} \in B$. Thus, $\frac{K+\min S}{2} \in B$ and $\frac{K+\min S}{2} > K$. Thus, in either case $\frac{K+\min S}{2} \in B$ and $\frac{K+\min S}{2} > K$. Since $\frac{K+\min S}{2} \in A$ and $\frac{K+\min S}{2} \in B$, then $\frac{K+\min S}{2} \in A \cap B$. Hence, there exists $\frac{K+\min S}{2} \in A \cap B$ such that $\frac{K+\min S}{2} > K$. But, this contradicts the fact that K is an upper bound of $A \cap B$. Therefore, $\min S \neq \sup A$. **Case 2:** Suppose min $S = \sup B$. Since $K \in B$ and $K < \frac{K + \sup B}{2} < \sup B$, then $\frac{K + \sup B}{2} \in B$. Since min $S = \sup B$, then $K < \frac{K + \min S}{2} < \sup B$ and $\frac{K + \min S}{2} \in B$.

Thus, $\frac{K+\min S}{2} \in B$ and $\frac{K+\min S}{2} > K$. Since $\min \tilde{S} \leq \sup A$, then either $\min S < \sup A$ or $\min S = \sup A$. Suppose $\min S < \sup A$. Since $\min S = \sup B$, then $\sup B < \sup A$. Since $K \in A$ and $K < \min S < \sup A$, then $\min S \in A$. Since A is an interval and $K \in A$ and $\min S \in A$ and $K < \frac{K + \min S}{2} < \min S$, then $\frac{K+\min S}{2} \in A$. Thus, $\frac{K+\min S}{2} \in A$ and $\frac{K+\min S}{2} > K$. Suppose min $S = \sup A$. Since $K \in A$ and $K < \frac{K + \sup A}{2} < \sup A$, then $\frac{K + \sup A}{2} \in A$. Since $\sup A = \min S$, then $K < \frac{K + \min S}{2} < \sup A$ and $\frac{K + \min S}{2} \in A$. Thus, $\frac{K + \min S}{2} \in A$ and $\frac{K + \min S}{2} > K$. Thus, $\underline{-2} \in A$ and $\underline{-2} > K$. Thus, in either case $\underline{K + \min S}_2 \in A$ and $\underline{K + \min S}_2 > K$. Since $\underline{K + \min S}_2 \in A$ and $\underline{K + \min S}_2 \in B$, then $\underline{K + \min S}_2 \in A \cap B$. Hence, there exists $\underline{K + \min S}_2 \in A \cap B$ such that $\underline{K + \min S}_2 > K$. But, this contradicts the fact that K is an upper bound of $A \cap B$. Therefore, $\min S \neq \sup A$. Thus, in either case, $\min S \neq \sup A$ and $\min S \neq \sup B$. This contradicts the fact that either min $S = \sup A$ or min $S = \sup B$. Hence, $\min S$ cannot be greater than K. Therefore, $\min S \leq K$, so $\min S$ is the least upper bound of $A \cap B$. Thus, $\min S = \sup(A \cap B)$, as desired.

Archimedean ordered fields

Theorem 64. Archimedean property of \mathbb{Q} The field $(\mathbb{Q}, +, \cdot, \leq)$ is Archimedean ordered. *Proof.* Let $a, b \in \mathbb{Q}$ such that b > 0. We must prove there exists $n \in \mathbb{N}$ such that $n > \frac{a}{b}$. Either $a \leq 0$ or a > 0. We consider these cases separately. Case 1: Suppose a < 0. Let n = 1. Then $n \in \mathbb{N}$. Since $a \leq 0$ and b > 0, then $\frac{a}{b} \leq 0 < 1 = n$. Therefore, there exists $n \in \mathbb{N}$ such that $n > \frac{a}{b}$. Case 2: Suppose a > 0. Since $a \in \mathbb{Q}$ and a > 0, then there exist $r, s \in \mathbb{Z}^+$ such that $a = \frac{r}{s}$. Since $b \in \mathbb{Q}$ and b > 0, then there exist $t, v \in \mathbb{Z}^+$ such that $b = \frac{t^{\circ}}{v}$. Let n = rv(rv + 1). Since $r, v \in \mathbb{Z}^+$ and \mathbb{Z}^+ is closed under addition and multiplication, then $n \in \mathbb{Z}^+$, so $n \in \mathbb{N}$. Since $s, t \in \mathbb{Z}^+$, then $s \ge 1$ and $t \ge 1$, so $st \ge 1$. Since $r, v \in \mathbb{Z}^+$, then $r \ge 1$ and $v \ge 1$, so $rv \ge 1$.

Since $rv \ge 1$, then $rv + 1 \ge 2 > 1$, so rv + 1 > 1. Since rv + 1 > 1 and $st \ge 1$, then (rv + 1)st > 1. Since $\frac{nb}{a} = \frac{rv(rv+1)\frac{t}{v}}{\frac{r}{s}} = \frac{r(rv+1)t}{\frac{r}{s}} = \frac{r(rv+1)st}{r} = (rv + 1)st > 1$, then $\frac{nb}{a} > 1$. Since a > 0, then nb > a. Since b > 0, then $n > \frac{a}{b}$. Therefore, there exists $n \in \mathbb{N}$ such that $n > \frac{a}{b}$.

Theorem 65. Archimedean property of \mathbb{R}

A complete ordered field is necessarily Archimedean ordered.

Proof. Let F be a complete ordered field. To prove F is Archimedean ordered, let $a, b \in F$ with b > 0. We must prove there exists $n \in \mathbb{Z}^+$ such that nb > a. We prove by contradiction. Suppose there does not exist a positive integer n such that nb > a. Then $nb \leq a$ for all positive integers n. Let S be the set of all positive integer multiples of b. Then $S = \{nb : n \in \mathbb{Z}^+\}.$ Since b = 1b and $1 \in \mathbb{Z}^+$, then $b \in S$, so S is not empty. Let $s \in S$. Then there exists $n \in \mathbb{Z}^+$ such that s = nb. Since $b \in F^+$ and $n \in \mathbb{N}$, then $s = nb \in F^+$. Since $s \in F^+$ and $F^+ \subset F$, then $s \in F$, so $S \subset F$. Since $n \in \mathbb{Z}^+$, then by hypothesis, $nb \leq a$, so $s \leq a$. Therefore, a is an upper bound of S in F, so S is bounded above in F. Hence, S is a nonempty subset of F that is bounded above in F. Since F is complete, then S has a least upper bound in F. Let $\sup S$ be the least upper bound of S in F. Since $b > 0 = \sup S - \sup S$, then $\sup S + b > \sup S$, so $\sup S > \sup S - b$. Since $\sup S - b < \sup S$, then $\sup S - b$ is not an upper bound of S, so there exists $x \in S$ such that $x > \sup S - b$. Since $x \in S$, then there exists $m \in \mathbb{Z}^+$ such that x = mb, so $mb > \sup S - b$. Hence, $(m+1)b = mb + b > \sup S$. Since $m + 1 \in \mathbb{Z}^+$, then $(m + 1)b \in S$. Hence, there exists $(m+1)b \in S$ such that $(m+1)b > \sup S$. But, this contradicts the fact that $\sup S$ is an upper bound of S. Therefore, there does exist a positive integer n such that nb > a, as desired.

Theorem 66. \mathbb{N} is unbounded in an Archimedean ordered field.

Let F be an Archimedean ordered field.

Then for every $x \in F$, there exists $n \in \mathbb{N}$ such that n > x.

Proof. Since F is a field, then $1 \in F$, so $F \neq \emptyset$.

Let $x \in F$ be arbitrary.

Since F is Archimedean and $x \in F$ and 1 > 0, then there exists $n \in \mathbb{N}$ such that $n \cdot 1 > x$.

Therefore, there exists $n \in \mathbb{N}$ such that n > x.

Proposition 67. Let F be an Archimedean ordered field. For every positive $\epsilon \in F$, there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < \epsilon$.

Proof. Let ϵ be a positive element of F. Then $\epsilon > 0$. Since F is Archimedean ordered and $1 \in F$ and $\epsilon > 0$, then there exists $n \in \mathbb{N}$ such that $n\epsilon > 1$. Since $n \in \mathbb{N}$, then n > 0, so $\epsilon > \frac{1}{n}$. Therefore, there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < \epsilon$.

Lemma 68. Each real number lies between two consecutive integers

For each real number x there is a unique integer n such that $n \le x < n+1$.

Solution. We must prove: $(\forall x \in \mathbb{R})(\exists ! n \in \mathbb{Z})(n \leq x < n + 1).$

Proof. Existence:

Let x be an arbitrary real number. We must prove there is an integer n such that $n \leq x < n + 1$. Let $S = \{n \in \mathbb{Z} : n < x\}.$ Suppose for the sake of contradiction $S = \emptyset$. Then there is no integer n such that n < x. Hence, n > x for every integer n, so for every integer n, x < n. Thus, x is a lower bound of \mathbb{Z} , so \mathbb{Z} is bounded below in \mathbb{R} . Since $\mathbb{Z} \neq \emptyset$ and \mathbb{Z} is bounded below in \mathbb{R} , then by completeness of \mathbb{R} , $\inf \mathbb{Z}$ exists. Since $\inf \mathbb{Z} + 1$ is not a lower bound of \mathbb{Z} , then there exists $t \in \mathbb{Z}$ such that $t < \inf \mathbb{Z} + 1.$ Thus, $t - 1 < \inf \mathbb{Z}$. Since $t \in \mathbb{Z}$, then $t - 1 \in \mathbb{Z}$. Hence, we have $t - 1 \in \mathbb{Z}$ and $t - 1 < \inf \mathbb{Z}$. This contradicts the fact that $\inf \mathbb{Z}$ is a lower bound of \mathbb{Z} . Therefore, $S \neq \emptyset$. Let $s \in S$ be given. Then $s \in \mathbb{Z}$ and $s \leq x$. Thus, $s \leq x$ for all $s \in S$, so x is an upper bound of S. Hence, S is bounded above in \mathbb{R} .

Since $S \neq \emptyset$ and S is bounded above in \mathbb{R} , then by completeness of \mathbb{R} , sup S exists.

Since $\sup S - 1$ is not an upper bound of S, then there exists $n \in S$ such that $n > \sup S - 1$.

Thus, $n+1 > \sup S$.

Since $n \in S$, then $n \in \mathbb{Z}$ and $n \leq x$.

Since $\sup S$ is an upper bound of S, then if $n \in S$, then $n \leq \sup S$.

Hence, if $n > \sup S$, then $n \notin S$.

Since $n + 1 > \sup S$, then we conclude $n + 1 \notin S$. Since $n + 1 \in S$ iff $n + 1 \in \mathbb{Z}$ and $n + 1 \leq x$, then $n + 1 \notin S$ iff either $n + 1 \notin \mathbb{Z}$ or n + 1 > x. Thus, either $n + 1 \notin \mathbb{Z}$ or n + 1 > x. Since $s \in \mathbb{Z}$, then $n + 1 \in \mathbb{Z}$. Hence, we conclude n + 1 > x. Therefore, there exists $n \in \mathbb{Z}$ such that $n \leq x < n + 1$.

Proof. Uniqueness:

Let $x \in \mathbb{R}$.

We must prove there is a unique integer n such that $n \le x < n+1$. Suppose there exist integers m and n such that $m \le x < m+1$ and $n \le x < n+1$.

To prove uniqueness, we must prove m = n. Since $m \le x < m + 1$, then $m \le x$ and x < m + 1. Since $n \le x < n + 1$, then $n \le x$ and x < n + 1. By trichotomy, either m < n or m = n or m > n.

Suppose m < n. Then n - m > 0. Since m and n are integers, then $n - m \ge 1$. Hence, $n \ge m + 1$, so $m + 1 \le n$. Since $m + 1 \le n \le x$, then $m + 1 \le x$. Thus, we have $m + 1 \le x$ and m + 1 > x, a violation of trichotomy. Therefore, m cannot be less than n.

Suppose m > n. Then m - n > 0. Since m and n are integers, then $m - n \ge 1$. Hence, $m \ge n + 1$, so $n + 1 \le m$. Since $n + 1 \le m$ and $m \le x$, then $n + 1 \le x$. Thus, we have $n + 1 \le x$ and n + 1 > x, a violation of trichotomy. Therefore, m cannot be greater than n. Hence, we must conclude m = n, as desired.

Theorem 69. \mathbb{Q} is dense in \mathbb{R}

For every $a, b \in \mathbb{R}$ with a < b, there exists $q \in \mathbb{Q}$ such that a < q < b.

Proof. Let a and b be real numbers with a < b.

Then b - a > 0.

By the Archimedean property of \mathbb{R} , there exists a positive integer n such that $\frac{1}{n} < b - a$.

Since n > 0, then 1 < bn - an, so an + 1 < bn.

Since every real number lies between two consecutive integers, then in particular, the real number *an* lies between two consecutive integers.

Hence, there exists an integer m such that $m \leq an < m + 1$.

Thus, $m \leq an$ and an < m + 1. Since $m \leq an$, then $m + 1 \leq an + 1$. Since $m + 1 \leq an + 1$ and an + 1 < bn, then m + 1 < bn. Hence, an < m + 1 and m + 1 < bn. Since n > 0, then $a < \frac{m+1}{n}$ and $\frac{m+1}{n} < b$, so $a < \frac{m+1}{n} < b$. Let $q = \frac{m+1}{n}$. Since $m + 1, n \in \mathbb{Z}$ and $n \neq 0$, then $q \in \mathbb{Q}$. Therefore, there exists $q \in \mathbb{Q}$ such that a < q < b, as desired.

Corollary 70. between any two distinct real numbers is a nonzero rational number

For every $a, b \in \mathbb{R}$ with a < b, there exists $q \in \mathbb{Q}$ such that $q \neq 0$ and a < q < b.

Proof. Let $a, b \in \mathbb{R}$ such that a < b. Either it is the case that a < 0 < b or not. We consider these cases separately. Case 1: Suppose a < 0 < b. Then a < 0 and 0 < b. Since \mathbb{Q} is dense in \mathbb{R} and 0 < b, then there exists $q \in \mathbb{Q}$ such that 0 < q < b. Hence, 0 < q, so $q \neq 0$. Since a < 0 and 0 < q < b, then a < 0 < q < b, so a < q < b. Case 2: Suppose it is not the case that a < 0 < b. Then it is not the case that a < 0 and 0 < b, so either $a \ge 0$ or $0 \ge b$. We consider these cases separately. Case 2a: Suppose $a \ge 0$. Since \mathbb{Q} is dense in \mathbb{R} and a < b, then there exists $q \in \mathbb{Q}$ such that a < q < b. Hence, a < q. Since $0 \le a$ and a < q, then 0 < q, so $q \ne 0$. Case 2b: Suppose $0 \ge b$. Since \mathbb{Q} is dense in \mathbb{R} and a < b, then there exists $q \in \mathbb{Q}$ such that a < q < b. Hence, q < b. Since q < b and $b \leq 0$, then q < 0, so $q \neq 0$. Therefore, in all cases, there exists $q \in \mathbb{Q}$ such that $q \neq 0$ and a < q < b, as desired.

Existence of square roots in \mathbb{R}

Proposition 71. A square root of a negative real number does not exist in \mathbb{R} .

Proof. Let x be a negative real number. Then $x \in \mathbb{R}$ and x < 0. Suppose a square root of x exists in \mathbb{R} . Then there is a real number y such that $y^2 = x$. Hence, $y^2 < 0$. Since \mathbb{R} is an ordered field, then $r^2 \ge 0$ for all $r \in \mathbb{R}$. In particular, $y^2 \ge 0$. Thus, we have $y^2 < 0$ and $y^2 \ge 0$, a violation of trichotomy. Therefore, a square root of x does not exist in \mathbb{R} .

Proposition 72. Zero is the unique square root of 0.

Proof. Clearly, 0 is a real number and $0^2 = 0$. Therefore, 0 is a square root of 0. To prove 0 is a unique square root of 0, suppose there is a real number xthat is a square root of 0. Then $x \in \mathbb{R}$ and $x^2 = 0$. We must prove x = 0. Since \mathbb{R} is an ordered field, then $x^2 = 0$ iff x = 0. Since $x^2 = 0$, then we conclude x = 0, as desired. Lemma 73. Let F be an ordered field. Let $a, b \in F$. If 0 < a < b, then $0 < a^2 < ab < b^2$. *Proof.* Suppose 0 < a < b. Then 0 < a and a < b, so 0 < b. Since 0 < a and a > 0, then a0 < aa, so $0 < a^2$. Since a < b and a > 0, then aa < ab, so $a^2 < ab$. Since a < b and b > 0, then ab < bb, so $ab < b^2$. Therefore, $0 < a^2$ and $a^2 < ab$ and $ab < b^2$, so $0 < a^2 < ab < b^2$, as desired. Lemma 74. Let F be an ordered field. Let $a \in F$. If $|a| < \epsilon$ for all $\epsilon > 0$, then a = 0. *Proof.* Suppose $|a| < \epsilon$ for all $\epsilon > 0$. Since $|a| \ge 0$, then either |a| > 0 or |a| = 0. Suppose |a| > 0. Then |a| < |a|, a contradiction. Therefore, |a| = 0, so a = 0, as desired. *Proof.* We must prove $(\forall \epsilon > 0)(|a| < \epsilon) \rightarrow (a = 0)$. We prove by contrapositive. Suppose $a \neq 0$. Let $\epsilon = \frac{|a|}{2}$. Since $|a| \ge 0$ and $a \ne 0$, then |a| > 0, so $\frac{|a|}{2} > 0$. Hence, $\epsilon > 0$. Since $1 \ge 1/2$ and |a| > 0, then $|a| \ge \frac{|a|}{2} = \epsilon$. Therefore, there exists $\epsilon > 0$ such that $|a| \ge \epsilon$, as desired.

Theorem 75. existence and uniqueness of positive square roots Let $r \in \mathbb{R}$.

A unique positive square root of r exists in \mathbb{R} iff r > 0.

Proof. We prove if a unique positive square root of r exists in \mathbb{R} , then r > 0. Suppose there exists a unique positive square root of r in \mathbb{R} .

Let x be the unique positive square root of r in \mathbb{R} .

Then $x \in \mathbb{R}$ and x > 0 and $x^2 = r$.

Since \mathbb{R} is an ordered field and x > 0, then $x^2 > 0$, so r > 0, as desired. \Box

Proof. Conversely, we prove if r > 0, then a unique positive square root of r exists in \mathbb{R} .

Suppose r > 0.

To prove a unique positive square root of r exists in \mathbb{R} , we must prove there exists a unique $\alpha \in \mathbb{R}$ such that $\alpha > 0$ and $\alpha^2 = r$.

Thus, we must prove:

1. Existence:

There exists $\alpha \in \mathbb{R}$ such that $\alpha > 0$ and $\alpha^2 = r$.

2. Uniqueness:

If α and β are positive square roots of r, then $\alpha = \beta$.

Proof. Uniqueness:

We prove if α and β are positive square roots of r, then $\alpha = \beta$. Suppose α and β are positive square roots of r. Since α is a positive square root of r, then $\alpha \in \mathbb{R}$ and $\alpha > 0$ and $\alpha^2 = r$. Since β is a positive square root of r, then $\beta \in \mathbb{R}$ and $\beta > 0$ and $\beta^2 = r$. Since $\alpha^2 = r = \beta^2$, then $\alpha^2 = \beta^2$, so $\alpha^2 - \beta^2 = 0$. Hence, $(\alpha + \beta)(\alpha - \beta) = 0$, so either $\alpha + \beta = 0$ or $\alpha - \beta = 0$. Thus, either $\alpha = -\beta$ or $\alpha = \beta$. Suppose $\alpha = -\beta$. Since $\beta > 0$, then $-\beta < 0$, so $\alpha < 0$. Thus, we have $\alpha < 0$ and $\alpha > 0$, a violation of trichotomy. Hence, $\alpha \neq -\beta$. Therefore, $\alpha = \beta$, as desired.

Proof. Existence:

We prove there exists $\alpha \in \mathbb{R}$ such that $\alpha > 0$ and $\alpha^2 = r$. Let $S = \{x \in \mathbb{R} : x > 0, x^2 \leq r\}$. Clearly, $S \subset \mathbb{R}$. We prove S is not empty. Let $A = \{1, r\}$. Since $1 \in A$ and $r \in A$ and either $1 \leq r$ or $r \leq 1$, then either min A = 1 or min A = r, so min A exists in \mathbb{R} . Since min A is a lower bound of A and $1 \in A$, then min $A \leq 1$. Since either min A = 1 or min A = r and 1 > 0 and r > 0, then min A > 0. Since min A is a lower bound of A and $r \in A$, then min $A \leq 1$. Since min $A \leq 1$ and min A > 0, then (min A)² \leq min A. Since min A is a lower bound of A and $r \in A$, then min $A \leq r$. Thus, (min A)² \leq min $A \leq r$, so (min A)² $\leq r$. Since min A > 0, then (min A)² > 0. Since min $A \in \mathbb{R}$ and (min A)² > 0 and (min A)² $\leq r$, then min $A \in S$. Therefore S is not empty. Since $1 \in A$ and $r \in A$ and either $1 \leq r$ or $r \leq 1$, then either max A = r or max A = 1, so max A exists in \mathbb{R} .

Let $x \in \mathbb{R}$.

To prove $\max A$ is an upper bound of S, we must prove if $x \in S$, then $x \leq \max A$.

We prove by contrapositive.

Suppose $x > \max A$.

We must prove $x \notin S$.

Since $\max A$ is an upper bound of A and $1 \in A$, then $1 \leq \max A$.

Thus, $x > \max A \ge 1 > 0$, so x > 1 and x > 0 and $\max A > 0$.

Since $x > \max A$ and x > 0, then $x^2 > x \max A$.

Since x > 1 and $\max A > 0$, then $x \max A > \max A$.

Thus, $x^2 > x \max A > \max A$, so $x^2 > \max A$.

Since max A is an upper bound of A and $r \in A$, then $r \leq \max A$.

Since $x^2 > \max A$ and $\max A \ge r$, then $x^2 > r$.

Since $x \in \mathbb{R}$ and $x^2 > r$, then $x \notin S$, as desired.

Therefore, max A is an upper bound of S, so S is bounded above in \mathbb{R} .

Since S is a nonempty subset of \mathbb{R} and is bounded above in \mathbb{R} and \mathbb{R} is complete, then S has a least upper bound in \mathbb{R} .

Let α be the least upper bound of S in \mathbb{R} .

Then $\alpha \in \mathbb{R}$ and α is an upper bound of S.

We prove $\alpha > 0$.

Since α is an upper bound of S and $\min A \in S$, then $\min A \leq \alpha$. Since $0 < \min A$ and $\min A \leq \alpha$, then $0 < \alpha$, so $\alpha > 0$, as desired.

We prove $\alpha^2 = r$. Either $\alpha^2 < r$ or $\alpha^2 = r$ or $\alpha^2 > r$.

 $\begin{array}{l} \text{Suppose } \alpha^2 < r.\\ \text{Let } \delta = \min\{1, \frac{r-\alpha^2}{2\alpha+1}\}.\\ \text{Since } \alpha^2 < r, \, \text{then } r-\alpha^2 > 0.\\ \text{Since } \alpha > 0, \, \text{then } 2\alpha+1 > 0, \, \text{so } \frac{r-\alpha^2}{2\alpha+1} > 0.\\ \text{Thus, } \delta > 0.\\ \text{We prove } \alpha+\delta \in S.\\ \text{Since } \alpha > 0 \, \text{and } \delta > 0, \, \text{then } \alpha+\delta > 0.\\ \text{Since } \delta \leq 1, \, \text{then } 0 < \delta \leq 1, \, \text{so } \delta^2 \leq \delta.\\ \text{Since } \delta \leq \frac{r-\alpha^2}{2\alpha+1} \text{ and } 2\alpha+1 > 0, \, \text{then } 2\alpha\delta+\delta \leq r-\alpha^2.\\ \text{Thus,} \end{array}$

$$\begin{aligned} (\alpha + \delta)^2 &= \alpha^2 + 2\alpha\delta + \delta^2 \\ &\leq \alpha^2 + 2\alpha\delta + \delta \\ &\leq \alpha^2 + r - \alpha^2 \\ &= r. \end{aligned}$$

Since $\alpha + \delta > 0$ and $(\alpha + \delta)^2 \leq r$, then $\alpha + \delta \in S$. Since $\delta > 0$, then $\alpha + \delta > \alpha$. Thus, there exists $\alpha + \delta \in S$ such that $\alpha + \delta > \alpha$. This contradicts the fact that α is an upper bound of S. Therefore, α^2 cannot be less than r.

 $\begin{array}{l} \text{Suppose } \alpha^2 > r.\\ \text{Let } \epsilon = \min\{\alpha, \frac{\alpha^2 - r}{2\alpha}\}.\\ \text{Since } \alpha^2 > r, \, \text{then } \alpha^2 - r > 0.\\ \text{Since } \alpha > 0, \, \text{then } \frac{\alpha^2 - r}{2\alpha} > 0, \, \text{so } \epsilon > 0.\\ \text{We prove } (\alpha - \epsilon)^2 > r.\\ \text{Since } \epsilon \leq \frac{\alpha^2 - r}{2\alpha}, \, \text{then } 2\alpha\epsilon \leq \alpha^2 - r, \, \text{so } r \leq \alpha^2 - 2\alpha\epsilon.\\ \text{Since } \epsilon > 0, \, \text{then } \epsilon^2 > 0.\\ \text{Thus,} \end{array}$

$$(\alpha - \epsilon)^2 = \alpha^2 - 2\alpha\epsilon + \epsilon^2$$

> $\alpha^2 - 2\alpha\epsilon$
> $r.$

Hence, $(\alpha - \epsilon)^2 > r$. Let $x \in S$. Then x > 0 and $x^2 \leq r$. Suppose for the sake of contradiction $x > \alpha - \epsilon$. Since $\epsilon \leq \alpha$, then $0 \leq \alpha - \epsilon$. Thus, $0 \leq \alpha - \epsilon < x$, so $(\alpha - \epsilon)^2 < x^2$. Since $x^2 \leq r$, then $(\alpha - \epsilon)^2 < r$. But, this contradicts the fact $(\alpha - \epsilon)^2 > r$. Therefore, $x \leq \alpha - \epsilon$. Thus, there exists $\epsilon > 0$ such that $x \leq \alpha - \epsilon$ for each $x \in S$, so $\alpha - \epsilon$ is an upper bound of S.

Since $\alpha - \epsilon < \alpha$, then this contradicts the fact that α is the least upper bound of S.

Hence, α^2 cannot be greater than r.

Since α^2 cannot be less than r and α^2 cannot be greater than r, then we must conclude $\alpha^2 = r$.

Proposition 76. Let $x \in \mathbb{R}$. Then $\sqrt{x} \in \mathbb{R}$ iff $x \ge 0$.

Proof. We first prove if $x \ge 0$, then $\sqrt{x} \in \mathbb{R}$. Suppose $x \ge 0$. Then x > 0 or x = 0. We consider these cases separately. **Case 1:** Suppose x = 0. Since $\sqrt{x} = \sqrt{0} = 0$ and $0 \in \mathbb{R}$, then $\sqrt{x} \in \mathbb{R}$. **Case 2:** Suppose x > 0.

Then a unique positive square root of x exists in \mathbb{R} . Thus, there is a unique $y \in \mathbb{R}$ such that $y^2 = x$. Since x > 0 and y is a positive square root of x, then $y = \sqrt{x}$. Since $\sqrt{x} = y$ and $y \in \mathbb{R}$, then $\sqrt{x} \in \mathbb{R}$. Therefore, in either case, $\sqrt{x} \in \mathbb{R}$. *Proof.* Conversely, we prove if $\sqrt{x} \in \mathbb{R}$, then $x \ge 0$. Suppose $\sqrt{x} \in \mathbb{R}$. Let $y = \sqrt{x}$. Since y is the nonnegative square root of x, then $y \in \mathbb{R}$ and $y^2 = x$ and $y \ge 0.$ Since $y \ge 0$, then either y > 0 or y = 0. We consider these cases separately. Case 1: Suppose y = 0. Then $x = y^2 = 0^2 = 0$, so x = 0. Case 2: Suppose y > 0. Since $y \in \mathbb{R}$ and y > 0, then $y^2 > 0$. Thus, $x = y^2 > 0$, so x > 0. Therefore, in either case, $x \ge 0$. **Proposition 77.** Let $x \in \mathbb{R}$. Then $\sqrt{x} \ge 0$ iff $x \ge 0$. *Proof.* We first prove if $x \ge 0$, then $\sqrt{x} \ge 0$. Suppose $x \ge 0$. Then x > 0 or x = 0. We consider these cases separately. Case 1: Suppose x = 0. Then $\sqrt{x} = \sqrt{0} = 0.$ Case 2: Suppose x > 0. Then a unique positive square root of x exists in \mathbb{R} . Thus, there is a unique $y \in \mathbb{R}$ such that $y^2 = x$ and y > 0. Since x > 0 and y is a positive square root of x, then $y = \sqrt{x}$. Thus, $\sqrt{x} = y > 0$. Therefore, in either case, $\sqrt{x} \ge 0$. *Proof.* Conversely, we prove if $\sqrt{x} \ge 0$, then $x \ge 0$. Suppose $\sqrt{x} \ge 0$. Then x > 0 or x = 0. We consider these cases separately. **Case 1:** Suppose $\sqrt{x} = 0$. Let $y = \sqrt{x}$. Since y is the square root of x, then $y \in \mathbb{R}$ and $y^2 = x$. Since $y = \sqrt{x} = 0$, then y = 0. Thus, $x = y^2 = y \cdot y = 0 \cdot 0 = 0$, so x = 0. Case 2: Suppose $\sqrt{x} > 0$. Let $y = \sqrt{x}$.

65

Since y is the square root of x, then $y \in \mathbb{R}$ and $y^2 = x$. Since $y = \sqrt{x} > 0$, then y > 0. Since $y \in \mathbb{R}$ and y > 0, then $y^2 > 0$. Thus, $x = y^2 > 0$, so x > 0. Therefore, in either case, $x \ge 0$.

Proposition 78. Let
$$a, b \in \mathbb{R}$$
 with $a \ge 0$ and $b \ge 0$.
Then $\sqrt{a} = \sqrt{b}$ iff $a = b$.

Proof. Since $a \ge 0$, then there exists a real number $x \ge 0$ such that $x^2 = a$ and $x = \sqrt{a}$. Since $b \ge 0$, then there exists a real number $y \ge 0$ such that $y^2 = b$ and $y = \sqrt{b}$. We prove if $\sqrt{a} = \sqrt{b}$, then a = b. Suppose $\sqrt{a} = \sqrt{b}$. Then x = y. Hence, $a = x^2 = xx = xy = yy = y^2 = b$, so a = b, as desired. *Proof.* Conversely, we prove if a = b, then $\sqrt{a} = \sqrt{b}$. Either both x = 0 and y = 0, or $x \neq 0$ or $y \neq 0$. We consider these cases separately. Case 1: Suppose x = 0 and y = 0. Then $\sqrt{a} = x = 0 = y = \sqrt{b}$, so $\sqrt{a} = \sqrt{b}$. Hence, the implication if a = b, then $\sqrt{a} = \sqrt{b}$ is trivially true. **Case 2:** Suppose either $x \neq 0$ or $y \neq 0$. We consider these cases separately. Case 2a: Suppose $x \neq 0$. Since $x \ge 0$ and $x \ne 0$, then x > 0. Since x > 0 and $y \ge 0$, then x + y > 0. Case 2b: Suppose $y \neq 0$. Since $y \ge 0$ and $y \ne 0$, then y > 0. Since $x \ge 0$ and y > 0, then x + y > 0. Thus, in either case, x + y > 0, so $x + y \neq 0$. We prove if a = b, then $\sqrt{a} = \sqrt{b}$ by contrapositive. Suppose $\sqrt{a} \neq \sqrt{b}$. Then $x \neq y$, so $x - y \neq 0$. Since $x - y \neq 0$ and $x + y \neq 0$, then $x^2 - y^2 = (x - y)(x + y) \neq 0$, so $x^2 - y^2 \neq 0.$ Therefore, $a - b \neq 0$, so $a \neq b$, as desired.

Proposition 79. Let $a, b \in \mathbb{R}$.

If $a \ge 0$ and $b \ge 0$, then $\sqrt{ab} = \sqrt{a}\sqrt{b}$.

Proof. Suppose $a \ge 0$ and $b \ge 0$.

Then $ab \ge 0$, so the square root of ab exists. Since $a \ge 0$, then the square root of a exists, so $\sqrt{a} \ge 0$ and $\sqrt{a} \cdot \sqrt{a} = a$. Since $b \ge 0$, then the square root of b exists, so $\sqrt{b} \ge 0$ and $\sqrt{b} \cdot \sqrt{b} = b$. Since $\sqrt{a} \ge 0$ and $\sqrt{b} \ge 0$, then $\sqrt{a}\sqrt{b} \ge 0$. Observe that

$$(\sqrt{a} \cdot \sqrt{b})^2 = (\sqrt{a} \cdot \sqrt{b})(\sqrt{a} \cdot \sqrt{b})$$
$$= \sqrt{a} \cdot (\sqrt{b} \cdot \sqrt{a}) \cdot \sqrt{b}$$
$$= \sqrt{a} \cdot (\sqrt{a} \cdot \sqrt{b}) \cdot \sqrt{b}$$
$$= (\sqrt{a} \cdot \sqrt{a})(\sqrt{b} \cdot \sqrt{b})$$
$$= ab.$$

Since $\sqrt{a} \cdot \sqrt{b} \ge 0$ and $(\sqrt{a} \cdot \sqrt{b})^2 = ab$ and the square root is unique, then $\sqrt{a} \cdot \sqrt{b}$ is the square root of ab.

Therefore, $\sqrt{ab} = \sqrt{a}\sqrt{b}$, as desired.

Proposition 80. Let
$$x \in \mathbb{R}$$
. Then $1 \sqrt{x} = 0$ iff $x = 0$

1. $\sqrt{x} = 0$ iff x = 0. 2. $\sqrt{x^2} = |x|$.

Proof. We prove 1.

We prove if x = 0, then $\sqrt{x} = 0$. Suppose x = 0. Then $\sqrt{x} = \sqrt{0} = 0$. Conversely, we prove if $\sqrt{x} = 0$, then x = 0. Suppose $\sqrt{x} = 0$. Then there exists $y \in \mathbb{R}$ such that $y^2 = x$ and y = 0. Hence, $x = y^2 = 0^2 = 0$, so x = 0, as desired.

Proof. We prove 2.

We must prove $\sqrt{x^2} = |x|$. Either $x \ge 0$ or x < 0. We consider these cases separately. **Case 1:** Suppose $x \ge 0$. Then $x^2 \ge 0$, so the square root of x^2 exists in \mathbb{R} . Since $|x| = x \ge 0$ and $|x|^2 = x^2$ and the square root is unique, then $\sqrt{x^2} = |x|$. **Case 2:** Suppose x < 0.

Then $x^2 > 0$, so the square root of x^2 exists in \mathbb{R} .

Since |x| = -x > 0 and $|x|^2 = (-x)^2 = x^2$ and the square root is unique, then $\sqrt{x^2} = |x|$.

Therefore, in all cases, $\sqrt{x^2} = |x|$, as desired.

Lemma 81. Let $x \in \mathbb{R}$. If x > 0, then $\sqrt{\frac{1}{x}} = \frac{1}{\sqrt{x}}$.

Proof. Suppose x > 0. Then $\frac{1}{x} > 0$, so the square root of $\frac{1}{x}$ exists. Since x > 0, then $\sqrt{x} > 0$, so $\frac{1}{\sqrt{x}} > 0$. Observe that

$$\left(\frac{1}{\sqrt{x}}\right)^2 = \frac{1}{\sqrt{x}} \cdot \frac{1}{\sqrt{x}}$$
$$= \frac{1 \cdot 1}{\sqrt{x} \cdot \sqrt{x}}$$
$$= \frac{1}{\sqrt{x \cdot x}}$$
$$= \frac{1}{\sqrt{x^2}}$$
$$= \frac{1}{|x|}$$
$$= \frac{1}{x}.$$

Since $\frac{1}{\sqrt{x}} > 0$ and $(\frac{1}{\sqrt{x}})^2 = \frac{1}{x}$ and the square root is unique, then $\frac{1}{\sqrt{x}}$ is the square root of $\frac{1}{x}$.

Therefore,
$$\sqrt{\frac{1}{x}} = \frac{1}{\sqrt{x}}$$
.

Proposition 82. Let $a, b \in \mathbb{R}$. If $a \ge 0$ and b > 0, then $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$.

 $\begin{array}{l} \textit{Proof. Suppose } a \geq 0 \text{ and } b > 0.\\ \text{Since } b > 0, \text{ then } \frac{1}{b} > 0.\\ \text{Since } a \geq 0 \text{ and } \frac{1}{b} > 0 \text{ and } b > 0, \text{ then } \end{array}$

$$\sqrt{\frac{a}{b}} = \sqrt{a \cdot \frac{1}{b}}$$
$$= \sqrt{a} \cdot \sqrt{\frac{1}{b}}$$
$$= \sqrt{a} \cdot \frac{1}{\sqrt{b}}$$
$$= \frac{\sqrt{a}}{\sqrt{b}}.$$

Lemma 83. Let $a, b \in \mathbb{R}$. If $0 < a \le b$, then $0 < a^2 \le b^2$.

Proof. Suppose $0 < a \le b$. Then 0 < a and $a \le b$. Since $a \le b$, then either a < b or a = b. We consider these cases separately. **Case 1:** Suppose a < b. Since 0 < a and a < b, then 0 < a < b. Therefore, $0 < a^2 < b^2$. **Case 2:** Suppose a = b. Since a > 0, then $a^2 > 0$. Since b = a, then $b^2 = a^2$. Therefore, $0 < a^2$ and $a^2 = b^2$, so $0 < a^2 = b^2$.

Proposition 84. Let $a, b \in \mathbb{R}$. Then 0 < a < b iff $0 < \sqrt{a} < \sqrt{b}$.

Proof. We prove if 0 < a < b, then $0 < \sqrt{a} < \sqrt{b}$. Suppose 0 < a < b. Then 0 < a and a < b, so 0 < b. Since a > 0, then $\sqrt{a} > 0$. Since b > 0, then $\sqrt{b} > 0$. Suppose $\sqrt{a} \ge \sqrt{b}$. Then $0 < \sqrt{b} \leq \sqrt{a}$. Hence, by the previous lemma $0 < (\sqrt{b})^2 \le (\sqrt{a})^2$, so $0 < b \le a$. Thus, $b \leq a$, so $a \geq b$. Therefore, we have a < b and $a \ge b$, a violation of trichotomy. Hence, $\sqrt{a} < \sqrt{b}$. Thus $0 < \sqrt{a}$ and $\sqrt{a} < \sqrt{b}$, so $0 < \sqrt{a} < \sqrt{b}$, as desired. *Proof.* Conversely, we prove if $0 < \sqrt{a} < \sqrt{b}$, then 0 < a < b. Suppose $0 < \sqrt{a} < \sqrt{b}$. Since $0 < \sqrt{a} < \sqrt{b}$ and $0 < \sqrt{a} < \sqrt{b}$, then $0 < (\sqrt{a})^2 < (\sqrt{b})^2$. Therefore, 0 < a < b, as desired. Corollary 85. Let $x \in \mathbb{R}$. 1. If 0 < x < 1, then $0 < x^2 < x < \sqrt{x} < 1$. 2. If x > 1, then $1 < \sqrt{x} < x < x^2$. Proof. We prove 1. Suppose 0 < x < 1.

Then 0 < x and x < 1. Since 0 < x and x > 0, then $0 < x^2$. Since x < 1 and x > 0, then $x^2 < x$. Since $0 < x^2$ and $x^2 < x$, then $0 < x^2 < x$. Thus, $0 < \sqrt{x^2} < \sqrt{x}$. Since x > 0, then $\sqrt{x^2} = |x| = x$. Hence, $0 < x < \sqrt{x}$, so $x < \sqrt{x}$. Since 0 < x < 1, then $0 < \sqrt{x} < \sqrt{1}$. Thus, $0 < \sqrt{x} < 1$, so $\sqrt{x} < 1$. Hence, $0 < x^2$ and $x^2 < x$ and $x < \sqrt{x}$ and $\sqrt{x} < 1$. Therefore, $0 < x^2 < x < \sqrt{x} < 1$, as desired.

Proof. We prove 2. Suppose x > 1. Then x > 1 > 0, so x > 0. Since 0 < 1 < x, then $0 < \sqrt{1} < \sqrt{x}$. Hence, $0 < 1 < \sqrt{x}$, so $1 < \sqrt{x}$. Since 1 < x and x > 0, then $x < x^2$. Since 0 < x and $x < x^2$, then $0 < x < x^2$. Hence, $0 < \sqrt{x} < \sqrt{x^2} = |x| = x$. Thus, $0 < \sqrt{x} < x$, so $\sqrt{x} < x$. Thus, $1 < \sqrt{x}$ and $\sqrt{x} < x$ and $x < x^2$. Therefore, $1 < \sqrt{x} < x < x^2$, as desired.

Proposition 86. the additive inverse of an irrational number is irrational

Let $a \in \mathbb{R}$. If a is irrational, then -a is irrational.

Proof. We prove by contrapositive. Suppose -a is rational. Then $-a \in \mathbb{Q}$, so $-(-a) \in \mathbb{Q}$. Therefore, $a \in \mathbb{Q}$, so a is rational, as desired.

Proposition 87. the sum of a rational and irrational number is irra-

tional Let $a, b \in \mathbb{R}$. If a is rational and b is irrational, then a + b is irrational.

Proof. We prove by contrapositive.

Suppose a is rational and a + b is rational. Since a is rational, then $a \in \mathbb{Q}$, so $-a \in \mathbb{Q}$. Since a + b is rational, then $a + b \in \mathbb{Q}$. Hence, by closure of \mathbb{Q} under addition, $-a + (a + b) = (-a + a) + b = 0 + b = b \in \mathbb{Q}$. Therefore, b is rational, as desired.

Proposition 88. the reciprocal of an irrational number is irrational Let $a \in \mathbb{R}$.

If a is irrational, then $\frac{1}{a}$ is irrational.

Proof. We prove by contrapositive. Suppose $\frac{1}{a}$ is rational. Then $\frac{1}{a} \in \mathbb{Q}$ and $a \neq 0$. Hence, $\frac{1}{a} \neq 0$, so $(\frac{1}{a})^{-1} = a \in \mathbb{Q}$. Therefore, a is rational, as desired.

Proposition 89. the product of a nonzero rational and irrational number is irrational

Let $a, b \in \mathbb{R}$.

If a is a nonzero rational and b is irrational, then ab is irrational.

Proof. We prove by contrapositive.

Suppose *a* is a nonzero rational and *ab* is rational. Since *a* is a nonzero rational, then $a \neq 0$ and $a \in \mathbb{Q}$, so $\frac{1}{a} \in \mathbb{Q}$. Since *ab* is rational, then $ab \in \mathbb{Q}$. Hence, by closure of \mathbb{Q} under multiplication, $\frac{1}{a}(ab) = (\frac{1}{a}a)b = 1b = b \in \mathbb{Q}$. Therefore, *b* is rational, as desired.

Corollary 90. the quotient of a nonzero rational and irrational number is irrational

Let $a, b \in \mathbb{R}$.

If a is a nonzero rational and b is irrational, then $\frac{a}{b}$ is irrational.

Proof. Suppose a is a nonzero rational and b is irrational.

Since b is irrational, then $\frac{1}{b}$ is irrational.

Since a is a nonzero rational and $\frac{1}{b}$ is irrational, then $a \cdot \frac{1}{b} = \frac{a}{b}$ is irrational, as desired.

Proposition 91. $\mathbb{R} - \mathbb{Q}$ is dense in \mathbb{Q}

For every $a, b \in \mathbb{Q}$ with a < b, there exists $r \in \mathbb{R} - \mathbb{Q}$ such that a < r < b.

Proof. Let $a, b \in \mathbb{Q}$ such that a < b.

Then $a - \sqrt{2} < b - \sqrt{2}$. Since \mathbb{Q} is dense in \mathbb{R} , then there exists $q \in \mathbb{Q}$ such that $a - \sqrt{2} < q < b - \sqrt{2}$. Thus, $a < q + \sqrt{2} < b$. Let $r = q + \sqrt{2}$. Since q is rational and $\sqrt{2}$ is irrational, then $q + \sqrt{2} = r$ is irrational. Therefore, $r \in \mathbb{R} - \mathbb{Q}$ and a < r < b, as desired.

Solution. We consider the midpoint between a and b.

Since the midpoint is equidistant from a and b and the distance between a and b is b - a, then the midpoint is a + (b - a)/2.

Since $\sqrt{2}$ is irrational, we can adjust this slightly to create a potential irrational number $a + \frac{b-a}{2}\sqrt{2}$ between a and b.

We shall prove this number thus constructed is irrational and between a and b.

 $\begin{array}{l} Proof. \ \text{Let} \ a,b \in \mathbb{Q} \ \text{with} \ a < b. \\ \text{Then} \ b-a > 0. \\ \text{Let} \ r = a + \frac{b-a}{2}\sqrt{2}. \\ \text{We must prove} \ r \in \mathbb{R} \ \text{and} \ r \notin \mathbb{Q} \ \text{and} \ a < r \ \text{and} \ r < b. \end{array}$

Since
$$a, b \in \mathbb{Q}$$
, then $b - a \in \mathbb{Q}$, so $\frac{b-a}{2} \in \mathbb{Q}$.
Thus, $\frac{b-a}{2}\sqrt{2} \in \mathbb{R}$, so $a + \frac{b-a}{2}\sqrt{2} = r \in \mathbb{R}$.

We prove $r \notin \mathbb{Q}$ by contradiction. Suppose $r \in \mathbb{Q}$. Since $r = a + \frac{b-a}{2}\sqrt{2}$, then $r - a = \frac{b-a}{2}\sqrt{2}$, so $2(r-a) = (b-a)\sqrt{2}$. Since b - a > 0, then $b - a \neq 0$. Thus, $\frac{2(r-a)}{b-a} = \sqrt{2}$. Since $a, b, r \in \mathbb{Q}$ and $b - a \neq 0$, then by closure of \mathbb{Q} under subtraction and multiplication, $\frac{2(r-a)}{b-a} \in \mathbb{Q}$. Hence, $\sqrt{2} \in \mathbb{Q}$. But, this contradicts the fact that $\sqrt{2} \notin \mathbb{Q}$. Therefore, $r \notin \mathbb{Q}$.

We prove a < r. Since $r = a + \frac{b-a}{2}\sqrt{2}$, then $r - a = \frac{b-a}{2}\sqrt{2}$. Since b - a > 0, then $\frac{b-a}{2}\sqrt{2} > 0$, so r - a > 0. Therefore, r > a, so a < r.

We prove r < b. Since $\sqrt{2} < 2$, then $\frac{\sqrt{2}}{2} < 1$. Since b - a > 0, then we multiply by b - a to get $\frac{b-a}{2}\sqrt{2} < b - a$. Therefore, $a + \frac{b-a}{2}\sqrt{2} < b$, so r < b.

Proposition 92. $\mathbb{R} - \mathbb{Q}$ is dense in \mathbb{R}

For every $a, b \in \mathbb{R}$ with a < b, there exists $r \in \mathbb{R} - \mathbb{Q}$ such that a < r < b.

 $\begin{array}{l} Proof. \ \text{Let } a,b \in \mathbb{R} \ \text{such that } a < b. \\ \text{Then } a - \sqrt{2} < b - \sqrt{2}. \\ \text{Since } \mathbb{Q} \ \text{is dense in } \mathbb{R}, \ \text{then there exists } q \in \mathbb{Q} \ \text{such that } a - \sqrt{2} < q < b - \sqrt{2}. \\ \text{Thus, } a < q + \sqrt{2} < b. \\ \text{Let } r = q + \sqrt{2}. \\ \text{Since } q \ \text{is rational and } \sqrt{2} \ \text{is irrational, then } q + \sqrt{2} = r \ \text{is irrational.} \\ \text{Therefore, } r \in \mathbb{R} - \mathbb{Q} \ \text{and } a < r < b, \ \text{as desired.} \end{array}$