Complex Analysis Theory

Jason Sass

July 16, 2023

Complex Number System \mathbb{C}

Proposition 1. Addition is a binary operation on \mathbb{C}.
Proof. Let $z, w \in \mathbb{C}$.
Since $z \in \mathbb{C}$, then there exist $a, b \in \mathbb{R}$ such that $z=a+b i$.
Since $w \in \mathbb{C}$, then there exist $c, d \in \mathbb{R}$ such that $w=c+d i$.
Thus, $z+w=(a+c)+(b+d) i$.
Since $a+c \in \mathbb{R}$ and $b+d \in \mathbb{R}$, then $z+w \in \mathbb{C}$.
Therefore, \mathbb{C} is closed under addition, so addition of complex numbers is a binary operation on \mathbb{C}.

Theorem 2. algebraic properties of addition over \mathbb{C}

1. $z_{1}+\left(z_{2}+z_{3}\right)=\left(z_{1}+z_{2}\right)+z_{3}$ for all $z_{1}, z_{2}, z_{3} \in \mathbb{C}$. (associative)
2. $z_{1}+z_{2}=z_{2}+z_{1}$ for all $z_{1}, z_{2} \in \mathbb{C}$. (commutative)
3. $z+0=0+z=z$ for all $z \in \mathbb{C}$. (additive identity)
4. $z+(-z)=(-z)+z=0$ for all $z \in \mathbb{C}$. (additive inverses)

Proof. We prove addition is associative.
Let $z_{1}, z_{2}, z_{3} \in \mathbb{C}$.
Then $z_{1}=a+b i$ and $z_{2}=c+d i$ and $z_{3}=e+f i$ for some $a, b, c, d, e, f \in \mathbb{R}$.
Observe that

$$
\begin{aligned}
\left(z_{1}+z_{2}\right)+z_{3} & =[(a+b i)+(c+d i)]+(e+f i) \\
& =[(a+c)+(b+d i)]+(e+f i) \\
& =[(a+c)+e]+[(b+d)+f] i \\
& =[a+(c+e)]+[b+(d+f)] i \\
& =(a+b i)+[(c+e)+(d+f) i] \\
& =(a+b i)+[(c+d i)+(e+f i)] \\
& =z_{1}+\left(z_{2}+z_{3}\right) .
\end{aligned}
$$

Therefore, addition is associative.

Proof. We prove addition is commutative.
Let $z_{1}, z_{2} \in \mathbb{C}$.
Then $z_{1}=a+b i$ and $z_{2}=c+d i$ for some $a, b, c, d \in \mathbb{R}$.
Observe that

$$
\begin{aligned}
z_{1}+z_{2} & =(a+b i)+(c+d i) \\
& =(a+c)+(b+d) i \\
& =(c+a)+(d+b) i \\
& =(c+d i)+(a+b i) \\
& =z_{2}+z_{1} .
\end{aligned}
$$

Therefore, addition is commutative.
Proof. We prove $z+0=0+z=z$ for all $z \in \mathbb{C}$.
Let $z \in \mathbb{C}$.
Then $z=x+y i$ for some $x, y \in \mathbb{R}$.
Observe that

$$
\begin{aligned}
z+0 & =(x+y i)+(0+0 i) \\
& =(x+0)+(y+0) i \\
& =x+y i \\
& =z \\
& =x+y i \\
& =(0+x)+(0+y) i \\
& =(0+0 i)+(x+y i) \\
& =0+z .
\end{aligned}
$$

Therefore, $z+0=z=0+z$.
Proof. We prove $z+(-z)=(-z)+z=0$ for all $z \in \mathbb{C}$.
Let $z \in \mathbb{C}$.
Then $z=x+y i$ for some $x, y \in \mathbb{R}$.
Since $x \in \mathbb{R}$, then $-x \in \mathbb{R}$.
Since $y \in \mathbb{R}$, then $-y \in \mathbb{R}$.
Let $-z=-x-y i$.
Since $-x \in \mathbb{R}$ and $-y \in \mathbb{R}$, then $-z \in \mathbb{C}$.
Observe that

$$
\begin{aligned}
z+(-z) & =-z+z \\
& =(-x-y i)+(x+y i) \\
& =(-x+x)+(-y+y) i \\
& =0+0 i \\
& =0
\end{aligned}
$$

Therefore, $z+(-z)=(-z)+z=0$.

Proposition 3. Multiplication is a binary operation on \mathbb{C}.
Proof. Let $z, w \in \mathbb{C}$.
Since $z \in \mathbb{C}$, then there exist $a, b \in \mathbb{R}$ such that $z=a+b i$.
Since $w \in \mathbb{C}$, then there exist $c, d \in \mathbb{R}$ such that $w=c+d i$.
Observe that

$$
\begin{aligned}
z w & =(a+b i)(c+d i) \\
& =a c+a d i+b c i+b d i^{2} \\
& =a c+a d i+b c i+b d(-1) \\
& =a c+a d i+b c i-b d \\
& =(a c-b d)+(a d i+b c i) \\
& =(a c-b d)+(a d+b c) i .
\end{aligned}
$$

Thus, $z w=(a c-b d)+(a d+b c) i$.
Since \mathbb{R} is closed under addition, subtraction, and multiplication, then $a c-$ $b d \in \mathbb{R}$ and $a d+b c \in \mathbb{R}$.

Hence, $z w \in \mathbb{C}$, so \mathbb{C} is closed under multiplication.
Therefore, multiplication of complex numbers is a binary operation on \mathbb{C}.
Theorem 4. algebraic properties of multiplication over \mathbb{C}

1. $z_{1} \cdot\left(z_{2} \cdot z_{3}\right)=\left(z_{1} \cdot z_{2}\right) \cdot z_{3}$ for all $z_{1}, z_{2}, z_{3} \in \mathbb{C}$. (associative)
2. $z_{1} \cdot z_{2}=z_{2} \cdot z_{1}$ for all $z_{1}, z_{2} \in \mathbb{C}$. (commutative)
3. $z \cdot 1=1 \cdot z=z$ for all $z \in \mathbb{C}$. (multiplicative identity)
4. $z \cdot 0=0 \cdot z=0$ for all $z \in \mathbb{C}$.
5. $z_{1} \cdot\left(z_{2}+z_{3}\right)=z_{1} \cdot z_{2}+z_{1} \cdot z_{3}$ for all $z_{1}, z_{2}, z_{3} \in \mathbb{C}$. (left distributive)
6. $\left(z_{1}+z_{2}\right) \cdot z_{3}=z_{1} \cdot z_{3}+z_{2} \cdot z_{3}$ for all $z_{1}, z_{2}, z_{3} \in \mathbb{C}$. (right distributive)

Proof. We prove multiplication is associative.
Let $z_{1}, z_{2}, z_{3} \in \mathbb{C}$.
Then $z_{1}=a+b i$ and $z_{2}=c+d i$ and $z_{3}=e+f i$ for some $a, b, c, d, e, f \in \mathbb{R}$.
Observe that

$$
\begin{aligned}
\left(z_{1} \cdot z_{2}\right) \cdot z_{3} & =[(a+b i)(c+d i)](e+f i) \\
& =[(a c-b d)+(a d+b c) i] \cdot(e+f i) \\
& =[(a c-b d) e-(a d+b c) f]+[(a c-b d) f+(a d+b c) e] i \\
& =(a c e-b d e-a d f-b c f)+(a c f-b d f+a d e+b c e) i \\
& =(a c e-b e d-a d f-b c f)+(a c f-b d f+a e d+b c e) i \\
& =(a c e-b e d-a d f-b c f)+(a c f+a e d+b c e-b d f) i \\
& =(a c e-a d f-b c f-b e d)+(a c f+a e d+b c e-b d f) i \\
& =[a(c e-d f)-b(c f+e d)]+[(a(c f+e d)+b(c e-d f)] i \\
& =(a+b i) \cdot[(c e-d f)+(c f+e d) i] \\
& =(a+b i) \cdot[(c+d i) \cdot(e+f i)] \\
& =z_{1} \cdot\left(z_{2} \cdot z_{3}\right) .
\end{aligned}
$$

Therefore, multiplication is associative.
Proof. We prove multiplication is commutative.
Let $z_{1}, z_{2} \in \mathbb{C}$.
Then $z_{1}=a+b i$ and $z_{2}=c+d i$ for some $a, b, c, d \in \mathbb{R}$.
Observe that

$$
\begin{aligned}
z_{1} \cdot z_{2} & =(a+b i) \cdot(c+d i) \\
& =(a c-b d)+a d+b c) i \\
& =(c a-d b)+(d a+c b) i \\
& =(c a-d b)+(c b+d a) i \\
& =(c+d i) \cdot(a+b i) \\
& =z_{2} \cdot z_{1} .
\end{aligned}
$$

Therefore, multiplication is commutative.
Proof. We prove $z \cdot 1=1 \cdot z=z$ for all $z \in \mathbb{C}$.
Let $z \in \mathbb{C}$.
Then $z=x+y i$ for some $x, y \in \mathbb{R}$.
Since $1=1+0 i$, then $1 \in \mathbb{C}$.
Observe that

$$
\begin{aligned}
z \cdot 1 & =1 \cdot z \\
& =(1+0 i) \cdot(x+y i) \\
& =(1 \cdot x-0 \cdot y)+(1 \cdot y+0 \cdot x) i \\
& =(x-0)+(y+0) i \\
& =x+y i \\
& =z .
\end{aligned}
$$

Therefore, $z \cdot 1=1 \cdot z=z$.
Proof. We prove $z \cdot 0=0 \cdot z=0$ for all $z \in \mathbb{C}$.
Let $z \in \mathbb{C}$.
Then $z=x+y i$ for some $x, y \in \mathbb{R}$.
Since $0=0+0 i$, then $0 \in \mathbb{C}$.
Observe that

$$
\begin{aligned}
z \cdot 0 & =0 \cdot z \\
& =(0+0 i) \cdot(x+y i) \\
& =(0 x-0 y)+(0 y+0 x) i \\
& =(0-0)+(0+0) i \\
& =0+0 i \\
& =0
\end{aligned}
$$

Therefore, $z \cdot 0=0 \cdot z=0$.

Proof. We prove $z_{1} \cdot\left(z_{2}+z_{3}\right)=z_{1} \cdot z_{2}+z_{1} \cdot z_{3}$.
Let $z_{1}, z_{2}, z_{3} \in \mathbb{C}$.
Then $z_{1}=a+b i$ and $z_{2}=c+d i$ and $z_{3}=e+f i$ for some $a, b, c, d, e, f \in \mathbb{R}$.
Observe that

$$
\begin{aligned}
z_{1} \cdot\left(z_{2}+z_{3}\right) & =(a+b i) \cdot[(c+d i)+(e+f i)] \\
& =(a+b i) \cdot[(c+e)+(d+f) i] \\
& =[a(c+e)-b(d+f)]+[a(d+f)+b(c+e)] i \\
& =(a c+a e-b d-b f)+(a d+a f+b c+b e) i \\
& =(a c-b d+a e-b f)+(a d+b c+a f+b e) i \\
& =[(a c-b d)+(a e-b f)]+[(a d+b c)+(a f+b e)] i \\
& =[(a c-b d)+(a d+b c) i]+[(a e-b f)+(a f+b e) i] \\
& =(a+b i) \cdot(c+d i)+(a+b i) \cdot(e+f i) \\
& =z_{1} \cdot z_{2}+z_{1} \cdot z_{3}
\end{aligned}
$$

Therefore, multiplication is left distributive over addition.
Proof. We prove $\left(z_{1}+z_{2}\right) \cdot z_{3}=z_{1} \cdot z_{3}+z_{2} \cdot z_{3}$.
Let $z_{1}, z_{2}, z_{3} \in \mathbb{C}$.
Then $z_{1}=a+b i$ and $z_{2}=c+d i$ and $z_{3}=e+f i$ for some $a, b, c, d, e, f \in \mathbb{R}$.
Observe that

$$
\begin{aligned}
\left(z_{1}+z_{2}\right) \cdot z_{3} & =[(a+b i)+(c+d i)] \cdot(e+f i) \\
& =[(a+e)+(b+d) i] \cdot(e+f i) \\
& =[(a+e) e-(b+d) f]+[(a+c) f+(b+d) e] i \\
& =(a e+c e-b f-d f)+(a f+c f+b e+d e) i \\
& =(a e-b f+c e-d f)+(a f+b e+c f+d e) i \\
& =[(a e-b f)+(c e-d f)]+[(a f+b e)+(c f+d e)] i \\
& =[(a e-b f)+(a f+b e) i]+[(c e-d f)+(c f+d e) i] \\
& =(a+b i) \cdot(e+f i)+(c+d i) \cdot(e+f i) \\
& =z_{1} \cdot z_{3}+z_{2} \cdot z_{3}
\end{aligned}
$$

Therefore, multiplication is right distributive over addition.
Proposition 5. Multiplication of complex numbers in polar form
Let $z_{1}=\left|z_{1}\right| \cdot\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=\left|z_{2}\right| \cdot\left(\cos \theta_{2}+i \sin \theta_{2}\right)$ be two complex numbers in polar form.

The product is $z_{1} \cdot z_{2}=\left|z_{1}\right| \cdot\left|z_{2}\right| \cdot\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right)$.

Proof. Observe that

$$
\begin{aligned}
z_{1} \cdot z_{2} & =\left[\left|z_{1}\right| \cdot\left(\cos \theta_{1}+i \sin \theta_{1}\right)\right] \cdot\left[\left|z_{2}\right| \cdot\left(\cos \theta_{2}+i \sin \theta_{2}\right)\right] \\
& =\left|z_{1}\right| \cdot\left|z_{2}\right| \cdot\left(\cos \theta_{1}+i \sin \theta_{1}\right) \cdot\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
& =\left|z_{1}\right| \cdot\left|z_{2}\right| \cdot\left[\left[\left(\cos \theta_{1}\right)\left(\cos \theta_{2}\right)-\left(\sin \theta_{1}\right)\left(\sin \theta_{2}\right)\right]+\left[\left(\cos \theta_{1}\right) \cdot\left(\sin \theta_{2}\right)+\left(\sin \theta_{1}\right) \cdot\left(\cos \theta_{2}\right)\right] i\right] \\
& =\left|z_{1}\right| \cdot\left|z_{2}\right| \cdot\left[\left[\cos \left(\theta_{1}+\theta_{2}\right)\right]+\left[\left(\cos \theta_{1}\right) \cdot\left(\sin \theta_{2}\right)+\left(\sin \theta_{1}\right) \cdot\left(\cos \theta_{2}\right)\right] i\right] \\
& =\left|z_{1}\right| \cdot\left|z_{2}\right| \cdot\left[\left[\cos \left(\theta_{1}+\theta_{2}\right)\right]+\left[\left(\sin \theta_{1}\right) \cdot\left(\cos \theta_{2}\right)+\left(\cos \theta_{1}\right) \cdot\left(\sin \theta_{2}\right)\right] i\right] \\
& =\left|z_{1}\right| \cdot\left|z_{2}\right| \cdot\left[\left[\cos \left(\theta_{1}+\theta_{2}\right)\right]+\left[\sin \left(\theta_{1}+\theta_{2}\right)\right] i\right] \\
& =\left|z_{1}\right| \cdot\left|z_{2}\right| \cdot\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \cdot \sin \left(\theta_{1}+\theta_{2}\right)\right) .
\end{aligned}
$$

Therefore, $z_{1} \cdot z_{2}=\left|z_{1}\right| \cdot\left|z_{2}\right| \cdot\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right)$.

Proposition 6. Multiplicative inverse of a complex number

Let $z \in \mathbb{C}$ and $z \neq 0$.
The multiplicative inverse of z is $\frac{1}{z} \in \mathbb{C}^{*}$ and $\frac{1}{z}=\frac{\bar{z}}{|z|^{2}}$ and $z \cdot \frac{1}{z}=\frac{1}{z} \cdot z=1$.
Proof. Since $z \in \mathbb{C}$, then $z=x+y i$ for some $x, y \in \mathbb{R}$.
Thus, $\bar{z}=x-y i$ and $|z|^{2}=x^{2}+y^{2}$.
Since $z=0$ if and only if $x=0=y$, then $x=0=y$ if and only if $z=0$.
Since $x-y i=0$ if and only if $x=0=y$ and $x=0=y$ if and only if $z=0$,
then $x-y i=0$ if and only if $z=0$.
Hence, $x-y i \neq 0$ if and only if $z \neq 0$.
Since $z \neq 0$, then we conclude $x-y i \neq 0$.
Thus, $\frac{x-y i}{x-y i}=1$.
Observe that

$$
\begin{aligned}
\frac{1}{z} & =\frac{1}{z} \cdot 1 \\
& =\frac{1}{x+y i} \cdot \frac{x-y i}{x-y i} \\
& =\frac{1(x-y i)}{(x+y i) \cdot(x-y i)} \\
& =\frac{x-y i}{x^{2}+y^{2}} \\
& =\frac{\bar{z}}{|z|^{2}} .
\end{aligned}
$$

We prove $\frac{1}{z} \in \mathbb{C}^{*}$.
Since $|z| \in \mathbb{R}$, then $|z| \geq 0$.
Since $z \neq 0$, then $|z| \neq 0$, so $|z|>0$.
Thus, $|z|^{2}>0$, so $|z|^{2} \neq 0$.
Since $|z|^{2} \in \mathbb{R}$ and $|z|^{2}=x^{2}+y^{2}$ and $|z|^{2} \neq 0$, then $x^{2}+y^{2} \in \mathbb{R}$ and $x^{2}+y^{2} \neq 0$.

Since $x-y i \in \mathbb{C}$ and $x^{2}+y^{2} \in \mathbb{R}$ and $x^{2}+y^{2} \neq 0$, then $\frac{x-y i}{x^{2}+y^{2}} \in \mathbb{C}$.
Since $\frac{x-y i}{x^{2}+y^{2}} \in \mathbb{C}$ and $x-y i \neq 0$ and $x^{2}+y^{2} \neq 0$, then $\frac{x-y i}{x^{2}+y^{2}} \in \mathbb{C}^{*}$.
Since $\frac{1}{z}=\frac{x-y i}{x^{2}+y^{2}}$, then this implies $\frac{1}{z} \in \mathbb{C}^{*}$.

Since $z \neq 0$ and $z=x+y i$, then $x+y i \neq 0$, so $\frac{x+y i}{x+y i}=1$.
Observe that

$$
\begin{aligned}
z \cdot \frac{1}{z} & =\frac{1}{z} \cdot z \\
& =\frac{1}{x+y i} \cdot(x+y i) \\
& =\frac{1(x+y i)}{x+y i} \\
& =\frac{x+y i}{x+y i} \\
& =1
\end{aligned}
$$

Therefore, $z \cdot \frac{1}{z}=\frac{1}{z} \cdot z=1$.
Proposition 7. Division of complex numbers in polar form
Let $z_{1}=\left|z_{1}\right| \cdot\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=\left|z_{2}\right| \cdot\left(\cos \theta_{2}+i \sin \theta_{2}\right)$ be two complex numbers in polar form with $z_{2} \neq 0$.

The quotient is $\frac{z_{1}}{z_{2}}=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \cdot\left(\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right)$.
Proof. Observe that

$$
\begin{aligned}
\frac{z_{1}}{z_{2}} & =\frac{\left|z_{1}\right| \cdot\left(\cos \theta_{1}+i \sin \theta_{1}\right)}{\left|z_{2}\right| \cdot\left(\cos \theta_{2}+i \sin \theta_{2}\right)} \\
& =\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \cdot \frac{\cos \theta_{1}+i \sin \theta_{1}}{\cos \theta_{2}+i \sin \theta_{2}} \\
& =\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \cdot \frac{\cos \theta_{1}+i \sin \theta_{1}}{\cos \theta_{2}+i \sin \theta_{2}} \cdot \frac{\cos \theta_{2}-i \sin \theta_{2}}{\cos \theta_{2}-i \sin \theta_{2}} \\
& =\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \cdot \frac{\left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}-i \sin \theta_{2}\right)}{\left(\cos \theta_{2}+i \sin \theta_{2}\right)\left(\cos \theta_{2}-i \sin \theta_{2}\right)} \\
& =\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \cdot \frac{\left(\cos \theta_{1} \cdot \cos \theta_{2}+\sin \theta_{1} \cdot \sin \theta_{2}\right)+\left[\cos \theta_{1}\left(-\sin \theta_{2}\right)+\sin \theta_{1}\left(\cos \theta_{2}\right)\right] i}{\left(\cos \theta_{2}\right)^{2}+\left(\sin \theta_{2}\right)^{2}} \\
& =\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \cdot \frac{\left(\cos \theta_{1} \cdot \cos \theta_{2}+\sin \theta_{1} \cdot \sin \theta_{2}\right)+\left[\sin \theta_{1}\left(\cos \theta_{2}\right)-\cos \theta_{1}\left(\sin \theta_{2}\right)\right] i}{\left(\sin \theta_{2}\right)^{2}+\left(\cos \theta_{2}\right)^{2}} \\
& =\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \cdot \frac{\cos \left(\theta_{1}-\theta_{2}\right)+i\left(\sin \left(\theta_{1}-\theta_{2}\right)\right.}{1} \\
& =\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \cdot\left(\cos \left(\theta_{1}-\theta_{2}\right)+i\left(\sin \left(\theta_{1}-\theta_{2}\right)\right) .\right.
\end{aligned}
$$

Therefore, $\frac{z_{1}}{z_{2}}=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \cdot\left(\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right)$.

Proposition 8. Properties of complex modulus

Let $z \in \mathbb{C}$. Then

1. $|z| \in \mathbb{R}$ and $|z| \geq 0$.
2. $|z|=0$ iff $z=0$.
3. $|-z|=|z|$.
4. $|\bar{z}|=|z|$.
5. $|z w|=|z| \cdot|w|$ for all $z, w \in \mathbb{C}$.
6. $\left|\frac{z}{w}\right|=\frac{|z|}{|w|}$ for all $z, w \in \mathbb{C}$ and $w \neq 0$.
7. $\left|z^{n}\right|=|z|^{n}$ for all $n \in \mathbb{Z}^{+}$.
8. $|z+w| \leq|z|+|w|$ for all $z, w \in \mathbb{C}$ (triangle inequality)
9. $|z-w| \geq||z|-|w||$ for all $z, w \in \mathbb{C}$ (reverse triangle inequality)

Proof. We prove 1.
Since $z \in \mathbb{C}$, then $z=x+y i$ for some $x, y \in \mathbb{R}$.
Since $|z|=x^{2}+y^{2}$ and $x, y \in \mathbb{R}$ and \mathbb{R} is closed under addition and multiplication, then $|z| \in \mathbb{R}$.

Since $|z| \in \mathbb{R}$, then $|z| \geq 0$.
Proof. We prove 2.
We prove $|z|=0$ iff $z=0$.

We prove if $z=0$, then $|z|=0$.
Suppose $z=0$.
Then $|z|=|0|=0$, so $|z|=0$.

Conversely, we prove if $|z|=0$, then $z=0$ by contrapositive.
Suppose $z \neq 0$.
We must prove $|z| \neq 0$.
Since $z \in \mathbb{C}$, then $z=x+y i$ for some $x, y \in \mathbb{R}$.
Since $z=0$ if and only if $x=0$ and $y=0$, then $z \neq 0$ if and only if either $x \neq 0$ or $y \neq 0$.

Since $z \neq 0$, then we conclude either $x \neq 0$ or $y \neq 0$.
We consider these cases separately.
Case 1: Suppose $x \neq 0$.
Then $x^{2}>0$.
Since $x^{2}>0$ and $y^{2} \geq 0$, then $x^{2}+y^{2}>0$, so $\sqrt{x^{2}+y^{2}}>0$.
Since $|z|=\sqrt{x^{2}+y^{2}}$, then $|z|>0$, so $|z| \neq 0$.
Case 2: Suppose $y \neq 0$.
Then $y^{2}>0$.
Since $x^{2} \geq 0$ and $y^{2}>0$, then $x^{2}+y^{2}>0$, so $\sqrt{x^{2}+y^{2}}>0$.
Since $|z|=\sqrt{x^{2}+y^{2}}$, then $|z|>0$, so $|z| \neq 0$.
Therefore, in all cases, $|z| \neq 0$, as desired.
Proof. We prove 3.
We prove $|-z|=|z|$.
Since $z \in \mathbb{C}$, then $z=x+y i$ for some $x, y \in \mathbb{R}$.

Observe that

$$
\begin{aligned}
|-z| & =|-(x+y i)| \\
& =|-x-y i| \\
& =|-x+(-y) i| \\
& =\sqrt{(-x)^{2}+(-y)^{2}} \\
& =\sqrt{x^{2}+y^{2}} \\
& =|z| .
\end{aligned}
$$

Therefore, $|-z|=|z|$.
Proof. We prove 4.
We prove $|\bar{z}|=|z|$.
Since $z \in \mathbb{C}$, then $z=x+y i$ for some $x, y \in \mathbb{R}$.
Observe that

$$
\begin{aligned}
\bar{z} & =|x-y i| \\
& =|x+(-y) i| \\
& =\sqrt{x^{2}+(-y)^{2}} \\
& =\sqrt{x^{2}+y^{2}} \\
& =|z| .
\end{aligned}
$$

Therefore, $|\bar{z}|=|z|$.
Proof. We prove 5.
We prove $|z w|=|z| \cdot|w|$ for all $z, w \in \mathbb{C}$.
Let $z, w \in \mathbb{C}$.
Then $z=a+b i$ and $w=c+d i$ for some $a, b, c, d \in \mathbb{R}$.
Observe that

$$
\begin{aligned}
|z w| & =|(a+b i)(c+d i)| \\
& =|(a c-b d)+(a d+b c) i| \\
& =\sqrt{(a c-b d)^{2}+(a d+b c)^{2}} \\
& =\sqrt{\left((a c)^{2}-2(a c)(b d)+(b d)^{2}\right)+\left((a d)^{2}+2(a d)(b c)+(b c)^{2}\right)} \\
& =\sqrt{\left(a^{2} c^{2}-2 a b c d+b^{2} d^{2}\right)+\left(a^{2} d^{2}+2 a b c d+b^{2} c^{2}\right)} \\
& =\sqrt{a^{2} c^{2}+b^{2} d^{2}+a^{2} d^{2}+b^{2} c^{2}} \\
& =\sqrt{\left(a^{2} c^{2}+a^{2} d^{2}\right)+\left(b^{2} d^{2}+b^{2} c^{2}\right)} \\
& =\sqrt{\left(a^{2} c^{2}+a^{2} d^{2}\right)+\left(b^{2} c^{2}+b^{2} d^{2}\right)} \\
& =\sqrt{a^{2}\left(c^{2}+d^{2}\right)+b^{2}\left(c^{2}+d^{2}\right)} \\
& =\sqrt{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)} \\
& =\sqrt{a^{2}+b^{2}} \cdot \sqrt{c^{2}+d^{2}} \\
& =|z| \cdot|w| .
\end{aligned}
$$

Therefore, $|z w|=|z| \cdot|w|$.
Proof. We prove 6.
We prove $\left|\frac{z}{w}\right|=\frac{|z|}{|w|}$ for all $z, w \in \mathbb{C}$ and $w \neq 0$.
Let $z, w \in \mathbb{C}$ and $w \neq 0$.
Since $z \in \mathbb{C}$, then $z=a+b i$ for some $a, b \in \mathbb{R}$.
Since $w \in \mathbb{C}$, then $w=c+d i$ for some $c, d \in \mathbb{R}$.

Observe that

$$
\begin{aligned}
& \left|\frac{z}{w}\right|=\left|\frac{a+b i}{c+d i}\right| \\
& =\left|\frac{a+b i}{c+d i} \cdot \frac{c-d i}{c-d i}\right| \\
& =\left|\frac{(a+b i)(c-d i)}{(c+d i)(c-d i)}\right| \\
& =\left|\frac{(a c+b d)+(-a d+b c) i}{c^{2}+d^{2}}\right| \\
& =\left|\frac{(a c+b d)+(b c-a d) i}{c^{2}+d^{2}}\right| \\
& =\left|\frac{1}{c^{2}+d^{2}} \cdot[(a c+b d)+(b c-a d) i]\right| \\
& =\left|\frac{1}{c^{2}+d^{2}}\right| \cdot|(a c+b d)+(b c-a d) i| \\
& =\frac{1}{\left|c^{2}+d^{2}\right|} \cdot|(a c+b d)+(b c-a d) i| \\
& =\frac{1}{\left|c^{2}+d^{2}\right|} \cdot \sqrt{(a c+b d)^{2}+(b c-a d)^{2}} \\
& =\frac{1}{\left|c^{2}+d^{2}\right|} \cdot \sqrt{\left[(a c)^{2}+2(a c)(b d)+(b d)^{2}\right]+\left[(b c)^{2}-2(b c)(a d)+(a d)^{2}\right]} \\
& =\frac{1}{\left|c^{2}+d^{2}\right|} \cdot \sqrt{\left(a^{2} c^{2}+2 a b c d+b^{2} d^{2}\right)+\left(b^{2} c^{2}-2 a b c d+a^{2} d^{2}\right)} \\
& =\frac{1}{\left|c^{2}+d^{2}\right|} \cdot \sqrt{a^{2} c^{2}+b^{2} d^{2}+b^{2} c^{2}+a^{2} d^{2}} \\
& =\frac{1}{\left|c^{2}+d^{2}\right|} \cdot \sqrt{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)} \\
& =\frac{1}{\left|c^{2}+d^{2}\right|} \cdot \sqrt{\left(a^{2}+b^{2}\right)} \cdot \sqrt{c^{2}+d^{2}} \\
& =\frac{1}{\sqrt{\left(c^{2}+d^{2}\right)^{2}}} \cdot \sqrt{a^{2}+b^{2}} \cdot \sqrt{c^{2}+d^{2}} \\
& =\frac{1}{\sqrt{\left(c^{2}+d^{2}\right) \cdot\left(c^{2}+d^{2}\right)}} \cdot \sqrt{a^{2}+b^{2}} \cdot \sqrt{c^{2}+d^{2}} \\
& =\frac{1}{\sqrt{c^{2}+d^{2}} \cdot \sqrt{c^{2}+d^{2}}} \cdot \sqrt{a^{2}+b^{2}} \cdot \sqrt{c^{2}+d^{2}} \\
& =\frac{1}{\sqrt{c^{2}+d^{2}}} \cdot \frac{1}{\sqrt{c^{2}+d^{2}}} \cdot \sqrt{a^{2}+b^{2}} \cdot \sqrt{c^{2}+d^{2}} \\
& =\frac{\sqrt{a^{2}+b^{2}}}{\sqrt{c^{2}+d^{2}}} \\
& =\frac{|a+b|}{|c+d i|} \\
& =\frac{|z|}{|w|} \text {. }
\end{aligned}
$$

Therefore, $\left|\frac{z}{w}\right|=\frac{|z|}{|w|}$.
Proof. We prove 7.
We prove $\left|z^{n}\right|=|z|^{n}$ for all $n \in \mathbb{Z}^{+}$for all $z \in \mathbb{C}$.
Let $z \in \mathbb{C}$.
We prove $\left|z^{n}\right|=|z|^{n}$ for all $n \in \mathbb{Z}^{+}$by induction on n.
Define predicate $p(n):\left|z^{n}\right|=|z|^{n}$ over \mathbb{Z}.
Basis:
Since $\left|z^{1}\right|=|z|=|z|^{1}$, then $p(1)$ is true.
Induction:
Let $k \in \mathbb{Z}^{+}$such that $p(k)$ is true.
Then $\left|z^{k}\right|=|z|^{k}$.
Observe that

$$
\begin{aligned}
\left|z^{k+1}\right| & =\left|z^{k} \cdot z\right| \\
& =\left|z^{k}\right| \cdot|z| \\
& =|z|^{k} \cdot|z| \\
& =|z|^{k+1} .
\end{aligned}
$$

Thus, $\left|z^{k+1}\right|=|z|^{k+1}$, so $p(k+1)$ is true.
Hence, $p(k)$ implies $p(k+1)$ for all $k \in \mathbb{Z}^{+}$.
Since $p(1)$ is true and $p(k)$ implies $p(k+1)$ for all $k \in \mathbb{Z}^{+}$, then by induction $p(n)$ is true for all $n \in \mathbb{Z}^{+}$.

Therefore, $\left|z^{n}\right|=|z|^{n}$ for all $n \in \mathbb{Z}^{+}$.
Proof. We prove 8.
We prove $|z+w| \leq|z|+|w|$ for all $z, w \in \mathbb{C}$.
Let $z, w \in \mathbb{C}$.
Then
TODO
Proposition 9. Properties of complex conjugate

1. $\operatorname{Re}(\bar{z})=\operatorname{Re}(z)$ and $\operatorname{Im}(\bar{z})=-\operatorname{Im}(z)$ for all $z \in \mathbb{C}$.
2. $\overline{\bar{z}}=z$ for all $z \in \mathbb{C}$. (conjugate of a conjugate)
3. $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$ for all $z \in \mathbb{C}$.
4. $\operatorname{Im}(z)=\frac{z^{2}-\bar{z}}{2 i}$ for all $z \in \mathbb{C}$.
5. $z \cdot \bar{z}=|z|^{2}$ for all $z \in \mathbb{C}$. (Product of complex conjugates is an absolute square.)
6. $\operatorname{Re}(\alpha \cdot z)=\alpha \cdot \operatorname{Re}(z)$ and $\operatorname{Im}(\alpha \cdot z)=\alpha \cdot \operatorname{Im}(z)$ for all $\alpha \in \mathbb{R}, z \in \mathbb{C}$. (scalar multiple)
7. $\overline{z+w}=\bar{z}+\bar{w}$ for all $z, w \in \mathbb{C}$. (conjugate of sum is sum of conjugates)
8. $\overline{z-w}=\bar{z}-\bar{w}$ for all $z, w \in \mathbb{C}$. (conjugate of difference is difference of conjugates)
9. $\overline{z \cdot w}=\bar{z} \cdot \bar{w}$ for all $z, w \in \mathbb{C}$. (conjugate of product is product of conjugates)
10. $\frac{\bar{z}}{w}=\frac{\bar{z}}{\bar{w}}$ for all $z, w \in \mathbb{C}, w \neq 0$. (conjugate of quotient is quotient of conjugates)

Proof. We prove 1.
Let $z \in \mathbb{C}$.
Then $z=x+y i$ for some $x, y \in \mathbb{R}$ and $\bar{z}=x-y i$.
Since $\operatorname{Re}(\bar{z})=x=\operatorname{Re}(z)$, then $\operatorname{Re}(\bar{z})=\operatorname{Re}(z)$.
Since $\operatorname{Im}(\bar{z})=-y=-\operatorname{Im}(z)$, then $\operatorname{Im}(\bar{z})=-\operatorname{Im}(z)$.

Proof. We prove 2.
Let $z \in \mathbb{C}$.
Then $z=x+y i$ for some $x, y \in \mathbb{R}$.
Since $z=x+y i$, then $\bar{z}=x-y i$.
Since $\bar{z}=x-y i$, then $\overline{\bar{z}}=x+y i=z$.
Therefore, $\overline{\bar{z}}=z$.
Proof. We prove 3.
Observe that

$$
\begin{aligned}
z+\bar{z} & =(x+y i)+(x-y i) \\
& =(x+x)+(y-y) i \\
& =2 x+0 i \\
& =2 x+0 \\
& =2 x \\
& =2 \cdot \operatorname{Re}(z)
\end{aligned}
$$

Therefore, $z+\bar{z}=2 \cdot \operatorname{Re}(z)$, so $\operatorname{Re}(z)=\frac{z+\bar{z}}{2}$.
Proof. We prove 4.
Observe that

$$
\begin{aligned}
z-\bar{z} & =(x+y i)-(x-y i) \\
& =(x-x)+(y-(-y)) i \\
& =0+2 y i \\
& =2 y i \\
& =2 i \cdot \operatorname{Im}(z)
\end{aligned}
$$

Therefore, $z-\bar{z}=2 i \cdot \operatorname{Im}(z)$, so $\operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}$.

Proof. We prove 5.
Observe that

$$
\begin{aligned}
z \cdot \bar{z} & =(x+y i) \cdot(x-y i) \\
& =x^{2}-x y i+x y i-y^{2}\left(i^{2}\right) \\
& =x^{2}-y^{2}\left(i^{2}\right) \\
& =x^{2}-y^{2}(-1) \\
& =x^{2}+y^{2} \\
& =|z|^{2}
\end{aligned}
$$

Therefore, $z \cdot \bar{z}=|z|^{2}$.
Proof. We prove 6.
Let $\alpha \in \mathbb{R}$ and $z \in \mathbb{C}$.
Since $z \in \mathbb{C}$, then $z=x+y i$ for some $x, y \in \mathbb{R}$.
Observe that

$$
\begin{aligned}
\operatorname{Re}(\alpha z) & =\operatorname{Re}(\alpha(x+y i)) \\
& =\operatorname{Re}(\alpha x+\alpha y i) \\
& =\alpha x \\
& =\alpha \cdot \operatorname{Re}(z)
\end{aligned}
$$

Therefore, $\operatorname{Re}(\alpha z)=\alpha \cdot \operatorname{Re}(z)$.
Observe that

$$
\begin{aligned}
\operatorname{Im}(\alpha z) & =\operatorname{Im}(\alpha(x+y i)) \\
& =\operatorname{Im}(\alpha x+\alpha y i) \\
& =\alpha y \\
& =\alpha \cdot \operatorname{Im}(z)
\end{aligned}
$$

Therefore, $\operatorname{Im}(\alpha z)=\alpha \cdot \operatorname{Im}(z)$.
Proof. TODO We must prove $7,8,9$, and 10 !
Theorem 10. DeMoivre formula
For all $\theta \in \mathbb{R}$ and all $n \in \mathbb{Z}^{+}$, the following identity is true.
$(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)$.
Proof. Let $\theta \in \mathbb{R}$.
We prove $(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)$ for all $n \in \mathbb{Z}^{+}$by induction on n.

Define predicate $p(n):(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)$ over \mathbb{Z}.
Basis:
Observe that

$$
\begin{aligned}
(\cos \theta+i \sin \theta)^{1} & =\cos \theta+i \sin \theta \\
& =\cos (1 \theta)+i \sin (1 \theta)
\end{aligned}
$$

Therefore, $p(1)$ is true.
Induction:
Let $k \in \mathbb{Z}^{+}$such that $p(k)$ is true.
Then $(\cos \theta+i \sin \theta)^{k}=\cos (k \theta)+i \sin (k \theta)$.

Observe that

$$
\begin{aligned}
(\cos \theta+i \sin \theta)^{k+1} & =(\cos \theta+i \sin \theta)^{k} \cdot(\cos \theta+i \sin \theta) \\
& =(\cos (k \theta)+i \sin (k \theta)) \cdot(\cos \theta+i \sin \theta) \\
& =[\cos (k \theta) \cdot \cos \theta-\sin (k \theta) \cdot \sin \theta]+[\cos (k \theta) \cdot \sin \theta+\sin (k \theta) \cdot \cos \theta] i \\
& =[\cos (k \theta) \cdot \cos \theta-\sin (k \theta) \cdot \sin \theta]+[\sin (k \theta) \cdot \cos \theta+\cos (k \theta) \cdot \sin \theta] \\
& =\cos (k \theta+\theta)+\sin (k \theta+\theta) i \\
& =\cos (k+1) \theta+i \sin (k+1) \theta .
\end{aligned}
$$

Thus, $\cos \theta+i \sin \theta)^{k+1}=\cos (k+1) \theta+i \sin (k+1) \theta$, so $p(k+1)$ is true.
Hence, $p(k)$ implies $p(k+1)$ for all $k \in \mathbb{Z}^{+}$.
Since $p(1)$ is true and $p(k)$ implies $p(k+1)$ for all $k \in \mathbb{Z}^{+}$, then by induction $p(n)$ is true for all $n \in \mathbb{Z}^{+}$.

Therefore, $(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)$ for all $n \in \mathbb{Z}^{+}$.
Proposition 11. Arithmetic operations on complex numbers in polar form

Multiplication

1. $\left(r_{1} e^{i \theta_{1}}\right)\left(r_{2} e^{i \theta_{2}}\right)=\left(r_{1} r_{2}\right) e^{i\left(\theta_{1}+\theta_{2}\right)}$. (multiply absolute values, add angles)

Reciprocal
2. $\frac{1}{r e^{i \theta}}=\left(\frac{1}{r}\right) e^{-i \theta}$.

Division
3. $\frac{r_{1} e^{i \theta_{1}}}{r_{2} e^{i \theta_{2}}}=\left(\frac{r_{1}}{r_{2}}\right) e^{i\left(\theta_{1}-\theta_{2}\right)}$. (divide absolute values, subtract angles)
$n^{\text {th }}$ power
4. $\left(r e^{i \theta}\right)^{n}=r^{n} \cdot e^{i n \theta}$ for any integer n.

Complex conjugation
5. $\overline{r e^{i \theta}}=r e^{-i \theta}$.

Proof. TODO
Theorem 12. $(\mathbb{C},+, \cdot)$ is a field.
Proof. TODO

Complex exponential function

Proposition 13. existence and uniqueness of complex exponential function

There is a unique function $f: \mathbb{C} \rightarrow \mathbb{C}$ such that $f^{\prime}(z)=f(z)$ and $f(0)=1$.

Proof. TODO

Proposition 14. Properties of complex exponential function

The function $f: \mathbb{C} \rightarrow \mathbb{C}$ defined by $f(z)=e^{z}$ for all $z \in \mathbb{C}$ has the following properties.

1. The derivative of e^{z} is e^{z}.
2. $e^{0}=1$.
3. $e^{z+w}=e^{z} \cdot e^{w}$ for all $z, w \in \mathbb{C}$.
4. $\left(e^{z}\right)^{n}=e^{n z}$ for all $z, \in \mathbb{C}$ and for all $n \in \mathbb{Z}$.

Proof. TODO

Theorem 15. Euler's formula

The function $f: \mathbb{C} \rightarrow \mathbb{C}$ defined by $f(z)=e^{z}$ for all $z \in \mathbb{C}$ has the following property:
$e^{i \theta}=\cos \theta+i \sin \theta$ for all $\theta \in \mathbb{R}$.
Proof. TODO
Corollary 16. $\left|e^{i \theta}\right|=1$ for all $\theta \in \mathbb{R}$.
Proof. Let $\theta \in \mathbb{R}$.
Then

$$
\begin{aligned}
\left|e^{i \theta}\right| & =|\cos \theta+i \sin \theta| \\
& =\sqrt{(\cos \theta)^{2}+(\sin \theta)^{2}} \\
& =\sqrt{(\sin \theta)^{2}+(\cos \theta)^{2}} \\
& =\sqrt{1} \\
& =1
\end{aligned}
$$

Therefore, $\left|e^{i \theta}\right|=1$.
REMOVE THE UN-NEEDED ITEMS FROM BELOW TO CLEAN UP OUR complex analysis notes.

Ordered Fields

Proposition 17. Positivity of \mathbb{Q} is well defined.
Proof. To prove positivity of \mathbb{Q} is well defined, let $\frac{m}{n}, \frac{m^{\prime}}{n^{\prime}} \in \mathbb{Q}$.
Then $m, n \in \mathbb{Z}$ and $n \neq 0$ and $m^{\prime}, n^{\prime} \in \mathbb{Z}$ and $n^{\prime} \neq 0$.
We must prove if $(m, n) \sim\left(m^{\prime}, n^{\prime}\right)$, then $\frac{m}{n}$ is positive iff $\frac{m^{\prime}}{n^{\prime}}$ is positive.
Let $(m, n) \sim\left(m^{\prime}, n^{\prime}\right)$.
Then $\frac{m}{n}=\frac{m^{\prime}}{n^{\prime}}$ and $m n^{\prime}=n m^{\prime}$ and $n, n^{\prime} \neq 0$.
Since $(m, n) \sim\left(m^{\prime}, n^{\prime}\right)$, then $\left(m^{\prime}, n^{\prime}\right) \sim(m, n)$, so $\frac{m^{\prime}}{n^{\prime}}=\frac{m}{n}$.
We prove if $\frac{m}{n}$ is positive, then $\frac{m^{\prime}}{n^{\prime}}$ is positive.
Suppose $\frac{m}{n}$ is positive.
Then there exist positive integers a and b such that $\frac{m}{n}=\frac{a}{b}$.
Since $\frac{m^{\prime}}{n^{\prime}}=\frac{m}{n}=\frac{a}{b}$, then there exist positive integers a and b such that $\frac{m^{\prime}}{n^{\prime}}=\frac{a}{b}$.

Therefore, $\frac{m^{\prime}}{n^{\prime}}$ is positive.

Conversely, we prove if $\frac{m^{\prime}}{n^{\prime}}$ is positive, then $\frac{m}{n}$ is positive.
Suppose $\frac{m^{\prime}}{n^{\prime}}$ is positive.
Then there exist positive integers c and d such that $\frac{m^{\prime}}{n^{\prime}}=\frac{c}{d}$.
Since $\frac{m}{n}=\frac{m^{\prime}}{n^{\prime}}=\frac{c}{d}$, then there exist positive integers c and d such that $\frac{m}{n}=\frac{c}{d}$.

Therefore, $\frac{m}{n}$ is positive.
Proposition 18. $(\mathbb{Q},+, \cdot)$ is an ordered field.
Proof. Observe that $(\mathbb{Q},+, \cdot)$ is a field.
Let \mathbb{Q}^{+}be the set of all positive rational numbers.
Then $\mathbb{Q}^{+}=\left\{\frac{a}{b} \in \mathbb{Q}: a, b \in \mathbb{Z}^{+}\right\}$, so $\mathbb{Q}^{+} \subset \mathbb{Q}$.
Since $1 \in \mathbb{Z}^{+}$, then $\frac{1}{1} \in \mathbb{Q}^{+}$, so \mathbb{Q}^{+}is not empty.
To prove \mathbb{Q} is an ordered field, we must prove \mathbb{Q}^{+}is closed under addition and multiplication of \mathbb{Q} and the trichotomy law holds.

Let $u, v \in \mathbb{Q}^{+}$.
Then there exist positive integers a, b, c, d such that $u=\frac{a}{b}$ and $v=\frac{c}{d}$.
We prove \mathbb{Q}^{+}is closed under addition in \mathbb{Q}.
Since $a, b, c, d \in \mathbb{Z}^{+}$, then $a d, b c, b d \in \mathbb{Z}^{+}$, by closure of \mathbb{Z}^{+}under multiplication.

Thus, $a d+b c \in \mathbb{Z}^{+}$, by closure of \mathbb{Z}^{+}under addition.
Observe that $u+v=\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$.
Therefore, there exist positive integers $a d+b c$ and $b d$ such that $u+v=\frac{a d+b c}{b d}$, so $u+v$ is positive.

We prove \mathbb{Q}^{+}is closed under multiplication in \mathbb{Q}.
Since $a, b, c, d \in \mathbb{Z}^{+}$, then $a c \in \mathbb{Z}^{+}$and $b d \in \mathbb{Z}^{+}$, by closure of \mathbb{Z}^{+}under multiplication.

Observe that $u v=\frac{a}{b} \frac{c}{d}=\frac{a c}{b d}$.
Therefore, there exist positive integers $a c$ and $b d$ such that $u v=\frac{a c}{b d}$, so $u v$ is positive.

To prove trichotomy, we must prove exactly one of the following holds: $q \in$ $\mathbb{Q}^{+}, q=0,-q \in \mathbb{Q}^{+}$for every $q \in \mathbb{Q}$.

Let $q \in \mathbb{Q}$.
Then there exist integers a, b with $b \neq 0$ such that $q=\frac{a}{b}$.
By trichotomy of \mathbb{Z}, either $a>0$ or $a=0$ or $a<0$.
We consider these cases separately.
Case 1: Suppose $a=0$.
Since $b \neq 0$, then $q=\frac{a}{b}=\frac{0}{b}=0$.
Therefore, $q=0$.
Case 2: Suppose $a>0$.
Then $a \in \mathbb{Z}^{+}$.
Since $b \neq 0$, then either $b>0$ or $b<0$.

If $b>0$, then $b \in \mathbb{Z}^{+}$.
Hence, $a \in \mathbb{Z}^{+}$and $b \in \mathbb{Z}^{+}$.
Therefore, $\frac{a}{b}=q \in \mathbb{Q}^{+}$.
If $b<0$, then $-b \in \mathbb{Z}^{+}$.
Hence, $a \in \mathbb{Z}^{+}$and $-b \in \mathbb{Z}^{+}$.
Therefore $\frac{a}{-b}=-\frac{a}{b}=-q \in \mathbb{Q}^{+}$.
Case 3: Suppose $a<0$.
Then $-a \in \mathbb{Z}^{+}$.
Since $b \neq 0$, then either $b>0$ or $b<0$.
If $b>0$, then $b \in \mathbb{Z}^{+}$.
Hence, $-a \in \mathbb{Z}^{+}$and $b \in \mathbb{Z}^{+}$.
Therefore, $\frac{-a}{b}=-\frac{a}{b}=-q \in \mathbb{Q}^{+}$.
If $b<0$, then $-b \in \mathbb{Z}^{+}$.
Hence, $-a \in \mathbb{Z}^{+}$and $-b \in \mathbb{Z}^{+}$.
Therefore $\frac{-a}{-b}=\frac{a}{b}=q \in \mathbb{Q}^{+}$.
Hence, either $q \in \mathbb{Q}^{+}$or $q=0$ or $-q \in \mathbb{Q}^{+}$.
Therefore, the trichotomy law holds.
Proposition 19. Let F be an ordered field with positive subset P. Then

1. $1 \in P$.
2. if $x \in P$, then $x^{-1} \in P$.
3. if $x, y \in P$, then $\frac{x}{y} \in P$.
4. if $x \in F$ and $x \neq 0$, then $x^{2} \in P$.
5. if $x \in P$, then $n x \in P$ for all $n \in \mathbb{N}$.

Proof. We prove 1.
Since F is an ordered field, then either $1 \in P$ or $1=0$ or $-1 \in P$.
Since F is a field, then $1 \neq 0$.
Suppose $-1 \in P$.
Since F is a ring, then $(-1)(-1)=-(-1)=1 \in P$.
Thus, $-1 \in P$ and $1 \in P$, a violation of trichotomy.
Hence, $-1 \notin P$.
Since $1 \neq 0$ and $-1 \notin P$, then we must conclude $1 \in P$.
Proof. We prove 2.
Suppose $x \in P$.
Then $x \neq 0$.
Since F is a field, then every nonzero element of F has a multiplicative inverse in F, so $x^{-1} \in F$.

Either $x^{-1} \in P$ or $x^{-1}=0$ or $-x^{-1} \in P$.
Since F is a division ring and $x \neq 0$, then $x^{-1} \neq 0$.
Suppose $-x^{-1} \in P$.
Since $x \in P$ and $-x^{-1} \in P$, then $x\left(-x^{-1}\right) \in P$, so $x\left(-x^{-1}\right)=-\left(x x^{-1}\right)=$ $-1 \in P$.

Hence, $1 \in P$ and $-1 \in P$, a violation of trichotomy.
Thus, $-x^{-1} \notin P$.
Since $x^{-1} \neq 0$ and $-x^{-1} \notin P$, then we conclude $x^{-1} \in P$.

Proof. We prove 3.
Let $x, y \in P$.
Since $y \in P$, then $y^{-1} \in P$.
Since $x \in P$ and $y^{-1} \in P$, then $x y^{-1}=\frac{x}{y} \in P$, by closure of P under multiplication in F.

Proof. We prove 4.
Suppose $x \in F$ and $x \neq 0$.
By trichotomy, either $x \in P$ or $x=0$ or $-x \in P$.
Since $x \neq 0$, then either $x \in P$ or $-x \in P$.
We consider these cases separately.
Case 1: Suppose $x \in P$.
Then $x^{2}=x x \in P$, by closure of P under multiplication in F.
Case 2: Suppose $-x \in P$.
Then $x^{2}=x x=(-x)(-x) \in P$, by closure of P under multiplication in F. Therefore, in all cases, $x^{2} \in P$.

Proof. We prove 5.
Let $x \in P$.
Let $S=\{n \in \mathbb{N}: n x \in P\}$.
We prove $S=\mathbb{N}$ by induction on n.
Basis:
Since $1 x=x \in P$, then $1 \in S$.

Induction:

Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $k x \in P$.
Since $k x \in P$ and $x \in P$, then $k x+x \in P$, by closure of P under addition in F, so $(k+1) x=k x+x \in P$.

Since $k \in \mathbb{N}$, then $k+1 \in \mathbb{N}$.
Since $k+1 \in \mathbb{N}$ and $(k+1) x \in P$, then $k+1 \in S$, so $k \in S$ implies $k+1 \in S$.
Hence, by induction, $S=\mathbb{N}$,
Therefore, $n x \in P$ for all $n \in \mathbb{N}$.
Proposition 20. Let F be an ordered field with positive subset P. Then for all $a, b \in F$

1. $a>0$ iff $a \in P$.
2. $a<0$ iff $-a \in P$.
3. $a<b$ iff $b-a>0$.

Proof. We prove 1.
Let $a \in F$.

Observe that

$$
\begin{aligned}
a>0 & \Leftrightarrow 0<a \\
& \Leftrightarrow a-0 \in P \\
& \Leftrightarrow a+(-0) \in P \\
& \Leftrightarrow a+0 \in P \\
& \Leftrightarrow a \in P .
\end{aligned}
$$

Therefore, $a>0$ iff $a \in P$.
Proof. We prove 2.
Let $a \in F$.
Observe that $a<0$ iff $0-a \in P$ iff $0+(-a) \in P$ iff $-a \in P$.
Therefore, $a<0$ iff $-a \in P$.
Proof. We prove 3.
Let $a \in F$.
Observe that $a<b$ iff $b-a \in P$ iff $b-a>0$.
Therefore, $a<b$ iff $b-a>0$.
Lemma 21. Let $(F,+, \cdot,<)$ be an ordered field with $a, b \in F$.
If $a>0$ and $b<0$, then $a b<0$.
Proof. Suppose $a>0$ and $b<0$.
Let P be the positive subset of F.
Then $a \in P$ and $-b \in P$.
Hence, by closure of P under multiplication, $a(-b) \in P$.
Since F is a ring, then $-(a b)=a(-b)$, so $-(a b) \in P$.
Therefore, $a b<0$.
Proposition 22. positivity of a product in an ordered field
Let $(F,+, \cdot,<)$ be an ordered field with $a, b \in F$. Then

1. $a b>0$ iff either $a>0$ and $b>0$ or $a<0$ and $b<0$.
2. $a b<0$ iff either $a>0$ and $b<0$ or $a<0$ and $b>0$.

Proof. We prove 1.
Let P be the positive subset of F.
Suppose either $a>0$ and $b>0$ or $a<0$ and $b<0$.
We consider these cases separately.
Case 1: Suppose $a>0$ and $b>0$.
Then $a \in P$ and $b \in P$.
Hence, by closure of P under multiplication, $a b \in P$.
Therefore, $a b>0$.
Case 2: Suppose $a<0$ and $b<0$.
Then $-a \in P$ and $-b \in P$.
Hence, by closure of P under multiplication, $(-a)(-b) \in P$.
Since F is a ring, then $a b=(-a)(-b)$, so $a b \in P$.
Therefore, $a b>0$.
Thus, in all cases, $a b>0$, as desired.

Conversely, suppose $a b>0$.
If $a=0$, then $a b=0 b=0$.
Thus, $a b>0$ and $a b=0$, a violation of trichotomy.
Therefore, $a \neq 0$, so either $a>0$ or $a<0$.
We consider these cases separately.
Case 1: Suppose $a>0$.
Then $a \in P$, so $a^{-1} \in P$.
Hence, $a^{-1}>0$.
Since $a^{-1}>0$ and $a b>0$, then $b=1 \cdot b=\left(a^{-1} \cdot a\right) b=a^{-1} \cdot(a b)>0$.
Therefore, $a>0$ and $b>0$.
Case 2: Suppose $a<0$.
Then $-a \in P$, so $(-a)^{-1} \in P$.
Hence, $\frac{1}{-a} \in P$, so $-\frac{1}{a} \in P$.
Thus, $-\left(a^{-1}\right) \in P$, so $a^{-1}<0$.
Since $a b>0$ and $a^{-1}<0$, then by the previous lemma $b=1 \cdot b=\left(a^{-1} \cdot a\right) b=$ $a^{-1} \cdot(a b)=a b \cdot a^{-1}<0$.

Therefore, $a<0$ and $b<0$.
Thus, either $a>0$ and $b>0$ or $a<0$ and $b<0$, as desired.
Proof. We prove 2.
Suppose either $a>0$ and $b<0$ or $a<0$ and $b>0$.
We consider these cases separately.
Case 1: Suppose $a>0$ and $b<0$.
Then by the previous lemma, $a b<0$.
Case 2: Suppose $a<0$ and $b>0$.
Then $b>0$ and $a<0$, so by the previous lemma, $a b=b a<0$.
Therefore, in all cases, $a b<0$, as desired.
Conversely, suppose $a b<0$.
Then $-(a b)>0$.
Since F is a ring, then $a(-b)=-(a b)$, so $a(-b)>0$.
Hence, by 1, either $a>0$ and $-b>0$ or $a<0$ and $-b<0$.
Thus, either $a>0$ and $-(-b)<0$ or $a<0$ and $-(-b)>0$.
Therefore, either $a>0$ and $b<0$ or $a<0$ and $b>0$, as desired.
Corollary 23. Let $(F,+, \cdot,<)$ be an ordered field.
Let $a, b \in F$.
Then $\frac{a}{b}>0$ iff $a b>0$.
Proof. Suppose $\frac{a}{b}>0$.
Then $b \neq 0$, so $\frac{1}{b} \neq 0$.
Since $\frac{a}{b}=a \cdot \frac{1}{b}$, then $a \cdot \frac{1}{b}>0$.
Thus, either $a>0$ and $\frac{1}{b}>0$ or $a<0$ and $\frac{1}{b}<0$.
We consider these cases separately.
Case 1: Suppose $a>0$ and $\frac{1}{b}>0$.
Since $\frac{1}{b}>0$, then $\frac{1}{\frac{1}{b}}>0$, so $b>0$.

Since $a>0$ and $b>0$, then $a b>0$.
Case 2: Suppose $a<0$ and $\frac{1}{b}<0$.
Since $\frac{1}{b}<0$, then $\frac{1}{-b}>0$, so $\frac{1}{\frac{1}{-b}}>0$.
Thus, $-b>0$.
Since $a<0$, then $-a>0$.
Thus, $a b=(-a)(-b)>0$, so $a b>0$.
Therefore, in all cases, $a b>0$, as desired.

Conversely, suppose $a b>0$.
Then either $a>0$ and $b>0$ or $a<0$ and $b<0$.
We consider these cases separately.
Case 1: Suppose $a>0$ and $b>0$.
Since $b>0$, then $\frac{1}{b}>0$.
Since $a>0$ and $\frac{1}{b}>0$, then $\frac{a}{b}=a \cdot \frac{1}{b}>0$.
Case 2: Suppose $a<0$ and $b<0$.
Since $b<0$, then $-b>0$, so $-\frac{1}{b}>0$.
Since $a<0$, then $-a>0$.
Hence, $\frac{a}{b}=(-a)\left(-\frac{1}{b}\right)>0$.
Therefore, in all cases, $\frac{a}{b}>0$, as desired.
Theorem 24. ordered fields satisfy transitivity and trichotomy laws
Let $(F,+, \cdot,<)$ be an ordered field. Then

1. $a<a$ is false for all $a \in F$. (Therefore, $<i s$ not reflexive.)
2. For all $a, b, c \in F$, if $a<b$ and $b<c$, then $a<c$. ($<$ is transitive)
3. For every $a \in F$, exactly one of the following is true (trichotomy):
i. $a>0$
ii. $a=0$
iii. $a<0$
4. For every $a, b \in F$, exactly one of the following is true (trichotomy):
i. $a>b$
ii. $a=b$
iii. $a<b$

Proof. We prove 1.
Let $a \in F$.
We must prove $a<a$ is false.
Since $a<a$ iff $a-a \in P$ iff $0 \in P$ and $0 \notin P$, then $a<a$ is false.
Proof. We prove 2.
Let $a, b, c \in F$ such that $a<b$ and $b<c$.
Since $a<b$, then $b-a \in P$.
Since $b<c$, then $c-b \in P$.
Hence, $(c-b)+(b-a) \in P$, by closure of P under addition of F.
Observe that $(c-b)+(b-a)=c+(-b+b)-a=c+0-a=c-a$.
Therefore, $c-a \in P$, so $a<c$.

Proof. We prove 3.
Let $a \in F$.
By trichotomy, exactly one of the following is true: $a \in P, a=0,-a \in P$.
Observe that $a \in P$ iff $a>0$ and $-a \in P$ iff $a<0$.
Therefore, exactly one of the following is true: $a>0, a=0, a<0$.
Proof. We prove 4.
Let $a, b \in F$.
Since F is a ring, then F is closed under subtraction, so $a-b \in F$.
Since F is an ordered field, then by trichotomy, exactly one of the following is true: $a-b \in P, a-b=0,-(a-b) \in P$.

Observe that $a-b \in P$ iff $b<a$ iff $a>b$.
Observe that $a-b=0$ iff $a=b$.
Observe that $-(a-b) \in P$ iff $-a+b \in P$ iff $b-a \in P$ iff $a<b$.
Therefore, exactly one of the following is true: $a>b, a=b, a<b$.
Corollary 25. Let $(F,+, \cdot,<)$ be an ordered field.
Let $a, b \in F$.
If $0<a<b$, then $0<\frac{1}{b}<\frac{1}{a}$.
Proof. Suppose $0<a<b$.
Then $0<a$ and $a<b$, so $0<b$.
Since $b>0$, then $b \in P$, so $\frac{1}{b} \in P$.
Hence, $\frac{1}{b}>0$.
Since $a>0$ and $b>0$, then $a \in P$ and $b \in P$, so $a b \in P$.
Since $a<b$, then $b-a \in P$.
Thus, $\frac{b-a}{a b} \in P$, so $\frac{b-a}{a b}>0$.
Hence, $\frac{1}{a}-\frac{1}{b}>0$, so $\frac{1}{b}<\frac{1}{a}$.
Therefore, $0<\frac{1}{b}<\frac{1}{a}$, as desired.
Theorem 26. order is preserved by the field operations in an ordered field

Let $(F,+, \cdot,<)$ be an ordered field.
Let $a, b, c, d \in F$.

1. If $a<b$, then $a+c<b+c$. (preserves order for addition)
2. If $a<b$, then $a-c<b-c$. (preserves order for subtraction)
3. If $a<b$ and $c>0$, then $a c<b c$. (preserves order for multiplication by a positive element)
4. If $a<b$ and $c<0$, then $a c>b c$. (reverses order for multiplication by a negative element)
5. If $a<b$ and $c>0$, then $\frac{a}{c}<\frac{b}{c}$. (preserves order for division by a positive element)

Proof. Let P be the positive subset of F.
We prove 1.
Suppose $a<b$.
Then $b-a \in P$.

Observe that $b-a=(b-a)+0=(b-a)+(c-c)=b-a+c-c=$ $b+c-a-c=(b+c)-(a+c)$.

Therefore, $(b+c)-(a+c) \in P$, so $a+c<b+c$.
Proof. We prove 2.
Suppose $a<b$.
Since $c \in F$, then $-c \in F$.
Therefore, $a+(-c)<b+(-c)$, so $a-c<b-c$.
Proof. We prove 3.
Suppose $a<b$ and $c>0$.
Since $a<b$, then $b-a \in P$.
Since $c>0$, then $c \in P$.
Hence, $(b-a) c \in P$, by closure of P under multiplication of F.
Since $(b-a) c=b c-a c$, then $b c-a c \in P$, so $a c<b c$.
Proof. We prove 4.
Suppose $a<b$ and $c<0$.
To prove $a c>b c$, we must prove $b c<a c$, i.e. $a c-b c \in P$.
Since $a<b$, then $b-a \in P$.
Since $c<0$, then $-c \in P$.
Hence, $(b-a)(-c) \in P$, by closure of P under multiplication of F.
Observe that $(b-a)(-c)=b(-c)-a(-c)=-b c+a c=a c-b c$.
Therefore, $a c-b c \in P$, as desired.
Proof. We prove 5.
Suppose $a<b$ and $c>0$.
Since $c>0$, then $\frac{1}{c}>0$.
Since $a<b$ and $\frac{1}{c}>0$, then $a \cdot \frac{1}{c}<b \cdot \frac{1}{c}$.
Therefore, $\frac{a}{c}<\frac{b}{c}$.
Proposition 27. Let $(F,+, \cdot,<)$ be an ordered field.
Let $a, b, c, d \in F$.

1. If $a<b$ and $c<d$, then $a+c<b+d$. (adding inequalities is valid)
2. If $0<a<b$ and $0<c<d$, then $0<a c<b d$.

Proof. We prove 1.
Suppose $a<b$ and $c<d$.
Since $a<b$, then $a+c<b+c$.
Since $c<d$, then $c+b<d+b$, so $b+c<b+d$.
Since $a+c<b+c$ and $b+c<b+d$, then $a+c<b+d$.
Proof. We prove 2.
Suppose $0<a<b$ and $0<c<d$.
We must prove $0<a c<b d$.
Since $0<a<b$, then $0<a$ and $a<b$ and $0<b$.
Since $0<c<d$, then $0<c$ and $c<d$.
Since $a>0$ and $c>0$, then $a c>0$.

Since $a<b$ and $c>0$, then $a c<b c$.
Since $c<d$ and $b>0$, then $b c<b d$.
Therefore, $a c<b c$ and $b c<b d$, so $a c<b d$.
Hence, $0<a c$ and $a c<b d$, so $0<a c<b d$, as desired.
Proposition 28. Let $(F,+, \cdot,<)$ be an ordered field.
Let $\frac{a}{b}, \frac{c}{d} \in F$ with $b, d>0$.
Then $\frac{a}{b}<\frac{c}{d}$ iff $a d<b c$.
Proof. We must prove $\frac{a}{b}<\frac{c}{d}$ iff $a d<b c$.
We prove if $\frac{a}{b}<\frac{c}{d}$, then $a d<b c$.
Suppose $\frac{a}{b}<\frac{c}{d}$.
Then $\frac{c}{d}-\frac{a}{b} \in P$, so $\frac{c b-d a}{d b} \in P$.
Hence, $\frac{c b-d a}{d b}>0$.
Since $b>0$ and $d>0$, then $d b>0$.
We multiply by positive $d b$ to get $c b-d a>0$.
Thus, $c b>d a$, so $d a<c b$.
Therefore, $a d<b c$, as desired.
Conversely, we prove if $a d<b c$, then $\frac{a}{b}<\frac{c}{d}$.
Suppose $a d<b c$.
Since $b>0$, then we divide by positive b to get $\frac{a d}{b}<c$.
Since $d>0$, then we divide by positive d to get $\frac{a}{b}<\frac{c}{d}$, as desired.
Theorem 29. density of ordered fields
Between any two distinct elements of an ordered field is a third element.
Proof. Let $(F,+, \cdot,<)$ be an ordered field.
Since $1 \in F$ and $0 \in F$ and $1 \neq 0$, then F contains at least two elements.
Let a and b be distinct elements of F.
Then $a \in F$ and $b \in F$ and $a \neq b$.
We must prove there is at least one element c of F such that $a<c<b$.
Since $a \neq b$, then either $a<b$ or $a>b$.
Without loss of generality, assume $a<b$.
Since $a \in F$ and $b \in F$, then by closure of F under addition, $a+b \in F$.
Since $1 \in F$, then by closure of F under addition, $1+1 \in F$.
Define 2 to be $1+1$.
Then $2 \in F$ and $2=1+1$.
Since $1>0$, then $1+1>0$, so $2>0$.
Let $c=\frac{a+b}{2}$.
Since $a+b \in F$ and $2 \neq 0$, then $\frac{a+b}{2} \in F$, so $c \in F$.
Since $a<b$, then $a+a<a+b$ and $a+b<b+b$.
Thus, $2 a<a+b$ and $a+b<2 b$.
Since $2>0$, we divide by 2 to get $a<\frac{a+b}{2}$ and $\frac{a+b}{2}<b$, so $a<\frac{a+b}{2}<b$.
Therefore, $a<c<b$, as desired.

Corollary 30. ordered fields are infinite

An ordered field contains an infinite number of elements.

Proof. Let F be an ordered field.
We prove F is infinite by contradiction.
Suppose F is not infinite.
Then F is finite, so F contains a finite number of elements.
Let n be the number of distinct elements of F.
Since $1 \neq 0$ in every field, then every field contains at least two distinct elements.

Therefore, $n \in \mathbb{N}$ and $n \geq 2$.
Let $a_{1}, a_{2}, \ldots, a_{n}$ be the elements of F arranged so that the a_{i} element is in the $i^{\text {th }}$ position in the order defined by $<$ over F for each $i=1,2, \ldots, n$.

Then $F=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $a_{1}<a_{2}<\ldots<a_{n}$.
Since $a_{1} \in F$ and $a_{2} \in F$ and $a_{1}<a_{2}$, then a_{1} and a_{2} are distinct elements of the ordered field F.

Therefore, by the density of F, there exists at least one element $b \in F$ such that $a_{1}<b<a_{2}$.

Hence, $a_{1}<b$ and $b<a_{2}$.

We prove $b \neq a_{i}$ for each $i=1,2, \ldots, n$.
Since $a_{1}<b$, then $a_{1} \neq b$, so $b \neq a_{1}$.
Since $b<a_{2}$, then $b \neq a_{2}$.
Since $b<a_{2}$ and $a_{2}<a_{i}$ for each i such that $2<i \leq n$, then $b<a_{i}$ for each i such that $2<i \leq n$.

Thus, $b \neq a_{i}$ for each i such that $2<i \leq n$.
Therefore, $b \neq a_{i}$ for each $i=1,2, \ldots, n$, so $b \notin F$.
Hence, we have $b \in F$ and $b \notin F$, a contradiction.
Therefore, F is not finite, so F is infinite.
Theorem 31. ordered fields are totally ordered
Let $(F,+, \cdot, \leq)$ be an ordered field. Then

1. \leq is a partial order over F. Therefore, (F, \leq) is a poset.
2. \leq is a total order over F.

Proof. We prove 1.

Let $x \in F$.
Since equality is reflexive, then $x=x$.
Hence, $x=x$ or $x<x$, so $x<x$ or $x=x$.
Therefore, $x \leq x$, so \leq is reflexive.

Let $x, y \in F$ such that $x \leq y$ and $y \leq x$.
Suppose $x \neq y$.
Since $x \leq y$ and $x \neq y$, then $x<y$.
Since $y \leq x$ and $y \neq x$, then $y<x$.
Thus, $x<y$ and $x>y$, a violation of trichotomy.
Hence, $x=y$.
Therefore, \leq is antisymmetric.

Let $x, y, z \in F$ such that $x \leq y$ and $y \leq z$.
Since $x \leq y$ and $y \leq z$, then $x<y$ or $x=y$ and $y<z$ or $y=z$.
Hence, either both $x<y$ or $x=y$ and $y<z$, or both $x<y$ or $x=y$ and $y=z$.

Thus, either $x<y$ and $y<z$ or $x=y$ and $y<z$ or $x<y$ and $y=z$ or $x=y$ and $y=z$.

Therefore, there are 4 cases to consider.
Case 1: Suppose $x<y$ and $y<z$.
Since $<$ is transitive, then $x<z$.
Case 2: Suppose $x<y$ and $y=z$.
Then $x<z$.
Case 3: Suppose $x=y$ and $y<z$.
Then $x<z$.
Case 4: Suppose $x=y$ and $y=z$.
Then $x=z$.
Thus, in all cases, either $x<z$ or $x=z$, so $x \leq z$.
Therefore, \leq is transitive.

Since \leq is reflexive, antisymmetric, and transitive, then \leq is a partial order over F, so (F, \leq) is a poset.

Proof. We prove 2.
Since (F, \leq) is a poset, then \leq is a total order over F iff either $x \leq y$ or $y \leq x$ for all $x, y \in F$.

Thus, to prove \leq is a total order, we must prove either $x \leq y$ or $y \leq x$ for all $x, y \in F$.

Let $x, y \in F$.
To prove $x \leq y$ or $y \leq x$, assume $x \leq y$ is false.
We must prove $y \leq x$.
Since $x \leq y$ is false, then x is not less than y and $x \neq y$.
Hence, by trichotomy, $x>y$.
Therefore, $y<x$, so $y \leq x$, as desired.
Proposition 32. Let $(F,+, \cdot, \leq)$ be an ordered field. Then

1. $x^{2}=0$ iff $x=0$.
2. $x^{2}>0$ iff $x \neq 0$.
3. $x^{2} \geq 0$ for all $x \in F$.

Proof. Since F is an ordered field, then let P be the positive subset of F.
We prove 1.
Let $x \in F$.
We must prove $x^{2}=0$ iff $x=0$.
We prove if $x=0$, then $x^{2}=0$.
Suppose $x=0$.
Then $x^{2}=0^{2}=0$, so $x^{2}=0$, as desired.

Conversely, we prove if $x^{2}=0$, then $x=0$ by contrapositive.
Suppose $x \neq 0$.
Then $x^{2} \in P$.
Since $x^{2} \in P$ iff $x^{2}>0$, then $x^{2}>0$.
Hence, $x^{2} \neq 0$, as desired.
Proof. We prove 2.
Let $x \in F$.
We must prove $x^{2}>0$ iff $x \neq 0$.
We prove if $x \neq 0$, then $x^{2}>0$.
Suppose $x \neq 0$.
Then $x^{2} \in P$.
Since $x^{2} \in P$ iff $x^{2}>0$, then $x^{2}>0$, as desired.
Conversely, we prove if $x^{2}>0$, then $x \neq 0$ by contrapositive.
Suppose $x=0$.
Then $x^{2}=0^{2}=0 \leq 0$, so $x^{2} \leq 0$, as desired.
Proof. We prove 3.
Let $x \in F$.
Then either $x=0$ or $x \neq 0$.
We consider these cases separately.
Case 1: Suppose $x=0$.
Since $x^{2}=0$ iff $x=0$, then $x^{2}=0$.
Case 2: Suppose $x \neq 0$.
Since $x^{2}>0$ iff $x \neq 0$, then $x^{2}>0$.
Thus, in all cases, either $x^{2}>0$ or $x^{2}=0$.
Therefore, $x^{2} \geq 0$, as desired.

Absolute value in an ordered field

Lemma 33. Let F be an ordered field. Let $x \in F$.

1. If $x<0$, then $\frac{1}{x}<0$.
2. If $x \neq 0$, then $\left|\frac{1}{x}\right|=\frac{1}{|x|}$.

Proof. We prove 1.
Let $x \in F$.
Suppose $x<0$.
Then $x \neq 0$.
Since F is a field and $x \neq 0$, then $\frac{1}{x} \in F$, so $x \cdot \frac{1}{x}=1$.
Either $\frac{1}{x}>0$ or $\frac{1}{x}=0$ or $\frac{1}{x}<0$.
Suppose $\frac{1}{x}=0$.
Then $1=x \cdot \frac{1}{x}=x \cdot 0=0$, so $1=0$.
But, $1 \neq 0$ in an ordered field, so $\frac{1}{x} \neq 0$.

Suppose $\frac{1}{x}>0$.
Since $\frac{1}{x}>0$ and $x<0$, then $1=\frac{1}{x} \cdot x<0$, so $1<0$, a contradiction.
Hence, $\frac{1}{x}$ cannot be greater than zero.
Therefore, $\frac{1}{x}<0$.
Proof. We prove 2.
Let $x \in F$.
Suppose $x \neq 0$.
Then either $x>0$ or $x<0$.
We consider these cases separately.
Case 1: Suppose $x>0$.
Then $\frac{1}{x}>0$.
Therefore, $\left|\frac{1}{x}\right|=\frac{1}{x}=\frac{1}{|x|}$.
Case 2: Suppose $x<0$.
Then $\frac{1}{x}<0$.
Therefore, $\left|\frac{1}{x}\right|=-\frac{1}{x}=\frac{1}{-x}=\frac{1}{|x|}$.
Theorem 34. arithmetic operations and absolute value
Let F be an ordered field. For all $a, b \in F$

1. $|a b|=|a||b|$.
2. if $b \neq 0$, then $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$.
3. $|a|^{2}=a^{2}$.
4. if $a \neq 0$, then $\left|a^{n}\right|=|a|^{n}$ for all $n \in \mathbb{Z}$.

Proof. We prove 1.
Let $a, b \in F$.
Either a or b is zero or neither a nor b is zero.
Hence, either $a=0$ or $b=0$ or $a \neq 0$ and $b \neq 0$.
Thus, either $a=0$ or $b=0$, or $a>0$ or $a<0$ and $b>0$ or $b<0$.
Hence, either $a=0$ or $b=0$ or both $a>0$ and $b>0$ or both $a>0$ and $b<0$ or both $a<0$ and $b>0$ or both $a<0$ and $b<0$.

We consider these cases separately.
We must prove $|a b|=|a||b|$.
Case 1: Suppose $a=0$.
Then

$$
\begin{aligned}
|a b| & =|0 \cdot b| \\
& =|0| \\
& =0 \\
& =0 \cdot|b| \\
& =|0||b| \\
& =|a||b| .
\end{aligned}
$$

Case 2: Suppose $b=0$.

Then

$$
\begin{aligned}
|a b| & =|a \cdot 0| \\
& =|0| \\
& =0 \\
& =|a| \cdot 0 \\
& =|a||0| \\
& =|a||b| .
\end{aligned}
$$

Case 3: Suppose $a>0$ and $b>0$.
Then $|a|=a$ and $|b|=b$.
Since $a>0$ and $b>0$, then $a b>0$.
Hence, $|a b|=a b$.
Therefore,

$$
\begin{aligned}
|a b| & =a b \\
& =|a||b|
\end{aligned}
$$

Case 4: Suppose $a>0$ and $b<0$.
Then $|a|=a$ and $|b|=-b$.
Since $a>0$ and $b<0$, then $a b<0$.
Hence, $|a b|=-a b$.
Therefore,

$$
\begin{aligned}
|a b| & =-a b \\
& =a(-b) \\
& =|a||b|
\end{aligned}
$$

Case 5: Suppose $a<0$ and $b>0$.
Then $|a|=-a$ and $|b|=b$.
Since $a<0$ and $b>0$, then $a b<0$.
Hence, $|a b|=-a b$.
Therefore,

$$
\begin{aligned}
|a b| & =-a b \\
& =(-a) b \\
& =|a||b|
\end{aligned}
$$

Case 6: Suppose $a<0$ and $b<0$.
Then $|a|=-a$ and $|b|=-b$.
Since $a<0$ and $b<0$, then $a b>0$.
Hence, $|a b|=a b$.
Therefore,

$$
\begin{aligned}
|a b| & =a b \\
& =(-a)(-b) \\
& =|a||b|
\end{aligned}
$$

Therefore, in all cases, $|a b|=|a||b|$.
Proof. We prove 2.
Let $a, b \in F$.
Suppose $b \neq 0$.
Then $b^{-1}=\frac{1}{b} \neq 0$, so

$$
\begin{aligned}
\left|\frac{a}{b}\right| & =\left|a b^{-1}\right| \\
& =\left|a \cdot \frac{1}{b}\right| \\
& =|a| \cdot\left|\frac{1}{b}\right| \\
& =|a| \cdot \frac{1}{|b|} \\
& =\frac{|a|}{|b|} .
\end{aligned}
$$

Proof. We prove 3.
Let $a \in F$.
We must prove $|a|^{2}=a^{2}$.
Either $a=0$ or $a \neq 0$.
We consider these cases separately.
Case 1: Suppose $a=0$.
Then

$$
\begin{aligned}
|a|^{2} & =|0|^{2} \\
& =0^{2} \\
& =a^{2} .
\end{aligned}
$$

Case 2: Suppose $a \neq 0$.
Then $a^{2} \in F^{+}$, so $a^{2}>0$.
Hence,

$$
\begin{aligned}
|a|^{2} & =|a||a| \\
& =|a a| \\
& =\left|a^{2}\right| \\
& =a^{2}
\end{aligned}
$$

Therefore, in all cases, $|a|^{2}=a^{2}$, as desired.
Proof. We prove 4.
Let $a \in F$ with $a \neq 0$.
To prove $\left|a^{n}\right|=|a|^{n}$ for all $n \in \mathbb{Z}$, we prove $\left|a^{n}\right|=|a|^{n}$ for all positive integers n and $\left|a^{0}\right|=|a|^{0}$ and $\left|a^{n}\right|=|a|^{n}$ for all negative integers n.

We prove $\left|a^{0}\right|=|a|^{0}$.
Since $a \neq 0$, then $\left|a^{0}\right|=|1|=1=|a|^{0}$.
Therefore, $\left|a^{0}\right|=|a|^{0}$.
We prove $\left|a^{n}\right|=|a|^{n}$ for all $n \in \mathbb{N}$ by induction on n.
Let $S=\left\{n \in \mathbb{N}:\left|a^{n}\right|=|a|^{n}\right\}$.

Basis:

Since $\left|a^{1}\right|=|a|=|a|^{1}$, then $1 \in S$.
Induction:
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $\left|a^{k}\right|=|a|^{k}$.
Since $k \in \mathbb{N}$, then $k+1 \in \mathbb{N}$.
Observe that

$$
\begin{aligned}
\left|a^{k+1}\right| & =\left|a^{k} a\right| \\
& =\left|a^{k}\right||a| \\
& =|a|^{k}|a| \\
& =|a|^{k+1}
\end{aligned}
$$

Since $k+1 \in \mathbb{N}$ and $\left|a^{k+1}\right|=|a|^{k+1}$, then $k+1 \in S$.
Thus, $k \in S$ implies $k+1 \in S$.
Since $1 \in S$ and $k \in S$ implies $k+1 \in S$, then by PMI, $S=\mathbb{N}$.
Therefore, $\left|a^{n}\right|=|a|^{n}$ for all $n \in \mathbb{N}$.
We prove $\left|a^{n}\right|=|a|^{n}$ for all negative integers n.
Let n be an arbitrary negative integer.
Then $n \in \mathbb{Z}$ and $n<0$.
Since $n \in \mathbb{Z}$, then $-n \in \mathbb{Z}$ and $-n>0$.
Let $k=-n$.
Then $k \in \mathbb{Z}$ and $k>0$ and $n=-k$.
Since $k \in \mathbb{Z}$ and $k>0$, then k is a positive integer, so $\left|a^{k}\right|=|a|^{k}$.
Since $a \neq 0$, then $a^{k} \neq 0$.

Observe that

$$
\begin{aligned}
\left|a^{n}\right| & =\left|a^{-k}\right| \\
& =\left|\frac{1}{a^{k}}\right| \\
& =\frac{1}{\left|a^{k}\right|} \\
& =\frac{1}{|a|^{k}} \\
& =\frac{1}{|a|^{-n}} \\
& =\frac{1}{\frac{1}{|a|^{n}}} \\
& =|a|^{n} .
\end{aligned}
$$

Therefore, $\left|a^{n}\right|=|a|^{n}$.
Theorem 35. properties of the absolute value function
Let $(F,+, \cdot, \leq)$ be an ordered field.
Let $a, k \in F$ and $k>0$. Then

1. $|a| \geq 0$.
2. $|a|=0$ iff $a=0$.
3. $|-a|=|a|$.
4. $-|a| \leq a \leq|a|$.
5. $|a|<k$ iff $-k<a<k$.
6. $|a|>k$ iff $a>k$ or $a<-k$.
7. $|a|=k$ iff $a=k$ or $a=-k$.

Proof. We prove 1.
Let $a \in F$.
Either $a>0$ or $a=0$ or $a<0$.
We consider these cases separately.
We must prove either $|a|>0$ or $|a|=0$.
Case 1: Suppose $a>0$.
Then $|a|=a>0$.
Case 2: Suppose $a=0$.
Then $|a|=a=0$.
Case 3: Suppose $a<0$.
Since $-a>0$ iff $-a \in F^{+}$iff $a<0$ and $a<0$, then $-a>0$.
Since $a<0$, then $|a|=-a>0$.
Therefore, in all cases, $|a| \geq 0$.
Proof. We prove 2.
Let $a \in F$.
We must prove $|a|=0$ iff $a=0$.
We prove if $a=0$, then $|a|=0$.

Suppose $a=0$.
Then $|a|=a=0$.
Conversely, we prove if $|a|=0$, then $a=0$ by contrapositive.
Suppose $a \neq 0$.
We must prove $|a| \neq 0$.
Since $a \neq 0$, then either $a>0$ or $a<0$.
In either case $|a|>0$.
Therefore, by trichotomy, $|a| \neq 0$, as desired.
Proof. We prove 3.
Let $a \in F$.
We must prove $|-a|=|a|$.
Either $a>0$ or $a=0$ or $a<0$.
We consider these cases separately.
Case 1: Suppose $a>0$.
Then $-a<0$.
Therefore, $|-a|=-(-a)=a=|a|$.
Case 2: Suppose $a=0$.
Then $|-a|=|-0|=|0|=|a|$.
Case 3: Suppose $a<0$.
Then $-a>0$ and $|a|=-a$.
Therefore, $|-a|=-a=|a|$.
Hence, in all cases, $|-a|=|a|$.
Proof. We prove 4.
Let $a \in F$.
To prove $-|a| \leq a \leq|a|$, we must prove $-|a| \leq a$ and $a \leq|a|$.
Either $a \geq 0$ or $a<0$.
We consider these cases separately.
Case 1: Suppose $a \geq 0$.
Then $|a|=a$ and $-a \leq 0$.
Since $a \leq a$ and $a=|a|$, then $a \leq|a|$, as desired.
Since $-a \leq 0$ and $0 \leq a$, then $-a \leq a$, so $-|a| \leq a$, as desired.
Case 2: Suppose $a<0$.
Then $|a|=-a$ and $-a>0$.
Since $a<0$ and $0<-a$, then $a<-a=|a|$, so $a \leq|a|$, as desired.
Since $a \leq a$, then $-(-a) \leq a$, so $-|a| \leq a$, as desired.
Proof. We prove 5.
Let $a, k \in F$ with $k>0$.
We must prove $|a|<k$ iff $-k<a<k$.
We prove if $|a|<k$, then $-k<a<k$.
Suppose $|a|<k$.
We must prove $-k<a$ and $a<k$.
Either $a \geq 0$ or $a<0$.
We consider these cases separately.
Case 1: Suppose $a \geq 0$.

Then $a=|a|<k$.
Therefore, $a<k$, as desired.
Since $k>0$, then $-k<0$.
Since $-k<0$ and $0 \leq a$, then $-k<a$, as desired.
Case 2: Suppose $a<0$.
Since $a<0$ and $0<k$, then $a<k$, as desired.
Since $|a|<k$, then $k>|a|=-a$, so $k>-a$.
Therefore, $-k<a$, as desired.

Conversely, we prove if $-k<a<k$, then $|a|<k$.
Suppose $-k<a<k$.
Then $-k<a$ and $a<k$.
We must prove $|a|<k$.
Either $a \geq 0$ or $a<0$.
We consider these cases separately.
Case 1: Suppose $a \geq 0$.
Then $|a|=a<k$.
Therefore, $|a|<k$, as desired.
Case 2: Suppose $a<0$.
Since $-k<a$, then $k>-a=|a|$, so $k>|a|$.
Therefore, $|a|<k$, as desired.
Proof. We prove 6.
Let $a, k \in F$ with $k>0$.
We must prove $|a|>k$ iff $a>k$ or $a<-k$.

We prove if $|a|>k$, then $a>k$ or $a<-k$.
Suppose $|a|>k$.
Either $a \geq 0$ or $a<0$.
We consider these cases separately.
Case 1: Suppose $a \geq 0$.
Then $a=|a|>k$.
Case 2: Suppose $a<0$.
Then $-a=|a|>k$, so $-a>k$.
Hence, $a<-k$.
Therefore, either $a>k$ or $a<-k$, as desired.

Conversely, to prove if $a>k$ or $a<-k$, then $|a|>k$, we must prove both if $a>k$, then $|a|>k$ and if $a<-k$, then $|a|>k$.

We first prove if $a>k$, then $|a|>k$.
Suppose $a>k$.
Since $a>k$ and $k>0$, then $a>0$.
Therefore, $|a|=a>k$.

We next prove if $a<-k$, then $|a|>k$.
Suppose $a<-k$.
Then $-a>k$.
Since $-a>k$ and $k>0$, then $-a>0$.
Hence, $a<0$.
Therefore, $|a|=-a>k$.
Proof. We prove 7.
Let $a, k \in F$ with $k>0$.
We must prove $|a|=k$ iff $a=k$ or $a=-k$.
To prove if $a=k$ or $a=-k$, then $|a|=k$, we must prove both if $a=k$, then $|a|=k$ and if $a=-k$, then $|a|=k$.

We first prove if $a=k$, then $|a|=k$.
Suppose $a=k$.
Since $k>0$, then $|k|=k$.
Therefore, $|a|=|k|=k$.
We next prove if $a=-k$, then $|a|=k$.
Suppose $a=-k$.
Since $k>0$, then $-k<0$, so $a<0$.
Therefore, $|a|=-a=k$.
Conversely, we prove if $|a|=k$, then either $a=k$ or $a=-k$.
Suppose $|a|=k$.
Either $a \geq 0$ or $a<0$.
We consider these cases separately.
Case 1: Suppose $a \geq 0$.
Then $k=|a|=a$, so $a=k$.
Case 2: Suppose $a<0$.
Then $-a=|a|=k$, so $-a=k$.
Hence, $a=-k$.
Therefore, either $a=k$ or $a=-k$, as desired.
Theorem 36. triangle inequality
Let $(F,+, \cdot, \leq)$ be an ordered field.
Let $a, b \in F$. Then $|a+b| \leq|a|+|b|$.
Proof. Let $a, b \in F$.
Since $a \in F$, then $-|a| \leq a \leq|a|$.
Since $b \in F$, then $-|b| \leq b \leq|b|$.
We add these inequalities to get $-(|a|+|b|) \leq a+b \leq|a|+|b|$.
Therefore, $|a+b| \leq|a|+|b|$.
Corollary 37. Let $(F,+, \cdot, \leq)$ be an ordered field. Then

1. $|a-b| \geq|a|-|b|$ and $|a-b| \geq|b|-|a|$ for all $a, b \in F$.
2. $||a|-|b|| \leq|a-b| \leq|a|+|b|$ for all $a, b \in F$.

Proof. We prove 1.
Let $a, b \in F$.
Since $|a|=|(a-b)+b| \leq|a-b|+|b|$, then $|a| \leq|a-b|+|b|$, so $|a|-|b| \leq|a-b|$.
Hence, $|a-b| \geq|a|-|b|$, so $|a-b| \geq|a|-|b|$ for all $a, b \in F$.
Since $|a-b| \geq|a|-|b|$ for all $a, b \in F$, then in particular, if we switch roles of a and b, we have $|b-a| \geq|b|-|a|$.

Therefore, $|a-b| \geq|b|-|a|$.
Proof. We prove 2.
Let $a, b \in F$.
We first prove $||a|-|b|| \leq|a-b|$.
Since $|a-b| \geq|a|-|b|$, then $|a|-|b| \leq|a-b|$.
Since $|a-b| \geq|b|-|a|$, then $-|a-b| \leq|a|-|b|$.
Thus, $-|a-b| \leq|a|-|b|$ and $|a|-|b| \leq|a-b|$, so $-|a-b| \leq|a|-|b| \leq|a-b|$. Therefore, $||a|-|b|| \leq|a-b|$.

We next prove $|a-b| \leq|a|+|b|$.
Since $|a-b|=|a+(-b)| \leq|a|+|-b|=|a|+|b|$, then $|a-b| \leq|a|+|b|$.
Therefore, $||a|-|b|| \leq|a-b| \leq|a|+|b|$.
Corollary 38. generalized triangle inequality
Let $(F,+, \cdot, \leq)$ be an ordered field.
Let $n \in \mathbb{N}$.
Let $x_{1}, x_{2}, \ldots, x_{n} \in F$. Then
$\left|x_{1}+x_{2}+\ldots+x_{n}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|$.
Proof. Define predicate $p(n):\left|x_{1}+x_{2}+\ldots+x_{n}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|$ over \mathbb{N}.

We prove $p(n)$ for all $n \in \mathbb{N}$ by induction on n.
Basis: Since $\left|x_{1}\right|=\left|x_{1}\right|$, then $\left|x_{1}\right| \leq\left|x_{1}\right|$.
Therefore, $p(1)$ is true.
Induction: Let $n \in \mathbb{N}$ such that $p(n)$ is true.
Then $\left|x_{1}+x_{2}+\ldots+x_{n}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|$.
To prove $p(n+1)$ is true, we must prove
$\left|x_{1}+x_{2}+\ldots+x_{n+1}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n+1}\right|$.
Observe that

$$
\begin{aligned}
\left|x_{1}+x_{2}+\ldots+x_{n+1}\right| & =\left|\left(x_{1}+x_{2}+\ldots+x_{n}\right)+x_{n+1}\right| \\
& \leq\left|x_{1}+x_{2}+\ldots+x_{n}\right|+\left|x_{n+1}\right| \\
& \leq\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|+\left|x_{n+1}\right| .
\end{aligned}
$$

Thus, $p(n+1)$ is true, so $p(n)$ implies $p(n+1)$ for all $n \in \mathbb{N}$.
Hence, by induction, $p(n)$ is true for all $n \in \mathbb{N}$.
Therefore, $\left|x_{1}+x_{2}+\ldots+x_{n}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|$ for all $n \in \mathbb{N}$.

Boundedness of sets in an ordered field

Theorem 39. A subset S of an ordered field F is bounded in F iff S is bounded above and below in F.

Proof. Let S be a subset of an ordered field F.
We prove if S is bounded in F, then S is bounded above and below in F.
Suppose S is bounded in F.
Then there exists $b \in F$ such that $|x| \leq b$ for all $x \in S$.
Thus, $-b \leq x \leq b$ for all $x \in S$, so $-b \leq x$ and $x \leq b$ for all $x \in S$.
Hence, $-b \leq x$ for all $x \in S$ and $x \leq b$ for all $x \in S$.
Since $b \in F$ and $x \leq b$ for all $x \in S$, then b is an upper bound of S, so S is bounded above in F.

Since $-b \in F$ and $-b \leq x$ for all $x \in S$, then $-b$ is a lower bound of S, so S is bounded below in F.

Conversely, we prove if S is bounded above and below in F, then S is bounded in F.

Suppose S is bounded above and below in F.
Then there is at least one upper and lower bound of S in F.
Let M be an upper bound of S in F.
Let m be a lower bound of S in F.
To prove S is bounded, we must prove there exists $b \in F$ such that $|x| \leq b$ for all $x \in S$.

Let $b=\max \{|M|,|m|\}$.
Then $|m| \leq b$ and $|M| \leq b$.
Since $|M|,|m| \in F$ and either $b=|M|$ or $b=|m|$, then $b \in F$.
Let $x \in S$.
Since m is a lower bound of S and M is an upper bound of S, then $m \leq$ $x \leq M$.

Since $|m| \leq b$, then $-|m| \geq-b$.
Observe that
$-b \leq-|m| \leq m \leq x \leq M \leq|M| \leq b$.
Hence, $-b \leq x \leq b$, so $|x| \leq b$, as desired.
Proposition 40. Every element of an ordered field is an upper and lower bound of \emptyset.

Proof. Let $(F,+, \cdot, \leq)$ be an ordered field.
Since \leq is a partial order over F, then (F, \leq) is a partially ordered set.
Since every element of a partially ordered set is an upper and lower bound of \emptyset, then in particular, every element of (F, \leq) is an upper and lower bound of \emptyset.

Proposition 41. A subset of a bounded set is bounded.
Let A be a bounded subset of an ordered field F.
If $B \subset A$, then B is bounded in F.

Proof. Suppose $B \subset A$.
Let $x \in B$.
Since $B \subset A$, then $x \in A$.
Since A is bounded in F, then there exists $M \in F$ such that $|x| \leq M$ for all $x \in A$.

Since $x \in A$, then $|x| \leq M$.
Since x is arbitrary, then $|x| \leq M$ for all $x \in B$.
Therefore, there is $M \in F$ such that $|x| \leq M$ for all $x \in B$, so B is bounded in F.

Proposition 42. A union of bounded sets is bounded.
Let A and B be subsets of an ordered field F.
If A and B are bounded, then $A \cup B$ is bounded.
Proof. Suppose A and B are bounded.
Either $A=\emptyset$ or $A \neq \emptyset$ and either $B=\emptyset$ or $B \neq \emptyset$.
Hence, either $A=\emptyset$ and $B=\emptyset$ or $A=\emptyset$ and $B \neq \emptyset$ or $A \neq \emptyset$ and $B=\emptyset$ or $A \neq \emptyset$ and $B \neq \emptyset$.

Thus, we have 4 cases to consider:
Case 1: Suppose $A=\emptyset$ and $B=\emptyset$.
Then $A \cup B=\emptyset \cup \emptyset=\emptyset$.
Since the empty set is bounded, then $A \cup B$ is bounded.
Case 2: Suppose $A=\emptyset$ and $B \neq \emptyset$.
Then $A \cup B=\emptyset \cup B=B$.
Since B is bounded, then $A \cup B$ is bounded.
Case 3: Suppose $A \neq \emptyset$ and $B=\emptyset$.
Then $A \cup B=A \cup \emptyset=A$.
Since A is bounded, then $A \cup B$ is bounded.
Case 4: Suppose $A \neq \emptyset$ and $B \neq \emptyset$.
Since $A \neq \emptyset$, then there exists $a \in A$.
Since $A \subset A \cup B$, then $a \in A \cup B$, so $A \cup B \neq \emptyset$.
Since A is bounded, then there exists $\alpha \in F$ such that $|x| \leq \alpha$ for all $x \in A$.
Since B is bounded, then there exists $\beta \in F$ such that $|x| \leq \beta$ for all $x \in B$.
Let $S=\{\alpha, \beta\}$.
Let $\gamma=\max S$.
Let $x \in A \cup B$ be given.
Then either $x \in A$ or $x \in B$.
We consider these cases separately.
Case 4a: Suppose $x \in A$.
Then $|x| \leq \alpha$.
Since $\alpha \leq \max S$, then $|x| \leq \max S$.
Case 4b: Suppose $x \in B$.
Then $|x| \leq \beta$.
Since $\beta \leq \max S$, then $|x| \leq \max S$.
Hence, in all cases, $|x| \leq \max S$.
Thus, there exists max S such that $|x| \leq \max S$ for all $x \in A \cup B$, so $A \cup B$ is bounded.

Theorem 43. uniqueness of least upper bound in an ordered field
A least upper bound of a subset of an ordered field, if it exists, is unique.
Proof. Let S be a subset of an ordered field F.
We prove if a least upper bound of S exists, then it is unique.
Suppose a least upper bound of S exists in F.
Then there is at least one least upper bound of S in F.

Uniqueness:

To prove a least upper bound is unique, let L_{1} and L_{2} be least upper bounds of S in F.

We must prove $L_{1}=L_{2}$.
Since L_{1} is a least upper bound of S, then L_{1} is an upper bound of S and $L_{1} \leq M$ for any upper bound M of S.

Since L_{2} is a least upper bound of S, then L_{2} is an upper bound of S and $L_{2} \leq M$ for any upper bound M of S.

Since $L_{1} \leq M$ for any upper bound M of S and L_{2} is an upper bound of S, then $L_{1} \leq L_{2}$.

Since $L_{2} \leq M$ for any upper bound M of S and L_{1} is an upper bound of S, then $L_{2} \leq L_{1}$.

Since $L_{1} \leq L_{2}$ and $L_{2} \leq L_{1}$, then by the anti-symmetric property of \leq, we have $L_{1}=L_{2}$.

Theorem 44. uniqueness of greatest lower bound in an ordered field
A greatest lower bound of a subset of an ordered field, if it exists, is unique.
Proof. Let S be a subset of an ordered field F.
We prove if a greatest lower bound of S exists, then it is unique.
Suppose a greatest lower bound of S exists in F.
Then there is at least one greatest lower bound of S in F.

Uniqueness:

To prove a greatest lower bound is unique, let L_{1} and L_{2} be greatest lower bounds of S in F.

We must prove $L_{1}=L_{2}$.
Since L_{1} is a greatest lower bound of S, then L_{1} is a lower bound of S and $M \leq L_{1}$ for any lower bound M of S.

Since L_{2} is a greatest lower bound of S, then L_{2} is a lower bound of S and $M \leq L_{2}$ for any lower bound M of S.

Since $M \leq L_{2}$ for any lower bound M of S and L_{1} is a lower bound of S, then $L_{1} \leq L_{2}$.

Since $M \leq L_{1}$ for any lower bound M of S and L_{2} is a lower bound of S, then $L_{2} \leq L_{1}$.

Since $L_{1} \leq L_{2}$ and $L_{2} \leq L_{1}$, then by the anti-symmetric property of \leq, we have $L_{1}=L_{2}$.

Proposition 45. 1. There is no least upper bound of \emptyset in an ordered field.
2. There is no greatest lower bound of \emptyset in an ordered field.

Proof. Let F be an ordered field.
We prove 1 by contradiction.
Suppose there is a least upper bound of \emptyset in F.
Let b be the least upper bound of \emptyset in F.
Then $b \in F$ and no element of F less than b is an upper bound of \emptyset.
Since $b-1 \in F$ and $b-1<b$, then this implies $b-1$ is not an upper bound of \emptyset.

Since every element of F is an upper bound of \emptyset and $b-1 \in F$, then $b-1$ is an upper bound of \emptyset.

Thus, we have $b-1$ is an upper bound of \emptyset and $b-1$ is not an upper bound of \emptyset, a contradiction.

Therefore, there is no least upper bound of \emptyset in F.
Proof. We prove 2 by contradiction.
Suppose there is a greatest lower bound of \emptyset in F.
Let b be the greatest lower bound of \emptyset in F.
Then $b \in F$ and no element of F greater than b is a lower bound of \emptyset.
Since $b+1 \in F$ and $b+1>b$, then this implies $b+1$ is not a lower bound of \emptyset.

Since every element of F is a lower of \emptyset and $b+1 \in F$, then $b+1$ is a lower bound of \emptyset.

Thus, we have $b+1$ is a lower bound of \emptyset and $b+1$ is not a lower bound of \emptyset, a contradiction.

Therefore, there is no greatest lower bound of \emptyset in F.
Theorem 46. approximation property of suprema and infima
Let S be a subset of an ordered field F.

1. If $\sup S$ exists, then $(\forall \epsilon>0)(\exists x \in S)(\sup S-\epsilon<x \leq \sup S)$.
2. If $\inf S$ exists, then $(\forall \epsilon>0)(\exists x \in S)(\inf S \leq x<\inf S+\epsilon)$.

Proof. We prove 1.
Suppose $\sup S$ exists.
Then $\sup S \in F$.
Let $\epsilon>0$ be given.
Then $\sup S+\epsilon>\sup S$, so $\sup S>\sup S-\epsilon$.
Since $\sup S$ is the least upper bound of S, then $\sup S \leq B$ for every upper bound B of S, so there is no upper bound B of S such that $\sup S>B$.

Since $\sup S>\sup S-\epsilon$, then this implies $\sup S-\epsilon$ cannot be an upper bound of S.

Hence, there exists $x \in S$ such that $x>\sup S-\epsilon$.
Since $\sup S$ is an upper bound of S and $x \in S$, then $x \leq \sup S$.
Therefore, $\sup S-\epsilon<x \leq \sup S$.
Proof. We prove 2.
Suppose $\inf S$ exists.
Then $\inf S \in F$.
Let $\epsilon>0$ be given.

Then $\inf S+\epsilon>\inf S$.
Since $\inf S$ is the greatest lower bound of S, then $B \leq \inf S$ for every lower bound B of S, so there is no lower bound B of S such that $B>\inf S$.

Since $\inf S+\epsilon>\inf S$, then this implies $\inf S+\epsilon$ cannot be a lower bound of S.

Hence, there exists $x \in S$ such that $x<\inf S+\epsilon$.
Since $\inf S$ is a lower bound of S and $x \in S$, then $\inf S \leq x$.
Therefore, $\inf S \leq x<\inf S+\epsilon$.
Proposition 47. Let S be a subset of an ordered field F.
If $\sup S$ and $\inf S$ exist, then $\inf S \leq \sup S$.
Proof. Suppose sup S and inf S exist.
Then $\sup S \in F$ and $\inf S \in F$ and $S \neq 0$.
Let $x \in S$ be given.
Since $\inf S$ is a lower bound of S and $x \in S$, then $\inf S \leq x$.
Since $\sup S$ is an upper bound of S and $x \in S$, then $x \leq \sup S$.
Therefore, $\inf S \leq x \leq \sup S$, so $\inf S \leq \sup S$.
Proposition 48. Let S be a subset of an ordered field F.
Let $-S=\{-s: s \in S\}$.

1. If $\inf S$ exists, then $\sup (-S)=-\inf S$.
2. If $\sup S$ exists, then $\inf (-S)=-\sup S$.

Proof. We prove 1.
Suppose inf S exists.
Then $\inf S \in F$ and $S \neq \emptyset$.
Since $S \neq \emptyset$, then there exists $s \in S$, so $-s \in-S$.
Hence, the set $-S$ is not empty.
Let $x \in-S$.
Then there exists $s \in S$ such that $x=-s$.
Since $\inf S$ is a lower bound of S and $s \in S$, then $\inf S \leq s$, so $-\inf S \geq-s$.
Thus, $-\inf S \geq x$, so $x \leq-\inf S$.
Therefore, $-\inf S$ is an upper bound of $-S$.

We prove $-\inf S$ is the least upper bound of $-S$.
Let $\epsilon>0$.
Since $\inf S$ is the greatest lower bound of S and $\inf S+\epsilon>\inf S$, then $\inf S+\epsilon$ is not a lower bound of S, so there exists $s^{\prime} \in S$ such that $s^{\prime}<\inf S+\epsilon$.

Hence, there exists $-s^{\prime} \in-S$ such that $-s^{\prime}>-\inf S-\epsilon$.
Therefore, $-\inf S$ is the least upper bound of $-S$, so $\sup (-S)=-\inf S$.
Proof. We prove 2.
Suppose $\sup S$ exists.
Then $\sup S \in F$ and $S \neq \emptyset$.
Since $S \neq \emptyset$, then there exists $s \in S$, so $-s \in-S$.
Hence, the set $-S$ is not empty.

Let $x \in-S$.
Then there exists $s \in S$ such that $x=-s$.
Since $\sup S$ is an upper bound of S and $s \in S$, then $s \leq \sup S$, so $-s \geq$ $-\sup S$.

Thus, $x \geq-\sup S$, so $-\sup S \leq x$.
Therefore, $-\sup S$ is a lower bound of $-S$.

We prove $-\sup S$ is the greatest lower bound of $-S$.
Let $\epsilon>0$.
Since $\sup S$ is the least upper bound of S and $\sup S-\epsilon<\sup S$, then $\sup S-\epsilon$ is not an upper bound of S, so there exists $s^{\prime} \in S$ such that $s^{\prime}>\sup S-\epsilon$.

Hence, there exists $-s^{\prime} \in-S$ such that $-s^{\prime}<-\sup S+\epsilon$.
Therefore, $-\sup S$ is the greatest lower bound of $-S$, so $\inf (-S)=-\sup S$.

Lemma 49. Let S be a subset of an ordered field F.
Let $k \in F$.
Let $K=\{k\}$.
Let $k+S=\{k+s: s \in S\}$.
Let $K+S=\{k+s: k \in K, s \in S\}$. Then

1. $\sup K=k$.
2. $\inf K=k$.
3. $k+S=K+S$.

Proof. We prove 1.
Since $k \leq k$, then k is an upper bound of K.
Let M be an arbitrary upper bound of K.
Then $k \leq M$.
Since k is an upper bound of K and $k \leq M$, then k is the least upper bound of K, so $k=\sup K$.

Proof. We prove 2.
Since $k \leq k$, then k is a lower bound of K.
Let M be an arbitrary lower bound of K.
Then $M \leq k$.
Since k is a lower bound of K and $M \leq k$, then k is the greatest lower bound of K, so $k=\inf K$.

Proof. We prove 3.
Let $x \in k+S$.
Then there exists $s \in S$ such that $x=k+s$.
Since $k \in K$ and $s \in S$ and $x=k+s$, then $x \in K+S$.
Therefore, $k+S$ is a subset of $K+S$.

Let $y \in K+S$.
Then there exists $s \in S$ such that $y=k+s$, so $y \in k+S$.
Therefore, $K+S$ is a subset of $k+S$.

Since $k+S$ is a subset of $K+S$ and $K+S$ is a subset of $k+S$, then $k+S=K+S$.

Proposition 50. additive property of suprema and infima
Let A and B be subsets of an ordered field F.
Let $A+B=\{a+b: a \in A, b \in B\}$.

1. If $\sup A$ and $\sup B$ exist, then $\sup (A+B)=\sup A+\sup B$.
2. If $\inf A$ and $\inf B$ exist, then $\inf (A+B)=\inf A+\inf B$.

Proof. We prove 1.
Suppose $\sup A$ and $\sup B$ exist in F.
Since $\sup A$ exists in F, then $A \neq \emptyset$, so there exists $a \in A$.
Since $\sup B$ exists in F, then $B \neq \emptyset$, so there exists $b \in B$.
Thus, there exists $a+b \in A+B$, so the set $A+B$ is not empty.
Let $c \in A+B$.
Then there exist $a \in A$ and $b \in B$ such that $c=a+b$.
Since $a \in A$ and $\sup A$ is an upper bound of A, then $a \leq \sup A$.
Since $b \in B$ and $\sup B$ is an upper bound of B, then $b \leq \sup B$.
Hence, $a+b \leq \sup A+\sup B$.
Thus, $c \leq \sup A+\sup B$.
Therefore, $\sup A+\sup B$ is an upper bound of $A+B$.
We prove $\sup A+\sup B$ is the least upper bound of $A+B$.
Let $\epsilon>0$.
Then $\frac{\epsilon}{2}>0$.
Since $\sup A$ is the least upper bound of A, then there exists $x \in A$ such that $x>\sup A-\frac{\epsilon}{2}$.

Since $\sup B$ is the least upper bound of B, then there exists $y \in B$ such that $y>\sup B-\frac{\epsilon}{2}$.

Thus, $x+y>\left(\sup A-\frac{\epsilon}{2}\right)+\left(\sup B-\frac{\epsilon}{2}\right)$.
Hence, there exists $x+y \in A+B$ such that $x+y>(\sup A+\sup B)-\epsilon$.
Therefore, $\sup A+\sup B$ is the least upper bound of $A+B$, so $\sup A+\sup B=$ $\sup (A+B)$.

Proof. We prove 2.
Suppose $\inf A$ and $\inf B$ exist in F.
Since $\inf A$ exists in F, then $A \neq \emptyset$, so there exists $a \in A$.
Since $\inf B$ exists in F, then $B \neq \emptyset$, so there exists $b \in B$.
Thus, there exists $a+b \in A+B$, so the set $A+B$ is not empty.
Let $c \in A+B$.
Then there exist $a \in A$ and $b \in B$ such that $c=a+b$.
Since $a \in A$ and $\inf A$ is a lower bound of A, then $\inf A \leq a$.
Since $b \in B$ and $\inf B$ is a lower bound of B, then $\inf B \leq b$.
Hence, $\inf A+\inf B \leq a+b$.
Thus, $\inf A+\inf B \leq c$.
Therefore, $\inf A+\inf B$ is a lower bound of $A+B$.

We prove $\inf A+\inf B$ is the greatest lower bound of $A+B$.
Let $\epsilon>0$.
Then $\frac{\epsilon}{2}>0$.
Since $\inf A$ is the greatest lower bound of A, then there exists $x \in A$ such that $x<\inf A+\frac{\epsilon}{2}$.

Since $\inf B$ is the greatest lower bound of B, then there exists $y \in B$ such that $y<\inf B+\frac{\epsilon}{2}$.

Thus, $x+y<\left(\inf A+\frac{\epsilon}{2}\right)+\left(\inf B+\frac{\epsilon}{2}\right)$.
Hence, there exists $x+y \in A+B$ such that $x+y<(\inf A+\inf B)+\epsilon$.
Therefore, $\inf A+\inf B$ is the greatest lower bound of $A+B$, so $\inf A+\inf B=$ $\inf (A+B)$.

Corollary 51. Let S be a subset of an ordered field F.
Let $k \in F$.
Let $k+S=\{k+s: s \in S\}$.

1. If $\sup S$ exists, then $\sup (k+S)=k+\sup S$.
2. If $\inf S$ exists, then $\inf (k+S)=k+\inf S$.

Proof. We prove 1.
Suppose $\sup S$ exists.
Let $K=\{k\}$.
Then $\sup K=k$.
Let $K+S=\{k+s: k \in K, s \in S\}$.
Then $k+S=K+S$.
Therefore,

$$
\begin{aligned}
k+\sup S & =\sup K+\sup S \\
& =\sup (K+S) \\
& =\sup (k+S)
\end{aligned}
$$

Proof. We prove 2.
Suppose $\inf S$ exists.
Let $K=\{k\}$.
Then $\inf K=k$.
Let $K+S=\{k+s: k \in K, s \in S\}$.
Then $k+S=K+S$.
Therefore,

$$
\begin{aligned}
k+\inf S & =\inf K+\inf S \\
& =\inf (K+S) \\
& =\inf (k+S)
\end{aligned}
$$

Corollary 52. Let A and B be subsets of an ordered field F.
Let $A-B=\{a-b: a \in A, b \in B\}$.
If $\sup A$ and $\inf B$ exist, then $\sup (A-B)=\sup A-\inf B$.
Proof. Suppose $\sup A$ and $\inf B$ exist.
Then $A \neq \emptyset$ and $B \neq \emptyset$.
Let $-B=\{-b: b \in B\}$.
Since $\inf B$ exists, then $\sup (-B)=-\inf B$.
Let $A+(-B)=\{a+b: a \in A, b \in-B\}$.

We first prove $A-B=A+(-B)$.
Let $x \in A-B$.
Then $x=a-b$ for some $a \in A$ and $b \in B$.
Since $b \in B$, then $-b \in-B$.
Since $a \in A$ and $-b \in-B$, then $a+(-b)=a-b=x \in A+(-B)$.
Thus, $A-B \subset A+(-B)$.

Let $y \in A+(-B)$.
Then $y=a+b$ for some $a \in A$ and $b \in-B$.
Since $b \in-B$, then $b=-b^{\prime}$ for some $b^{\prime} \in B$.
Since $a \in A$ and $b^{\prime} \in B$, then $a-b^{\prime}=a+b=y \in A-B$.
Thus, $A+(-B) \subset A-B$.
Since $A-B \subset A+(-B)$ and $A+(-B) \subset A-B$, then $A-B=A+(-B)$.
Therefore,

$$
\begin{aligned}
\sup (A-B) & =\sup (A+(-B)) \\
& =\sup A+\sup (-B) \\
& =\sup A-\inf B
\end{aligned}
$$

Proposition 53. comparison property of suprema and infima
Let A and B be subsets of an ordered field F such that $A \subset B$.

1. If $\sup A$ and $\sup B$ exist, then $\sup A \leq \sup B$.
2. If $\inf A$ and $\inf B$ exist, then $\inf B \leq \inf A$.

Proof. We prove 1.
Suppose $\sup A$ and $\sup B$ exist.
Since $\sup A$ exists, then A is not empty.
Let $x \in A$.
Since $A \subset B$, then $x \in B$.
Since $\sup B$ is an upper bound of B, then $x \leq \sup B$.
Hence, $\sup B$ is an upper bound of A.
Since $\sup A$ is the least upper bound of A, then $\sup A \leq \sup B$.

Proof. We prove 2.
Suppose $\inf A$ and $\inf B$ exist.
Since $\inf A$ exists, then A is not empty.
Let $x \in A$.
Since $A \subset B$, then $x \in B$.
Since $\inf B$ is a lower bound of B, then $\inf B \leq x$.
Hence, $\inf B$ is a lower bound of A.
Since $\inf A$ is the greatest lower bound of A, then $\inf B \leq \inf A$.
Proposition 54. scalar multiple property of suprema and infima
Let S be a subset of an ordered field F.
Let $k \in F$.
Let $k S=\{k s: s \in S\}$.

1. If $k>0$ and $\sup S$ exists, then $\sup (k S)=k \sup S$.
2. If $k>0$ and $\inf S$ exists, then $\inf (k S)=k \inf S$.
3. If $k<0$ and $\inf S$ exists, then $\sup (k S)=k \inf S$.
4. If $k<0$ and $\sup S$ exists, then $\inf (k S)=k \sup S$.

Proof. We prove 1.
Suppose $k>0$ and $\sup S$ exists.
Since $\sup S$ exists, then $S \neq \emptyset$, so there exists $s \in S$.
Hence, $k s \in k S$, so the set $k S$ is not empty.
Let $x \in k S$.
Then there exists $s \in S$ such that $x=k s$.
Since $\sup S$ is an upper bound of S and $s \in S$, then $s \leq \sup S$.
Since $k>0$, then $k s \leq k \sup S$, so $x \leq k \sup S$.
Therefore, $k \sup S$ is an upper bound of $k S$.

We prove $k \sup S$ is the least upper bound of $k S$.
Let $\epsilon>0$.
Since $k>0$, then $\frac{\epsilon}{k}>0$.
Since $\sup S$ is the least upper bound of S, then there exists $s^{\prime} \in S$ such that $s^{\prime}>\sup S-\frac{\epsilon}{k}$.

Since $k>0$, then there exists $k s^{\prime} \in k S$ such that $k s^{\prime}>k \sup S-\epsilon$.
Therefore, $k \sup S$ is the least upper bound of $k S$, so $k \sup S=\sup (k S)$.
Proof. We prove 2.
Suppose $k>0$ and $\inf S$ exists.
Since $\inf S$ exists, then $S \neq \emptyset$, so there exists $s \in S$.
Hence, $k s \in k S$, so the set $k S$ is not empty.
Let $x \in k S$.
Then there exists $s \in S$ such that $x=k s$.
Since $\inf S$ is a lower bound of S and $s \in S$, then $\inf S \leq s$.
Since $k>0$, then $k \inf S \leq k s$, so $k \inf S \leq x$.
Therefore, $k \inf S$ is a lower bound of $k S$.

We prove $k \inf S$ is the greatest lower bound of $k S$.
Let $\epsilon>0$.
Since $k>0$, then $\frac{\epsilon}{k}>0$.
Since $\inf S$ is the greatest lower bound of S, then there exists $s^{\prime} \in S$ such that $s^{\prime}<\inf S+\frac{\epsilon}{k}$.

Since $k>0$, then there exists $k s^{\prime} \in k S$ such that $k s^{\prime}<k \inf S+\epsilon$.
Therefore, $k \inf S$ is the greatest lower bound of $k S$, so $k \inf S=\inf (k S)$.
Proof. We prove 3.
Suppose $k<0$ and $\inf S$ exists.
Since $k<0$, then $-k>0$.
Since $-k>0$ and $\inf S$ exists, then $\inf (-k S)=-k \inf S$.
Since $\inf (-k S)$ exists, then $\sup (-(-k S))=-\inf (-k S)$.
Therefore, $\sup (k S)=-(-k \inf S)=k \inf S$.
Proof. We prove 4.
Suppose $k<0$ and $\sup S$ exists.
Since $k<0$, then $-k>0$.
Since $-k>0$ and $\sup S$ exists, then $\sup (-k S)=-k \sup S$.
Since $\sup (-k S)$ exists, then $\inf (-(-k S))=-\sup (-k S)$.
Therefore, $\inf (k S)=-(-k \sup S)=k \sup S$.
Proposition 55. sufficient conditions for existence of supremum and infimum in an ordered field

Let S be a subset of an ordered field F.

1. If $\max S$ exists, then $\sup S=\max S$.
2. If $\min S$ exists, then $\inf S=\min S$.

Proof. We prove 1.
Suppose max S exists in F.
Since (F, \leq) is a partially ordered set and $S \subset F$ and $\max S$ exists, then $\sup S=\max S$.

Proof. We prove 2.
Suppose min S exists in F.
Since (F, \leq) is a partially ordered set and $S \subset F$ and $\min S$ exists, then $\inf S=\min S$.

Proposition 56. Let S be a subset of an ordered field F.
Let $-S=\{-s: s \in S\}$.

1. If $\min S$ exists, then $\max (-S)=-\min S$.
2. If $\max S$ exists, then $\min (-S)=-\max S$.

Proof. We prove 1.
Suppose min S exists.
Then $\min S \in S$, so $-\min S \in-S$.
Hence, the set $-S$ is not empty.
Let $x \in-S$.

Then there exists $s \in S$ such that $x=-s$.
Since $\min S$ is a lower bound of S and $s \in S$, then $\min S \leq s$.
Hence, $-\min S \geq-s$, so $-\min S \geq x$.
Thus, $x \leq-\min S$.
Therefore, $-\min S$ is an upper bound of $-S$.
Since $-\min S \in-S$ and $-\min S$ is an upper bound of $-S$, then $-\min S=$ $\max (-S)$.

Proof. We prove 2.
Suppose max S exists.
Then $\max S \in S$, so $-\max S \in-S$.
Hence, the set $-S$ is not empty.
Let $x \in-S$.
Then there exists $s \in S$ such that $x=-s$.
Since $\max S$ is an upper bound of S and $s \in S$, then $s \leq \max S$.
Hence, $-s \geq-\max S$, so $x \geq-\max S$.
Thus, $-\max S \leq x$.
Therefore, $-\max S$ is a lower bound of $-S$.
Since $-\max S \in-S$ and $-\max S$ is a lower bound of $-S$, then $-\max S=$ $\min (-S)$.

Lemma 57. Let A and B be nonempty subsets of an ordered field F.
Then $u \in F$ is an upper bound of $A \cup B$ iff u is an upper bound of A and B.
Proof. We prove if u is an upper bound of $A \cup B$, then u is an upper bound of A and B.

Suppose u is an upper bound of $A \cup B$ in F.
Since A is not empty, then there is at least one element in A.
Let $x \in A$.
Since $A \subset A \cup B$, then $x \in A \cup B$.
Since u is an upper bound of $A \cup B$, then $x \leq u$.
Therefore, $x \leq u$ for all $x \in A$, so u is an upper bound of A.
Since B is not empty, then there is at least one element in B.
Let $x \in B$.
Since $B \subset A \cup B$, then $x \in A \cup B$.
Since u is an upper bound of $A \cup B$, then $x \leq u$.
Therefore, $x \leq u$ for all $x \in B$, so u is an upper bound of B.
Proof. Conversely, we prove if u is an upper bound of A and B, then u is an upper bound of $A \cup B$.

Suppose u is an upper bound of A and B in F.
Since A is not empty, then there is at least one element in A.
Let $a \in A$.
Since $A \subset A \cup B$, then $a \in A \cup B$.
Hence, $A \cup B$ is not empty.
Let $x \in A \cup B$.

Then either $x \in A$ or $x \in B$.
We consider these cases separately.
Case 1: Suppose $x \in A$.
Since u is an upper bound of A, then $x \leq u$.
Case 2: Suppose $x \in B$.
Since u is an upper bound of B, then $x \leq u$.
Hence, in all cases, $x \leq u$.
Therefore, u is an upper bound of $A \cup B$, as desired.
Proposition 58. Let A and B be subsets of an ordered field F.
If $\sup A$ and $\sup B$ exist, then $\sup (A \cup B)=\max \{\sup A, \sup B\}$.
Proof. Suppose $\sup A$ and $\sup B$ exist.
Then $A \neq \emptyset$ and $B \neq \emptyset$.
Let $S=\{\sup A, \sup B\}$.
Since $\sup A \in F$ and $\sup B \in F$, then $S \subset F$.
Since $\sup A \in S$ and $\sup B \in S$ and either $\sup A \leq \sup B$ or $\sup B \leq \sup A$, then either $\max S=\sup B$ or $\max S=\sup A$.

Hence, $\max S \in F$ and $\sup A \leq \max S$ and $\sup B \leq \max S$.
We prove $\max S$ is an upper bound of $A \cup B$.
Since $A \neq \emptyset$, let $a \in A$.
Since $A \subset A \cup B$, then $a \in A \cup B$, so $A \cup B$ is not empty.
Let $x \in A \cup B$.
Then either $x \in A$ or $x \in B$.
We consider these cases separately.
Case 1: Suppose $x \in A$.
Since $\sup A$ is an upper bound of A, then $x \leq \sup A$.
Since $\sup A \leq \max S$, then $x \leq \max S$.
Case 2: Suppose $x \in B$.
Since $\sup B$ is an upper bound of B, then $x \leq \sup B$.
Since $\sup B \leq \max S$, then $x \leq \max S$.
Hence, in all cases, $x \leq \max S$.
Since $x \leq \max S$ for all $x \in A \cup B$, then $\max S$ is an upper bound of $A \cup B$.

To prove $\max S$ is the least upper bound of $A \cup B$, let M be an arbitrary upper bound of $A \cup B$.

Since $A \neq \emptyset$ and $B \neq \emptyset$ and M is an upper bound of $A \cup B$, then M is an upper bound of A and B.

We must prove $\max S \leq M$.
Since M is an upper bound of A and $\sup A$ is the least upper bound of A, then $\sup A \leq M$.

Since M is an upper bound of B and $\sup B$ is the least upper bound of B, then $\sup B \leq M$.

Since either $\max S=\sup A$ or $\max S=\sup B$, then this implies $\max S \leq M$. Therefore, $\max S$ is the least upper bound of $A \cup B$, so $\max S=\sup (A \cup$ $B)$.

Lemma 59. Let A and B be subsets of an ordered field F.
If $\max A$ and $\max B$ exist in F, then $\max (A \cup B)=\max \{\max A, \max B\}$.
Proof. Suppose max A and max B exist in F.
Let $S=\{\max A, \max B\}$.
Since $\max A \in S$ and $\max B \in S$ and either $\max A \leq \max B$ or $\max B \leq$ $\max A$, then either max B is the maximum of S or $\max A$ is the maximum of S. Hence, max S exists.
Since either max $S=\max A$ or $\max S=\max B$ and $\max A \in A$ and max $B \in$ B, then either $\max S \in A$ or $\max S \in B$.

Hence, $\max S \in A \cup B$.
Since $\max S$ is the maximum of S, then max $A \leq \max S$ and $\max B \leq \max S$.
We prove max S is an upper bound of $A \cup B$.
Since $\max A$ is the maximum of A, then $\max A \in A$, so A is not empty.
Let $a \in A$.
Since $A \subset A \cup B$, then $a \in A \cup B$.
Hence, $A \cup B$ is not empty.
Let $x \in A \cup B$.
Then either $x \in A$ or $x \in B$.
We consider these cases separately.
Case 1: Suppose $x \in A$.
Since $\max A$ is an upper bound of A, then $x \leq \max A$.
Thus, $x \leq \max A$ and $\max A \leq \max S$, so $x \leq \max S$.
Case 2: Suppose $x \in B$.
Since max B is an upper bound of B, then $x \leq \max B$.
Thus, $x \leq \max B$ and $\max B \leq \max S$, so $x \leq \max S$.
Hence, in all cases, $x \leq \max S$.
Therefore, $\max S$ is an upper bound of $A \cup B$.
Thus, $\max S \in A \cup B$ and $\max S$ is an upper bound of $A \cup B$, so $\max S=$ $\max (A \cup B)$, as desired.

Theorem 60. Every nonempty finite subset of an ordered field has a maximum.
Proof. Let F be an ordered field.
Define the predicate $p(n)$ over \mathbb{N} to be the statement:
If a subset S of F contains exactly n elements, then $\max S$ exists.
We prove $p(n)$ is true for all $n \in \mathbb{N}$ by induction on n.
Basis:
Since F is a field, then F is not empty, so there is at least one element of F.
Let x be an element of F.
Let $S=\{x\}$.
Since $x \in F$, then $S \subset F$.
Clearly, S contains exactly one element.
Since $x \in S$ and $x \leq x$, then x is the maximum of S.
Thus, max S exists.
Therefore, $p(1)$ is true.

Thus, if S is any subset of F that contains exactly one element, then max S exists.

Induction:

Let $n \in \mathbb{N}$ such that $p(n)$ is true.
Then if a subset S of F contains exactly n elements, then max S exists.
To prove $p(n+1)$ follows, we must prove if a subset A of F contains exactly $n+1$ elements, then max A exists.

Since F is an ordered field, then F is infinite, so F contains infinitely many elements.

Hence, there exist a finite number of elements of F.
In particular, there exist exactly $n+1$ elements of F.
Let A be a subset of F that contains exactly $n+1$ elements.
Then there exist $x_{1}, \ldots, x_{n}, x_{n+1}$ elements of F such that $A=\left\{x_{1}, \ldots, x_{n}, x_{n+1}\right\}$ and $A \subset F$.

Let $B=\left\{x_{1}, \ldots, x_{n}\right\}$ and $B^{\prime}=\left\{x_{n+1}\right\}$.
Then $B \subset A$ and $B^{\prime} \subset A$ and $A=B \cup B^{\prime}$ and B contains exactly n elements and B^{\prime} contains exactly one element.

Since $B \subset A \subset F$, then $B \subset F$.
Thus, B is a subset of F and contains exactly n elements, so by the induction hypothesis, max B exists.

Since $B^{\prime} \subset A \subset F$, then $B^{\prime} \subset F$.
Thus, B^{\prime} is a subset of F and contains exactly one element, so $\max B^{\prime}$ exists.
Since $\max B$ and $\max B^{\prime}$ exist, then $\max \left(B \cup B^{\prime}\right)=\max \left\{\max B, \max B^{\prime}\right\}$.
Thus, $\max A=\max \left\{\max B, \max B^{\prime}\right\}$, so $\max A$ exists.
Thus, $p(n+1)$ is true.
Hence, $p(n)$ implies $p(n+1)$ for all $n \in \mathbb{N}$.
Since $p(1)$ is true and $p(n)$ implies $p(n+1)$ for all $n \in \mathbb{N}$, then by induction $p(n)$ is true for all $n \in \mathbb{N}$.

Thus, for all $n \in \mathbb{N}$, if a subset S of F contains exactly n elements, then $\max S$ exists.

Hence, if S is a nonempty finite subset of F, then max S exists.
Therefore, if S is a nonempty finite subset of F, then S has a maximum.
Thus, every nonempty finite subset of an ordered field has a maximum, as desired.

Complete ordered fields

Theorem 61. greatest lower bound property in a complete ordered field
Every nonempty subset of a complete ordered field F that is bounded below in F has a greatest lower bound in F.

Proof. Let S be a nonempty subset of a complete ordered field F that is bounded below in F.

We must prove $\inf S$ exists in F.
Let $-S=\{-s: s \in S\}$.

Since $S \subset F$, then $-S \subset F$.
Since S is not empty, then there is at least one element of S.
Let $x \in S$.
Then $-x \in-S$, so $-S \neq \emptyset$.
Let $t \in-S$.
Then there exists $s \in S$ such that $t=-s$.
Since S is bounded below in F, then there is a lower bound of S in F.
Let L be a lower bound of S in F.
Since L is a lower bound of S and $s \in S$, then $L \leq s$, so $-L \geq-s$.
Hence, $-L \geq t$, so $t \leq-L$ for all $t \in-S$.
Therefore, $-L$ is an upper bound of $-S$, so $-S$ is bounded above in F.
Thus, $-S$ is a nonempty subset of F bounded above in F.
Since F is complete, then $\sup (-S)$ exists in F.
Hence, $\inf (-(-S))=-\sup (-S)$, so $\inf (S)=-\sup (-S)$.
Therefore, we conclude $\inf (S)$ exists in F.
Proposition 62. There is no rational number x such that $x^{2}=2$.
Proof. Suppose there is a rational number x such that $x^{2}=2$.
Then there exist a pair of integers p and q with $q \neq 0$ such that $x=\frac{p}{q}$.
Surely, if such a pair exists, then a pair exists having no common factors greater than 1.

Therefore, assume p and q have no common factors greater than 1.
Observe that $2=x^{2}=\left(\frac{p}{q}\right)^{2}=\frac{p^{2}}{q^{2}}$.
Thus, $p^{2}=2 q^{2}$, so p^{2} is even.
Since an integer n^{2} is even if and only if n is even, then in particular, p^{2} is even iff p is even.

Thus, p is even.
Hence, $p=2 m$ for some integer m.
Therefore, $2 q^{2}=(2 m)^{2}=4 m^{2}$, so $q^{2}=2 m^{2}$.
Hence, q^{2} is even, so q is even.
Since p and q are both even, then 2 is a common factor of both p and q and is greater than 1 ; but this contradicts the assumption that p and q have no common factors greater than 1.

Hence, no such pair of integers exist.
Therefore, there is no rational number x such that $x^{2}=2$.
Proposition 63. Let A and B be subsets of \mathbb{R} such that $\sup A$ and $\sup B$ exist in \mathbb{R}.

If $A \cap B \neq \emptyset$, then $\sup (A \cap B) \leq \min \{\sup A, \sup B\}$.
Moreover, if A and B are bounded intervals such that $A \cap B \neq \emptyset$, then $\sup (A \cap B)=\min \{\sup A, \sup B\}$.

Proof. Suppose $A \cap B \neq \emptyset$.
Since $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$, then $A \cap B \subset \mathbb{R}$.
Let $S=\{\sup A, \sup B\}$.
Since $\sup A \in \mathbb{R}$ and $\sup B \in \mathbb{R}$, then $S \subset \mathbb{R}$.

Since $\sup A \in S$ and $\sup B \in S$ and either $\sup A \leq \sup B$ or $\sup B \leq \sup A$, then either $\sup A=\min S$ or $\sup B=\min S$.

Hence, $\min S \in \mathbb{R}$ and $\min S \leq \sup A$ and $\min S \leq \sup B$.
We prove $\min S$ is an upper bound of $A \cap B$ in \mathbb{R}.
Since $A \cap B$ is not empty, let $x \in A \cap B$.
Then $x \in A$ and $x \in B$.
Either $\sup A=\min S$ or $\sup B=\min S$.
We consider these cases separately.
Case 1: Suppose $\sup A=\min S$.
Since $x \in A$ and $\sup A$ is an upper bound of A, then $x \leq \sup A$.
Thus, $x \leq \min S$.
Case 2: Suppose $\sup B=\min S$.
Since $x \in B$ and $\sup B$ is an upper bound of B, then $x \leq \sup B$.
Thus, $x \leq \min S$.
Hence, in all cases, $x \leq \min S$.
Therefore, $\min S$ is an upper bound of $A \cap B$ in \mathbb{R}.
Thus, $A \cap B$ is bounded above in \mathbb{R}.
Since $A \cap B$ is a nonempty subset of \mathbb{R} and is bounded above in \mathbb{R} and \mathbb{R} is complete, then $A \cap B$ has a least upper bound in \mathbb{R}.

Therefore, $\sup (A \cap B)$ is the least upper bound of $A \cap B$ in \mathbb{R}.
Since $\sup (A \cap B)$ is the least upper bound of $A \cap B$ and $\min S$ is an upper bound of $A \cap B$, then $\sup (A \cap B) \leq \min S$, as desired.

We prove if A and B are bounded intervals such that $A \cap B \neq \emptyset$, then $\sup (A \cap B)=\min \{\sup A, \sup B\}$.

Suppose A and B are bounded intervals such that $A \cap B \neq \emptyset$.
Since A and B are intervals, then $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$.
Since A is bounded, then A is bounded above and below in \mathbb{R}.
Since B is bounded, then B is bounded above and below in \mathbb{R}.
Since $A \cap B \neq \emptyset$, then let $x \in A \cap B$.
Then $x \in A$ and $x \in B$.
Hence, A is not empty and B is not empty.
Since A is a nonempty subset of \mathbb{R} that is bounded above in \mathbb{R}, then A has a least upper bound in \mathbb{R}.

Therefore, $\sup A$ is the least upper bound of A in \mathbb{R}.
Since A is a nonempty subset of \mathbb{R} that is bounded below in \mathbb{R}, then A has a greatest lower bound in \mathbb{R}.

Therefore, $\inf A$ is the greatest lower bound of A in \mathbb{R}.
Since B is a nonempty subset of \mathbb{R} that is bounded above in \mathbb{R}, then B has a least upper bound in \mathbb{R}.

Therefore, $\sup B$ is the least upper bound of B in \mathbb{R}.
Since B is a nonempty subset of \mathbb{R} that is bounded below in \mathbb{R}, then B has a greatest lower bound in \mathbb{R}.

Therefore, $\inf B$ is the greatest lower bound of B in \mathbb{R}.
Let $S=\{\sup A, \sup B\}$.

Since A and B are subsets of \mathbb{R} and $\sup A$ and $\sup B$ exist in \mathbb{R} and $A \cap B \neq \emptyset$, then $\sup (A \cap B) \leq \min S$.

We must prove $\sup (A \cap B)=\min S$.
Since $\min S$ is an upper bound of $A \cap B$, then $A \cap B$ has at least one upper bound in \mathbb{R}.

Let K be an arbitrary upper bound of $A \cap B$ in \mathbb{R}.
Then $K \in \mathbb{R}$.
We must prove $\min S \leq K$.
Suppose for the sake of contradiction $\min S>K$.
Then $K<\min S$.
Since $x \in A \cap B$ and K is an upper bound of $A \cap B$, then $x \leq K$.
Hence, $x \leq K<\min S$.
Since $\min S \leq \sup A$, then $x \leq K<\min S \leq \sup A$, so $x \leq K<\sup A$.
Since A is an interval and $\sup A$ is the least upper bound of A, then if $x \in A$, then $c \in A$ if $x \leq c<\sup A$.

Since A is an interval and $x \in A$ and $x \leq K<\sup A$, then $K \in A$.
Since $\min S \leq \sup B$, then $x \leq K<\min S \leq \sup B$, so $x \leq K<\sup B$.
Since B is an interval and $\sup B$ is the least upper bound of B, then if $x \in B$, then $c \in B$ if $x \leq c<\sup B$.

Since B is an interval and $x \in B$ and $x \leq K<\sup B$, then $K \in B$.
Either $\sup A=\min S$ or $\sup B=\min S$.
We consider these cases separately.
Case 1: Suppose $\min S=\sup A$.
Since $K \in A$ and $K<\frac{K+\sup A}{2}<\sup A$, then $\frac{K+\sup A}{2} \in A$.
Since $\min S=\sup A$, then $K<\frac{K+\min S}{2}<\sup A$ and $\frac{K+\min S}{2} \in A$.
Thus, $\frac{K+\min S}{2} \in A$ and $\frac{K+\min S}{2}>K$.
Since $\min S \leq \sup B$, then either $\min S<\sup B$ or $\min S=\sup B$.
Suppose $\min S<\sup B$.
Since $\min S=\sup A$, then $\sup A<\sup B$.
Since $K \in B$ and $K<\min S<\sup B$, then $\min S \in B$.
Since B is an interval and $K \in B$ and $\min S \in B$ and $K<\frac{K+\min S}{2}<\min S$, then $\frac{K+\min S}{2} \in B$.

Thus, $\frac{K+\min S}{2} \in B$ and $\frac{K+\min S}{2}>K$.
Suppose $\min S=\sup B$.
Since $K \in B$ and $K<\frac{K+\sup B}{2}<\sup B$, then $\frac{K+\sup B}{2} \in B$.
Since $\sup B=\min S$, then $K<\frac{K+\min S}{2}<\sup B$ and $\frac{K+\min S}{2} \in B$.
Thus, $\frac{K+\min S}{2} \in B$ and $\frac{K+\min S}{2}>K$.
Thus, in either case $\frac{K+\min S}{2} \in B$ and $\frac{K+\min S}{2}>K$.
Since $\frac{K+\min S}{2} \in A$ and $\frac{K+\min S}{2} \in B$, then $\frac{K+\min S}{2} \in A \cap B$.
Hence, there exists $\frac{K+\min S^{2}}{2} \in A \cap B$ such that $\frac{K+\min S}{2}>K$.
But, this contradicts the fact that K is an upper bound of $A \cap B$.
Therefore, $\min S \neq \sup A$.
Case 2: Suppose $\min S=\sup B$.
Since $K \in B$ and $K<\frac{K+\sup B}{2}<\sup B$, then $\frac{K+\sup B}{2} \in B$.
Since $\min S=\sup B$, then $K<\frac{K+\min S}{2}<\sup B$ and $\frac{K+\min S}{2} \in B$.

Thus, $\frac{K+\min S}{2} \in B$ and $\frac{K+\min S}{2}>K$.
Since $\min S \leq \sup A$, then either $\min S<\sup A$ or $\min S=\sup A$.
Suppose $\min S<\sup A$.
Since $\min S=\sup B$, then $\sup B<\sup A$.
Since $K \in A$ and $K<\min S<\sup A$, then $\min S \in A$.
Since A is an interval and $K \in A$ and $\min S \in A$ and $K<\frac{K+\min S}{2}<\min S$, then $\frac{K+\min S}{2} \in A$.

Thus, $\frac{K+\min S}{2} \in A$ and $\frac{K+\min S}{2}>K$.
Suppose $\min S=\sup A$.
Since $K \in A$ and $K<\frac{K+\sup A}{2}<\sup A$, then $\frac{K+\sup A}{2} \in A$.
Since $\sup A=\min S$, then $K<\frac{K+\min S}{2}<\sup A$ and $\frac{K+\min S}{2} \in A$.
Thus, $\frac{K+\min S}{2} \in A$ and $\frac{K+\min S}{2}>K$.
Thus, in either case $\frac{K+\min S^{2}}{2} \in A$ and $\frac{K+\min S}{2}>K$.
Since $\frac{K+\min S}{2} \in A$ and $\frac{K+\min S}{2} \in B$, then $\frac{K+\min S}{2} \in A \cap B$.
Hence, there exists $\frac{K+\min S^{2}}{2} \in A \cap B$ such that $\frac{{ }^{2}+\min S}{2}>K$.
But, this contradicts the fact that K is an upper bound of $A \cap B$.
Therefore, $\min S \neq \sup A$.
Thus, in either case, $\min S \neq \sup A$ and $\min S \neq \sup B$.
This contradicts the fact that either $\min S=\sup A$ or $\min S=\sup B$.
Hence, $\min S$ cannot be greater than K.
Therefore, $\min S \leq K$, so $\min S$ is the least upper bound of $A \cap B$.
Thus, $\min S=\sup (A \cap B)$, as desired.

Archimedean ordered fields

Theorem 64. Archimedean property of \mathbb{Q}
The field $(\mathbb{Q},+, \cdot, \leq)$ is Archimedean ordered.
Proof. Let $a, b \in \mathbb{Q}$ such that $b>0$.
We must prove there exists $n \in \mathbb{N}$ such that $n>\frac{a}{b}$.
Either $a \leq 0$ or $a>0$.
We consider these cases separately.
Case 1: Suppose $a \leq 0$.
Let $n=1$.
Then $n \in \mathbb{N}$.
Since $a \leq 0$ and $b>0$, then $\frac{a}{b} \leq 0<1=n$.
Therefore, there exists $n \in \mathbb{N}$ such that $n>\frac{a}{b}$.
Case 2: Suppose $a>0$.
Since $a \in \mathbb{Q}$ and $a>0$, then there exist $r, s \in \mathbb{Z}^{+}$such that $a=\frac{r}{s}$.
Since $b \in \mathbb{Q}$ and $b>0$, then there exist $t, v \in \mathbb{Z}^{+}$such that $b=\frac{t^{s}}{v}$.
Let $n=r v(r v+1)$.
Since $r, v \in \mathbb{Z}^{+}$and \mathbb{Z}^{+}is closed under addition and multiplication, then $n \in \mathbb{Z}^{+}$, so $n \in \mathbb{N}$.

Since $s, t \in \mathbb{Z}^{+}$, then $s \geq 1$ and $t \geq 1$, so $s t \geq 1$.
Since $r, v \in \mathbb{Z}^{+}$, then $r \geq 1$ and $v \geq 1$, so $r v \geq 1$.

Since $r v \geq 1$, then $r v+1 \geq 2>1$, so $r v+1>1$.
Since $r v+1>1$ and $s t \geq 1$, then $(r v+1)$ st >1.
Since $\frac{n b}{a}=\frac{r v(r v+1) \frac{t}{v}}{\frac{r}{s}}=\frac{r(r v+1) t}{\frac{r}{s}}=\frac{r(r v+1) s t}{r}=(r v+1) s t>1$, then $\frac{n b}{a}>1$.
Since $a>0$, then $n b>a$.
Since $b>0$, then $n>\frac{a}{b}$.
Therefore, there exists $n \in \mathbb{N}$ such that $n>\frac{a}{b}$.
Theorem 65. Archimedean property of \mathbb{R}
A complete ordered field is necessarily Archimedean ordered.
Proof. Let F be a complete ordered field.
To prove F is Archimedean ordered, let $a, b \in F$ with $b>0$.
We must prove there exists $n \in \mathbb{Z}^{+}$such that $n b>a$.
We prove by contradiction.
Suppose there does not exist a positive integer n such that $n b>a$.
Then $n b \leq a$ for all positive integers n.
Let S be the set of all positive integer multiples of b.
Then $S=\left\{n b: n \in \mathbb{Z}^{+}\right\}$.
Since $b=1 b$ and $1 \in \mathbb{Z}^{+}$, then $b \in S$, so S is not empty.
Let $s \in S$.
Then there exists $n \in \mathbb{Z}^{+}$such that $s=n b$.
Since $b \in F^{+}$and $n \in \mathbb{N}$, then $s=n b \in F^{+}$.
Since $s \in F^{+}$and $F^{+} \subset F$, then $s \in F$, so $S \subset F$.
Since $n \in \mathbb{Z}^{+}$, then by hypothesis, $n b \leq a$, so $s \leq a$.
Therefore, a is an upper bound of S in F, so S is bounded above in F.
Hence, S is a nonempty subset of F that is bounded above in F.
Since F is complete, then S has a least upper bound in F.
Let $\sup S$ be the least upper bound of S in F.
Since $b>0=\sup S-\sup S$, then $\sup S+b>\sup S$, so $\sup S>\sup S-b$.
Since $\sup S-b<\sup S$, then $\sup S-b$ is not an upper bound of S, so there exists $x \in S$ such that $x>\sup S-b$.

Since $x \in S$, then there exists $m \in \mathbb{Z}^{+}$such that $x=m b$, so $m b>\sup S-b$.
Hence, $(m+1) b=m b+b>\sup S$.
Since $m+1 \in \mathbb{Z}^{+}$, then $(m+1) b \in S$.
Hence, there exists $(m+1) b \in S$ such that $(m+1) b>\sup S$.
But, this contradicts the fact that $\sup S$ is an upper bound of S.
Therefore, there does exist a positive integer n such that $n b>a$, as desired.

Theorem 66. \mathbb{N} is unbounded in an Archimedean ordered field.
Let F be an Archimedean ordered field.
Then for every $x \in F$, there exists $n \in \mathbb{N}$ such that $n>x$.
Proof. Since F is a field, then $1 \in F$, so $F \neq \emptyset$.
Let $x \in F$ be arbitrary.
Since F is Archimedean and $x \in F$ and $1>0$, then there exists $n \in \mathbb{N}$ such that $n \cdot 1>x$.

Therefore, there exists $n \in \mathbb{N}$ such that $n>x$.
Proposition 67. Let F be an Archimedean ordered field.
For every positive $\epsilon \in F$, there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<\epsilon$.
Proof. Let ϵ be a positive element of F.
Then $\epsilon>0$.
Since F is Archimedean ordered and $1 \in F$ and $\epsilon>0$, then there exists $n \in \mathbb{N}$ such that $n \epsilon>1$.

Since $n \in \mathbb{N}$, then $n>0$, so $\epsilon>\frac{1}{n}$.
Therefore, there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<\epsilon$.
Lemma 68. Each real number lies between two consecutive integers
For each real number x there is a unique integer n such that $n \leq x<n+1$.
Solution. We must prove: $(\forall x \in \mathbb{R})(\exists!n \in \mathbb{Z})(n \leq x<n+1)$.

Proof. Existence:

Let x be an arbitrary real number.
We must prove there is an integer n such that $n \leq x<n+1$.
Let $S=\{n \in \mathbb{Z}: n \leq x\}$.
Suppose for the sake of contradiction $S=\emptyset$.
Then there is no integer n such that $n \leq x$.
Hence, $n>x$ for every integer n, so for every integer $n, x<n$.
Thus, x is a lower bound of \mathbb{Z}, so \mathbb{Z} is bounded below in \mathbb{R}.
Since $\mathbb{Z} \neq \emptyset$ and \mathbb{Z} is bounded below in \mathbb{R}, then by completeness of $\mathbb{R}, \inf \mathbb{Z}$ exists.

Since $\inf \mathbb{Z}+1$ is not a lower bound of \mathbb{Z}, then there exists $t \in \mathbb{Z}$ such that $t<\inf \mathbb{Z}+1$.

Thus, $t-1<\inf \mathbb{Z}$.
Since $t \in \mathbb{Z}$, then $t-1 \in \mathbb{Z}$.
Hence, we have $t-1 \in \mathbb{Z}$ and $t-1<\inf \mathbb{Z}$.
This contradicts the fact that $\inf \mathbb{Z}$ is a lower bound of \mathbb{Z}.
Therefore, $S \neq \emptyset$.

Let $s \in S$ be given.
Then $s \in \mathbb{Z}$ and $s \leq x$.
Thus, $s \leq x$ for all $s \in S$, so x is an upper bound of S.
Hence, S is bounded above in \mathbb{R}.
Since $S \neq \emptyset$ and S is bounded above in \mathbb{R}, then by completeness of $\mathbb{R}, \sup S$ exists.

Since $\sup S-1$ is not an upper bound of S, then there exists $n \in S$ such that $n>\sup S-1$.

Thus, $n+1>\sup S$.
Since $n \in S$, then $n \in \mathbb{Z}$ and $n \leq x$.
Since $\sup S$ is an upper bound of S, then if $n \in S$, then $n \leq \sup S$.
Hence, if $n>\sup S$, then $n \notin S$.

Since $n+1>\sup S$, then we conclude $n+1 \notin S$.
Since $n+1 \in S$ iff $n+1 \in \mathbb{Z}$ and $n+1 \leq x$, then $n+1 \notin S$ iff either $n+1 \notin \mathbb{Z}$ or $n+1>x$.

Thus, either $n+1 \notin \mathbb{Z}$ or $n+1>x$.
Since $s \in \mathbb{Z}$, then $n+1 \in \mathbb{Z}$.
Hence, we conclude $n+1>x$.
Therefore, there exists $n \in \mathbb{Z}$ such that $n \leq x<n+1$.

Proof. Uniqueness:

Let $x \in \mathbb{R}$.
We must prove there is a unique integer n such that $n \leq x<n+1$.
Suppose there exist integers m and n such that $m \leq x<m+1$ and $n \leq x<$ $n+1$.

To prove uniqueness, we must prove $m=n$.
Since $m \leq x<m+1$, then $m \leq x$ and $x<m+1$.
Since $n \leq x<n+1$, then $n \leq x$ and $x<n+1$.
By trichotomy, either $m<n$ or $m=n$ or $m>n$.

Suppose $m<n$.
Then $n-m>0$.
Since m and n are integers, then $n-m \geq 1$.
Hence, $n \geq m+1$, so $m+1 \leq n$.
Since $m+1 \leq n \leq x$, then $m+1 \leq x$.
Thus, we have $m+1 \leq x$ and $m+1>x$, a violation of trichotomy.
Therefore, m cannot be less than n.

Suppose $m>n$.
Then $m-n>0$.
Since m and n are integers, then $m-n \geq 1$.
Hence, $m \geq n+1$, so $n+1 \leq m$.
Since $n+1 \leq m$ and $m \leq x$, then $n+1 \leq x$.
Thus, we have $n+1 \leq x$ and $n+1>x$, a violation of trichotomy.
Therefore, m cannot be greater than n.
Hence, we must conclude $m=n$, as desired.
Theorem 69. \mathbb{Q} is dense in \mathbb{R}
For every $a, b \in \mathbb{R}$ with $a<b$, there exists $q \in \mathbb{Q}$ such that $a<q<b$.
Proof. Let a and b be real numbers with $a<b$.
Then $b-a>0$.
By the Archimedean property of \mathbb{R}, there exists a positive integer n such that $\frac{1}{n}<b-a$.

Since $n>0$, then $1<b n-a n$, so $a n+1<b n$.
Since every real number lies between two consecutive integers, then in particular, the real number an lies between two consecutive integers.

Hence, there exists an integer m such that $m \leq a n<m+1$.

Thus, $m \leq a n$ and $a n<m+1$.
Since $m \leq a n$, then $m+1 \leq a n+1$.
Since $m+1 \leq a n+1$ and $a n+1<b n$, then $m+1<b n$.
Hence, $a n<m+1$ and $m+1<b n$.
Since $n>0$, then $a<\frac{m+1}{n}$ and $\frac{m+1}{n}<b$, so $a<\frac{m+1}{n}<b$.
Let $q=\frac{m+1}{n}$.
Since $m+1, n \in \mathbb{Z}$ and $n \neq 0$, then $q \in \mathbb{Q}$.
Therefore, there exists $q \in \mathbb{Q}$ such that $a<q<b$, as desired.

Corollary 70. between any two distinct real numbers is a nonzero rational number

For every $a, b \in \mathbb{R}$ with $a<b$, there exists $q \in \mathbb{Q}$ such that $q \neq 0$ and $a<q<b$.

Proof. Let $a, b \in \mathbb{R}$ such that $a<b$.
Either it is the case that $a<0<b$ or not.
We consider these cases separately.
Case 1: Suppose $a<0<b$.
Then $a<0$ and $0<b$.
Since \mathbb{Q} is dense in \mathbb{R} and $0<b$, then there exists $q \in \mathbb{Q}$ such that $0<q<b$.
Hence, $0<q$, so $q \neq 0$.
Since $a<0$ and $0<q<b$, then $a<0<q<b$, so $a<q<b$.
Case 2: Suppose it is not the case that $a<0<b$.
Then it is not the case that $a<0$ and $0<b$, so either $a \geq 0$ or $0 \geq b$.
We consider these cases separately.
Case 2a: Suppose $a \geq 0$.
Since \mathbb{Q} is dense in \mathbb{R} and $a<b$, then there exists $q \in \mathbb{Q}$ such that $a<q<b$.
Hence, $a<q$.
Since $0 \leq a$ and $a<q$, then $0<q$, so $q \neq 0$.
Case 2b: Suppose $0 \geq b$.
Since \mathbb{Q} is dense in \mathbb{R} and $a<b$, then there exists $q \in \mathbb{Q}$ such that $a<q<b$.
Hence, $q<b$.
Since $q<b$ and $b \leq 0$, then $q<0$, so $q \neq 0$.
Therefore, in all cases, there exists $q \in \mathbb{Q}$ such that $q \neq 0$ and $a<q<b$, as desired.

Existence of square roots in \mathbb{R}

Proposition 71. A square root of a negative real number does not exist in \mathbb{R}.
Proof. Let x be a negative real number.
Then $x \in \mathbb{R}$ and $x<0$.
Suppose a square root of x exists in \mathbb{R}.
Then there is a real number y such that $y^{2}=x$.
Hence, $y^{2}<0$.
Since \mathbb{R} is an ordered field, then $r^{2} \geq 0$ for all $r \in \mathbb{R}$.
In particular, $y^{2} \geq 0$.

Thus, we have $y^{2}<0$ and $y^{2} \geq 0$, a violation of trichotomy.
Therefore, a square root of x does not exist in \mathbb{R}.
Proposition 72. Zero is the unique square root of 0 .
Proof. Clearly, 0 is a real number and $0^{2}=0$.
Therefore, 0 is a square root of 0 .
To prove 0 is a unique square root of 0 , suppose there is a real number x that is a square root of 0 .

Then $x \in \mathbb{R}$ and $x^{2}=0$.
We must prove $x=0$.
Since \mathbb{R} is an ordered field, then $x^{2}=0$ iff $x=0$.
Since $x^{2}=0$, then we conclude $x=0$, as desired.
Lemma 73. Let F be an ordered field.
Let $a, b \in F$.
If $0<a<b$, then $0<a^{2}<a b<b^{2}$.
Proof. Suppose $0<a<b$.
Then $0<a$ and $a<b$, so $0<b$.
Since $0<a$ and $a>0$, then $a 0<a a$, so $0<a^{2}$.
Since $a<b$ and $a>0$, then $a a<a b$, so $a^{2}<a b$.
Since $a<b$ and $b>0$, then $a b<b b$, so $a b<b^{2}$.
Therefore, $0<a^{2}$ and $a^{2}<a b$ and $a b<b^{2}$, so $0<a^{2}<a b<b^{2}$, as desired.

Lemma 74. Let F be an ordered field.
Let $a \in F$.
If $|a|<\epsilon$ for all $\epsilon>0$, then $a=0$.
Proof. Suppose $|a|<\epsilon$ for all $\epsilon>0$.
Since $|a| \geq 0$, then either $|a|>0$ or $|a|=0$.
Suppose $|a|>0$.
Then $|a|<|a|$, a contradiction.
Therefore, $|a|=0$, so $a=0$, as desired.
Proof. We must prove $(\forall \epsilon>0)(|a|<\epsilon) \rightarrow(a=0)$.
We prove by contrapositive.
Suppose $a \neq 0$.
Let $\epsilon=\frac{|a|}{2}$.
Since $|a| \geq 0$ and $a \neq 0$, then $|a|>0$, so $\frac{|a|}{2}>0$.
Hence, $\epsilon>0$.
Since $1 \geq 1 / 2$ and $|a|>0$, then $|a| \geq \frac{|a|}{2}=\epsilon$.
Therefore, there exists $\epsilon>0$ such that $|a| \geq \epsilon$, as desired.
Theorem 75. existence and uniqueness of positive square roots
Let $r \in \mathbb{R}$.
A unique positive square root of r exists in \mathbb{R} iff $r>0$.

Proof. We prove if a unique positive square root of r exists in \mathbb{R}, then $r>0$.
Suppose there exists a unique positive square root of r in \mathbb{R}.
Let x be the unique positive square root of r in \mathbb{R}.
Then $x \in \mathbb{R}$ and $x>0$ and $x^{2}=r$.
Since \mathbb{R} is an ordered field and $x>0$, then $x^{2}>0$, so $r>0$, as desired.
Proof. Conversely, we prove if $r>0$, then a unique positive square root of r exists in \mathbb{R}.

Suppose $r>0$.
To prove a unique positive square root of r exists in \mathbb{R}, we must prove there exists a unique $\alpha \in \mathbb{R}$ such that $\alpha>0$ and $\alpha^{2}=r$.

Thus, we must prove:

1. Existence:

There exists $\alpha \in \mathbb{R}$ such that $\alpha>0$ and $\alpha^{2}=r$.
2. Uniqueness:

If α and β are positive square roots of r, then $\alpha=\beta$.

Proof. Uniqueness:

We prove if α and β are positive square roots of r, then $\alpha=\beta$.
Suppose α and β are positive square roots of r.
Since α is a positive square root of r, then $\alpha \in \mathbb{R}$ and $\alpha>0$ and $\alpha^{2}=r$.
Since β is a positive square root of r, then $\beta \in \mathbb{R}$ and $\beta>0$ and $\beta^{2}=r$.
Since $\alpha^{2}=r=\beta^{2}$, then $\alpha^{2}=\beta^{2}$, so $\alpha^{2}-\beta^{2}=0$.
Hence, $(\alpha+\beta)(\alpha-\beta)=0$, so either $\alpha+\beta=0$ or $\alpha-\beta=0$.
Thus, either $\alpha=-\beta$ or $\alpha=\beta$.
Suppose $\alpha=-\beta$.
Since $\beta>0$, then $-\beta<0$, so $\alpha<0$.
Thus, we have $\alpha<0$ and $\alpha>0$, a violation of trichotomy.
Hence, $\alpha \neq-\beta$.
Therefore, $\alpha=\beta$, as desired.
Proof. Existence:
We prove there exists $\alpha \in \mathbb{R}$ such that $\alpha>0$ and $\alpha^{2}=r$.
Let $S=\left\{x \in \mathbb{R}: x>0, x^{2} \leq r\right\}$.
Clearly, $S \subset \mathbb{R}$.
We prove S is not empty.
Let $A=\{1, r\}$.
Since $1 \in A$ and $r \in A$ and either $1 \leq r$ or $r \leq 1$, then either $\min A=1$ or $\min A=r$, so $\min A$ exists in \mathbb{R}.

Since $\min A$ is a lower bound of A and $1 \in A$, then $\min A \leq 1$.
Since either $\min A=1$ or $\min A=r$ and $1>0$ and $r>0$, then $\min A>0$.
Since $\min A \leq 1$ and $\min A>0$, then $(\min A)^{2} \leq \min A$.
Since $\min A$ is a lower bound of A and $r \in A$, then $\min A \leq r$.
Thus, $(\min A)^{2} \leq \min A \leq r$, so $(\min A)^{2} \leq r$.
Since $\min A>0$, then $(\min A)^{2}>0$.
Since $\min A \in \mathbb{R}$ and $(\min A)^{2}>0$ and $(\min A)^{2} \leq r$, then $\min A \in S$.
Therefore S is not empty.

Since $1 \in A$ and $r \in A$ and either $1 \leq r$ or $r \leq 1$, then either $\max A=r$ or $\max A=1$, so $\max A$ exists in \mathbb{R}.

Let $x \in \mathbb{R}$.
To prove $\max A$ is an upper bound of S, we must prove if $x \in S$, then $x \leq \max A$.

We prove by contrapositive.
Suppose $x>\max A$.
We must prove $x \notin S$.
Since $\max A$ is an upper bound of A and $1 \in A$, then $1 \leq \max A$.
Thus, $x>\max A \geq 1>0$, so $x>1$ and $x>0$ and $\max A>0$.
Since $x>\max A$ and $x>0$, then $x^{2}>x \max A$.
Since $x>1$ and $\max A>0$, then $x \max A>\max A$.
Thus, $x^{2}>x \max A>\max A$, so $x^{2}>\max A$.
Since $\max A$ is an upper bound of A and $r \in A$, then $r \leq \max A$.
Since $x^{2}>\max A$ and $\max A \geq r$, then $x^{2}>r$.
Since $x \in \mathbb{R}$ and $x^{2}>r$, then $x \notin S$, as desired.
Therefore, $\max A$ is an upper bound of S, so S is bounded above in \mathbb{R}.
Since S is a nonempty subset of \mathbb{R} and is bounded above in \mathbb{R} and \mathbb{R} is complete, then S has a least upper bound in \mathbb{R}.

Let α be the least upper bound of S in \mathbb{R}.
Then $\alpha \in \mathbb{R}$ and α is an upper bound of S.

We prove $\alpha>0$.
Since α is an upper bound of S and $\min A \in S$, then $\min A \leq \alpha$.
Since $0<\min A$ and $\min A \leq \alpha$, then $0<\alpha$, so $\alpha>0$, as desired.

We prove $\alpha^{2}=r$.
Either $\alpha^{2}<r$ or $\alpha^{2}=r$ or $\alpha^{2}>r$.

Suppose $\alpha^{2}<r$.
Let $\delta=\min \left\{1, \frac{r-\alpha^{2}}{2 \alpha+1}\right\}$.
Since $\alpha^{2}<r$, then $r-\alpha^{2}>0$.
Since $\alpha>0$, then $2 \alpha+1>0$, so $\frac{r-\alpha^{2}}{2 \alpha+1}>0$.
Thus, $\delta>0$.
We prove $\alpha+\delta \in S$.
Since $\alpha>0$ and $\delta>0$, then $\alpha+\delta>0$.
Since $\delta \leq 1$, then $0<\delta \leq 1$, so $\delta^{2} \leq \delta$.
Since $\delta \leq \frac{r-\alpha^{2}}{2 \alpha+1}$ and $2 \alpha+1>0$, then $2 \alpha \delta+\delta \leq r-\alpha^{2}$.
Thus,

$$
\begin{aligned}
(\alpha+\delta)^{2} & =\alpha^{2}+2 \alpha \delta+\delta^{2} \\
& \leq \alpha^{2}+2 \alpha \delta+\delta \\
& \leq \alpha^{2}+r-\alpha^{2} \\
& =r
\end{aligned}
$$

Since $\alpha+\delta>0$ and $(\alpha+\delta)^{2} \leq r$, then $\alpha+\delta \in S$.
Since $\delta>0$, then $\alpha+\delta>\alpha$.
Thus, there exists $\alpha+\delta \in S$ such that $\alpha+\delta>\alpha$.
This contradicts the fact that α is an upper bound of S.
Therefore, α^{2} cannot be less than r.
Suppose $\alpha^{2}>r$.
Let $\epsilon=\min \left\{\alpha, \frac{\alpha^{2}-r}{2 \alpha}\right\}$.
Since $\alpha^{2}>r$, then $\alpha^{2}-r>0$.
Since $\alpha>0$, then $\frac{\alpha^{2}-r}{2 \alpha}>0$, so $\epsilon>0$.
We prove $(\alpha-\epsilon)^{2}>r$.
Since $\epsilon \leq \frac{\alpha^{2}-r}{2 \alpha}$, then $2 \alpha \epsilon \leq \alpha^{2}-r$, so $r \leq \alpha^{2}-2 \alpha \epsilon$.
Since $\epsilon>0$, then $\epsilon^{2}>0$.
Thus,

$$
\begin{aligned}
(\alpha-\epsilon)^{2} & =\alpha^{2}-2 \alpha \epsilon+\epsilon^{2} \\
& >\alpha^{2}-2 \alpha \epsilon \\
& \geq r .
\end{aligned}
$$

Hence, $(\alpha-\epsilon)^{2}>r$.
Let $x \in S$.
Then $x>0$ and $x^{2} \leq r$.
Suppose for the sake of contradiction $x>\alpha-\epsilon$.
Since $\epsilon \leq \alpha$, then $0 \leq \alpha-\epsilon$.
Thus, $0 \leq \alpha-\epsilon<x$, so $(\alpha-\epsilon)^{2}<x^{2}$.
Since $x^{2} \leq r$, then $(\alpha-\epsilon)^{2}<r$.
But, this contradicts the fact $(\alpha-\epsilon)^{2}>r$.
Therefore, $x \leq \alpha-\epsilon$.
Thus, there exists $\epsilon>0$ such that $x \leq \alpha-\epsilon$ for each $x \in S$, so $\alpha-\epsilon$ is an upper bound of S.

Since $\alpha-\epsilon<\alpha$, then this contradicts the fact that α is the least upper bound of S.

Hence, α^{2} cannot be greater than r.
Since α^{2} cannot be less than r and α^{2} cannot be greater than r, then we must conclude $\alpha^{2}=r$.

Proposition 76. Let $x \in \mathbb{R}$.
Then $\sqrt{x} \in \mathbb{R}$ iff $x \geq 0$.
Proof. We first prove if $x \geq 0$, then $\sqrt{x} \in \mathbb{R}$.
Suppose $x \geq 0$.
Then $x>0$ or $x=0$.
We consider these cases separately.
Case 1: Suppose $x=0$.
Since $\sqrt{x}=\sqrt{0}=0$ and $0 \in \mathbb{R}$, then $\sqrt{x} \in \mathbb{R}$.
Case 2: Suppose $x>0$.

Then a unique positive square root of x exists in \mathbb{R}.
Thus, there is a unique $y \in \mathbb{R}$ such that $y^{2}=x$.
Since $x>0$ and y is a positive square root of x, then $y=\sqrt{x}$.
Since $\sqrt{x}=y$ and $y \in \mathbb{R}$, then $\sqrt{x} \in \mathbb{R}$.
Therefore, in either case, $\sqrt{x} \in \mathbb{R}$.
Proof. Conversely, we prove if $\sqrt{x} \in \mathbb{R}$, then $x \geq 0$.
Suppose $\sqrt{x} \in \mathbb{R}$.
Let $y=\sqrt{x}$.
Since y is the nonnegative square root of x, then $y \in \mathbb{R}$ and $y^{2}=x$ and $y \geq 0$.

Since $y \geq 0$, then either $y>0$ or $y=0$.
We consider these cases separately.
Case 1: Suppose $y=0$.
Then $x=y^{2}=0^{2}=0$, so $x=0$.
Case 2: Suppose $y>0$.
Since $y \in \mathbb{R}$ and $y>0$, then $y^{2}>0$.
Thus, $x=y^{2}>0$, so $x>0$.
Therefore, in either case, $x \geq 0$.
Proposition 77. Let $x \in \mathbb{R}$.
Then $\sqrt{x} \geq 0$ iff $x \geq 0$.
Proof. We first prove if $x \geq 0$, then $\sqrt{x} \geq 0$.
Suppose $x \geq 0$.
Then $x>0$ or $x=0$.
We consider these cases separately.
Case 1: Suppose $x=0$.
Then $\sqrt{x}=\sqrt{0}=0$.
Case 2: Suppose $x>0$.
Then a unique positive square root of x exists in \mathbb{R}.
Thus, there is a unique $y \in \mathbb{R}$ such that $y^{2}=x$ and $y>0$.
Since $x>0$ and y is a positive square root of x, then $y=\sqrt{x}$.
Thus, $\sqrt{x}=y>0$.
Therefore, in either case, $\sqrt{x} \geq 0$.
Proof. Conversely, we prove if $\sqrt{x} \geq 0$, then $x \geq 0$.
Suppose $\sqrt{x} \geq 0$.
Then $x>0$ or $x=0$.
We consider these cases separately.
Case 1: Suppose $\sqrt{x}=0$.
Let $y=\sqrt{x}$.
Since y is the square root of x, then $y \in \mathbb{R}$ and $y^{2}=x$.
Since $y=\sqrt{x}=0$, then $y=0$.
Thus, $x=y^{2}=y \cdot y=0 \cdot 0=0$, so $x=0$.
Case 2: Suppose $\sqrt{x}>0$.
Let $y=\sqrt{x}$.

Since y is the square root of x, then $y \in \mathbb{R}$ and $y^{2}=x$.
Since $y=\sqrt{x}>0$, then $y>0$.
Since $y \in \mathbb{R}$ and $y>0$, then $y^{2}>0$.
Thus, $x=y^{2}>0$, so $x>0$.
Therefore, in either case, $x \geq 0$.
Proposition 78. Let $a, b \in \mathbb{R}$ with $a \geq 0$ and $b \geq 0$.
Then $\sqrt{a}=\sqrt{b}$ iff $a=b$.
Proof. Since $a \geq 0$, then there exists a real number $x \geq 0$ such that $x^{2}=a$ and $x=\sqrt{a}$.

Since $b \geq 0$, then there exists a real number $y \geq 0$ such that $y^{2}=b$ and $y=\sqrt{b}$.

We prove if $\sqrt{a}=\sqrt{b}$, then $a=b$.
Suppose $\sqrt{a}=\sqrt{b}$.
Then $x=y$.
Hence, $a=x^{2}=x x=x y=y y=y^{2}=b$, so $a=b$, as desired.
Proof. Conversely, we prove if $a=b$, then $\sqrt{a}=\sqrt{b}$.
Either both $x=0$ and $y=0$, or $x \neq 0$ or $y \neq 0$.
We consider these cases separately.
Case 1: Suppose $x=0$ and $y=0$.
Then $\sqrt{a}=x=0=y=\sqrt{b}$, so $\sqrt{a}=\sqrt{b}$.
Hence, the implication if $a=b$, then $\sqrt{a}=\sqrt{b}$ is trivially true.
Case 2: Suppose either $x \neq 0$ or $y \neq 0$.
We consider these cases separately.
Case 2a: Suppose $x \neq 0$.
Since $x \geq 0$ and $x \neq 0$, then $x>0$.
Since $x>0$ and $y \geq 0$, then $x+y>0$.
Case 2b: Suppose $y \neq 0$.
Since $y \geq 0$ and $y \neq 0$, then $y>0$.
Since $x \geq 0$ and $y>0$, then $x+y>0$.
Thus, in either case, $x+y>0$, so $x+y \neq 0$.
We prove if $a=b$, then $\sqrt{a}=\sqrt{b}$ by contrapositive.
Suppose $\sqrt{a} \neq \sqrt{b}$.
Then $x \neq y$, so $x-y \neq 0$.
Since $x-y \neq 0$ and $x+y \neq 0$, then $x^{2}-y^{2}=(x-y)(x+y) \neq 0$, so $x^{2}-y^{2} \neq 0$.

Therefore, $a-b \neq 0$, so $a \neq b$, as desired.
Proposition 79. Let $a, b \in \mathbb{R}$.
If $a \geq 0$ and $b \geq 0$, then $\sqrt{a b}=\sqrt{a} \sqrt{b}$.
Proof. Suppose $a \geq 0$ and $b \geq 0$.
Then $a b \geq 0$, so the square root of $a b$ exists.
Since $a \geq 0$, then the square root of a exists, so $\sqrt{a} \geq 0$ and $\sqrt{a} \cdot \sqrt{a}=a$.
Since $b \geq 0$, then the square root of b exists, so $\sqrt{b} \geq 0$ and $\sqrt{b} \cdot \sqrt{b}=b$.

Since $\sqrt{a} \geq 0$ and $\sqrt{b} \geq 0$, then $\sqrt{a} \sqrt{b} \geq 0$.
Observe that

$$
\begin{aligned}
(\sqrt{a} \cdot \sqrt{b})^{2} & =(\sqrt{a} \cdot \sqrt{b})(\sqrt{a} \cdot \sqrt{b}) \\
& =\sqrt{a} \cdot(\sqrt{b} \cdot \sqrt{a}) \cdot \sqrt{b} \\
& =\sqrt{a} \cdot(\sqrt{a} \cdot \sqrt{b}) \cdot \sqrt{b} \\
& =(\sqrt{a} \cdot \sqrt{a})(\sqrt{b} \cdot \sqrt{b}) \\
& =a b .
\end{aligned}
$$

Since $\sqrt{a} \cdot \sqrt{b} \geq 0$ and $(\sqrt{a} \cdot \sqrt{b})^{2}=a b$ and the square root is unique, then $\sqrt{a} \cdot \sqrt{b}$ is the square root of $a b$.

Therefore, $\sqrt{a b}=\sqrt{a} \sqrt{b}$, as desired.
Proposition 80. Let $x \in \mathbb{R}$. Then

1. $\sqrt{x}=0$ iff $x=0$.
2. $\sqrt{x^{2}}=|x|$.

Proof. We prove 1.
We prove if $x=0$, then $\sqrt{x}=0$.
Suppose $x=0$.
Then $\sqrt{x}=\sqrt{0}=0$.
Conversely, we prove if $\sqrt{x}=0$, then $x=0$.
Suppose $\sqrt{x}=0$.
Then there exists $y \in \mathbb{R}$ such that $y^{2}=x$ and $y=0$.
Hence, $x=y^{2}=0^{2}=0$, so $x=0$, as desired.
Proof. We prove 2.
We must prove $\sqrt{x^{2}}=|x|$.
Either $x \geq 0$ or $x<0$.
We consider these cases separately.
Case 1: Suppose $x \geq 0$.
Then $x^{2} \geq 0$, so the square root of x^{2} exists in \mathbb{R}.
Since $|x|=x \geq 0$ and $|x|^{2}=x^{2}$ and the square root is unique, then $\sqrt{x^{2}}=$ $|x|$.

Case 2: Suppose $x<0$.
Then $x^{2}>0$, so the square root of x^{2} exists in \mathbb{R}.
Since $|x|=-x>0$ and $|x|^{2}=(-x)^{2}=x^{2}$ and the square root is unique, then $\sqrt{x^{2}}=|x|$.

Therefore, in all cases, $\sqrt{x^{2}}=|x|$, as desired.
Lemma 81. Let $x \in \mathbb{R}$.
If $x>0$, then $\sqrt{\frac{1}{x}}=\frac{1}{\sqrt{x}}$.
Proof. Suppose $x>0$.
Then $\frac{1}{x}>0$, so the square root of $\frac{1}{x}$ exists.
Since $x>0$, then $\sqrt{x}>0$, so $\frac{1}{\sqrt{x}}>0$.

Observe that

$$
\begin{aligned}
\left(\frac{1}{\sqrt{x}}\right)^{2} & =\frac{1}{\sqrt{x}} \cdot \frac{1}{\sqrt{x}} \\
& =\frac{1 \cdot 1}{\sqrt{x} \cdot \sqrt{x}} \\
& =\frac{1}{\sqrt{x \cdot x}} \\
& =\frac{1}{\sqrt{x^{2}}} \\
& =\frac{1}{|x|} \\
& =\frac{1}{x} .
\end{aligned}
$$

Since $\frac{1}{\sqrt{x}}>0$ and $\left(\frac{1}{\sqrt{x}}\right)^{2}=\frac{1}{x}$ and the square root is unique, then $\frac{1}{\sqrt{x}}$ is the square root of $\frac{1}{x}$.

Therefore, $\sqrt{\frac{1}{x}}=\frac{1}{\sqrt{x}}$.
Proposition 82. Let $a, b \in \mathbb{R}$.
If $a \geq 0$ and $b>0$, then $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$.
Proof. Suppose $a \geq 0$ and $b>0$.
Since $b>0$, then $\frac{1}{b}>0$.
Since $a \geq 0$ and $\frac{1}{b}>0$ and $b>0$, then

$$
\begin{aligned}
\sqrt{\frac{a}{b}} & =\sqrt{a \cdot \frac{1}{b}} \\
& =\sqrt{a} \cdot \sqrt{\frac{1}{b}} \\
& =\sqrt{a} \cdot \frac{1}{\sqrt{b}} \\
& =\frac{\sqrt{a}}{\sqrt{b}}
\end{aligned}
$$

Lemma 83. Let $a, b \in \mathbb{R}$.
If $0<a \leq b$, then $0<a^{2} \leq b^{2}$.
Proof. Suppose $0<a \leq b$.
Then $0<a$ and $a \leq b$.
Since $a \leq b$, then either $a<b$ or $a=b$.
We consider these cases separately.
Case 1: Suppose $a<b$.

Since $0<a$ and $a<b$, then $0<a<b$.
Therefore, $0<a^{2}<b^{2}$.
Case 2: Suppose $a=b$.
Since $a>0$, then $a^{2}>0$.
Since $b=a$, then $b^{2}=a^{2}$.
Therefore, $0<a^{2}$ and $a^{2}=b^{2}$, so $0<a^{2}=b^{2}$.
Proposition 84. Let $a, b \in \mathbb{R}$.
Then $0<a<b$ iff $0<\sqrt{a}<\sqrt{b}$.
Proof. We prove if $0<a<b$, then $0<\sqrt{a}<\sqrt{b}$.
Suppose $0<a<b$.
Then $0<a$ and $a<b$, so $0<b$.
Since $a>0$, then $\sqrt{a}>0$.
Since $b>0$, then $\sqrt{b}>0$.
Suppose $\sqrt{a} \geq \sqrt{b}$.
Then $0<\sqrt{b} \leq \sqrt{a}$.
Hence, by the previous lemma $0<(\sqrt{b})^{2} \leq(\sqrt{a})^{2}$, so $0<b \leq a$.
Thus, $b \leq a$, so $a \geq b$.
Therefore, we have $a<b$ and $a \geq b$, a violation of trichotomy.
Hence, $\sqrt{a}<\sqrt{b}$.
Thus $0<\sqrt{a}$ and $\sqrt{a}<\sqrt{b}$, so $0<\sqrt{a}<\sqrt{b}$, as desired.
Proof. Conversely, we prove if $0<\sqrt{a}<\sqrt{b}$, then $0<a<b$.
Suppose $0<\sqrt{a}<\sqrt{b}$.
Since $0<\sqrt{a}<\sqrt{b}$ and $0<\sqrt{a}<\sqrt{b}$, then $0<(\sqrt{a})^{2}<(\sqrt{b})^{2}$. Therefore, $0<a<b$, as desired.

Corollary 85. Let $x \in \mathbb{R}$.

1. If $0<x<1$, then $0<x^{2}<x<\sqrt{x}<1$.
2. If $x>1$, then $1<\sqrt{x}<x<x^{2}$.

Proof. We prove 1.
Suppose $0<x<1$.
Then $0<x$ and $x<1$.
Since $0<x$ and $x>0$, then $0<x^{2}$.
Since $x<1$ and $x>0$, then $x^{2}<x$.
Since $0<x^{2}$ and $x^{2}<x$, then $0<x^{2}<x$.
Thus, $0<\sqrt{x^{2}}<\sqrt{x}$.
Since $x>0$, then $\sqrt{x^{2}}=|x|=x$.
Hence, $0<x<\sqrt{x}$, so $x<\sqrt{x}$.
Since $0<x<1$, then $0<\sqrt{x}<\sqrt{1}$.
Thus, $0<\sqrt{x}<1$, so $\sqrt{x}<1$.
Hence, $0<x^{2}$ and $x^{2}<x$ and $x<\sqrt{x}$ and $\sqrt{x}<1$.
Therefore, $0<x^{2}<x<\sqrt{x}<1$, as desired.

Proof. We prove 2.
Suppose $x>1$.
Then $x>1>0$, so $x>0$.
Since $0<1<x$, then $0<\sqrt{1}<\sqrt{x}$.
Hence, $0<1<\sqrt{x}$, so $1<\sqrt{x}$.
Since $1<x$ and $x>0$, then $x<x^{2}$.
Since $0<x$ and $x<x^{2}$, then $0<x<x^{2}$.
Hence, $0<\sqrt{x}<\sqrt{x^{2}}=|x|=x$.
Thus, $0<\sqrt{x}<x$, so $\sqrt{x}<x$.
Thus, $1<\sqrt{x}$ and $\sqrt{x}<x$ and $x<x^{2}$.
Therefore, $1<\sqrt{x}<x<x^{2}$, as desired.
Proposition 86. the additive inverse of an irrational number is irrational

Let $a \in \mathbb{R}$.
If a is irrational, then $-a$ is irrational.
Proof. We prove by contrapositive.
Suppose $-a$ is rational.
Then $-a \in \mathbb{Q}$, so $-(-a) \in \mathbb{Q}$.
Therefore, $a \in \mathbb{Q}$, so a is rational, as desired.
Proposition 87. the sum of a rational and irrational number is irrational

Let $a, b \in \mathbb{R}$.
If a is rational and b is irrational, then $a+b$ is irrational.
Proof. We prove by contrapositive.
Suppose a is rational and $a+b$ is rational.
Since a is rational, then $a \in \mathbb{Q}$, so $-a \in \mathbb{Q}$.
Since $a+b$ is rational, then $a+b \in \mathbb{Q}$.
Hence, by closure of \mathbb{Q} under addition, $-a+(a+b)=(-a+a)+b=0+b=$ $b \in \mathbb{Q}$.

Therefore, b is rational, as desired.
Proposition 88. the reciprocal of an irrational number is irrational
Let $a \in \mathbb{R}$.
If a is irrational, then $\frac{1}{a}$ is irrational.
Proof. We prove by contrapositive.
Suppose $\frac{1}{a}$ is rational.
Then $\frac{1}{a} \in \mathbb{Q}$ and $a \neq 0$.
Hence, $\frac{1}{a} \neq 0$, so $\left(\frac{1}{a}\right)^{-1}=a \in \mathbb{Q}$.
Therefore, a is rational, as desired.
Proposition 89. the product of a nonzero rational and irrational number is irrational

Let $a, b \in \mathbb{R}$.
If a is a nonzero rational and b is irrational, then $a b$ is irrational.

Proof. We prove by contrapositive.
Suppose a is a nonzero rational and $a b$ is rational.
Since a is a nonzero rational, then $a \neq 0$ and $a \in \mathbb{Q}$, so $\frac{1}{a} \in \mathbb{Q}$.
Since $a b$ is rational, then $a b \in \mathbb{Q}$.
Hence, by closure of \mathbb{Q} under multiplication, $\frac{1}{a}(a b)=\left(\frac{1}{a} a\right) b=1 b=b \in \mathbb{Q}$.
Therefore, b is rational, as desired.

Corollary 90. the quotient of a nonzero rational and irrational num-

 ber is irrationalLet $a, b \in \mathbb{R}$.
If a is a nonzero rational and b is irrational, then $\frac{a}{b}$ is irrational.
Proof. Suppose a is a nonzero rational and b is irrational.
Since b is irrational, then $\frac{1}{b}$ is irrational.
Since a is a nonzero rational and $\frac{1}{b}$ is irrational, then $a \cdot \frac{1}{b}=\frac{a}{b}$ is irrational, as desired.

Proposition 91. $\mathbb{R}-\mathbb{Q}$ is dense in \mathbb{Q}
For every $a, b \in \mathbb{Q}$ with $a<b$, there exists $r \in \mathbb{R}-\mathbb{Q}$ such that $a<r<b$.
Proof. Let $a, b \in \mathbb{Q}$ such that $a<b$.
Then $a-\sqrt{2}<b-\sqrt{2}$.
Since \mathbb{Q} is dense in \mathbb{R}, then there exists $q \in \mathbb{Q}$ such that $a-\sqrt{2}<q<b-\sqrt{2}$.
Thus, $a<q+\sqrt{2}<b$.
Let $r=q+\sqrt{2}$.
Since q is rational and $\sqrt{2}$ is irrational, then $q+\sqrt{2}=r$ is irrational.
Therefore, $r \in \mathbb{R}-\mathbb{Q}$ and $a<r<b$, as desired.
Solution. We consider the midpoint between a and b.
Since the midpoint is equidistant from a and b and the distance between a and b is $b-a$, then the midpoint is $a+(b-a) / 2$.

Since $\sqrt{2}$ is irrational, we can adjust this slightly to create a potential irrational number $a+\frac{b-a}{2} \sqrt{2}$ between a and b.

We shall prove this number thus constructed is irrational and between a and b.

Proof. Let $a, b \in \mathbb{Q}$ with $a<b$.
Then $b-a>0$.
Let $r=a+\frac{b-a}{2} \sqrt{2}$.
We must prove $r \in \mathbb{R}$ and $r \notin \mathbb{Q}$ and $a<r$ and $r<b$.

Since $a, b \in \mathbb{Q}$, then $b-a \in \mathbb{Q}$, so $\frac{b-a}{2} \in \mathbb{Q}$.
Thus, $\frac{b-a}{2} \sqrt{2} \in \mathbb{R}$, so $a+\frac{b-a}{2} \sqrt{2}=r \in \mathbb{R}$.

We prove $r \notin \mathbb{Q}$ by contradiction.
Suppose $r \in \mathbb{Q}$.
Since $r=a+\frac{b-a}{2} \sqrt{2}$, then $r-a=\frac{b-a}{2} \sqrt{2}$, so $2(r-a)=(b-a) \sqrt{2}$.
Since $b-a>0$, then $b-a \neq 0$.
Thus, $\frac{2(r-a)}{b-a}=\sqrt{2}$.
Since $a, b, r \in \mathbb{Q}$ and $b-a \neq 0$, then by closure of \mathbb{Q} under subtraction and multiplication, $\frac{2(r-a)}{b-a} \in \mathbb{Q}$.

Hence, $\sqrt{2} \in \mathbb{Q}$.
But, this contradicts the fact that $\sqrt{2} \notin \mathbb{Q}$.
Therefore, $r \notin \mathbb{Q}$.

We prove $a<r$.
Since $r=a+\frac{b-a}{2} \sqrt{2}$, then $r-a=\frac{b-a}{2} \sqrt{2}$.
Since $b-a>0$, then $\frac{b-a}{2} \sqrt{2}>0$, so $r-a>0$.
Therefore, $r>a$, so $a<r$.

We prove $r<b$.
Since $\sqrt{2}<2$, then $\frac{\sqrt{2}}{2}<1$.
Since $b-a>0$, then we multiply by $b-a$ to get $\frac{b-a}{2} \sqrt{2}<b-a$.
Therefore, $a+\frac{b-a}{2} \sqrt{2}<b$, so $r<b$.
Proposition 92. $\mathbb{R}-\mathbb{Q}$ is dense in \mathbb{R}
For every $a, b \in \mathbb{R}$ with $a<b$, there exists $r \in \mathbb{R}-\mathbb{Q}$ such that $a<r<b$.
Proof. Let $a, b \in \mathbb{R}$ such that $a<b$.
Then $a-\sqrt{2}<b-\sqrt{2}$.
Since \mathbb{Q} is dense in \mathbb{R}, then there exists $q \in \mathbb{Q}$ such that $a-\sqrt{2}<q<b-\sqrt{2}$.
Thus, $a<q+\sqrt{2}<b$.
Let $r=q+\sqrt{2}$.
Since q is rational and $\sqrt{2}$ is irrational, then $q+\sqrt{2}=r$ is irrational.
Therefore, $r \in \mathbb{R}-\mathbb{Q}$ and $a<r<b$, as desired.

