
Continuous functions Theory

Jason Sass

June 29, 2021

Continuity

Proposition 1. characterization of continuity at a point
Let E ⊂ R.
Let f : E → R be a function and c ∈ E. Then
1. If c is not an accumulation point of E, then f is continuous at c.
2. If c is an accumulation point of E, then f is continuous at c iff the limit

of f at c exists and limx→c f(x) = f(c).

Proof. We prove 1.
Suppose c is not an accumulation point of E.
To prove f is continuous at c, let ε > 0 be given.
Since c is not an accumulation point of E, then there exists δ > 0 such that

for all x ∈ E, either x 6∈ N(c; δ) or x = c.
Let x ∈ E such that |x− c| < δ.
Since x ∈ E, then either x 6∈ N(c; δ) or x = c.
Since |x− c| < δ, then x ∈ N(c; δ).
Hence, x = c.
Therefore, |f(x)− f(c)| = |f(c)− f(c)| = 0 < ε.

Proof. We prove 2.
Suppose c is an accumulation point of E.
We must prove f is continuous at c iff the limit of f at c exists and limx→c f(x) =

f(c).
We first prove if the limit of f at c exists and limx→c f(x) = f(c), then f is

continuous at c.
Suppose the limit of f at c exists and limx→c f(x) = f(c).
Then (∀ε > 0)(∃δ > 0)(∀x ∈ E)(0 < |x− c| < δ → |f(x)− f(c)| < ε).
Hence, (∀ε > 0)(∃δ > 0)(∀x ∈ E)(|x− c| < δ → |f(x)− f(c)| < ε).
Therefore, f is continuous at c.

Conversely, we prove if f is continuous at c, then the limit of f at c exists
and limx→c f(x) = f(c).

Suppose f is continuous at c.
To prove limx→c f(x) = f(c), let ε > 0 be given.



Since f is continuous at c, then there exists δ > 0 such that for all x ∈ E, if
|x− c| < δ, then |f(x)− f(c)| < ε.

Since c is an accumulation point of E, let x ∈ E such that 0 < |x− c| < δ.
Then x ∈ E and |x− c| < δ, so |f(x)− f(c)| < ε, as desired.

Theorem 2. sequential characterization of continuity
Let E ⊂ R.
Let f : E → R be a function.
Let c ∈ E.
Then f is continuous at c iff for every sequence (xn) of points in E such

that limn→∞ xn = c, limn→∞ f(xn) = f(c).

Proof. We prove if f is continuous at c, then for every sequence (xn) of points
in E such that limn→∞ xn = c, limn→∞ f(xn) = f(c).

Suppose f is continuous at c.
Let (xn) be an arbitrary sequence of points in E such that limn→∞ xn = c.
We must prove limn→∞ f(xn) = f(c).
Let ε > 0 be given.
Since f is continuous at c, then there exists δ > 0 such that for all x ∈ E, if

|x− c| < δ, then |f(x)− f(c)| < ε.
Since limn→∞ xn = c and δ > 0, then there exists N ∈ N such that if n > N ,

then |xn − c| < δ.
Let n ∈ N such that n > N .
Then |xn − c| < δ.
Since (xn) is a sequence of points in E, then xn ∈ E for all n ∈ N.
Since n ∈ N, then xn ∈ E.
Since xn ∈ E and |xn − c| < δ, then we conclude |f(xn)− f(c)| < ε.
Therefore, limn→∞ f(xn) = f(c), as desired.

Proof. Conversely, we prove if for every sequence (xn) of points in E such that
limn→∞ xn = c implies limn→∞ f(xn) = f(c), then f is continuous at c.

We prove by contrapositive.
Suppose f is not continuous at c.
Then there exists ε0 > 0 such that for each δ > 0 there corresponds x ∈ E

such that |x− c| < δ and |f(x)− f(c)| ≥ ε0.
Let δ = 1

n for each n ∈ N.
Then for each n ∈ N, there corresponds x ∈ E such that |x − c| < 1

n and
|f(x)− f(c)| ≥ ε0.

Thus, there exists a function g : N→ R such that g(n) ∈ E and |g(n)−c| < 1
n

and |f(g(n)) − f(c)| ≥ ε0 for each n ∈ N, so there exists a sequence (xn) in R
such that xn ∈ E and |xn − c| < 1

n and |f(xn)− f(c)| ≥ ε0 for each n ∈ N.
Since xn ∈ E for each n ∈ N, then (xn) is a sequence of points in E.
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We prove limn→∞ xn = c.
Let ε > 0 be given.
Then ε 6= 0, so 1

ε ∈ R.
Hence, by the Archimedean property of R, there exists N ∈ N such that

N > 1
ε .

Let n ∈ N such that n > N .
Then n > N > 1

ε , so n > 1
ε .

Hence, ε > 1
n , so 1

n < ε.
Since n ∈ N and |xn − c| < 1

n for each n ∈ N, then |xn − c| < 1
n .

Thus, |xn − c| < 1
n < ε, so |xn − c| < ε.

Therefore, limn→∞ xn = c, as desired.

We prove limn→∞ f(xn) 6= f(c).
Let N ∈ N be given.
Let n = N + 1.
Then n ∈ N and n > N .
Since n ∈ N and |f(xn)−f(c)| ≥ ε0 for each n ∈ N, then |f(xn)−f(c)| ≥ ε0.
Thus, there exists ε0 > 0 such that for each N ∈ N, there exists n ∈ N for

which n > N and |f(xn)− f(c)| ≥ ε0.
Therefore, limn→∞ f(xn) 6= f(c).

Hence, we have shown there exists a sequence (xn) of points in E such that
limn→∞ xn = c and limn→∞ f(xn) 6= f(c), as desired.

Proposition 3. restriction of a continuous function is continuous
Let f be a real valued function of a real variable.
Let g be a restriction of f to a nonempty set E ⊂ domf .
If f is continuous, then the restriction g is continuous.

Proof. Suppose f is continuous.
To prove g is continuous, we must prove g is continuous on E.
Since E 6= ∅, let c ∈ E be arbitrary.
To prove g is continuous at c, let ε > 0 be given.
Since c ∈ E and E ⊂ domf , then c ∈ domf .
Since f is continuous and c ∈ domf , then f is continuous at c.
Thus, there exists δ > 0 such that for all x ∈ domf , if |x − c| < δ, then

|f(x)− f(c)| < ε.
Let x ∈ E such that |x− c| < δ.
Since x ∈ E and E ⊂ domf , then x ∈ domf .
Thus, x ∈ domf and |x− c| < δ, so |f(x)− f(c)| < ε.
Since g is a restriction of f to E, then g(x) = f(x) for all x ∈ E.
Since x ∈ E and c ∈ E, then g(x) = f(x) and g(c) = f(c).
Therefore, |g(x) − g(c)| = |f(x) − f(c)| < ε, so g is continuous at c, as

desired.
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Algebraic properties of continuous functions

Theorem 4. Let λ ∈ R.
Let f be a real valued function.
Let c ∈ domf .
If f is continuous at c, then λf is continuous at c.

Proof. Suppose f is continuous at c.
Since f is a real valued function, then λf is a real valued function.
Since c ∈ domf and domf = dom(λf), then c ∈ dom(λf).
Either c is an accumulation point of dom(λf) or c is not an accumulation

point of dom(λf).
We consider these cases separately.
Case 1: Suppose c is not an accumulation point of dom(λf).
Since c ∈ dom(λf) and c is not an accumulation point of dom(λf), then λf

is continuous at c.
Case 2: Suppose c is an accumulation point of dom(λf).
Since dom(λf) = domf , then c is an accumulation point of domf .
Since c ∈ domf and c is an accumulation point of domf and f is continuous

at c, then the limit of f at c exists and limx→c f(x) = f(c).
Observe that

(λf)(c) = λf(c)

= λ lim
x→c

f(x)

= lim
x→c

[λf(x)]

= lim
x→c

(λf)(x).

Since c ∈ dom(λf) and limx→c(λf)(x) = (λf)(c), then λf is continuous at
c.

Therefore, in all cases, λf is continuous at c, as desired.

Corollary 5. scalar multiple of a continuous function is continuous
Let λ ∈ R.
Let f be a real valued function.
If f is continuous, then λf is continuous.

Proof. Suppose f is continuous.
Let c ∈ dom(λf).
Since dom(λf) = domf , then c ∈ domf .
Since f is continuous and c ∈ domf , then f is continuous at c.
Therefore, λf is continuous at c, so λf is continuous.

Theorem 6. Let f and g be real valued functions.
Let c ∈ domf ∩ domg.
If f is continuous at c and g is continuous at c, then f + g is continuous at

c.
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Proof. Suppose f is continuous at c and g is continuous at c.
Since f and g are real valued functions, then f + g is a real valued function.
Since c ∈ domf∩domg and domf∩domg = dom(f+g), then c ∈ dom(f+g).
Either c is an accumulation point of dom(f + g) or c is not an accumulation

point of dom(f + g).
We consider these cases separately.
Case 1: Suppose c is not an accumulation point of dom(f + g).
Since c ∈ dom(f +g) and c is not an accumulation point of dom(f +g), then

f + g is continuous at c.
Case 2: Suppose c is an accumulation point of dom(f + g).
Since dom(f+g) = domf∩domg, then c is an accumulation point of domf∩

domg.
Since c ∈ domf ∩ domg, then c ∈ domf and c ∈ domg.
Since c is an accumulation point of domf ∩ domg and domf ∩ domg is a

subset of domf , then c is an accumulation point of domf .
Since c ∈ domf and c is an accumulation point of domf and f is continuous

at c, then the limit of f at c exists and limx→c f(x) = f(c).
Since c is an accumulation point of domf ∩ domg and domf ∩ domg is a

subset of domg, then c is an accumulation point of domg.
Since c ∈ domg and c is an accumulation point of domg and g is continuous

at c, then the limit of g at c exists and limx→c g(x) = g(c).
Observe that

(f + g)(c) = f(c) + g(c)

= lim
x→c

f(x) + lim
x→c

g(x)

= lim
x→c

[f(x) + g(x)]

= lim
x→c

(f + g)(x).

Since c ∈ dom(f + g) and limx→c(f + g)(x) = (f + g)(c), then f + g is
continuous at c.

Therefore, in all cases, f + g is continuous at c, as desired.

Corollary 7. sum of continuous functions is continuous
Let f and g be real valued functions.
If f is continuous and g is continuous, then f + g is continuous.

Proof. Suppose f is continuous and g is continuous.
Let c ∈ dom(f + g).
Since dom(f + g) = domf ∩ domg, then c ∈ domf ∩ domg, so c ∈ domf and

c ∈ domg.
Since f is continuous and c ∈ domf , then f is continuous at c.
Since g is continuous and c ∈ domg, then g is continuous at c.
Therefore, f + g is continuous at c, so f + g is continuous.
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Corollary 8. Let f and g be real valued functions.
Let c ∈ domf ∩ domg.
If f is continuous at c and g is continuous at c, then f − g is continuous at

c.

Proof. Suppose f is continuous at c and g is continuous at c.
Since c ∈ domf ∩ domg and domg = dom(−g), then c ∈ domf ∩ dom(−g).
Since c ∈ domf ∩ domg, then c ∈ domg.
Since c ∈ domg and g is continuous at c, then −g is continuous at c.
Since c ∈ domf ∩ dom(−g) and f is continuous at c and −g is continuous at

c, then f − g = f + (−g) is continuous at c, as desired.

Corollary 9. difference of continuous functions is continuous
Let f and g be real valued functions.
If f is continuous and g is continuous, then f − g is continuous.

Proof. Suppose f is continuous and g is continuous.
Let c ∈ dom(f − g).
Since dom(f − g) = domf ∩ domg, then c ∈ domf ∩ domg, so c ∈ domf and

c ∈ domg.
Since f is continuous and c ∈ domf , then f is continuous at c.
Since g is continuous and c ∈ domg, then g is continuous at c.
Therefore, f − g is continuous at c, so f − g is continuous.

Theorem 10. Let f and g be real valued functions.
Let c ∈ domf ∩ domg.
If f is continuous at c and g is continuous at c, then fg is continuous at c.

Proof. Suppose f is continuous at c and g is continuous at c.
Since f and g are real valued functions, then fg is a real valued function.
Since c ∈ domf ∩ domg and domf ∩ domg = dom(fg), then c ∈ domfg.
Either c is an accumulation point of dom(fg) or c is not an accumulation

point of dom(fg).
We consider these cases separately.
Case 1: Suppose c is not an accumulation point of dom(fg).
Since c ∈ dom(fg) and c is not an accumulation point of dom(fg), then fg

is continuous at c.
Case 2: Suppose c is an accumulation point of dom(fg).
Since dom(fg) = domf ∩ domg, then c is an accumulation point of domf ∩

domg.
Since c ∈ domf ∩ domg, then c ∈ domf and c ∈ domg.
Since c is an accumulation point of domf ∩ domg and domf ∩ domg is a

subset of domf , then c is an accumulation point of domf .
Since c ∈ domf and c is an accumulation point of domf and f is continuous

at c, then the limit of f at c exists and limx→c f(x) = f(c).
Since c is an accumulation point of domf ∩ domg and domf ∩ domg is a

subset of domg, then c is an accumulation point of domg.
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Since c ∈ domg and c is an accumulation point of domg and g is continuous
at c, then the limit of g at c exists and limx→c g(x) = g(c).

Observe that

(fg)(c) = f(c)g(c)

= lim
x→c

f(x) · lim
x→c

g(x)

= lim
x→c

[f(x)g(x)]

= lim
x→c

(fg)(x).

Since c ∈ dom(fg) and limx→c(fg)(x) = (fg)(c), then fg is continuous at c.
Therefore, in all cases, fg is continuous at c, as desired.

Corollary 11. product of continuous functions is continuous
Let f and g be real valued functions.
If f is continuous and g is continuous, then fg is continuous.

Proof. Suppose f is continuous and g is continuous.
Let c ∈ domfg.
Since domfg = domf ∩ domg, then c ∈ domf ∩ domg, so c ∈ domf and

c ∈ domg.
Since f is continuous and c ∈ domf , then f is continuous at c.
Since g is continuous and c ∈ domg, then g is continuous at c.
Therefore, fg is continuous at c, so fg is continuous.

Theorem 12. Let f and g be real valued functions.
Let c ∈ domf ∩ domg.
If f is continuous at c and g is continuous at c and g(c) 6= 0, then f

g is
continuous at c.

Proof. Suppose f is continuous at c and g is continuous at c and g(c) 6= 0.
Since f and g are real valued functions, then f

g is a real valued function.
Since c ∈ domf ∩ domg, then c ∈ domf and c ∈ domg.
Since dom f

g = domf ∩ {x ∈ domg : g(x) 6= 0} and c ∈ domf and c ∈ domg
and g(c) 6= 0, then c ∈ dom f

g .

Either c is an accumulation point of dom f
g or c is not an accumulation point

of dom f
g .

We consider these cases separately.
Case 1: Suppose c is not an accumulation point of dom f

g .

Since c ∈ dom f
g and c is not an accumulation point of dom f

g , then f
g is

continuous at c.
Case 2: Suppose c is an accumulation point of dom f

g .

Let x ∈ dom f
g .

Then x ∈ domf ∩ {x ∈ domg : g(x) 6= 0}, so x ∈ domf .
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Hence, dom f
g ⊂ domf .

Since c is an accumulation point of dom f
g and dom f

g is a subset of domf ,
then c is an accumulation point of domf .

Since c ∈ domf and c is an accumulation point of domf and f is continuous
at c, then the limit of f at c exists and limx→c f(x) = f(c).

Let x ∈ dom f
g .

Then x ∈ domf ∩ {x ∈ domg : g(x) 6= 0}, so x ∈ {x ∈ domg : g(x) 6= 0}.
Hence, x ∈ domg, so dom f

g ⊂ domg.

Since c is an accumulation point of dom f
g and dom f

g is a subset of domg,
then c is an accumulation point of domg.

Since c ∈ domg and c is an accumulation point of domg and g is continuous
at c, then the limit of g at c exists and limx→c g(x) = g(c).

Since g(c) 6= 0, then limx→c g(x) 6= 0.
Let x ∈ dom f

g .

Then x ∈ domf ∩ {x ∈ domg : g(x) 6= 0}, so x ∈ domf and x ∈ {x ∈ domg :
g(x) 6= 0}.

Thus, x ∈ domf and x ∈ domg, so x ∈ domf ∩ domg.
Hence, dom f

g ⊂ domf ∩ domg.

Since c is an accumulation point of dom f
g and dom f

g is a subset of domf ∩
domg, then c is an accumulation point of domf ∩ domg.

Thus,

f

g
(c) =

f(c)

g(c)

=
limx→c f(x)

limx→c g(x)

= lim
x→c

f(x)

g(x)

= lim
x→c

f

g
(x).

Since c ∈ dom f
g and c is an accumulation point of dom f

g and limx→c
f
g (x) =

f
g (c), then f

g is continuous at c.

Therefore, in all cases, f
g is continuous at c, as desired.

Corollary 13. quotient of continuous functions is continuous wher-
ever defined

Let f and g be real valued functions.
If f is continuous and g is continuous, then f

g is continuous for all x ∈
domf ∩ domg such that g(x) 6= 0.

Proof. Suppose f is continuous and g is continuous.
Let c ∈ domf ∩ domg such that g(c) 6= 0.
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Since c ∈ domf ∩ domg, then c ∈ domf and c ∈ domg.
We must prove f

g is continuous at c.
Since f is continuous and c ∈ domf , then f is continuous at c.
Since g is continuous and c ∈ domg, then g is continuous at c.
Since g(c) 6= 0, then f

g is continuous at c, as desired.

Theorem 14. polynomial functions are continuous
Every polynomial function is continuous.

Proof. Let p : R→ R be an arbitrary polynomial function.
To prove p is continuous, let c ∈ R be arbitrary.
We must prove p is continuous at c.
Since p is a polynomial function and c ∈ R, then limx→c p(x) = p(c).
Since c ∈ R and c is an accumulation point of R and limx→c p(x) = p(c),

then p is continuous at c, as desired.

Theorem 15. rational functions are continuous wherever defined

Let r be a rational function defined by r(x) = p(x)
q(x) such that p and q are

polynomial functions.
Then r is continuous for all x ∈ R such that q(x) 6= 0.

Proof. Since p is continuous and q is continuous, then p
q = r is continuous for

all x ∈ domp ∩ domq such that q(x) 6= 0.
Since domp ∩ domq = R ∩ R = R, then r is continuous for all x ∈ R such

that q(x) 6= 0, as desired.

Theorem 16. Let f and g be real valued functions of a real variable.
If f is continuous at c and g is continuous at f(c), then g ◦ f is continuous

at c.

Proof. Since f and g are functions, then g◦f is a function defined by (g◦f)(x) =
g(f(x)) for all x ∈ dom(g ◦ f).

Suppose f is continuous at c and g is continuous at f(c).
Since f is continuous at c, then c ∈ domf .
Since g is continuous at f(c), then f(c) ∈ domg.
Since c ∈ domf and f(c) ∈ domg, then c ∈ dom(g ◦ f).
To prove g ◦ f is continuous at c, let ε > 0 be given.
Since g is continuous at f(c), then there exists δ1 > 0 such that for all

x ∈ domg, if |x− f(c)| < δ1, then |g(x)− g(f(c))| < ε.
Since f is continuous at c and δ1 > 0, then there exists δ > 0 such that for

all x ∈ domf , if |x− c| < δ, then |f(x)− f(c)| < δ1.
Let x ∈ dom(g ◦ f) such that |x− c| < δ.
Since x ∈ dom(g ◦ f), then x ∈ domf and f(x) ∈ domg.
Since x ∈ domf and |x− c| < δ, then |f(x)− f(c)| < δ1.
Since f(x) ∈ domg and |f(x)− f(c)| < δ1, then |g(f(x))− g(f(c))| < ε.
Therefore, |(g ◦ f)(x)− (g ◦ f)(c)| < ε, so g ◦ f is continuous at c.

9



Corollary 17. composition of continuous functions is continuous
Let f and g be real valued functions of a real variable.
If f is continuous and g is continuous, then g ◦ f is continuous.

Proof. Suppose f is continuous and g is continuous.
Let c ∈ dom(g ◦ f).
Since dom(g ◦ f) = {x ∈ domf : f(x) ∈ domg}, then c ∈ domf and

f(c) ∈ domg.
Since f is continuous and c ∈ domf , then f is continuous at c.
Since g is continuous and f(c) ∈ domg, then g is continuous at f(c).
Therefore, g ◦ f is continuous at c, so g ◦ f is continuous.

Proposition 18. If f is a continuous function, then so is |f |.
Let f : E → R be a function.
Let |f | : E → R be a function defined by |f |(x) = |f(x)|.
If f is continuous, then |f | is continuous.

Proof. Suppose f is continuous.
Let c ∈ E.
Then f is continuous at c.
Let ε > 0 be given.
Then there exists δ > 0 such that for all x ∈ E, if |x − c| < δ, then

|f(x)− f(c)| < ε.
Let x ∈ E such that |x− c| < δ.
Then |f(x)−f(c)| < ε, so ||f |(x)−|f |(c)| = ||f(x)|−|f(c)|| ≤ |f(x)−f(c)| <

ε.
Therefore, |f | is continuous at c, so |f | is continuous.

Proposition 19. If f is a continuous function, then so is
√
f .

Let f : E → R be a function such that f(x) ≥ 0 for all x ∈ E.
Let
√
f be a function defined by

√
f(x) =

√
f(x) for all x ∈ E such that

f(x) ≥ 0.
If f is continuous, then

√
f is continuous.

Proof. Suppose f is continuous.
Let g(x) =

√
x.

Then g : [0,∞)→ R is a continuous function.
The domain of

√
f is the set {x ∈ E : f(x) ≥ 0}.

Since dom(g ◦ f) = {x ∈ domf : f(x) ∈ domg} = {x ∈ E : f(x) ∈ [0,∞)} =
{x ∈ E : f(x) ≥ 0}, then the domain of g ◦ f is the same as the domain of

√
f ,

so dom
√
f = dom(g ◦ f).

Let x ∈ dom(g ◦ f).
Then x ∈ E and f(x) ≥ 0.
Thus,

√
f(x) =

√
f(x) = g(f(x)) = (g ◦ f)(x), so

√
f(x) = (g ◦ f)(x).

Hence,
√
f(x) = (g ◦ f)(x) for all x ∈ dom(g ◦ f).
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Since dom
√
f = dom(g ◦ f) and

√
f(x) = (g ◦ f)(x) for all x ∈ dom(g ◦ f),

then
√
f = g ◦ f .

Since f is continuous and g is continuous and the composition of continuous
functions is continuous, then g ◦ f is continuous.

Therefore,
√
f is continuous, as desired.

Continuous functions on compact sets

Lemma 20. Bolzano-Weierstrass property of compact sets
Let E ⊂ R be a closed bounded set.
Then every sequence in E has a subsequence (yn) in E such that limn→∞ yn ∈

E.

Proof. Let (xn) be an arbitrary sequence in E.
Then xn ∈ E for all n ∈ N.
Since E is bounded, then there exists B ∈ R such that |x| ≤ B for all x ∈ E.
Let n ∈ N be given.
Then xn ∈ E, so |xn| ≤ B.
Thus, |xn| ≤ B for all n ∈ N, so (xn) is bounded in R.
Therefore, by the Bolzano-Weierstrass theorem for sequences, (xn) has a

convergent subsequence.
Let (yn) be a convergent subsequence of (xn).
Since (yn) is a subsequence of (xn), then there exists a strictly increasing

function g : N→ N such that yn = xg(n) for all n ∈ N.
Let n ∈ N be given.
Then g(n) ∈ N and yn = xg(n).
Thus, xg(n) ∈ E, so yn ∈ E.
Hence, yn ∈ E for all n ∈ N, so (yn) is a sequence in E.
Since (yn) is convergent, let c = limn→∞ yn.
We must prove c ∈ E.
We prove by contradiction.
Suppose c 6∈ E.
Since E is closed, then c is not an accumulation point of E.
Hence, there exists δ > 0 such that N ′(c; δ) ∩ E = ∅.
Since limn→∞ yn = c and δ > 0, then there exists N ∈ N such that if n > N ,

then |yn − c| < δ.
Let n ∈ N such that n > N .
Then |yn − c| < δ, so yn ∈ N(c; δ).
Since n ∈ N, then yn ∈ E.
Since c 6∈ E, then yn 6= c, so yn ∈ N ′(c; δ).
Since yn ∈ N ′(c; δ) and yn ∈ E, then yn ∈ N ′(c; δ) ∩E, so N ′(c; δ) ∩E 6= ∅.
Hence, we have N ′(c; δ) ∩ E = ∅ and N ′(c; δ) ∩ E 6= ∅, a contradiction.
Therefore, c ∈ E, as desired.

Theorem 21. Boundedness Theorem
Every real valued function continuous on a closed bounded set is bounded.
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Proof. Let E ⊂ R be a closed bounded set.
Let f : E → R be a continuous function.
We must prove f is bounded.
We prove by contradiction.
Suppose f is not bounded.
Then f is unbounded, so for every real number r, there exists x ∈ E such

that |f(x)| > r.
In particular, for every n ∈ N, there exists xn ∈ E such that |f(xn)| > n.
Thus, there exists a sequence (xn) in E such that |f(xn)| > n for all n ∈ N.
Since E is a closed bounded set and (xn) is a sequence in E, then by the

Bolzano-Weierstrass property of compact sets, there exists a subsequence (yn)
in E such that limn→∞ yn ∈ E.

Let c = limn→∞ yn.
Then c ∈ E.
Since f is continuous on E and c ∈ E, then f is continuous at c.
Since (yn) is a sequence in E and limn→∞ yn = c, then by the sequential

characterization of continuity, we conclude limn→∞ f(yn) = f(c).
Thus, the sequence (f(yn)) is convergent, so (f(yn)) is bounded.

We prove the sequence (f(yn)) is unbounded.
Let M ∈ R be given.
By the Archimedean property of R, there exists n ∈ N such that n > M .
Since (yn) is a subsequence of (xn), then there exists a strictly increasing

function g : N→ N such that yn = xg(n) for all n ∈ N.
Since g : N→ N is strictly increasing, then g(n) ≥ n for all n ∈ N.
Since n ∈ N, then g(n) ∈ N, so there exists xg(n) ∈ E such that |f(xg(n))| >

g(n).
Observe that

|f(yn)| = |f(xg(n))|
> g(n)

≥ n

> M.

Hence, |f(yn)| > M .
Thus, there exists n ∈ N such that |f(yn)| > M , so (f(yn)) is unbounded.
Hence, we have (f(yn)) is bounded and (f(yn)) is unbounded, a contradic-

tion.
Therefore, f is bounded, as desired.

Theorem 22. Extreme Value Theorem
Every real valued function continuous on a nonempty closed bounded set

attains a maximum and minimum on the set.
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Proof. Let S be a nonempty closed bounded set.
Let f : S → R be a continuous function.
To prove there exists a maximum on S, we must prove there exists c ∈ S

such that f(x) ≤ f(c) for all x ∈ S.
Let f(S) = {f(x) : x ∈ S}.
Since S 6= ∅, then there exists s ∈ S, so f(s) ∈ f(S).
Hence, f(S) 6= ∅.
Since f is continuous on S and the set S is closed and bounded, then by the

boundedness theorem, f is bounded.
Hence, f(S) is bounded, so f(S) is bounded above in R.
Since f(S) is not empty and bounded above in R, then by completeness of

R, sup f(S) exists.
Let M = sup f(S).

Suppose for the sake of contradiction M 6∈ f(S).
Then there is no x ∈ S such that f(x) = M , so f(x) 6= M for all x ∈ S.
Since M is an upper bound of f(S), then this implies f(x) < M for all

x ∈ S, so M − f(x) > 0 for all x ∈ S.
Let g = 1

M−f .

Then g : S → R is a function defined by g(x) = 1
M−f(x) for all x ∈ S.

Since M −f(x) > 0 for all x ∈ S, then 1
M−f(x) > 0 for all x ∈ S, so g(x) > 0

for all x ∈ S.
Since f is continuous on S, then−f is continuous on S, soM−f is continuous

on S.
Hence, 1

M−f is continuous on S, so g is continuous on S.

Let g(S) = {g(x) : x ∈ S}.
Since S 6= ∅, then there exists s ∈ S, so g(s) ∈ g(S).
Hence, g(S) 6= ∅.
Since g is continuous on S and the set S is closed and bounded, then by the

boundedness theorem, g is bounded.
Hence, g(S) is bounded, so g(S) is bounded above in R.
Since g(S) is not empty and bounded above in R, then by completeness of

R, sup g(S) exists.
Let M ′ = sup g(S).
Since M ′ is an upper bound of g(S), then g(x) ≤M ′ for all x ∈ S.
Let x ∈ S.
Then 0 < g(x) ≤M ′, so 0 < 1

M−f(x) ≤M
′ and 0 < M ′.

Hence, 1
M ′ ≤M − f(x), so f(x) ≤M − 1

M ′ for all x ∈ S.
Since M ′ > 0, then 1

M ′ > 0.
Thus, there exists 1

M ′ > 0 such that f(x) ≤M − 1
M ′ for all x ∈ S.

This contradicts the fact that M is the least upper bound of f(S).
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Hence, M ∈ f(S), so there exists c ∈ S such that f(c) = M .
Since M is an upper bound of f(S), then f(x) ≤M for all x ∈ S.
Therefore, there exists c ∈ S such that f(x) ≤ f(c) for all x ∈ S, so f has a

maximum on S.

Proof. Let S be a nonempty closed bounded set.
Let f : S → R be a continuous function.
To prove there exists a minimum on S, we must prove there exists c ∈ S

such that f(c) ≤ f(x) for all x ∈ S.
Let f(S) = {f(x) : x ∈ S}.
Since S 6= ∅, then there exists s ∈ S, so f(s) ∈ f(S).
Hence, f(S) 6= ∅.
Since f is continuous on S and the set S is closed and bounded, then by the

boundedness theorem, f is bounded.
Hence, f(S) is bounded, so f(S) is bounded below in R.
Since f(S) is not empty and bounded below in R, then by completeness of

R, inf f(S) exists.
Let m = inf f(S).

Suppose for the sake of contradiction m 6∈ f(S).
Then there is no x ∈ S such that f(x) = m, so f(x) 6= m for all x ∈ S.
Since m is a lower bound of f(S), then this implies m < f(x) for all x ∈ S,

so m− f(x) < 0 for all x ∈ S.
Let g = 1

m−f .

Then g : S → R is a function defined by g(x) = 1
m−f(x) for all x ∈ S.

Since m− f(x) < 0 for all x ∈ S, then 1
m−f(x) < 0 for all x ∈ S, so g(x) < 0

for all x ∈ S.
Since f is continuous on S, then m − f is continuous on S, so 1

m−f is
continuous on S.

Hence, g is continuous on S.
Let g(S) = {g(x) : x ∈ S}.
Since S 6= ∅, then there exists s ∈ S, so g(s) ∈ g(S).
Hence, g(S) 6= ∅.
Since g is continuous on S and the set S is closed and bounded, then by the

boundedness theorem, g is bounded.
Hence, g(S) is bounded, so g(S) is bounded below in R.
Since g(S) is not empty and bounded below in R, then by completeness of

R, inf g(S) exists.
Let m′ = inf g(S).
Since m′ is a lower bound of g(S), then m′ ≤ g(x) for all x ∈ S.
Let x ∈ S.
Then m′ ≤ g(x) < 0, so m′ ≤ 1

m−f(x) < 0 and m′ < 0.

Since m− f(x) < 0, then m′(m− f(x)) ≥ 1.
Since m′ < 0, then m− f(x) ≤ 1

m′ , so m− 1
m′ ≤ f(x).

Hence, f(x) ≥ m− 1
m′ = m+ −1

m′ , so f(x) ≥ m+ −1
m′ for all x ∈ S.
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Since m′ < 0, then −1m′ > 0.
Thus, there exists −1m′ > 0 such that f(x) ≥ m+ −1

m′ for all x ∈ S.
This contradicts the fact that m is the greatest lower bound of f(S).

Hence, m ∈ f(S), so there exists c ∈ S such that f(c) = m.
Since m is a lower bound of f(S), then m ≤ f(x) for all x ∈ S.
Therefore, there exists c ∈ S such that f(c) ≤ f(x) for all x ∈ S, so f has a

minimum on S.

Lemma 23. Let f be a continuous real valued function.
Let x0, c, d be real numbers such that x0 ∈ domf and c < f(x0) < d.
Then there exists a positive real number δ such that c < f(x) < d for all

x ∈ N(x0; δ) ∩ domf .

Proof. Since c < f(x0) < d, then c < f(x0) and f(x0) < d, so f(x0) − c > 0
and d− f(x0) > 0.

Since f is continuous and x0 ∈ domf , then f is continuous at x0.
Let ε = min{f(x0)− c, d− f(x0)}.
Then ε ≤ f(x0)−c and ε ≤ d−f(x0) and either ε = f(x0)−c or ε = d−f(x0).
Since f(x0)− c > 0 and d− f(x0) > 0, then ε > 0.
Since f is continuous at x0 and ε > 0, then there exists δ > 0 such that for

all x ∈ domf , if |x− x0| < δ, then |f(x)− f(x0)| < ε.
Since x0 ∈ N(x0; δ) and x0 ∈ domf , then x0 ∈ N(x0; δ)∩domf , so N(x0; δ)∩

domf 6= ∅.
Let x ∈ N(x0; δ) ∩ domf .
Then x ∈ N(x0; δ) and x ∈ domf , so |x− x0| < δ.
Hence, |f(x)− f(x0)| < ε.
Either f(x) < f(x0) or f(x) ≥ f(x0).
We consider these cases separately.
Case 1: Suppose f(x) < f(x0).
Then f(x0)− f(x) > 0.
Since f(x) < f(x0) and f(x0) < d, then f(x) < d.
Since |f(x)− f(x0)| < ε and ε ≤ f(x0)− c, then |f(x)− f(x0)| < f(x0)− c,

so |f(x0)− f(x)| < f(x0)− c.
Hence, f(x0)− f(x) < f(x0)− c, so −f(x) < −c.
Thus, f(x) > c.
Therefore, c < f(x) < d.
Case 2: Suppose f(x) ≥ f(x0).
Then f(x)− f(x0) ≥ 0.
Since c < f(x0) and f(x0) ≤ f(x), then c < f(x).
Since |f(x)− f(x0)| < ε and ε ≤ d− f(x0), then |f(x)− f(x0)| < d− f(x0).
Hence, f(x)− f(x0) < d− f(x0), so f(x) < d.
Therefore, c < f(x) < d.
Thus, in all cases, c < f(x) < d, as desired.
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Theorem 24. Intermediate Value Theorem
Let a, b ∈ R.
Let f be a real valued function continuous on the closed interval [a, b].
For every real number k such that f(a) < k < f(b), there exists c ∈ (a, b)

such that f(c) = k.

Proof. Let k be an arbitrary real number such that f(a) < k < f(b).
Then f(a) < k and k < f(b).
Let S = {x ∈ [a, b] : f(x) < k}.
Since a ∈ [a, b] and f(a) < k, then a ∈ S, so S 6= ∅.
Let x ∈ S.
Then x ∈ [a, b], so a ≤ x ≤ b.
Hence, x ≤ b, so b is an upper bound of S.
Thus, S is bounded above in R.
Since S is not empty and bounded above in R, then by the completeness of

R, supS exists.
Let c = supS.
Since c is the least upper bound of S and b is an upper bound of S, then

c ≤ b.
Since a ∈ S and c is an upper bound of S, then a ≤ c.
Hence, a ≤ c ≤ b, so c ∈ [a, b].
Since f is a function and c ∈ [a, b], then f(c) ∈ R.
We must prove f(c) = k.

Suppose for the sake of contradiction f(c) < k.
Then f(c) < k < f(b), so f(c) < f(b).
Hence, f(c) 6= f(b).
Since f is a function, then c 6= b.
Since c ≤ b and c 6= b, then c < b.
Since f(c) < k, then by the previous lemma, there exists δ > 0 such that

f(x) < k for all x ∈ N(x0; δ) ∩ [a, b].
Let m = min{b, c+ δ}.
Then m ≤ b and m ≤ c+ δ and either m = b or m = c+ δ.
Since c < b and c < c+ δ, then c < m.
Let x = c+m

2 .
Then 2x = c+m.
Since c < m, then 2c < c+m < 2m, so 2c < 2x < 2m.
Hence, c < x < m, so c < x and x < m.
Since x < m ≤ c+ δ, then x < c+ δ, so x− c < δ.
Since x > c, then x− c > 0, so |x− c| = x− c < δ.
Thus, x ∈ N(c; δ).
Since a ≤ c < x < m ≤ b, then a < x < b, so x ∈ [a, b].
Since x ∈ N(c; δ) and x ∈ [a, b], then x ∈ N(c; δ) ∩ [a, b], so f(x) < k.
Since x ∈ [a, b] and f(x) < k, then x ∈ S.
Thus, there exists x ∈ S such that x > c.
This contradicts the fact that c is an upper bound of S.
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Therefore, f(c) cannot be less than k.

Suppose for the sake of contradiction f(c) > k.
Since k < f(c), then by the previous lemma, there exists δ > 0 such that

k < f(x) for all x ∈ N(c; δ) ∩ [a, b].
Since f(c) > k, then c 6∈ S.
Since c is an upper bound of S, then this implies x < c for all x ∈ S.
Since c is the least upper bound of S and δ > 0, then there exists x ∈ S such

that x > c− δ.
Since x ∈ S, then x ∈ [a, b] and f(x) < k and x < c.
Since x < c, then c− x > 0.
Since x > c− δ, then δ > c− x.
Thus, |x− c| = |c− x| = c− x < δ, so x ∈ N(c; δ).
Since x ∈ N(c; δ) and x ∈ [a, b], then x ∈ N(c; δ) ∩ [a, b], so k < f(x).
Thus, we have f(x) < k and f(x) > k, a contradiction.
Therefore, f(c) cannot be greater than k.

Since f(c) ∈ R and f(c) cannot be less than k and f(c) cannot be greater
than k, then f(c) = k.

Since c = b implies f(c) = f(b), then f(c) 6= f(b) implies c 6= b.
Since f(c) = k < f(b), then f(c) 6= f(b), so c 6= b.
Since c ≤ b and c 6= b, then c < b.
Since c = a implies f(c) = f(a), then f(c) 6= f(a) implies c 6= a.
Since f(c) = k > f(a), then f(c) 6= f(a), so c 6= a.
Since c ≥ a and c 6= a, then c > a.
Therefore, a < c < b, so c ∈ (a, b).
Thus, there exists c ∈ (a, b) such that f(c) = k, as desired.

Lemma 25. Let I be an interval and a ∈ I and b ∈ I and a < b.
Then [a, b] ⊂ I.

Proof. Let x ∈ [a, b].
Then a ≤ x ≤ b, so either x = a or x = b or a < x < b.
We consider these cases separately.
Case 1: Suppose x = a.
Since a ∈ I, then x ∈ I.
Case 2: Suppose x = b.
Since b ∈ I, then x ∈ I.
Case 3: Suppose a < x < b.
Since a ∈ I and b ∈ I and a < x < b and I is an interval, then x ∈ I.
Therefore, in all cases, x ∈ I, so [a, b] ⊂ I, as desired.

Theorem 26. intervals are preserved by continuous functions
Let f be a real valued function continuous on an interval I.
Then f(I) is an interval.
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Proof. Either f is constant or not.
We consider these cases separately.
Case 1: Suppose f is constant.
Then there exists k ∈ R such that f(x) = k for all x ∈ I, so f(I) = {k}.
Thus, f(I) is a singleton set.
Since a singleton set is an interval, then f(I) is an interval.
Case 2: Suppose f is not constant.
Then there exist at least two distinct elements of f(I).
Thus, there exist real numbers y1 ∈ f(I) and y2 ∈ f(I) such that y1 6= y2.
Let y1, y2 ∈ R such that y1 ∈ f(I) and y2 ∈ f(I) and y1 6= y2.
Since y1 6= y2, then either y1 < y2 or y1 > y2.
Without loss of generality, assume y1 < y2.
By the density of R, there exists a real number y0 such that y1 < y0 < y2.
Since y1 ∈ f(I), then there exists x1 ∈ I such that f(x1) = y1.
Since y2 ∈ f(I), then there exists x2 ∈ I such that f(x2) = y2.
Thus, f(x1) < y0 < f(x2) and f(x1) < f(x2).
Since f(x1) < f(x2), then f(x1) 6= f(x2).
Since f is a function, then this implies x1 6= x2.
Since I is an interval and x1 ∈ I and x2 ∈ I and x1 6= x2, then by the

previous lemma, the closed, bounded interval with endpoints x1 and x2 is a
subset of I.

Since f is continuous on I, then the restriction of f to the closed, bounded
interval with endpoints x1 and x2 is continuous.

Since f(x1) < y0 < f(x2), then by IVT, there exists x0 between x1 and x2
such that f(x0) = y0.

Since x1 ∈ I and x2 ∈ I and x0 is between x1 and x2 and I is an interval,
then x0 ∈ I.

Thus, there exists x0 ∈ I such that f(x0) = y0, so y0 ∈ f(I).
Since y1 ∈ f(I) and y2 ∈ f(I) and y1 < y0 < y2 implies y0 ∈ f(I), then f(I)

is an interval.

Uniform continuity

Proposition 27. uniform continuity implies continuity
Let E ⊂ R.
Let f : E → R be a function.
If f is uniformly continuous on E, then f is continuous on E.

Proof. Suppose f is uniformly continuous on E.
Let c be an arbitrary element of E.
Let ε > 0 be given.
Since f is uniformly continuous on E, then there exists δ > 0 such that for

all x, y ∈ E, if |x− y| < δ, then |f(x)− f(y)| < ε.
Let x ∈ E such that |x− c| < δ.
Since x ∈ E and c ∈ E and |x− c| < δ, then |f(x)− f(c)| < ε.
Therefore, f is continuous at c, so f is continuous on E.
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Lemma 28. Let E ⊂ R.
Let f : E → R be a function.
If f is not uniformly continuous on E, then there exist ε1 > 0 and sequences

(xn) and (yn) in E such that limn→∞(xn − yn) = 0 and |f(xn) − f(yn)| ≥ ε1
for all n ∈ N.

Proof. Suppose f is not uniformly continuous on E.
Then there exists ε1 > 0 such that for every δ > 0 there are x, y ∈ E such

that |x− y| < δ and |f(x)− f(y)| ≥ ε1.
Let δ = 1

n for all n ∈ N.
Then for each n ∈ N, there is x ∈ E and there is y ∈ E with |x− y| < 1

n and
|f(x)− f(y)| ≥ ε1.

Hence, there is a function g : N→ E and there is y ∈ E with |g(n)− y| < 1
n

and |f(g(n))− f(y)| ≥ ε1 for each n ∈ N.
Thus, there is a sequence (xn) in E and there is y ∈ E with |xn − y| < 1

n
and |f(xn)− f(y)| ≥ ε1 for each n ∈ N.

Since for each n ∈ N there is y ∈ E such that |xn − y| < 1
n and |f(xn) −

f(y)| ≥ ε1, then there is a function h : N → E such that |xn − h(n)| < 1
n and

|f(xn)− f(h(n))| ≥ ε1 for each n ∈ N.
Thus, there is a sequence (yn) in E such that |xn − yn| < 1

n and |f(xn) −
f(yn)| ≥ ε1 for each n ∈ N.

We prove limn→∞(xn − yn) = 0.
Let ε > 0 be given.
Then 1

ε > 0, so by the Archimedean property of R, there exists N ∈ N such
that N > 1

ε .
Hence, ε > 1

N .
Let n ∈ N such that n > N .
Since n ∈ N and |xn − yn| < 1

n for all n ∈ N, then |xn − yn| < 1
n .

Since n > N > 0, then 0 < 1
n <

1
N .

Thus, |xn − yn| < 1
n <

1
N < ε, so |xn − yn| < ε.

Therefore, there exist ε1 > 0 and sequences (xn) and (yn) in E such that
limn→∞(xn − yn) = 0 and |f(xn)− f(yn)| ≥ ε1 for each n ∈ N.

Theorem 29. Heine-Cantor Uniform Continuity Theorem
Let E ⊂ R.
Let f : E → R be a function.
If f is continuous on E and E is a closed bounded set, then f is uniformly

continuous on E.

Proof. Suppose f is continuous on E and E is a closed bounded set.
We prove by contradiction.
Suppose f is not uniformly continuous on E.
By the previous lemma, there exist ε1 > 0 and sequences (xn) and (yn) in

E such that limn→∞(xn − yn) = 0 and |f(xn)− f(yn)| ≥ ε1 for all n ∈ N.
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Since (xn) is a sequence in E and E is a closed bounded set, then by the
Bolzano-Weierstrass property of compact sets, there is a subsequence of (xn) in
E that converges to some point in E.

Let (sn) be a subsequence of (xn) in E that converges to some point in E.
Then sn ∈ E for all n ∈ N and there exists c ∈ E such that limn→∞ sn = c.
Since (yn) is a sequence in E and E is a closed bounded set, then by the

Bolzano-Weierstrass property of compact sets, there is a subsequence of (yn) in
E that converges to some point in E.

Let (tn) be a subsequence of (yn) in E that converges to some point in E.
The tn ∈ E for all n ∈ N and there exists d ∈ E such that limn→∞ tn = d.
Since (sn) is a subsequence of (xn), then there exists a strictly increasing

function a : N→ N such that sn = xa(n) for all n ∈ N.
Since (tn) is a subsequence of (yn), then there exists a strictly increasing

function b : N→ N such that tn = yb(n) for all n ∈ N.
Let n ∈ N.
Then a(n) ∈ N and sn = xa(n) and b(n) ∈ N and tn = yb(n).

Since a(n) ∈ N, then |xa(n) − yn| < 1
n and |f(xn)− f(yn)| ≥ ε1.

Since f is continuous on E and c ∈ E, then f is continuous at c.
Hence,
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