Continuous functions Theory

Jason Sass

June 29, 2021

Continuity

Proposition 1. characterization of continuity at a point Let E ⊂ ℝ.
Let f : E → ℝ be a function and c ∈ E. Then
1. If c is not an accumulation point of E, then f is continuous at c.
2. If c is an accumulation point of E, then f is continuous at c iff the limit of f at c exists and lim_{x→c} f(x) = f(c).

Proof. We prove 1.

Suppose c is not an accumulation point of E.

To prove f is continuous at c, let $\epsilon > 0$ be given.

Since c is not an accumulation point of E, then there exists $\delta > 0$ such that for all $x \in E$, either $x \notin N(c; \delta)$ or x = c.

Let $x \in E$ such that $|x - c| < \delta$.

Since $x \in E$, then either $x \notin N(c; \delta)$ or x = c. Since $|x - c| < \delta$, then $x \in N(c; \delta)$. Hence, x = c. Therefore, $|f(x) - f(c)| = |f(c) - f(c)| = 0 < \epsilon$.

Proof. We prove 2.

Suppose c is an accumulation point of E.

We must prove f is continuous at c iff the limit of f at c exists and $\lim_{x\to c} f(x) = f(c)$.

We first prove if the limit of f at c exists and $\lim_{x\to c} f(x) = f(c)$, then f is continuous at c.

Suppose the limit of f at c exists and $\lim_{x\to c} f(x) = f(c)$. Then $(\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in E)(0 < |x - c| < \delta \rightarrow |f(x) - f(c)| < \epsilon)$. Hence, $(\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in E)(|x - c| < \delta \rightarrow |f(x) - f(c)| < \epsilon)$. Therefore, f is continuous at c.

Conversely, we prove if f is continuous at c, then the limit of f at c exists and $\lim_{x\to c} f(x) = f(c)$.

Suppose f is continuous at c.

To prove $\lim_{x\to c} f(x) = f(c)$, let $\epsilon > 0$ be given.

Since f is continuous at c, then there exists $\delta > 0$ such that for all $x \in E$, if $|x - c| < \delta$, then $|f(x) - f(c)| < \epsilon$.

Since c is an accumulation point of E, let $x \in E$ such that $0 < |x - c| < \delta$. Then $x \in E$ and $|x - c| < \delta$, so $|f(x) - f(c)| < \epsilon$, as desired.

Theorem 2. sequential characterization of continuity

Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function.

Let $c \in E$.

Then f is continuous at c iff for every sequence (x_n) of points in E such that $\lim_{n\to\infty} x_n = c$, $\lim_{n\to\infty} f(x_n) = f(c)$.

Proof. We prove if f is continuous at c, then for every sequence (x_n) of points in E such that $\lim_{n\to\infty} x_n = c$, $\lim_{n\to\infty} f(x_n) = f(c)$.

Suppose f is continuous at c.

Let (x_n) be an arbitrary sequence of points in E such that $\lim_{n\to\infty} x_n = c$. We must prove $\lim_{n\to\infty} f(x_n) = f(c)$.

Let $\epsilon > 0$ be given.

Since f is continuous at c, then there exists $\delta > 0$ such that for all $x \in E$, if $|x - c| < \delta$, then $|f(x) - f(c)| < \epsilon$.

Since $\lim_{n\to\infty} x_n = c$ and $\delta > 0$, then there exists $N \in \mathbb{N}$ such that if n > N, then $|x_n - c| < \delta$.

Let $n \in \mathbb{N}$ such that n > N.

Then $|x_n - c| < \delta$.

Since (x_n) is a sequence of points in E, then $x_n \in E$ for all $n \in \mathbb{N}$.

Since $n \in \mathbb{N}$, then $x_n \in E$.

Since $x_n \in E$ and $|x_n - c| < \delta$, then we conclude $|f(x_n) - f(c)| < \epsilon$. Therefore, $\lim_{n \to \infty} f(x_n) = f(c)$, as desired.

Proof. Conversely, we prove if for every sequence (x_n) of points in E such that $\lim_{n\to\infty} x_n = c$ implies $\lim_{n\to\infty} f(x_n) = f(c)$, then f is continuous at c.

We prove by contrapositive.

Suppose f is not continuous at c.

Then there exists $\epsilon_0 > 0$ such that for each $\delta > 0$ there corresponds $x \in E$ such that $|x - c| < \delta$ and $|f(x) - f(c)| \ge \epsilon_0$.

Let $\delta = \frac{1}{n}$ for each $n \in \mathbb{N}$.

Then for each $n \in \mathbb{N}$, there corresponds $x \in E$ such that $|x - c| < \frac{1}{n}$ and $|f(x) - f(c)| \ge \epsilon_0$.

Thus, there exists a function $g: \mathbb{N} \to \mathbb{R}$ such that $g(n) \in E$ and $|g(n)-c| < \frac{1}{n}$ and $|f(g(n)) - f(c)| \ge \epsilon_0$ for each $n \in \mathbb{N}$, so there exists a sequence (x_n) in \mathbb{R} such that $x_n \in E$ and $|x_n - c| < \frac{1}{n}$ and $|f(x_n) - f(c)| \ge \epsilon_0$ for each $n \in \mathbb{N}$.

Since $x_n \in E$ for each $n \in \mathbb{N}$, then (x_n) is a sequence of points in E.

We prove $\lim_{n\to\infty} x_n = c$. Let $\epsilon > 0$ be given. Then $\epsilon \neq 0$, so $\frac{1}{\epsilon} \in \mathbb{R}$. Hence, by the Archimedean property of \mathbb{R} , there exists $N \in \mathbb{N}$ such that $N > \frac{1}{\epsilon}$. Let $n \in \mathbb{N}$ such that n > N. Then $n > N > \frac{1}{\epsilon}$, so $n > \frac{1}{\epsilon}$. Hence, $\epsilon > \frac{1}{n}$, so $\frac{1}{n} < \epsilon$. Since $n \in \mathbb{N}$ and $|x_n - c| < \frac{1}{n}$ for each $n \in \mathbb{N}$, then $|x_n - c| < \frac{1}{n}$. Thus, $|x_n - c| < \frac{1}{n} < \epsilon$, so $|x_n - c| < \epsilon$. Therefore, $\lim_{n\to\infty} x_n = c$, as desired. We prove $\lim_{n\to\infty} f(x_n) \neq f(c)$. Let n = N + 1. Then $n \in \mathbb{N}$ and n > N. Since $n \in \mathbb{N}$ and $|f(x_n) - f(c)| \ge \epsilon_0$ for each $n \in \mathbb{N}$, then $|f(x_n) - f(c)| \ge \epsilon_0$.

Thus, there exists $\epsilon_0 > 0$ such that for each $N \in \mathbb{N}$, there exists $n \in \mathbb{N}$ for which n > N and $|f(x_n) - f(c)| \ge \epsilon_0$.

Therefore, $\lim_{n\to\infty} f(x_n) \neq f(c)$.

Hence, we have shown there exists a sequence (x_n) of points in E such that $\lim_{n\to\infty} x_n = c$ and $\lim_{n\to\infty} f(x_n) \neq f(c)$, as desired.

Proposition 3. restriction of a continuous function is continuous

Let f be a real valued function of a real variable. Let g be a restriction of f to a nonempty set $E \subset dom f$. If f is continuous, then the restriction g is continuous.

Proof. Suppose f is continuous.

To prove g is continuous, we must prove g is continuous on E. Since $E \neq \emptyset$, let $c \in E$ be arbitrary. To prove g is continuous at c, let $\epsilon > 0$ be given. Since $c \in E$ and $E \subset domf$, then $c \in domf$. Since f is continuous and $c \in domf$, then f is continuous at c. Thus, there exists $\delta > 0$ such that for all $x \in domf$, if $|x - c| < \delta$, then $|f(x) - f(c)| < \epsilon$. Let $x \in E$ such that $|x - c| < \delta$. Since $x \in E$ and $E \subset domf$, then $x \in domf$. Thus, $x \in domf$ and $|x - c| < \delta$, so $|f(x) - f(c)| < \epsilon$. Since g is a restriction of f to E, then g(x) = f(x) for all $x \in E$. Since $x \in E$ and $c \in E$, then g(x) = f(x) and g(c) = f(c). Therefore, $|g(x) - g(c)| = |f(x) - f(c)| < \epsilon$, so g is continuous at c, as desired.

Algebraic properties of continuous functions

Theorem 4. Let $\lambda \in \mathbb{R}$.

Let f be a real valued function. Let $c \in dom f$. If f is continuous at c, then λf is continuous at c.

Proof. Suppose f is continuous at c.

Since f is a real valued function, then λf is a real valued function.

Since $c \in dom f$ and $dom f = dom(\lambda f)$, then $c \in dom(\lambda f)$.

Either c is an accumulation point of $dom(\lambda f)$ or c is not an accumulation point of $dom(\lambda f)$.

We consider these cases separately.

Case 1: Suppose c is not an accumulation point of $dom(\lambda f)$. Since $c \in dom(\lambda f)$ and c is not an accumulation point of $dom(\lambda f)$, then λf

is continuous at c.

c.

Case 2: Suppose c is an accumulation point of $dom(\lambda f)$. Since $dom(\lambda f) = dom f$, then c is an accumulation point of dom f. Since $c \in dom f$ and c is an accumulation point of dom f and f is continuous

at c, then the limit of f at c exists and $\lim_{x\to c} f(x) = f(c)$. Observe that

$$\begin{aligned} (\lambda f)(c) &= \lambda f(c) \\ &= \lambda \lim_{x \to c} f(x) \\ &= \lim_{x \to c} [\lambda f(x)] \\ &= \lim_{x \to c} (\lambda f)(x). \end{aligned}$$

Since $c \in dom(\lambda f)$ and $\lim_{x\to c} (\lambda f)(x) = (\lambda f)(c)$, then λf is continuous at

Therefore, in all cases, λf is continuous at c, as desired.

Corollary 5. scalar multiple of a continuous function is continuous Let $\lambda \in \mathbb{R}$.

Let f be a real valued function. If f is continuous, then λf is continuous.

Proof. Suppose f is continuous.

Let $c \in dom(\lambda f)$. Since $dom(\lambda f) = dom f$, then $c \in dom f$. Since f is continuous and $c \in dom f$, then f is continuous at c. Therefore, λf is continuous at c, so λf is continuous.

Theorem 6. Let f and g be real valued functions.

Let $c \in dom f \cap dom g$.

If f is continuous at c and g is continuous at c, then f + g is continuous at c.

Proof. Suppose f is continuous at c and g is continuous at c.

Since f and g are real valued functions, then f + g is a real valued function. Since $c \in dom f \cap dom g$ and $dom f \cap dom g = dom(f+g)$, then $c \in dom(f+g)$. Either c is an accumulation point of dom(f+g) or c is not an accumulation point of dom(f+g).

We consider these cases separately.

Case 1: Suppose c is not an accumulation point of dom(f+g).

Since $c \in dom(f+g)$ and c is not an accumulation point of dom(f+g), then f+g is continuous at c.

Case 2: Suppose c is an accumulation point of dom(f+g).

Since $dom(f+g) = dom f \cap dom g$, then c is an accumulation point of $dom f \cap dom g$.

Since $c \in domf \cap domg$, then $c \in domf$ and $c \in domg$.

Since c is an accumulation point of $dom f \cap dom g$ and $dom f \cap dom g$ is a subset of dom f, then c is an accumulation point of dom f.

Since $c \in dom f$ and c is an accumulation point of dom f and f is continuous at c, then the limit of f at c exists and $\lim_{x\to c} f(x) = f(c)$.

Since c is an accumulation point of $dom f \cap dom g$ and $dom f \cap dom g$ is a subset of dom g, then c is an accumulation point of dom g.

Since $c \in domg$ and c is an accumulation point of domg and g is continuous at c, then the limit of g at c exists and $\lim_{x\to c} g(x) = g(c)$.

Observe that

$$(f+g)(c) = f(c) + g(c)$$

=
$$\lim_{x \to c} f(x) + \lim_{x \to c} g(x)$$

=
$$\lim_{x \to c} [f(x) + g(x)]$$

=
$$\lim_{x \to c} (f+g)(x).$$

Since $c \in dom(f+g)$ and $\lim_{x\to c} (f+g)(x) = (f+g)(c)$, then f+g is continuous at c.

Therefore, in all cases, f + g is continuous at c, as desired.

Corollary 7. sum of continuous functions is continuous

Let f and g be real valued functions.

If f is continuous and g is continuous, then f + g is continuous.

Proof. Suppose f is continuous and g is continuous.

Let $c \in dom(f+g)$. Since $dom(f+g) = domf \cap domg$, then $c \in domf \cap domg$, so $c \in domf$ and $c \in domg$.

Since f is continuous and $c \in dom f$, then f is continuous at c.

Since g is continuous and $c \in domg$, then g is continuous at c. Therefore, f + g is continuous at c, so f + g is continuous.

Corollary 8. Let f and g be real valued functions.

Let $c \in dom f \cap dom g$.

If f is continuous at c and g is continuous at c, then f - g is continuous at c.

Proof. Suppose f is continuous at c and g is continuous at c. Since $c \in domf \cap domg$ and domg = dom(-g), then $c \in domf \cap dom(-g)$. Since $c \in domf \cap domg$, then $c \in domg$. Since $c \in domg$ and g is continuous at c, then -g is continuous at c. Since $c \in domf \cap dom(-g)$ and f is continuous at c and -g is continuous at c, then f - g = f + (-g) is continuous at c, as desired.

Corollary 9. difference of continuous functions is continuous

Let f and g be real valued functions.

If f is continuous and g is continuous, then f - g is continuous.

Proof. Suppose f is continuous and g is continuous.

Let $c \in dom(f-g)$.

Since $dom(f-g) = dom f \cap dom g$, then $c \in dom f \cap dom g$, so $c \in dom f$ and $c \in dom g$.

Since f is continuous and $c \in domf$, then f is continuous at c. Since g is continuous and $c \in domg$, then g is continuous at c. Therefore, f - g is continuous at c, so f - g is continuous.

Theorem 10. Let f and g be real valued functions.

Let $c \in dom f \cap dom g$.

If f is continuous at c and g is continuous at c, then fg is continuous at c.

Proof. Suppose f is continuous at c and g is continuous at c.

Since f and g are real valued functions, then fg is a real valued function. Since $c \in domf \cap domg$ and $domf \cap domg = dom(fg)$, then $c \in domfg$.

Either c is an accumulation point of dom(fg) or c is not an accumulation point of dom(fg).

We consider these cases separately.

Case 1: Suppose c is not an accumulation point of dom(fg).

Since $c \in dom(fg)$ and c is not an accumulation point of dom(fg), then fg is continuous at c.

Case 2: Suppose c is an accumulation point of dom(fg).

Since $dom(fg) = dom f \cap dom g$, then c is an accumulation point of $dom f \cap dom g$.

Since $c \in dom f \cap dom g$, then $c \in dom f$ and $c \in dom g$.

Since c is an accumulation point of $dom f \cap dom g$ and $dom f \cap dom g$ is a subset of dom f, then c is an accumulation point of dom f.

Since $c \in domf$ and c is an accumulation point of domf and f is continuous at c, then the limit of f at c exists and $\lim_{x\to c} f(x) = f(c)$.

Since c is an accumulation point of $dom f \cap dom g$ and $dom f \cap dom g$ is a subset of dom g, then c is an accumulation point of dom g.

Since $c \in domg$ and c is an accumulation point of domg and g is continuous at c, then the limit of g at c exists and $\lim_{x\to c} g(x) = g(c)$.

Observe that

$$\begin{aligned} (fg)(c) &= f(c)g(c) \\ &= \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x) \\ &= \lim_{x \to c} [f(x)g(x)] \\ &= \lim_{x \to c} (fg)(x). \end{aligned}$$

Since $c \in dom(fg)$ and $\lim_{x\to c} (fg)(x) = (fg)(c)$, then fg is continuous at c. Therefore, in all cases, fg is continuous at c, as desired.

Corollary 11. product of continuous functions is continuous

Let f and g be real valued functions.

If f is continuous and g is continuous, then fg is continuous.

Proof. Suppose f is continuous and g is continuous.

Let $c \in dom fg$.

Since $dom fg = dom f \cap dom g$, then $c \in dom f \cap dom g$, so $c \in dom f$ and $c \in dom g$.

Since f is continuous and $c \in domf$, then f is continuous at c. Since g is continuous and $c \in domg$, then g is continuous at c. Therefore, fg is continuous at c, so fg is continuous.

Theorem 12. Let f and g be real valued functions.

Let $c \in dom f \cap dom g$.

If f is continuous at c and g is continuous at c and $g(c) \neq 0$, then $\frac{f}{g}$ is continuous at c.

Proof. Suppose f is continuous at c and g is continuous at c and $g(c) \neq 0$. Since f and g are real valued functions, then $\frac{f}{g}$ is a real valued function. Since $c \in dom f \cap dom g$, then $c \in dom f$ and $c \in dom g$.

Since $dom \frac{f}{g} = dom f \cap \{x \in domg : g(x) \neq 0\}$ and $c \in dom f$ and $c \in domg$ and $g(c) \neq 0$, then $c \in dom \frac{f}{g}$.

Either c is an accumulation point of $dom \frac{f}{g}$ or c is not an accumulation point of $dom \frac{f}{g}$.

We consider these cases separately.

Case 1: Suppose c is not an accumulation point of $dom \frac{f}{q}$.

Since $c \in dom \frac{f}{g}$ and c is not an accumulation point of $dom \frac{f}{g}$, then $\frac{f}{g}$ is continuous at c.

Case 2: Suppose c is an accumulation point of $dom \frac{f}{a}$.

Let $x \in dom \frac{f}{q}$.

Then $x \in dom f \cap \{x \in dom g : g(x) \neq 0\}$, so $x \in dom f$.

Hence, $dom \frac{f}{g} \subset dom f$.

Since c is an accumulation point of $dom \frac{f}{g}$ and $dom \frac{f}{g}$ is a subset of dom f, then c is an accumulation point of dom f.

Since $c \in dom f$ and c is an accumulation point of dom f and f is continuous at c, then the limit of f at c exists and $\lim_{x\to c} f(x) = f(c)$.

Let $x \in dom \frac{f}{q}$.

Then $x \in dom f \cap \{x \in dom g : g(x) \neq 0\}$, so $x \in \{x \in dom g : g(x) \neq 0\}$. Hence, $x \in dom g$, so $dom \frac{f}{g} \subset dom g$.

Since c is an accumulation point of $dom \frac{f}{g}$ and $dom \frac{f}{g}$ is a subset of domg, then c is an accumulation point of domg.

Since $c \in domg$ and c is an accumulation point of domg and g is continuous at c, then the limit of g at c exists and $\lim_{x\to c} g(x) = g(c)$.

Since $g(c) \neq 0$, then $\lim_{x \to c} g(x) \neq 0$. Let $x \in dom \frac{f}{a}$.

Then $x \in dom f \cap \{x \in dom g : g(x) \neq 0\}$, so $x \in dom f$ and $x \in \{x \in dom g : g(x) \neq 0\}$.

Thus, $x \in domf$ and $x \in domg$, so $x \in domf \cap domg$. Hence, $dom \frac{f}{g} \subset domf \cap domg$.

Since c is an accumulation point of $dom \frac{f}{g}$ and $dom \frac{f}{g}$ is a subset of $dom f \cap dom g$, then c is an accumulation point of $dom f \cap dom g$.

Thus,

$$\frac{f}{g}(c) = \frac{f(c)}{g(c)}$$

$$= \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$$

$$= \lim_{x \to c} \frac{f(x)}{g(x)}$$

$$= \lim_{x \to c} \frac{f}{g}(x).$$

Since $c \in dom \frac{f}{g}$ and c is an accumulation point of $dom \frac{f}{g}$ and $\lim_{x \to c} \frac{f}{g}(x) = \frac{f}{g}(c)$, then $\frac{f}{g}$ is continuous at c.

Therefore, in all cases, $\frac{f}{a}$ is continuous at c, as desired.

Corollary 13. quotient of continuous functions is continuous where ever defined

Let f and g be real valued functions.

If f is continuous and g is continuous, then $\frac{f}{g}$ is continuous for all $x \in dom f \cap dom g$ such that $g(x) \neq 0$.

Proof. Suppose f is continuous and g is continuous.

Let $c \in dom f \cap dom g$ such that $g(c) \neq 0$.

Since $c \in dom f \cap dom g$, then $c \in dom f$ and $c \in dom g$. We must prove $\frac{f}{g}$ is continuous at c.

Since f is continuous and $c \in domf$, then f is continuous at c. Since g is continuous and $c \in domg$, then g is continuous at c. Since $g(c) \neq 0$, then $\frac{f}{g}$ is continuous at c, as desired.

Theorem 14. polynomial functions are continuous

Every polynomial function is continuous.

Proof. Let $p : \mathbb{R} \to \mathbb{R}$ be an arbitrary polynomial function.

To prove p is continuous, let $c \in \mathbb{R}$ be arbitrary.

We must prove p is continuous at c.

Since p is a polynomial function and $c \in \mathbb{R}$, then $\lim_{x\to c} p(x) = p(c)$.

Since $c \in \mathbb{R}$ and c is an accumulation point of \mathbb{R} and $\lim_{x\to c} p(x) = p(c)$, then p is continuous at c, as desired.

Theorem 15. rational functions are continuous wherever defined

Let r be a rational function defined by $r(x) = \frac{p(x)}{q(x)}$ such that p and q are polynomial functions.

Then r is continuous for all $x \in \mathbb{R}$ such that $q(x) \neq 0$.

Proof. Since p is continuous and q is continuous, then $\frac{p}{q} = r$ is continuous for all $x \in domp \cap domq$ such that $q(x) \neq 0$.

Since $domp \cap domq = \mathbb{R} \cap \mathbb{R} = \mathbb{R}$, then r is continuous for all $x \in \mathbb{R}$ such that $q(x) \neq 0$, as desired.

Theorem 16. Let f and g be real valued functions of a real variable.

If f is continuous at c and g is continuous at f(c), then $g \circ f$ is continuous at c.

Proof. Since f and g are functions, then $g \circ f$ is a function defined by $(g \circ f)(x) = g(f(x))$ for all $x \in dom(g \circ f)$.

Suppose f is continuous at c and g is continuous at f(c).

Since f is continuous at c, then $c \in dom f$.

Since g is continuous at f(c), then $f(c) \in domg$.

Since $c \in domf$ and $f(c) \in domg$, then $c \in dom(g \circ f)$.

To prove $g \circ f$ is continuous at c, let $\epsilon > 0$ be given.

Since g is continuous at f(c), then there exists $\delta_1 > 0$ such that for all $x \in domg$, if $|x - f(c)| < \delta_1$, then $|g(x) - g(f(c))| < \epsilon$.

Since f is continuous at c and $\delta_1 > 0$, then there exists $\delta > 0$ such that for all $x \in dom f$, if $|x - c| < \delta$, then $|f(x) - f(c)| < \delta_1$.

Let $x \in dom(g \circ f)$ such that $|x - c| < \delta$.

Since $x \in dom(g \circ f)$, then $x \in domf$ and $f(x) \in domg$.

Since $x \in domf$ and $|x - c| < \delta$, then $|f(x) - f(c)| < \delta_1$. Since $f(x) \in doma$ and $|f(x) - f(c)| < \delta_1$, then $|a(f(x))| < \delta_1$.

Since
$$f(x) \in domg$$
 and $|f(x) - f(c)| < \delta_1$, then $|g(f(x)) - g(f(c))| < \epsilon$.

Therefore, $|(g \circ f)(x) - (g \circ f)(c)| < \epsilon$, so $g \circ f$ is continuous at c.

Corollary 17. composition of continuous functions is continuous

Let f and g be real valued functions of a real variable.

If f is continuous and g is continuous, then $g \circ f$ is continuous.

Proof. Suppose f is continuous and g is continuous. Let $c \in dom(g \circ f)$. Since $dom(g \circ f) = \{x \in domf : f(x) \in domg\}$, then $c \in domf$ and $f(c) \in domg$.

Since f is continuous and $c \in domf$, then f is continuous at c. Since g is continuous and $f(c) \in domg$, then g is continuous at f(c). Therefore, $g \circ f$ is continuous at c, so $g \circ f$ is continuous.

Proposition 18. If f is a continuous function, then so is |f|.

Let $f : E \to \mathbb{R}$ be a function. Let $|f| : E \to \mathbb{R}$ be a function defined by |f|(x) = |f(x)|. If f is continuous, then |f| is continuous.

Proof. Suppose f is continuous.

Let $c \in E$.

 $\epsilon.$

Then f is continuous at c.

Let $\epsilon > 0$ be given.

Then there exists $\delta > 0$ such that for all $x \in E$, if $|x - c| < \delta$, then $|f(x) - f(c)| < \epsilon$.

Let $x \in E$ such that $|x - c| < \delta$.

Then $|f(x) - f(c)| < \epsilon$, so $||f|(x) - |f|(c)| = ||f(x)| - |f(c)|| \le |f(x) - f(c)| < \epsilon$

Therefore, |f| is continuous at c, so |f| is continuous.

Proposition 19. If f is a continuous function, then so is
$$\sqrt{f}$$

Let $f: E \to \mathbb{R}$ be a function such that $f(x) \ge 0$ for all $x \in E$.

Let \sqrt{f} be a function defined by $\sqrt{f}(x) = \sqrt{f(x)}$ for all $x \in E$ such that $f(x) \ge 0$.

If f is continuous, then \sqrt{f} is continuous.

Proof. Suppose f is continuous.

Let $g(x) = \sqrt{x}$.

Then $g: [0, \infty) \to \mathbb{R}$ is a continuous function.

The domain of \sqrt{f} is the set $\{x \in E : f(x) \ge 0\}$.

Since $dom(g \circ f) = \{x \in domf : f(x) \in domg\} = \{x \in E : f(x) \in [0, \infty)\} = \{x \in E : f(x) \ge 0\}$, then the domain of $g \circ f$ is the same as the domain of \sqrt{f} , so $dom\sqrt{f} = dom(g \circ f)$.

Let $x \in dom(g \circ f)$. Then $x \in E$ and $f(x) \ge 0$. Thus, $\sqrt{f(x)} = \sqrt{f(x)} = g(f(x)) = (g \circ f)(x)$, so $\sqrt{f(x)} = (g \circ f)(x)$. Hence, $\sqrt{f(x)} = (g \circ f)(x)$ for all $x \in dom(g \circ f)$. Since $dom\sqrt{f} = dom(g \circ f)$ and $\sqrt{f}(x) = (g \circ f)(x)$ for all $x \in dom(g \circ f)$, then $\sqrt{f} = g \circ f$.

Since f is continuous and g is continuous and the composition of continuous functions is continuous, then $g \circ f$ is continuous.

Therefore, \sqrt{f} is continuous, as desired.

Continuous functions on compact sets

Lemma 20. Bolzano-Weierstrass property of compact sets

```
Let E \subset \mathbb{R} be a closed bounded set.
```

Then every sequence in E has a subsequence (y_n) in E such that $\lim_{n\to\infty} y_n \in E$.

Proof. Let (x_n) be an arbitrary sequence in E. Then $x_n \in E$ for all $n \in \mathbb{N}$. Since E is bounded, then there exists $B \in \mathbb{R}$ such that $|x| \leq B$ for all $x \in E$. Let $n \in \mathbb{N}$ be given. Then $x_n \in E$, so $|x_n| \leq B$. Thus, $|x_n| \leq B$ for all $n \in \mathbb{N}$, so (x_n) is bounded in \mathbb{R} . Therefore, by the Bolzano-Weierstrass theorem for sequences, (x_n) has a convergent subsequence. Let (y_n) be a convergent subsequence of (x_n) . Since (y_n) is a subsequence of (x_n) , then there exists a strictly increasing function $g: \mathbb{N} \to \mathbb{N}$ such that $y_n = x_{g(n)}$ for all $n \in \mathbb{N}$. Let $n \in \mathbb{N}$ be given. Then $g(n) \in \mathbb{N}$ and $y_n = x_{g(n)}$. Thus, $x_{q(n)} \in E$, so $y_n \in E$. Hence, $y_n \in E$ for all $n \in \mathbb{N}$, so (y_n) is a sequence in E. Since (y_n) is convergent, let $c = \lim_{n \to \infty} y_n$. We must prove $c \in E$. We prove by contradiction. Suppose $c \notin E$. Since E is closed, then c is not an accumulation point of E. Hence, there exists $\delta > 0$ such that $N'(c; \delta) \cap E = \emptyset$. Since $\lim_{n\to\infty} y_n = c$ and $\delta > 0$, then there exists $N \in \mathbb{N}$ such that if n > N, then $|y_n - c| < \delta$. Let $n \in \mathbb{N}$ such that n > N. Then $|y_n - c| < \delta$, so $y_n \in N(c; \delta)$. Since $n \in \mathbb{N}$, then $y_n \in E$. Since $c \notin E$, then $y_n \neq c$, so $y_n \in N'(c; \delta)$. Since $y_n \in N'(c; \delta)$ and $y_n \in E$, then $y_n \in N'(c; \delta) \cap E$, so $N'(c; \delta) \cap E \neq \emptyset$. Hence, we have $N'(c; \delta) \cap E = \emptyset$ and $N'(c; \delta) \cap E \neq \emptyset$, a contradiction. Therefore, $c \in E$, as desired.

Theorem 21. Boundedness Theorem

Every real valued function continuous on a closed bounded set is bounded.

Proof. Let $E \subset \mathbb{R}$ be a closed bounded set.

Let $f: E \to \mathbb{R}$ be a continuous function.

We must prove f is bounded.

We prove by contradiction.

Suppose f is not bounded.

Then f is unbounded, so for every real number r, there exists $x \in E$ such that |f(x)| > r.

In particular, for every $n \in \mathbb{N}$, there exists $x_n \in E$ such that $|f(x_n)| > n$.

Thus, there exists a sequence (x_n) in E such that $|f(x_n)| > n$ for all $n \in \mathbb{N}$. Since E is a closed bounded set and (x_n) is a sequence in E, then by the Bolzano-Weierstrass property of compact sets, there exists a subsequence (y_n)

in E such that $\lim_{n\to\infty} y_n \in E$.

Let $c = \lim_{n \to \infty} y_n$.

Then $c \in E$.

Since f is continuous on E and $c \in E$, then f is continuous at c.

Since (y_n) is a sequence in E and $\lim_{n\to\infty} y_n = c$, then by the sequential characterization of continuity, we conclude $\lim_{n\to\infty} f(y_n) = f(c)$.

Thus, the sequence $(f(y_n))$ is convergent, so $(f(y_n))$ is bounded.

We prove the sequence $(f(y_n))$ is unbounded.

Let $M \in \mathbb{R}$ be given.

By the Archimedean property of \mathbb{R} , there exists $n \in \mathbb{N}$ such that n > M.

Since (y_n) is a subsequence of (x_n) , then there exists a strictly increasing function $g: \mathbb{N} \to \mathbb{N}$ such that $y_n = x_{g(n)}$ for all $n \in \mathbb{N}$.

Since $g: \mathbb{N} \to \mathbb{N}$ is strictly increasing, then $g(n) \ge n$ for all $n \in \mathbb{N}$.

Since $n \in \mathbb{N}$, then $g(n) \in \mathbb{N}$, so there exists $x_{g(n)} \in E$ such that $|f(x_{g(n)})| > g(n)$.

Observe that

$$|f(y_n)| = |f(x_{g(n)})|$$

> $g(n)$
 $\geq n$
> M .

Hence, $|f(y_n)| > M$.

Thus, there exists $n \in \mathbb{N}$ such that $|f(y_n)| > M$, so $(f(y_n))$ is unbounded.

Hence, we have $(f(y_n))$ is bounded and $(f(y_n))$ is unbounded, a contradiction.

Therefore, f is bounded, as desired.

Theorem 22. Extreme Value Theorem

Every real valued function continuous on a nonempty closed bounded set attains a maximum and minimum on the set. *Proof.* Let S be a nonempty closed bounded set.

Let $f: S \to \mathbb{R}$ be a continuous function.

To prove there exists a maximum on S, we must prove there exists $c \in S$ such that $f(x) \leq f(c)$ for all $x \in S$.

Let $f(S) = \{f(x) : x \in S\}.$

Since $S \neq \emptyset$, then there exists $s \in S$, so $f(s) \in f(S)$.

Hence, $f(S) \neq \emptyset$.

Since f is continuous on S and the set S is closed and bounded, then by the boundedness theorem, f is bounded.

Hence, f(S) is bounded, so f(S) is bounded above in \mathbb{R} .

Since f(S) is not empty and bounded above in \mathbb{R} , then by completeness of \mathbb{R} , sup f(S) exists.

Let $M = \sup f(S)$.

Suppose for the sake of contradiction $M \notin f(S)$.

Then there is no $x \in S$ such that f(x) = M, so $f(x) \neq M$ for all $x \in S$. Since M is an upper bound of f(S), then this implies f(x) < M for all $x \in S$, so M - f(x) > 0 for all $x \in S$.

Let
$$g = \frac{1}{M-f}$$
.

Then $g: S \to \mathbb{R}$ is a function defined by $g(x) = \frac{1}{M - f(x)}$ for all $x \in S$.

Since M - f(x) > 0 for all $x \in S$, then $\frac{1}{M - f(x)} > 0$ for all $x \in S$, so g(x) > 0 for all $x \in S$.

Since f is continuous on S, then -f is continuous on S, so M-f is continuous on S.

Hence, $\frac{1}{M-f}$ is continuous on S, so g is continuous on S.

Let $g(S) = \{g(x) : x \in S\}.$

Since $S \neq \emptyset$, then there exists $s \in S$, so $g(s) \in g(S)$.

Hence,
$$g(S) \neq \emptyset$$
.

Since g is continuous on S and the set S is closed and bounded, then by the boundedness theorem, g is bounded.

Hence, g(S) is bounded, so g(S) is bounded above in \mathbb{R} .

Since g(S) is not empty and bounded above in \mathbb{R} , then by completeness of \mathbb{R} , $\sup g(S)$ exists.

Let $M' = \sup g(S)$.

Since M' is an upper bound of g(S), then $g(x) \leq M'$ for all $x \in S$. Let $x \in S$.

Then $0 < g(x) \le M'$, so $0 < \frac{1}{M - f(x)} \le M'$ and 0 < M'.

Hence, $\frac{1}{M'} \leq M - f(x)$, so $f(x) \leq M - \frac{1}{M'}$ for all $x \in S$. Since M' > 0, then $\frac{1}{M'} > 0$.

Thus, there exists $\frac{1}{M'} > 0$ such that $f(x) \leq M - \frac{1}{M'}$ for all $x \in S$. This contradicts the fact that M is the least upper bound of f(S). Hence, $M \in f(S)$, so there exists $c \in S$ such that f(c) = M.

Since M is an upper bound of f(S), then $f(x) \leq M$ for all $x \in S$.

Therefore, there exists $c \in S$ such that $f(x) \leq f(c)$ for all $x \in S$, so f has a maximum on S.

Proof. Let S be a nonempty closed bounded set.

Let $f: S \to \mathbb{R}$ be a continuous function.

To prove there exists a minimum on S, we must prove there exists $c \in S$ such that $f(c) \leq f(x)$ for all $x \in S$.

Let $f(S) = \{f(x) : x \in S\}.$

Since $S \neq \emptyset$, then there exists $s \in S$, so $f(s) \in f(S)$.

Hence, $f(S) \neq \emptyset$.

Since f is continuous on S and the set S is closed and bounded, then by the boundedness theorem, f is bounded.

Hence, f(S) is bounded, so f(S) is bounded below in \mathbb{R} .

Since f(S) is not empty and bounded below in \mathbb{R} , then by completeness of \mathbb{R} , inf f(S) exists.

Let $m = \inf f(S)$.

Suppose for the sake of contradiction $m \notin f(S)$.

Then there is no $x \in S$ such that f(x) = m, so $f(x) \neq m$ for all $x \in S$.

Since m is a lower bound of f(S), then this implies m < f(x) for all $x \in S$, so m - f(x) < 0 for all $x \in S$.

Let $g = \frac{1}{m-f}$.

Then $g: S \to \mathbb{R}$ is a function defined by $g(x) = \frac{1}{m - f(x)}$ for all $x \in S$. Since m - f(x) < 0 for all $x \in S$, then $\frac{1}{m - f(x)} < 0$ for all $x \in S$, so g(x) < 0for all $x \in S$.

Since f is continuous on S, then m - f is continuous on S, so $\frac{1}{m-f}$ is continuous on S.

Hence, q is continuous on S.

Let $g(S) = \{g(x) : x \in S\}.$

Since $S \neq \emptyset$, then there exists $s \in S$, so $g(s) \in g(S)$.

Hence, $q(S) \neq \emptyset$.

Since q is continuous on S and the set S is closed and bounded, then by the boundedness theorem, q is bounded.

Hence, q(S) is bounded, so q(S) is bounded below in \mathbb{R} .

Since g(S) is not empty and bounded below in \mathbb{R} , then by completeness of \mathbb{R} , inf q(S) exists.

Let $m' = \inf q(S)$. Since m' is a lower bound of g(S), then $m' \leq g(x)$ for all $x \in S$. Let $x \in S$. Then $m' \le g(x) < 0$, so $m' \le \frac{1}{m - f(x)} < 0$ and m' < 0. Since m - f(x) < 0, then $m'(m - f(x)) \ge 1$. Since m' < 0, then $m - f(x) \le \frac{1}{m'}$, so $m - \frac{1}{m'} \le f(x)$. Hence, $f(x) \ge m - \frac{1}{m'} = m + \frac{-1}{m'}$, so $f(x) \ge m + \frac{-1}{m'}$ for all $x \in S$.

Since m' < 0, then $\frac{-1}{m'} > 0$. Thus, there exists $\frac{-1}{m'} > 0$ such that $f(x) \ge m + \frac{-1}{m'}$ for all $x \in S$. This contradicts the fact that m is the greatest lower bound of f(S).

Hence, $m \in f(S)$, so there exists $c \in S$ such that f(c) = m.

Since m is a lower bound of f(S), then $m \leq f(x)$ for all $x \in S$.

Therefore, there exists $c \in S$ such that $f(c) \leq f(x)$ for all $x \in S$, so f has a minimum on S.

Lemma 23. Let f be a continuous real valued function.

Let x_0, c, d be real numbers such that $x_0 \in domf$ and $c < f(x_0) < d$. Then there exists a positive real number δ such that c < f(x) < d for all $x \in N(x_0; \delta) \cap dom f.$

Proof. Since $c < f(x_0) < d$, then $c < f(x_0)$ and $f(x_0) < d$, so $f(x_0) - c > 0$ and $d - f(x_0) > 0$.

Since f is continuous and $x_0 \in dom f$, then f is continuous at x_0 . Let $\epsilon = \min\{f(x_0) - c, d - f(x_0)\}.$ Then $\epsilon \leq f(x_0) - c$ and $\epsilon \leq d - f(x_0)$ and either $\epsilon = f(x_0) - c$ or $\epsilon = d - f(x_0)$. Since $f(x_0) - c > 0$ and $d - f(x_0) > 0$, then $\epsilon > 0$. Since f is continuous at x_0 and $\epsilon > 0$, then there exists $\delta > 0$ such that for all $x \in dom f$, if $|x - x_0| < \delta$, then $|f(x) - f(x_0)| < \epsilon$. Since $x_0 \in N(x_0; \delta)$ and $x_0 \in dom f$, then $x_0 \in N(x_0; \delta) \cap dom f$, so $N(x_0; \delta) \cap$

 $dom f \neq \emptyset$.

Let $x \in N(x_0; \delta) \cap dom f$. Then $x \in N(x_0; \delta)$ and $x \in dom f$, so $|x - x_0| < \delta$. Hence, $|f(x) - f(x_0)| < \epsilon$. Either $f(x) < f(x_0)$ or $f(x) \ge f(x_0)$. We consider these cases separately. Case 1: Suppose $f(x) < f(x_0)$. Then $f(x_0) - f(x) > 0$. Since $f(x) < f(x_0)$ and $f(x_0) < d$, then f(x) < d. Since $|f(x) - f(x_0)| < \epsilon$ and $\epsilon \le f(x_0) - c$, then $|f(x) - f(x_0)| < f(x_0) - c$, so $|f(x_0) - f(x)| < f(x_0) - c$. Hence, $f(x_0) - f(x) < f(x_0) - c$, so -f(x) < -c. Thus, f(x) > c. Therefore, c < f(x) < d. **Case 2:** Suppose $f(x) \ge f(x_0)$. Then $f(x) - f(x_0) \ge 0$. Since $c < f(x_0)$ and $f(x_0) \le f(x)$, then c < f(x). Since $|f(x) - f(x_0)| < \epsilon$ and $\epsilon \le d - f(x_0)$, then $|f(x) - f(x_0)| < d - f(x_0)$. Hence, $f(x) - f(x_0) < d - f(x_0)$, so f(x) < d. Therefore, c < f(x) < d. Thus, in all cases, c < f(x) < d, as desired.

Theorem 24. Intermediate Value Theorem

Let $a, b \in \mathbb{R}$. Let f be a real valued function continuous on the closed interval [a, b]. For every real number k such that f(a) < k < f(b), there exists $c \in (a, b)$ such that f(c) = k. *Proof.* Let k be an arbitrary real number such that f(a) < k < f(b). Then f(a) < k and k < f(b). Let $S = \{x \in [a, b] : f(x) < k\}.$ Since $a \in [a, b]$ and f(a) < k, then $a \in S$, so $S \neq \emptyset$. Let $x \in S$. Then $x \in [a, b]$, so $a \leq x \leq b$. Hence, $x \leq b$, so b is an upper bound of S. Thus, S is bounded above in \mathbb{R} . Since S is not empty and bounded above in \mathbb{R} , then by the completeness of \mathbb{R} , sup *S* exists. Let $c = \sup S$. Since c is the least upper bound of S and b is an upper bound of S, then $c \leq b$. Since $a \in S$ and c is an upper bound of S, then $a \leq c$. Hence, a < c < b, so $c \in [a, b]$. Since f is a function and $c \in [a, b]$, then $f(c) \in \mathbb{R}$. We must prove f(c) = k. Suppose for the sake of contradiction f(c) < k. Then f(c) < k < f(b), so f(c) < f(b). Hence, $f(c) \neq f(b)$. Since f is a function, then $c \neq b$. Since $c \leq b$ and $c \neq b$, then c < b. Since f(c) < k, then by the previous lemma, there exists $\delta > 0$ such that f(x) < k for all $x \in N(x_0; \delta) \cap [a, b]$. Let $m = \min\{b, c + \delta\}.$ Then $m \leq b$ and $m \leq c + \delta$ and either m = b or $m = c + \delta$. Since c < b and $c < c + \delta$, then c < m. Let $x = \frac{c+m}{2}$. Then 2x = c + m. Since c < m, then 2c < c + m < 2m, so 2c < 2x < 2m. Hence, c < x < m, so c < x and x < m. Since $x < m \le c + \delta$, then $x < c + \delta$, so $x - c < \delta$. Since x > c, then x - c > 0, so $|x - c| = x - c < \delta$. Thus, $x \in N(c; \delta)$. Since $a \le c < x < m \le b$, then a < x < b, so $x \in [a, b]$. Since $x \in N(c; \delta)$ and $x \in [a, b]$, then $x \in N(c; \delta) \cap [a, b]$, so f(x) < k. Since $x \in [a, b]$ and f(x) < k, then $x \in S$. Thus, there exists $x \in S$ such that x > c. This contradicts the fact that c is an upper bound of S.

Therefore, f(c) cannot be less than k.

Suppose for the sake of contradiction f(c) > k.

Since k < f(c), then by the previous lemma, there exists $\delta > 0$ such that k < f(x) for all $x \in N(c; \delta) \cap [a, b]$. Since f(c) > k, then $c \notin S$. Since c is an upper bound of S, then this implies x < c for all $x \in S$. Since c is the least upper bound of S and $\delta > 0$, then there exists $x \in S$ such that $x > c - \delta$. Since $x \in S$, then $x \in [a, b]$ and f(x) < k and x < c. Since x < c, then c - x > 0. Since $x > c - \delta$, then $\delta > c - x$. Thus, $|x - c| = |c - x| = c - x < \delta$, so $x \in N(c; \delta)$. Since $x \in N(c; \delta)$ and $x \in [a, b]$, then $x \in N(c; \delta) \cap [a, b]$, so k < f(x). Thus, we have f(x) < k and f(x) > k, a contradiction. Therefore, f(c) cannot be greater than k.

Since $f(c) \in \mathbb{R}$ and f(c) cannot be less than k and f(c) cannot be greater than k, then f(c) = k.

Since c = b implies f(c) = f(b), then $f(c) \neq f(b)$ implies $c \neq b$. Since f(c) = k < f(b), then $f(c) \neq f(b)$, so $c \neq b$. Since $c \leq b$ and $c \neq b$, then c < b. Since c = a implies f(c) = f(a), then $f(c) \neq f(a)$ implies $c \neq a$. Since f(c) = k > f(a), then $f(c) \neq f(a)$, so $c \neq a$. Since $c \geq a$ and $c \neq a$, then c > a. Therefore, a < c < b, so $c \in (a, b)$. Thus, there exists $c \in (a, b)$ such that f(c) = k, as desired.

Lemma 25. Let I be an interval and $a \in I$ and $b \in I$ and a < b. Then $[a,b] \subset I$.

Proof. Let $x \in [a, b]$.

Then $a \leq x \leq b$, so either x = a or x = b or a < x < b. We consider these cases separately. **Case 1:** Suppose x = a. Since $a \in I$, then $x \in I$. **Case 2:** Suppose x = b. Since $b \in I$, then $x \in I$. **Case 3:** Suppose a < x < b. Since $a \in I$ and $b \in I$ and a < x < b and I is an interval, then $x \in I$. Therefore, in all cases, $x \in I$, so $[a, b] \subset I$, as desired.

Theorem 26. intervals are preserved by continuous functions

Let f be a real valued function continuous on an interval I. Then f(I) is an interval. *Proof.* Either f is constant or not.

We consider these cases separately.

Case 1: Suppose f is constant.

Then there exists $k \in \mathbb{R}$ such that f(x) = k for all $x \in I$, so $f(I) = \{k\}$.

Thus, f(I) is a singleton set.

Since a singleton set is an interval, then f(I) is an interval.

Case 2: Suppose f is not constant.

Then there exist at least two distinct elements of f(I).

Thus, there exist real numbers $y_1 \in f(I)$ and $y_2 \in f(I)$ such that $y_1 \neq y_2$.

Let $y_1, y_2 \in \mathbb{R}$ such that $y_1 \in f(I)$ and $y_2 \in f(I)$ and $y_1 \neq y_2$.

Since $y_1 \neq y_2$, then either $y_1 < y_2$ or $y_1 > y_2$.

Without loss of generality, assume $y_1 < y_2$.

By the density of \mathbb{R} , there exists a real number y_0 such that $y_1 < y_0 < y_2$. Since $y_1 \in f(I)$, then there exists $x_1 \in I$ such that $f(x_1) = y_1$.

Since $y_2 \in f(I)$, then there exists $x_2 \in I$ such that $f(x_2) = y_2$.

Thus, $f(x_1) < y_0 < f(x_2)$ and $f(x_1) < f(x_2)$.

Since $f(x_1) < f(x_2)$, then $f(x_1) \neq f(x_2)$.

Since f is a function, then this implies $x_1 \neq x_2$.

Since I is an interval and $x_1 \in I$ and $x_2 \in I$ and $x_1 \neq x_2$, then by the previous lemma, the closed, bounded interval with endpoints x_1 and x_2 is a subset of I.

Since f is continuous on I, then the restriction of f to the closed, bounded interval with endpoints x_1 and x_2 is continuous.

Since $f(x_1) < y_0 < f(x_2)$, then by IVT, there exists x_0 between x_1 and x_2 such that $f(x_0) = y_0$.

Since $x_1 \in I$ and $x_2 \in I$ and x_0 is between x_1 and x_2 and I is an interval, then $x_0 \in I$.

Thus, there exists $x_0 \in I$ such that $f(x_0) = y_0$, so $y_0 \in f(I)$.

Since $y_1 \in f(I)$ and $y_2 \in f(I)$ and $y_1 < y_0 < y_2$ implies $y_0 \in f(I)$, then f(I) is an interval.

Uniform continuity

Proposition 27. uniform continuity implies continuity

Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function.

If f is uniformly continuous on E, then f is continuous on E.

Proof. Suppose f is uniformly continuous on E.

Let c be an arbitrary element of E.

Let $\epsilon > 0$ be given.

Since f is uniformly continuous on E, then there exists $\delta > 0$ such that for all $x, y \in E$, if $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$.

Let $x \in E$ such that $|x - c| < \delta$.

Since $x \in E$ and $c \in E$ and $|x - c| < \delta$, then $|f(x) - f(c)| < \epsilon$.

Therefore, f is continuous at c, so f is continuous on E.

Lemma 28. Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function.

If f is not uniformly continuous on E, then there exist $\epsilon_1 > 0$ and sequences (x_n) and (y_n) in E such that $\lim_{n\to\infty}(x_n - y_n) = 0$ and $|f(x_n) - f(y_n)| \ge \epsilon_1$ for all $n \in \mathbb{N}$.

Proof. Suppose f is not uniformly continuous on E.

Then there exists $\epsilon_1 > 0$ such that for every $\delta > 0$ there are $x, y \in E$ such that $|x - y| < \delta$ and $|f(x) - f(y)| \ge \epsilon_1$.

Let $\delta = \frac{1}{n}$ for all $n \in \mathbb{N}$.

Then for each $n \in \mathbb{N}$, there is $x \in E$ and there is $y \in E$ with $|x - y| < \frac{1}{n}$ and $|f(x) - f(y)| \ge \epsilon_1$.

Hence, there is a function $g : \mathbb{N} \to E$ and there is $y \in E$ with $|g(n) - y| < \frac{1}{n}$ and $|f(g(n)) - f(y)| \ge \epsilon_1$ for each $n \in \mathbb{N}$.

Thus, there is a sequence (x_n) in E and there is $y \in E$ with $|x_n - y| < \frac{1}{n}$ and $|f(x_n) - f(y)| \ge \epsilon_1$ for each $n \in \mathbb{N}$.

Since for each $n \in \mathbb{N}$ there is $y \in E$ such that $|x_n - y| < \frac{1}{n}$ and $|f(x_n) - f(y)| \ge \epsilon_1$, then there is a function $h : \mathbb{N} \to E$ such that $|x_n - h(n)| < \frac{1}{n}$ and $|f(x_n) - f(h(n))| \ge \epsilon_1$ for each $n \in \mathbb{N}$.

Thus, there is a sequence (y_n) in E such that $|x_n - y_n| < \frac{1}{n}$ and $|f(x_n) - f(y_n)| \ge \epsilon_1$ for each $n \in \mathbb{N}$.

We prove $\lim_{n \to \infty} (x_n - y_n) = 0.$

Let $\epsilon > 0$ be given.

Then $\frac{1}{\epsilon} > 0$, so by the Archimedean property of \mathbb{R} , there exists $N \in \mathbb{N}$ such that $N > \frac{1}{\epsilon}$.

Hence, $\epsilon > \frac{1}{N}$. Let $n \in \mathbb{N}$ such that n > N. Since $n \in \mathbb{N}$ and $|x_n - y_n| < \frac{1}{n}$ for all $n \in \mathbb{N}$, then $|x_n - y_n| < \frac{1}{n}$. Since n > N > 0, then $0 < \frac{1}{n} < \frac{1}{N}$. Thus, $|x_n - y_n| < \frac{1}{n} < \frac{1}{N} < \epsilon$, so $|x_n - y_n| < \epsilon$.

Therefore, there exist $\epsilon_1 > 0$ and sequences (x_n) and (y_n) in E such that $\lim_{n\to\infty} (x_n - y_n) = 0$ and $|f(x_n) - f(y_n)| \ge \epsilon_1$ for each $n \in \mathbb{N}$.

Theorem 29. Heine-Cantor Uniform Continuity Theorem

Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function.

If f is continuous on E and E is a closed bounded set, then f is uniformly continuous on E.

Proof. Suppose f is continuous on E and E is a closed bounded set.

We prove by contradiction.

Suppose f is not uniformly continuous on E.

By the previous lemma, there exist $\epsilon_1 > 0$ and sequences (x_n) and (y_n) in E such that $\lim_{n\to\infty} (x_n - y_n) = 0$ and $|f(x_n) - f(y_n)| \ge \epsilon_1$ for all $n \in \mathbb{N}$.

Since (x_n) is a sequence in E and E is a closed bounded set, then by the Bolzano-Weierstrass property of compact sets, there is a subsequence of (x_n) in E that converges to some point in E.

Let (s_n) be a subsequence of (x_n) in E that converges to some point in E. Then $s_n \in E$ for all $n \in \mathbb{N}$ and there exists $c \in E$ such that $\lim_{n\to\infty} s_n = c$. Since (y_n) is a sequence in E and E is a closed bounded set, then by the Bolzano-Weierstrass property of compact sets, there is a subsequence of (y_n) in

E that converges to some point in E.

Let (t_n) be a subsequence of (y_n) in E that converges to some point in E.

The $t_n \in E$ for all $n \in \mathbb{N}$ and there exists $d \in E$ such that $\lim_{n \to \infty} t_n = d$.

Since (s_n) is a subsequence of (x_n) , then there exists a strictly increasing function $a : \mathbb{N} \to \mathbb{N}$ such that $s_n = x_{a(n)}$ for all $n \in \mathbb{N}$.

Since (t_n) is a subsequence of (y_n) , then there exists a strictly increasing function $b : \mathbb{N} \to \mathbb{N}$ such that $t_n = y_{b(n)}$ for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$.

Then $a(n) \in \mathbb{N}$ and $s_n = x_{a(n)}$ and $b(n) \in \mathbb{N}$ and $t_n = y_{b(n)}$. Since $a(n) \in \mathbb{N}$, then $|x_{a(n)} - y_n| < \frac{1}{n}$ and $|f(x_n) - f(y_n)| \ge \epsilon_1$. Since f is continuous on E and $c \in E$, then f is continuous at c. Hence,