Continuous functions Theory

Jason Sass

June 29, 2021

Continuity

Proposition 1. characterization of continuity at a point
Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function and $c \in E$. Then

1. If c is not an accumulation point of E, then f is continuous at c.
2. If c is an accumulation point of E, then f is continuous at c iff the limit of f at c exists and $\lim _{x \rightarrow c} f(x)=f(c)$.

Proof. We prove 1.
Suppose c is not an accumulation point of E.
To prove f is continuous at c, let $\epsilon>0$ be given.
Since c is not an accumulation point of E, then there exists $\delta>0$ such that for all $x \in E$, either $x \notin N(c ; \delta)$ or $x=c$.

Let $x \in E$ such that $|x-c|<\delta$.
Since $x \in E$, then either $x \notin N(c ; \delta)$ or $x=c$.
Since $|x-c|<\delta$, then $x \in N(c ; \delta)$.
Hence, $x=c$.
Therefore, $|f(x)-f(c)|=|f(c)-f(c)|=0<\epsilon$.
Proof. We prove 2.
Suppose c is an accumulation point of E.
We must prove f is continuous at c iff the limit of f at c exists and $\lim _{x \rightarrow c} f(x)=$ $f(c)$.

We first prove if the limit of f at c exists and $\lim _{x \rightarrow c} f(x)=f(c)$, then f is continuous at c.

Suppose the limit of f at c exists and $\lim _{x \rightarrow c} f(x)=f(c)$.
Then $(\forall \epsilon>0)(\exists \delta>0)(\forall x \in E)(0<|x-c|<\delta \rightarrow|f(x)-f(c)|<\epsilon)$.
Hence, $(\forall \epsilon>0)(\exists \delta>0)(\forall x \in E)(|x-c|<\delta \rightarrow|f(x)-f(c)|<\epsilon)$.
Therefore, f is continuous at c.
Conversely, we prove if f is continuous at c, then the limit of f at c exists and $\lim _{x \rightarrow c} f(x)=f(c)$.

Suppose f is continuous at c.
To prove $\lim _{x \rightarrow c} f(x)=f(c)$, let $\epsilon>0$ be given.

Since f is continuous at c, then there exists $\delta>0$ such that for all $x \in E$, if $|x-c|<\delta$, then $|f(x)-f(c)|<\epsilon$.

Since c is an accumulation point of E, let $x \in E$ such that $0<|x-c|<\delta$.
Then $x \in E$ and $|x-c|<\delta$, so $|f(x)-f(c)|<\epsilon$, as desired.
Theorem 2. sequential characterization of continuity
Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let $c \in E$.
Then f is continuous at c iff for every sequence $\left(x_{n}\right)$ of points in E such that $\lim _{n \rightarrow \infty} x_{n}=c, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c)$.

Proof. We prove if f is continuous at c, then for every sequence $\left(x_{n}\right)$ of points in E such that $\lim _{n \rightarrow \infty} x_{n}=c, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c)$.

Suppose f is continuous at c.
Let $\left(x_{n}\right)$ be an arbitrary sequence of points in E such that $\lim _{n \rightarrow \infty} x_{n}=c$.
We must prove $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c)$.
Let $\epsilon>0$ be given.
Since f is continuous at c, then there exists $\delta>0$ such that for all $x \in E$, if $|x-c|<\delta$, then $|f(x)-f(c)|<\epsilon$.

Since $\lim _{n \rightarrow \infty} x_{n}=c$ and $\delta>0$, then there exists $N \in \mathbb{N}$ such that if $n>N$, then $\left|x_{n}-c\right|<\delta$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $\left|x_{n}-c\right|<\delta$.
Since $\left(x_{n}\right)$ is a sequence of points in E, then $x_{n} \in E$ for all $n \in \mathbb{N}$.
Since $n \in \mathbb{N}$, then $x_{n} \in E$.
Since $x_{n} \in E$ and $\left|x_{n}-c\right|<\delta$, then we conclude $\left|f\left(x_{n}\right)-f(c)\right|<\epsilon$.
Therefore, $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c)$, as desired.
Proof. Conversely, we prove if for every sequence $\left(x_{n}\right)$ of points in E such that $\lim _{n \rightarrow \infty} x_{n}=c$ implies $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c)$, then f is continuous at c.

We prove by contrapositive.
Suppose f is not continuous at c.
Then there exists $\epsilon_{0}>0$ such that for each $\delta>0$ there corresponds $x \in E$ such that $|x-c|<\delta$ and $|f(x)-f(c)| \geq \epsilon_{0}$.

Let $\delta=\frac{1}{n}$ for each $n \in \mathbb{N}$.
Then for each $n \in \mathbb{N}$, there corresponds $x \in E$ such that $|x-c|<\frac{1}{n}$ and $|f(x)-f(c)| \geq \epsilon_{0}$.

Thus, there exists a function $g: \mathbb{N} \rightarrow \mathbb{R}$ such that $g(n) \in E$ and $|g(n)-c|<\frac{1}{n}$ and $|f(g(n))-f(c)| \geq \epsilon_{0}$ for each $n \in \mathbb{N}$, so there exists a sequence $\left(x_{n}\right)$ in \mathbb{R} such that $x_{n} \in E$ and $\left|x_{n}-c\right|<\frac{1}{n}$ and $\left|f\left(x_{n}\right)-f(c)\right| \geq \epsilon_{0}$ for each $n \in \mathbb{N}$.

Since $x_{n} \in E$ for each $n \in \mathbb{N}$, then $\left(x_{n}\right)$ is a sequence of points in E.

We prove $\lim _{n \rightarrow \infty} x_{n}=c$.
Let $\epsilon>0$ be given.
Then $\epsilon \neq 0$, so $\frac{1}{\epsilon} \in \mathbb{R}$.
Hence, by the Archimedean property of \mathbb{R}, there exists $N \in \mathbb{N}$ such that $N>\frac{1}{\epsilon}$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $n>N>\frac{1}{\epsilon}$, so $n>\frac{1}{\epsilon}$.
Hence, $\epsilon>\frac{1}{n}$, so $\frac{1}{n}<\epsilon$.
Since $n \in \mathbb{N}$ and $\left|x_{n}-c\right|<\frac{1}{n}$ for each $n \in \mathbb{N}$, then $\left|x_{n}-c\right|<\frac{1}{n}$.
Thus, $\left|x_{n}-c\right|<\frac{1}{n}<\epsilon$, so $\left|x_{n}-c\right|<\epsilon$.
Therefore, $\lim _{n \rightarrow \infty} x_{n}=c$, as desired.
We prove $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq f(c)$.
Let $N \in \mathbb{N}$ be given.
Let $n=N+1$.
Then $n \in \mathbb{N}$ and $n>N$.
Since $n \in \mathbb{N}$ and $\left|f\left(x_{n}\right)-f(c)\right| \geq \epsilon_{0}$ for each $n \in \mathbb{N}$, then $\left|f\left(x_{n}\right)-f(c)\right| \geq \epsilon_{0}$.
Thus, there exists $\epsilon_{0}>0$ such that for each $N \in \mathbb{N}$, there exists $n \in \mathbb{N}$ for which $n>N$ and $\left|f\left(x_{n}\right)-f(c)\right| \geq \epsilon_{0}$.

Therefore, $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq f(c)$.

Hence, we have shown there exists a sequence $\left(x_{n}\right)$ of points in E such that $\lim _{n \rightarrow \infty} x_{n}=c$ and $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq f(c)$, as desired.

Proposition 3. restriction of a continuous function is continuous

Let f be a real valued function of a real variable.
Let g be a restriction of f to a nonempty set $E \subset \operatorname{dom} f$.
If f is continuous, then the restriction g is continuous.
Proof. Suppose f is continuous.
To prove g is continuous, we must prove g is continuous on E.
Since $E \neq \emptyset$, let $c \in E$ be arbitrary.
To prove g is continuous at c, let $\epsilon>0$ be given.
Since $c \in E$ and $E \subset \operatorname{domf}$, then $c \in \operatorname{domf}$.
Since f is continuous and $c \in \operatorname{dom} f$, then f is continuous at c.
Thus, there exists $\delta>0$ such that for all $x \in \operatorname{domf}$, if $|x-c|<\delta$, then $|f(x)-f(c)|<\epsilon$.

Let $x \in E$ such that $|x-c|<\delta$.
Since $x \in E$ and $E \subset \operatorname{dom} f$, then $x \in \operatorname{domf}$.
Thus, $x \in \operatorname{domf}$ and $|x-c|<\delta$, so $|f(x)-f(c)|<\epsilon$.
Since g is a restriction of f to E, then $g(x)=f(x)$ for all $x \in E$.
Since $x \in E$ and $c \in E$, then $g(x)=f(x)$ and $g(c)=f(c)$.
Therefore, $|g(x)-g(c)|=|f(x)-f(c)|<\epsilon$, so g is continuous at c, as desired.

Algebraic properties of continuous functions

Theorem 4. Let $\lambda \in \mathbb{R}$.
Let f be a real valued function.
Let $c \in \operatorname{dom} f$.
If f is continuous at c, then λf is continuous at c.
Proof. Suppose f is continuous at c.
Since f is a real valued function, then λf is a real valued function.
Since $c \in \operatorname{dom} f$ and $\operatorname{dom} f=\operatorname{dom}(\lambda f)$, then $c \in \operatorname{dom}(\lambda f)$.
Either c is an accumulation point of $\operatorname{dom}(\lambda f)$ or c is not an accumulation point of $\operatorname{dom}(\lambda f)$.

We consider these cases separately.
Case 1: Suppose c is not an accumulation point of $\operatorname{dom}(\lambda f)$.
Since $c \in \operatorname{dom}(\lambda f)$ and c is not an accumulation point of $\operatorname{dom}(\lambda f)$, then λf is continuous at c.

Case 2: Suppose c is an accumulation point of $\operatorname{dom}(\lambda f)$.
Since $\operatorname{dom}(\lambda f)=\operatorname{dom} f$, then c is an accumulation point of $\operatorname{dom} f$.
Since $c \in \operatorname{dom} f$ and c is an accumulation point of $\operatorname{dom} f$ and f is continuous at c, then the limit of f at c exists and $\lim _{x \rightarrow c} f(x)=f(c)$.

Observe that

$$
\begin{aligned}
(\lambda f)(c) & =\lambda f(c) \\
& =\lambda \lim _{x \rightarrow c} f(x) \\
& =\lim _{x \rightarrow c}[\lambda f(x)] \\
& =\lim _{x \rightarrow c}(\lambda f)(x)
\end{aligned}
$$

Since $c \in \operatorname{dom}(\lambda f)$ and $\lim _{x \rightarrow c}(\lambda f)(x)=(\lambda f)(c)$, then λf is continuous at c.

Therefore, in all cases, λf is continuous at c, as desired.

Corollary 5. scalar multiple of a continuous function is continuous

 Let $\lambda \in \mathbb{R}$.Let f be a real valued function.
If f is continuous, then λf is continuous.
Proof. Suppose f is continuous.
Let $c \in \operatorname{dom}(\lambda f)$.
Since $\operatorname{dom}(\lambda f)=\operatorname{dom} f$, then $c \in \operatorname{dom} f$.
Since f is continuous and $c \in \operatorname{dom} f$, then f is continuous at c.
Therefore, λf is continuous at c, so λf is continuous.
Theorem 6. Let f and g be real valued functions.
Let $c \in \operatorname{dom} f \cap \operatorname{domg}$.
If f is continuous at c and g is continuous at c, then $f+g$ is continuous at c.

Proof. Suppose f is continuous at c and g is continuous at c.
Since f and g are real valued functions, then $f+g$ is a real valued function. Since $c \in \operatorname{dom} f \cap \operatorname{domg}$ and $\operatorname{dom} f \cap \operatorname{domg}=\operatorname{dom}(f+g)$, then $c \in \operatorname{dom}(f+g)$.
Either c is an accumulation point of $\operatorname{dom}(f+g)$ or c is not an accumulation point of $\operatorname{dom}(f+g)$.

We consider these cases separately.
Case 1: Suppose c is not an accumulation point of $\operatorname{dom}(f+g)$.
Since $c \in \operatorname{dom}(f+g)$ and c is not an accumulation point of $\operatorname{dom}(f+g)$, then $f+g$ is continuous at c.

Case 2: Suppose c is an accumulation point of $\operatorname{dom}(f+g)$.
Since $\operatorname{dom}(f+g)=\operatorname{dom} f \cap \operatorname{domg}$, then c is an accumulation point of $\operatorname{dom} f \cap$ domg.

Since $c \in \operatorname{dom} f \cap \operatorname{domg}$, then $c \in \operatorname{domf}$ and $c \in \operatorname{domg}$.
Since c is an accumulation point of $\operatorname{domf} \cap \operatorname{domg}$ and $\operatorname{dom} f \cap \operatorname{domg}$ is a subset of $\operatorname{dom} f$, then c is an accumulation point of $\operatorname{dom} f$.

Since $c \in \operatorname{dom} f$ and c is an accumulation point of $\operatorname{dom} f$ and f is continuous at c, then the limit of f at c exists and $\lim _{x \rightarrow c} f(x)=f(c)$.

Since c is an accumulation point of $\operatorname{domf} \cap \operatorname{domg}$ and $\operatorname{dom} f \cap \operatorname{domg}$ is a subset of domg, then c is an accumulation point of domg.

Since $c \in d o m g$ and c is an accumulation point of $d o m g$ and g is continuous at c, then the limit of g at c exists and $\lim _{x \rightarrow c} g(x)=g(c)$.

Observe that

$$
\begin{aligned}
(f+g)(c) & =f(c)+g(c) \\
& =\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x) \\
& =\lim _{x \rightarrow c}[f(x)+g(x)] \\
& =\lim _{x \rightarrow c}(f+g)(x) .
\end{aligned}
$$

Since $c \in \operatorname{dom}(f+g)$ and $\lim _{x \rightarrow c}(f+g)(x)=(f+g)(c)$, then $f+g$ is continuous at c.

Therefore, in all cases, $f+g$ is continuous at c, as desired.
Corollary 7. sum of continuous functions is continuous
Let f and g be real valued functions.
If f is continuous and g is continuous, then $f+g$ is continuous.
Proof. Suppose f is continuous and g is continuous.
Let $c \in \operatorname{dom}(f+g)$.
Since $\operatorname{dom}(f+g)=\operatorname{dom} f \cap \operatorname{domg}$, then $c \in \operatorname{dom} f \cap \operatorname{domg}$, so $c \in \operatorname{dom} f$ and $c \in$ domg.

Since f is continuous and $c \in \operatorname{dom} f$, then f is continuous at c.
Since g is continuous and $c \in \operatorname{domg}$, then g is continuous at c.
Therefore, $f+g$ is continuous at c, so $f+g$ is continuous.

Corollary 8. Let f and g be real valued functions.
Let $c \in \operatorname{domf} \cap \operatorname{domg}$.
If f is continuous at c and g is continuous at c, then $f-g$ is continuous at c.

Proof. Suppose f is continuous at c and g is continuous at c.
Since $c \in \operatorname{dom} f \cap \operatorname{domg}$ and $\operatorname{domg}=\operatorname{dom}(-g)$, then $c \in \operatorname{dom} f \cap \operatorname{dom}(-g)$.
Since $c \in \operatorname{dom} f \cap \operatorname{domg}$, then $c \in \operatorname{domg}$.
Since $c \in d o m g$ and g is continuous at c, then $-g$ is continuous at c.
Since $c \in \operatorname{dom} f \cap \operatorname{dom}(-g)$ and f is continuous at c and $-g$ is continuous at c, then $f-g=f+(-g)$ is continuous at c, as desired.

Corollary 9. difference of continuous functions is continuous
Let f and g be real valued functions.
If f is continuous and g is continuous, then $f-g$ is continuous.
Proof. Suppose f is continuous and g is continuous.
Let $c \in \operatorname{dom}(f-g)$.
Since $\operatorname{dom}(f-g)=\operatorname{dom} f \cap \operatorname{domg}$, then $c \in \operatorname{dom} f \cap \operatorname{domg}$, so $c \in \operatorname{dom} f$ and $c \in \operatorname{domg}$.

Since f is continuous and $c \in \operatorname{dom} f$, then f is continuous at c.
Since g is continuous and $c \in d o m g$, then g is continuous at c.
Therefore, $f-g$ is continuous at c, so $f-g$ is continuous.
Theorem 10. Let f and g be real valued functions.
Let $c \in \operatorname{dom} f \cap \operatorname{domg}$.
If f is continuous at c and g is continuous at c, then $f g$ is continuous at c.
Proof. Suppose f is continuous at c and g is continuous at c.
Since f and g are real valued functions, then $f g$ is a real valued function.
Since $c \in \operatorname{dom} f \cap \operatorname{domg}$ and $\operatorname{dom} f \cap \operatorname{domg}=\operatorname{dom}(f g)$, then $c \in \operatorname{domfg}$.
Either c is an accumulation point of $\operatorname{dom}(f g)$ or c is not an accumulation point of $\operatorname{dom}(f g)$.

We consider these cases separately.
Case 1: Suppose c is not an accumulation point of $\operatorname{dom}(f g)$.
Since $c \in \operatorname{dom}(f g)$ and c is not an accumulation point of $\operatorname{dom}(f g)$, then $f g$ is continuous at c.

Case 2: Suppose c is an accumulation point of $\operatorname{dom}(f g)$.
Since $\operatorname{dom}(f g)=\operatorname{dom} f \cap \operatorname{domg}$, then c is an accumulation point of $\operatorname{dom} f \cap$ domg.

Since $c \in \operatorname{dom} f \cap \operatorname{domg}$, then $c \in \operatorname{dom} f$ and $c \in \operatorname{domg}$.
Since c is an accumulation point of $\operatorname{dom} f \cap \operatorname{domg}$ and $\operatorname{dom} f \cap \operatorname{domg}$ is a subset of $\operatorname{dom} f$, then c is an accumulation point of $\operatorname{dom} f$.

Since $c \in \operatorname{dom} f$ and c is an accumulation point of $\operatorname{dom} f$ and f is continuous at c, then the limit of f at c exists and $\lim _{x \rightarrow c} f(x)=f(c)$.

Since c is an accumulation point of $\operatorname{domf} \cap \operatorname{domg}$ and $\operatorname{dom} f \cap \operatorname{domg}$ is a subset of domg, then c is an accumulation point of domg.

Since $c \in d o m g$ and c is an accumulation point of $d o m g$ and g is continuous at c, then the limit of g at c exists and $\lim _{x \rightarrow c} g(x)=g(c)$.

Observe that

$$
\begin{aligned}
(f g)(c) & =f(c) g(c) \\
& =\lim _{x \rightarrow c} f(x) \cdot \lim _{x \rightarrow c} g(x) \\
& =\lim _{x \rightarrow c}[f(x) g(x)] \\
& =\lim _{x \rightarrow c}(f g)(x) .
\end{aligned}
$$

Since $c \in \operatorname{dom}(f g)$ and $\lim _{x \rightarrow c}(f g)(x)=(f g)(c)$, then $f g$ is continuous at c. Therefore, in all cases, $f g$ is continuous at c, as desired.

Corollary 11. product of continuous functions is continuous
Let f and g be real valued functions.
If f is continuous and g is continuous, then $f g$ is continuous.
Proof. Suppose f is continuous and g is continuous.
Let $c \in \operatorname{domfg}$.
Since $\operatorname{domfg}=\operatorname{dom} f \cap \operatorname{domg}$, then $c \in \operatorname{domf} \cap \operatorname{domg}$, so $c \in \operatorname{domf}$ and $c \in \operatorname{domg}$.

Since f is continuous and $c \in \operatorname{dom} f$, then f is continuous at c.
Since g is continuous and $c \in d o m g$, then g is continuous at c.
Therefore, $f g$ is continuous at c, so $f g$ is continuous.
Theorem 12. Let f and g be real valued functions.
Let $c \in \operatorname{domf} \cap \operatorname{domg}$.
If f is continuous at c and g is continuous at c and $g(c) \neq 0$, then $\frac{f}{g}$ is continuous at c.

Proof. Suppose f is continuous at c and g is continuous at c and $g(c) \neq 0$.
Since f and g are real valued functions, then $\frac{f}{g}$ is a real valued function.
Since $c \in \operatorname{dom} f \cap \operatorname{domg}$, then $c \in \operatorname{domf}$ and $c \in \operatorname{domg}$.
Since $\operatorname{dom} \frac{f}{g}=\operatorname{dom} f \cap\{x \in \operatorname{domg}: g(x) \neq 0\}$ and $c \in \operatorname{domf}$ and $c \in \operatorname{domg}$ and $g(c) \neq 0$, then $c \in \operatorname{dom} \frac{f}{g}$.

Either c is an accumulation point of $\operatorname{dom} \frac{f}{g}$ or c is not an accumulation point of $\operatorname{dom} \frac{f}{g}$.

We consider these cases separately.
Case 1: Suppose c is not an accumulation point of $\operatorname{dom} \frac{f}{g}$.
Since $c \in \operatorname{dom} \frac{f}{g}$ and c is not an accumulation point of $\operatorname{dom} \frac{f}{g}$, then $\frac{f}{g}$ is continuous at c.

Case 2: Suppose c is an accumulation point of $\operatorname{dom} \frac{f}{g}$.
Let $x \in \operatorname{dom} \frac{f}{g}$.
Then $x \in \operatorname{dom} f \cap\{x \in \operatorname{domg}: g(x) \neq 0\}$, so $x \in \operatorname{dom} f$.

Hence, $\operatorname{dom} \frac{f}{g} \subset \operatorname{dom} f$.
Since c is an accumulation point of $\operatorname{dom} \frac{f}{g}$ and $\operatorname{dom} \frac{f}{g}$ is a subset of domf, then c is an accumulation point of $\operatorname{dom} f$.

Since $c \in \operatorname{dom} f$ and c is an accumulation point of $\operatorname{dom} f$ and f is continuous at c, then the limit of f at c exists and $\lim _{x \rightarrow c} f(x)=f(c)$.

Let $x \in \operatorname{dom} \frac{f}{g}$.
Then $x \in \operatorname{dom} f \cap\{x \in \operatorname{domg}: g(x) \neq 0\}$, so $x \in\{x \in \operatorname{dom} g: g(x) \neq 0\}$.
Hence, $x \in d o m g$, so $d o m \frac{f}{g} \subset d o m g$.
Since c is an accumulation point of $\operatorname{dom} \frac{f}{g}$ and $\operatorname{dom} \frac{f}{g}$ is a subset of domg, then c is an accumulation point of domg.

Since $c \in d o m g$ and c is an accumulation point of $d o m g$ and g is continuous at c, then the limit of g at c exists and $\lim _{x \rightarrow c} g(x)=g(c)$.

Since $g(c) \neq 0$, then $\lim _{x \rightarrow c} g(x) \neq 0$.
Let $x \in \operatorname{dom} \frac{f}{g}$.
Then $x \in \operatorname{dom} f \cap\{x \in \operatorname{domg}: g(x) \neq 0\}$, so $x \in \operatorname{domf}$ and $x \in\{x \in \operatorname{domg}$: $g(x) \neq 0\}$.

Thus, $x \in \operatorname{dom} f$ and $x \in \operatorname{domg}$, so $x \in \operatorname{dom} f \cap \operatorname{domg}$.
Hence, $\operatorname{dom} \frac{f}{g} \subset \operatorname{dom} f \cap \operatorname{domg}$.
Since c is an accumulation point of $\operatorname{dom} \frac{f}{g}$ and $\operatorname{dom} \frac{f}{g}$ is a subset of $\operatorname{domf} \cap$ $d o m g$, then c is an accumulation point of $d o m f \cap d o m g$.

Thus,

$$
\begin{aligned}
\frac{f}{g}(c) & =\frac{f(c)}{g(c)} \\
& =\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)} \\
& =\lim _{x \rightarrow c} \frac{f(x)}{g(x)} \\
& =\lim _{x \rightarrow c} \frac{f}{g}(x)
\end{aligned}
$$

Since $c \in \operatorname{dom} \frac{f}{g}$ and c is an accumulation point of $\operatorname{dom} \frac{f}{g}$ and $\lim _{x \rightarrow c} \frac{f}{g}(x)=$ $\frac{f}{g}(c)$, then $\frac{f}{g}$ is continuous at c.

Therefore, in all cases, $\frac{f}{g}$ is continuous at c, as desired.
Corollary 13. quotient of continuous functions is continuous wherever defined

Let f and g be real valued functions.
If f is continuous and g is continuous, then $\frac{f}{g}$ is continuous for all $x \in$ $\operatorname{dom} f \cap \operatorname{domg}$ such that $g(x) \neq 0$.

Proof. Suppose f is continuous and g is continuous.
Let $c \in \operatorname{dom} f \cap \operatorname{domg}$ such that $g(c) \neq 0$.

Since $c \in \operatorname{dom} f \cap \operatorname{domg}$, then $c \in \operatorname{dom} f$ and $c \in \operatorname{domg}$.
We must prove $\frac{f}{g}$ is continuous at c.
Since f is continuous and $c \in \operatorname{dom} f$, then f is continuous at c.
Since g is continuous and $c \in d o m g$, then g is continuous at c.
Since $g(c) \neq 0$, then $\frac{f}{g}$ is continuous at c, as desired.
Theorem 14. polynomial functions are continuous
Every polynomial function is continuous.
Proof. Let $p: \mathbb{R} \rightarrow \mathbb{R}$ be an arbitrary polynomial function.
To prove p is continuous, let $c \in \mathbb{R}$ be arbitrary.
We must prove p is continuous at c.
Since p is a polynomial function and $c \in \mathbb{R}$, then $\lim _{x \rightarrow c} p(x)=p(c)$.
Since $c \in \mathbb{R}$ and c is an accumulation point of \mathbb{R} and $\lim _{x \rightarrow c} p(x)=p(c)$, then p is continuous at c, as desired.

Theorem 15. rational functions are continuous wherever defined
Let r be a rational function defined by $r(x)=\frac{p(x)}{q(x)}$ such that p and q are polynomial functions.

Then r is continuous for all $x \in \mathbb{R}$ such that $q(x) \neq 0$.
Proof. Since p is continuous and q is continuous, then $\frac{p}{q}=r$ is continuous for all $x \in \operatorname{domp} \cap \operatorname{dom} q$ such that $q(x) \neq 0$.

Since domp $\cap \operatorname{domq}=\mathbb{R} \cap \mathbb{R}=\mathbb{R}$, then r is continuous for all $x \in \mathbb{R}$ such that $q(x) \neq 0$, as desired.

Theorem 16. Let f and g be real valued functions of a real variable.
If f is continuous at c and g is continuous at $f(c)$, then $g \circ f$ is continuous at c.

Proof. Since f and g are functions, then $g \circ f$ is a function defined by $(g \circ f)(x)=$ $g(f(x))$ for all $x \in \operatorname{dom}(g \circ f)$.

Suppose f is continuous at c and g is continuous at $f(c)$.
Since f is continuous at c, then $c \in \operatorname{dom} f$.
Since g is continuous at $f(c)$, then $f(c) \in$ domg.
Since $c \in \operatorname{domf}$ and $f(c) \in \operatorname{domg}$, then $c \in \operatorname{dom}(g \circ f)$.
To prove $g \circ f$ is continuous at c, let $\epsilon>0$ be given.
Since g is continuous at $f(c)$, then there exists $\delta_{1}>0$ such that for all $x \in d o m g$, if $|x-f(c)|<\delta_{1}$, then $|g(x)-g(f(c))|<\epsilon$.

Since f is continuous at c and $\delta_{1}>0$, then there exists $\delta>0$ such that for all $x \in \operatorname{dom} f$, if $|x-c|<\delta$, then $|f(x)-f(c)|<\delta_{1}$.

Let $x \in \operatorname{dom}(g \circ f)$ such that $|x-c|<\delta$.
Since $x \in \operatorname{dom}(g \circ f)$, then $x \in \operatorname{dom} f$ and $f(x) \in \operatorname{domg}$.
Since $x \in \operatorname{dom} f$ and $|x-c|<\delta$, then $|f(x)-f(c)|<\delta_{1}$.
Since $f(x) \in d o m g$ and $|f(x)-f(c)|<\delta_{1}$, then $|g(f(x))-g(f(c))|<\epsilon$.
Therefore, $|(g \circ f)(x)-(g \circ f)(c)|<\epsilon$, so $g \circ f$ is continuous at c.

Corollary 17. composition of continuous functions is continuous
Let f and g be real valued functions of a real variable.
If f is continuous and g is continuous, then $g \circ f$ is continuous.
Proof. Suppose f is continuous and g is continuous.
Let $c \in \operatorname{dom}(g \circ f)$.
Since $\operatorname{dom}(g \circ f)=\{x \in \operatorname{dom} f: f(x) \in \operatorname{domg}\}$, then $c \in \operatorname{domf}$ and $f(c) \in$ domg.

Since f is continuous and $c \in \operatorname{dom} f$, then f is continuous at c.
Since g is continuous and $f(c) \in d o m g$, then g is continuous at $f(c)$.
Therefore, $g \circ f$ is continuous at c, so $g \circ f$ is continuous.
Proposition 18. If f is a continuous function, then so is $|f|$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let $|f|: E \rightarrow \mathbb{R}$ be a function defined by $|f|(x)=|f(x)|$.
If f is continuous, then $|f|$ is continuous.
Proof. Suppose f is continuous.
Let $c \in E$.
Then f is continuous at c.
Let $\epsilon>0$ be given.
Then there exists $\delta>0$ such that for all $x \in E$, if $|x-c|<\delta$, then $|f(x)-f(c)|<\epsilon$.

Let $x \in E$ such that $|x-c|<\delta$.
Then $|f(x)-f(c)|<\epsilon$, so $\| f|(x)-|f|(c)|=||f(x)|-|f(c)|| \leq|f(x)-f(c)|<$
ϵ.
Therefore, $|f|$ is continuous at c, so $|f|$ is continuous.
Proposition 19. If f is a continuous function, then so is \sqrt{f}.
Let $f: E \rightarrow \mathbb{R}$ be a function such that $f(x) \geq 0$ for all $x \in E$.
Let \sqrt{f} be a function defined by $\sqrt{f}(x)=\sqrt{f(x)}$ for all $x \in E$ such that $f(x) \geq 0$.

If f is continuous, then \sqrt{f} is continuous.
Proof. Suppose f is continuous.
Let $g(x)=\sqrt{x}$.
Then $g:[0, \infty) \rightarrow \mathbb{R}$ is a continuous function.
The domain of \sqrt{f} is the set $\{x \in E: f(x) \geq 0\}$.
Since $\operatorname{dom}(g \circ f)=\{x \in \operatorname{domf}: f(x) \in \operatorname{domg}\}=\{x \in E: f(x) \in[0, \infty)\}=$
$\{x \in E: f(x) \geq 0\}$, then the domain of $g \circ f$ is the same as the domain of \sqrt{f}, so $\operatorname{dom} \sqrt{f}=\operatorname{dom}(g \circ f)$.

Let $x \in \operatorname{dom}(g \circ f)$.
Then $x \in E$ and $f(x) \geq 0$.
Thus, $\sqrt{f}(x)=\sqrt{f(x)}=g(f(x))=(g \circ f)(x)$, so $\sqrt{f}(x)=(g \circ f)(x)$.
Hence, $\sqrt{f}(x)=(g \circ f)(x)$ for all $x \in \operatorname{dom}(g \circ f)$.

Since $\operatorname{dom} \sqrt{f}=\operatorname{dom}(g \circ f)$ and $\sqrt{f}(x)=(g \circ f)(x)$ for all $x \in \operatorname{dom}(g \circ f)$, then $\sqrt{f}=g \circ f$.

Since f is continuous and g is continuous and the composition of continuous functions is continuous, then $g \circ f$ is continuous.

Therefore, \sqrt{f} is continuous, as desired.

Continuous functions on compact sets

Lemma 20. Bolzano-Weierstrass property of compact sets

Let $E \subset \mathbb{R}$ be a closed bounded set.
Then every sequence in E has a subsequence $\left(y_{n}\right)$ in E such that $\lim _{n \rightarrow \infty} y_{n} \in$ E.

Proof. Let $\left(x_{n}\right)$ be an arbitrary sequence in E.
Then $x_{n} \in E$ for all $n \in \mathbb{N}$.
Since E is bounded, then there exists $B \in \mathbb{R}$ such that $|x| \leq B$ for all $x \in E$.
Let $n \in \mathbb{N}$ be given.
Then $x_{n} \in E$, so $\left|x_{n}\right| \leq B$.
Thus, $\left|x_{n}\right| \leq B$ for all $n \in \mathbb{N}$, so $\left(x_{n}\right)$ is bounded in \mathbb{R}.
Therefore, by the Bolzano-Weierstrass theorem for sequences, $\left(x_{n}\right)$ has a convergent subsequence.

Let $\left(y_{n}\right)$ be a convergent subsequence of $\left(x_{n}\right)$.
Since $\left(y_{n}\right)$ is a subsequence of $\left(x_{n}\right)$, then there exists a strictly increasing function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that $y_{n}=x_{g(n)}$ for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$ be given.
Then $g(n) \in \mathbb{N}$ and $y_{n}=x_{g(n)}$.
Thus, $x_{g(n)} \in E$, so $y_{n} \in E$.
Hence, $y_{n} \in E$ for all $n \in \mathbb{N}$, so $\left(y_{n}\right)$ is a sequence in E.
Since $\left(y_{n}\right)$ is convergent, let $c=\lim _{n \rightarrow \infty} y_{n}$.
We must prove $c \in E$.
We prove by contradiction.
Suppose $c \notin E$.
Since E is closed, then c is not an accumulation point of E.
Hence, there exists $\delta>0$ such that $N^{\prime}(c ; \delta) \cap E=\emptyset$.
Since $\lim _{n \rightarrow \infty} y_{n}=c$ and $\delta>0$, then there exists $N \in \mathbb{N}$ such that if $n>N$, then $\left|y_{n}-c\right|<\delta$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $\left|y_{n}-c\right|<\delta$, so $y_{n} \in N(c ; \delta)$.
Since $n \in \mathbb{N}$, then $y_{n} \in E$.
Since $c \notin E$, then $y_{n} \neq c$, so $y_{n} \in N^{\prime}(c ; \delta)$.
Since $y_{n} \in N^{\prime}(c ; \delta)$ and $y_{n} \in E$, then $y_{n} \in N^{\prime}(c ; \delta) \cap E$, so $N^{\prime}(c ; \delta) \cap E \neq \emptyset$.
Hence, we have $N^{\prime}(c ; \delta) \cap E=\emptyset$ and $N^{\prime}(c ; \delta) \cap E \neq \emptyset$, a contradiction.
Therefore, $c \in E$, as desired.
Theorem 21. Boundedness Theorem
Every real valued function continuous on a closed bounded set is bounded.

Proof. Let $E \subset \mathbb{R}$ be a closed bounded set.
Let $f: E \rightarrow \mathbb{R}$ be a continuous function.
We must prove f is bounded.
We prove by contradiction.
Suppose f is not bounded.
Then f is unbounded, so for every real number r, there exists $x \in E$ such that $|f(x)|>r$.

In particular, for every $n \in \mathbb{N}$, there exists $x_{n} \in E$ such that $\left|f\left(x_{n}\right)\right|>n$.
Thus, there exists a sequence $\left(x_{n}\right)$ in E such that $\left|f\left(x_{n}\right)\right|>n$ for all $n \in \mathbb{N}$.
Since E is a closed bounded set and $\left(x_{n}\right)$ is a sequence in E, then by the Bolzano-Weierstrass property of compact sets, there exists a subsequence $\left(y_{n}\right)$ in E such that $\lim _{n \rightarrow \infty} y_{n} \in E$.

Let $c=\lim _{n \rightarrow \infty} y_{n}$.
Then $c \in E$.
Since f is continuous on E and $c \in E$, then f is continuous at c.
Since $\left(y_{n}\right)$ is a sequence in E and $\lim _{n \rightarrow \infty} y_{n}=c$, then by the sequential characterization of continuity, we conclude $\lim _{n \rightarrow \infty} f\left(y_{n}\right)=f(c)$.

Thus, the sequence $\left(f\left(y_{n}\right)\right)$ is convergent, so $\left(f\left(y_{n}\right)\right)$ is bounded.

We prove the sequence $\left(f\left(y_{n}\right)\right)$ is unbounded.
Let $M \in \mathbb{R}$ be given.
By the Archimedean property of \mathbb{R}, there exists $n \in \mathbb{N}$ such that $n>M$.
Since $\left(y_{n}\right)$ is a subsequence of $\left(x_{n}\right)$, then there exists a strictly increasing function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that $y_{n}=x_{g(n)}$ for all $n \in \mathbb{N}$.

Since $g: \mathbb{N} \rightarrow \mathbb{N}$ is strictly increasing, then $g(n) \geq n$ for all $n \in \mathbb{N}$.
Since $n \in \mathbb{N}$, then $g(n) \in \mathbb{N}$, so there exists $x_{g(n)} \in E$ such that $\left|f\left(x_{g(n)}\right)\right|>$ $g(n)$.

Observe that

$$
\begin{aligned}
\left|f\left(y_{n}\right)\right| & =\left|f\left(x_{g(n)}\right)\right| \\
& >g(n) \\
& \geq n \\
& >M .
\end{aligned}
$$

Hence, $\left|f\left(y_{n}\right)\right|>M$.
Thus, there exists $n \in \mathbb{N}$ such that $\left|f\left(y_{n}\right)\right|>M$, so $\left(f\left(y_{n}\right)\right)$ is unbounded.
Hence, we have $\left(f\left(y_{n}\right)\right)$ is bounded and $\left(f\left(y_{n}\right)\right)$ is unbounded, a contradiction.

Therefore, f is bounded, as desired.

Theorem 22. Extreme Value Theorem

Every real valued function continuous on a nonempty closed bounded set attains a maximum and minimum on the set.

Proof. Let S be a nonempty closed bounded set.
Let $f: S \rightarrow \mathbb{R}$ be a continuous function.
To prove there exists a maximum on S, we must prove there exists $c \in S$ such that $f(x) \leq f(c)$ for all $x \in S$.

Let $f(S)=\{f(x): x \in S\}$.
Since $S \neq \emptyset$, then there exists $s \in S$, so $f(s) \in f(S)$.
Hence, $f(S) \neq \emptyset$.
Since f is continuous on S and the set S is closed and bounded, then by the boundedness theorem, f is bounded.

Hence, $f(S)$ is bounded, so $f(S)$ is bounded above in \mathbb{R}.
Since $f(S)$ is not empty and bounded above in \mathbb{R}, then by completeness of $\mathbb{R}, \sup f(S)$ exists.

Let $M=\sup f(S)$.

Suppose for the sake of contradiction $M \notin f(S)$.
Then there is no $x \in S$ such that $f(x)=M$, so $f(x) \neq M$ for all $x \in S$.
Since M is an upper bound of $f(S)$, then this implies $f(x)<M$ for all $x \in S$, so $M-f(x)>0$ for all $x \in S$.

Let $g=\frac{1}{M-f}$.
Then $g: S \rightarrow \mathbb{R}$ is a function defined by $g(x)=\frac{1}{M-f(x)}$ for all $x \in S$.
Since $M-f(x)>0$ for all $x \in S$, then $\frac{1}{M-f(x)}>0$ for all $x \in S$, so $g(x)>0$ for all $x \in S$.

Since f is continuous on S, then $-f$ is continuous on S, so $M-f$ is continuous on S.

Hence, $\frac{1}{M-f}$ is continuous on S, so g is continuous on S.
Let $g(S)=\{g(x): x \in S\}$.
Since $S \neq \emptyset$, then there exists $s \in S$, so $g(s) \in g(S)$.
Hence, $g(S) \neq \emptyset$.
Since g is continuous on S and the set S is closed and bounded, then by the boundedness theorem, g is bounded.

Hence, $g(S)$ is bounded, so $g(S)$ is bounded above in \mathbb{R}.
Since $g(S)$ is not empty and bounded above in \mathbb{R}, then by completeness of $\mathbb{R}, \sup g(S)$ exists.

Let $M^{\prime}=\sup g(S)$.
Since M^{\prime} is an upper bound of $g(S)$, then $g(x) \leq M^{\prime}$ for all $x \in S$.
Let $x \in S$.
Then $0<g(x) \leq M^{\prime}$, so $0<\frac{1}{M-f(x)} \leq M^{\prime}$ and $0<M^{\prime}$.
Hence, $\frac{1}{M^{\prime}} \leq M-f(x)$, so $f(x) \leq M-\frac{1}{M^{\prime}}$ for all $x \in S$.
Since $M^{\prime}>0$, then $\frac{1}{M^{\prime}}>0$.
Thus, there exists $\frac{1^{M^{\prime}}}{M^{\prime}}>0$ such that $f(x) \leq M-\frac{1}{M^{\prime}}$ for all $x \in S$. This contradicts the fact that M is the least upper bound of $f(S)$.

Hence, $M \in f(S)$, so there exists $c \in S$ such that $f(c)=M$.
Since M is an upper bound of $f(S)$, then $f(x) \leq M$ for all $x \in S$.
Therefore, there exists $c \in S$ such that $f(x) \leq f(c)$ for all $x \in S$, so f has a maximum on S.

Proof. Let S be a nonempty closed bounded set.
Let $f: S \rightarrow \mathbb{R}$ be a continuous function.
To prove there exists a minimum on S, we must prove there exists $c \in S$ such that $f(c) \leq f(x)$ for all $x \in S$.

Let $f(S)=\{f(x): x \in S\}$.
Since $S \neq \emptyset$, then there exists $s \in S$, so $f(s) \in f(S)$.
Hence, $f(S) \neq \emptyset$.
Since f is continuous on S and the set S is closed and bounded, then by the boundedness theorem, f is bounded.

Hence, $f(S)$ is bounded, so $f(S)$ is bounded below in \mathbb{R}.
Since $f(S)$ is not empty and bounded below in \mathbb{R}, then by completeness of $\mathbb{R}, \inf f(S)$ exists.

Let $m=\inf f(S)$.
Suppose for the sake of contradiction $m \notin f(S)$.
Then there is no $x \in S$ such that $f(x)=m$, so $f(x) \neq m$ for all $x \in S$.
Since m is a lower bound of $f(S)$, then this implies $m<f(x)$ for all $x \in S$, so $m-f(x)<0$ for all $x \in S$.

Let $g=\frac{1}{m-f}$.
Then $g: S \rightarrow \mathbb{R}$ is a function defined by $g(x)=\frac{1}{m-f(x)}$ for all $x \in S$.
Since $m-f(x)<0$ for all $x \in S$, then $\frac{1}{m-f(x)}<0$ for all $x \in S$, so $g(x)<0$ for all $x \in S$.

Since f is continuous on S, then $m-f$ is continuous on S, so $\frac{1}{m-f}$ is continuous on S.

Hence, g is continuous on S.
Let $g(S)=\{g(x): x \in S\}$.
Since $S \neq \emptyset$, then there exists $s \in S$, so $g(s) \in g(S)$.
Hence, $g(S) \neq \emptyset$.
Since g is continuous on S and the set S is closed and bounded, then by the boundedness theorem, g is bounded.

Hence, $g(S)$ is bounded, so $g(S)$ is bounded below in \mathbb{R}.
Since $g(S)$ is not empty and bounded below in \mathbb{R}, then by completeness of $\mathbb{R}, \inf g(S)$ exists.

Let $m^{\prime}=\inf g(S)$.
Since m^{\prime} is a lower bound of $g(S)$, then $m^{\prime} \leq g(x)$ for all $x \in S$.
Let $x \in S$.
Then $m^{\prime} \leq g(x)<0$, so $m^{\prime} \leq \frac{1}{m-f(x)}<0$ and $m^{\prime}<0$.
Since $m-f(x)<0$, then $m^{\prime}(m-f(x)) \geq 1$.
Since $m^{\prime}<0$, then $m-f(x) \leq \frac{1}{m^{\prime}}$, so $m-\frac{1}{m^{\prime}} \leq f(x)$.
Hence, $f(x) \geq m-\frac{1}{m^{\prime}}=m+\frac{-1}{m^{\prime}}$, so $f(x) \geq m+\frac{-1}{m^{\prime}}$ for all $x \in S$.

Since $m^{\prime}<0$, then $\frac{-1}{m^{\prime}}>0$.
Thus, there exists $\frac{-1}{m^{\prime}}>0$ such that $f(x) \geq m+\frac{-1}{m^{\prime}}$ for all $x \in S$.
This contradicts the fact that m is the greatest lower bound of $f(S)$.
Hence, $m \in f(S)$, so there exists $c \in S$ such that $f(c)=m$.
Since m is a lower bound of $f(S)$, then $m \leq f(x)$ for all $x \in S$.
Therefore, there exists $c \in S$ such that $f(c) \leq f(x)$ for all $x \in S$, so f has a minimum on S.

Lemma 23. Let f be a continuous real valued function.

Let x_{0}, c, d be real numbers such that $x_{0} \in \operatorname{domf}$ and $c<f\left(x_{0}\right)<d$.
Then there exists a positive real number δ such that $c<f(x)<d$ for all $x \in N\left(x_{0} ; \delta\right) \cap \operatorname{dom} f$.

Proof. Since $c<f\left(x_{0}\right)<d$, then $c<f\left(x_{0}\right)$ and $f\left(x_{0}\right)<d$, so $f\left(x_{0}\right)-c>0$ and $d-f\left(x_{0}\right)>0$.

Since f is continuous and $x_{0} \in \operatorname{dom} f$, then f is continuous at x_{0}.
Let $\epsilon=\min \left\{f\left(x_{0}\right)-c, d-f\left(x_{0}\right)\right\}$.
Then $\epsilon \leq f\left(x_{0}\right)-c$ and $\epsilon \leq d-f\left(x_{0}\right)$ and either $\epsilon=f\left(x_{0}\right)-c$ or $\epsilon=d-f\left(x_{0}\right)$.
Since $f\left(x_{0}\right)-c>0$ and $d-f\left(x_{0}\right)>0$, then $\epsilon>0$.
Since f is continuous at x_{0} and $\epsilon>0$, then there exists $\delta>0$ such that for all $x \in \operatorname{dom} f$, if $\left|x-x_{0}\right|<\delta$, then $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$.

Since $x_{0} \in N\left(x_{0} ; \delta\right)$ and $x_{0} \in \operatorname{domf} f$, then $x_{0} \in N\left(x_{0} ; \delta\right) \cap \operatorname{domf}$, so $N\left(x_{0} ; \delta\right) \cap$ $\operatorname{dom} f \neq \emptyset$.

Let $x \in N\left(x_{0} ; \delta\right) \cap \operatorname{domf}$.
Then $x \in N\left(x_{0} ; \delta\right)$ and $x \in \operatorname{dom} f$, so $\left|x-x_{0}\right|<\delta$.
Hence, $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$.
Either $f(x)<f\left(x_{0}\right)$ or $f(x) \geq f\left(x_{0}\right)$.
We consider these cases separately.
Case 1: Suppose $f(x)<f\left(x_{0}\right)$.
Then $f\left(x_{0}\right)-f(x)>0$.
Since $f(x)<f\left(x_{0}\right)$ and $f\left(x_{0}\right)<d$, then $f(x)<d$.
Since $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$ and $\epsilon \leq f\left(x_{0}\right)-c$, then $\left|f(x)-f\left(x_{0}\right)\right|<f\left(x_{0}\right)-c$, so $\left|f\left(x_{0}\right)-f(x)\right|<f\left(x_{0}\right)-c$.

Hence, $f\left(x_{0}\right)-f(x)<f\left(x_{0}\right)-c$, so $-f(x)<-c$.
Thus, $f(x)>c$.
Therefore, $c<f(x)<d$.
Case 2: Suppose $f(x) \geq f\left(x_{0}\right)$.
Then $f(x)-f\left(x_{0}\right) \geq 0$.
Since $c<f\left(x_{0}\right)$ and $f\left(x_{0}\right) \leq f(x)$, then $c<f(x)$.
Since $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$ and $\epsilon \leq d-f\left(x_{0}\right)$, then $\left|f(x)-f\left(x_{0}\right)\right|<d-f\left(x_{0}\right)$.
Hence, $f(x)-f\left(x_{0}\right)<d-f\left(x_{0}\right)$, so $f(x)<d$.
Therefore, $c<f(x)<d$.
Thus, in all cases, $c<f(x)<d$, as desired.

Theorem 24. Intermediate Value Theorem

Let $a, b \in \mathbb{R}$.
Let f be a real valued function continuous on the closed interval $[a, b]$.
For every real number k such that $f(a)<k<f(b)$, there exists $c \in(a, b)$ such that $f(c)=k$.

Proof. Let k be an arbitrary real number such that $f(a)<k<f(b)$.
Then $f(a)<k$ and $k<f(b)$.
Let $S=\{x \in[a, b]: f(x)<k\}$.
Since $a \in[a, b]$ and $f(a)<k$, then $a \in S$, so $S \neq \emptyset$.
Let $x \in S$.
Then $x \in[a, b]$, so $a \leq x \leq b$.
Hence, $x \leq b$, so b is an upper bound of S.
Thus, S is bounded above in \mathbb{R}.
Since S is not empty and bounded above in \mathbb{R}, then by the completeness of $\mathbb{R}, \sup S$ exists.

Let $c=\sup S$.
Since c is the least upper bound of S and b is an upper bound of S, then $c \leq b$.

Since $a \in S$ and c is an upper bound of S, then $a \leq c$.
Hence, $a \leq c \leq b$, so $c \in[a, b]$.
Since f is a function and $c \in[a, b]$, then $f(c) \in \mathbb{R}$.
We must prove $f(c)=k$.

Suppose for the sake of contradiction $f(c)<k$.
Then $f(c)<k<f(b)$, so $f(c)<f(b)$.
Hence, $f(c) \neq f(b)$.
Since f is a function, then $c \neq b$.
Since $c \leq b$ and $c \neq b$, then $c<b$.
Since $f(c)<k$, then by the previous lemma, there exists $\delta>0$ such that $f(x)<k$ for all $x \in N\left(x_{0} ; \delta\right) \cap[a, b]$.

Let $m=\min \{b, c+\delta\}$.
Then $m \leq b$ and $m \leq c+\delta$ and either $m=b$ or $m=c+\delta$.
Since $c<b$ and $c<c+\delta$, then $c<m$.
Let $x=\frac{c+m}{2}$.
Then $2 x=c+m$.
Since $c<m$, then $2 c<c+m<2 m$, so $2 c<2 x<2 m$.
Hence, $c<x<m$, so $c<x$ and $x<m$.
Since $x<m \leq c+\delta$, then $x<c+\delta$, so $x-c<\delta$.
Since $x>c$, then $x-c>0$, so $|x-c|=x-c<\delta$.
Thus, $x \in N(c ; \delta)$.
Since $a \leq c<x<m \leq b$, then $a<x<b$, so $x \in[a, b]$.
Since $x \in N(c ; \delta)$ and $x \in[a, b]$, then $x \in N(c ; \delta) \cap[a, b]$, so $f(x)<k$.
Since $x \in[a, b]$ and $f(x)<k$, then $x \in S$.
Thus, there exists $x \in S$ such that $x>c$.
This contradicts the fact that c is an upper bound of S.

Therefore, $f(c)$ cannot be less than k.

Suppose for the sake of contradiction $f(c)>k$.
Since $k<f(c)$, then by the previous lemma, there exists $\delta>0$ such that $k<f(x)$ for all $x \in N(c ; \delta) \cap[a, b]$.

Since $f(c)>k$, then $c \notin S$.
Since c is an upper bound of S, then this implies $x<c$ for all $x \in S$.
Since c is the least upper bound of S and $\delta>0$, then there exists $x \in S$ such that $x>c-\delta$.

Since $x \in S$, then $x \in[a, b]$ and $f(x)<k$ and $x<c$.
Since $x<c$, then $c-x>0$.
Since $x>c-\delta$, then $\delta>c-x$.
Thus, $|x-c|=|c-x|=c-x<\delta$, so $x \in N(c ; \delta)$.
Since $x \in N(c ; \delta)$ and $x \in[a, b]$, then $x \in N(c ; \delta) \cap[a, b]$, so $k<f(x)$.
Thus, we have $f(x)<k$ and $f(x)>k$, a contradiction.
Therefore, $f(c)$ cannot be greater than k.

Since $f(c) \in \mathbb{R}$ and $f(c)$ cannot be less than k and $f(c)$ cannot be greater than k, then $f(c)=k$.

Since $c=b$ implies $f(c)=f(b)$, then $f(c) \neq f(b)$ implies $c \neq b$.
Since $f(c)=k<f(b)$, then $f(c) \neq f(b)$, so $c \neq b$.
Since $c \leq b$ and $c \neq b$, then $c<b$.
Since $c=a$ implies $f(c)=f(a)$, then $f(c) \neq f(a)$ implies $c \neq a$.
Since $f(c)=k>f(a)$, then $f(c) \neq f(a)$, so $c \neq a$.
Since $c \geq a$ and $c \neq a$, then $c>a$.
Therefore, $a<c<b$, so $c \in(a, b)$.
Thus, there exists $c \in(a, b)$ such that $f(c)=k$, as desired.
Lemma 25. Let I be an interval and $a \in I$ and $b \in I$ and $a<b$.
Then $[a, b] \subset I$.
Proof. Let $x \in[a, b]$.
Then $a \leq x \leq b$, so either $x=a$ or $x=b$ or $a<x<b$.
We consider these cases separately.
Case 1: Suppose $x=a$.
Since $a \in I$, then $x \in I$.
Case 2: Suppose $x=b$.
Since $b \in I$, then $x \in I$.
Case 3: Suppose $a<x<b$.
Since $a \in I$ and $b \in I$ and $a<x<b$ and I is an interval, then $x \in I$.
Therefore, in all cases, $x \in I$, so $[a, b] \subset I$, as desired.

Theorem 26. intervals are preserved by continuous functions

Let f be a real valued function continuous on an interval I.
Then $f(I)$ is an interval.

Proof. Either f is constant or not.
We consider these cases separately.
Case 1: Suppose f is constant.
Then there exists $k \in \mathbb{R}$ such that $f(x)=k$ for all $x \in I$, so $f(I)=\{k\}$.
Thus, $f(I)$ is a singleton set.
Since a singleton set is an interval, then $f(I)$ is an interval.
Case 2: Suppose f is not constant.
Then there exist at least two distinct elements of $f(I)$.
Thus, there exist real numbers $y_{1} \in f(I)$ and $y_{2} \in f(I)$ such that $y_{1} \neq y_{2}$.
Let $y_{1}, y_{2} \in \mathbb{R}$ such that $y_{1} \in f(I)$ and $y_{2} \in f(I)$ and $y_{1} \neq y_{2}$.
Since $y_{1} \neq y_{2}$, then either $y_{1}<y_{2}$ or $y_{1}>y_{2}$.
Without loss of generality, assume $y_{1}<y_{2}$.
By the density of \mathbb{R}, there exists a real number y_{0} such that $y_{1}<y_{0}<y_{2}$.
Since $y_{1} \in f(I)$, then there exists $x_{1} \in I$ such that $f\left(x_{1}\right)=y_{1}$.
Since $y_{2} \in f(I)$, then there exists $x_{2} \in I$ such that $f\left(x_{2}\right)=y_{2}$.
Thus, $f\left(x_{1}\right)<y_{0}<f\left(x_{2}\right)$ and $f\left(x_{1}\right)<f\left(x_{2}\right)$.
Since $f\left(x_{1}\right)<f\left(x_{2}\right)$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
Since f is a function, then this implies $x_{1} \neq x_{2}$.
Since I is an interval and $x_{1} \in I$ and $x_{2} \in I$ and $x_{1} \neq x_{2}$, then by the previous lemma, the closed, bounded interval with endpoints x_{1} and x_{2} is a subset of I.

Since f is continuous on I, then the restriction of f to the closed, bounded interval with endpoints x_{1} and x_{2} is continuous.

Since $f\left(x_{1}\right)<y_{0}<f\left(x_{2}\right)$, then by IVT, there exists x_{0} between x_{1} and x_{2} such that $f\left(x_{0}\right)=y_{0}$.

Since $x_{1} \in I$ and $x_{2} \in I$ and x_{0} is between x_{1} and x_{2} and I is an interval, then $x_{0} \in I$.

Thus, there exists $x_{0} \in I$ such that $f\left(x_{0}\right)=y_{0}$, so $y_{0} \in f(I)$.
Since $y_{1} \in f(I)$ and $y_{2} \in f(I)$ and $y_{1}<y_{0}<y_{2}$ implies $y_{0} \in f(I)$, then $f(I)$ is an interval.

Uniform continuity

Proposition 27. uniform continuity implies continuity

Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
If f is uniformly continuous on E, then f is continuous on E.
Proof. Suppose f is uniformly continuous on E.
Let c be an arbitrary element of E.
Let $\epsilon>0$ be given.
Since f is uniformly continuous on E, then there exists $\delta>0$ such that for all $x, y \in E$, if $|x-y|<\delta$, then $|f(x)-f(y)|<\epsilon$.

Let $x \in E$ such that $|x-c|<\delta$.
Since $x \in E$ and $c \in E$ and $|x-c|<\delta$, then $|f(x)-f(c)|<\epsilon$.
Therefore, f is continuous at c, so f is continuous on E.

Lemma 28. Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
If f is not uniformly continuous on E, then there exist $\epsilon_{1}>0$ and sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in E such that $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{1}$ for all $n \in \mathbb{N}$.

Proof. Suppose f is not uniformly continuous on E.
Then there exists $\epsilon_{1}>0$ such that for every $\delta>0$ there are $x, y \in E$ such that $|x-y|<\delta$ and $|f(x)-f(y)| \geq \epsilon_{1}$.

Let $\delta=\frac{1}{n}$ for all $n \in \mathbb{N}$.
Then for each $n \in \mathbb{N}$, there is $x \in E$ and there is $y \in E$ with $|x-y|<\frac{1}{n}$ and $|f(x)-f(y)| \geq \epsilon_{1}$.

Hence, there is a function $g: \mathbb{N} \rightarrow E$ and there is $y \in E$ with $|g(n)-y|<\frac{1}{n}$ and $|f(g(n))-f(y)| \geq \epsilon_{1}$ for each $n \in \mathbb{N}$.

Thus, there is a sequence $\left(x_{n}\right)$ in E and there is $y \in E$ with $\left|x_{n}-y\right|<\frac{1}{n}$ and $\left|f\left(x_{n}\right)-f(y)\right| \geq \epsilon_{1}$ for each $n \in \mathbb{N}$.

Since for each $n \in \mathbb{N}$ there is $y \in E$ such that $\left|x_{n}-y\right|<\frac{1}{n}$ and $\mid f\left(x_{n}\right)-$ $f(y) \mid \geq \epsilon_{1}$, then there is a function $h: \mathbb{N} \rightarrow E$ such that $\left|x_{n}-h(n)\right|<\frac{1}{n}$ and $\left|f\left(x_{n}\right)-f(h(n))\right| \geq \epsilon_{1}$ for each $n \in \mathbb{N}$.

Thus, there is a sequence $\left(y_{n}\right)$ in E such that $\left|x_{n}-y_{n}\right|<\frac{1}{n}$ and $\mid f\left(x_{n}\right)-$ $f\left(y_{n}\right) \mid \geq \epsilon_{1}$ for each $n \in \mathbb{N}$.

We prove $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$.
Let $\epsilon>0$ be given.
Then $\frac{1}{\epsilon}>0$, so by the Archimedean property of \mathbb{R}, there exists $N \in \mathbb{N}$ such that $N>\frac{1}{\epsilon}$.

Hence, $\epsilon>\frac{1}{N}$.
Let $n \in \mathbb{N}$ such that $n>N$.
Since $n \in \mathbb{N}$ and $\left|x_{n}-y_{n}\right|<\frac{1}{n}$ for all $n \in \mathbb{N}$, then $\left|x_{n}-y_{n}\right|<\frac{1}{n}$.
Since $n>N>0$, then $0<\frac{1}{n}<\frac{1}{N}$.
Thus, $\left|x_{n}-y_{n}\right|<\frac{1}{n}<\frac{1}{N}<\epsilon$, so $\left|x_{n}-y_{n}\right|<\epsilon$.
Therefore, there exist $\epsilon_{1}>0$ and sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in E such that $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{1}$ for each $n \in \mathbb{N}$.

Theorem 29. Heine-Cantor Uniform Continuity Theorem

Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
If f is continuous on E and E is a closed bounded set, then f is uniformly continuous on E.

Proof. Suppose f is continuous on E and E is a closed bounded set.
We prove by contradiction.
Suppose f is not uniformly continuous on E.
By the previous lemma, there exist $\epsilon_{1}>0$ and sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in E such that $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{1}$ for all $n \in \mathbb{N}$.

Since $\left(x_{n}\right)$ is a sequence in E and E is a closed bounded set, then by the Bolzano-Weierstrass property of compact sets, there is a subsequence of $\left(x_{n}\right)$ in E that converges to some point in E.

Let $\left(s_{n}\right)$ be a subsequence of $\left(x_{n}\right)$ in E that converges to some point in E.
Then $s_{n} \in E$ for all $n \in \mathbb{N}$ and there exists $c \in E$ such that $\lim _{n \rightarrow \infty} s_{n}=c$.
Since $\left(y_{n}\right)$ is a sequence in E and E is a closed bounded set, then by the Bolzano-Weierstrass property of compact sets, there is a subsequence of $\left(y_{n}\right)$ in E that converges to some point in E.

Let $\left(t_{n}\right)$ be a subsequence of $\left(y_{n}\right)$ in E that converges to some point in E.
The $t_{n} \in E$ for all $n \in \mathbb{N}$ and there exists $d \in E$ such that $\lim _{n \rightarrow \infty} t_{n}=d$.
Since $\left(s_{n}\right)$ is a subsequence of $\left(x_{n}\right)$, then there exists a strictly increasing function $a: \mathbb{N} \rightarrow \mathbb{N}$ such that $s_{n}=x_{a(n)}$ for all $n \in \mathbb{N}$.

Since $\left(t_{n}\right)$ is a subsequence of $\left(y_{n}\right)$, then there exists a strictly increasing function $b: \mathbb{N} \rightarrow \mathbb{N}$ such that $t_{n}=y_{b(n)}$ for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$.
Then $a(n) \in \mathbb{N}$ and $s_{n}=x_{a(n)}$ and $b(n) \in \mathbb{N}$ and $t_{n}=y_{b(n)}$.
Since $a(n) \in \mathbb{N}$, then $\left|x_{a(n)}-y_{n}\right|<\frac{1}{n}$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{1}$.
Since f is continuous on E and $c \in E$, then f is continuous at c.
Hence,

