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Continuity

Proposition 1. characterization of continuity at a point

Let E C R.

Let f: E — R be a function and c € E. Then

1. If ¢ is not an accumulation point of E, then [ is continuous at c.

2. If ¢ is an accumulation point of E, then f is continuous at c iff the limit
of [ at ¢ exists and lim,_,. f(x) = f(c).

Proof. We prove 1.

Suppose ¢ is not an accumulation point of F.

To prove f is continuous at ¢, let € > 0 be given.

Since c is not an accumulation point of F, then there exists § > 0 such that
for all x € E, either x & N(¢;d) or x = c.

Let z € E such that |z —¢| < 4.

Since x € E, then either z ¢ N(c;d) or z = c.

Since |z — ¢| < §, then x € N(¢;9).

Hence, x = c.

Therefore, |f(z) — f(c)| = |f(c) — flc)|=0<e. O

Proof. We prove 2.
Suppose ¢ is an accumulation point of F.
We must prove f is continuous at ¢ iff the limit of f at ¢ exists and lim,_,. f(z) =
7).
We first prove if the limit of f at ¢ exists and lim,_,. f(z) = f(c), then f is
continuous at c.
Suppose the limit of f at ¢ exists and lim,_,. f(x) = f(¢).
Then (Ve > 0)(36 > 0)(Vx € E)(0 < |z —c| < d — |f(z) — f(c)] <e).
Hence, (Ve > 0)(36 > 0)(Vz € E)(|[x —c| <& — |f(z) — f(c)] < €).
Therefore, f is continuous at c.

Conversely, we prove if f is continuous at ¢, then the limit of f at ¢ exists
and lim,_,. f(z) = f(c).
Suppose f is continuous at c.
To prove lim, . f(x) = f(c), let € > 0 be given.



Since f is continuous at ¢, then there exists § > 0 such that for all x € E, if
|z — c| <6, then |f(z) — f(c)] <e.

Since ¢ is an accumulation point of E, let € E such that 0 < |z — ¢| < 4.

Then x € E and |z — ¢| < §, so | f(x) — f(c)| < €, as desired. O

Theorem 2. sequential characterization of continuity

Let E C R.

Let f : E — R be a function.

Letce E.

Then f is continuous at ¢ iff for every sequence (x,) of points in E such
that lim, o0 T, = ¢, lim, oo () = f(c).

Proof. We prove if f is continuous at ¢, then for every sequence (z,) of points
in E such that lim, e z, = ¢, lim, o f(zn) = f(0).

Suppose f is continuous at c.

Let (z,) be an arbitrary sequence of points in E such that lim, . 2, = c.

We must prove lim,,_, f(z,) = f(c).

Let € > 0 be given.

Since f is continuous at ¢, then there exists § > 0 such that for all z € E| if
| —¢| <6, then |f(z) — f(¢)| < e

Since lim,, o Z,, = ¢ and d > 0, then there exists N € N such that if n > N,
then |z, — c| < §.

Let n € N such that n > N.

Then |z, — ¢| < 4.

Since (z,,) is a sequence of points in E, then z,, € E for all n € N.

Since n € N, then z,, € E.

Since z,, € E and |z,, — ¢| < §, then we conclude |f(z,) — f(c)] < e.

Therefore, lim,,_, o f(z,) = f(c), as desired. O

Proof. Conversely, we prove if for every sequence (z,,) of points in F such that
lim,, o @, = ¢ implies lim,, o, f(z,) = f(c), then f is continuous at c.

We prove by contrapositive.

Suppose f is not continuous at c.

Then there exists g > 0 such that for each § > 0 there corresponds z € F
such that |z —¢| < 0 and |f(x) — f(c)| > €o.

Let 0 = % for each n € N.

Then for each n € N, there corresponds = € E such that |z — ¢|] < %
(2) — F()] > eo.

Thus, there exists a function g : N — R such that g(n) € E and [g(n)—c| < 1
and |f(g(n)) — f(c)| > €y for each n € N, so there exists a sequence (z,) in R
such that z,, € E and |z, — c| < + and |f(z,) — f(c)| > € for each n € N.

Since z,, € E for each n € N, then (z,,) is a sequence of points in FE.

and



We prove lim,, o x, = c.

Let € > 0 be given.

Then € # 0, so%eR.

Hence, by the Archimedean property of R, there exists N € N such that
N>1

Let n € N such that n > N.

Thenn>N>%,son>%.

Hence, € > %, SO % < €.

Since n € N and |z, — ¢/ < £ for each n € N, then |z, — ¢/ < L.

Thus, |2, —c| <1 <€, s0 |2, — | <e.

Therefore, lim,, .. z,, = ¢, as desired.

We prove lim,,_,o f(zn) # f(c).

Let N € N be given.

Let n= N+ 1.

Then n € Nand n > N.

Since n € N and |f(z,) — f(c)| > €o for each n € N, then |f(z,,) — f(c)| > eo.

Thus, there exists €y > 0 such that for each N € N, there exists n € N for
which n > N and |f(z,) — f(¢)] > €.

Therefore, lim,,_, o f(zn) # f(c).

Hence, we have shown there exists a sequence (x,,) of points in E such that
lim,, oo zp, = ¢ and lim,, o f(z,) # f(c), as desired. O

Proposition 3. restriction of a continuous function is continuous
Let f be a real valued function of a real variable.
Let g be a restriction of f to a nonempty set E C domf.
If f is continuous, then the restriction g is continuous.

Proof. Suppose f is continuous.

To prove g is continuous, we must prove g is continuous on FE.

Since E # (), let ¢ € E be arbitrary.

To prove g is continuous at ¢, let € > 0 be given.

Since ¢ € E and E C domf, then ¢ € domf.

Since f is continuous and ¢ € domf, then f is continuous at c.

Thus, there exists § > 0 such that for all x € domf, if |z — ¢| < §, then
|f(z) = fe)| <e.

Let z € E such that |z —¢| < 0.

Since z € E and E C domf, then = € domf.

Thus, z € domf and |x —¢| < §, so |f(z) — f(c)] <e.

Since ¢ is a restriction of f to E, then g(z) = f(z) for all z € E.

Since xz € F and ¢ € E, then g(z) = f(x) and g(c) = f(c).

Therefore, |g(z) — g(c)| = |f(xz) — f(c)] < €, so g is continuous at ¢, as
desired. O



Algebraic properties of continuous functions

Theorem 4. Let A € R.
Let f be a real valued function.
Let c € domf.
If f is continuous at ¢, then Af is continuous at c.

Proof. Suppose f is continuous at c.

Since f is a real valued function, then A\f is a real valued function.

Since ¢ € domf and domf = dom(\f), then ¢ € dom(Af).

Either ¢ is an accumulation point of dom(\f) or ¢ is not an accumulation
point of dom(Af).

We consider these cases separately.

Case 1: Suppose ¢ is not an accumulation point of dom(\f).

Since ¢ € dom(Af) and ¢ is not an accumulation point of dom(Af), then Af
is continuous at c.

Case 2: Suppose ¢ is an accumulation point of dom(Af).

Since dom(A\f) = domf, then ¢ is an accumulation point of domf.

Since ¢ € domf and c is an accumulation point of domf and f is continuous
at ¢, then the limit of f at ¢ exists and lim,_,. f(z) = f(c).

Observe that

(AN)e) = Af(e)
= Alim f(x)

r—cC

= lim[Af(z)]

r—c

= lm(\f)(x).

Tr—cC

Since ¢ € dom(\f) and lim,_,.(Af)(x) = (Af)(c), then Af is continuous at

Therefore, in all cases, \f is continuous at ¢, as desired. O

Corollary 5. scalar multiple of a continuous function is continuous
Let A € R.
Let f be a real valued function.
If f is continuous, then \f is continuous.

Proof. Suppose f is continuous.
Let ¢ € dom(Af).
Since dom(A\f) = domf, then ¢ € domf.
Since f is continuous and ¢ € domf, then f is continuous at c.
Therefore, \f is continuous at ¢, so Af is continuous. O

Theorem 6. Let f and g be real valued functions.
Let ¢ € domf Ndomyg.
If f is continuous at ¢ and g is continuous at ¢, then f + g is continuous at



Proof. Suppose f is continuous at ¢ and g is continuous at c.

Since f and g are real valued functions, then f + g is a real valued function.

Since ¢ € dom fNdomg and dom fNdomg = dom(f+g), then c € dom(f+g).

Either ¢ is an accumulation point of dom(f 4 g) or ¢ is not an accumulation
point of dom(f + g).

We consider these cases separately.

Case 1: Suppose ¢ is not an accumulation point of dom(f + g).

Since ¢ € dom(f +¢) and ¢ is not an accumulation point of dom(f + g), then
f + g is continuous at c.

Case 2: Suppose c is an accumulation point of dom(f + g).

Since dom(f+g) = dom fNdomyg, then ¢ is an accumulation point of dom fN
domg.

Since ¢ € dom f N domg, then ¢ € domf and ¢ € domg.

Since ¢ is an accumulation point of domf N domg and domf N domg is a
subset of dom f, then ¢ is an accumulation point of dom f.

Since ¢ € dom f and c is an accumulation point of domf and f is continuous
at ¢, then the limit of f at ¢ exists and lim,_,. f(z) = f(c).

Since ¢ is an accumulation point of domf N domg and domf N domg is a
subset of domg, then c is an accumulation point of domyg.

Since ¢ € domg and c is an accumulation point of domg and g is continuous
at ¢, then the limit of g at ¢ exists and lim, . g(x) = g(c).

Observe that

(f+9)(c) = fle)+g(e)
= lim f(x) + lim g(x)

r—c r—c

= lm[f(2) + g(a)
= lm(f +g)(x).

Since ¢ € dom(f + g) and lim,,.(f + g)(x) = (f + g)(c), then f + g is
continuous at c.
Therefore, in all cases, f 4 g is continuous at ¢, as desired. O

Corollary 7. sum of continuous functions is continuous
Let f and g be real valued functions.
If f is continuous and g is continuous, then f + g is continuous.

Proof. Suppose f is continuous and g is continuous.

Let ¢ € dom(f + g).

Since dom(f + g) = domf Ndomyg, then ¢ € domf Ndomg, so ¢ € domf and
¢ € domg.

Since f is continuous and ¢ € domf, then f is continuous at c.

Since ¢ is continuous and ¢ € domg, then g is continuous at c.

Therefore, f 4+ ¢ is continuous at ¢, so f + g is continuous. O



Corollary 8. Let f and g be real valued functions.

Let ¢ € domf Ndomyg.

If f is continuous at ¢ and g is continuous at c, then f — g is continuous at
c.

Proof. Suppose f is continuous at ¢ and g is continuous at c.
Since ¢ € domf N domg and domg = dom(—g), then ¢ € domf N dom(—yg).
Since ¢ € domf N domyg, then ¢ € domyg.
Since ¢ € domg and g is continuous at ¢, then —g is continuous at c.
Since ¢ € domf Ndom(—g) and f is continuous at ¢ and —g is continuous at
¢, then f — g = f + (—g) is continuous at ¢, as desired. O

Corollary 9. difference of continuous functions is continuous
Let f and g be real valued functions.
If f is continuous and g is continuous, then f — g is continuous.

Proof. Suppose f is continuous and g is continuous.

Let ¢ € dom(f — g).

Since dom(f — g) = domf Ndomyg, then ¢ € domf Ndomg, so ¢ € domf and
¢ € domg.

Since f is continuous and ¢ € domf, then f is continuous at c.

Since g is continuous and ¢ € domg, then g is continuous at c.

Therefore, f — g is continuous at ¢, so f — g is continuous. O

Theorem 10. Let f and g be real valued functions.
Let ¢ € domf Ndomyg.
If f is continuous at ¢ and g is continuous at c, then fg is continuous at c.

Proof. Suppose f is continuous at ¢ and g is continuous at c.

Since f and g are real valued functions, then fg is a real valued function.

Since ¢ € domf Ndomg and domf N domg = dom(fg), then ¢ € domfg.

Either ¢ is an accumulation point of dom(fg) or ¢ is not an accumulation
point of dom(fg).

We consider these cases separately.

Case 1: Suppose c is not an accumulation point of dom(fg).

Since ¢ € dom(fg) and c¢ is not an accumulation point of dom(fg), then fg
is continuous at c.

Case 2: Suppose c is an accumulation point of dom(fg).

Since dom(fg) = domf N domyg, then ¢ is an accumulation point of dom f N
domg.

Since ¢ € dom f N domg, then ¢ € domf and ¢ € domg.

Since ¢ is an accumulation point of domf N domg and domf N domg is a
subset of dom f, then ¢ is an accumulation point of domf.

Since ¢ € dom f and c is an accumulation point of dom f and f is continuous
at ¢, then the limit of f at ¢ exists and lim,_,. f(z) = f(c).

Since ¢ is an accumulation point of domf N domg and domf N domg is a
subset of domg, then ¢ is an accumulation point of domg.



Since ¢ € domg and c is an accumulation point of domg and g is continuous
at ¢, then the limit of g at ¢ exists and lim,_,. g(z) = g(c).
Observe that

(f9)(e) = [flc)g(e)
lim f(x) - lim g(x)

Tr—cC T—cC

= lim[f(z)g(x)]

Tr—c
— lim(fg)(a).
Since ¢ € dom(fg) and lim,_,.(fg)(z) = (fg)(c), then fg is continuous at c.
Therefore, in all cases, fg is continuous at ¢, as desired. O

Corollary 11. product of continuous functions is continuous
Let f and g be real valued functions.
If f is continuous and g is continuous, then fg is continuous.

Proof. Suppose f is continuous and g is continuous.

Let ¢ € domfg.

Since domfg = domf N domg, then ¢ € domf N domg, so ¢ € domf and
c € domg.

Since f is continuous and ¢ € domf, then f is continuous at c.

Since g is continuous and ¢ € domg, then g is continuous at c.

Therefore, fg is continuous at ¢, so fg is continuous. O

Theorem 12. Let f and g be real valued functions.

Let ¢ € domf Ndomyg.

If f is continuous at ¢ and g is continuous at ¢ and g(c) # 0, then 5 18
continuous at c.

Proof. Suppose f is continuous at ¢ and g is continuous at ¢ and g(c) # 0.
Since f and g are real valued functions, then £ is a real valued function.
Since ¢ € domf N domyg, then ¢ € domf and ¢ € domg.

Since dom% =domf N{x € domg : g(x) # 0} and ¢ € domf and ¢ € domg
and g(c) # 0, then ¢ € dom%.

Either ¢ is an accumulation point of domg or ¢ is not an accumulation point
of dom<.

We consider these cases separately.

Case 1: Suppose ¢ is not an accumulation point of domg.

Since ¢ € dom% and ¢ is not an accumulation point of dom%7 then % is
continuous at c¢. 4 '

Case 2: Suppose c¢ is an accumulation point of dom%.

Let z € domg.
Then = € domf N{x € domg : g(x) # 0}, so x € domf.



Hence, domg C domf.

Since ¢ is an accumulation point of domiL and dom% is a subset of domf,
then c¢ is an accumulation point of dom f.

Since ¢ € domf and c is an accumulation point of domf and f is continuous
at ¢, then the limit of f at ¢ exists and lim,_,. f(z) = f(c).

Let z € domg.

Then x € domf N{z € domg : g(z) # 0}, so x € {x € domg : g(x) # 0}.

Hence, z € domg, so domg C domg.

Since ¢ is an accumulation point of domZ and domg is a subset of domg,
then c is an accumulation point of domyg.

Since ¢ € domg and c is an accumulation point of domg and g is continuous
at ¢, then the limit of g at ¢ exists and lim,_,. g(x) = g(c).

Since g(c) # 0, then lim, . g(z) # 0.

Let z € dom%.

Then = € domf N{x € domg : g(x) # 0}, so x € domf and x € {x € domg :
g(x) # 0}

Thus, x € domf and = € domg, so x € domf N domg.

Hence, d0m§ C domf Ndomg.

Since c¢ is an accumulation point of dom< and domZ is a subset of dom n
domg, then c is an accumulation point of domf N domg.
Thus,

)
(@ g(c)
lim, . f(z)

limg . g(x)

Q |~

Since ¢ € domg and c¢ is an accumulation point of domg and lim,_,. g(x) =

5(0), then g is continuous at c.

Therefore, in all cases, 5 is continuous at ¢, as desired. O
Corollary 13. gquotient of continuous functions is continuous wher-
ever defined

Let f and g be real valued functions.

If f is continuous and g is continuous, then % is continuous for all x €

domf Ndomg such that g(x) # 0.

Proof. Suppose f is continuous and g is continuous.
Let ¢ € domf N domg such that g(c) # 0.



Since ¢ € domf N domyg, then ¢ € domf and ¢ € domg.

‘We must prove g is continuous at c.

Since f is continuous and ¢ € domf, then f is continuous at c.

Since g is continuous and ¢ € domg, then g is continuous at c.

Since g(c) # 0, then 5 is continuous at ¢, as desired. O

Theorem 14. polynomsial functions are continuous
Every polynomial function is continuous.

Proof. Let p: R — R be an arbitrary polynomial function.

To prove p is continuous, let ¢ € R be arbitrary.

We must prove p is continuous at c.

Since p is a polynomial function and ¢ € R, then lim,_,.p(x) = p(c).

Since ¢ € R and ¢ is an accumulation point of R and lim,_,.p(z) = p(c),
then p is continuous at ¢, as desired. O

Theorem 15. rational functions are continuous wherever defined
Let r be a rational function defined by r(x) = % such that p and q are
polynomial functions.

Then r is continuous for all x € R such that q(x) # 0.

Proof. Since p is continuous and ¢ is continuous, then % =

all z € domp N domgq such that ¢(x) # 0.
Since domp N domg = RN R = R, then r is continuous for all x € R such
that g(x) # 0, as desired. O

r is continuous for

Theorem 16. Let f and g be real valued functions of a real variable.
If f is continuous at ¢ and g is continuous at f(c), then go f is continuous
at c.

Proof. Since f and g are functions, then go f is a function defined by (go f)(z) =
g(f(x)) for all x € dom(g o f).

Suppose f is continuous at ¢ and ¢ is continuous at f(c).

Since f is continuous at ¢, then ¢ € domf.

Since ¢ is continuous at f(c), then f(c) € domg.

Since ¢ € domf and f(c) € domg, then ¢ € dom(g o f).

To prove g o f is continuous at ¢, let € > 0 be given.

Since ¢ is continuous at f(c), then there exists §; > 0 such that for all
x € domg, if |z — f(c)| < é1, then [g(z) — g(f(c))| < e.

Since f is continuous at ¢ and d; > 0, then there exists § > 0 such that for
all z € domf, if |x — ¢| <, then |f(z) — f(c)] < d;.

Let z € dom(g o f) such that |z —¢| < 0.

Since = € dom(g o f), then x € domf and f(z) € domg.

Since x € domf and |z — ¢| < d, then |f(x) — f(c)] < d1.

Since f(z) € domg and |f(z) — £(c)| < &1, then [g(f(2)) — g(f(c))| < .

Therefore, |(go f)(z) — (g o f)(c)] <€, so go f is continuous at c. O



Corollary 17. composition of continuous functions is continuous
Let f and g be real valued functions of a real variable.
If f is continuous and g is continuous, then go f is continuous.

Proof. Suppose f is continuous and g is continuous.
Let ¢ € dom(g o f).
Since dom(g o f) = {z € domf : f(x) € domg}, then ¢ € domf and
f(c) € domyg.
Since f is continuous and ¢ € domf, then f is continuous at c.
Since g is continuous and f(c) € domg, then g is continuous at f(c).
Therefore, g o f is continuous at ¢, so g o f is continuous. U

Proposition 18. If f is a continuous function, then so is |f].
Let f : E— R be a function.
Let |f| : E — R be a function defined by |f|(x) = |f(x)|.
If f is continuous, then |f| is continuous.

Proof. Suppose f is continuous.

Let ce E.

Then f is continuous at c.

Let € > 0 be given.

Then there exists 6 > 0 such that for all + € E, if |z — ¢| < §, then
F(2) — f(0)] < e

Let # € E such that |z —¢| < 4.

Then [f () = f(e)| < & so[[f|(x)=[fI(c)| = [[f (@)= [F () < [f(x) = fle)] <
Therefore, |f] is continuous at ¢, so | f] is continuous. O

Proposition 19. If f is a continuous function, then so is \/f.

Let f: E — R be a function such that f( )>0 for allz € E.

Let \/f be a function defined by /f(z) = \/f(x) for all z € E such that
fx) > 0.

If f is continuous, then \/f is continuous.

Proof. Suppose f is continuous.

Let g(x) = .

Then g : [0,00) — R is a continuous function.

The domain of \/f is the set {x € F': f(z) > 0}.

Since dom(g o f) = {x € domf : f(x) € domg} ={x € E : f(x) € [0,00)} =
{z € E: f(z) > 0}, then the domain of g o f is the same as the domain of \/f,
so dom+/f = dom(g o f).

Let z € dom(g o f).

Then x € E and f(x) >
Thus, v/f(z) = \/f(x )=g
Hence, v/f(z) = (go f)(z)

@), so v/F(x) = (g0 f)(z).

(f (g0
x € dom(go f).

(z)
for

a.

)=
1l

10



Since domy/f = dom(g o f) and \/f(z) = (g o f)(z) for all x € dom(g o f),
then \/f =go f.

Since f is continuous and g is continuous and the composition of continuous
functions is continuous, then g o f is continuous.

Therefore, +/f is continuous, as desired. O

Continuous functions on compact sets

Lemma 20. Bolzano-Weierstrass property of compact sets

Let E C R be a closed bounded set.

Then every sequence in E has a subsequence (y,) in E such that lim,,_ o yn, €
E.

Proof. Let (x,) be an arbitrary sequence in E.

Then z,, € F for all n € N.

Since E is bounded, then there exists B € R such that |z| < B for all x € E.

Let n € N be given.

Then z,, € E, so |z,| < B.

Thus, |z,| < B for all n € N, so (x,,) is bounded in R.

Therefore, by the Bolzano-Weierstrass theorem for sequences, (x,) has a
convergent subsequence.

Let (y,) be a convergent subsequence of (x,,).

Since (yn) is a subsequence of (z,,), then there exists a strictly increasing
function g : N — N such that y, = x4, for all n € N.

Let n € N be given.

Then g(n) € N and y,, = 240

Thus, 4, € E, s0 yn, € E.

Hence, y, € E for all n € N, so (y,) is a sequence in F.

Since (yy,) is convergent, let ¢ = lim,,— 00 Y-

We must prove c € F.

We prove by contradiction.

Suppose ¢ € E.

Since F is closed, then c¢ is not an accumulation point of E.

Hence, there exists § > 0 such that N'(¢;5) N E = 0.

Since lim,, 00 Yn = c and § > 0, then there exists N € N such that if n > N,
then |y, — c| <.

Let n € N such that n > N.

Then |y, — c| < d, so y, € N(c;0).

Since n € N, then y, € E.

Since ¢ € E, then y,, # ¢, so y, € N'(¢;0).

Since y, € N'(c;0) and y,, € E, then y, € N'(¢;8) N E, so N'(¢;6) N E # (.

Hence, we have N'(¢;6) N E =0 and N'(¢;8) N E # (), a contradiction.

Therefore, ¢ € E, as desired. O

Theorem 21. Boundedness Theorem
FEvery real valued function continuous on a closed bounded set is bounded.

11



Proof. Let EC R be a closed bounded set.

Let f: E — R be a continuous function.

We must prove f is bounded.

We prove by contradiction.

Suppose f is not bounded.

Then f is unbounded, so for every real number 7, there exists z € E such
that |f(z)| > r.

In particular, for every n € N, there exists x,, € E such that |f(x,)| > n.

Thus, there exists a sequence (x,) in E such that |f(z,)| > n for all n € N.

Since E is a closed bounded set and (z,) is a sequence in E, then by the
Bolzano-Weierstrass property of compact sets, there exists a subsequence (yy,)
in F such that lim,,_,~ y, € E.

Let ¢ = limy,—y 00 Yn -

Then c € E.

Since f is continuous on E and ¢ € E, then f is continuous at c.

Since (yn) is a sequence in F and lim, - yn = ¢, then by the sequential
characterization of continuity, we conclude lim,_, f(yn) = f(c).

Thus, the sequence (f(y,)) is convergent, so (f(y,)) is bounded.

We prove the sequence (f(y,)) is unbounded.

Let M € R be given.

By the Archimedean property of R, there exists n € N such that n > M.

Since (yn) is a subsequence of (z,), then there exists a strictly increasing
function g : N — N such that y, = x4, for all n € N.

Since g : N — N is strictly increasing, then g(n) > n for all n € N.

Since n € N, then g(n) € N, so there exists 24,y € E such that | f(z4(,))| >
g(n).

Observe that

[fn)l = 1f(@gm)]

AYARIVARY,

Hence, | (yn)| > M.
Thus, there exists n € N such that |f(y,)| > M, so (f(y»n)) is unbounded.
Hence, we have (f(y,)) is bounded and (f(y,)) is unbounded, a contradic-

tion.

Therefore, f is bounded, as desired. O

Theorem 22. Extreme Value Theorem
FEvery real valued function continuous on a monempty closed bounded set
attains a mazximum and minimum on the set.
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Proof. Let S be a nonempty closed bounded set.

Let f: S — R be a continuous function.

To prove there exists a maximum on S, we must prove there exists ¢ € S
such that f(x) < f(c) for all z € S.

Let f(S) ={f(zx):2 € S}.

Since S # (), then there exists s € S, so f(s) € f(95).

Hence, f(S) # 0.

Since f is continuous on S and the set S is closed and bounded, then by the
boundedness theorem, f is bounded.

Hence, f(S) is bounded, so f(.S) is bounded above in R.

Since f(S) is not empty and bounded above in R, then by completeness of
R, sup f(9) exists.

Let M = sup f(S).

Suppose for the sake of contradiction M ¢ f(.59).

Then there is no « € S such that f(z) = M, so f(z) # M for allz € S.

Since M is an upper bound of f(S), then this implies f(z) < M for all
rxeS,soM— f(r)>0foralzels.

Let g = lef'

Then g : S — R is a function defined by g(z) = ﬁf(z) forall z € S.

Since M — f(x) > 0 for all z € S, then M%f(z) >0 forallz €S, s0g(x) >0
forall x € S.

Since f is continuous on S, then — f is continuous on S, so M — f is continuous
on S.

Hence, ﬁ is continuous on S, so g is continuous on S.

Let g(S) = {g(z) : x € S}.

Since S # (), then there exists s € S, so g(s) € g(9).

Hence, g(S) # 0.

Since g is continuous on S and the set S is closed and bounded, then by the
boundedness theorem, g is bounded.

Hence, ¢(S) is bounded, so g(.5) is bounded above in R.

Since ¢(S) is not empty and bounded above in R, then by completeness of
R, sup g(S) exists.

Let M’ = supg(95).

Since M’ is an upper bound of g(5), then g(z) < M’ for all x € S.

Let z € S.

Then 0 < g(z) < M’, 50 0 < =2~ < M’ and 0 < M.

M— f(x)
Hence, 1 < M — f(z), so f(z) < M — 4 for all z € S.
Since M’ > 0, then ]Vl[, > 0.

Thus, there exists 75> > 0 such that f(z) < M — 5% for all z € S.
This contradicts the fact that M is the least upper bound of f(S5).

13



Hence, M € f(S), so there exists ¢ € S such that f(c) = M.
Since M is an upper bound of f(S), then f(z) < M for all z € S.
Therefore, there exists ¢ € S such that f(z) < f(c) for all z € S, so f has a
maximum on S. O

Proof. Let S be a nonempty closed bounded set.

Let f: S — R be a continuous function.

To prove there exists a minimum on S, we must prove there exists ¢ € S
such that f(c) < f(x) for all x € S.

Let f(S)={f(z):z € S}.

Since S # (), then there exists s € S, so f(s) € f(9).

Hence, f(S) # 0.

Since f is continuous on S and the set S is closed and bounded, then by the
boundedness theorem, f is bounded.

Hence, f(S) is bounded, so f(.S) is bounded below in R.

Since f(S) is not empty and bounded below in R, then by completeness of
R, inf f(S) exists.

Let m = inf f(5).

Suppose for the sake of contradiction m ¢ f(.5).

Then there is no x € S such that f(z) =m, so f(z) #m for all x € S.

Since m is a lower bound of f(S), then this implies m < f(x) for all x € S,
som— f(x) <0 forallz € S.

Let g = ﬁ

Then g : S — R is a function defined by g(z) =

Since m — f(z) < 0 for all x € S, then
forall z € S.

Since f is continuous on S, then m — f is continuous on S, so
continuous on S.

Hence, g is continuous on S.

Let g(S) = {g(z) : x € S}.

Since S # (), then there exists s € S, so g(s) € g(9).

Hence, g(S) # 0.

Since g is continuous on S and the set S is closed and bounded, then by the
boundedness theorem, g is bounded.

Hence, ¢(S) is bounded, so g(.5) is bounded below in R.

Since ¢(S) is not empty and bounded below in R, then by completeness of
R, inf g(S) exists.

Let m’ = inf ¢(S).

Since m’ is a lower bound of g(5), then m' < g(x) for all x € S.

Let x € S.

Then m’ < g(x) < 0, som’§m<03ndm’<0.

Since m — f(z) < 0, then m/(m — f(x)) > 1.

Since m’ < 0, then m — f(z) < X, som — L < f(x).

Hence, f(z) >m— -5 =m+ =%, s0 f(z) >m+ = forallz € S.

m’

m for all x € S.

m<0f0rallx€s,sog(z)<o

1
m—

fis
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Since m’ < 0, then % > 0.
Thus, there exists % > 0 such that f(x) >m + ;T} forallz € S.
This contradicts the fact that m is the greatest lower bound of f(S).

Hence, m € f(S), so there exists ¢ € S such that f(c) =m.
Since m is a lower bound of f(S), then m < f(z) for all z € S.
Therefore, there exists ¢ € S such that f(c) < f(z) for all z € S, so f has a
minimum on S. O

Lemma 23. Let f be a continuous real valued function.

Let xg, c,d be real numbers such that xg € domf and ¢ < f(xg) < d.

Then there exists a positive real number 6 such that ¢ < f(x) < d for all
x € N(zg;0) Ndomf.

Proof. Since ¢ < f(zg) < d, then ¢ < f(zo) and f(xg) < d, so f(xg) —¢ >0
and d — f(zo) > 0.

Since f is continuous and zg € dom f, then f is continuous at xg.

Let e = min{ f(z9) — ¢,d — f(z0)}.

Then € < f(xg)—cand € < d— f(x¢) and either e = f(x¢)—cor e = d— f(xg).

Since f(xzg) — ¢ > 0 and d — f(xg) > 0, then € > 0.

Since f is continuous at xg and € > 0, then there exists § > 0 such that for
all z € domf, if |x — xo| < 6, then |f(z) — f(xo)| < e

Since zg € N(zo;0) and xg € domf, then zg € N(xo;d)Ndom f, so N(zg;)N
dom f # 0.

Let € N(xp;d) Ndomf.

Then x € N(z;9) and x € domf, so |z — zo| < J.

Hence, |f(x) — f(zo)| < €.

Either f(z) < f(zo) or f(z) > f(xo).

We consider these cases separately.

Case 1: Suppose f(z )< f(zo).

Then f(zo) — f(z) >

Since f(z) < f(xo) and f(zo) < d, then f(z) <

Since |f(z) — f(x0)] < € and € < f(xo) — ¢, then \f(x) — f(z0)] < f(zo) — ¢,
so | f(wo) — f(2)] < f(xo) —c.

Hence, f(zo) — f(z) < f(xg) — ¢, so —f(x) < —ec.

Thus, f(z) > ¢

Therefore, ¢ < f(x) < d.

Case 2: Suppose f(z) > f(xo).

Then f(z) — f(x0) > 0.

Since ¢ < f(xg) and f(zg) < f(z), then ¢ < f(z).

Since |f(x) — f(z0)] < € and € < d — f(xp), then |f(x) — f(xz0)] < d— f(xo).

Hence, f(x) — f(zo) < d — f(x0), so f(z) <d

Therefore, ¢ < f(x) < d.

Thus, in all cases, ¢ < f(z) < d, as desired. O
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Theorem 24. Intermediate Value Theorem

Let a,b € R.

Let f be a real valued function continuous on the closed interval [a, b).

For every real number k such that f(a) < k < f(b), there exists ¢ € (a,b)
such that f(c) = k.

Proof. Let k be an arbitrary real number such that f(a) < k < f(b).

Then f(a) < k and k < f(b).

Let S = {z € [a,b] : f(z) < k}.

Since a € [a,b] and f(a) < k, then a € S, so S # 0.

Let z € S.

Then x € [a,b], so a <z <b.

Hence, z < b, so b is an upper bound of S.

Thus, S is bounded above in R.

Since S is not empty and bounded above in R, then by the completeness of
R, sup S exists.

Let c=supS.

Since c is the least upper bound of S and b is an upper bound of S, then
c<hb.

Since a € S and ¢ is an upper bound of S, then a < c.

Hence, a < ¢ < b, so ¢ € [a,b].

Since f is a function and ¢ € [a, b], then f(c) € R.

We must prove f(c) = k.

Suppose for the sake of contradiction f(c) < k.

Then f(c) < k < f(b), so f(c) < f(b).

Hence, f(c) # f(b).

Since f is a function, then ¢ # b.

Since ¢ < b and ¢ # b, then ¢ < b.

Since f(c) < k, then by the previous lemma, there exists § > 0 such that

f(z) <k for all x € N(x0;96) NJa,b].

Let m = min{b,c + §}.

Then m < b and m < ¢+ § and either m=bor m =c+9.
Since ¢ < b and ¢ < ¢+ 4, then ¢ < m.

Let o = <5,

Then 22 = ¢+ m.

Since ¢ < m, then 2¢ < ¢+ m < 2m, so 2¢c < 2z < 2m.
Hence, ¢ < x < m, so c <z and x < m.
Sincex <m <c+9J,thenx <c+4,s0x—c<9d.
Since x > ¢, thenz —¢ > 0,80 [t —¢c| =2 —c < J.

Thus, x € N(c;9).

Sincea <c<ax<m<b, thena <z <b, sox € [a,b].
Since z € N(c;6) and z € [a,b], then x € N(¢;6) N [a,b], so f(z) < k.
Since z € [a,b] and f(z) < k, then z € S.

Thus, there exists € S such that x > c.

This contradicts the fact that ¢ is an upper bound of S.
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Therefore, f(c) cannot be less than k.

Suppose for the sake of contradiction f(c) > k.

Since k < f(c), then by the previous lemma, there exists 6 > 0 such that
k < f(z) for all z € N(c¢;8) N [a, b].

Since f(c) > k, then ¢ € S.

Since c¢ is an upper bound of S, then this implies z < ¢ for all z € S.

Since c is the least upper bound of S and § > 0, then there exists € S such
that x > ¢ — 4.

Since z € S, then z € [a,b] and f(z) <k and z < c.

Since = < ¢, then ¢ —x > 0.

Since z > ¢ — 6, then 6 > ¢ — .

Thus, |z —¢|=|c—z|=c—2 < §,s0 z € N(c;9).

Since z € N(c;6) and z € [a,b], then x € N(¢;6) N [a,b], so k < f(z).

Thus, we have f(x) < k and f(x) > k, a contradiction.

Therefore, f(c) cannot be greater than k.

Since f(c) € R and f(c) cannot be less than k and f(c) cannot be greater
than k, then f(c) = k.

Since ¢ = b implies f(c) = f(b), then f(c) # f(b) implies ¢ # b.
Since f(c) =k < f(b), then f(c) # f(b), so ¢ # b.
Since ¢ < b and ¢ # b, then ¢ < b.
Since ¢ = a implies f(c) = f(a), then f(c) # f(a) implies ¢ # a.
Since f(c) =k > f(a), then f(c) # f(a), so ¢ # a.
Since ¢ > a and ¢ # a, then ¢ > a.
Therefore, a < ¢ < b, so ¢ € (a,b).
Thus, there exists ¢ € (a,b) such that f(c) = k, as desired. O

Lemma 25. Let I be an interval and a € I and b€ I and a < b.
Then [a,b] C I.

Proof. Let = € [a, b].
Then a < x < b, so eitherx =aorz=bora<xz<b.
We consider these cases separately.
Case 1: Suppose = = a.
Since a € I, then x € I.
Case 2: Suppose © = b.
Since b € I, then x € I.
Case 3: Suppose a < x < b.
Sincea € l and b € [ and a < x < b and [ is an interval, then z € I.
Therefore, in all cases, x € I, so [a,b] C I, as desired. O

Theorem 26. intervals are preserved by continuous functions
Let f be a real valued function continuous on an interval I.
Then f(I) is an interval.
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Proof. Either f is constant or not.

We consider these cases separately.

Case 1: Suppose f is constant.

Then there exists k € R such that f(x) =k for all z € I, so f(I) = {k}.

Thus, f(I) is a singleton set.

Since a singleton set is an interval, then f(I) is an interval.

Case 2: Suppose f is not constant.

Then there exist at least two distinct elements of f(7).

Thus, there exist real numbers y; € f(I) and yo € f(I) such that y; # yo.

Let y1,y2 € R such that y; € f(I) and yo € f(I) and y; # yo.

Since y1 # y2, then either y; < ys or y1 > ys.

Without loss of generality, assume y; < ys.

By the density of R, there exists a real number g such that y; < yg < yo.

Since y; € f(I), then there exists x; € I such that f(z1) = ;.

Since yo € f(I), then there exists xo € I such that f(xz3) = ys.

Thus, f(z1) <yo < f(z2) and f(z1) < f(x2).

Since f(21) < f(z2), then f(a1) # f(z2).

Since f is a function, then this implies x7 # s.

Since [ is an interval and z; € I and x2 € I and x; # x2, then by the
previous lemma, the closed, bounded interval with endpoints x; and zs is a
subset of I.

Since f is continuous on I, then the restriction of f to the closed, bounded
interval with endpoints 7 and x5 is continuous.

Since f(z1) < yo < f(x2), then by IVT, there exists x¢ between x; and x5
such that f(xzo) = yo-

Since x1 € I and x5 € I and zg is between x; and x5 and I is an interval,
then zg € I.

Thus, there exists z € I such that f(zo) = yo, so yo € f(I).

Since y1 € f(I) and y2 € f(I) and y1 < yo < yo implies yo € f(I), then f(I)
is an interval. U

Uniform continuity

Proposition 27. uniform continuity implies continuity
Let E C R.
Let f: E — R be a function.
If f is uniformly continuous on E, then f is continuous on E.

Proof. Suppose f is uniformly continuous on E.

Let ¢ be an arbitrary element of E.

Let € > 0 be given.

Since f is uniformly continuous on E, then there exists § > 0 such that for
all z,y € B, if |x —y| < 6, then |f(z) — f(y)| <e.

Let z € E such that |z —¢| < 6.

Since z € F and ¢ € E and |z — ¢| < 4, then |f(z) — f(¢)] <e.

Therefore, f is continuous at ¢, so f is continuous on F. O

18



Lemma 28. Let E C R.

Let f: E — R be a function.

If f s not uniformly continuous on E, then there exist €1 > 0 and sequences
(zn) and (yn) in E such that lim, o (x, —yn) = 0 and |f(zn) — flyn)|] > €
for all m € N.

Proof. Suppose f is not uniformly continuous on E.

Then there exists €; > 0 such that for every § > 0 there are z,y € E such
that |z —y| < d and |f(z) — f(y)| > €.

Letéz%foraﬂnEN.

Then for each n € N, there is € E and there is y € E with [z —y| < 1 and
() — F) > 1.

Hence, there is a function g : N — E and there is y € E with |g(n) —y| < 1
and |f(g(n)) — f(y)| > €1 for each n € N.

Thus, there is a sequence (z,,) in E and there is y € E with |z, —y| < 1
and |f(z,) — f(y)| > €1 for each n € N.

Since for each n € N there is y € E such that |z, —y| <  and |f(z,) —
f(y)] > €1, then there is a function h : N — E such that |z, — h(n)| < L and
|f(zn) — f(h(n))| > € for each n € N.

Thus, there is a sequence (y,) in E such that |z, — y,| < + and |f(z,) —
f(yn)| > € for each n € N.

We prove lim,, o (€, — yn) = 0.

Let € > 0 be given.

Then % > 0, so by the Archimedean property of R, there exists N € N such
that N > 1.

Hence, € > %

Let n € N such that n > N.

Since n € N and |z, — yn| < & for all n € N, then |z, — y,| < L.

Since n > N > 0, then 0 < % < %

Thus, |2, —yn| <1 < % <€, 50 |2, —yn| <.

Therefore, there exist ¢, > 0 and sequences (x,) and (y,) in E such that
limy, 00 (@n, — yn) =0 and |f(x,) — f(yn)| > € for each n € N. O

Theorem 29. Heine-Cantor Uniform Continuity Theorem

Let E C R.

Let f : E— R be a function.

If f is continuous on E and E is a closed bounded set, then f is uniformly
continuous on E.

Proof. Suppose f is continuous on E and F is a closed bounded set.

We prove by contradiction.

Suppose f is not uniformly continuous on F.

By the previous lemma, there exist 3 > 0 and sequences (z,) and (y,) in
E such that lim, o (xn — yn) =0 and |f(x,) — f(yn)| > €1 for all n € N.
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Since (x,) is a sequence in F and E is a closed bounded set, then by the
Bolzano-Weierstrass property of compact sets, there is a subsequence of () in
FE that converges to some point in E.

Let (s,) be a subsequence of (z,) in E that converges to some point in E.

Then s, € E for all n € N and there exists ¢ € F such that lim,,_,o. s, = c.

Since (y,) is a sequence in E and F is a closed bounded set, then by the
Bolzano-Weierstrass property of compact sets, there is a subsequence of (y,) in
FE that converges to some point in E.

Let (t,,) be a subsequence of (y,,) in E that converges to some point in E.

The t,, € E for all n € N and there exists d € E such that lim,,_, ¢, = d.

Since (s,) is a subsequence of (x,), then there exists a strictly increasing
function @ : N — N such that s, = x4, for all n € N.

Since (t,) is a subsequence of (y,), then there exists a strictly increasing
function b : N — N such that ¢, = yy(,) for all n € N.

Let n € N.

Then a(n) € N and s,, = 24,y and b(n) € N and t,, = yp(n)-

Since a(n) € N, then |x,(,) — yn| < % and | f(zn) — f(yn)| > €.

Since f is continuous on E and ¢ € E, then f is continuous at c.

Hence, O
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