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Continuity

Example 1. every constant function is continuous
Let k ∈ R.
The function given by f(x) = k is continuous.

Proof. Let f : R→ R be the function defined by f(x) = k for all x ∈ R.
Let c ∈ R be given.
To prove f is continuous, we must prove f is continuous at c.
Let ε > 0 be given.
Let δ = 1.
Then δ > 0.
Let x ∈ R such that |x− c| < δ.
Since |f(x)− f(c)| = |k− k| = 0 < ε, then the conditional if 0 < |x− c| < δ,

then |k − k| < ε is trivially true.
Therefore, f is continuous at c, as desired.

Example 2. identity function is continuous
The function given by f(x) = x is continuous.

Proof. Let f : R→ R be the function defined by f(x) = x for all x ∈ R.
Let c ∈ R be given.
To prove f is continuous, we must prove f is continuous at c.
Let ε > 0 be given.
Let δ = ε.
Then δ > 0.
Let x ∈ R such that |x− c| < δ.
Then |x− c| < δ = ε, so |x− c| < ε, as desired.

Example 3. square function is continuous
The function f : R→ R defined by f(x) = x2 is continuous.

Proof. Let c ∈ R be given.
To prove f is continuous, we must prove f is continuous at c.
Let ε > 0 be given.
Let δ = min{1, ε

1+2|c|}.



Then δ ≤ 1 and δ ≤ ε
1+2|c| .

Since |c| ≥ 0, then 2|c| ≥ 0, so 1 + 2|c| ≥ 1 > 0.
Hence, 1 + 2|c| > 0, so ε

1+2|c| > 0.

Thus, δ > 0.
Let x ∈ R such that |x− c| < δ.
Since

|x+ c| = |x− c+ 2c|
≤ |x− c|+ |2c|
= |x− c|+ 2|c|
< δ + 2|c|
≤ 1 + 2|c|,

then 0 ≤ |x+ c| < 1 + 2|c|.
Hence,

|x2 − c2| = |(x− c)(x+ c)|
= |x− c||x+ c|
< δ(1 + 2|c|)

≤ ε

1 + 2|c|
· (1 + 2|c|)

= ε.

Therefore, |x2 − c2| < ε, as desired.

Example 4. The function f : (0,∞)→ R defined by f(x) = 1
x is continuous.

Proof. Let c ∈ (0,∞) be given.
Then c > 0.
To prove f is continuous, we must prove f is continuous at c.
Let ε > 0 be given.

Let δ = min{ c2 ,
c2ε
2 }.

Then δ ≤ c
2 and δ ≤ c2ε

2 and δ > 0.
Let x ∈ (0,∞) such that |x− c| < δ.
Then x > 0 and 0 ≤ |x− c| < δ.
Since |x− c| < δ ≤ c

2 , then |x− c| < c
2 .

Since c
2 > |x− c| ≥ |c| − |x| = c− x, then c

2 > c− x, so x > c
2 > 0.

Thus, 0 < c
2 < x, so 0 < 1

x <
2
c .
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Observe that

| 1
x
− 1

c
| = |1

c
− 1

x
|

= |x− c
cx
|

=
1

c
· 1

x
· |x− c|

<
1

c
· 2

c
· δ

=
2

c2
· δ

≤ 2

c2
· c

2ε

2
= ε.

Therefore, | 1x −
1
c | < ε, as desired.

Proof. To prove f is continuous on its domain, we must prove f is continuous
on the interval (0,∞).

Let c ∈ (0,∞) be arbitrary.
We must prove f is continuous at c.
Since every element of a non-degenerate interval is an accumulation point of

the interval, then c is an accumulation point of (0,∞).
Since c ∈ (0,∞), then c > 0, so c is positive.
Since limx→c

1
x = 1

c for all positive real c, then limx→c f(x) = limx→c
1
x =

1
c = f(c).

Since c ∈ (0,∞) and limx→c f(x) = f(c), then f is continuous at c, as
desired.

Example 5. absolute value function is continuous
The function f : R→ R defined by f(x) = |x| is continuous.

Proof. Let c ∈ R be given.
To prove f is continuous, we must prove f is continuous at c.
Let ε > 0 be given.
Let δ = ε.
Then δ > 0.
Let x ∈ R such that |x− c| < δ.
Then ||x| − |c|| ≤ |x− c| < δ = ε, so ||x| − |c|| < ε, as desired.

Example 6. square root function is continuous
The function f : [0,∞)→ R defined by f(x) =

√
x is continuous.

Proof. Let c ∈ [0,∞) be given.
Then c ≥ 0.
To prove f is continuous, we must prove f is continuous at c.
Either c > 0 or c = 0.
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We consider each case separately.
Case 1: Suppose c = 0.
To prove f is continuous at 0, let ε > 0 be given.
Let δ = ε2.
Then δ > 0.
Let x ≥ 0 such that |x| < δ.
Then 0 ≤ x < δ, so 0 ≤

√
x <
√
δ.

Thus, |
√
x| =

√
x <
√
δ =
√
ε2 = |ε| = ε, so |

√
x| < ε.

Therefore, f is continuous at 0.
Case 2: Suppose c > 0.
To prove f is continuous at c, let ε > 0 be given.
Let δ = ε

√
c.

Since c > 0, then
√
c > 0.

Since ε > 0 and
√
c > 0, then δ > 0.

Let x ∈ [0,∞) such that |x− c| < δ.
Since x ∈ [0,∞), then x ≥ 0, so

√
x ≥ 0.

Since
√
x ≥ 0 and

√
c > 0, then

√
x+
√
c ≥
√
c > 0, so 1√

c
≥ 1√

x+
√
c
> 0.

Thus, 0 < 1√
x+
√
c
≤ 1√

c
.

Hence,

|
√
x−
√
c| = |(

√
x−
√
c) ·
√
x+
√
c√

x+
√
c
|

= | x− c√
x+
√
c
|

= |x− c| · 1√
x+
√
c

< δ · 1√
c

= ε.

Therefore, |
√
x−
√
c| < ε, so f is continuous at c.

Thus, in all cases, f is continuous at c, as desired.

Example 7. function with a removable discontinuity
Let f : R→ R be a function defined by

f(x) =

{
x+ 1 if x 6= 1

5 if x = 1

Then f is discontinuous at 1.

Proof. To prove f is discontinuous at 1, we must prove (∃ε > 0)(∀δ > 0)(∃x ∈
R)(|x− 1| < δ ∧ |f(x)− f(1)| ≥ ε).

Let ε = 3.
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Let δ > 0 be given.
Let x = 1− δ

2 , the midpoint of 1− δ and 1.

Then |x − 1| = |(1 − δ
2 ) − 1| = |−δ2 | = | δ2 | = δ

2 < δ and |f(x) − f(1)| =

|f(1− δ
2 )− 5| = |(1− δ

2 + 1)− 5| = | − 3− δ
2 | = |3 + δ

2 | = 3 + δ
2 > 3 = ε.

Therefore, |x− 1| < δ and |f(x)− f(1)| > ε, as desired.

Example 8. function with a jump discontinuity
Let f : R→ R be a function defined by

f(x) =

{
1 if x ≥ 0

0 if x < 0

Then f is discontinuous at 0.

Proof. To prove f is discontinuous at 0, we must prove (∃ε > 0)(∀δ > 0)(∃x ∈
R)(|x| < δ ∧ |f(x)− f(0)| ≥ ε).

Let ε = 1
2 .

Let δ > 0 be given.
Let x = − δ2 .

Since δ > 0, then δ
2 > 0, so −δ2 < 0.

Thus, |x| = |−δ2 | = |
δ
2 | =

δ
2 < δ and |f(x)− f(0)| = |f(−δ2 )− 1| = |0− 1| =

1 > 1
2 = ε.

Therefore, |x| < δ and |f(x)− f(0)| > ε, as desired.

Example 9. unbounded function, infinite discontinuity
The function f : (0,∞)→ R defined by f(x) = 1

x is discontinuous at 0 since
0 6∈ (0,∞), the domain of f .

Let r ∈ R be arbitrary.
Let g : [0,∞)→ R be a function defined by

g(x) =

{
1
x if x > 0

r if x = 0

Then g is discontinuous at 0.

Proof. To prove g is discontinuous at 0, we must prove (∃ε > 0)(∀δ > 0)(∃x ∈
[0,∞))(|x| < δ ∧ |g(x)− g(0)| ≥ ε).

Let ε = 1.
Let δ > 0 be given.
Let x = min{ 1

|r|+1 ,
δ
2}.

Then x ≤ 1
|r|+1 and x ≤ δ

2 .

Since |r| ≥ 0, then |r|+ 1 ≥ 1 > 0, so |r|+ 1 > 0.
Hence, 1

|r|+1 > 0.

Since δ > 0, then δ
2 > 0.
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Thus, x > 0, so x ∈ [0,∞).
Since x > 0 and x ≤ δ

2 , then |x| = x ≤ δ
2 < δ, so |x| < δ.

Since 0 < x ≤ 1
|r|+1 , then |r|+ 1 ≤ 1

x , so 1 ≤ 1
x − |r|.

Hence,

|g(x)− g(0)| = | 1
x
− r|

≥ | 1
x
| − |r|

=
1

x
− |r|

≥ 1.

Thus, |g(x)− g(0)| ≥ 1 = ε, so g is discontinuous at 0.
Since r is arbitrary, then g is discontinuous at 0 regardless of how g(0) is

defined.

Example 10. Dirichlet function is discontinuous everywhere
Let f : R→ R be a function defined by

f(x) =

{
1 if x is rational

0 if x is irrational

Then f is not continuous at any point in its domain.

Proof. Let c ∈ R be arbitrary.
Then either c ∈ Q or c 6∈ Q.
We consider each case separately.
Case 1: Suppose c ∈ Q.
Then c is rational.
Let ε = 1

2 .
Let δ > 0 be given.
Since R − Q is dense in R and c < c + δ, then there exists x ∈ R − Q such

that c < x < c+ δ.
Since c < x < c+ δ, then 0 < x− c < δ, so |x− c| < δ.
Since x ∈ R−Q, then x is irrational, so |f(x)− f(c)| = |0− 1| = 1 > 1

2 = ε.
Therefore, f is discontinuous at c.
Case 2: Suppose c 6∈ Q.
Then c is irrational.
Let ε = 1

2 .
Let δ > 0 be given.
Since Q is dense in R and c < c + δ, then there exists x ∈ Q such that

c < x < c+ δ.
Since c < x < c+ δ, then 0 < x− c < δ, so |x− c| < δ.
Since x ∈ Q, then x is rational, so |f(x)− f(c)| = |1− 0| = 1 > 1

2 = ε.
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Therefore, f is discontinuous at c.
Hence, in all cases, f is discontinuous at c.
Since c is arbitrary, then f is discontinuous at c for every real number c.
Therefore, f is discontinuous everywhere in its domain.

Uniform continuity

Example 11. Let a > 0.
Let f : (0, a)→ R be the function given by f(x) = x2.
Then f is uniformly continuous on the interval (0, a).

Proof. To prove f is uniformly continuous on (0, a), let ε > 0 be given.
We must prove there exists δ > 0 such that for all x, y ∈ (0, a), if |x−y| < δ,

then |f(x)− f(y)| < ε.
Let δ = ε

2a .
Since ε > 0 and a > 0, then δ > 0.
Let x, y ∈ (0, a) such that |x− y| < δ.
Then 0 < x < a and 0 < y < a, so 0 < x+ y < 2a.
Hence, |x+ y| = x+ y < 2a, so |x+ y| < 2a.
Thus,

|f(x)− f(y)| = |x2 − y2|
= |(x− y)(x+ y)|
= |x− y||x+ y|
< 2aδ

= ε.

Therefore, |f(x) − f(y)| < ε, so f is uniformly continuous on the interval
(0, a).

Example 12. Let f : R→ R be the function given by f(x) = x2.
Then f is not uniformly continuous on R.

Proof. To prove f is not uniformly continuous on R, we prove (∃ε > 0)(∀δ >
0)(∃x, y ∈ R)(|x− y| < δ ∧ |f(x)− f(y)| ≥ ε).

Let ε = 1.
Let δ > 0 be given.
Let x = 2

δ −
δ
4 .

Let y = x+ δ
2 .

Since |x− y| = |y − x| = | δ2 | =
δ
2 < δ, then |x− y| < δ.

Since 2 > 1 and δ > 0, then 2
δ >

1
δ .

Hence, x = 2
δ −

δ
4 >

1
δ −

δ
4 , so x > 1

δ −
δ
4 .

Thus, x+ δ
4 >

1
δ , so 2x+ δ

2 >
2
δ .

Therefore, x+ (x+ δ
2 ) > 2

δ , so |x+ y| = x+ y > 2
δ > 0.

Observe that
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|f(x)− f(y)| = |x2 − y2|
= |(x− y)(x+ y)|
= |x− y||x+ y|

>
δ

2
· 2

δ
= 1.

Therefore, |f(x)− f(y)| > 1 = ε, so f is not uniformly continuous on R.

Example 13. Let f : (1,∞)→ R be a function defined by f(x) = 1
x .

Then f is uniformly continuous on the interval (1,∞).

Proof. To prove f is uniformly continuous on (1,∞), let ε > 0 be given.
Let δ = ε.
Then δ > 0.
Let x, y ∈ (1,∞) such that |x− y| < δ.
Then x > 1 and y > 1, so xy > 1 > 0.
Hence, 1 > 1

xy > 0, so 0 < 1
xy < 1.

Observe that

|f(x)− f(y)| = | 1
x
− 1

y
|

= |y − x
xy
|

= |x− y
xy
|

=
1

xy
|x− y|

< δ

= ε.

Therefore, |f(x)− f(y)| < ε, as desired.

Example 14. Let f : (0, 1)→ R be the function given by f(x) = 1
x .

Then f is not uniformly continuous on the interval (0, 1).

Proof. To prove f is not uniformly continuous on (0,∞), we prove (∃ε > 0)(∀δ >
0)(∃x, y ∈ (0, 1))(|x− y| < δ ∧ |f(x)− f(y)| ≥ ε).

Let ε = 1.
Let δ > 0 be given.
Let α = min{1, δ}.
Then α ≤ 1 and α ≤ δ and α > 0.
Let x = α

3 and y = α
2 .

Since 0 < α ≤ 1 < 3, then 0 < α < 3, so 0 < α
3 < 1.

Hence, α
3 ∈ (0, 1), so x ∈ (0, 1).
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Since 0 < α ≤ 1 < 2, then 0 < α < 2, so 0 < α
2 < 1.

Hence, α
2 ∈ (0, 1), so y ∈ (0, 1).

Since |x− y| = |y − x| = |α2 −
α
3 | =

α
6 < α ≤ δ, then |x− y| < δ.

Since α ≤ 1 and α > 0, then 1 ≤ 1
α .

Since |f(x) − f(y)| = |f(α3 ) − f(α2 )| = | 3α −
2
α | = 1

α ≥ 1 = ε, then |f(x) −
f(y)| ≥ ε, as desired.
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