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Continuity

Example 1. every constant function is continuous
Let &k € R.
The function given by f(z) = k is continuous.

Proof. Let f: R — R be the function defined by f(z) = k for all z € R.

Let ¢ € R be given.

To prove f is continuous, we must prove f is continuous at c.

Let € > 0 be given.

Let 6 = 1.

Then § > 0.

Let 2 € R such that |z — ¢| < 4.

Since |f(z) — f(c)| = |k — k| = 0 < ¢, then the conditional if 0 < |z —¢| < 6,
then |k — k| < e is trivially true.

Therefore, f is continuous at ¢, as desired. U

Example 2. identity function is continuous
The function given by f(z) = x is continuous.

Proof. Let f: R — R be the function defined by f(z) =« for all x € R.
Let ¢ € R be given.
To prove f is continuous, we must prove f is continuous at c.
Let € > 0 be given.

Let d =e.

Then § > 0.

Let « € R such that | — ¢| < 4.

Then |z —¢| < d =€, so |z — ¢| < ¢, as desired. O

Example 3. square function is continuous
The function f : R — R defined by f(z) = 22 is continuous.

Proof. Let ¢ € R be given.
To prove f is continuous, we must prove f is continuous at c.
Let € > 0 be given.

Let § = min{l, ﬁmc‘}



Thenéglandégﬁz‘cl.
Since |c| > 0, then 2|c| > 0,80 14 2|¢|] > 1 > 0.

Hence, 1+ 2|c| > 0, so ﬁﬂc\ > 0.

Thus, 6 > 0.
Let 2 € R such that |z — ¢| < 4.
Since
|t +¢c = |z—c+2¢
<z = + |2
= |z —c+2
< 0+ 2c|
< 142,
then 0 < |z +¢| < 1+ 2|¢|.
Hence,
a? = ¢* = |(z—c)(z+c)|
= |z —cllz+¢|
< 5(1+2|e))
€
< (1+2
S g (2D
= e
Therefore, |22 — ¢?| < ¢, as desired. O

Example 4. The function f : (0,00) — R defined by f(z) =  is continuous.

Proof. Let ¢ € (0,00) be given.
Then ¢ > 0.
To prove f is continuous, we must prove f is continuous at c.
Let € > 0 be given.
Let 6 = min{$, Cg—e .
Then5§§and5§%and§>0.
Let z € (0,00) such that |z —¢| < 4.
Then >0 and 0 < |z —¢| < 4.
Since [z —¢| < < §, then |z —c| < §.
Since § > |z —¢| > |c| = |[z| = ¢ — 2, then § > c—x,s0 2 > § > 0.
Thus, 0 < 5 < =, soO<%<%.



Observe that
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Therefore, |1 — 1| < ¢, as desired. O

x C

Proof. To prove f is continuous on its domain, we must prove f is continuous
on the interval (0,00).

Let ¢ € (0,00) be arbitrary.

We must prove f is continuous at c.

Since every element of a non-degenerate interval is an accumulation point of
the interval, then ¢ is an accumulation point of (0, c0).

Since ¢ € (0,00), then ¢ > 0, so ¢ is positive.

Since limwﬁcé = % for all positive real ¢, then lim,_,. f(z) = 1imwﬁci =
L2 (o).

Since ¢ € (0,00) and lim,_. f(z) = f(c), then f is continuous at ¢, as
desired. O

Example 5. absolute value function is continuous
The function f: R — R defined by f(z) = |z| is continuous.

Proof. Let ¢ € R be given.
To prove f is continuous, we must prove f is continuous at c.
Let € > 0 be given.

Let 6 =e.

Then § > 0.

Let z € R such that | —¢| < 6.

Then ||z] — ||| < |z —¢| < d =€, s0 ||z] — ||| <€, as desired. O

Example 6. square root function is continuous
The function f : [0,00) — R defined by f(z) = \/x is continuous.

Proof. Let ¢ € [0,00) be given.
Then ¢ > 0.
To prove f is continuous, we must prove f is continuous at c.
Either ¢ > 0 or ¢ = 0.



We consider each case separately.

Case 1: Suppose ¢ = 0.

To prove f is continuous at 0, let € > 0 be given.
Let § = €2.

Then § > 0.

Let z > 0 such that |z| < 4.

Then 0 <z < 6,50 0 </ < V0.

Thus, |/z| = vZ < V8 =Ve2 = |e| = ¢, 50 |\/z| < €.
Therefore, f is continuous at 0.

Case 2: Suppose ¢ > 0.

To prove f is continuous at ¢, let € > 0 be given.
Let § = ev/c.

Since ¢ > 0, then /¢ > 0.

Since € > 0 and /¢ > 0, then § > 0.

Let = € [0, 00) such that | — ¢| < d.
Since z € [0,00), then 2 > 0, so v/ > 0.

Slncef>Oand\f>0thenf+\f>\f>0807 ff>0
1
Thus, 0 < f NG < NG
Hence,
VE+VE
Vo —ve = |Vz—+e)- |
VEt e
_ T —c |
VI +4/e
ol o=
a VI + /e
1
< §—
Ve
= e
Therefore, |/x — /c| < €, so f is continuous at c.
Thus, in all cases, f is continuous at ¢, as desired. O

Example 7. function with a removable discontinuity
Let f: R — R be a function defined by

Jr+1 ifr £l
f(x)_{5 ifr=1

Then f is discontinuous at 1.

Proof. To prove f is discontinuous at 1, we must prove (Je > 0)(V§ > 0)(3z €

R)(Jz = 1] <A |f(z) = f(1)]| = €).
Let € = 3.



Let 6 > 0 be given.

Let x=1— g, the midpoint of 1 — § and 1.

Then |0 — 1] = |(1 - 2) — 1] = |5 = |8] = & < & and |f(z) = f(1)] =
fA-8) -5/ =|1-$+1)—5|=|-3-3|=13+%|=3+$>3=c

Therefore, |z — 1| < § and |f(z) — f(1)| > €, as desired. O

Example 8. function with a jump discontinuity
Let f: R — R be a function defined by

1 ifz>0
f(x)_{o itz <0

Then f is discontinuous at 0.

Proof. To prove f is discontinuous at 0, we must prove (Je > 0)(V§ > 0)(Iz €

R) (x| <o A[f(z) = F(O)] = €).

Let € = .
Let § > 0 be given.
Let 2 = —2

§~

Since § > 0, then % > 0, so _76 < 0.

Thus, |z] = |52] = 3] = § < 6 and |f(z) — F(O) = |f(5) — 1] =0~ 1] =
1> % =e.

Therefore, |z| < ¢ and |f(z) — f(0)| > €, as desired. O

Example 9. unbounded function, infinite discontinuity

The function f : (0,00) — R defined by f(z) = 1 is discontinuous at 0 since
0 ¢ (0,00), the domain of f.

Let » € R be arbitrary.

Let g : [0,00) — R be a function defined by

Then g is discontinuous at 0.

Proof. To prove g is discontinuous at 0, we must prove (Je > 0)(V§ > 0)(Izx €
[0,00)) (|| < 6 Alg(z) — g(0)] = e).

Let e = 1.

Let 6 > 0 be given.

Let x = min{mﬁ, 1.

Thenxﬁﬁandxﬁ%.

Since |r| > 0, then |r]+1>1>0,s0 |r|+1 > 0.

Hence, Mﬁ > 0.

Since § > 0, then % > 0.



Thus, x > 0, so = € [0, 0).

Since x > 0 and z < 2, then |z| =2 < § <, so |z| < 4.
Since 0 < z < then|r|+1§i,sol§%—\r|.
Hence,

_1
[r|+1°

1
—_ 0 — —
lg(z) — g(0)] Ix 7|
1
> ==
X
1
= ;—|7"|
> 1

Thus, |g(z) — g(0)] > 1 =¢, so g is discontinuous at 0.
Since r is arbitrary, then g is discontinuous at 0 regardless of how g(0) is
defined. 0

Example 10. Dirichlet function is discontinuous everywhere
Let f : R — R be a function defined by

1 if x is rational
fz) = e
0 if x is irrational

Then f is not continuous at any point in its domain.

Proof. Let ¢ € R be arbitrary.

Then either ¢ € Q or ¢ ¢ Q.

We consider each case separately.

Case 1: Suppose ¢ € Q.

Then c is rational.

Let e = %

Let § > 0 be given.

Since R — Q is dense in R and ¢ < ¢+ §, then there exists z € R — Q such
that ¢ <z < ¢+ 6.

Since c <z <c+9J,then0 <z —c<d,s0|x—c|l <6.

Since z € R — Q, then  is irrational, so |f(z) — f(c)| =[0—1|=1> 1 =€

Therefore, f is discontinuous at c.

Case 2: Suppose ¢ € Q.

Then c is irrational.

Let e = %

Let 6 > 0 be given.

Since Q is dense in R and ¢ < ¢ + §, then there exists z € Q such that
c<zr<c+é.

Sincec <z <c+4d,then0 <z —c<d,s0|z—c|<é.

Since z € Q, then z is rational, so |f(z) — f(c)| =1 -0[=1> 1 =e.



Therefore, f is discontinuous at c.

Hence, in all cases, f is discontinuous at c.

Since c is arbitrary, then f is discontinuous at ¢ for every real number c.
Therefore, f is discontinuous everywhere in its domain. O

Uniform continuity

Example 11. Let a > 0.
Let f:(0,a) — R be the function given by f(z) = x?.
Then f is uniformly continuous on the interval (0, a).

Proof. To prove f is uniformly continuous on (0, a), let € > 0 be given.

We must prove there exists ¢ > 0 such that for all z,y € (0,a), if |z —y| < 4,
then |f(z) — f(y)| < e

Let 0 = 5.

Since € > O and a > 0, then 6 > 0.

Let z,y € (0,a) such that |z — y| < 4.

Then0<z<aand 0<y<a,s00<z+y<2a.

Hence, |z 4+ y| =z +y < 2a, so |z + y| < 2a.

Thus,

f(@) = fy)] = [2* =97

= |(z—y)(z+y)
= |z —yllz+yl
< 2a0

== €.

Therefore, |f(z) — f(y)| < €, so f is uniformly continuous on the interval
(0,a). O

Example 12. Let f: R — R be the function given by f(z) = 2.
Then f is not uniformly continuous on R.

Proof. To prove f is not uniformly continuous on R, we prove (Je > 0)(Vo >
0)3z,y € R)(lx —y[ <5 A[f(z) = f(y)] = €).

Let e = 1.

Let 6 > 0 be given.

Let x = % - %.

Let y =2 + 5.

Since [z —y| = |y — 2| = |$| = § <6, then |z —y| < 6.
Since2>1and5>0,then%>%

_2_5_1_34
Hence,x—g—z>g—4, o x >
Thus,x+g>%,so 2x—|—§>g.
Therefore, z + (z+ $) > 2,50 [z +y|=2z+y > 2 > 0.
Observe that

&.M—‘
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f(@) = f)| = |2* =y
= [(z—y)(z+y)
= |z —yllz+yl
5 2
)

il O

Therefore, |f(x) — f(y)| > 1 =¢, so f is not uniformly continuous on R. O

Example 13. Let f: (1,00) = R be a function defined by f(z) = 1.
Then f is uniformly continuous on the interval (1,00).

Proof. To prove f is uniformly continuous on (1,00), let € > 0 be given.
Let § = e.
Then § > 0.
Let z,y € (1,00) such that |z — y| < 4.
Then z >1and y > 1,s0zy > 1> 0.
Hence,1>%>07500<x—1y<1.
Observe that

[f(@) = f)l = |- -~

Therefore, |f(z) — f(y)| < €, as desired. O

Example 14. Let f: (0,1) — R be the function given by f(z) = %
Then f is not uniformly continuous on the interval (0, 1).

Proof. To prove f is not uniformly continuous on (0, c0), we prove (Je > 0)(Vo >
0)3z,y € (0,1))(Jz —y[ <IA[f(z) = f(y)] = €).

Let e = 1.

Let 6 > 0 be given.

Let @ = min{1,d}.

Then o <1 and a < ¢ and o > 0.

Let v = S and y = 5.
Since 0 <a<1<3,then0<a<3,s00<g <1
Hence, § € (0,1), so z € (0,1).



Since 0 <a<1<2,then0<a<2,s00<3g <1
Hence, § € (0,1), so y € (0,1).
Since [z —y| =y —2| =|§ — §| = § <a <4, then [z —y[ < 6.

Since o« <1 and a > 0, then 1 < (11
Since |f(z) — f(y)| = |F(2) = F(2)] = |2 = 2| = L > 1 =, then |f(z) —
f(y)| > €, as desired. B



