Continuous functions Examples

Jason Sass

May 19, 2023

Continuity

Example 1. every constant function is continuous
Let $k \in \mathbb{R}$.
The function given by $f(x)=k$ is continuous.
Proof. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=k$ for all $x \in \mathbb{R}$.
Let $c \in \mathbb{R}$ be given.
To prove f is continuous, we must prove f is continuous at c.
Let $\epsilon>0$ be given.
Let $\delta=1$.
Then $\delta>0$.
Let $x \in \mathbb{R}$ such that $|x-c|<\delta$.
Since $|f(x)-f(c)|=|k-k|=0<\epsilon$, then the conditional if $0<|x-c|<\delta$, then $|k-k|<\epsilon$ is trivially true.

Therefore, f is continuous at c, as desired.
Example 2. identity function is continuous
The function given by $f(x)=x$ is continuous.
Proof. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x$ for all $x \in \mathbb{R}$.
Let $c \in \mathbb{R}$ be given.
To prove f is continuous, we must prove f is continuous at c.
Let $\epsilon>0$ be given.
Let $\delta=\epsilon$.
Then $\delta>0$.
Let $x \in \mathbb{R}$ such that $|x-c|<\delta$.
Then $|x-c|<\delta=\epsilon$, so $|x-c|<\epsilon$, as desired.

Example 3. square function is continuous

The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is continuous.
Proof. Let $c \in \mathbb{R}$ be given.
To prove f is continuous, we must prove f is continuous at c.
Let $\epsilon>0$ be given.
Let $\delta=\min \left\{1, \frac{\epsilon}{1+2|c|}\right\}$.

Then $\delta \leq 1$ and $\delta \leq \frac{\epsilon}{1+2|c|}$.
Since $|c| \geq 0$, then $2|c| \geq 0$, so $1+2|c| \geq 1>0$.
Hence, $1+2|c|>0$, so $\frac{\epsilon}{1+2|c|}>0$.
Thus, $\delta>0$.
Let $x \in \mathbb{R}$ such that $|x-c|<\delta$.
Since

$$
\begin{aligned}
|x+c| & =|x-c+2 c| \\
& \leq|x-c|+|2 c| \\
& =|x-c|+2|c| \\
& <\delta+2|c| \\
& \leq 1+2|c|,
\end{aligned}
$$

then $0 \leq|x+c|<1+2|c|$.
Hence,

$$
\begin{aligned}
\left|x^{2}-c^{2}\right| & =|(x-c)(x+c)| \\
& =|x-c||x+c| \\
& <\delta(1+2|c|) \\
& \leq \frac{\epsilon}{1+2|c|} \cdot(1+2|c|) \\
& =\epsilon .
\end{aligned}
$$

Therefore, $\left|x^{2}-c^{2}\right|<\epsilon$, as desired.
Example 4. The function $f:(0, \infty) \rightarrow \mathbb{R}$ defined by $f(x)=\frac{1}{x}$ is continuous.
Proof. Let $c \in(0, \infty)$ be given.
Then $c>0$.
To prove f is continuous, we must prove f is continuous at c.
Let $\epsilon>0$ be given.
Let $\delta=\min \left\{\frac{c}{2}, \frac{c^{2} \epsilon}{2}\right\}$.
Then $\delta \leq \frac{c}{2}$ and $\delta \leq \frac{c^{2} \epsilon}{2}$ and $\delta>0$.
Let $x \in(0, \infty)$ such that $|x-c|<\delta$.
Then $x>0$ and $0 \leq|x-c|<\delta$.
Since $|x-c|<\delta \leq \frac{c}{2}$, then $|x-c|<\frac{c}{2}$.
Since $\frac{c}{2}>|x-c| \geq|c|-|x|=c-x$, then $\frac{c}{2}>c-x$, so $x>\frac{c}{2}>0$.
Thus, $0<\frac{c}{2}<x$, so $0<\frac{1}{x}<\frac{2}{c}$.

Observe that

$$
\begin{aligned}
\left|\frac{1}{x}-\frac{1}{c}\right| & =\left|\frac{1}{c}-\frac{1}{x}\right| \\
& =\left|\frac{x-c}{c x}\right| \\
& =\frac{1}{c} \cdot \frac{1}{x} \cdot|x-c| \\
& <\frac{1}{c} \cdot \frac{2}{c} \cdot \delta \\
& =\frac{2}{c^{2}} \cdot \delta \\
& \leq \frac{2}{c^{2}} \cdot \frac{c^{2} \epsilon}{2} \\
& =\epsilon
\end{aligned}
$$

Therefore, $\left|\frac{1}{x}-\frac{1}{c}\right|<\epsilon$, as desired.
Proof. To prove f is continuous on its domain, we must prove f is continuous on the interval $(0, \infty)$.

Let $c \in(0, \infty)$ be arbitrary.
We must prove f is continuous at c.
Since every element of a non-degenerate interval is an accumulation point of the interval, then c is an accumulation point of $(0, \infty)$.

Since $c \in(0, \infty)$, then $c>0$, so c is positive.
Since $\lim _{x \rightarrow c} \frac{1}{x}=\frac{1}{c}$ for all positive real c, then $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} \frac{1}{x}=$ $\frac{1}{c}=f(c)$.

Since $c \in(0, \infty)$ and $\lim _{x \rightarrow c} f(x)=f(c)$, then f is continuous at c, as desired.

Example 5. absolute value function is continuous
The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=|x|$ is continuous.
Proof. Let $c \in \mathbb{R}$ be given.
To prove f is continuous, we must prove f is continuous at c.
Let $\epsilon>0$ be given.
Let $\delta=\epsilon$.
Then $\delta>0$.
Let $x \in \mathbb{R}$ such that $|x-c|<\delta$.
Then $||x|-|c|| \leq|x-c|<\delta=\epsilon$, so $\| x|-|c||<\epsilon$, as desired.
Example 6. square root function is continuous
The function $f:[0, \infty) \rightarrow \mathbb{R}$ defined by $f(x)=\sqrt{x}$ is continuous.
Proof. Let $c \in[0, \infty)$ be given.
Then $c \geq 0$.
To prove f is continuous, we must prove f is continuous at c.
Either $c>0$ or $c=0$.

We consider each case separately.
Case 1: Suppose $c=0$.
To prove f is continuous at 0 , let $\epsilon>0$ be given.
Let $\delta=\epsilon^{2}$.
Then $\delta>0$.
Let $x \geq 0$ such that $|x|<\delta$.
Then $0 \leq x<\delta$, so $0 \leq \sqrt{x}<\sqrt{\delta}$.
Thus, $|\sqrt{x}|=\sqrt{x}<\sqrt{\delta}=\sqrt{\epsilon^{2}}=|\epsilon|=\epsilon$, so $|\sqrt{x}|<\epsilon$.
Therefore, f is continuous at 0 .
Case 2: Suppose $c>0$.
To prove f is continuous at c, let $\epsilon>0$ be given.
Let $\delta=\epsilon \sqrt{c}$.
Since $c>0$, then $\sqrt{c}>0$.
Since $\epsilon>0$ and $\sqrt{c}>0$, then $\delta>0$.
Let $x \in[0, \infty)$ such that $|x-c|<\delta$.
Since $x \in[0, \infty)$, then $x \geq 0$, so $\sqrt{x} \geq 0$.
Since $\sqrt{x} \geq 0$ and $\sqrt{c}>0$, then $\sqrt{x}+\sqrt{c} \geq \sqrt{c}>0$, so $\frac{1}{\sqrt{c}} \geq \frac{1}{\sqrt{x}+\sqrt{c}}>0$.
Thus, $0<\frac{1}{\sqrt{x}+\sqrt{c}} \leq \frac{1}{\sqrt{c}}$.
Hence,

$$
\begin{aligned}
|\sqrt{x}-\sqrt{c}| & =\left|(\sqrt{x}-\sqrt{c}) \cdot \frac{\sqrt{x}+\sqrt{c}}{\sqrt{x}+\sqrt{c}}\right| \\
& =\left|\frac{x-c}{\sqrt{x}+\sqrt{c}}\right| \\
& =|x-c| \cdot \frac{1}{\sqrt{x}+\sqrt{c}} \\
& <\delta \cdot \frac{1}{\sqrt{c}} \\
& =\epsilon .
\end{aligned}
$$

Therefore, $|\sqrt{x}-\sqrt{c}|<\epsilon$, so f is continuous at c.
Thus, in all cases, f is continuous at c, as desired.

Example 7. function with a removable discontinuity

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)= \begin{cases}x+1 & \text { if } x \neq 1 \\ 5 & \text { if } x=1\end{cases}
$$

Then f is discontinuous at 1 .
Proof. To prove f is discontinuous at 1 , we must prove $(\exists \epsilon>0)(\forall \delta>0)(\exists x \in$ $\mathbb{R})(|x-1|<\delta \wedge|f(x)-f(1)| \geq \epsilon)$.

Let $\epsilon=3$.

Let $\delta>0$ be given.
Let $x=1-\frac{\delta}{2}$, the midpoint of $1-\delta$ and 1 .
Then $|x-1|=\left|\left(1-\frac{\delta}{2}\right)-1\right|=\left|\frac{-\delta}{2}\right|=\left|\frac{\delta}{2}\right|=\frac{\delta}{2}<\delta$ and $|f(x)-f(1)|=$ $\left|f\left(1-\frac{\delta}{2}\right)-5\right|=\left|\left(1-\frac{\delta}{2}+1\right)-5\right|=\left|-3-\frac{\delta}{2}\right|=\left|3+\frac{\delta}{2}\right|=3+\frac{\delta}{2}>3=\epsilon$.

Therefore, $|x-1|<\delta$ and $|f(x)-f(1)|>\epsilon$, as desired.

Example 8. function with a jump discontinuity

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)= \begin{cases}1 & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

Then f is discontinuous at 0 .
Proof. To prove f is discontinuous at 0 , we must prove $(\exists \epsilon>0)(\forall \delta>0)(\exists x \in$ $\mathbb{R})(|x|<\delta \wedge|f(x)-f(0)| \geq \epsilon)$.

Let $\epsilon=\frac{1}{2}$.
Let $\delta>0$ be given.
Let $x=-\frac{\delta}{2}$.
Since $\delta>0$, then $\frac{\delta}{2}>0$, so $\frac{-\delta}{2}<0$.
Thus, $|x|=\left|\frac{-\delta}{2}\right|=\left|\frac{\delta}{2}\right|=\frac{\delta}{2}<\delta$ and $|f(x)-f(0)|=\left|f\left(\frac{-\delta}{2}\right)-1\right|=|0-1|=$ $1>\frac{1}{2}=\epsilon$.

Therefore, $|x|<\delta$ and $|f(x)-f(0)|>\epsilon$, as desired.

Example 9. unbounded function, infinite discontinuity

The function $f:(0, \infty) \rightarrow \mathbb{R}$ defined by $f(x)=\frac{1}{x}$ is discontinuous at 0 since $0 \notin(0, \infty)$, the domain of f.

Let $r \in \mathbb{R}$ be arbitrary.
Let $g:[0, \infty) \rightarrow \mathbb{R}$ be a function defined by

$$
g(x)= \begin{cases}\frac{1}{x} & \text { if } x>0 \\ r & \text { if } x=0\end{cases}
$$

Then g is discontinuous at 0 .
Proof. To prove g is discontinuous at 0 , we must prove $(\exists \epsilon>0)(\forall \delta>0)(\exists x \in$ $[0, \infty))(|x|<\delta \wedge|g(x)-g(0)| \geq \epsilon)$.

Let $\epsilon=1$.
Let $\delta>0$ be given.
Let $x=\min \left\{\frac{1}{|r|+1}, \frac{\delta}{2}\right\}$.
Then $x \leq \frac{1}{|r|+1}$ and $x \leq \frac{\delta}{2}$.
Since $|r| \geq 0$, then $|r|+1 \geq 1>0$, so $|r|+1>0$.
Hence, $\frac{1}{|r|+1}>0$.
Since $\delta>0$, then $\frac{\delta}{2}>0$.

Thus, $x>0$, so $x \in[0, \infty)$.
Since $x>0$ and $x \leq \frac{\delta}{2}$, then $|x|=x \leq \frac{\delta}{2}<\delta$, so $|x|<\delta$.
Since $0<x \leq \frac{1}{|r|+1}$, then $|r|+1 \leq \frac{1}{x}$, so $1 \leq \frac{1}{x}-|r|$.
Hence,

$$
\begin{aligned}
|g(x)-g(0)| & =\left|\frac{1}{x}-r\right| \\
& \geq\left|\frac{1}{x}\right|-|r| \\
& =\frac{1}{x}-|r| \\
& \geq 1
\end{aligned}
$$

Thus, $|g(x)-g(0)| \geq 1=\epsilon$, so g is discontinuous at 0 .
Since r is arbitrary, then g is discontinuous at 0 regardless of how $g(0)$ is defined.

Example 10. Dirichlet function is discontinuous everywhere

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)= \begin{cases}1 & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

Then f is not continuous at any point in its domain.
Proof. Let $c \in \mathbb{R}$ be arbitrary.
Then either $c \in \mathbb{Q}$ or $c \notin \mathbb{Q}$.
We consider each case separately.
Case 1: Suppose $c \in \mathbb{Q}$.
Then c is rational.
Let $\epsilon=\frac{1}{2}$.
Let $\delta>0$ be given.
Since $\mathbb{R}-\mathbb{Q}$ is dense in \mathbb{R} and $c<c+\delta$, then there exists $x \in \mathbb{R}-\mathbb{Q}$ such that $c<x<c+\delta$.

Since $c<x<c+\delta$, then $0<x-c<\delta$, so $|x-c|<\delta$.
Since $x \in \mathbb{R}-\mathbb{Q}$, then x is irrational, so $|f(x)-f(c)|=|0-1|=1>\frac{1}{2}=\epsilon$.
Therefore, f is discontinuous at c.
Case 2: Suppose $c \notin \mathbb{Q}$.
Then c is irrational.
Let $\epsilon=\frac{1}{2}$.
Let $\delta>0$ be given.
Since \mathbb{Q} is dense in \mathbb{R} and $c<c+\delta$, then there exists $x \in \mathbb{Q}$ such that $c<x<c+\delta$.

Since $c<x<c+\delta$, then $0<x-c<\delta$, so $|x-c|<\delta$.
Since $x \in \mathbb{Q}$, then x is rational, so $|f(x)-f(c)|=|1-0|=1>\frac{1}{2}=\epsilon$.

Therefore, f is discontinuous at c.
Hence, in all cases, f is discontinuous at c.
Since c is arbitrary, then f is discontinuous at c for every real number c.
Therefore, f is discontinuous everywhere in its domain.

Uniform continuity

Example 11. Let $a>0$.
Let $f:(0, a) \rightarrow \mathbb{R}$ be the function given by $f(x)=x^{2}$.
Then f is uniformly continuous on the interval $(0, a)$.
Proof. To prove f is uniformly continuous on $(0, a)$, let $\epsilon>0$ be given.
We must prove there exists $\delta>0$ such that for all $x, y \in(0, a)$, if $|x-y|<\delta$, then $|f(x)-f(y)|<\epsilon$.

Let $\delta=\frac{\epsilon}{2 a}$.
Since $\epsilon>0$ and $a>0$, then $\delta>0$.
Let $x, y \in(0, a)$ such that $|x-y|<\delta$.
Then $0<x<a$ and $0<y<a$, so $0<x+y<2 a$.
Hence, $|x+y|=x+y<2 a$, so $|x+y|<2 a$.
Thus,

$$
\begin{aligned}
|f(x)-f(y)| & =\left|x^{2}-y^{2}\right| \\
& =|(x-y)(x+y)| \\
& =|x-y||x+y| \\
& <2 a \delta \\
& =\epsilon
\end{aligned}
$$

Therefore, $|f(x)-f(y)|<\epsilon$, so f is uniformly continuous on the interval ($0, a$).

Example 12. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function given by $f(x)=x^{2}$.
Then f is not uniformly continuous on \mathbb{R}.
Proof. To prove f is not uniformly continuous on \mathbb{R}, we prove $(\exists \epsilon>0)(\forall \delta>$ $0)(\exists x, y \in \mathbb{R})(|x-y|<\delta \wedge|f(x)-f(y)| \geq \epsilon)$.

Let $\epsilon=1$.
Let $\delta>0$ be given.
Let $x=\frac{2}{\delta}-\frac{\delta}{4}$.
Let $y=x+\frac{\delta}{2}$.
Since $|x-y|=|y-x|=\left|\frac{\delta}{2}\right|=\frac{\delta}{2}<\delta$, then $|x-y|<\delta$.
Since $2>1$ and $\delta>0$, then $\frac{2}{\delta}>\frac{1}{\delta}$.
Hence, $x=\frac{2}{\delta}-\frac{\delta}{4}>\frac{1}{\delta}-\frac{\delta}{4}$, so $x>\frac{1}{\delta}-\frac{\delta}{4}$.
Thus, $x+\frac{\delta}{4}>\frac{1}{\delta}$, so $2 x+\frac{\delta}{2}>\frac{2}{\delta}$.
Therefore, $x+\left(x+\frac{\delta}{2}\right)>\frac{2}{\delta}$, so $|x+y|=x+y>\frac{2}{\delta}>0$.
Observe that

$$
\begin{aligned}
|f(x)-f(y)| & =\left|x^{2}-y^{2}\right| \\
& =|(x-y)(x+y)| \\
& =|x-y||x+y| \\
& >\frac{\delta}{2} \cdot \frac{2}{\delta} \\
& =1
\end{aligned}
$$

Therefore, $|f(x)-f(y)|>1=\epsilon$, so f is not uniformly continuous on \mathbb{R}.
Example 13. Let $f:(1, \infty) \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{1}{x}$.
Then f is uniformly continuous on the interval $(1, \infty)$.
Proof. To prove f is uniformly continuous on $(1, \infty)$, let $\epsilon>0$ be given.
Let $\delta=\epsilon$.
Then $\delta>0$.
Let $x, y \in(1, \infty)$ such that $|x-y|<\delta$.
Then $x>1$ and $y>1$, so $x y>1>0$.
Hence, $1>\frac{1}{x y}>0$, so $0<\frac{1}{x y}<1$.
Observe that

$$
\begin{aligned}
|f(x)-f(y)| & =\left|\frac{1}{x}-\frac{1}{y}\right| \\
& =\left|\frac{y-x}{x y}\right| \\
& =\left|\frac{x-y}{x y}\right| \\
& =\frac{1}{x y}|x-y| \\
& <\delta \\
& =\epsilon
\end{aligned}
$$

Therefore, $|f(x)-f(y)|<\epsilon$, as desired.
Example 14. Let $f:(0,1) \rightarrow \mathbb{R}$ be the function given by $f(x)=\frac{1}{x}$.
Then f is not uniformly continuous on the interval $(0,1)$.
Proof. To prove f is not uniformly continuous on $(0, \infty)$, we prove $(\exists \epsilon>0)(\forall \delta>$ $0)(\exists x, y \in(0,1))(|x-y|<\delta \wedge|f(x)-f(y)| \geq \epsilon)$.

Let $\epsilon=1$.
Let $\delta>0$ be given.
Let $\alpha=\min \{1, \delta\}$.
Then $\alpha \leq 1$ and $\alpha \leq \delta$ and $\alpha>0$.
Let $x=\frac{\alpha}{3}$ and $y=\frac{\alpha}{2}$.
Since $0<\alpha \leq 1<3$, then $0<\alpha<3$, so $0<\frac{\alpha}{3}<1$.
Hence, $\frac{\alpha}{3} \in(0,1)$, so $x \in(0,1)$.

Since $0<\alpha \leq 1<2$, then $0<\alpha<2$, so $0<\frac{\alpha}{2}<1$.
Hence, $\frac{\alpha}{2} \in(0,1)$, so $y \in(0,1)$.
Since $|x-y|=|y-x|=\left|\frac{\alpha}{2}-\frac{\alpha}{3}\right|=\frac{\alpha}{6}<\alpha \leq \delta$, then $|x-y|<\delta$.
Since $\alpha \leq 1$ and $\alpha>0$, then $1 \leq \frac{1}{\alpha}$.
Since $|f(x)-f(y)|=\left|f\left(\frac{\alpha}{3}\right)-\bar{f}\left(\frac{\alpha}{2}\right)\right|=\left|\frac{3}{\alpha}-\frac{2}{\alpha}\right|=\frac{1}{\alpha} \geq 1=\epsilon$, then $\mid f(x)-$ $f(y) \mid \geq \epsilon$, as desired.

