Continuous functions Exercises

Jason Sass

June 29, 2021

Continuity

Exercise 1. The function given by $f(x) = x^2$ is continuous at x = 2.

 $\begin{array}{l} Proof. \ \text{Let } \epsilon > 0 \ \text{be given}. \\ \text{Let } \delta = \min\{1, \frac{\epsilon}{5}\}. \\ \text{Then } \delta \leq 1 \ \text{and } \delta \leq \frac{\epsilon}{5} \ \text{and } \delta > 0. \\ \text{Let } x \in \mathbb{R} \ \text{such that } |x-2| < \delta. \\ \text{Then } |x+2| = |(x-2)+4| \leq |x-2|+4 < \delta+4 \leq 5, \ \text{so } |x+2| < 5. \\ \text{Therefore, } |x^2-4| = |(x-2)(x+2)| = |x-2||x+2| < 5\delta \leq 5 \cdot \frac{\epsilon}{5} = \epsilon, \ \text{so } |x^2-4| < \epsilon, \ \text{as desired}. \end{array}$

Exercise 2. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = 3x^2 - 2x + 1$. Then f is continuous at 2.

Solution. To prove f is continuous at 2, let $\epsilon > 0$ be given. Let $\delta = \min\{1, \frac{\epsilon}{13}\}$. Then $\delta \le 1$ and $\delta \le \frac{\epsilon}{13}$ and $\delta > 0$. Let $x \in \mathbb{R}$ such that $|x - 2| < \delta$. Then $0 \le |x - 2| < \delta$. Since $|3x + 4| = |3(x - 2) + 10| \le 3|x - 2| + 10 < 3\delta + 10 \le 3 + 10 = 13$, then |3x + 4| < 13. Thus, $|f(x) - f(2)| = |(3x^2 - 2x + 1) - 9| = |3x^2 - 2x - 8| = |(x - 2)(3x + 4)| = |x - 2||3x + 4| < 13\delta \le \frac{\epsilon}{13} \cdot 13 = \epsilon$. Therefore, $|f(x) - f(2)| < \epsilon$, as desired.

Exercise 3. Let $f: [-4, 0] \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} \frac{2x^2 - 18}{x+3} & \text{if } x \neq 3\\ -12 & \text{if } x = -3 \end{cases}$$

Then f is continuous at -3.

Solution. To prove f is continuous at $-3 \in [-4, 0]$, let $\epsilon > 0$ be given. Let $\delta = \frac{\epsilon}{2}$. Then $\delta > 0$. Let $x \in [-4, 0]$ such that $|x - (-3)| < \delta$. Then $0 \leq |x+3| < \delta$. Either x = -3 or $x \neq -3$. We consider these cases separately. Case 1: Suppose x = -3. Then $|f(x) - f(-3)| = |f(-3) - f(-3)| = 0 < \epsilon$. Hence, the conditional if $|x - (-3)| < \delta$, then $|f(x) - f(-3)| < \epsilon$ is trivially true. Case 2: Suppose $x \neq -3$. Then $|f(x) - f(-3)| = |\frac{2x^2 - 18}{x+3} + 12| = |\frac{2(x-3)(x+3)}{x+3} + 12| = |2(x-3) + 12| = |2x+6| = 2|x+3| < 2\delta = \epsilon$, so $|f(x) - f(-3)| < \epsilon$.

Therefore, f is continuous at -3, as desired.

Exercise 4. Let $f(x) = \frac{x^2 + x - 6}{x - 2}$ be defined for all real numbers $x \neq 2$. Define f so that f is continuous at 2.

Solution. Since $dom f = \mathbb{R} - \{2\}$, then 2 is not in the domain of f, so f is discontinuous at 2.

Define f(2) = 5. Then $dom f = \mathbb{R}$. For $x \neq 2$, observe that

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^2 + x - 6}{x - 2}$$

=
$$\lim_{x \to 2} \frac{(x - 2)(x + 3)}{x - 2}$$

=
$$\lim_{x \to 2} (x + 3)$$

=
$$2 + 3$$

=
$$5$$

=
$$f(2).$$

Since $2 \in \mathbb{R}$ and 2 is an accumulation point of \mathbb{R} and $\lim_{x \to 2} f(x) = f(2)$, then by the characterization of continuity, f is continuous at 2.

Exercise 5. Let $f:(0,\infty) \to \mathbb{R}$ be the function defined by $f(x) = \frac{1}{x}$. Let 0 < c < 1.

If $\delta > 0$ satisfies the ϵ, δ definition of continuity at c for $\epsilon = 1$, then $\delta < \frac{c^2}{1+c}$.

Solution. Suppose $\delta > 0$ and δ satisfies the ϵ, δ definition of continuity at c for $\epsilon = 1.$

Since f is continuous at c for any c > 0 and c > 0, then f is continuous at c. Thus, $\delta = \min\{\frac{c}{2}, \frac{c^2 \epsilon}{2}\} = \min\{\frac{c}{2}, \frac{c^2}{2}\}.$

Since c < 1 and c > 0, then $c^2 < c$, so $\frac{c^2}{2} < \frac{c}{2}$. Hence, $\delta = \frac{c^2}{2}$. Since c < 1, then 1 + c < 2, so $\frac{1}{2} < \frac{1}{1+c}$. Since $c^2 > 0$, then $\frac{c^2}{2} < \frac{c^2}{1+c}$, so $\delta < \frac{c^2}{1+c}$, as desired.

Exercise 6. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = 2x^2 + 3x + 1$. Then f is continuous.

Solution. Let $c \in \mathbb{R}$ be given.

To prove f is continuous, we must prove f is continuous at c. Let $\epsilon > 0$ be given. Let $\delta = \min\{1, \frac{\epsilon}{5+4|c|}\}$. Then $\delta \le 1$ and $\delta \le \frac{\epsilon}{5+4|c|}$ and $\delta > 0$. Let $x \in \mathbb{R}$ such that $|x - c| < \delta$. Then $0 \le |x - c| < \delta$. Since $|x| = |(x - c) + c| \le |x - c| + |c| < \delta + |c| \le 1 + |c|$, then |x| < 1 + |c|. Hence, $|2x + 2c + 3| \le 2|x| + 2|c| + 3 < 2(1 + |c|) + 2|c| + 3 = 5 + 4|c|$, so $0 \le |2x + 2c + 3| < 5 + 4|c|$.

Thus,

$$\begin{aligned} f(x) - f(c)| &= |(2x^2 + 3x + 1) - (2c^2 + 3c + 1)| \\ &= |2(x^2 - c^2) + 3(x - c)| \\ &= |2(x - c)(x + c) + 3(x - c)| \\ &= |(x - c)[2(x + c) + 3]| \\ &= |(x - c)(2x + 2c + 3)| \\ &= |x - c||2x + 2c + 3| \\ &< \delta \cdot (5 + 4|c|) \\ &\leq \frac{\epsilon}{5 + 4|c|} \cdot (5 + 4|c|) \\ &= \epsilon. \end{aligned}$$

Therefore, $|f(x) - f(c)| < \epsilon$, as desired.

Exercise 7. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} x & \text{if } x \text{ is rational} \\ x^2 & \text{if } x \text{ is irrational} \end{cases}$$

Then f is continuous at 1 and f is discontinuous at 2.

Proof. To prove f is continuous at 1, let $\epsilon > 0$ be given. Let $\delta = \min\{1, \frac{\epsilon}{3}\}$. Then $\delta \leq 1$ and $\delta \leq \frac{\epsilon}{3}$ and $\delta > 0$. Let $x \in \mathbb{R}$ such that $|x - 1| < \delta$. Since $x \in \mathbb{R}$, then either x is rational or x is irrational. We consider each case separately. **Case 1:** Suppose x is rational. Then $|f(x) - f(1)| = |x - 1| < \delta \le \frac{\epsilon}{3} < \epsilon$. **Case 2:** Suppose x is irrational. Since $|x + 1| = |x - 1 + 2| \le |x - 1| + 2 < \delta + 2 \le 3$, then |x + 1| < 3. Thus,

$$|f(x) - f(1)| = |x^2 - 1|$$

= $|x - 1||x + 1|$
< 3δ
 $\leq 3 \cdot \frac{\epsilon}{3}$
= ϵ .

Therefore, in either case, $|f(x) - f(1)| < \epsilon$, so f is continuous at 1.

Proof. To prove f is discontinuous at 2, we prove $(\exists \epsilon > 0)(\forall \delta > 0)(\exists x \in \mathbb{R})(|x-2| < \delta \land |f(x) - f(2)| \ge \epsilon).$

Let $\epsilon = 2$. Let $\delta > 0$ be given. Since $2 < 2 + \delta$ and $\mathbb{R} - \mathbb{Q}$ is dense in \mathbb{R} , then there exists $r \in \mathbb{R} - \mathbb{Q}$ such that $2 < r < 2 + \delta$. Since $r \in \mathbb{R} - \mathbb{Q}$, then $r \in \mathbb{R}$ and $f(r) = r^2$. Since $2 < r < 2 + \delta$, then $0 < r - 2 < \delta$, so $|r - 2| = r - 2 < \delta$. Since r > 2, then $r^2 > 4$, so $r^2 - 2 > 2 > 0$. Thus, $|f(r) - f(2)| = |r^2 - 2| = r^2 - 2 > 2 = \epsilon$. Therefore, there exists $r \in \mathbb{R}$ such that $|r - 2| < \delta$ and $|f(r) - f(2)| > \epsilon$, as desired.

Exercise 8. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} 8x & \text{if } x \text{ is rational} \\ 2x^2 + 8 & \text{if } x \text{ is irrational} \end{cases}$$

Then f is continuous at 2 and f is discontinuous at 1.

Proof. To prove f is continuous at 2, let $\epsilon > 0$ be given. Let $\delta = \min\{1, \frac{\epsilon}{10}\}$. Then $\delta \leq 1$ and $\delta \leq \frac{\epsilon}{10}$ and $\delta > 0$. Let $x \in \mathbb{R}$ such that $|x - 2| < \delta$. Since $x \in \mathbb{R}$, then either x is rational or x is irrational. We consider each case separately. **Case 1:** Suppose x is rational. Then $|f(x) - f(2)| = |8x - 16| = 8|x - 2| < 8\delta \leq 8 \cdot \frac{\epsilon}{10} < \epsilon$. **Case 2:** Suppose x is irrational.

Since $|x+2| = |(x-2)+4| \le |x-2|+4 < \delta+4 \le 5$, then $0 \le |x+2| < 5$. Thus, $|f(x)-f(2)| = |(2x^2+8)-16| = |2x^2-8| = 2|x^2-4| = 2|x-2||x+2| < 10\delta \le \epsilon$.

Therefore, in either case, $|f(x) - f(2)| < \epsilon$, so f is continuous at 2.

Proof. To prove f is discontinuous at 1, we prove $(\exists \epsilon > 0)(\forall \delta > 0)(\exists x \in \mathbb{R})(|x-1| < \delta \land |f(x) - f(1)| \ge \epsilon)$. Let $\epsilon = 2$. Let $\delta > 0$ be given.

Since $1 < 1 + \delta$ and $\mathbb{R} - \mathbb{Q}$ is dense in \mathbb{R} , then there exists $r \in \mathbb{R} - \mathbb{Q}$ such that $1 < r < 1 + \delta$.

Since $r \in \mathbb{R} - \mathbb{Q}$, then $r \in \mathbb{R}$ and $f(r) = 2r^2 + 8$. Since $1 < r < 1 + \delta$, then $0 < r - 1 < \delta$, so $|r - 1| = r - 1 < \delta$. Since r > 1, then $r^2 > 1$, so $2r^2 > 2$. Thus, $|f(r) - f(1)| = |(2r^2 + 8) - 8| = |2r^2| = 2r^2 > 2 = \epsilon$. Therefore, there exists $r \in \mathbb{R}$ such that $|r - 1| < \delta$ and $|f(r) - f(1)| > \epsilon$, as desired.

Exercise 9. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} x & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

Then f is continuous at 0 and f is discontinuous for all $x \neq 0$. (Therefore, f is continuous only at x = 0).

Proof. To prove f is continuous at 0, let $\epsilon > 0$ be given. Let $\delta = \epsilon$. Then $\delta > 0$. Let $x \in \mathbb{R}$ such that $|x| < \delta$. Since $x \in \mathbb{R}$, then either x is rational or x is irrational. We consider each case separately. **Case 1:** Suppose x is rational. Then $|f(x) - f(0)| = |x - 0| = |x| < \delta = \epsilon$. **Case 2:** Suppose x is irrational. Then $|f(x) - f(0)| = |0 - 0| = 0 < \epsilon$. Therefore, in either case, $|f(x) - f(0)| < \epsilon$, so f is continuous at 0. Proof. Let $c \in \mathbb{R}$ such that $c \neq 0$.

We must prove f is discontinuous at c. Let $\epsilon = \frac{|c|}{2}$. Since $c \neq 0$, then |c| > 0, so $\epsilon = \frac{|c|}{2} > 0$. Let $\delta > 0$ be given. Since $c \in \mathbb{R}$, then either $c \in \mathbb{Q}$ or $c \notin \mathbb{Q}$. We consider these cases separately.

Case 1: Suppose $c \in \mathbb{Q}$. Since $c < c + \delta$ and $\mathbb{R} - \mathbb{Q}$ is dense in \mathbb{R} , then there exists $r \in \mathbb{R} - \mathbb{Q}$ such that $c < r < c + \delta$. Since $c < r < c + \delta$, then $0 < r - c < \delta$, so $|r - c| = r - c < \delta$. Observe that $|f(r) - f(c)| = |0 - c| = |c| > \frac{|c|}{2} = \epsilon$. Therefore, there exists $r \in \mathbb{R}$ such that $|r - c| < \delta$ and $|f(r) - f(c)| > \epsilon$, as desired. **Case 2:** Suppose $c \notin \mathbb{Q}$. Since $c \neq 0$, then either c > 0 or c < 0. We consider these cases separately. Case 2a: Suppose c > 0. Since $c < c + \delta$ and \mathbb{Q} is dense in \mathbb{R} , then there exists $r \in \mathbb{Q}$ such that $c < r < c + \delta$, so $0 < r - c < \delta$. Hence, $|r-c| = r - c < \delta$. Since r > c > 0, then r > 0. Thus, $|f(r) - f(c)| = |r - 0| = |r| = r > c = |c| > \frac{|c|}{2}$. Case 2b: Suppose c < 0. Since $c - \delta < c$ and \mathbb{Q} is dense in \mathbb{R} , then there exists $r \in \mathbb{Q}$ such that $c - \delta < r < c$, so $-\delta < r - c < 0$. Hence, $|r-c| = -(r-c) < \delta$. Since r < c < 0, then r < 0. Thus, $|f(r) - f(c)| = |r - 0| = |r| = -r > -c = |c| > \frac{|c|}{2}$. Therefore, there exists $r \in \mathbb{R}$ such that $|r - c| < \delta$ and $|f(r) - f(c)| > \epsilon$, as desired.

Exercise 10. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} 2x & \text{if } x \text{ is rational} \\ x+3 & \text{if } x \text{ is irrational} \end{cases}$$

Then f is continuous at 3 and discontinuous at $c \neq 3$.

Proof. We prove f is continuous at 3. Let $\epsilon > 0$ be given. Let $\delta = \frac{\epsilon}{2}$. Then $\delta > 0$. Let $x \in \mathbb{R}$ such that $|x - 3| < \delta$. Since $x \in \mathbb{R}$, then either x is rational or x is irrational. We consider these cases separately. **Case 1:** Suppose x is rational. Then $|f(x) - f(3)| = |2x - 6| = |2(x - 3)| = 2|x - 3| < 2\delta = \epsilon$. **Case 2:** Suppose x is irrational. Then $|f(x) - f(3)| = |x + 3 - 6| = |x - 3| < \delta = \frac{\epsilon}{2} < \epsilon$. Hence, in all cases, $|f(x) - f(3)| < \epsilon$, as desired.

Lemma 11. Every real number is an accumulation point of $\mathbb{R} - \mathbb{Q}$.

Proof. Let $p \in \mathbb{R}$ be arbitrary.

To prove p is an accumulation point of $\mathbb{R} - \mathbb{Q}$, let $\delta > 0$ be given.

Then $\delta > p - p$, so $p + \delta > p$.

Since $p and <math>\mathbb{R} - \mathbb{Q}$ is dense in \mathbb{R} , then there exists $r \in \mathbb{R} - \mathbb{Q}$ such that $p < r < p + \delta$.

Thus, $0 < r - p < \delta$ and p < r.

Since $0 < r - p < \delta$, then $|r - p| = r - p < \delta$, so $r \in N(p; \delta)$.

Since r > p, then $r \neq p$, so $r \in N'(p; \delta)$.

Thus, there exists $r \in \mathbb{R} - \mathbb{Q}$ such that $r \in N'(p; \delta)$, so p is an accumulation point of $\mathbb{R} - \mathbb{Q}$, as desired.

Proof. Let $c \in \mathbb{R}$ such that $c \neq 3$.

We must prove f is discontinuous at c.

Since every real number is an accumulation point of \mathbb{Q} and $c \in \mathbb{R}$, then c is an accumulation point of \mathbb{Q} , so there exists a sequence of points in $\mathbb{Q} - \{c\}$ that converges to c.

Let (a_n) be a sequence of points in $\mathbb{Q} - \{c\}$ such that $\lim_{n \to \infty} a_n = c$.

Since every real number is an accumulation point of $\mathbb{R} - \mathbb{Q}$ and $c \in \mathbb{R}$, then c is an accumulation point of $\mathbb{R} - \mathbb{Q}$, so there exists a sequence of points in $\mathbb{R} - \mathbb{Q} - \{c\}$ that converges to c.

Let (b_n) be a sequence of points in $\mathbb{R} - \mathbb{Q} - \{c\}$ such that $\lim_{n \to \infty} b_n = c$. Suppose f is continuous at c.

Then by the sequential characterization of continuity, $\lim_{n\to\infty} f(a_n) = \lim_{n\to\infty} f(b_n)$.

Thus, $\lim_{n\to\infty} (2a_n) = \lim_{n\to\infty} (b_n + 3)$, so $2\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n + \lim_{n\to\infty} 3$.

Hence, 2c = c + 3, so c = 3.

But, this contradicts the assumption that $c \neq 3$.

Therefore, f is discontinuous at c, as desired.

Exercise 12. Let $f : \mathbb{R} \to \mathbb{R}$ be the greatest integer function given by $f(x) = \lfloor x \rfloor = \max\{n \in \mathbb{Z} : n \leq x\}$ for all $x \in \mathbb{R}$.

Then f is discontinuous at n for all $n \in \mathbb{Z}$ and f is continuous at c for all $c \in \mathbb{R} - \mathbb{Z}$.

 $\begin{array}{l} Proof. \text{ To prove } f \text{ is discontinuous at } n \text{ for all } n \in \mathbb{Z}, \text{ let } n \in \mathbb{Z} \text{ be given.} \\ \text{ We must prove } (\exists \epsilon > 0)(\forall \delta > 0)(\exists x \in \mathbb{R})(|x - n| < \delta \land |f(x) - f(n)| \geq \epsilon). \\ \text{ Let } \epsilon = \frac{1}{2}. \\ \text{ Let } \delta > 0 \text{ be given.} \\ \text{ Let } M = \max\{n - \delta, n - 1\}. \\ \text{ Then } n - \delta \leq M \text{ and } n - 1 \leq M, \text{ and either } M = n - \delta \text{ or } M = n - 1. \\ \text{ Since } n - 1 < n \text{ and } n - \delta < n, \text{ then } M < n. \\ \text{ Since } \mathbb{R} \text{ is dense, then there exists } x \in \mathbb{R} \text{ such that } M < x < n. \\ \text{ Since } n - \delta \leq M < x < n, \text{ then } n - \delta < x \text{ and } x < n, \text{ so } n - x < \delta \text{ and } n - x > 0. \\ \text{ Thus, } |x - n| = |n - x| = n - x < \delta. \\ \text{ Since } n - 1 \leq M < x < n, \text{ then } n - 1 < x < n, \text{ so } f(x) = n - 1. \end{array}$

Proof. To prove f is continuous at c for all $c \in \mathbb{R} - \mathbb{Z}$, let $c \in \mathbb{R} - \mathbb{Z}$ be given. Then $c \in \mathbb{R}$ and $c \notin \mathbb{Z}$, so there is a unique integer n such that n < c < n+1. Let $\epsilon > 0$ be given. Let $M = \min\{n + 1 - c, c - n\}.$ Then $M \leq n+1-c$ and $M \leq c-n$, and either M = n+1-c or M = c-n. Let $\delta = \frac{M}{2}$. Since n < c, then c - n > 0. Since c < n + 1, then n + 1 - c > 0. Thus, M > 0, so $\frac{M}{2} > 0$. Hence, $\delta > 0$. Let $x \in \mathbb{R}$ such that $|x - c| < \delta$. Then $c - \delta < x < c + \delta$. Since $\delta = \frac{M}{2} < M \le n+1-c$, then $\delta < n+1-c$, so $c+\delta < n+1$. Since $\delta = \frac{M}{2} < M \le c-n$, then $\delta < c-n$, so $n < c-\delta$. Hence, $n < c - \delta < x < c + \delta < n + 1$, so n < x < n + 1. Thus, $|f(x) - f(c)| = |n - n| = 0 < \epsilon$. Therefore, f is continuous at c, as desired.

Exercise 13. continuity of a restriction of a function does not necessarily imply continuity of the function

Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} 1 & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

Let g be the restriction of f to $[0, \infty)$.

Then g(x) = 1 for all $x \in [0, \infty)$.

Since the constant function given by h(x) = 1 is continuous and g is a restriction of h to $[0, \infty)$, then g is continuous, so g is continuous on $[0, \infty)$.

Since $0 \in [0, \infty)$, then g is continuous at 0.

Since 0 is an accumulation point of \mathbb{R} , but $\lim_{x\to 0} f(x)$ does not exist, then f is not continuous at 0, so f is not continuous.

Therefore, g is continuous at 0, but f is not continuous at 0.

Thus, if g is a restriction of f and g is continuous, then f is not necessarily continuous.

Exercise 14. Let $S \subset \mathbb{R}$ and $c \in \mathbb{R}$ and $\alpha > 0$.

Let $I = (c - \alpha, c + \alpha) \subset S$.

Let $f: S \to \mathbb{R}$ be a function.

If the restriction of f to I, denoted f_I , is continuous at c, then f is continuous at c.

Proof. Suppose f_I is continuous at c.

To prove f is continuous at c, let $\epsilon > 0$ be given.

Since f_I is continuous at c, then there exists $\beta > 0$ such that for all $x \in I$, if $|x - c| < \beta$, then $|f_I(x) - f_I(c)| < \epsilon$.

Let $m = \min\{\alpha, \beta\}$. Then $m \le \alpha$ and $m \le \beta$. Since $\alpha > 0$ and $\beta > 0$, then m > 0, so $\frac{m}{2} > 0$. Let $\delta = \frac{m}{2}$. Then $\delta > 0$. Let $x \in S$ such that $|x - c| < \delta$. Since $|x - c| < \delta = \frac{m}{2} < m \le \alpha$, then $|x - c| < \alpha$, so $x \in N(c; \alpha) = (c - \alpha, c + \alpha) = I$. Since $|x - c| < \delta = \frac{m}{2} < m \le \beta$, then $|x - c| < \beta$. Since $x \in I$ and $|x - c| < \beta$, then $|f_I(x) - f_I(c)| < \epsilon$. Therefore, $|f(x) - f(c)| = |f_I(x) - f_I(c)| < \epsilon$, so f is continuous at c, as desired.

Exercise 15. Let K > 0.

Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that $|f(x) - f(y)| \le K|x - y|$ for all $x, y \in \mathbb{R}$.

Then f is continuous on \mathbb{R} .

Proof. To prove f is continuous on \mathbb{R} , let $c \in \mathbb{R}$ be arbitrary. To prove f is continuous at c, let $\epsilon > 0$ be given. Let $\delta = \frac{\epsilon}{K}$. Since $\epsilon > 0$ and K > 0, then $\delta > 0$. Let $x \in \mathbb{R}$ such that $|x - c| < \delta$. Since $x \in \mathbb{R}$ and $c \in \mathbb{R}$, then $|f(x) - f(c)| \leq K|x - c| < K\delta = \epsilon$. Therefore, $|f(x) - f(c)| < \epsilon$, so f is continuous at c, as desired.

Exercise 16. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that $f(x) = x^2$ for all $x \in \mathbb{Q}$.

Compute $f(\sqrt{2})$.

Solution. Since f is continuous on \mathbb{R} and $\sqrt{2} \in \mathbb{R}$, then f is continuous at $\sqrt{2}$. Hence, by the sequential characterization of continuity, for every sequence (x_n) in \mathbb{R} that converges to $\sqrt{2}$, the sequence $(f(x_n))$ converges to $f(\sqrt{2})$.

Let (x_n) be a sequence of rational numbers defined recursively by $x_1 = 2$ and $x_{n+1} = \frac{x_n}{2} + \frac{1}{x_n}$ for all $n \in \mathbb{N}$.

Then we know $\lim_{n\to\infty} x_n = \sqrt{2}$. Since (x_n) is a sequence of rational numbers, then $x_n \in \mathbb{Q}$ for all $n \in \mathbb{N}$. Let $n \in \mathbb{N}$. Then $x_n \in \mathbb{Q}$. Since $\mathbb{Q} \subset \mathbb{R}$, then $x_n \in \mathbb{R}$. Hence, $x_n \in \mathbb{R}$ for all $n \in \mathbb{N}$, so (x_n) is a sequence in \mathbb{R} . Since (x_n) is a sequence in \mathbb{R} and $\lim_{n\to\infty} x_n = \sqrt{2}$, then $\lim_{n\to\infty} f(x_n) = f(\sqrt{2})$. Hence,

$$f(\sqrt{2}) = \lim_{n \to \infty} f(x_n)$$

=
$$\lim_{n \to \infty} (x_n x_n)$$

=
$$(\lim_{n \to \infty} x_n)(\lim_{n \to \infty} x_n)$$

=
$$\sqrt{2} \cdot \sqrt{2}$$

= 2.

Therefore, $f(\sqrt{2}) = 2$.

Exercise 17. If $f : \mathbb{Z} \to \mathbb{R}$ is a function, then f is continuous.

Proof. Suppose $f : \mathbb{Z} \to \mathbb{R}$ is a function.

To prove f is continuous, let $n \in \mathbb{Z}$.

Since there are no accumulation points of \mathbb{Z} , then *n* is not an accumulation point of \mathbb{Z} .

Since $n \in \mathbb{Z}$, then by the characterization of continuity, f is continuous at n.

Therefore, f is continuous on \mathbb{Z} , so f is continuous.

Exercise 18. Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function.

If $c \in E$ and c is not an accumulation point of E, then for every sequence (x_n) of points in E such that (x_n) converges to c, the sequence $(f(x_n))$ converges to f(c).

Proof. Suppose $c \in E$ and c is not an accumulation point of E.

Then f is continuous at c.

Therefore, by the sequential characterization of continuity, for every sequence (x_n) of points in E such that (x_n) converges to c, the sequence $(f(x_n))$ converges to f(c).

Exercise 19. Using the sequential characterization of continuity prove the function $f: (0, \infty) \to \mathbb{R}$ defined by $f(x) = \frac{1}{x}$ is continuous.

Proof. To prove f is continuous on its domain, we must prove f is continuous on the interval $(0, \infty)$.

Let $c \in (0, \infty)$ be arbitrary.

Then c > 0, so $c \neq 0$.

To prove f is continuous at c using the sequential characterization of continuity, let (x_n) be an arbitrary sequence of real numbers in $(0, \infty)$ such that $\lim_{n\to\infty} x_n = c$.

We must prove $\lim_{n\to\infty} f(x_n) = f(c)$.

Since $\lim_{n\to\infty} x_n = c \neq 0$, then

$$f(c) = \frac{1}{c}$$

= $\frac{\lim_{n \to \infty} 1}{\lim_{n \to \infty} x_n}$
= $\lim_{n \to \infty} \frac{1}{x_n}$
= $\lim_{n \to \infty} f(x_n).$

Therefore, $\lim_{n\to\infty} f(x_n) = f(c)$, as desired.

Exercise 20. Show that the sequence (a_n) defined by $a_n = \sqrt[n]{e^{n+1}}$ for all $n \in \mathbb{N}$ is convergent.

Solution. We see intuitively that the sequence converges to *e*.

Proof. To prove (a_n) is convergent, we prove $\lim_{n\to\infty} \sqrt[n]{e^{n+1}} = e$.

We first prove $\lim_{n\to\infty} e^{\frac{1}{n}} = 1$.

Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = e^x$.

We assume f is continuous on \mathbb{R} .

Since f is continuous at 0, then by the sequential characterization of continuity, if (x_n) is a sequence of points in \mathbb{R} that converges to 0, then the sequence $(f(x_n))$ converges to f(0).

Since $(\frac{1}{n})$ is a sequence of real numbers that converges to 0, then the sequence $(f(\frac{1}{n}))$ converges to f(0).

Thus, $1 = e^0 = f(0) = \lim_{n \to \infty} f(\frac{1}{n}) = \lim_{n \to \infty} e^{\frac{1}{n}}$.

Observe that

$$\lim_{n \to \infty} \sqrt[n]{e^{n+1}} = \lim_{n \to \infty} e^{\frac{n+1}{n}}$$
$$= \lim_{n \to \infty} e^{1+\frac{1}{n}}$$
$$= \lim_{n \to \infty} e^{e^{\frac{1}{n}}}$$
$$= e \lim_{n \to \infty} e^{\frac{1}{n}}$$
$$= e \cdot 1$$
$$= e.$$

Exercise 21. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function.

Let $S = \{x \in \mathbb{R} : f(x) = 0\}.$

Let (x_n) be a sequence in S such that $\lim_{n\to\infty} x_n = c$. Then $c \in S$. Proof. Since (x_n) is a sequence in S, then $x_n \in S$ for each $n \in \mathbb{N}$. Let $n \in \mathbb{N}$. Then $x_n \in S$. Since $S \subset \mathbb{R}$, then $x_n \in \mathbb{R}$ for each $n \in \mathbb{N}$, so (x_n) is a sequence in \mathbb{R} . Since $\lim_{n\to\infty} x_n = c$, then $c \in \mathbb{R}$. To prove $c \in S$, we must prove f(c) = 0. Since f is continuous on \mathbb{R} and $c \in \mathbb{R}$, then f is continuous at c. Since (x_n) is a sequence in \mathbb{R} and $\lim_{n\to\infty} x_n = c$, then by the sequential characterization of continuity, we conclude $\lim_{n\to\infty} f(x_n) = f(c)$.

Since $x_n \in S$ for each $n \in \mathbb{N}$, then $f(x_n) = 0$ for each $n \in \mathbb{N}$, so the sequence $(f(x_n))$ is the constant sequence 0.

Thus, $0 = \lim_{n \to \infty} f(x_n) = f(c)$, so f(c) = 0, as desired.

Exercise 22. Let $f : E \to \mathbb{R}$ be a function.

Let $c \in E$.

If f is continuous at c, then there exists M > 0 and $\delta > 0$ such that |f(x)| < M for all $x \in N(c; \delta) \cap E$.

Proof. Suppose f is continuous at c.

Let $\epsilon = 1$ be given. Then there exists $\delta > 0$ such that for all $x \in E$, if $|x - c| < \delta$, then |f(x) - f(c)| < 1. Let M = 1 + |f(c)|. Since 1 > 0 and $|f(c)| \ge 0$, then M > 0. Let $x \in N(c; \delta) \cap E$. Then $x \in N(c; \delta)$ and $x \in E$. Since $x \in N(c; \delta)$, then $|x - c| < \delta$. Since $x \in E$ and $|x - c| < \delta$, then |f(x) - f(c)| < 1. Thus, $|f(x)| = |f(x) - f(c) + f(c)| \le |f(x) - f(c)| + |f(c)| < 1 + |f(c)| = M$, so |f(x)| < M.

Lemma 23. Let $f : \mathbb{R} \to \mathbb{R}$ be a function continuous at $c \in \mathbb{R}$ and f(c) > 0. Then there exists $\delta > 0$ such that if $x \in N(c; \delta)$, then f(x) > 0.

 $\begin{array}{l} \textit{Proof. Since } f(c) > 0, \ \text{then } \frac{f(c)}{2} > 0.\\ \text{Since } f \ \text{is continuous at } c, \ \text{then there exists } \delta > 0 \ \text{such that for all } x \in \mathbb{R}, \ \text{if} \\ |x - c| < \delta, \ \text{then } |f(x) - f(c)| < \frac{f(c)}{2}.\\ \text{Let } x \in N(c; \delta).\\ \text{Then } x \in \mathbb{R} \ \text{and } |x - c| < \delta, \ \text{so } |f(x) - f(c)| < \frac{f(c)}{2}.\\ \text{Hence, } \frac{-f(c)}{2} < f(x) - f(c) < \frac{f(c)}{2}, \ \text{so } \frac{-f(c)}{2} < f(x) - f(c).\\ \text{Thus, } 0 < \frac{f(c)}{2} < f(x), \ \text{so } 0 < f(x).\\ \text{Therefore, } f(x) > 0, \ \text{as desired.} \end{array}$

Exercise 24. Let f and g be real valued functions continuous on \mathbb{R} . Let $S = \{x \in \mathbb{R} : f(x) \ge g(x)\}$. If (x_n) is a sequence in S such that $\lim_{n\to\infty} x_n = c$, then $c \in S$. *Proof.* Let (x_n) be a sequence in S such that $\lim_{n\to\infty} x_n = c$.

Since (x_n) is in S, then $x_n \in S$ for all $n \in \mathbb{N}$, so $f(x_n) \ge g(x_n)$ for all $n \in \mathbb{N}$. Suppose for the sake of contradiction $c \notin S$.

Then $c \in \mathbb{R}$ and f(c) < g(c), so f(c) - g(c) < 0.

Let h = f - g.

Then $h : \mathbb{R} \to \mathbb{R}$ is a function defined by h(x) = (f - g)(x) = f(x) - g(x) for all $x \in \mathbb{R}$.

Thus, h(c) = f(c) - g(c) < 0, so h(c) < 0.

Since f and g are continuous functions and h = f - g, then h is continuous, so h is continuous at c.

Since (x_n) is an arbitrary sequence in \mathbb{R} such that $\lim_{n\to\infty} x_n = c$, then by the sequential characterization of continuity, we have $\lim_{n\to\infty} h(x_n) = h(c)$, so the sequence $(h(x_n))$ is convergent.

Since $f(x_n) \ge g(x_n)$ for all $n \in \mathbb{N}$, then $h(x_n) = f(x_n) - g(x_n) \ge 0$ for all $n \in \mathbb{N}$.

Since $0 \le h(x_n)$ for all $n \in \mathbb{N}$, then 0 is a lower bound of $(h(x_n))$.

Since $(h(x_n))$ is a convergent sequence in \mathbb{R} and 0 is a lower bound of $(h(x_n))$, then $0 \leq \lim_{n \to \infty} h(x_n)$, so $0 \leq h(c)$.

Thus, we have $h(c) \ge 0$ and h(c) < 0, a contradiction.

Therefore, $c \in S$, as desired.

Proof. Let (x_n) be a sequence in S such that $\lim_{n\to\infty} x_n = c$.

Since (x_n) is in S, then $x_n \in S$ for all $n \in \mathbb{N}$, so $f(x_n) \ge g(x_n)$ for all $n \in \mathbb{N}$. Suppose for the sake of contradiction $c \notin S$.

Then $c \in \mathbb{R}$ and f(c) < g(c), so g(c) - f(c) > 0. Let h = g - f.

Then h is a function defined by h(x) = (g-f)(x) = g(x) - f(x) for all $x \in \mathbb{R}$. Thus, h(c) = g(c) - f(c) > 0, so h(c) > 0.

Since g and f are continuous functions and h = g - f, then h is continuous, so h is continuous at c.

By the previous lemma, since h is continuous at c and h(c) > 0, then there exists $\epsilon > 0$ such that if $x \in N(c; \epsilon)$, then h(x) > 0.

Since $\lim_{n\to\infty} x_n = c$ and $\epsilon > 0$, then there exists $N \in \mathbb{N}$ such that if n > N, then $|x_n - c| < \epsilon$.

Let $n \in \mathbb{N}$ such that n > N. Then $|x_n - c| < \epsilon$, so $x_n \in N(c; \epsilon)$. Hence, $h(x_n) > 0$, so $g(x_n) - f(x_n) > 0$. Thus, $g(x_n) > f(x_n)$, so $f(x_n) < g(x_n)$. Since $n \in \mathbb{N}$, then $f(x_n) \ge g(x_n)$. Therefore, we have $f(x_n) < g(x_n)$ and $f(x_n) \ge g(x_n)$, a contradiction. Consequently, $c \in S$, as desired.

Exercise 25. Let $f: E \to \mathbb{R}$ be a function continuous at $c \in E$.

Then for every $\epsilon > 0$, there exists $\delta > 0$ such that if $x, y \in E \cap N(c; \delta)$, then $|f(x) - f(y)| < \epsilon$.

 $\begin{array}{l} Proof. \mbox{ Let } \epsilon > 0 \mbox{ be given.} \\ \mbox{ Then } \frac{\epsilon}{2} > 0. \\ \mbox{ Since } f \mbox{ is continuous at } c, \mbox{ then there exists } \delta > 0 \mbox{ such that for all } x \in E, \mbox{ if } \\ |x - c| < \delta, \mbox{ then } |f(x) - f(c)| < \frac{\epsilon}{2}. \\ \mbox{ Since } c \in E \mbox{ and } c \in N(c;\delta), \mbox{ then } c \in E \cap N(c;\delta), \mbox{ so } E \cap N(c;\delta) \neq \emptyset. \\ \mbox{ Let } x, y \in E \cap N(c;\delta). \\ \mbox{ Then } x \in E \mbox{ on } N(c;\delta) \mbox{ and } y \in E \cap N(c;\delta). \\ \mbox{ Hence, } x \in E \mbox{ and } x \in N(c;\delta) \mbox{ and } y \in E \mbox{ and } y \in N(c;\delta). \\ \mbox{ Since } x \in N(c;\delta) \mbox{ and } y \in N(c;\delta), \mbox{ then } |x - c| < \delta \mbox{ and } |y - c| < \delta. \\ \mbox{ Since } x \in E \mbox{ and } |x - c| < \delta, \mbox{ then } |f(x) - f(c)| < \frac{\epsilon}{2}. \\ \mbox{ Since } y \in E \mbox{ and } |y - c| < \delta, \mbox{ then } |f(y) - f(c)| < \frac{\epsilon}{2}. \\ \mbox{ Observe that } \end{array}$

$$\begin{aligned} |f(x) - f(y)| &= |f(x) - f(c) + f(c) - f(y)| \\ &\leq |f(x) - f(c)| + |f(c) - f(y)| \\ &= |f(x) - f(c)| + |f(y) - f(c)| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ &= \epsilon. \end{aligned}$$

Therefore, $|f(x) - f(y)| < \epsilon$, as desired.

Algebraic properties of continuous functions

Exercise 26. The function $r: (0, \infty) \to \mathbb{R}$ defined by $r(x) = \sin(\frac{1}{x})$ is continuous on $(0, \infty)$.

Proof. Let $f: (0, \infty) \to \mathbb{R}$ be the function defined by $f(x) = \frac{1}{x}$.

Let $g : \mathbb{R} \to \mathbb{R}$ be the function defined by $g(x) = \sin(x)$.

Then $g \circ f$ is the composite function.

Since $dom(g \circ f) = \{x \in domf : f(x) \in domg\} = \{x \in (0, \infty) : \frac{1}{x} \in \mathbb{R}\} = \{x \in (0, \infty) : x \neq 0\} = (0, \infty) = domr$, then $dom(g \circ f) = domr$.

Let $x \in dom(g \circ f)$.

Then $(g \circ f)(x) = g(f(x)) = g(\frac{1}{x}) = \sin(\frac{1}{x}) = r(x)$, so $(g \circ f)(x) = r(x)$ for all $x \in dom(g \circ f)$.

Since $dom(g \circ f) = domr$ and $(g \circ f)(x) = r(x)$ for all $x \in dom(g \circ f)$, then $g \circ f = r$.

Since f is continuous and g is continuous, then $g \circ f = r$ is continuous, so r is continuous on $(0, \infty)$.

Exercise 27. The function $f : [-1,1] \to \mathbb{R}$ defined by $f(x) = \sqrt{1-x^2}$ is continuous at 1.

Solution. If $y = f(x) = \sqrt{1 - x^2}$, then $y^2 = 1 - x^2$, so $x^2 + y^2 = 1$. Thus, we have the unit circle centered at the origin.

The graph of f is the top semicircle and the limit of f as x approaches 1 is 0 and $\lim_{x\to 1} f(x) = 0 = f(1)$.

Proof. Let $g: \mathbb{R} \to \mathbb{R}$ be the function defined by $g(x) = 1 - x^2$. Let $h: [0,\infty) \to \mathbb{R}$ be the function defined by $h(x) = \sqrt{x}$. Then $h \circ g$ is the composite function. Since $dom(h \circ g) = \{x \in domg : g(x) \in domh\} = \{x \in \mathbb{R} : 1 - x^2 \in [0, \infty)\} = \{x \in \mathbb{R} : 1 - x^2 \in [0, \infty)\}$ $\{x \in \mathbb{R} : 1 - x^2 \ge 0\} = \{x \in \mathbb{R} : 1 \ge x^2\} = \{x \in \mathbb{R} : x^2 \le 1\} = \{x \in \mathbb{R} : |x|^2 \le 1$ $1\} = \{x \in \mathbb{R} : |x| \le 1\} = [-1, 1] = dom f, \text{ then } dom(h \circ g) = dom f.$ Let $x \in dom(h \circ g)$. Then $(h \circ g)(x) = h(g(x)) = h(1 - x^2) = \sqrt{1 - x^2} = f(x)$, so $(h \circ g)(x) = f(x)$ for all $x \in dom(h \circ g)$. Since $dom(h \circ g) = dom f$ and $(h \circ g)(x) = f(x)$ for all $x \in dom(h \circ g)$, then $h \circ g = f.$ Since q is a polynomial function, then q is continuous. Since the square root function is continuous, then h is continuous. Since q is continuous and h is continuous, then $h \circ q = f$ is continuous, so f is continuous on [-1, 1]. Since $1 \in [-1, 1]$, then f is continuous at 1. Lemma 28. Let $x, y \in \mathbb{R}$. Then $\max\{x, y\} = \frac{x+y}{2} + \frac{|x-y|}{2}$ and $\min\{x, y\} = \frac{x+y}{2} - \frac{|x-y|}{2}$. Proof. Let $S = \{x, y\}$. We must prove $\max S = \frac{x+y}{2} + \frac{|x-y|}{2}$ and $\min S = \frac{x+y}{2} - \frac{|x-y|}{2}$. Since $x, y \in \mathbb{R}$, then either $x \ge y$ or x < y. We consider these cases separately. Case 1: Suppose $x \ge y$. Then $x - y \ge 0$ and $\max S = x$ and $\min S = y$. Observe that $\max S = x$ $= \frac{2x}{2}$ $= \frac{x+x}{2}$ $= \frac{x+y+x-y}{2}$ x+y-x-yx+y x-y

$$= \frac{2}{x+y} + \frac{2}{|x-y|}{2}$$

Therefore, $\max S = \frac{x+y}{2} + \frac{|x-y|}{2}$, as desired.

Observe that

$$\min S = y \\ = \frac{2y}{2} \\ = \frac{y+y}{2} \\ = \frac{x+y+y-x}{2} \\ = \frac{x+y+y-x}{2} \\ = \frac{x+y}{2} + \frac{y-x}{2} \\ = \frac{x+y}{2} - \frac{x-y}{2} \\ = \frac{x+y}{2} - \frac{|x-y|}{2}.$$

Therefore, $\min S = \frac{x+y}{2} - \frac{|x-y|}{2}$, as desired. **Case 2:** Suppose x < y. Then x - y < 0 and $\max S = y$ and $\min S = x$. Observe that

$$\begin{array}{rcl} \max S &=& y \\ &=& \frac{2y}{2} \\ &=& \frac{y+y}{2} \\ &=& \frac{x+y+y-x}{2} \\ &=& \frac{x+y}{2} + \frac{y-x}{2} \\ &=& \frac{x+y}{2} + \frac{-(x-y)}{2} \\ &=& \frac{x+y}{2} + \frac{|x-y|}{2}. \end{array}$$

Therefore, $\max S = \frac{x+y}{2} + \frac{|x-y|}{2}$, as desired.

Observe that

$$\min S = x \\
= \frac{2x}{2} \\
= \frac{x+x}{2} \\
= \frac{x+y+x-y}{2} \\
= \frac{x+y}{2} + \frac{x-y}{2} \\
= \frac{x+y}{2} - \frac{-(x-y)}{2} \\
= \frac{x+y}{2} - \frac{|x-y|}{2}.$$

Therefore, $\min S = \frac{x+y}{2} - \frac{|x-y|}{2}$, as desired.

Exercise 29. Let
$$f$$
 and g be real valued functions continuous on $E \subset \mathbb{R}$.
Let $h: E \to \mathbb{R}$ be a function defined by $h(x) = \max\{f(x), g(x)\}$.
Then h is continuous.

Proof. Let $x \in E$.

Then $f(x) \in \mathbb{R}$ and $g(x) \in \mathbb{R}$.

Hence, by the previous lemma, $h(x) = \max\{f(x), g(x)\} = \frac{f(x)+g(x)}{2} +$ $\tfrac{|f(x)-g(x)|}{2}.$

Thus, $h = \frac{f+g}{2} + \frac{|f-g|}{2}$. Since f and g are continuous on E, then f and g are continuous, so the sum f + g and difference f - g are continuous.

Since f + g is continuous, then the scalar multiple $\frac{f+g}{2}$ is continuous. Since f - g is continuous, then |f - g| is continuous, so the scalar multiple $\frac{|f-g|}{2}$ is continuous.

Since $\frac{f+g}{2}$ is continuous and $\frac{|f-g|}{2}$ is continuous, then the sum $\frac{f+g}{2} + \frac{|f-g|}{2}$ is continuous.

Therefore, h is continuous, as desired.

Exercise 30. Let $a, b, c \in \mathbb{R}$ such that a < b < c.

Let $f:[a,b] \to \mathbb{R}$ be a function continuous on [a,b] and $g:[b,c] \to \mathbb{R}$ be a function continuous on [b, c] such that f(b) = g(b).

Let $h: [a, c] \to \mathbb{R}$ be a function defined by

$$h(x) = \begin{cases} f(x) & \text{if } x \in [a, b] \\ g(x) & \text{if } x \in [b, c] \end{cases}$$

Then h is continuous on [a, c].

Proof. To prove h is continuous on [a, c], let $\alpha \in [a, c]$ be arbitrary.

We must prove h is continuous at α .

Since $\alpha \in [a, c]$ and $[a, c] = [a, b] \cup \{b\} \cup (b, c]$, then either $\alpha \in [a, b]$ or $\alpha = b$ or $\alpha \in (b, c]$.

We consider these cases separately.

Case 1: Suppose $\alpha \in [a, b)$.

Since $[a,b] \subset [a,c]$ and f(x) = h(x) for all $x \in [a,b]$, then f is a restriction of h to [a, b].

Since f is continuous on [a, b], then f is continuous at x for all $x \in [a, b]$. Hence, a restriction of h to [a, b] is continuous at x for all $x \in [a, b]$, so h is

continuous on [a, b].

This is not correct!!! We must fix this!!!

Since $\alpha \in [a, b]$ and $[a, b] \subset [a, b]$, then $\alpha \in [a, b]$, so h is continuous at α . **Case 2:** Suppose $\alpha \in (b, c]$.

Since $[b, c] \subset [a, c]$ and g(x) = h(x) for all $x \in [b, c]$, then g is a restriction of h to [b, c].

Since g is continuous on [b, c], then g is continuous at x for all $x \in [b, c]$.

Hence, a restriction of h to [b, c] is continuous at x for all $x \in [b, c]$, so h is continuous on [b, c].

Since $\alpha \in (b, c]$ and $(b, c] \subset [b, c]$, then $\alpha \in [b, c]$, so h is continuous at α .

Case 3: Suppose $\alpha = b$.

We prove h is continuous at b.

Let $\epsilon > 0$ be given.

We must prove there exists $\delta > 0$ such that for all $x \in [a, c]$, if $|x - b| < \delta$, then $|h(x) - h(b)| < \epsilon$.

Since f is continuous on [a, b] and $b \in [a, b]$, then f is continuous at b, so there exists $\delta_1 > 0$ such that for all $x \in [a, b]$, if $|x - b| < \delta_1$, then $|f(x) - f(b)| < \epsilon$.

Since g is continuous on [b, c] and $b \in [b, c]$, then g is continuous at b, so there exists $\delta_2 > 0$ such that for all $x \in [b, c]$, if $|x - b| < \delta_2$, then $|g(x) - g(b)| < \epsilon$.

Let $\delta = \frac{\min\{\delta_1, \delta_2\}}{2}$.

Then $\delta > 0$ and $2\delta = \min\{\delta_1, \delta_2\}$, so $2\delta \le \delta_1$ and $2\delta \le \delta_2$.

Thus,
$$\delta \leq \frac{b_1}{2}$$
 and $\delta \leq \frac{b_2}{2}$.

Let $x \in [a, c]$ such that $|x - b| < \delta$.

Since $x \in [a, c]$ and $[a, c] = [a, b] \cup [b, c]$, then either $x \in [a, b]$ or $x \in [b, c]$. We consider these cases separately.

Case 3.1: Suppose $x \in [a, b]$.

Since $|x-b| < \delta \le \frac{\delta_1}{2} < \delta_1$, then $|x-b| < \delta_1$. Since $x \in [a, b]$ and $|x-b| < \delta_1$, then $|f(x) - f(b)| < \epsilon$.

Thus,
$$|h(x) - h(b)| = |f(x) - f(b)| < \epsilon$$
, so $|h(x) - h(b)| < \epsilon$.

Case 3.2: Suppose $x \in [b, c]$.

Since $|x-b| < \delta \le \frac{\delta_2}{2} < \delta_2$, then $|x-b| < \delta_2$. Since $x \in [b,c]$ and $|x-b| < \delta_2$, then $|g(x) - g(b)| < \epsilon$.

Thus,
$$|h(x) - h(b)| = |g(x) - g(b)| < \epsilon$$
, so $|h(x) - h(b)| < \epsilon$.

Therefore, in all cases, $|h(x) - h(b)| < \epsilon$, so h is continuous at b. **Exercise 31.** Let $E \subset \mathbb{R}$ and $c \in E$.

Let $f: E \to \mathbb{R}$ be a function.

If for every sequence (x_n) in E such that $\lim_{n\to\infty} x_n = c$, the sequence $(f(x_n))$ is convergent, then f is continuous at c.

Proof. We prove by contrapositive.

Suppose f is not continuous at c.

Then there exists $\epsilon_0 > 0$ such that for each $\delta > 0$ there corresponds $x \in E$ such that $|x - c| < \delta$ and $|f(x) - f(c)| \ge \epsilon_0$.

Let $\delta = \frac{1}{n}$ for each $n \in \mathbb{N}$.

Then for each $n \in \mathbb{N}$, there corresponds $x \in E$ such that $|x - c| < \frac{1}{n}$ and $|f(x) - f(c)| \ge \epsilon_0.$

Thus, there exists a function $g: \mathbb{N} \to E$ such that $g(n) \in E$ and $|g(n) - c| < \frac{1}{n}$ and $|f(g(n)) - f(c)| \ge \epsilon_0$ for each $n \in \mathbb{N}$, so there exists a sequence (x_n) such that $x_n \in E$ and $|x_n - c| < \frac{1}{n}$ and $|f(x_n) - f(c)| \ge \epsilon_0$ for each $n \in \mathbb{N}$.

Since $x_n \in E$ for each $n \in \mathbb{N}$, then (x_n) is a sequence of points in E.

We prove $\lim_{n\to\infty} x_n = c$. Let $\epsilon > 0$ be given. Then $\epsilon \neq 0$, so $\frac{1}{\epsilon} \in \mathbb{R}$. Hence, by the Archimedean property of \mathbb{R} , there exists $N \in \mathbb{N}$ such that $N > \frac{1}{\epsilon}.$ Let $n \in \mathbb{N}$ such that n > N. Then $n > N > \frac{1}{\epsilon}$, so $n > \frac{1}{\epsilon}$. Hence, $\epsilon > \frac{1}{n}$, so $\frac{1}{n} < \epsilon$. Since $n \in \mathbb{N}$ and $|x_n - c| < \frac{1}{n}$ for each $n \in \mathbb{N}$, then $|x_n - c| < \frac{1}{n}$. Thus, $|x_n - c| < \frac{1}{n} < \epsilon$, so $|x_n - c| < \epsilon$.

Therefore, $\lim_{n\to\infty} x_n = c$, as desired.

We prove the sequence $(f(x_n))$ is divergent.

Thus, we must prove for every real L there exists $\epsilon_0 > 0$ such that for each $N \in \mathbb{N}$ there corresponds $n \in \mathbb{N}$ with n > N and $|f(x_n) - L| \ge \epsilon_0$.

Let $L \in \mathbb{R}$ be arbitrary. Let $N \in \mathbb{N}$. Let n = N + 1. Then $n \in \mathbb{N}$ and n = N + 1 > N and Use triangle inequality to figure out how we can ensure for any $L \in \mathbb{R}$ that if $|f(x_n) - f(c)| \ge \epsilon_0$ for each $n \in \mathbb{N}$, then $|f(x_n) - L| \ge \epsilon_0$ for each $n \in \mathbb{N}$.

Exercise 32. Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be functions. Let $a, b \in \mathbb{R}$. If $\lim_{x\to a} f = b$ and g is continuous at b, then $\lim_{x\to a} g \circ f = g(b)$.

Proof. Suppose $\lim_{x\to a} f = b$ and g is continuous at b. Observe that a is an accumulation point of \mathbb{R} , the domain of $g \circ f$.

To prove $\lim_{x\to a} g \circ f = g(b)$, let $\epsilon > 0$ be given.

We must prove there exists $\delta > 0$ such that for all $x \in \mathbb{R}$, if $0 < |x - a| < \delta$, then $|(g \circ f)(x) - g(b)| < \epsilon$.

Since g is continuous at b and $\epsilon > 0$, then there exists $\delta_1 > 0$ such that for all $x \in \mathbb{R}$, if $|x - b| < \delta_1$, then $|g(x) - g(b)| < \epsilon$.

Since $\lim_{x\to a} f = b$ and $\delta_1 > 0$, then there exists $\delta_2 > 0$ such that for all $x \in \mathbb{R}$, if $0 < |x-a| < \delta_2$, then $|f(x) - b| < \delta_1$.

Let $\delta = \delta_2 > 0$.

Let $x \in \mathbb{R}$ such that $0 < |x - a| < \delta$. Then $0 < |x - a| < \delta_2$, so $|f(x) - b| < \delta_1$. Since $f(x) \in \mathbb{R}$ and $|f(x) - b| < \delta_1$, then $|g(f(x)) - g(b)| < \epsilon$, so $|(g \circ f)(x) - g(b)| < \epsilon$, as desired.

Exercise 33. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Let $k \in \mathbb{R}$. The set $\{x \in \mathbb{R} : f(x) \neq k\}$ is open.

Proof. Let $S = \{x \in \mathbb{R} : f(x) \neq k\}$. We must prove S is open. Either S is empty or not. We consider these cases separately. **Case 1:** Suppose $S = \emptyset$. Since the empty set is open, then S is open. **Case 2:** Suppose $S \neq \emptyset$. Then there is an element in S. Let p be an arbitrary element of S. Then $p \in S$, so $p \in \mathbb{R}$ and $f(p) \neq k$. Since $f(p) \neq k$, then $f(p) - k \neq 0$, so |f(p) - k| > 0. Since f is continuous on \mathbb{R} and $p \in \mathbb{R}$, then f is continuous at p. Thus, there exists $\delta > 0$ such that for all $x \in \mathbb{R}$, if $|x - p| < \delta$, then |f(x) - f(p)| < |f(p) - k|.

Let $x \in \mathbb{R}$ such that $|x - p| < \delta$. Then |f(x) - f(p)| < |f(p) - k|. Since $|f(x) - k| \in \mathbb{R}$, then $|f(x) - k| \ge 0$.

Suppose |f(x) - k| = 0. Then f(x) - k = 0, so f(x) = k. Thus, |f(p) - k| = |k - f(p)| = |f(x) - f(p)| < |f(p) - k|. Hence, |f(p) - k| < |f(p) - k|, a contradiction. Therefore, $|f(x) - k| \neq 0$. Since $|f(x) - k| \geq 0$, then this implies |f(x) - k| > 0, so $f(x) - k \neq 0$. Thus, $f(x) \neq k$. Since $x \in \mathbb{R}$ and $f(x) \neq k$, then $x \in S$. Therefore, there exists $\delta > 0$ such that for all $x \in \mathbb{R}$, if $|x - p| < \delta$, then $x \in S$. Hence, there exists $\delta > 0$ such that for all $x \in \mathbb{R}$, if $x \in N(p; \delta)$, then $x \in S$, so there exists $\delta > 0$ such that $N(p; \delta) \subset S$.

Thus, p is an interior point of S.

Since p is arbitrary, then every point in S is an interior point of S, so S is open.

Exercise 34. Let $a, b \in \mathbb{R}$ with a < b. Let $f : [a, b] \to \mathbb{R}$ and $g : [a, b] \to \mathbb{R}$ be continuous functions. Let $S = \{x \in [a, b] : f(x) = g(x)\}$. Then S is closed.

Proof. Let c be an arbitrary accumulation point of S. Since $S \subset [a, b]$, then c is an accumulation point of [a, b]. Since the interval [a, b] is closed, then $c \in [a, b]$. Since f and g are continuous on [a, b], then f and g are continuous at c.

Suppose $f(c) \neq g(c)$. Then $f(c) - g(c) \neq 0$, so |f(c) - g(c)| > 0. Hence, $\frac{|f(c)-g(c)|}{2} > 0$. Since f is continuous at c, then there exists $\delta_1 > 0$ such that for all $x \in [a, b]$, if $|x-c| < \delta_1$, then $|f(x) - f(c)| < \frac{|f(c) - g(c)|}{2}$. Since g is continuous at c, then there exists $\delta_2 > 0$ such that for all $x \in [a, b]$, if $|x - c| < \delta_2$, then $|g(x) - g(c)| < \frac{|f(c) - g(c)|}{2}$. Let $\delta = \min\{\delta_1, \delta_2\}.$ Then $\delta \leq \delta_1$ and $\delta \leq \delta_2$ and $\delta > 0$. Since c is an accumulation point of S and $\delta > 0$, then there exists $x \in S$ such that $x \in N'(c; \delta)$. Since $x \in S$, then $x \in [a, b]$ and f(x) = g(x). Since $x \in N'(c; \delta)$ and $N'(c; \delta) \subset N(c; \delta)$, then $x \in N(c; \delta)$, so $|x - c| < \delta$. Since $|x - c| < \delta$ and $\delta \leq \delta_1$, then $|x - c| < \delta_1$. Since $x \in [a, b]$ and $|x - c| < \delta_1$, then $|f(x) - f(c)| < \frac{|f(c) - g(c)|}{2}$. Since $|x - c| < \delta$ and $\delta \le \delta_2$, then $|x - c| < \delta_2$. Since $x \in [a, b]$ and $|x - c| < \delta_2$, then $|g(x) - g(c)| < \frac{|f(c) - g(c)|}{2}$. Observe that

$$\begin{aligned} |f(c) - g(c)| &= |f(c) - f(x) + f(x) - g(c)| \\ &= |f(c) - f(x) + g(x) - g(c)| \\ &\leq |f(c) - f(x)| + |g(x) - g(c)| \\ &= |f(x) - f(c)| + |g(x) - g(c)| \\ &< \frac{|f(c) - g(c)|}{2} + \frac{|f(c) - g(c)|}{2} \\ &= |f(c) - g(c)|. \end{aligned}$$

Hence, |f(c) - g(c)| < |f(c) - g(c)|, a contradiction.

Thus, f(c) = g(c). Since $c \in [a, b]$ and f(c) = g(c), then $c \in S$. Therefore, S is closed.

Exercise 35. Let I be a closed set.

Let $f: I \to \mathbb{R}$ be a continuous function. Let $S = \{x \in I : f(x) = k\}$. Then S is closed.

Proof. Either $S = \emptyset$ or $S \neq \emptyset$.

We consider these cases separately.

Case 1: Suppose $S = \emptyset$.

Since the empty set is closed, then S is closed.

Case 2: Suppose $S \neq \emptyset$.

Let p be an arbitrary accumulation point of S.

To prove S is closed, we must prove $p \in S$.

Since p is an accumulation point of S and $S \subset I$, then p is an accumulation point of I.

Since I is closed, then $p \in I$.

Since f is continuous on I, then f is continuous at p.

Since p is an accumulation point of S, then for every $\delta > 0$ there exists $x \in S$ such that $x \in N'(p; \delta)$.

Let $\delta = \frac{1}{n}$ for each $n \in \mathbb{N}$.

Then for each $n \in \mathbb{N}$, there exists $x \in S$ such that $x \in N'(p; \frac{1}{n})$, so there exists a function $f : \mathbb{N} \to S$ such that $f(n) \in S$ and $f(n) \in N'(p; \frac{1}{n})$ for each $n \in \mathbb{N}$.

Hence, there exists a sequence (x_n) such that $x_n \in S$ and $x_n \in N'(p; \frac{1}{n})$ for each $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$.

Then $x_n \in S$, so $x_n \in I$ and $f(x_n) = k$.

Hence, $x_n \in I$ and $f(x_n) = k$ for all $n \in \mathbb{N}$.

Since $x_n \in I$ for all $n \in \mathbb{N}$, then (x_n) is a sequence in I.

Since $f(x_n) = k$ for all $n \in \mathbb{N}$, then $(f(x_n))$ is the constant sequence k, so $\lim_{n\to\infty} f(x_n) = k$.

We prove the sequence (x_n) converges to p.

Let $\epsilon > 0$ be given.

Then $\frac{1}{\epsilon} > 0$, so by the Archimedean property of \mathbb{R} , there exists $N \in \mathbb{N}$ such that $N > \frac{1}{\epsilon}$.

Let $n \in \mathbb{N}$ such that n > N. Then $n > N > \frac{1}{\epsilon}$, so $n > \frac{1}{\epsilon}$. Hence, $\epsilon > \frac{1}{n}$. Since $n \in \mathbb{N}$, then $x_n \in N'(p; \frac{1}{n})$, so $x_n \in N(p; \frac{1}{n})$. Thus, $|x_n - p| < \frac{1}{n} < \epsilon$, so $|x_n - p| < \epsilon$. Therefore, $\lim_{n \to \infty} x_n = p$.

Since f is continuous at p and (x_n) is a sequence of points in I and $\lim_{n\to\infty} x_n = p$, then by the sequential characterization of continuity, $k = \lim_{n\to\infty} f(x_n) = f(p)$.

Therefore, f(p) = k.

Since $p \in I$ and f(p) = k, then $p \in S$, so S is closed. Thus, in all cases, S is closed, as desired.

Exercise 36. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that f(x) = 0 for all $x \in \mathbb{Q}$.

Then f(x) = 0 for all $x \in \mathbb{R}$.

Proof. We prove f(c) = 0 for all $c \in \mathbb{R}$ by contradiction. Suppose there exists $c \in \mathbb{R}$ such that $f(c) \neq 0$. Since $f(c) \neq 0$, then |f(c)| > 0. Since f is continuous on \mathbb{R} and $c \in \mathbb{R}$, then f is continuous at c. Since |f(c)| > 0, then there exists $\delta > 0$ such that for all $x \in \mathbb{R}$, if $|x-c| < \delta$, then |f(x) - f(c)| < |f(c)|. Since $c < c + \delta$ and \mathbb{Q} is dense in \mathbb{R} , then there exists $q \in \mathbb{Q}$ such that $c < q < c + \delta$. Since $q \in \mathbb{Q}$ and $\mathbb{Q} \subset \mathbb{R}$, then $q \in \mathbb{R}$. Since $c < q < c + \delta$, then $0 < q - c < \delta$, so $|q - c| < \delta$. Since $q \in \mathbb{R}$ and $|q - c| < \delta$, then |f(q) - f(c)| < |f(c)|. Since $q \in \mathbb{Q}$, then f(q) = 0. Therefore, |0 - f(c)| < |f(c)|, so |-f(c)| < |f(c)|. Thus, |f(c)| < |f(c)|, a contradiction.

Therefore, f(c) = 0 for all $c \in \mathbb{R}$, as desired

Exercise 37. Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be continuous functions such that f(x) = g(x) for all $x \in \mathbb{Q}$.

Then f(x) = g(x) for all $x \in \mathbb{R}$. (Hence, function f = g).

Proof. We prove f(c) = g(c) for all $c \in \mathbb{R}$ by contradiction. Suppose there exists $c \in \mathbb{R}$ such that $f(c) \neq g(c)$. Then |f(c) - g(c)| > 0, so $\frac{|f(c) - g(c)|}{2} > 0$. Since f is continuous on \mathbb{R} and $c \in \mathbb{R}$, then f is continuous at c. Since g is continuous on \mathbb{R} and $c \in \mathbb{R}$, then g is continuous at c. Since $\frac{|f(c) - g(c)|}{2} > 0$ and f is continuous at c, then there exists $\delta_1 > 0$ such that for all $x \in \mathbb{R}$, if $|x - c| < \delta_1$, then $|f(x) - f(c)| < \frac{|f(c) - g(c)|}{2}$. Since $\frac{|f(c) - g(c)|}{2} > 0$ and g is continuous at c, then there exists $\delta_2 > 0$ such that for all $x \in \mathbb{R}$, if $|x - c| < \delta_2$, then $|g(x) - g(c)| < \frac{|f(c) - g(c)|}{2}$. Let $\delta = \min\{\delta_1, \delta_2\}$. Then $\delta \le \delta_1$ and $\delta \le \delta_2$ and $\delta > 0$. Since $c < c + \delta$ and \mathbb{Q} is dense in \mathbb{R} , then there exists $q \in \mathbb{Q}$ such that $c < q < c + \delta$. Hence, $0 < q - c < \delta$, so $|q - c| < \delta$.

Since $|q - c| < \delta \le \delta_1$, then $|q - c| < \delta_1$, so $|f(q) - f(c)| < \frac{|f(c) - g(c)|}{2}$.

Since $|q-c| < \delta \le \delta_2$, then $|q-c| < \delta_2$, so $|g(q) - g(c)| < \frac{|f(c) - g(c)|}{2}$. Since $q \in \mathbb{Q}$, then f(q) = g(q), so $|f(q) - g(c)| < \frac{|f(c) - g(c)|}{2}$. Observe that

$$\begin{aligned} |f(c) - g(c)| &= |f(c) - f(q) + f(q) - g(c)| \\ &\leq |f(c) - f(q)| + |f(q) - g(c)| \\ &= |f(q) - f(c)| + |f(q) - g(c)| \\ &< \frac{|f(c) - g(c)|}{2} + \frac{|f(c) - g(c)|}{2} \\ &= |f(c) - g(c)|. \end{aligned}$$

Hence, |f(c) - g(c)| < |f(c) - g(c)|, a contradiction. Therefore, f(c) = g(c) for all $c \in \mathbb{R}$, as desired.

Definition 38. additive map

An additive map preserves the operation of addition.

Let f be a real valued function.

Let dom f be an additive group.

Then f is said to be **additive** iff f(x+y) = f(x) + f(y) for all $x, y \in dom f$.

Lemma 39. Let $f : \mathbb{R} \to \mathbb{R}$ be a function.

If there exist real numbers k and L such that $\lim_{x\to 0} f(x) = L$ and $k \neq 0$, then $\lim_{x\to 0} f(kx) = L$.

Proof. Suppose there exist real numbers k and L such that $\lim_{x\to 0} f(x) = L$ and $k \neq 0$.

To prove $\lim_{x\to 0} f(kx) = L$, let $\epsilon > 0$ be given.

We must prove there exists $\delta > 0$ such that for all $x \in \mathbb{R}$, if $0 < |x| < \delta$, then $|f(kx) - L| < \epsilon$.

Since $\lim_{x\to 0} f(x) = L$, then there exists $\delta_1 > 0$ such that for all $x \in \mathbb{R}$, if $0 < |x| < \delta_1$, then $|f(x) - L| < \epsilon$.

Let $\delta = \frac{\delta_1}{|k|}$.

Since $k \neq 0$, then |k| > 0.

Since |k| > 0 and $\delta_1 > 0$, then $\delta > 0$. Let $x \in \mathbb{R}$ such that $0 < |x| < \delta$.

Then $0 < |x| < \frac{\delta_1}{|k|}$, so $0 < |k||x| < \delta_1$.

Hence,
$$0 < |kx| < \delta_1$$
.

Since $kx \in \mathbb{R}$ and $0 < |kx| < \delta_1$, then $|f(kx) - L| < \epsilon$, as desired.

Exercise 40. Let $f : \mathbb{R} \to \mathbb{R}$ be an additive function. If the limit of f at 0 exists, then $\lim_{x\to 0} f(x) = 0$.

Proof. Suppose the limit of f at 0 exists.

Then there exists a real number L such that $\lim_{x\to 0} f(x) = L$. To prove $\lim_{x\to 0} f(x) = 0$, we must prove L = 0. Let $x \in \mathbb{R}$.

Then f(2x) = f(x + x) = f(x) + f(x) = 2f(x), so f(2x) = 2f(x) for all $x \in \mathbb{R}$.

By the previous lemma, if $\lim_{x\to 0} f(x) = L$ and $k \neq 0$, then $\lim_{x\to 0} f(kx) = L$.

Thus, if $\lim_{x\to 0} f(x) = L$, then $\lim_{x\to 0} f(2x) = L$.

Since $\lim_{x\to 0} f(x) = L$, then $\lim_{x\to 0} f(2x) = L$, so $\lim_{x\to 0} f(x) = \lim_{x\to 0} f(2x)$. Hence,

$$L = \lim_{x \to 0} f(x)$$

=
$$\lim_{x \to 0} f(2x)$$

=
$$\lim_{x \to 0} 2f(x)$$

=
$$2\lim_{x \to 0} f(x)$$

=
$$2L.$$

Thus, L = 2L, so 2L = L.

Subtracting L from both sides, we obtain L = 0, as desired.

Lemma 41. Let $f : \mathbb{R} \to \mathbb{R}$ be an additive function. Then f(a - b) = f(a) - f(b) for all $a, b \in \mathbb{R}$ and f(0) = 0.

Proof. We prove
$$f(a - b) = f(a) - f(b)$$
 for all $a, b \in \mathbb{R}$.
Let $a, b \in \mathbb{R}$.
Then $f(a) = f(a - b + b) = f(a - b) + f(b)$, so $f(a) = f(a - b) + f(b)$.
Hence, $f(a) - f(b) = f(a - b)$.

Proof. We prove f(0) = 0. Since f(0) = f(0+0) = f(0) + f(0), then f(0) = f(0) + f(0). Therefore, f(0) = f(0) - f(0) = 0.

Lemma 42. Let $f : \mathbb{R} \to \mathbb{R}$ be an additive function. If $\lim_{x\to 0} f(x) = 0$, then $\lim_{x\to a} f(x) = f(a)$ for all $a \in \mathbb{R}$.

Proof. Suppose $\lim_{x\to 0} f(x) = 0$. Let $a \in \mathbb{R}$ be arbitrary. Observe that a is an accumulation point of \mathbb{R} , the domain of f. To prove $\lim_{x\to a} f(x) = f(a)$, let $\epsilon > 0$ be given. We must prove there exists $\delta > 0$ such that for all $x \in \mathbb{R}$, if $0 < |x - a| < \delta$, then $|f(x) - f(a)| < \epsilon$. Since $\lim_{x\to 0} f(x) = 0$, then there exists $\delta > 0$ such that for all $x \in \mathbb{R}$, if $0 < |x| < \delta$, then $|f(x)| < \epsilon$. Let $x \in \mathbb{R}$ such that $0 < |x - a| < \delta$. Since $x - a \in \mathbb{R}$ and $0 < |x - a| < \delta$, then $|f(x - a)| < \epsilon$. Since f is additive, then $|f(x) - f(a)| = |f(x - a)| < \epsilon$, as desired. Lemma 43. Let $f : \mathbb{R} \to \mathbb{R}$ be an additive function.

If f is continuous at $x_0 \in \mathbb{R}$, then f is continuous at 0.

Proof. Suppose f is continuous at $x_0 \in \mathbb{R}$.

To prove f is continuous at 0, let $\epsilon > 0$ be given.

We must prove there exists $\delta > 0$ such that for all $x \in \mathbb{R}$, if $|x| < \delta$, then $|f(x) - f(0)| < \epsilon$.

Since f is continuous at x_0 , then there exists $\delta > 0$ such that for all $x \in \mathbb{R}$, if $|x - x_0| < \delta$, then $|f(x) - f(x_0)| < \epsilon$.

Let $x \in \mathbb{R}$ such that $|y| < \delta$. Let $y = x + x_0$. Then $y \in \mathbb{R}$ and $x = y - x_0$, so $|y - x_0| < \delta$. Since $y \in \mathbb{R}$ and $|y - x_0| < \delta$, then $|f(y) - f(x_0)| < \epsilon$. Since f is additive, then $|f(x) - f(0)| = |f(x - 0)| = |f(x)| = |f(y - x_0)| = |f(y) - f(x_0)| < \epsilon$, so $|f(x) - f(0)| < \epsilon$, as desired.

Exercise 44. Let $f : \mathbb{R} \to \mathbb{R}$ be an additive function. If f is continuous at $x_0 \in \mathbb{R}$, then f is continuous.

Proof. Suppose f is continuous at $x_0 \in \mathbb{R}$.

To prove f is continuous, let $c \in \mathbb{R}$ be given.

We must prove f is continuous at c.

Since f is additive and f is continuous at x_0 , then by a previous lemma, f is continuous at 0.

Since 0 is an accumulation point of \mathbb{R} and f is continuous at 0, then by the characterization of continuity, $\lim_{x\to 0} f(x) = f(0)$.

Since f is additive, then f(0) = 0.

Thus, $\lim_{x \to 0} f(x) = f(0) = 0.$

Since f is additive and $\lim_{x\to 0} f(x) = 0$, then by a previous lemma, $\lim_{x\to a} f(x) = f(a)$ for all $a \in \mathbb{R}$, so $\lim_{x\to c} f(x) = f(c)$,

Since c is an accumulation point of \mathbb{R} and $\lim_{x\to c} f(x) = f(c)$, then by the characterization of continuity, f is continuous at c, as desired.

Lemma 45. Let $f : \mathbb{R} \to \mathbb{R}$ be an additive function. Then f(nr) = nf(r) for all $n \in \mathbb{Z}, r \in \mathbb{R}$.

Proof. Let $r \in \mathbb{R}$ be given.

To prove f(nr) = nf(r) for all $n \in \mathbb{Z}$, we must prove f(nr) = nf(r) for all $n \in \mathbb{Z}^+$ and f(-nr) = -nf(r) for all $n \in \mathbb{Z}^+$.

We prove f(nr) = nf(r) for all $n \in \mathbb{Z}^+$ by induction on n. Let $S = \{n \in \mathbb{Z}^+ : f(nr) = nf(r)\}$. Basis: Since $1 \in \mathbb{Z}^+$ and $f(1 \cdot r) = f(r) = 1 \cdot f(r)$, then $1 \in S$. Induction: Let $k \in S$. Then $k \in \mathbb{Z}^+$ and f(kr) = kf(r). Since $k \in \mathbb{Z}^+$, then $k + 1 \in \mathbb{Z}^+$. Observe that

$$f((k+1)r) = f(kr+r) = f(kr) + f(r) = kf(r) + f(r) = (k+1)f(r).$$

Since $k + 1 \in \mathbb{Z}^+$ and f((k+1)r) = (k+1)f(r), then $k + 1 \in S$. Hence, $k \in S$ implies $k + 1 \in S$, so by PMI, $S = \mathbb{Z}^+$. Therefore, f(nr) = nf(r) for all $n \in \mathbb{Z}^+$.

Proof. We prove f(-nr) = -nf(r) for all $n \in \mathbb{Z}^+$ by induction on n. Let $S = \{n \in \mathbb{Z}^+ : f(-nr) = -nf(r)\}$. Basis: Since f is additive, then f(-r) = f(0-r) = f(0) - f(r) = 0 - f(r) = -f(r). Since $1 \in \mathbb{Z}^+$ and f(-r) = -f(r), then $1 \in S$. Induction: Let $k \in S$. Then $k \in \mathbb{Z}^+$ and f(-kr) = -kf(r). Since $k \in \mathbb{Z}^+$, then $k + 1 \in \mathbb{Z}^+$. Observe that

$$\begin{aligned} f(-(k+1)r) &= f(-kr-r) \\ &= f(-kr) - f(r) \\ &= -kf(r) - f(r) \\ &= -(k+1)f(r). \end{aligned}$$

Since $k + 1 \in \mathbb{Z}^+$ and f(-(k+1)r) = -(k+1)f(r), then $k + 1 \in S$. Hence, $k \in S$ implies $k + 1 \in S$, so by PMI, $S = \mathbb{Z}^+$. Therefore, f(-nr) = -nf(r) for all $n \in \mathbb{Z}^+$.

Lemma 46. Let $f : \mathbb{R} \to \mathbb{R}$ be an additive function. Then $f(\frac{1}{n}) = \frac{f(1)}{n}$ for all nonzero integers n.

Proof. Let n be an arbitrary nonzero integer. Then $n \in \mathbb{Z}$ and $n \neq 0$. Since $n \in \mathbb{Z}$ and $\mathbb{Z} \subset \mathbb{R}$, then $n \in \mathbb{R}$. Since $n \in \mathbb{R}$ and $n \neq 0$, then $\frac{1}{n} \in \mathbb{R}$. Since f is additive and $n \in \mathbb{Z}$ and $\frac{1}{n} \in \mathbb{R}$, then $f(1) = f(n \cdot \frac{1}{n}) = n \cdot f(\frac{1}{n})$. Since $f(1) = n \cdot f(\frac{1}{n})$ and $n \neq 0$, then $\frac{f(1)}{n} = f(\frac{1}{n})$.

Exercise 47. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous additive function. If f(1) = c, then f(x) = cx for all $x \in \mathbb{R}$. Proof. Suppose f(1) = c. We first prove f(q) = cq for all $q \in \mathbb{Q}$. Let $q \in \mathbb{Q}$. Then there exist integers a, b with $b \neq 0$ such that $q = \frac{a}{b}$. Since a and b are integers, then $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$. Since $b \in \mathbb{Z}$ and $b \neq 0$, then b is a nonzero integer. Since f is additive and $a \in \mathbb{Z}$ and b is a nonzero integer, then

f

$$(q) = f(\frac{a}{b})$$
$$= f(a \cdot \frac{1}{b})$$
$$= a \cdot f(\frac{1}{b})$$
$$= a \cdot \frac{f(1)}{b}$$
$$= a \cdot \frac{c}{b}$$
$$= \frac{ac}{b}$$
$$= \frac{ca}{b}$$
$$= c \cdot \frac{a}{b}$$
$$= cq.$$

Hence, f(q) = cq for all $q \in \mathbb{Q}$.

Let $g : \mathbb{R} \to \mathbb{R}$ be a function defined by g(x) = cx for all $x \in \mathbb{R}$. Since g is a polynomial function, then g is continuous. Let $x \in \mathbb{Q}$.

Since $\mathbb{Q} \subset \mathbb{R}$, then $x \in \mathbb{R}$, so g(x) = cx = f(x). Hence, f(x) = g(x) for all $x \in \mathbb{Q}$.

Since f and g are continuous and f(x) = g(x) for all $x \in \mathbb{Q}$, then by a previous exercise, f(x) = g(x) for all $x \in \mathbb{R}$.

Therefore, f(x) = cx for all $x \in \mathbb{R}$, as desired.

Exercise 48. Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that f(x+y) = f(x)f(y) for all $x, y \in \mathbb{R}$.

Then

1. If f(c) = 0 for some $c \in \mathbb{R}$, then f(x) = 0 for all $x \in \mathbb{R}$.

2. If the limit of f at 0 exists, then the limit of f at c exists for all $c \in \mathbb{R}$.

Proof. Let $x \in \mathbb{R}$.

Then $f(x) \in \mathbb{R}$ and $f(x) = f(\frac{x}{2} + \frac{x}{2}) = f(\frac{x}{2})f(\frac{x}{2}) = [f(\frac{x}{2})]^2 \ge 0$, so $f(x) \ge 0$ for all $x \in \mathbb{R}$.

Either there is $c \in \mathbb{R}$ such that f(c) = 0 or there is no $c \in \mathbb{R}$ such that f(c) = 0.

We consider these cases separately. **Case 1:** Suppose there is $c \in \mathbb{R}$ such that f(c) = 0. Let $x \in \mathbb{R}$. Then f(x) = f(0 + x) = f(c - c + x) = f(c + x - c) = f(c)f(x - c) = 0 $0 \cdot f(x - c) = 0$, so f(x) = 0. Therefore, f(x) = 0 for all $x \in \mathbb{R}$. **Case 2:** Suppose there is no $c \in \mathbb{R}$ such that f(c) = 0. Since f(0) = f(0 + 0) = f(0)f(0), then f(0) = f(0)f(0), so 0 = f(0)f(0) - f(0) = f(0)[f(0) - 1]. Thus, 0 = f(0)[f(0) - 1], so either f(0) = 0 or f(0) - 1 = 0. Since there is no $c \in \mathbb{R}$ such that f(c) = 0, then $f(0) \neq 0$. Therefore, f(0) - 1 = 0, so f(0) = 1.

Suppose the limit of f at 0 exists. Then there is a real number L such that $\lim_{x\to 0} f(x) = L$. We must prove L = 1. Let $c \in \mathbb{R}$. To prove the limit of f at c exists, we must prove there exists $M \in \mathbb{R}$ such that $\lim_{x\to c} f(x) = M$.

Continuous functions on compact sets

Exercise 49. Let $a, b \in \mathbb{R}$ with a < b.

Let $f : [a, b] \to \mathbb{R}$ be continuous.

If f has no zeroes on [a, b], then either f(x) > 0 for all $x \in [a, b]$ or f(x) < 0 for all $x \in [a, b]$.

Proof. Suppose f has no zeroes on [a, b].

To prove either f(x) > 0 for all $x \in [a, b]$ or f(x) < 0 for all $x \in [a, b]$, we prove by contradiction.

Suppose it is not the case that either f(x) > 0 for all $x \in [a, b]$ or f(x) < 0 for all $x \in [a, b]$.

Then it is not the case that f(x) > 0 for all $x \in [a, b]$ and it is not the case that f(x) < 0 for all $x \in [a, b]$.

Hence, there exists $x \in [a, b]$ such that $f(x) \leq 0$ and there exists $y \in [a, b]$ such that $f(y) \geq 0$.

Since $x \in [a, b]$ and f has no zeroes on [a, b], then $f(x) \neq 0$.

Since $f(x) \leq 0$ and $f(x) \neq 0$, then f(x) < 0.

Since $y \in [a, b]$ and f has no zeroes on [a, b], then $f(y) \neq 0$.

Since $f(y) \ge 0$ and $f(y) \ne 0$, then f(y) > 0.

Since $x \in [a, b]$ and $y \in [a, b]$, then $[x, y] \subset [a, b]$.

Since f is continuous on [a, b] and $[x, y] \subset [a, b]$, then f is continuous on [x, y].

Since f(x) < 0 < f(y), then by IVT, there exists $c \in (x, y)$ such that f(c) = 0.

Since $(x, y) \subset [x, y] \subset [a, b]$, then $(x, y) \subset [a, b]$. Since $c \in (x, y)$ and $(x, y) \subset [a, b]$, then $c \in [a, b]$. Thus, there exists $c \in [a, b]$ such that f(c) = 0. But, this contradicts the assumption that f has no zeroes on [a, b]. Therefore, either f(x) > 0 for all $x \in [a, b]$ or f(x) < 0 for all $x \in [a, b]$.

Exercise 50. Let $a, b \in \mathbb{R}$.

Let $f : [a, b] \to \mathbb{R}$ be a continuous function.

If there exists $k \in \mathbb{R}$ such that $f(a) \ge k \ge f(b)$, then there exists $c \in [a, b]$ such that f(c) = k.

Proof. Suppose there exists $k \in \mathbb{R}$ such that $f(a) \ge k \ge f(b)$.

Since $f(a) \ge k \ge f(b)$, then $f(a) \ge k$ and $k \ge f(b)$, so either f(a) = k or f(b) = k or f(a) > k > f(b).

We consider these cases separately.

Case 1: Suppose f(a) = k. Observe that $a \in [a, b]$ and f(a) = k. **Case 2:** Suppose f(b) = k. Observe that $b \in [a, b]$ and f(b) = k. **Case 3:** Suppose f(a) > k > f(b). Since f is continuous on the interval [a, b] and f(a) > k > f(b), then by

IVT, there exists $c \in (a, b)$ such that f(c) = k.

Exercise 51. Let E be a nonempty closed bounded set. Let $f: E \to \mathbb{R}$ be a continuous function such that f(x) > 0 for all $x \in E$. Then there exists k > 0 such that $f(x) \ge k$ for all $x \in E$.

Proof. Let $\frac{1}{f}: E \to \mathbb{R}$ be a function defined by $\frac{1}{f}(x) = \frac{1}{f(x)}$ for all $x \in E$. Since $E \neq \emptyset$, then there is some element in E. Let $c \in E$ be given Then f(c) > 0, so $f(c) \neq 0$. Since f is continuous on E and $c \in E$, then f is continuous at c. Since the constant function 1 is continuous at c and f is continuous at c and $f(c) \neq 0$, then $\frac{1}{t}$ is continuous at c. Since c is arbitrary, then $\frac{1}{t}$ is continuous on E. Since E is a closed bounded set, then by the boundedness theorem, the function $\frac{1}{f}$ is bounded. Hence, there exists $M \in \mathbb{R}$ such that $\left|\frac{1}{f(x)}\right| \leq M$ for all $x \in E$. Let $x \in E$. Then f(x) > 0 and $\left|\frac{1}{f(x)}\right| \le M$. Thus, $0 < \frac{1}{f(x)} = \frac{1}{|f(x)|} = |\frac{1}{f(x)}| \le M$, so 0 < M and $\frac{1}{f(x)} \le M$. Hence, $0 < \frac{1}{M} \le f(x)$, so $f(x) \ge \frac{1}{M} > 0$. Let $k = \frac{1}{M}$. Then k > 0 and $f(x) \ge k$.

Therefore, there exists k > 0 such that $f(x) \ge k$ for all $x \in E$, as desired. \Box

Proof. Since f is continuous on E and E is a nonempty closed bounded set, then by EVT, f has a minimum on E.

Hence, there exists $m \in E$ such that $f(m) \leq f(x)$ for all $x \in E$. Since $m \in E$ and f(x) > 0 for all $x \in E$, then f(m) > 0. Let k = f(m).

Then k > 0 and $k \leq f(x)$ for all $x \in E$, so there exists k > 0 such that $f(x) \geq k$ for all $x \in E$, as desired.

Exercise 52. Let $E \subset \mathbb{R}$ be a closed, bounded set. Let f and g be real valued functions continuous on E. Let $S = \{x \in E : f(x) = g(x)\}$. If (x_n) is a sequence in S and $\lim_{n\to\infty} x_n = c$, then $c \in S$.

Proof. Suppose (x_n) is a sequence in S and $\lim_{n\to\infty} x_n = c$.

Since (x_n) is a sequence in S, then $x_n \in S$ for all $n \in \mathbb{N}$, so $x_n \in E$ and $f(x_n) = g(x_n)$ for all $n \in \mathbb{N}$.

Thus, $x_n \in E$ for all $n \in \mathbb{N}$ and $f(x_n) = g(x_n)$ for all $n \in \mathbb{N}$.

Since $x_n \in E$ for all $n \in \mathbb{N}$, then (x_n) is a sequence in E.

Since E is a closed and bounded set and (x_n) is a sequence in E, then by the Bolzano-Weierstrass property of compact sets, there exists a subsequence (y_n) in E such that $\lim_{n\to\infty} y_n \in E$.

Since (x_n) is a convergent sequence in \mathbb{R} and (y_n) is a subsequence of (x_n) , then $\lim_{n\to\infty} y_n = \lim_{n\to\infty} x_n = c$.

Hence, $c \in E$.

Let h = f - g.

Then $h: E \to \mathbb{R}$ is the function defined by h(x) = f(x) - g(x).

Since f is continuous on E and g is continuous on E, then the difference f - g = h is continuous on E.

Since $c \in E$, then h is continuous at c.

Since $f(x_n) = g(x_n)$ for all $n \in \mathbb{N}$, then $h(x_n) = f(x_n) - g(x_n) = 0$ for all $n \in \mathbb{N}$, so $(h(x_n))$ is the 0 constant sequence.

Hence, $\lim_{n \to \infty} h(x_n) = 0.$

Since h is continuous at c and (x_n) is a sequence of points in E such that $\lim_{n\to\infty} x_n = c$, then by the sequential characterization of continuity, we have $\lim_{n\to\infty} h(x_n) = h(c)$.

Thus,
$$f(c) - g(c) = h(c) = \lim_{n \to \infty} h(x_n) = 0$$
, so $f(c) - g(c) = 0$.
Hence, $f(c) = g(c)$.

Since $c \in E$ and f(c) = q(c), then $c \in S$, as desired.

Exercise 53. Let E be a closed bounded infinite set.

Let $f: E \to \mathbb{R}$ be a continuous function.

If for every $x \in E$, there exists $y \in E$ such that $|f(y)| \leq \frac{1}{2}|f(x)|$, then there exists $c \in E$ such that f(c) = 0.

Proof. Since E is infinite, then $E \neq \emptyset$, so let $x_0 \in E$.

Then there exists $x_1 \in E$ such that $|f(x_1)| \leq \frac{1}{2} |f(x_0)|$.

Suppose there exists $k \in \mathbb{N}$ such that $x_k \in E$ and $|f(x_k)| \leq \frac{|f(x_0)|}{2^k}$. Since $k \in \mathbb{N}$, then $k + 1 \in \mathbb{N}$.

Since $x_k \in E$, then there exists $x_{k+1} \in E$ such that $|f(x_{k+1})| \le \frac{1}{2} |f(x_k)|$. Thus, $|f(x_{k+1})| \le \frac{1}{2} |f(x_k)| \le \frac{|f(x_0)|}{2^{k+1}}$, so $|f(x_{k+1})| \le \frac{|f(x_0)|}{2^{k+1}}$.

Hence, by PMI, $x_n \in E$ for all $n \in \mathbb{N}$ and $|f(x_n)| \leq \frac{|f(x_0)|}{2^n}$ for all $n \in \mathbb{N}$. Since $x_n \in E$ for all $n \in \mathbb{N}$, then (x_n) is a sequence in E.

Since $0 \leq |f(x_n)| \leq \frac{|f(x_0)|}{2^n}$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} 0 = 0 = \lim_{n \to \infty} \frac{|f(x_0)|}{2^n}$, then by the squeeze rule, $\lim_{n \to \infty} |f(x_n)| = 0$.

Since $-|f(x_n)| \leq f(x_n) \leq |f(x_n)|$ for all $n \in \mathbb{N}$ and $0 = -0 = -\lim_{n \to \infty} |f(x_n)| = \lim_{n \to \infty} -|f(x_n)|$, then by the squeeze rule, $\lim_{n \to \infty} f(x_n) = 0$, so the sequence $(f(x_n))$ is convergent.

Since (x_n) is a sequence in E and E is a closed bounded set, then by the Bolzano-Weierstrass property of compact sets, there exists a subsequence (y_n) in E such that $\lim_{n\to\infty} y_n \in E$.

Let $c = \lim_{n \to \infty} y_n$.

Then $c \in E$.

Since f is continuous on E, then f is continuous at c.

Since (y_n) is a sequence in E and $\lim_{n\to\infty} y_n = c$, then by the sequential characterization of continuity, we have $\lim_{n\to\infty} f(y_n) = f(c)$.

Since (y_n) is a subsequence of (x_n) , then there exists a strictly increasing function $g: \mathbb{N} \to \mathbb{N}$ such that $y_n = x_{g(n)}$ for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$.

Then $y_n = x_{g(n)}$, so $f(y_n) = f(x_{g(n)})$ for all $n \in \mathbb{N}$.

Since $g : \mathbb{N} \to \mathbb{N}$ is a strictly increasing function such that $f(y_n) = f(x_{g(n)})$ for all $n \in \mathbb{N}$, then $(f(y_n))$ is a subsequence of $(f(x_n))$.

Since $(f(x_n))$ is convergent and $(f(y_n))$ is a subsequence of $(f(x_n))$, then $f(c) = \lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} f(x_n) = 0$, so f(c) = 0.

Therefore, there exists $c \in E$ such that f(c) = 0, as desired.

Exercise 54. Let $f : [0, 1] \to \mathbb{R}$ be a continuous function such that f(0) = f(1). Then there exists $c \in [0, \frac{1}{2}]$ such that $f(c) = f(c + \frac{1}{2})$.

Proof. Either $f(\frac{1}{2}) = f(0)$ or $f(\frac{1}{2}) \neq f(0)$. We consider these cases separately. **Case 1:** Suppose $f(\frac{1}{2}) = f(0)$. Let c = 0. Since $0 \in [0, \frac{1}{2}]$, then $c \in \frac{1}{2}$. Observe that $f(c) = f(0) = f(\frac{1}{2}) = f(0 + \frac{1}{2}) = f(c + \frac{1}{2})$. **Case 2:** Suppose $f(\frac{1}{2}) \neq f(0)$. Then $f(\frac{1}{2}) - f(0) \neq 0$. Let $k = f(\frac{1}{2}) - f(0)$. Then $k \neq 0$.

Let $g: [0, \frac{1}{2}] \to \mathbb{R}$ be a function defined by $g(x) = f(x + \frac{1}{2})$. To prove g is continuous, let $c \in [0, \frac{1}{2}]$ be given. Then $0 \le c \le \frac{1}{2}$, so $\frac{1}{2} \le c + \frac{1}{2} \le 1$. Let $a = c + \frac{1}{2}$. Then $\frac{1}{2} \le a \le 1$, so $a \in [\frac{1}{2}, 1]$. Since $[\frac{1}{2}, 1] \subset [0, 1]$, then $a \in [0, 1]$. Since f is continuous on [0, 1], then f is continuous at a. Let $\epsilon > 0$ be given. Then there exists $\delta > 0$ such that for all $x \in [0,1]$ if $|x-a| < \delta$, then $|f(x) - f(a)| < \epsilon.$ Let $x \in [0, \frac{1}{2}]$ such that $|x - c| < \delta$. Since $x \in [0, \frac{1}{2}]$, then $0 \le x \le \frac{1}{2}$, so $\frac{1}{2} \le x + \frac{1}{2} \le 1$. Hence, $x + \frac{1}{2} \in [\frac{1}{2}, 1]$. Since $[\frac{1}{2}, 1] \subset [0, 1]$, then $x + \frac{1}{2} \in [0, 1]$. Since $|x - c| < \delta$ and $-c = \frac{1}{2} - a$, then $|x + \frac{1}{2} - a| < \delta$. Since $x + \frac{1}{2} \in [0, 1]$ and $|(x + \frac{1}{2}) - a| < \delta$, then we conclude $|f(x + \frac{1}{2}) - f(a)| < \epsilon$. Thus, $|g(\tilde{x}) - g(c)| = |f(x + \frac{1}{2}) - f(c + \frac{1}{2})| = |f(x + \frac{1}{2}) - f(a)| < \epsilon.$ Therefore, g is continuous at c, so g is continuous on $[0, \frac{1}{2}]$.

Let h = g - f be defined on $[0, \frac{1}{2}]$.

Then $h: [0, \frac{1}{2}] \to \mathbb{R}$ is the function defined by $h(x) = f(x + \frac{1}{2}) - f(x)$. Since g is continuous on $[0, \frac{1}{2}]$ and f is continuous on [0, 1], then g - f = his continuous on the intersection $[0, \frac{1}{2}] \cap [0, 1] = [0, \frac{1}{2}]$.

Observe that $h(0) = f(0 + \frac{1}{2}) - f(0) = f(\frac{1}{2}) - f(0) = k$ and $h(\frac{1}{2}) = f(\frac{1}{2} + \frac{1}{2}) - f(\frac{1}{2}) = f(1) - f(\frac{1}{2}) = f(0) - f(\frac{1}{2}) = -k.$

Since $k \neq 0$, then either k > 0 or k < 0.

If k > 0, then $h(\frac{1}{2}) = -k < 0 < k = h(0)$, so $h(\frac{1}{2}) < 0 < h(0)$. If k < 0, then $h(0) = k < 0 < -k = h(\frac{1}{2})$, so $h(0) < 0 < h(\frac{1}{2})$.

Thus, in either case, 0 is between h(0) and $h(\frac{1}{2})$.

Since h is continuous on $[0, \frac{1}{2}]$ and the interval $[0, \frac{1}{2}]$ is closed and bounded and 0 is between h(0) and $h(\frac{1}{2})$, then by IVT, there exists $c \in (0, \frac{1}{2})$ such that h(c) = 0.

Thus, $0 = h(c) = f(c + \frac{1}{2}) - f(c)$, so $f(c) = f(c + \frac{1}{2})$. Since $c \in (0, \frac{1}{2})$ and $(0, \frac{1}{2}) \subset [0, \frac{1}{2}]$, then $c \in [0, \frac{1}{2}]$. Therefore, there exists $c \in [0, \frac{1}{2}]$ such that $f(c) = f(c + \frac{1}{2})$, as desired.

Proposition 55. Fixed Point Theorem

Let $a, b \in \mathbb{R}$ with a < b. Let $f : [a, b] \to [a, b]$ be a continuous function. Then there exists $x \in [a, b]$ such that f(x) = x.

Proof. Since $a \in [a, b]$ and [a, b] = rngf, then $a \in rngf$, so there exists $x_1 \in [a, b]$ such that $f(x_1) = a$.

Since $b \in [a, b]$ and [a, b] = rngf, then $b \in rngf$, so there exists $x_2 \in [a, b]$ such that $f(x_2) = b$.

Suppose $x_1 = x_2$. Then $a = f(x_1) = f(x_2) = b$, so a = b. But, this contradicts the assumption a < b. Hence, $x_1 \neq x_2$, so either $x_1 < x_2$ or $x_1 > x_2$. Without loss of generality, assume $x_1 < x_2$. Since $x_1 \in [a, b]$, then $a \leq x_1 \leq b$, so $a \leq x_1$. Since $x_2 \in [a, b]$, then $a \leq x_2 \leq b$, so $x_2 \leq b$. Thus, $a \leq x_1$ and $x_2 \leq b$. Hence, either $x_1 = a$ or $x_2 = b$ or both $a < x_1$ and $x_2 < b$. We consider these cases separately. Case 1: Suppose $x_1 = a$. Then $f(a) = f(x_1) = a$. Therefore, we have $a \in [a, b]$ and f(a) = a. Case 2: Suppose $x_2 = b$. Then $f(b) = f(x_2) = b$. Therefore, we have $b \in [a, b]$ and f(b) = b. Case 3: Suppose $a < x_1$ and $x_2 < b$. Then $a - x_1 < 0$ and $0 < b - x_2$. Let $g: [a,b] \to \mathbb{R}$ be a function defined by g(x) = f(x) - x. Since $x_1 \in [a, b]$, then $g(x_1) = f(x_1) - x_1 = a - x_1 < 0$. Since $x_2 \in [a, b]$, then $g(x_2) = f(x_2) - x_2 = b - x_2 > 0$. Since f is continuous and the line y = x is continuous, then the difference g is continuous, so g is continuous on [a, b]. Since g is continuous on the closed interval [a, b] and $g(x_1) < 0 < g(x_2)$, then by IVT, there exists $c \in (x_1, x_2)$ such that g(c) = 0. Since 0 = g(c) = f(c) - c, then f(c) = c. Since $c \in (x_1, x_2)$, then $x_1 < c < x_2$, so $x_1 < c$ and $c < x_2$. Since $a < x_1$ and $x_1 < c$ and $c < x_2$ and $x_2 < b$, then a < c < b, so $c \in (a, b)$. Since $(a, b) \subset [a, b]$, then $c \in [a, b]$. Therefore, there exists $c \in [a, b]$ such that f(c) = c. **Exercise 56.** Let $f: [-1,1] \to \mathbb{R}$ be a function defined by $f(x) = x^3 - 3x^2 + 17$. Then f is not one to one on the interval [-1, 1].

Proof. Since f is a polynomial function, then f is continuous, so f is continuous on [-1, 1].

Since $[-1,0] \subset [-1,1]$, then f is continuous on [-1,0]. Since f(-1) = 13 < 15 < 17 = f(0), then by IVT, there is $c \in (-1,0)$ such that f(c) = 15. Since f(c) = 15 = f(1), then f(c) = f(1). Since $c \in (-1,0)$, then -1 < c < 0, so c < 0. Since c < 0 < 1, then c < 1, so $c \neq 1$. Since $c \in (-1,0)$ and $(-1,0) \subset [-1,1]$, then $c \in [-1,1]$. Thus, there is $c \in [-1,1]$ such that $c \neq 1$ and f(c) = f(1). Therefore, f is not one to one.

Uniform continuity

Exercise 57. Let $f: (0,6) \to \mathbb{R}$ be a function defined by $f(x) = x^2 + 2x - 5$. Then f is uniformly continuous on the interval (0,6).

 $\begin{array}{l} \textit{Proof. To prove f is uniformly continuous on $(0,6)$, let $\epsilon > 0$ be given.}\\ \text{Let $\delta = \frac{\epsilon}{14}$.}\\ \text{Then $\delta > 0$.}\\ \text{Let $x,y \in (0,6)$ such that $|x-y| < \delta$.}\\ \text{Then $0 < x < 6$ and $0 < y < 6$, so $0 < x+y < 12$.}\\ \text{Hence, $0 < 2 < x+y+2 < 14$, so $0 < x+y+2 < 14$.}\\ \text{Thus, $|x+y+2| < 14$.}\\ \text{Observe that} \end{array}$

$$|f(x) - f(y)| = |(x^2 + 2x - 5) - (y^2 + 2y - 5)|$$

= $|x^2 - y^2 + 2x - 2y|$
= $|(x - y)(x + y) + 2(x - y)|$
= $|(x - y)(x + y + 2)|$
= $|x - y||x + y + 2|$
< 14δ
= ϵ .

Therefore, $|f(x) - f(y)| < \epsilon$, as desired.

Exercise 58. Let $f : [2.5,3] \to \mathbb{R}$ be a function defined by $f(x) = \frac{3}{x-2}$. Then f is uniformly continuous on the interval [2.5,3].

 $\begin{array}{l} Proof. \mbox{ To prove } f \mbox{ is uniformly continuous on } [2.5,3], \mbox{ let } \epsilon > 0 \mbox{ be given.} \\ \mbox{ Let } \delta = \frac{\epsilon}{12}. \\ \mbox{ Then } \delta > 0. \\ \mbox{ Let } x,y \in [2.5,3] \mbox{ such that } |x-y| < \delta. \\ \mbox{ Then } 2.5 \leq x \leq 3 \mbox{ and } 2.5 \leq y \leq 3, \mbox{ so } \frac{1}{2} \leq x-2 \leq 1 \mbox{ and } \frac{1}{2} \leq y-2 \leq 1. \\ \mbox{ Hence, } \frac{1}{4} \leq (x-2)(y-2) \leq 1, \mbox{ so } 0 < \frac{1}{4} \leq (x-2)(y-2). \\ \mbox{ Thus, } 0 < \frac{1}{(x-2)(y-2)} \leq 4. \end{array}$

Observe that

$$\begin{aligned} f(x) - f(y)| &= \left| \frac{3}{x-2} - \frac{3}{y-2} \right| \\ &= \left| \frac{3(y-2) - 3(x-2)}{(x-2)(y-2)} \right| \\ &= \left| \frac{3y - 3x}{(x-2)(y-2)} \right| \\ &= \left| \frac{3x - 3y}{(x-2)(y-2)} \right| \\ &= \left| \frac{3x - 3y}{(x-2)(y-2)} \right| \\ &= \left| \frac{3|x-y|}{(x-2)(y-2)} \right| \\ &= \left| \frac{3|x-y|}{(x-2)(y-2)} \right| \\ &= \left| \frac{3|x-y|}{(x-2)(y-2)} \right| \\ &= \left| \frac{3(x-y)}{(x-2)(y-2)} \right| \\ &= \left$$

Therefore, $|f(x) - f(y)| < \epsilon$, as desired.

Exercise 59. Let $f : [3.4, 5] \to \mathbb{R}$ be a function defined by $f(x) = \frac{2}{x-3}$. Then f is uniformly continuous on the interval [3.4, 5].

 $\begin{array}{l} Proof. \mbox{ To prove } f \mbox{ is uniformly continuous on } [3.4,5], \mbox{ let } \epsilon > 0 \mbox{ be given.} \\ \mbox{ Let } \delta = 0.08\epsilon. \\ \mbox{ Then } \delta > 0. \\ \mbox{ Let } x,y \in [3.4,5] \mbox{ such that } |x-y| < \delta. \\ \mbox{ Then } 3.4 \leq x \leq 5 \mbox{ and } 3.4 \leq y \leq 5, \mbox{ so } 0.4 \leq x-3 \leq 2 \mbox{ and } 0.4 \leq y-3 \leq 2. \\ \mbox{ Hence, } 0.16 \leq (x-3)(y-3) \leq 4, \mbox{ so } 0.16 \leq (x-3)(y-3). \\ \mbox{ Thus, } 0 < \frac{1}{(x-3)(y-3)} \leq 6.25. \\ \mbox{ Since } x \geq 3.4 > 3, \mbox{ then } x > 3, \mbox{ so } x-3 > 0. \\ \mbox{ Since } y \geq 3.4 > 3, \mbox{ then } y > 3, \mbox{ so } y-3 > 0. \end{array}$

Observe that

$$\begin{aligned} |f(x) - f(y)| &= \left| \frac{2}{x-3} - \frac{2}{y-3} \right| \\ &= \left| \frac{2(y-3) - 2(x-3)}{(x-3)(y-3)} \right| \\ &= \left| \frac{2y-2x}{(x-3)(y-3)} \right| \\ &= \left| \frac{2x-2y}{(x-3)(y-3)} \right| \\ &= 2\left| \frac{x-y}{(x-3)(y-3)} \right| \\ &= 2|x-y| \left| \frac{1}{(x-3)(y-3)} \right| \\ &= 2|x-y| \frac{1}{(x-3)(y-3)} \\ &\leq 2\delta \cdot 6.25 \\ &= 12.5\delta \\ &= \epsilon. \end{aligned}$$

Therefore, $|f(x) - f(y)| < \epsilon$, as desired.

Exercise 60. Let $f: (2,7) \to \mathbb{R}$ be a function defined by $f(x) = x^3 - x + 1$. Then f is uniformly continuous on the interval (2,7).

 $\begin{array}{l} Proof. \mbox{ To prove } f \mbox{ is uniformly continuous on } (2,7), \mbox{ let } \epsilon > 0 \mbox{ be given.} \\ \mbox{ Let } \delta = \frac{\epsilon}{148}. \\ \mbox{ Then } \delta > 0. \\ \mbox{ Let } x,y \in (2,7) \mbox{ such that } |x-y| < \delta. \\ \mbox{ Then } 2 < x < 7 \mbox{ and } 2 < y < 7, \mbox{ so } 4 < x^2 < 49 \mbox{ and } 4 < y^2 < 49 \mbox{ and } 4 < xy < 49. \\ \mbox{ Thus, } |x^2 + xy + y^2 - 1| \leq |x^2| + |xy| + |y^2| + |-1| = x^2 + xy + y^2 + 1 < 49 + 49 + 49 + 1 = 148. \\ \mbox{ Observe that} \end{array}$

$$\begin{aligned} |f(x) - f(y)| &= |(x^3 - x + 1) - (y^3 - y + 1)| \\ &= |x^3 - y^3 - x + y| \\ &= |(x - y)(x^2 + xy + y^2) - (x - y)| \\ &= |(x - y)(x^2 + xy + y^2 - 1)| \\ &= |x - y||x^2 + xy + y^2 - 1| \\ &< \delta \cdot 148 \\ &= \epsilon. \end{aligned}$$

Therefore, $|f(x) - f(y)| < \epsilon$, as desired.

Exercise 61. Let a > 0.

Let $f: [a, \infty) \to \mathbb{R}$ be a function defined by $f(x) = \frac{1}{x}$. Then f is uniformly continuous on the interval $[a, \infty)$.

 $\begin{array}{l} \textit{Proof. To prove } f \text{ is uniformly continuous on } [a,\infty), \, \mathrm{let} \; \epsilon > 0 \; \mathrm{be \; given.} \\ \mathrm{Let} \; \delta = \epsilon a^2. \\ \mathrm{Since} \; \epsilon > 0 \; \mathrm{and} \; a^2 > 0, \; \mathrm{then} \; \delta > 0. \\ \mathrm{Let} \; x,y \in [a,\infty) \; \mathrm{such \; that} \; |x-y| < \delta. \\ \mathrm{Then} \; x \geq a \; \mathrm{and} \; y \geq a. \\ \mathrm{Since} \; x \geq a > 0, \; \mathrm{then} \; \frac{1}{a} \geq \frac{1}{x} > 0. \\ \mathrm{Since} \; y \geq a > 0, \; \mathrm{then} \; \frac{1}{a} \geq \frac{1}{x} > 0. \\ \mathrm{Since} \; y \geq a > 0, \; \mathrm{then} \; \frac{1}{a} \geq \frac{1}{y} > 0. \\ \mathrm{Thus,} \; \frac{1}{a^2} \geq \frac{1}{xy}. \\ \mathrm{Observe \; that} \end{array}$

$$|f(x) - f(y)| = \left|\frac{1}{x} - \frac{1}{y}\right|$$
$$= \left|\frac{y - x}{xy}\right|$$
$$= \left|\frac{x - y}{xy}\right|$$
$$= \frac{1}{xy}|x - y|$$
$$< \frac{\delta}{a^2}$$
$$= \epsilon.$$

Therefore, $|f(x) - f(y)| < \epsilon$, as desired.

Exercise 62. Let $f: [1, \infty) \to \mathbb{R}$ be a function defined by $f(x) = \frac{1}{x^2}$. Then f is uniformly continuous on the interval $[1, \infty)$.

- Proof. To prove f is uniformly continuous on $[1, \infty)$, let $\epsilon > 0$ be given. Let $\delta = \frac{\epsilon}{2}$. Then $\delta > 0$.
 - Let $x, y \in [1, \infty)$ such that $|x y| < \delta$. Then $x \ge 1$ and $y \ge 1$, so $xy \ge 1$. Hence, $1 \ge \frac{1}{xy} > 0$, so $0 < \frac{1}{xy} \le 1$. Observe that

$$\begin{aligned} |\frac{1}{x} - \frac{1}{y}| &= |\frac{y - x}{xy}| \\ &= |\frac{x - y}{xy}| \\ &= \frac{1}{xy}|x - y| \\ &< \delta. \end{aligned}$$

Thus, $\left|\frac{1}{x} - \frac{1}{y}\right| < \delta$. Since $x \ge 1$, then $1 \ge \frac{1}{x} > 0$. Since $y \ge 1$, then $1 \ge \frac{1}{y} > 0$. Thus, $2 \ge \frac{1}{x} + \frac{1}{y} > 0$, so $0 < \frac{1}{x} + \frac{1}{y} \le 2$. Observe that

$$\begin{split} |f(x) - f(y)| &= |\frac{1}{x^2} - \frac{1}{y^2}| \\ &= |(\frac{1}{x} - \frac{1}{y})(\frac{1}{x} + \frac{1}{y}) \\ &= |\frac{1}{x} - \frac{1}{y}||\frac{1}{x} + \frac{1}{y}| \\ &= |\frac{1}{x} - \frac{1}{y}|(\frac{1}{x} + \frac{1}{y}) \\ &< 2\delta \\ &= \epsilon. \end{split}$$

Therefore, $|f(x) - f(y)| < \epsilon$, as desired.

Exercise 63. Let m and b be fixed real numbers.

Let I be an interval. Then the linear function f(x) = mx + b is uniformly continuous on I.

Proof. To prove f is uniformly continuous on I, let $\epsilon > 0$ be given.

We must prove there exists $\delta > 0$ such that for all $x, y \in I$, if $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$. Either m = 0 or $m \neq 0$. We consider these cases separately. Case 1: Suppose m = 0. Then f(x) = 0x + b = b for all $x \in \mathbb{R}$. Let $\delta = \epsilon$. Then $\delta > 0$. Let $x, y \in I$. Then $|f(x) - f(y)| = |b - b| = 0 < \epsilon$. Hence, the implication if $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$ is trivially true. Case 2: Suppose $m \neq 0$. Let $\delta = \frac{\epsilon}{|m|}$. Since $m \neq 0$, then |m| > 0. Since $\epsilon > 0$ and |m| > 0, then $\delta > 0$. Let $x, y \in I$ such that $|x - y| < \delta$.

Then

$$|f(x) - f(y)| = |(mx + b) - (my + b)|$$

$$= |mx + b - my - b|$$

$$= |mx - my|$$

$$= |m(x - y)|$$

$$= |m||x - y|$$

$$< |m|\delta$$

$$= |m| \cdot \frac{\epsilon}{|m|}$$

$$= \epsilon.$$

Therefore, $|f(x) - f(y)| < \epsilon$, as desired.

Exercise 64. Let $f: (0, \infty) \to \mathbb{R}$ be the function given by $f(x) = x^2$. Then f is not uniformly continuous on $(0, \infty)$.

 $\begin{array}{l} \textit{Proof.} \mbox{ To prove f is not uniformly continuous on $(0,\infty)$, we prove $(\exists \epsilon > 0)(\forall \delta > 0)(\exists x, y \in (0,\infty))(|x-y| < \delta \land |f(x) - f(y)| \ge \epsilon$)$.} \\ \mbox{ Let $\epsilon = 1$.} \\ \mbox{ Let $\delta > 0$ be given.} \\ \mbox{ Let $\alpha = \min\{2, \delta\}$.} \\ \mbox{ Then $\alpha \le 2$ and $\alpha \le \delta$ and $\alpha > 0$.} \\ \mbox{ Let $x = \frac{1}{\alpha} - \frac{\alpha}{5}$.} \\ \mbox{ Let $y = x + \frac{\alpha}{2}$.} \\ \mbox{ Since $0 < \alpha \le 2$, then $0 < \alpha^2 \le 4 < 5$, so $0 < \alpha^2 < 5$.} \\ \mbox{ Hence, $\frac{\alpha}{5} < \frac{1}{\alpha}$, so $\frac{1}{\alpha} - \frac{\alpha}{5} > 0$.} \\ \mbox{ Thus, $x > 0$, so $x \in (0, \infty)$.} \\ \mbox{ Since $|x - y| = |y - x| = |\frac{\alpha}{2}| = \frac{\alpha}{2} < \alpha \le \delta$, then $|x - y| < \delta$.} \\ \mbox{ Since $4 < 5$ and $\alpha > 0$, then $4\alpha < 5\alpha$, so $\frac{\alpha}{5} < \frac{\alpha}{4}$.} \\ \mbox{ Hence, $\frac{-\alpha}{5} > \frac{-\alpha}{4}$, so $\frac{1}{\alpha} - \frac{\alpha}{5} > \frac{1}{\alpha} - \frac{\alpha}{4}$.} \\ \mbox{ Hence that } \end{array}$

$$\begin{aligned} |f(x) - f(y)| &= |x^2 - y^2| \\ &= |(x - y)(x + y)| \\ &= |x - y||x + y| \\ &= |x - y|(x + y) \\ &= \frac{\alpha}{2}[x + (x + \frac{\alpha}{2})] \\ &= \frac{\alpha}{2}(2x + \frac{\alpha}{2}) \\ &= \alpha(x + \frac{\alpha}{4}) \\ &> \alpha \cdot \frac{1}{\alpha} \\ &= 1. \end{aligned}$$

Therefore, $|f(x) - f(y)| > 1 = \epsilon$, so f is not uniformly continuous on the interval $(0, \infty)$.

Exercise 65. Let $f: (0, \infty) \to \mathbb{R}$ be the function given by $f(x) = \frac{1}{x^2}$. Then f is not uniformly continuous on $(0, \infty)$.

Proof. To prove f is not uniformly continuous on $(0, \infty)$, we prove $(\exists \epsilon > 0)(\forall \delta > 0)(\exists x, y \in (0, \infty))(|x - y| < \delta \land |f(x) - f(y)| \ge \epsilon)$.

Let $\epsilon = 1$. Let $\delta > 0$ be given. Let $\alpha = \min\{1, \delta\}$. Then $\alpha \leq 1$ and $\alpha \leq \delta$ and $\alpha > 0$. Let $x = \alpha$. Let $y = \frac{\alpha}{2}$. Then x > 0 and y > 0, so $x \in (0, \infty)$ and $y \in (0, \infty)$. Since $|x - y| = |\alpha - \frac{\alpha}{2}| = \frac{\alpha}{2} < \alpha \leq \delta$, then $|x - y| < \delta$. Since $0 < \alpha \leq 1$, then $0 < \alpha^2 \leq 1 < 3$, so $0 < \alpha^2 < 3$. Hence, $1 < \frac{3}{\alpha^2}$. Observe that

$$\begin{aligned} |f(x) - f(y)| &= |f(\alpha) - f(\frac{\alpha}{2})| \\ &= |\frac{1}{\alpha^2} - \frac{4}{\alpha^2}| \\ &= \frac{3}{\alpha^2} \\ &> 1. \end{aligned}$$

Therefore, $|f(x) - f(y)| > 1 = \epsilon$, so f is not uniformly continuous on the interval $(0, \infty)$.

Proposition 66. the sum of uniformly continuous functions is uniformly continuous

Let f and g be real valued functions defined on a set E.

If f is uniformly continuous on E and g is uniformly continuous on E, then f + g is uniformly continuous on E.

Proof. To prove the function f + g is uniformly continuous on E, let $\epsilon > 0$ be given.

We must prove there exists $\delta > 0$ such that for all $x, y \in E$, if $|x - y| < \delta$, then $|(f + g)(x) - (f + g)(y)| < \epsilon$.

Since $\epsilon > 0$, then $\frac{\epsilon}{2} > 0$.

Since f is uniformly continuous on E and $\frac{\epsilon}{2} > 0$, then there exists $\delta_1 > 0$ such that for all $x, y \in E$, if $|x - y| < \delta_1$, then $|f(x) - f(y)| < \frac{\epsilon}{2}$.

Since g is uniformly continuous on E and $\frac{\epsilon}{2} > 0$, then there exists $\delta_2 > 0$ such that for all $x, y \in E$, if $|x - y| < \delta_2$, then $|g(x) - g(y)| < \frac{\epsilon}{2}$.

Let $\delta = \min\{\delta_1, \delta_2\}.$

Then $\delta \leq \delta_1$ and $\delta \leq \delta_2$ and $\delta > 0$.

Let $x, y \in E$ such that $|x - y| < \delta$.

Since $|x - y| < \delta \le \delta_1$, then $|x - y| < \delta_1$, so $|f(x) - f(y)| < \frac{\epsilon}{2}$. Since $|x - y| < \delta \le \delta_2$, then $|x - y| < \delta_2$, so $|g(x) - g(y)| < \frac{\epsilon}{2}$. Therefore,

$$\begin{aligned} |(f+g)(x) - (f+g)(y)| &= |f(x) + g(x) - (f(y) + g(y))| \\ &= |f(x) + g(x) - f(y) - g(y)| \\ &= |f(x) - f(y) + g(x) - g(y)| \\ &\leq |f(x) - f(y)| + |g(x) - g(y)| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ &= \epsilon. \end{aligned}$$

Exercise 67. Let f and g be real valued functions defined on a set E.

If f is uniformly continuous on E and g is uniformly continuous on E, show that fg is not necessarily uniformly continuous on E.

Solution. Let $f: (0, \infty) \to \mathbb{R}$ be the identity function f(x) = x.

Let g be a function such that g = f.

Then g(x) = f(x) = x for all $x \in (0, \infty)$.

Since f is a linear function defined on the interval $(0, \infty)$, then f is uniformly continuous on $(0, \infty)$.

Since g = f, then g is uniformly continuous on $(0, \infty)$.

However, the function fg given by $(fg)(x) = f(x)g(x) = xx = x^2$ is not uniformly continuous on $(0, \infty)$.

Proposition 68. the product of uniformly continuous bounded functions is uniformly continuous

Let f and g be bounded real valued functions defined on a set E.

If f is uniformly continuous on E and g is uniformly continuous on E, then fg is uniformly continuous on E.

Proof. To prove the function fg is uniformly continuous on E, let $\epsilon > 0$ be given.

We must prove there exists $\delta > 0$ such that for all $x, y \in E$, if $|x - y| < \delta$, then $|(fg)(x) - (fg)(y)| < \epsilon$.

Since f is bounded in \mathbb{R} , then there exists a real number K > 0 such that |f(x)| < K for all $x \in E$.

Since g is bounded in \mathbb{R} , then there exists a real number M > 0 such that |g(x)| < M for all $x \in E$.

Since $\epsilon > 0$ and M > 0, then $\frac{\epsilon}{2M} > 0$.

Since f is uniformly continuous on E and $\frac{\epsilon}{2M} > 0$, then there exists $\delta_1 > 0$ such that for all $x, y \in E$, if $|x - y| < \delta_1$, then $|f(x) - f(y)| < \frac{\epsilon}{2M}$.

Since $\epsilon > 0$ and K > 0, then $\frac{\epsilon}{2K} > 0$.

Since g is uniformly continuous on E and $\frac{\epsilon}{2K} > 0$, then there exists $\delta_2 > 0$ such that for all $x, y \in E$, if $|x - y| < \delta_2$, then $|g(x) - g(y)| < \frac{\epsilon}{2K}$.

Let $\delta = \min\{\delta_1, \delta_2\}.$

Then $\delta \leq \delta_1$ and $\delta \leq \delta_2$ and $\delta > 0$. Let $x, y \in E$ such that $|x - y| < \delta$. Since $|x - y| < \delta \leq \delta_1$, then $|x - y| < \delta_1$, so $|f(x) - f(y)| < \frac{\epsilon}{2M}$. Since $|x - y| < \delta \leq \delta_2$, then $|x - y| < \delta_2$, so $|g(x) - g(y)| < \frac{\epsilon}{2K}$. Since $x \in E$, then |f(x)| < K. Since $y \in E$, then |g(y)| < M. Therefore,

$$\begin{split} |(fg)(x) - (fg)(y)| &= |f(x)g(x) - f(y)g(y)| \\ &= |f(x)(g(x) - g(y)) + f(x)g(y) - f(y)g(y)| \\ &= |f(x)(g(x) - g(y)) + g(y)(f(x) - f(y))| \\ &\leq |f(x)(g(x) - g(y))| + |g(y)(f(x) - f(y))| \\ &= |f(x)||g(x) - g(y)| + |g(y)||f(x) - f(y)| \\ &< K \cdot \frac{\epsilon}{2K} + M \cdot \frac{\epsilon}{2M} \\ &= \epsilon. \end{split}$$

Proposition 69. composition of uniformly continuous functions is uniformly continuous

Let f and g be real valued functions of a real variable.

If f is uniformly continuous and g is uniformly continuous, then $g \circ f$ is uniformly continuous.

Proof. Suppose f is uniformly continuous and g is uniformly continuous.

To prove the function $g \circ f$ is uniformly continuous, let $\epsilon > 0$ be given.

Since g is uniformly continuous, then there exists $\delta_1 > 0$ such that for all $x, y \in domg$, if $|x - y| < \delta_1$, then $|g(x) - g(y)| < \epsilon$.

Since f is uniformly continuous and $\delta_1 > 0$, then there exists $\delta > 0$ such that for all $x, y \in domf$, if $|x - y| < \delta$, then $|f(x) - f(y)| < \delta_1$.

Let $x, y \in dom(g \circ f)$ such that $|x - y| < \delta$.

Since $x \in dom(g \circ f)$ and $dom(g \circ f) = \{x \in domf : f(x) \in domg\}$, then $x \in domf$ and $f(x) \in domg$.

Since $y \in dom(g \circ f)$ and $dom(g \circ f) = \{x \in domf : f(x) \in domg\}$, then $y \in domf$ and $f(y) \in domg$.

Since $x \in domf$ and $y \in domf$ and $|x - y| < \delta$, then $|f(x) - f(y)| < \delta_1$.

Since $f(x) \in domg$ and $f(y) \in domg$ and $|f(x) - f(y)| < \delta_1$, then $|g(f(x) - g(f(y))| < \epsilon$.

Therefore, $|(g \circ f)(x) - (g \circ f)(y)| < \epsilon$, as desired.