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Continuity

Exercise 1. The function given by f(x) = x2 is continuous at x = 2.

Proof. Let ε > 0 be given.
Let δ = min{1, ε5}.
Then δ ≤ 1 and δ ≤ ε

5 and δ > 0.
Let x ∈ R such that |x− 2| < δ.
Then |x+ 2| = |(x− 2) + 4| ≤ |x− 2|+ 4 < δ + 4 ≤ 5, so |x+ 2| < 5.
Therefore, |x2 − 4| = |(x − 2)(x + 2)| = |x − 2||x + 2| < 5δ ≤ 5 · ε5 = ε, so

|x2 − 4| < ε, as desired.

Exercise 2. Let f : R→ R be the function defined by f(x) = 3x2 − 2x+ 1.
Then f is continuous at 2.

Solution. To prove f is continuous at 2, let ε > 0 be given.
Let δ = min{1, ε13}.
Then δ ≤ 1 and δ ≤ ε

13 and δ > 0.
Let x ∈ R such that |x− 2| < δ.
Then 0 ≤ |x− 2| < δ.
Since |3x + 4| = |3(x − 2) + 10| ≤ 3|x − 2| + 10 < 3δ + 10 ≤ 3 + 10 = 13,

then |3x+ 4| < 13.
Thus, |f(x)−f(2)| = |(3x2−2x+1)−9| = |3x2−2x−8| = |(x−2)(3x+4)| =

|x− 2||3x+ 4| < 13δ ≤ ε
13 · 13 = ε.

Therefore, |f(x)− f(2)| < ε, as desired.

Exercise 3. Let f : [−4, 0]→ R be a function defined by

f(x) =

{
2x2−18
x+3 if x 6= 3

−12 if x = −3

Then f is continuous at −3.



Solution. To prove f is continuous at −3 ∈ [−4, 0], let ε > 0 be given.
Let δ = ε

2 .
Then δ > 0.
Let x ∈ [−4, 0] such that |x− (−3)| < δ.
Then 0 ≤ |x+ 3| < δ.
Either x = −3 or x 6= −3.
We consider these cases separately.
Case 1: Suppose x = −3.
Then |f(x)− f(−3)| = |f(−3)− f(−3)| = 0 < ε.
Hence, the conditional if |x− (−3)| < δ, then |f(x)− f(−3)| < ε is trivially

true.
Case 2: Suppose x 6= −3.

Then |f(x)− f(−3)| = | 2x
2−18
x+3 + 12| = | 2(x−3)(x+3)

x+3 + 12| = |2(x− 3) + 12| =
|2x+ 6| = 2|x+ 3| < 2δ = ε, so |f(x)− f(−3)| < ε.

Therefore, f is continuous at −3, as desired.

Exercise 4. Let f(x) = x2+x−6
x−2 be defined for all real numbers x 6= 2.

Define f so that f is continuous at 2.

Solution. Since domf = R − {2}, then 2 is not in the domain of f , so f is
discontinuous at 2.

Define f(2) = 5.
Then domf = R.
For x 6= 2, observe that

lim
x→2

f(x) = lim
x→2

x2 + x− 6

x− 2

= lim
x→2

(x− 2)(x+ 3)

x− 2
= lim

x→2
(x+ 3)

= 2 + 3

= 5

= f(2).

Since 2 ∈ R and 2 is an accumulation point of R and limx→2 f(x) = f(2),
then by the characterization of continuity, f is continuous at 2.

Exercise 5. Let f : (0,∞)→ R be the function defined by f(x) = 1
x .

Let 0 < c < 1.
If δ > 0 satisfies the ε, δ definition of continuity at c for ε = 1, then δ < c2

1+c .

Solution. Suppose δ > 0 and δ satisfies the ε, δ definition of continuity at c for
ε = 1.

Since f is continuous at c for any c > 0 and c > 0, then f is continuous at c.

Thus, δ = min{ c2 ,
c2ε
2 } = min{ c2 ,

c2

2 }.
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Since c < 1 and c > 0, then c2 < c, so c2

2 < c
2 .

Hence, δ = c2

2 .
Since c < 1, then 1 + c < 2, so 1

2 <
1

1+c .

Since c2 > 0, then c2

2 < c2

1+c , so δ < c2

1+c , as desired.

Exercise 6. Let f : R→ R be the function defined by f(x) = 2x2 + 3x+ 1.
Then f is continuous.

Solution. Let c ∈ R be given.
To prove f is continuous, we must prove f is continuous at c.
Let ε > 0 be given.
Let δ = min{1, ε

5+4|c|}.
Then δ ≤ 1 and δ ≤ ε

5+4|c| and δ > 0.

Let x ∈ R such that |x− c| < δ.
Then 0 ≤ |x− c| < δ.
Since |x| = |(x− c) + c| ≤ |x− c|+ |c| < δ + |c| ≤ 1 + |c|, then |x| < 1 + |c|.
Hence, |2x + 2c + 3| ≤ 2|x| + 2|c| + 3 < 2(1 + |c|) + 2|c| + 3 = 5 + 4|c|, so

0 ≤ |2x+ 2c+ 3| < 5 + 4|c|.
Thus,

|f(x)− f(c)| = |(2x2 + 3x+ 1)− (2c2 + 3c+ 1)|
= |2(x2 − c2) + 3(x− c)|
= |2(x− c)(x+ c) + 3(x− c)|
= |(x− c)[2(x+ c) + 3]|
= |(x− c)(2x+ 2c+ 3)|
= |x− c||2x+ 2c+ 3|
< δ · (5 + 4|c|)

≤ ε

5 + 4|c|
· (5 + 4|c|)

= ε.

Therefore, |f(x)− f(c)| < ε, as desired.

Exercise 7. Let f : R→ R be a function defined by

f(x) =

{
x if x is rational

x2 if x is irrational

Then f is continuous at 1 and f is discontinuous at 2.

Proof. To prove f is continuous at 1, let ε > 0 be given.
Let δ = min{1, ε3}.
Then δ ≤ 1 and δ ≤ ε

3 and δ > 0.
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Let x ∈ R such that |x− 1| < δ.
Since x ∈ R, then either x is rational or x is irrational.
We consider each case separately.
Case 1: Suppose x is rational.
Then |f(x)− f(1)| = |x− 1| < δ ≤ ε

3 < ε.
Case 2: Suppose x is irrational.
Since |x+ 1| = |x− 1 + 2| ≤ |x− 1|+ 2 < δ + 2 ≤ 3, then |x+ 1| < 3.
Thus,

|f(x)− f(1)| = |x2 − 1|
= |x− 1||x+ 1|
< 3δ

≤ 3 · ε
3

= ε.

Therefore, in either case, |f(x)− f(1)| < ε, so f is continuous at 1.

Proof. To prove f is discontinuous at 2, we prove (∃ε > 0)(∀δ > 0)(∃x ∈
R)(|x− 2| < δ ∧ |f(x)− f(2)| ≥ ε).

Let ε = 2.
Let δ > 0 be given.
Since 2 < 2 + δ and R − Q is dense in R, then there exists r ∈ R − Q such

that 2 < r < 2 + δ.
Since r ∈ R−Q, then r ∈ R and f(r) = r2.
Since 2 < r < 2 + δ, then 0 < r − 2 < δ, so |r − 2| = r − 2 < δ.
Since r > 2, then r2 > 4, so r2 − 2 > 2 > 0.
Thus, |f(r)− f(2)| = |r2 − 2| = r2 − 2 > 2 = ε.
Therefore, there exists r ∈ R such that |r − 2| < δ and |f(r)− f(2)| > ε, as

desired.

Exercise 8. Let f : R→ R be a function defined by

f(x) =

{
8x if x is rational

2x2 + 8 if x is irrational

Then f is continuous at 2 and f is discontinuous at 1.

Proof. To prove f is continuous at 2, let ε > 0 be given.
Let δ = min{1, ε10}.
Then δ ≤ 1 and δ ≤ ε

10 and δ > 0.
Let x ∈ R such that |x− 2| < δ.
Since x ∈ R, then either x is rational or x is irrational.
We consider each case separately.
Case 1: Suppose x is rational.
Then |f(x)− f(2)| = |8x− 16| = 8|x− 2| < 8δ ≤ 8 · ε10 < ε.
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Case 2: Suppose x is irrational.
Since |x+ 2| = |(x− 2) + 4| ≤ |x− 2|+ 4 < δ + 4 ≤ 5, then 0 ≤ |x+ 2| < 5.
Thus, |f(x)−f(2)| = |(2x2+8)−16| = |2x2−8| = 2|x2−4| = 2|x−2||x+2| <

10δ ≤ ε.
Therefore, in either case, |f(x)− f(2)| < ε, so f is continuous at 2.

Proof. To prove f is discontinuous at 1, we prove (∃ε > 0)(∀δ > 0)(∃x ∈
R)(|x− 1| < δ ∧ |f(x)− f(1)| ≥ ε).

Let ε = 2.
Let δ > 0 be given.
Since 1 < 1 + δ and R − Q is dense in R, then there exists r ∈ R − Q such

that 1 < r < 1 + δ.
Since r ∈ R−Q, then r ∈ R and f(r) = 2r2 + 8.
Since 1 < r < 1 + δ, then 0 < r − 1 < δ, so |r − 1| = r − 1 < δ.
Since r > 1, then r2 > 1, so 2r2 > 2.
Thus, |f(r)− f(1)| = |(2r2 + 8)− 8| = |2r2| = 2r2 > 2 = ε.
Therefore, there exists r ∈ R such that |r − 1| < δ and |f(r)− f(1)| > ε, as

desired.

Exercise 9. Let f : R→ R be a function defined by

f(x) =

{
x if x is rational

0 if x is irrational

Then f is continuous at 0 and f is discontinuous for all x 6= 0.
(Therefore, f is continuous only at x = 0).

Proof. To prove f is continuous at 0, let ε > 0 be given.
Let δ = ε.
Then δ > 0.
Let x ∈ R such that |x| < δ.
Since x ∈ R, then either x is rational or x is irrational.
We consider each case separately.
Case 1: Suppose x is rational.
Then |f(x)− f(0)| = |x− 0| = |x| < δ = ε.
Case 2: Suppose x is irrational.
Then |f(x)− f(0)| = |0− 0| = 0 < ε.
Therefore, in either case, |f(x)− f(0)| < ε, so f is continuous at 0.

Proof. Let c ∈ R such that c 6= 0.
We must prove f is discontinuous at c.

Let ε = |c|
2 .

Since c 6= 0, then |c| > 0, so ε = |c|
2 > 0.

Let δ > 0 be given.
Since c ∈ R, then either c ∈ Q or c 6∈ Q.
We consider these cases separately.

5



Case 1: Suppose c ∈ Q.
Since c < c + δ and R − Q is dense in R, then there exists r ∈ R − Q such

that c < r < c+ δ.
Since c < r < c+ δ, then 0 < r − c < δ, so |r − c| = r − c < δ.

Observe that |f(r)− f(c)| = |0− c| = |c| > |c|
2 = ε.

Therefore, there exists r ∈ R such that |r − c| < δ and |f(r)− f(c)| > ε, as
desired.

Case 2: Suppose c 6∈ Q.
Since c 6= 0, then either c > 0 or c < 0.
We consider these cases separately.
Case 2a: Suppose c > 0.
Since c < c + δ and Q is dense in R, then there exists r ∈ Q such that

c < r < c+ δ, so 0 < r − c < δ.
Hence, |r − c| = r − c < δ.
Since r > c > 0, then r > 0.

Thus, |f(r)− f(c)| = |r − 0| = |r| = r > c = |c| > |c|
2 .

Case 2b: Suppose c < 0.
Since c − δ < c and Q is dense in R, then there exists r ∈ Q such that

c− δ < r < c, so −δ < r − c < 0.
Hence, |r − c| = −(r − c) < δ.
Since r < c < 0, then r < 0.

Thus, |f(r)− f(c)| = |r − 0| = |r| = −r > −c = |c| > |c|
2 .

Therefore, there exists r ∈ R such that |r − c| < δ and |f(r)− f(c)| > ε, as
desired.

Exercise 10. Let f : R→ R be a function defined by

f(x) =

{
2x if x is rational

x+ 3 if x is irrational

Then f is continuous at 3 and discontinuous at c 6= 3.

Proof. We prove f is continuous at 3.
Let ε > 0 be given.
Let δ = ε

2 .
Then δ > 0.
Let x ∈ R such that |x− 3| < δ.
Since x ∈ R, then either x is rational or x is irrational.
We consider these cases separately.
Case 1: Suppose x is rational.
Then |f(x)− f(3)| = |2x− 6| = |2(x− 3)| = 2|x− 3| < 2δ = ε.
Case 2: Suppose x is irrational.
Then |f(x)− f(3)| = |x+ 3− 6| = |x− 3| < δ = ε

2 < ε.
Hence, in all cases, |f(x)− f(3)| < ε, as desired.

Lemma 11. Every real number is an accumulation point of R−Q.
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Proof. Let p ∈ R be arbitrary.
To prove p is an accumulation point of R−Q, let δ > 0 be given.
Then δ > p− p, so p+ δ > p.
Since p < p + δ and R − Q is dense in R, then there exists r ∈ R − Q such

that p < r < p+ δ.
Thus, 0 < r − p < δ and p < r.
Since 0 < r − p < δ, then |r − p| = r − p < δ, so r ∈ N(p; δ).
Since r > p, then r 6= p, so r ∈ N ′(p; δ).
Thus, there exists r ∈ R−Q such that r ∈ N ′(p; δ), so p is an accumulation

point of R−Q, as desired.

Proof. Let c ∈ R such that c 6= 3.
We must prove f is discontinuous at c.
Since every real number is an accumulation point of Q and c ∈ R, then c is

an accumulation point of Q, so there exists a sequence of points in Q−{c} that
converges to c.

Let (an) be a sequence of points in Q− {c} such that limn→∞ an = c.
Since every real number is an accumulation point of R−Q and c ∈ R, then

c is an accumulation point of R − Q, so there exists a sequence of points in
R−Q− {c} that converges to c.

Let (bn) be a sequence of points in R−Q− {c} such that limn→∞ bn = c.
Suppose f is continuous at c.
Then by the sequential characterization of continuity, limn→∞ f(an) = limn→∞ f(bn).
Thus, limn→∞(2an) = limn→∞(bn + 3), so 2 limn→∞ an = limn→∞ bn +

limn→∞ 3.
Hence, 2c = c+ 3, so c = 3.
But, this contradicts the assumption that c 6= 3.
Therefore, f is discontinuous at c, as desired.

Exercise 12. Let f : R → R be the greatest integer function given by f(x) =
bxc = max{n ∈ Z : n ≤ x} for all x ∈ R.

Then f is discontinuous at n for all n ∈ Z and f is continuous at c for all
c ∈ R− Z.

Proof. To prove f is discontinuous at n for all n ∈ Z, let n ∈ Z be given.
We must prove (∃ε > 0)(∀δ > 0)(∃x ∈ R)(|x− n| < δ ∧ |f(x)− f(n)| ≥ ε).
Let ε = 1

2 .
Let δ > 0 be given.
Let M = max{n− δ, n− 1}.
Then n− δ ≤M and n− 1 ≤M , and either M = n− δ or M = n− 1.
Since n− 1 < n and n− δ < n, then M < n.
Since R is dense, then there exists x ∈ R such that M < x < n.
Since n − δ ≤ M < x < n, then n − δ < x and x < n, so n − x < δ and

n− x > 0.
Thus, |x− n| = |n− x| = n− x < δ.
Since n− 1 ≤M < x < n, then n− 1 < x < n, so f(x) = n− 1.
Hence, |f(x)− f(n)| = |(n− 1)− n| = 1 > 1

2 = ε.
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Proof. To prove f is continuous at c for all c ∈ R− Z, let c ∈ R− Z be given.
Then c ∈ R and c 6∈ Z, so there is a unique integer n such that n < c < n+1.
Let ε > 0 be given.
Let M = min{n+ 1− c, c− n}.
Then M ≤ n+ 1− c and M ≤ c−n, and either M = n+ 1− c or M = c−n.
Let δ = M

2 .
Since n < c, then c− n > 0.
Since c < n+ 1, then n+ 1− c > 0.
Thus, M > 0, so M

2 > 0.
Hence, δ > 0.
Let x ∈ R such that |x− c| < δ.
Then c− δ < x < c+ δ.
Since δ = M

2 < M ≤ n+ 1− c, then δ < n+ 1− c, so c+ δ < n+ 1.

Since δ = M
2 < M ≤ c− n, then δ < c− n, so n < c− δ.

Hence, n < c− δ < x < c+ δ < n+ 1, so n < x < n+ 1.
Thus, |f(x)− f(c)| = |n− n| = 0 < ε.
Therefore, f is continuous at c, as desired.

Exercise 13. continuity of a restriction of a function does not neces-
sarily imply continuity of the function

Let f : R→ R be a function defined by

f(x) =

{
1 if x ≥ 0

0 if x < 0

Let g be the restriction of f to [0,∞).
Then g(x) = 1 for all x ∈ [0,∞).
Since the constant function given by h(x) = 1 is continuous and g is a

restriction of h to [0,∞), then g is continuous, so g is continuous on [0,∞).
Since 0 ∈ [0,∞), then g is continuous at 0.
Since 0 is an accumulation point of R, but limx→0 f(x) does not exist, then

f is not continuous at 0, so f is not continuous.
Therefore, g is continuous at 0, but f is not continuous at 0.
Thus, if g is a restriction of f and g is continuous, then f is not necessarily

continuous.

Exercise 14. Let S ⊂ R and c ∈ R and α > 0.
Let I = (c− α, c+ α) ⊂ S.
Let f : S → R be a function.
If the restriction of f to I, denoted fI , is continuous at c, then f is continuous

at c.

Proof. Suppose fI is continuous at c.
To prove f is continuous at c, let ε > 0 be given.
Since fI is continuous at c, then there exists β > 0 such that for all x ∈ I,

if |x− c| < β, then |fI(x)− fI(c)| < ε.
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Let m = min{α, β}.
Then m ≤ α and m ≤ β.
Since α > 0 and β > 0, then m > 0, so m

2 > 0.
Let δ = m

2 .
Then δ > 0.
Let x ∈ S such that |x− c| < δ.
Since |x − c| < δ = m

2 < m ≤ α, then |x − c| < α, so x ∈ N(c;α) =
(c− α, c+ α) = I.

Since |x− c| < δ = m
2 < m ≤ β, then |x− c| < β.

Since x ∈ I and |x− c| < β, then |fI(x)− fI(c)| < ε.
Therefore, |f(x) − f(c)| = |fI(x) − fI(c)| < ε, so f is continuous at c, as

desired.

Exercise 15. Let K > 0.
Let f : R → R be a function such that |f(x) − f(y)| ≤ K|x − y| for all

x, y ∈ R.
Then f is continuous on R.

Proof. To prove f is continuous on R, let c ∈ R be arbitrary.
To prove f is continuous at c, let ε > 0 be given.
Let δ = ε

K .
Since ε > 0 and K > 0, then δ > 0.
Let x ∈ R such that |x− c| < δ.
Since x ∈ R and c ∈ R, then |f(x)− f(c)| ≤ K|x− c| < Kδ = ε.
Therefore, |f(x)− f(c)| < ε, so f is continuous at c, as desired.

Exercise 16. Let f : R→ R be a continuous function such that f(x) = x2 for
all x ∈ Q.

Compute f(
√

2).

Solution. Since f is continuous on R and
√

2 ∈ R, then f is continuous at
√

2.
Hence, by the sequential characterization of continuity, for every sequence

(xn) in R that converges to
√

2, the sequence (f(xn)) converges to f(
√

2).
Let (xn) be a sequence of rational numbers defined recursively by x1 = 2

and xn+1 = xn

2 + 1
xn

for all n ∈ N.

Then we know limn→∞ xn =
√

2.
Since (xn) is a sequence of rational numbers, then xn ∈ Q for all n ∈ N.
Let n ∈ N.
Then xn ∈ Q.
Since Q ⊂ R, then xn ∈ R.
Hence, xn ∈ R for all n ∈ N, so (xn) is a sequence in R.
Since (xn) is a sequence in R and limn→∞ xn =

√
2, then limn→∞ f(xn) =

f(
√

2).
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Hence,

f(
√

2) = lim
n→∞

f(xn)

= lim
n→∞

(xnxn)

= ( lim
n→∞

xn)( lim
n→∞

xn)

=
√

2 ·
√

2

= 2.

Therefore, f(
√

2) = 2.

Exercise 17. If f : Z→ R is a function, then f is continuous.

Proof. Suppose f : Z→ R is a function.
To prove f is continuous, let n ∈ Z.
Since there are no accumulation points of Z, then n is not an accumulation

point of Z.
Since n ∈ Z, then by the characterization of continuity, f is continuous at

n.
Therefore, f is continuous on Z, so f is continuous.

Exercise 18. Let E ⊂ R.
Let f : E → R be a function.
If c ∈ E and c is not an accumulation point of E, then for every sequence

(xn) of points in E such that (xn) converges to c, the sequence (f(xn)) converges
to f(c).

Proof. Suppose c ∈ E and c is not an accumulation point of E.
Then f is continuous at c.
Therefore, by the sequential characterization of continuity, for every sequence

(xn) of points in E such that (xn) converges to c, the sequence (f(xn)) converges
to f(c).

Exercise 19. Using the sequential characterization of continuity prove the func-
tion f : (0,∞)→ R defined by f(x) = 1

x is continuous.

Proof. To prove f is continuous on its domain, we must prove f is continuous
on the interval (0,∞).

Let c ∈ (0,∞) be arbitrary.
Then c > 0, so c 6= 0.
To prove f is continuous at c using the sequential characterization of con-

tinuity, let (xn) be an arbitrary sequence of real numbers in (0,∞) such that
limn→∞ xn = c.

We must prove limn→∞ f(xn) = f(c).
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Since limn→∞ xn = c 6= 0, then

f(c) =
1

c

=
limn→∞ 1

limn→∞ xn

= lim
n→∞

1

xn
= lim

n→∞
f(xn).

Therefore, limn→∞ f(xn) = f(c), as desired.

Exercise 20. Show that the sequence (an) defined by an =
n
√
en+1 for all n ∈ N

is convergent.

Solution. We see intuitively that the sequence converges to e.

Proof. To prove (an) is convergent, we prove limn→∞
n
√
en+1 = e.

We first prove limn→∞ e
1
n = 1.

Let f : R→ R be the function defined by f(x) = ex.
We assume f is continuous on R.
Since f is continuous at 0, then by the sequential characterization of conti-

nuity, if (xn) is a sequence of points in R that converges to 0, then the sequence
(f(xn)) converges to f(0).

Since ( 1
n ) is a sequence of real numbers that converges to 0, then the sequence

(f( 1
n )) converges to f(0).

Thus, 1 = e0 = f(0) = limn→∞ f( 1
n ) = limn→∞ e

1
n .

Observe that

lim
n→∞

n
√
en+1 = lim

n→∞
e

n+1
n

= lim
n→∞

e1+
1
n

= lim
n→∞

ee
1
n

= e lim
n→∞

e
1
n

= e · 1
= e.

Exercise 21. Let f : R→ R be a continuous function.
Let S = {x ∈ R : f(x) = 0}.
Let (xn) be a sequence in S such that limn→∞ xn = c.
Then c ∈ S.
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Proof. Since (xn) is a sequence in S, then xn ∈ S for each n ∈ N.
Let n ∈ N.
Then xn ∈ S.
Since S ⊂ R, then xn ∈ R for each n ∈ N, so (xn) is a sequence in R.
Since limn→∞ xn = c, then c ∈ R.
To prove c ∈ S, we must prove f(c) = 0.
Since f is continuous on R and c ∈ R, then f is continuous at c.
Since (xn) is a sequence in R and limn→∞ xn = c, then by the sequential

characterization of continuity, we conclude limn→∞ f(xn) = f(c).
Since xn ∈ S for each n ∈ N, then f(xn) = 0 for each n ∈ N, so the sequence

(f(xn)) is the constant sequence 0.
Thus, 0 = limn→∞ f(xn) = f(c), so f(c) = 0, as desired.

Exercise 22. Let f : E → R be a function.
Let c ∈ E.
If f is continuous at c, then there exists M > 0 and δ > 0 such that

|f(x)| < M for all x ∈ N(c; δ) ∩ E.

Proof. Suppose f is continuous at c.
Let ε = 1 be given.
Then there exists δ > 0 such that for all x ∈ E, if |x − c| < δ, then

|f(x)− f(c)| < 1.
Let M = 1 + |f(c)|.
Since 1 > 0 and |f(c)| ≥ 0, then M > 0.
Let x ∈ N(c; δ) ∩ E.
Then x ∈ N(c; δ) and x ∈ E.
Since x ∈ N(c; δ), then |x− c| < δ.
Since x ∈ E and |x− c| < δ, then |f(x)− f(c)| < 1.
Thus, |f(x)| = |f(x)− f(c) + f(c)| ≤ |f(x)− f(c)|+ |f(c)| < 1 + |f(c)| = M ,

so |f(x)| < M .

Lemma 23. Let f : R→ R be a function continuous at c ∈ R and f(c) > 0.
Then there exists δ > 0 such that if x ∈ N(c; δ), then f(x) > 0.

Proof. Since f(c) > 0, then f(c)
2 > 0.

Since f is continuous at c, then there exists δ > 0 such that for all x ∈ R, if

|x− c| < δ, then |f(x)− f(c)| < f(c)
2 .

Let x ∈ N(c; δ).

Then x ∈ R and |x− c| < δ, so |f(x)− f(c)| < f(c)
2 .

Hence, −f(c)2 < f(x)− f(c) < f(c)
2 , so −f(c)2 < f(x)− f(c).

Thus, 0 < f(c)
2 < f(x), so 0 < f(x).

Therefore, f(x) > 0, as desired.

Exercise 24. Let f and g be real valued functions continuous on R.
Let S = {x ∈ R : f(x) ≥ g(x)}.
If (xn) is a sequence in S such that limn→∞ xn = c, then c ∈ S.

12



Proof. Let (xn) be a sequence in S such that limn→∞ xn = c.
Since (xn) is in S, then xn ∈ S for all n ∈ N, so f(xn) ≥ g(xn) for all n ∈ N.
Suppose for the sake of contradiction c 6∈ S.
Then c ∈ R and f(c) < g(c), so f(c)− g(c) < 0.
Let h = f − g.
Then h : R → R is a function defined by h(x) = (f − g)(x) = f(x) − g(x)

for all x ∈ R.
Thus, h(c) = f(c)− g(c) < 0, so h(c) < 0.
Since f and g are continuous functions and h = f − g, then h is continuous,

so h is continuous at c.
Since (xn) is an arbitrary sequence in R such that limn→∞ xn = c, then by

the sequential characterization of continuity, we have limn→∞ h(xn) = h(c), so
the sequence (h(xn)) is convergent.

Since f(xn) ≥ g(xn) for all n ∈ N, then h(xn) = f(xn) − g(xn) ≥ 0 for all
n ∈ N.

Since 0 ≤ h(xn) for all n ∈ N, then 0 is a lower bound of (h(xn)).
Since (h(xn)) is a convergent sequence in R and 0 is a lower bound of (h(xn)),

then 0 ≤ limn→∞ h(xn), so 0 ≤ h(c).
Thus, we have h(c) ≥ 0 and h(c) < 0, a contradiction.
Therefore, c ∈ S, as desired.

Proof. Let (xn) be a sequence in S such that limn→∞ xn = c.
Since (xn) is in S, then xn ∈ S for all n ∈ N, so f(xn) ≥ g(xn) for all n ∈ N.
Suppose for the sake of contradiction c 6∈ S.
Then c ∈ R and f(c) < g(c), so g(c)− f(c) > 0.
Let h = g − f .
Then h is a function defined by h(x) = (g−f)(x) = g(x)−f(x) for all x ∈ R.
Thus, h(c) = g(c)− f(c) > 0, so h(c) > 0.
Since g and f are continuous functions and h = g− f , then h is continuous,

so h is continuous at c.
By the previous lemma, since h is continuous at c and h(c) > 0, then there

exists ε > 0 such that if x ∈ N(c; ε), then h(x) > 0.
Since limn→∞ xn = c and ε > 0, then there exists N ∈ N such that if n > N ,

then |xn − c| < ε.
Let n ∈ N such that n > N .
Then |xn − c| < ε, so xn ∈ N(c; ε).
Hence, h(xn) > 0, so g(xn)− f(xn) > 0.
Thus, g(xn) > f(xn), so f(xn) < g(xn).
Since n ∈ N, then f(xn) ≥ g(xn).
Therefore, we have f(xn) < g(xn) and f(xn) ≥ g(xn), a contradiction.
Consequently, c ∈ S, as desired.

Exercise 25. Let f : E → R be a function continuous at c ∈ E.
Then for every ε > 0, there exists δ > 0 such that if x, y ∈ E ∩N(c; δ), then

|f(x)− f(y)| < ε.
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Proof. Let ε > 0 be given.
Then ε

2 > 0.
Since f is continuous at c, then there exists δ > 0 such that for all x ∈ E, if

|x− c| < δ, then |f(x)− f(c)| < ε
2 .

Since c ∈ E and c ∈ N(c; δ), then c ∈ E ∩N(c; δ), so E ∩N(c; δ) 6= ∅.
Let x, y ∈ E ∩N(c; δ).
Then x ∈ E ∩N(c; δ) and y ∈ E ∩N(c; δ).
Hence, x ∈ E and x ∈ N(c; δ) and y ∈ E and y ∈ N(c; δ).
Since x ∈ N(c; δ) and y ∈ N(c; δ), then |x− c| < δ and |y − c| < δ.
Since x ∈ E and |x− c| < δ, then |f(x)− f(c)| < ε

2 .
Since y ∈ E and |y − c| < δ, then |f(y)− f(c)| < ε

2 .
Observe that

|f(x)− f(y)| = |f(x)− f(c) + f(c)− f(y)|
≤ |f(x)− f(c)|+ |f(c)− f(y)|
= |f(x)− f(c)|+ |f(y)− f(c)|

<
ε

2
+
ε

2
= ε.

Therefore, |f(x)− f(y)| < ε, as desired.

Algebraic properties of continuous functions

Exercise 26. The function r : (0,∞) → R defined by r(x) = sin( 1
x ) is contin-

uous on (0,∞).

Proof. Let f : (0,∞)→ R be the function defined by f(x) = 1
x .

Let g : R→ R be the function defined by g(x) = sin(x).
Then g ◦ f is the composite function.
Since dom(g ◦ f) = {x ∈ domf : f(x) ∈ domg} = {x ∈ (0,∞) : 1

x ∈ R} =
{x ∈ (0,∞) : x 6= 0} = (0,∞) = domr, then dom(g ◦ f) = domr.

Let x ∈ dom(g ◦ f).
Then (g ◦ f)(x) = g(f(x)) = g( 1

x ) = sin( 1
x ) = r(x), so (g ◦ f)(x) = r(x) for

all x ∈ dom(g ◦ f).
Since dom(g ◦ f) = domr and (g ◦ f)(x) = r(x) for all x ∈ dom(g ◦ f), then

g ◦ f = r.
Since f is continuous and g is continuous, then g ◦ f = r is continuous, so r

is continuous on (0,∞).

Exercise 27. The function f : [−1, 1] → R defined by f(x) =
√

1− x2 is
continuous at 1.

Solution. If y = f(x) =
√

1− x2, then y2 = 1− x2, so x2 + y2 = 1.
Thus, we have the unit circle centered at the origin.
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The graph of f is the top semicircle and the limit of f as x approaches 1 is
0 and limx→1 f(x) = 0 = f(1).

Proof. Let g : R→ R be the function defined by g(x) = 1− x2.
Let h : [0,∞)→ R be the function defined by h(x) =

√
x.

Then h ◦ g is the composite function.
Since dom(h◦g) = {x ∈ domg : g(x) ∈ domh} = {x ∈ R : 1−x2 ∈ [0,∞)} =

{x ∈ R : 1− x2 ≥ 0} = {x ∈ R : 1 ≥ x2} = {x ∈ R : x2 ≤ 1} = {x ∈ R : |x|2 ≤
1} = {x ∈ R : |x| ≤ 1} = [−1, 1] = domf , then dom(h ◦ g) = domf .

Let x ∈ dom(h ◦ g).
Then (h◦g)(x) = h(g(x)) = h(1−x2) =

√
1− x2 = f(x), so (h◦g)(x) = f(x)

for all x ∈ dom(h ◦ g).
Since dom(h ◦ g) = domf and (h ◦ g)(x) = f(x) for all x ∈ dom(h ◦ g), then

h ◦ g = f .
Since g is a polynomial function, then g is continuous.
Since the square root function is continuous, then h is continuous.
Since g is continuous and h is continuous, then h ◦ g = f is continuous, so f

is continuous on [−1, 1].
Since 1 ∈ [−1, 1], then f is continuous at 1.

Lemma 28. Let x, y ∈ R.

Then max{x, y} = x+y
2 + |x−y|

2 and min{x, y} = x+y
2 −

|x−y|
2 .

Proof. Let S = {x, y}.
We must prove maxS = x+y

2 + |x−y|
2 and minS = x+y

2 −
|x−y|

2 .
Since x, y ∈ R, then either x ≥ y or x < y.
We consider these cases separately.
Case 1: Suppose x ≥ y.
Then x− y ≥ 0 and maxS = x and minS = y.
Observe that

maxS = x

=
2x

2

=
x+ x

2

=
x+ y + x− y

2

=
x+ y

2
+
x− y

2

=
x+ y

2
+
|x− y|

2
.

Therefore, maxS = x+y
2 + |x−y|

2 , as desired.
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Observe that

minS = y

=
2y

2

=
y + y

2

=
x+ y + y − x

2

=
x+ y

2
+
y − x

2

=
x+ y

2
− x− y

2

=
x+ y

2
− |x− y|

2
.

Therefore, minS = x+y
2 −

|x−y|
2 , as desired.

Case 2: Suppose x < y.
Then x− y < 0 and maxS = y and minS = x.
Observe that

maxS = y

=
2y

2

=
y + y

2

=
x+ y + y − x

2

=
x+ y

2
+
y − x

2

=
x+ y

2
+
−(x− y)

2

=
x+ y

2
+
|x− y|

2
.

Therefore, maxS = x+y
2 + |x−y|

2 , as desired.
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Observe that

minS = x

=
2x

2

=
x+ x

2

=
x+ y + x− y

2

=
x+ y

2
+
x− y

2

=
x+ y

2
− −(x− y)

2

=
x+ y

2
− |x− y|

2
.

Therefore, minS = x+y
2 −

|x−y|
2 , as desired.

Exercise 29. Let f and g be real valued functions continuous on E ⊂ R.
Let h : E → R be a function defined by h(x) = max{f(x), g(x)}.
Then h is continuous.

Proof. Let x ∈ E.
Then f(x) ∈ R and g(x) ∈ R.

Hence, by the previous lemma, h(x) = max{f(x), g(x)} = f(x)+g(x)
2 +

|f(x)−g(x)|
2 .

Thus, h = f+g
2 + |f−g|

2 .
Since f and g are continuous on E, then f and g are continuous, so the sum

f + g and difference f − g are continuous.
Since f + g is continuous, then the scalar multiple f+g

2 is continuous.
Since f − g is continuous, then |f − g| is continuous, so the scalar multiple

|f−g|
2 is continuous.

Since f+g
2 is continuous and |f−g|2 is continuous, then the sum f+g

2 + |f−g|
2

is continuous.
Therefore, h is continuous, as desired.

Exercise 30. Let a, b, c ∈ R such that a < b < c.
Let f : [a, b] → R be a function continuous on [a, b] and g : [b, c] → R be a

function continuous on [b, c] such that f(b) = g(b).
Let h : [a, c]→ R be a function defined by

h(x) =

{
f(x) if x ∈ [a, b]

g(x) if x ∈ [b, c]

Then h is continuous on [a, c].
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Proof. To prove h is continuous on [a, c], let α ∈ [a, c] be arbitrary.
We must prove h is continuous at α.
Since α ∈ [a, c] and [a, c] = [a, b)∪ {b} ∪ (b, c], then either α ∈ [a, b) or α = b

or α ∈ (b, c].
We consider these cases separately.
Case 1: Suppose α ∈ [a, b).
Since [a, b] ⊂ [a, c] and f(x) = h(x) for all x ∈ [a, b], then f is a restriction

of h to [a, b].
Since f is continuous on [a, b], then f is continuous at x for all x ∈ [a, b].
Hence, a restriction of h to [a, b] is continuous at x for all x ∈ [a, b], so h is

continuous on [a, b].
This is not correct!!! We must fix this!!!
Since α ∈ [a, b) and [a, b) ⊂ [a, b], then α ∈ [a, b], so h is continuous at α.
Case 2: Suppose α ∈ (b, c].
Since [b, c] ⊂ [a, c] and g(x) = h(x) for all x ∈ [b, c], then g is a restriction of

h to [b, c].
Since g is continuous on [b, c], then g is continuous at x for all x ∈ [b, c].
Hence, a restriction of h to [b, c] is continuous at x for all x ∈ [b, c], so h is

continuous on [b, c].
Since α ∈ (b, c] and (b, c] ⊂ [b, c], then α ∈ [b, c], so h is continuous at α.
Case 3: Suppose α = b.
We prove h is continuous at b.
Let ε > 0 be given.
We must prove there exists δ > 0 such that for all x ∈ [a, c], if |x − b| < δ,

then |h(x)− h(b)| < ε.
Since f is continuous on [a, b] and b ∈ [a, b], then f is continuous at b, so there

exists δ1 > 0 such that for all x ∈ [a, b], if |x− b| < δ1, then |f(x)− f(b)| < ε.
Since g is continuous on [b, c] and b ∈ [b, c], then g is continuous at b, so there

exists δ2 > 0 such that for all x ∈ [b, c], if |x− b| < δ2, then |g(x)− g(b)| < ε.

Let δ = min{δ1,δ2}
2 .

Then δ > 0 and 2δ = min{δ1, δ2}, so 2δ ≤ δ1 and 2δ ≤ δ2.
Thus, δ ≤ δ1

2 and δ ≤ δ2
2 .

Let x ∈ [a, c] such that |x− b| < δ.
Since x ∈ [a, c] and [a, c] = [a, b] ∪ [b, c], then either x ∈ [a, b] or x ∈ [b, c].
We consider these cases separately.
Case 3.1: Suppose x ∈ [a, b].
Since |x− b| < δ ≤ δ1

2 < δ1, then |x− b| < δ1.
Since x ∈ [a, b] and |x− b| < δ1, then |f(x)− f(b)| < ε.
Thus, |h(x)− h(b)| = |f(x)− f(b)| < ε, so |h(x)− h(b)| < ε.
Case 3.2: Suppose x ∈ [b, c].
Since |x− b| < δ ≤ δ2

2 < δ2, then |x− b| < δ2.
Since x ∈ [b, c] and |x− b| < δ2, then |g(x)− g(b)| < ε.
Thus, |h(x)− h(b)| = |g(x)− g(b)| < ε, so |h(x)− h(b)| < ε.
Therefore, in all cases, |h(x)− h(b)| < ε, so h is continuous at b.
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Exercise 31. Let E ⊂ R and c ∈ E.
Let f : E → R be a function.
If for every sequence (xn) in E such that limn→∞ xn = c, the sequence

(f(xn)) is convergent, then f is continuous at c.

Proof. We prove by contrapositive.
Suppose f is not continuous at c.
Then there exists ε0 > 0 such that for each δ > 0 there corresponds x ∈ E

such that |x− c| < δ and |f(x)− f(c)| ≥ ε0.
Let δ = 1

n for each n ∈ N.
Then for each n ∈ N, there corresponds x ∈ E such that |x − c| < 1

n and
|f(x)− f(c)| ≥ ε0.

Thus, there exists a function g : N→ E such that g(n) ∈ E and |g(n)−c| < 1
n

and |f(g(n)) − f(c)| ≥ ε0 for each n ∈ N, so there exists a sequence (xn) such
that xn ∈ E and |xn − c| < 1

n and |f(xn)− f(c)| ≥ ε0 for each n ∈ N.
Since xn ∈ E for each n ∈ N, then (xn) is a sequence of points in E.

We prove limn→∞ xn = c.
Let ε > 0 be given.
Then ε 6= 0, so 1

ε ∈ R.
Hence, by the Archimedean property of R, there exists N ∈ N such that

N > 1
ε .

Let n ∈ N such that n > N .
Then n > N > 1

ε , so n > 1
ε .

Hence, ε > 1
n , so 1

n < ε.
Since n ∈ N and |xn − c| < 1

n for each n ∈ N, then |xn − c| < 1
n .

Thus, |xn − c| < 1
n < ε, so |xn − c| < ε.

Therefore, limn→∞ xn = c, as desired.

We prove the sequence (f(xn)) is divergent.
Thus, we must prove for every real L there exists ε0 > 0 such that for each

N ∈ N there corresponds n ∈ N with n > N and |f(xn)− L| ≥ ε0.
Let L ∈ R be arbitrary.
Let N ∈ N.
Let n = N + 1.
Then n ∈ N and n = N + 1 > N and
Use triangle inequality to figure out how we can ensure for any L ∈ R that

if |f(xn)− f(c)| ≥ ε0 for each n ∈ N, then |f(xn)− L| ≥ ε0 for each n ∈ N.

Exercise 32. Let f : R→ R and g : R→ R be functions.
Let a, b ∈ R.
If limx→a f = b and g is continuous at b, then limx→a g ◦ f = g(b).

Proof. Suppose limx→a f = b and g is continuous at b.
Observe that a is an accumulation point of R, the domain of g ◦ f .
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To prove limx→a g ◦ f = g(b), let ε > 0 be given.
We must prove there exists δ > 0 such that for all x ∈ R, if 0 < |x− a| < δ,

then |(g ◦ f)(x)− g(b)| < ε.
Since g is continuous at b and ε > 0, then there exists δ1 > 0 such that for

all x ∈ R, if |x− b| < δ1, then |g(x)− g(b)| < ε.
Since limx→a f = b and δ1 > 0, then there exists δ2 > 0 such that for all

x ∈ R, if 0 < |x− a| < δ2, then |f(x)− b| < δ1.
Let δ = δ2 > 0.
Let x ∈ R such that 0 < |x− a| < δ.
Then 0 < |x− a| < δ2, so |f(x)− b| < δ1.
Since f(x) ∈ R and |f(x)− b| < δ1, then |g(f(x))−g(b)| < ε, so |(g ◦f)(x)−

g(b)| < ε, as desired.

Exercise 33. Let f : R→ R be a continuous function.
Let k ∈ R.
The set {x ∈ R : f(x) 6= k} is open.

Proof. Let S = {x ∈ R : f(x) 6= k}.
We must prove S is open.
Either S is empty or not.
We consider these cases separately.
Case 1: Suppose S = ∅.
Since the empty set is open, then S is open.
Case 2: Suppose S 6= ∅.
Then there is an element in S.
Let p be an arbitrary element of S.
Then p ∈ S, so p ∈ R and f(p) 6= k.
Since f(p) 6= k, then f(p)− k 6= 0, so |f(p)− k| > 0.
Since f is continuous on R and p ∈ R, then f is continuous at p.
Thus, there exists δ > 0 such that for all x ∈ R, if |x − p| < δ, then

|f(x)− f(p)| < |f(p)− k|.

Let x ∈ R such that |x− p| < δ.
Then |f(x)− f(p)| < |f(p)− k|.
Since |f(x)− k| ∈ R, then |f(x)− k| ≥ 0.

Suppose |f(x)− k| = 0.
Then f(x)− k = 0, so f(x) = k.
Thus, |f(p)− k| = |k − f(p)| = |f(x)− f(p)| < |f(p)− k|.
Hence, |f(p)− k| < |f(p)− k|, a contradiction.
Therefore, |f(x)− k| 6= 0.
Since |f(x)− k| ≥ 0, then this implies |f(x)− k| > 0, so f(x)− k 6= 0.
Thus, f(x) 6= k.
Since x ∈ R and f(x) 6= k, then x ∈ S.
Therefore, there exists δ > 0 such that for all x ∈ R, if |x − p| < δ, then

x ∈ S.
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Hence, there exists δ > 0 such that for all x ∈ R, if x ∈ N(p; δ), then x ∈ S,
so there exists δ > 0 such that N(p; δ) ⊂ S.

Thus, p is an interior point of S.
Since p is arbitrary, then every point in S is an interior point of S, so S is

open.

Exercise 34. Let a, b ∈ R with a < b.
Let f : [a, b]→ R and g : [a, b]→ R be continuous functions.
Let S = {x ∈ [a, b] : f(x) = g(x)}.
Then S is closed.

Proof. Let c be an arbitrary accumulation point of S.
Since S ⊂ [a, b], then c is an accumulation point of [a, b].
Since the interval [a, b] is closed, then c ∈ [a, b].
Since f and g are continuous on [a, b], then f and g are continuous at c.

Suppose f(c) 6= g(c).
Then f(c)− g(c) 6= 0, so |f(c)− g(c)| > 0.

Hence, |f(c)−g(c)|2 > 0.
Since f is continuous at c, then there exists δ1 > 0 such that for all x ∈ [a, b],

if |x− c| < δ1, then |f(x)− f(c)| < |f(c)−g(c)|
2 .

Since g is continuous at c, then there exists δ2 > 0 such that for all x ∈ [a, b],

if |x− c| < δ2, then |g(x)− g(c)| < |f(c)−g(c)|
2 .

Let δ = min{δ1, δ2}.
Then δ ≤ δ1 and δ ≤ δ2 and δ > 0.
Since c is an accumulation point of S and δ > 0, then there exists x ∈ S

such that x ∈ N ′(c; δ).
Since x ∈ S, then x ∈ [a, b] and f(x) = g(x).
Since x ∈ N ′(c; δ) and N ′(c; δ) ⊂ N(c; δ), then x ∈ N(c; δ), so |x− c| < δ.
Since |x− c| < δ and δ ≤ δ1, then |x− c| < δ1.

Since x ∈ [a, b] and |x− c| < δ1, then |f(x)− f(c)| < |f(c)−g(c)|
2 .

Since |x− c| < δ and δ ≤ δ2, then |x− c| < δ2.

Since x ∈ [a, b] and |x− c| < δ2, then |g(x)− g(c)| < |f(c)−g(c)|
2 .

Observe that

|f(c)− g(c)| = |f(c)− f(x) + f(x)− g(c)|
= |f(c)− f(x) + g(x)− g(c)|
≤ |f(c)− f(x)|+ |g(x)− g(c)|
= |f(x)− f(c)|+ |g(x)− g(c)|

<
|f(c)− g(c)|

2
+
|f(c)− g(c)|

2
= |f(c)− g(c)|.

Hence, |f(c)− g(c)| < |f(c)− g(c)|, a contradiction.
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Thus, f(c) = g(c).
Since c ∈ [a, b] and f(c) = g(c), then c ∈ S.
Therefore, S is closed.

Exercise 35. Let I be a closed set.
Let f : I → R be a continuous function.
Let S = {x ∈ I : f(x) = k}.
Then S is closed.

Proof. Either S = ∅ or S 6= ∅.
We consider these cases separately.
Case 1: Suppose S = ∅.
Since the empty set is closed, then S is closed.
Case 2: Suppose S 6= ∅.
Let p be an arbitrary accumulation point of S.
To prove S is closed, we must prove p ∈ S.
Since p is an accumulation point of S and S ⊂ I, then p is an accumulation

point of I.
Since I is closed, then p ∈ I.
Since f is continuous on I, then f is continuous at p.
Since p is an accumulation point of S, then for every δ > 0 there exists x ∈ S

such that x ∈ N ′(p; δ).
Let δ = 1

n for each n ∈ N.
Then for each n ∈ N, there exists x ∈ S such that x ∈ N ′(p; 1

n ), so there
exists a function f : N → S such that f(n) ∈ S and f(n) ∈ N ′(p; 1

n ) for each
n ∈ N.

Hence, there exists a sequence (xn) such that xn ∈ S and xn ∈ N ′(p; 1
n ) for

each n ∈ N.
Let n ∈ N.
Then xn ∈ S, so xn ∈ I and f(xn) = k.
Hence, xn ∈ I and f(xn) = k for all n ∈ N.
Since xn ∈ I for all n ∈ N, then (xn) is a sequence in I.
Since f(xn) = k for all n ∈ N, then (f(xn)) is the constant sequence k, so

limn→∞ f(xn) = k.
We prove the sequence (xn) converges to p.
Let ε > 0 be given.
Then 1

ε > 0, so by the Archimedean property of R, there exists N ∈ N such
that N > 1

ε .
Let n ∈ N such that n > N .
Then n > N > 1

ε , so n > 1
ε .

Hence, ε > 1
n .

Since n ∈ N, then xn ∈ N ′(p; 1
n ), so xn ∈ N(p; 1

n ).
Thus, |xn − p| < 1

n < ε, so |xn − p| < ε.
Therefore, limn→∞ xn = p.
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Since f is continuous at p and (xn) is a sequence of points in I and limn→∞ xn =
p, then by the sequential characterization of continuity, k = limn→∞ f(xn) =
f(p).

Therefore, f(p) = k.
Since p ∈ I and f(p) = k, then p ∈ S, so S is closed.
Thus, in all cases, S is closed, as desired.

Exercise 36. Let f : R → R be a continuous function such that f(x) = 0 for
all x ∈ Q.

Then f(x) = 0 for all x ∈ R.

Proof. We prove f(c) = 0 for all c ∈ R by contradiction.
Suppose there exists c ∈ R such that f(c) 6= 0.
Since f(c) 6= 0, then |f(c)| > 0.
Since f is continuous on R and c ∈ R, then f is continuous at c.
Since |f(c)| > 0, then there exists δ > 0 such that for all x ∈ R, if |x−c| < δ,

then |f(x)− f(c)| < |f(c)|.
Since c < c + δ and Q is dense in R, then there exists q ∈ Q such that

c < q < c+ δ.
Since q ∈ Q and Q ⊂ R, then q ∈ R.
Since c < q < c+ δ, then 0 < q − c < δ, so |q − c| < δ.
Since q ∈ R and |q − c| < δ, then |f(q)− f(c)| < |f(c)|.
Since q ∈ Q, then f(q) = 0.
Therefore, |0− f(c)| < |f(c)|, so | − f(c)| < |f(c)|.
Thus, |f(c)| < |f(c)|, a contradiction.
Therefore, f(c) = 0 for all c ∈ R, as desired

Exercise 37. Let f : R→ R and g : R→ R be continuous functions such that
f(x) = g(x) for all x ∈ Q.

Then f(x) = g(x) for all x ∈ R. (Hence, function f = g).

Proof. We prove f(c) = g(c) for all c ∈ R by contradiction.
Suppose there exists c ∈ R such that f(c) 6= g(c).

Then |f(c)− g(c)| > 0, so |f(c)−g(c)|2 > 0.
Since f is continuous on R and c ∈ R, then f is continuous at c.
Since g is continuous on R and c ∈ R, then g is continuous at c.

Since |f(c)−g(c)|2 > 0 and f is continuous at c, then there exists δ1 > 0 such

that for all x ∈ R, if |x− c| < δ1, then |f(x)− f(c)| < |f(c)−g(c)|
2 .

Since |f(c)−g(c)|2 > 0 and g is continuous at c, then there exists δ2 > 0 such

that for all x ∈ R, if |x− c| < δ2, then |g(x)− g(c)| < |f(c)−g(c)|
2 .

Let δ = min{δ1, δ2}.
Then δ ≤ δ1 and δ ≤ δ2 and δ > 0.
Since c < c + δ and Q is dense in R, then there exists q ∈ Q such that

c < q < c+ δ.
Hence, 0 < q − c < δ, so |q − c| < δ.

Since |q − c| < δ ≤ δ1, then |q − c| < δ1, so |f(q)− f(c)| < |f(c)−g(c)|
2 .
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Since |q − c| < δ ≤ δ2, then |q − c| < δ2, so |g(q)− g(c)| < |f(c)−g(c)|
2 .

Since q ∈ Q, then f(q) = g(q), so |f(q)− g(c)| < |f(c)−g(c)|
2 .

Observe that

|f(c)− g(c)| = |f(c)− f(q) + f(q)− g(c)|
≤ |f(c)− f(q)|+ |f(q)− g(c)|
= |f(q)− f(c)|+ |f(q)− g(c)|

<
|f(c)− g(c)|

2
+
|f(c)− g(c)|

2
= |f(c)− g(c)|.

Hence, |f(c)− g(c)| < |f(c)− g(c)|, a contradiction.
Therefore, f(c) = g(c) for all c ∈ R, as desired.

Definition 38. additive map
An additive map preserves the operation of addition.
Let f be a real valued function.
Let domf be an additive group.
Then f is said to be additive iff f(x+ y) = f(x) + f(y) for all x, y ∈ domf .

Lemma 39. Let f : R→ R be a function.
If there exist real numbers k and L such that limx→0 f(x) = L and k 6= 0,

then limx→0 f(kx) = L.

Proof. Suppose there exist real numbers k and L such that limx→0 f(x) = L
and k 6= 0.

To prove limx→0 f(kx) = L, let ε > 0 be given.
We must prove there exists δ > 0 such that for all x ∈ R, if 0 < |x| < δ,

then |f(kx)− L| < ε.
Since limx→0 f(x) = L, then there exists δ1 > 0 such that for all x ∈ R, if

0 < |x| < δ1, then |f(x)− L| < ε.
Let δ = δ1

|k| .

Since k 6= 0, then |k| > 0.
Since |k| > 0 and δ1 > 0, then δ > 0.
Let x ∈ R such that 0 < |x| < δ.
Then 0 < |x| < δ1

|k| , so 0 < |k||x| < δ1.

Hence, 0 < |kx| < δ1.
Since kx ∈ R and 0 < |kx| < δ1, then |f(kx)− L| < ε, as desired.

Exercise 40. Let f : R→ R be an additive function.
If the limit of f at 0 exists, then limx→0 f(x) = 0.

Proof. Suppose the limit of f at 0 exists.
Then there exists a real number L such that limx→0 f(x) = L.
To prove limx→0 f(x) = 0, we must prove L = 0.
Let x ∈ R.
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Then f(2x) = f(x + x) = f(x) + f(x) = 2f(x), so f(2x) = 2f(x) for all
x ∈ R.

By the previous lemma, if limx→0 f(x) = L and k 6= 0, then limx→0 f(kx) =
L.

Thus, if limx→0 f(x) = L, then limx→0 f(2x) = L.
Since limx→0 f(x) = L, then limx→0 f(2x) = L, so limx→0 f(x) = limx→0 f(2x).
Hence,

L = lim
x→0

f(x)

= lim
x→0

f(2x)

= lim
x→0

2f(x)

= 2 lim
x→0

f(x)

= 2L.

Thus, L = 2L, so 2L = L.
Subtracting L from both sides, we obtain L = 0, as desired.

Lemma 41. Let f : R→ R be an additive function.
Then f(a− b) = f(a)− f(b) for all a, b ∈ R and f(0) = 0.

Proof. We prove f(a− b) = f(a)− f(b) for all a, b ∈ R.
Let a, b ∈ R.
Then f(a) = f(a− b+ b) = f(a− b) + f(b), so f(a) = f(a− b) + f(b).
Hence, f(a)− f(b) = f(a− b).

Proof. We prove f(0) = 0.
Since f(0) = f(0 + 0) = f(0) + f(0), then f(0) = f(0) + f(0).
Therefore, f(0) = f(0)− f(0) = 0.

Lemma 42. Let f : R→ R be an additive function.
If limx→0 f(x) = 0, then limx→a f(x) = f(a) for all a ∈ R.

Proof. Suppose limx→0 f(x) = 0.
Let a ∈ R be arbitrary.
Observe that a is an accumulation point of R, the domain of f .
To prove limx→a f(x) = f(a), let ε > 0 be given.
We must prove there exists δ > 0 such that for all x ∈ R, if 0 < |x− a| < δ,

then |f(x)− f(a)| < ε.
Since limx→0 f(x) = 0, then there exists δ > 0 such that for all x ∈ R, if

0 < |x| < δ, then |f(x)| < ε.
Let x ∈ R such that 0 < |x− a| < δ.
Since x− a ∈ R and 0 < |x− a| < δ, then |f(x− a)| < ε.
Since f is additive, then |f(x)− f(a)| = |f(x− a)| < ε, as desired.

Lemma 43. Let f : R→ R be an additive function.
If f is continuous at x0 ∈ R, then f is continuous at 0.
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Proof. Suppose f is continuous at x0 ∈ R.
To prove f is continuous at 0, let ε > 0 be given.
We must prove there exists δ > 0 such that for all x ∈ R, if |x| < δ, then

|f(x)− f(0)| < ε.

Since f is continuous at x0, then there exists δ > 0 such that for all x ∈ R, if
|x− x0| < δ, then |f(x)− f(x0)| < ε.

Let x ∈ R such that |x| < δ.
Let y = x+ x0.
Then y ∈ R and x = y − x0, so |y − x0| < δ.
Since y ∈ R and |y − x0| < δ, then |f(y)− f(x0)| < ε.
Since f is additive, then |f(x)− f(0)| = |f(x− 0)| = |f(x)| = |f(y − x0)| =

|f(y)− f(x0)| < ε, so |f(x)− f(0)| < ε, as desired.

Exercise 44. Let f : R→ R be an additive function.
If f is continuous at x0 ∈ R, then f is continuous.

Proof. Suppose f is continuous at x0 ∈ R.
To prove f is continuous, let c ∈ R be given.
We must prove f is continuous at c.
Since f is additive and f is continuous at x0, then by a previous lemma, f

is continuous at 0.
Since 0 is an accumulation point of R and f is continuous at 0, then by the

characterization of continuity, limx→0 f(x) = f(0).

Since f is additive, then f(0) = 0.
Thus, limx→0 f(x) = f(0) = 0.
Since f is additive and limx→0 f(x) = 0, then by a previous lemma, limx→a f(x) =

f(a) for all a ∈ R, so limx→c f(x) = f(c),
Since c is an accumulation point of R and limx→c f(x) = f(c), then by the

characterization of continuity, f is continuous at c, as desired.

Lemma 45. Let f : R→ R be an additive function.
Then f(nr) = nf(r) for all n ∈ Z, r ∈ R.

Proof. Let r ∈ R be given.
To prove f(nr) = nf(r) for all n ∈ Z, we must prove f(nr) = nf(r) for all

n ∈ Z+ and f(−nr) = −nf(r) for all n ∈ Z+.

We prove f(nr) = nf(r) for all n ∈ Z+ by induction on n.
Let S = {n ∈ Z+ : f(nr) = nf(r)}.
Basis:
Since 1 ∈ Z+ and f(1 · r) = f(r) = 1 · f(r), then 1 ∈ S.
Induction:
Let k ∈ S.
Then k ∈ Z+ and f(kr) = kf(r).
Since k ∈ Z+, then k + 1 ∈ Z+.
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Observe that

f((k + 1)r) = f(kr + r)

= f(kr) + f(r)

= kf(r) + f(r)

= (k + 1)f(r).

Since k + 1 ∈ Z+ and f((k + 1)r) = (k + 1)f(r), then k + 1 ∈ S.
Hence, k ∈ S implies k + 1 ∈ S, so by PMI, S = Z+.
Therefore, f(nr) = nf(r) for all n ∈ Z+.

Proof. We prove f(−nr) = −nf(r) for all n ∈ Z+ by induction on n.
Let S = {n ∈ Z+ : f(−nr) = −nf(r)}.
Basis:
Since f is additive, then f(−r) = f(0−r) = f(0)−f(r) = 0−f(r) = −f(r).
Since 1 ∈ Z+ and f(−r) = −f(r), then 1 ∈ S.
Induction:
Let k ∈ S.
Then k ∈ Z+ and f(−kr) = −kf(r).
Since k ∈ Z+, then k + 1 ∈ Z+.
Observe that

f(−(k + 1)r) = f(−kr − r)
= f(−kr)− f(r)

= −kf(r)− f(r)

= −(k + 1)f(r).

Since k + 1 ∈ Z+ and f(−(k + 1)r) = −(k + 1)f(r), then k + 1 ∈ S.
Hence, k ∈ S implies k + 1 ∈ S, so by PMI, S = Z+.
Therefore, f(−nr) = −nf(r) for all n ∈ Z+.

Lemma 46. Let f : R→ R be an additive function.

Then f( 1
n ) = f(1)

n for all nonzero integers n.

Proof. Let n be an arbitrary nonzero integer.
Then n ∈ Z and n 6= 0.
Since n ∈ Z and Z ⊂ R, then n ∈ R.
Since n ∈ R and n 6= 0, then 1

n ∈ R.
Since f is additive and n ∈ Z and 1

n ∈ R, then f(1) = f(n · 1n ) = n · f( 1
n ).

Since f(1) = n · f( 1
n ) and n 6= 0, then f(1)

n = f( 1
n ).

Exercise 47. Let f : R→ R be a continuous additive function.
If f(1) = c, then f(x) = cx for all x ∈ R.
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Proof. Suppose f(1) = c.
We first prove f(q) = cq for all q ∈ Q.
Let q ∈ Q.
Then there exist integers a, b with b 6= 0 such that q = a

b .
Since a and b are integers, then a ∈ Z and b ∈ Z.
Since b ∈ Z and b 6= 0, then b is a nonzero integer.
Since f is additive and a ∈ Z and b is a nonzero integer, then

f(q) = f(
a

b
)

= f(a · 1

b
)

= a · f(
1

b
)

= a · f(1)

b

= a · c
b

=
ac

b

=
ca

b

= c · a
b

= cq.

Hence, f(q) = cq for all q ∈ Q.

Let g : R→ R be a function defined by g(x) = cx for all x ∈ R.
Since g is a polynomial function, then g is continuous.
Let x ∈ Q.
Since Q ⊂ R, then x ∈ R, so g(x) = cx = f(x).
Hence, f(x) = g(x) for all x ∈ Q.
Since f and g are continuous and f(x) = g(x) for all x ∈ Q, then by a

previous exercise, f(x) = g(x) for all x ∈ R.
Therefore, f(x) = cx for all x ∈ R, as desired.

Exercise 48. Let f : R → R be a function such that f(x + y) = f(x)f(y) for
all x, y ∈ R.

Then
1. If f(c) = 0 for some c ∈ R, then f(x) = 0 for all x ∈ R.
2. If the limit of f at 0 exists, then the limit of f at c exists for all c ∈ R.

Proof. Let x ∈ R.
Then f(x) ∈ R and f(x) = f(x2 + x

2 ) = f(x2 )f(x2 ) = [f(x2 )]2 ≥ 0, so f(x) ≥ 0
for all x ∈ R.
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Either there is c ∈ R such that f(c) = 0 or there is no c ∈ R such that
f(c) = 0.

We consider these cases separately.
Case 1: Suppose there is c ∈ R such that f(c) = 0.
Let x ∈ R.
Then f(x) = f(0 + x) = f(c − c + x) = f(c + x − c) = f(c)f(x − c) =

0 · f(x− c) = 0, so f(x) = 0.
Therefore, f(x) = 0 for all x ∈ R.
Case 2: Suppose there is no c ∈ R such that f(c) = 0.
Since f(0) = f(0 + 0) = f(0)f(0), then f(0) = f(0)f(0), so 0 = f(0)f(0)−

f(0) = f(0)[f(0)− 1].
Thus, 0 = f(0)[f(0)− 1], so either f(0) = 0 or f(0)− 1 = 0.
Since there is no c ∈ R such that f(c) = 0, then f(0) 6= 0.
Therefore, f(0)− 1 = 0, so f(0) = 1.

Suppose the limit of f at 0 exists.
Then there is a real number L such that limx→0 f(x) = L.
We must prove L = 1.
Let c ∈ R.
To prove the limit of f at c exists, we must prove there exists M ∈ R such

that limx→c f(x) = M .

Continuous functions on compact sets

Exercise 49. Let a, b ∈ R with a < b.
Let f : [a, b]→ R be continuous.
If f has no zeroes on [a, b], then either f(x) > 0 for all x ∈ [a, b] or f(x) < 0

for all x ∈ [a, b].

Proof. Suppose f has no zeroes on [a, b].
To prove either f(x) > 0 for all x ∈ [a, b] or f(x) < 0 for all x ∈ [a, b], we

prove by contradiction.
Suppose it is not the case that either f(x) > 0 for all x ∈ [a, b] or f(x) < 0

for all x ∈ [a, b].
Then it is not the case that f(x) > 0 for all x ∈ [a, b] and it is not the case

that f(x) < 0 for all x ∈ [a, b].
Hence, there exists x ∈ [a, b] such that f(x) ≤ 0 and there exists y ∈ [a, b]

such that f(y) ≥ 0.
Since x ∈ [a, b] and f has no zeroes on [a, b], then f(x) 6= 0.
Since f(x) ≤ 0 and f(x) 6= 0, then f(x) < 0.
Since y ∈ [a, b] and f has no zeroes on [a, b], then f(y) 6= 0.
Since f(y) ≥ 0 and f(y) 6= 0, then f(y) > 0.
Since x ∈ [a, b] and y ∈ [a, b], then [x, y] ⊂ [a, b].
Since f is continuous on [a, b] and [x, y] ⊂ [a, b], then f is continuous on

[x, y].
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Since f(x) < 0 < f(y), then by IVT, there exists c ∈ (x, y) such that
f(c) = 0.

Since (x, y) ⊂ [x, y] ⊂ [a, b], then (x, y) ⊂ [a, b].
Since c ∈ (x, y) and (x, y) ⊂ [a, b], then c ∈ [a, b].
Thus, there exists c ∈ [a, b] such that f(c) = 0.
But, this contradicts the assumption that f has no zeroes on [a, b].
Therefore, either f(x) > 0 for all x ∈ [a, b] or f(x) < 0 for all x ∈ [a, b].

Exercise 50. Let a, b ∈ R.
Let f : [a, b]→ R be a continuous function.
If there exists k ∈ R such that f(a) ≥ k ≥ f(b), then there exists c ∈ [a, b]

such that f(c) = k.

Proof. Suppose there exists k ∈ R such that f(a) ≥ k ≥ f(b).
Since f(a) ≥ k ≥ f(b), then f(a) ≥ k and k ≥ f(b), so either f(a) = k or

f(b) = k or f(a) > k > f(b).
We consider these cases separately.
Case 1: Suppose f(a) = k.
Observe that a ∈ [a, b] and f(a) = k.
Case 2: Suppose f(b) = k.
Observe that b ∈ [a, b] and f(b) = k.
Case 3: Suppose f(a) > k > f(b).
Since f is continuous on the interval [a, b] and f(a) > k > f(b), then by

IVT, there exists c ∈ (a, b) such that f(c) = k.

Exercise 51. Let E be a nonempty closed bounded set.
Let f : E → R be a continuous function such that f(x) > 0 for all x ∈ E.
Then there exists k > 0 such that f(x) ≥ k for all x ∈ E.

Proof. Let 1
f : E → R be a function defined by 1

f (x) = 1
f(x) for all x ∈ E.

Since E 6= ∅, then there is some element in E.
Let c ∈ E be given.
Then f(c) > 0, so f(c) 6= 0.
Since f is continuous on E and c ∈ E, then f is continuous at c.
Since the constant function 1 is continuous at c and f is continuous at c and

f(c) 6= 0, then 1
f is continuous at c.

Since c is arbitrary, then 1
f is continuous on E.

Since E is a closed bounded set, then by the boundedness theorem, the
function 1

f is bounded.

Hence, there exists M ∈ R such that | 1
f(x) | ≤M for all x ∈ E.

Let x ∈ E.
Then f(x) > 0 and | 1

f(x) | ≤M .

Thus, 0 < 1
f(x) = 1

|f(x)| = | 1
f(x) | ≤M , so 0 < M and 1

f(x) ≤M .

Hence, 0 < 1
M ≤ f(x), so f(x) ≥ 1

M > 0.
Let k = 1

M .
Then k > 0 and f(x) ≥ k.
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Therefore, there exists k > 0 such that f(x) ≥ k for all x ∈ E, as desired.

Proof. Since f is continuous on E and E is a nonempty closed bounded set,
then by EVT, f has a minimum on E.

Hence, there exists m ∈ E such that f(m) ≤ f(x) for all x ∈ E.
Since m ∈ E and f(x) > 0 for all x ∈ E, then f(m) > 0.
Let k = f(m).
Then k > 0 and k ≤ f(x) for all x ∈ E, so there exists k > 0 such that

f(x) ≥ k for all x ∈ E, as desired.

Exercise 52. Let E ⊂ R be a closed, bounded set.
Let f and g be real valued functions continuous on E.
Let S = {x ∈ E : f(x) = g(x)}.
If (xn) is a sequence in S and limn→∞ xn = c, then c ∈ S.

Proof. Suppose (xn) is a sequence in S and limn→∞ xn = c.
Since (xn) is a sequence in S, then xn ∈ S for all n ∈ N, so xn ∈ E and

f(xn) = g(xn) for all n ∈ N.
Thus, xn ∈ E for all n ∈ N and f(xn) = g(xn) for all n ∈ N.
Since xn ∈ E for all n ∈ N, then (xn) is a sequence in E.
Since E is a closed and bounded set and (xn) is a sequence in E, then by the

Bolzano-Weierstrass property of compact sets, there exists a subsequence (yn)
in E such that limn→∞ yn ∈ E.

Since (xn) is a convergent sequence in R and (yn) is a subsequence of (xn),
then limn→∞ yn = limn→∞ xn = c.

Hence, c ∈ E.

Let h = f − g.
Then h : E → R is the function defined by h(x) = f(x)− g(x).
Since f is continuous on E and g is continuous on E, then the difference

f − g = h is continuous on E.
Since c ∈ E, then h is continuous at c.
Since f(xn) = g(xn) for all n ∈ N, then h(xn) = f(xn) − g(xn) = 0 for all

n ∈ N, so (h(xn)) is the 0 constant sequence.
Hence, limn→∞ h(xn) = 0.
Since h is continuous at c and (xn) is a sequence of points in E such that

limn→∞ xn = c, then by the sequential characterization of continuity, we have
limn→∞ h(xn) = h(c).

Thus, f(c)− g(c) = h(c) = limn→∞ h(xn) = 0, so f(c)− g(c) = 0.
Hence, f(c) = g(c).

Since c ∈ E and f(c) = g(c), then c ∈ S, as desired.

Exercise 53. Let E be a closed bounded infinite set.
Let f : E → R be a continuous function.
If for every x ∈ E, there exists y ∈ E such that |f(y)| ≤ 1

2 |f(x)|, then there
exists c ∈ E such that f(c) = 0.
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Proof. Since E is infinite, then E 6= ∅, so let x0 ∈ E.
Then there exists x1 ∈ E such that |f(x1)| ≤ 1

2 |f(x0)|.
Suppose there exists k ∈ N such that xk ∈ E and |f(xk)| ≤ |f(x0)|

2k
.

Since k ∈ N, then k + 1 ∈ N.
Since xk ∈ E, then there exists xk+1 ∈ E such that |f(xk+1)| ≤ 1

2 |f(xk)|.
Thus, |f(xk+1)| ≤ 1

2 |f(xk)| ≤ |f(x0)|
2k+1 , so |f(xk+1)| ≤ |f(x0)|

2k+1 .

Hence, by PMI, xn ∈ E for all n ∈ N and |f(xn)| ≤ |f(x0)|
2n for all n ∈ N.

Since xn ∈ E for all n ∈ N, then (xn) is a sequence in E.

Since 0 ≤ |f(xn)| ≤ |f(x0)|
2n for all n ∈ N and limn→∞ 0 = 0 = limn→∞

|f(x0)|
2n ,

then by the squeeze rule, limn→∞ |f(xn)| = 0.
Since−|f(xn)| ≤ f(xn) ≤ |f(xn)| for all n ∈ N and 0 = −0 = − limn→∞ |f(xn)| =

limn→∞−|f(xn)|, then by the squeeze rule, limn→∞ f(xn) = 0, so the sequence
(f(xn)) is convergent.

Since (xn) is a sequence in E and E is a closed bounded set, then by the
Bolzano-Weierstrass property of compact sets, there exists a subsequence (yn)
in E such that limn→∞ yn ∈ E.

Let c = limn→∞ yn.
Then c ∈ E.
Since f is continuous on E, then f is continuous at c.
Since (yn) is a sequence in E and limn→∞ yn = c, then by the sequential

characterization of continuity, we have limn→∞ f(yn) = f(c).

Since (yn) is a subsequence of (xn), then there exists a strictly increasing
function g : N→ N such that yn = xg(n) for all n ∈ N.

Let n ∈ N.
Then yn = xg(n), so f(yn) = f(xg(n)) for all n ∈ N.
Since g : N→ N is a strictly increasing function such that f(yn) = f(xg(n))

for all n ∈ N, then (f(yn)) is a subsequence of (f(xn)).
Since (f(xn)) is convergent and (f(yn)) is a subsequence of (f(xn)), then

f(c) = limn→∞ f(yn) = limn→∞ f(xn) = 0, so f(c) = 0.
Therefore, there exists c ∈ E such that f(c) = 0, as desired.

Exercise 54. Let f : [0, 1]→ R be a continuous function such that f(0) = f(1).
Then there exists c ∈ [0, 12 ] such that f(c) = f(c+ 1

2 ).

Proof. Either f( 1
2 ) = f(0) or f( 1

2 ) 6= f(0).
We consider these cases separately.
Case 1: Suppose f( 1

2 ) = f(0).
Let c = 0.
Since 0 ∈ [0, 12 ], then c ∈ 1

2 .
Observe that f(c) = f(0) = f( 1

2 ) = f(0 + 1
2 ) = f(c+ 1

2 ).
Case 2: Suppose f( 1

2 ) 6= f(0).
Then f( 1

2 )− f(0) 6= 0.
Let k = f( 1

2 )− f(0).
Then k 6= 0.
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Let g : [0, 12 ]→ R be a function defined by g(x) = f(x+ 1
2 ).

To prove g is continuous, let c ∈ [0, 12 ] be given.
Then 0 ≤ c ≤ 1

2 , so 1
2 ≤ c+ 1

2 ≤ 1.
Let a = c+ 1

2 .
Then 1

2 ≤ a ≤ 1, so a ∈ [ 12 , 1].
Since [ 12 , 1] ⊂ [0, 1], then a ∈ [0, 1].
Since f is continuous on [0, 1], then f is continuous at a.
Let ε > 0 be given.
Then there exists δ > 0 such that for all x ∈ [0, 1] if |x − a| < δ, then

|f(x)− f(a)| < ε.
Let x ∈ [0, 12 ] such that |x− c| < δ.
Since x ∈ [0, 12 ], then 0 ≤ x ≤ 1

2 , so 1
2 ≤ x+ 1

2 ≤ 1.
Hence, x+ 1

2 ∈ [ 12 , 1].
Since [ 12 , 1] ⊂ [0, 1], then x+ 1

2 ∈ [0, 1].
Since |x− c| < δ and −c = 1

2 − a, then |x+ 1
2 − a| < δ.

Since x+ 1
2 ∈ [0, 1] and |(x+ 1

2 )−a| < δ, then we conclude |f(x+ 1
2 )−f(a)| < ε.

Thus, |g(x)− g(c)| = |f(x+ 1
2 )− f(c+ 1

2 )| = |f(x+ 1
2 )− f(a)| < ε.

Therefore, g is continuous at c, so g is continuous on [0, 12 ].

Let h = g − f be defined on [0, 12 ].
Then h : [0, 12 ]→ R is the function defined by h(x) = f(x+ 1

2 )− f(x).
Since g is continuous on [0, 12 ] and f is continuous on [0, 1], then g − f = h

is continuous on the intersection [0, 12 ] ∩ [0, 1] = [0, 12 ].
Observe that h(0) = f(0 + 1

2 ) − f(0) = f( 1
2 ) − f(0) = k and h( 1

2 ) = f( 1
2 +

1
2 )− f( 1

2 ) = f(1)− f( 1
2 ) = f(0)− f( 1

2 ) = −k.
Since k 6= 0, then either k > 0 or k < 0.
If k > 0, then h( 1

2 ) = −k < 0 < k = h(0), so h( 1
2 ) < 0 < h(0).

If k < 0, then h(0) = k < 0 < −k = h( 1
2 ), so h(0) < 0 < h( 1

2 ).
Thus, in either case, 0 is between h(0) and h( 1

2 ).
Since h is continuous on [0, 12 ] and the interval [0, 12 ] is closed and bounded

and 0 is between h(0) and h( 1
2 ), then by IVT, there exists c ∈ (0, 12 ) such that

h(c) = 0.
Thus, 0 = h(c) = f(c+ 1

2 )− f(c), so f(c) = f(c+ 1
2 ).

Since c ∈ (0, 12 ) and (0, 12 ) ⊂ [0, 12 ], then c ∈ [0, 12 ].
Therefore, there exists c ∈ [0, 12 ] such that f(c) = f(c+ 1

2 ), as desired.

Proposition 55. Fixed Point Theorem
Let a, b ∈ R with a < b.
Let f : [a, b]→ [a, b] be a continuous function.
Then there exists x ∈ [a, b] such that f(x) = x.

Proof. Since a ∈ [a, b] and [a, b] = rngf , then a ∈ rngf , so there exists x1 ∈ [a, b]
such that f(x1) = a.

Since b ∈ [a, b] and [a, b] = rngf , then b ∈ rngf , so there exists x2 ∈ [a, b]
such that f(x2) = b.
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Suppose x1 = x2.
Then a = f(x1) = f(x2) = b, so a = b.
But, this contradicts the assumption a < b.
Hence, x1 6= x2, so either x1 < x2 or x1 > x2.
Without loss of generality, assume x1 < x2.
Since x1 ∈ [a, b], then a ≤ x1 ≤ b, so a ≤ x1.
Since x2 ∈ [a, b], then a ≤ x2 ≤ b, so x2 ≤ b.
Thus, a ≤ x1 and x2 ≤ b.
Hence, either x1 = a or x2 = b or both a < x1 and x2 < b.
We consider these cases separately.
Case 1: Suppose x1 = a.
Then f(a) = f(x1) = a.
Therefore, we have a ∈ [a, b] and f(a) = a.
Case 2: Suppose x2 = b.
Then f(b) = f(x2) = b.
Therefore, we have b ∈ [a, b] and f(b) = b.
Case 3: Suppose a < x1 and x2 < b.
Then a− x1 < 0 and 0 < b− x2.
Let g : [a, b]→ R be a function defined by g(x) = f(x)− x.
Since x1 ∈ [a, b], then g(x1) = f(x1)− x1 = a− x1 < 0.
Since x2 ∈ [a, b], then g(x2) = f(x2)− x2 = b− x2 > 0.
Since f is continuous and the line y = x is continuous, then the difference g

is continuous, so g is continuous on [a, b].
Since g is continuous on the closed interval [a, b] and g(x1) < 0 < g(x2),

then by IVT, there exists c ∈ (x1, x2) such that g(c) = 0.
Since 0 = g(c) = f(c)− c, then f(c) = c.
Since c ∈ (x1, x2), then x1 < c < x2, so x1 < c and c < x2.
Since a < x1 and x1 < c and c < x2 and x2 < b, then a < c < b, so c ∈ (a, b).
Since (a, b) ⊂ [a, b], then c ∈ [a, b].
Therefore, there exists c ∈ [a, b] such that f(c) = c.

Exercise 56. Let f : [−1, 1]→ R be a function defined by f(x) = x3−3x2+17.
Then f is not one to one on the interval [−1, 1].

Proof. Since f is a polynomial function, then f is continuous, so f is continuous
on [−1, 1].

Since [−1, 0] ⊂ [−1, 1], then f is continuous on [−1, 0].
Since f(−1) = 13 < 15 < 17 = f(0), then by IVT, there is c ∈ (−1, 0) such

that f(c) = 15.
Since f(c) = 15 = f(1), then f(c) = f(1).
Since c ∈ (−1, 0), then −1 < c < 0, so c < 0.
Since c < 0 < 1, then c < 1, so c 6= 1.
Since c ∈ (−1, 0) and (−1, 0) ⊂ [−1, 1], then c ∈ [−1, 1].
Thus, there is c ∈ [−1, 1] such that c 6= 1 and f(c) = f(1).
Therefore, f is not one to one.
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Uniform continuity

Exercise 57. Let f : (0, 6)→ R be a function defined by f(x) = x2 + 2x− 5.
Then f is uniformly continuous on the interval (0, 6).

Proof. To prove f is uniformly continuous on (0, 6), let ε > 0 be given.
Let δ = ε

14 .
Then δ > 0.
Let x, y ∈ (0, 6) such that |x− y| < δ.
Then 0 < x < 6 and 0 < y < 6, so 0 < x+ y < 12.
Hence, 0 < 2 < x+ y + 2 < 14, so 0 < x+ y + 2 < 14.
Thus, |x+ y + 2| < 14.
Observe that

|f(x)− f(y)| = |(x2 + 2x− 5)− (y2 + 2y − 5)|
= |x2 − y2 + 2x− 2y|
= |(x− y)(x+ y) + 2(x− y)|
= |(x− y)(x+ y + 2)|
= |x− y||x+ y + 2|
< 14δ

= ε.

Therefore, |f(x)− f(y)| < ε, as desired.

Exercise 58. Let f : [2.5, 3]→ R be a function defined by f(x) = 3
x−2 .

Then f is uniformly continuous on the interval [2.5, 3].

Proof. To prove f is uniformly continuous on [2.5, 3], let ε > 0 be given.
Let δ = ε

12 .
Then δ > 0.
Let x, y ∈ [2.5, 3] such that |x− y| < δ.
Then 2.5 ≤ x ≤ 3 and 2.5 ≤ y ≤ 3, so 1

2 ≤ x− 2 ≤ 1 and 1
2 ≤ y − 2 ≤ 1.

Hence, 1
4 ≤ (x− 2)(y − 2) ≤ 1, so 0 < 1

4 ≤ (x− 2)(y − 2).
Thus, 0 < 1

(x−2)(y−2) ≤ 4.
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Observe that

|f(x)− f(y)| = | 3

x− 2
− 3

y − 2
|

= |3(y − 2)− 3(x− 2)

(x− 2)(y − 2)
|

= | 3y − 3x

(x− 2)(y − 2)
|

= | 3x− 3y

(x− 2)(y − 2)
|

= 3| x− y
(x− 2)(y − 2)

|

= 3|x− y|| 1

(x− 2)(y − 2)
|

= 3|x− y|( 1

(x− 2)(y − 2)
)

< 3δ · 4
= 12δ

= ε.

Therefore, |f(x)− f(y)| < ε, as desired.

Exercise 59. Let f : [3.4, 5]→ R be a function defined by f(x) = 2
x−3 .

Then f is uniformly continuous on the interval [3.4, 5].

Proof. To prove f is uniformly continuous on [3.4, 5], let ε > 0 be given.
Let δ = 0.08ε.
Then δ > 0.
Let x, y ∈ [3.4, 5] such that |x− y| < δ.
Then 3.4 ≤ x ≤ 5 and 3.4 ≤ y ≤ 5, so 0.4 ≤ x− 3 ≤ 2 and 0.4 ≤ y − 3 ≤ 2.
Hence, 0.16 ≤ (x− 3)(y − 3) ≤ 4, so 0.16 ≤ (x− 3)(y − 3).
Thus, 0 < 1

(x−3)(y−3) ≤ 6.25.

Since x ≥ 3.4 > 3, then x > 3, so x− 3 > 0.
Since y ≥ 3.4 > 3, then y > 3, so y − 3 > 0.
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Observe that

|f(x)− f(y)| = | 2

x− 3
− 2

y − 3
|

= |2(y − 3)− 2(x− 3)

(x− 3)(y − 3)
|

= | 2y − 2x

(x− 3)(y − 3)
|

= | 2x− 2y

(x− 3)(y − 3)
|

= 2| x− y
(x− 3)(y − 3)

|

= 2|x− y|| 1

(x− 3)(y − 3)
|

= 2|x− y| 1

(x− 3)(y − 3)

< 2δ · 6.25

= 12.5δ

= ε.

Therefore, |f(x)− f(y)| < ε, as desired.

Exercise 60. Let f : (2, 7)→ R be a function defined by f(x) = x3 − x+ 1.
Then f is uniformly continuous on the interval (2, 7).

Proof. To prove f is uniformly continuous on (2, 7), let ε > 0 be given.
Let δ = ε

148 .
Then δ > 0.
Let x, y ∈ (2, 7) such that |x− y| < δ.
Then 2 < x < 7 and 2 < y < 7, so 4 < x2 < 49 and 4 < y2 < 49 and

4 < xy < 49.
Thus, |x2 + xy + y2 − 1| ≤ |x2| + |xy| + |y2| + | − 1| = x2 + xy + y2 + 1 <

49 + 49 + 49 + 1 = 148.
Observe that

|f(x)− f(y)| = |(x3 − x+ 1)− (y3 − y + 1)|
= |x3 − y3 − x+ y|
= |(x− y)(x2 + xy + y2)− (x− y)|
= |(x− y)(x2 + xy + y2 − 1)|
= |x− y||x2 + xy + y2 − 1|
< δ · 148

= ε.

Therefore, |f(x)− f(y)| < ε, as desired.
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Exercise 61. Let a > 0.
Let f : [a,∞)→ R be a function defined by f(x) = 1

x .
Then f is uniformly continuous on the interval [a,∞).

Proof. To prove f is uniformly continuous on [a,∞), let ε > 0 be given.
Let δ = εa2.
Since ε > 0 and a2 > 0, then δ > 0.
Let x, y ∈ [a,∞) such that |x− y| < δ.
Then x ≥ a and y ≥ a.
Since x ≥ a > 0, then 1

a ≥
1
x > 0.

Since y ≥ a > 0, then 1
a ≥

1
y > 0.

Thus, 1
a2 ≥

1
xy .

Observe that

|f(x)− f(y)| = | 1
x
− 1

y
|

= |y − x
xy
|

= |x− y
xy
|

=
1

xy
|x− y|

<
δ

a2
= ε.

Therefore, |f(x)− f(y)| < ε, as desired.

Exercise 62. Let f : [1,∞)→ R be a function defined by f(x) = 1
x2 .

Then f is uniformly continuous on the interval [1,∞).

Proof. To prove f is uniformly continuous on [1,∞), let ε > 0 be given.
Let δ = ε

2 .
Then δ > 0.
Let x, y ∈ [1,∞) such that |x− y| < δ.
Then x ≥ 1 and y ≥ 1, so xy ≥ 1.
Hence, 1 ≥ 1

xy > 0, so 0 < 1
xy ≤ 1.

Observe that

| 1
x
− 1

y
| = |y − x

xy
|

= |x− y
xy
|

=
1

xy
|x− y|

< δ.
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Thus, | 1x −
1
y | < δ.

Since x ≥ 1, then 1 ≥ 1
x > 0.

Since y ≥ 1, then 1 ≥ 1
y > 0.

Thus, 2 ≥ 1
x + 1

y > 0, so 0 < 1
x + 1

y ≤ 2.
Observe that

|f(x)− f(y)| = | 1

x2
− 1

y2
|

= |( 1

x
− 1

y
)(

1

x
+

1

y
)|

= | 1
x
− 1

y
|| 1
x

+
1

y
|

= | 1
x
− 1

y
|( 1

x
+

1

y
)

< 2δ

= ε.

Therefore, |f(x)− f(y)| < ε, as desired.

Exercise 63. Let m and b be fixed real numbers.
Let I be an interval.
Then the linear function f(x) = mx+ b is uniformly continuous on I.

Proof. To prove f is uniformly continuous on I, let ε > 0 be given.
We must prove there exists δ > 0 such that for all x, y ∈ I, if |x − y| < δ,

then |f(x)− f(y)| < ε.
Either m = 0 or m 6= 0.
We consider these cases separately.
Case 1: Suppose m = 0.
Then f(x) = 0x+ b = b for all x ∈ R.
Let δ = ε.
Then δ > 0.
Let x, y ∈ I.
Then |f(x)− f(y)| = |b− b| = 0 < ε.
Hence, the implication if |x− y| < δ, then |f(x)− f(y)| < ε is trivially true.
Case 2: Suppose m 6= 0.
Let δ = ε

|m| .

Since m 6= 0, then |m| > 0.
Since ε > 0 and |m| > 0, then δ > 0.
Let x, y ∈ I such that |x− y| < δ.
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Then

|f(x)− f(y)| = |(mx+ b)− (my + b)|
= |mx+ b−my − b|
= |mx−my|
= |m(x− y)|
= |m||x− y|
< |m|δ

= |m| · ε

|m|
= ε.

Therefore, |f(x)− f(y)| < ε, as desired.

Exercise 64. Let f : (0,∞)→ R be the function given by f(x) = x2.
Then f is not uniformly continuous on (0,∞).

Proof. To prove f is not uniformly continuous on (0,∞), we prove (∃ε > 0)(∀δ >
0)(∃x, y ∈ (0,∞))(|x− y| < δ ∧ |f(x)− f(y)| ≥ ε).

Let ε = 1.
Let δ > 0 be given.
Let α = min{2, δ}.
Then α ≤ 2 and α ≤ δ and α > 0.
Let x = 1

α −
α
5 .

Let y = x+ α
2 .

Since 0 < α ≤ 2, then 0 < α2 ≤ 4 < 5, so 0 < α2 < 5.
Hence, α

5 <
1
α , so 1

α −
α
5 > 0.

Thus, x > 0, so x ∈ (0,∞).
Since x > 0 and α > 0, then y > 0, so y ∈ (0,∞).
Since |x− y| = |y − x| = |α2 | =

α
2 < α ≤ δ, then |x− y| < δ.

Since 4 < 5 and α > 0, then 4α < 5α, so α
5 <

α
4 .

Hence, −α5 > −α
4 , so 1

α −
α
5 >

1
α −

α
4 .

Thus, x > 1
α −

α
4 , so x+ α

4 >
1
α .

Observe that
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|f(x)− f(y)| = |x2 − y2|
= |(x− y)(x+ y)|
= |x− y||x+ y|
= |x− y|(x+ y)

=
α

2
[x+ (x+

α

2
)]

=
α

2
(2x+

α

2
)

= α(x+
α

4
)

> α · 1

α
= 1.

Therefore, |f(x) − f(y)| > 1 = ε, so f is not uniformly continuous on the
interval (0,∞).

Exercise 65. Let f : (0,∞)→ R be the function given by f(x) = 1
x2 .

Then f is not uniformly continuous on (0,∞).

Proof. To prove f is not uniformly continuous on (0,∞), we prove (∃ε > 0)(∀δ >
0)(∃x, y ∈ (0,∞))(|x− y| < δ ∧ |f(x)− f(y)| ≥ ε).

Let ε = 1.
Let δ > 0 be given.
Let α = min{1, δ}.
Then α ≤ 1 and α ≤ δ and α > 0.
Let x = α.
Let y = α

2 .
Then x > 0 and y > 0, so x ∈ (0,∞) and y ∈ (0,∞).
Since |x− y| = |α− α

2 | =
α
2 < α ≤ δ, then |x− y| < δ.

Since 0 < α ≤ 1, then 0 < α2 ≤ 1 < 3, so 0 < α2 < 3.
Hence, 1 < 3

α2 .
Observe that

|f(x)− f(y)| = |f(α)− f(
α

2
)|

= | 1

α2
− 4

α2
|

=
3

α2

> 1.

Therefore, |f(x) − f(y)| > 1 = ε, so f is not uniformly continuous on the
interval (0,∞).
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Proposition 66. the sum of uniformly continuous functions is uni-
formly continuous

Let f and g be real valued functions defined on a set E.
If f is uniformly continuous on E and g is uniformly continuous on E, then

f + g is uniformly continuous on E.

Proof. To prove the function f + g is uniformly continuous on E, let ε > 0 be
given.

We must prove there exists δ > 0 such that for all x, y ∈ E, if |x − y| < δ,
then |(f + g)(x)− (f + g)(y)| < ε.

Since ε > 0, then ε
2 > 0.

Since f is uniformly continuous on E and ε
2 > 0, then there exists δ1 > 0

such that for all x, y ∈ E, if |x− y| < δ1, then |f(x)− f(y)| < ε
2 .

Since g is uniformly continuous on E and ε
2 > 0, then there exists δ2 > 0

such that for all x, y ∈ E, if |x− y| < δ2, then |g(x)− g(y)| < ε
2 .

Let δ = min{δ1, δ2}.
Then δ ≤ δ1 and δ ≤ δ2 and δ > 0.
Let x, y ∈ E such that |x− y| < δ.
Since |x− y| < δ ≤ δ1, then |x− y| < δ1, so |f(x)− f(y)| < ε

2 .
Since |x− y| < δ ≤ δ2, then |x− y| < δ2, so |g(x)− g(y)| < ε

2 .
Therefore,

|(f + g)(x)− (f + g)(y)| = |f(x) + g(x)− (f(y) + g(y))|
= |f(x) + g(x)− f(y)− g(y)|
= |f(x)− f(y) + g(x)− g(y)|
≤ |f(x)− f(y)|+ |g(x)− g(y)|

<
ε

2
+
ε

2
= ε.

Exercise 67. Let f and g be real valued functions defined on a set E.
If f is uniformly continuous on E and g is uniformly continuous on E, show

that fg is not necessarily uniformly continuous on E.

Solution. Let f : (0,∞)→ R be the identity function f(x) = x.
Let g be a function such that g = f .
Then g(x) = f(x) = x for all x ∈ (0,∞).
Since f is a linear function defined on the interval (0,∞), then f is uniformly

continuous on (0,∞).
Since g = f , then g is uniformly continuous on (0,∞).
However, the function fg given by (fg)(x) = f(x)g(x) = xx = x2 is not

uniformly continuous on (0,∞).
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Proposition 68. the product of uniformly continuous bounded func-
tions is uniformly continuous

Let f and g be bounded real valued functions defined on a set E.
If f is uniformly continuous on E and g is uniformly continuous on E, then

fg is uniformly continuous on E.

Proof. To prove the function fg is uniformly continuous on E, let ε > 0 be
given.

We must prove there exists δ > 0 such that for all x, y ∈ E, if |x − y| < δ,
then |(fg)(x)− (fg)(y)| < ε.

Since f is bounded in R, then there exists a real number K > 0 such that
|f(x)| < K for all x ∈ E.

Since g is bounded in R, then there exists a real number M > 0 such that
|g(x)| < M for all x ∈ E.

Since ε > 0 and M > 0, then ε
2M > 0.

Since f is uniformly continuous on E and ε
2M > 0, then there exists δ1 > 0

such that for all x, y ∈ E, if |x− y| < δ1, then |f(x)− f(y)| < ε
2M .

Since ε > 0 and K > 0, then ε
2K > 0.

Since g is uniformly continuous on E and ε
2K > 0, then there exists δ2 > 0

such that for all x, y ∈ E, if |x− y| < δ2, then |g(x)− g(y)| < ε
2K .

Let δ = min{δ1, δ2}.
Then δ ≤ δ1 and δ ≤ δ2 and δ > 0.
Let x, y ∈ E such that |x− y| < δ.
Since |x− y| < δ ≤ δ1, then |x− y| < δ1, so |f(x)− f(y)| < ε

2M .
Since |x− y| < δ ≤ δ2, then |x− y| < δ2, so |g(x)− g(y)| < ε

2K .
Since x ∈ E, then |f(x)| < K.
Since y ∈ E, then |g(y)| < M .
Therefore,

|(fg)(x)− (fg)(y)| = |f(x)g(x)− f(y)g(y)|
= |f(x)(g(x)− g(y)) + f(x)g(y)− f(y)g(y)|
= |f(x)(g(x)− g(y)) + g(y)(f(x)− f(y))|
≤ |f(x)(g(x)− g(y))|+ |g(y)(f(x)− f(y))|
= |f(x)||g(x)− g(y)|+ |g(y)||f(x)− f(y)|

< K · ε

2K
+M · ε

2M
= ε.

Proposition 69. composition of uniformly continuous functions is
uniformly continuous

Let f and g be real valued functions of a real variable.
If f is uniformly continuous and g is uniformly continuous, then g ◦ f is

uniformly continuous.
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Proof. Suppose f is uniformly continuous and g is uniformly continuous.
To prove the function g ◦ f is uniformly continuous, let ε > 0 be given.
Since g is uniformly continuous, then there exists δ1 > 0 such that for all

x, y ∈ domg, if |x− y| < δ1, then |g(x)− g(y)| < ε.
Since f is uniformly continuous and δ1 > 0, then there exists δ > 0 such

that for all x, y ∈ domf , if |x− y| < δ, then |f(x)− f(y)| < δ1.
Let x, y ∈ dom(g ◦ f) such that |x− y| < δ.
Since x ∈ dom(g ◦ f) and dom(g ◦ f) = {x ∈ domf : f(x) ∈ domg}, then

x ∈ domf and f(x) ∈ domg.
Since y ∈ dom(g ◦ f) and dom(g ◦ f) = {x ∈ domf : f(x) ∈ domg}, then

y ∈ domf and f(y) ∈ domg.
Since x ∈ domf and y ∈ domf and |x− y| < δ, then |f(x)− f(y)| < δ1.
Since f(x) ∈ domg and f(y) ∈ domg and |f(x)− f(y)| < δ1, then |g(f(x)−

g(f(y))| < ε.
Therefore, |(g ◦ f)(x)− (g ◦ f)(y)| < ε, as desired.
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