Continuous functions Exercises

Jason Sass

June 29, 2021

Continuity

Exercise 1. The function given by $f(x)=x^{2}$ is continuous at $x=2$.
Proof. Let $\epsilon>0$ be given.
Let $\delta=\min \left\{1, \frac{\epsilon}{5}\right\}$.
Then $\delta \leq 1$ and $\delta \leq \frac{\epsilon}{5}$ and $\delta>0$.
Let $x \in \mathbb{R}$ such that $|x-2|<\delta$.
Then $|x+2|=|(x-2)+4| \leq|x-2|+4<\delta+4 \leq 5$, so $|x+2|<5$.
Therefore, $\left|x^{2}-4\right|=|(x-2)(x+2)|=|x-2||x+2|<5 \delta \leq 5 \cdot \frac{\epsilon}{5}=\epsilon$, so $\left|x^{2}-4\right|<\epsilon$, as desired.

Exercise 2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=3 x^{2}-2 x+1$.
Then f is continuous at 2 .
Solution. To prove f is continuous at 2 , let $\epsilon>0$ be given.
Let $\delta=\min \left\{1, \frac{\epsilon}{13}\right\}$.
Then $\delta \leq 1$ and $\delta \leq \frac{\epsilon}{13}$ and $\delta>0$.
Let $x \in \mathbb{R}$ such that $|x-2|<\delta$.
Then $0 \leq|x-2|<\delta$.
Since $|3 x+4|=|3(x-2)+10| \leq 3|x-2|+10<3 \delta+10 \leq 3+10=13$, then $|3 x+4|<13$.

Thus, $|f(x)-f(2)|=\left|\left(3 x^{2}-2 x+1\right)-9\right|=\left|3 x^{2}-2 x-8\right|=|(x-2)(3 x+4)|=$ $|x-2||3 x+4|<13 \delta \leq \frac{\epsilon}{13} \cdot 13=\epsilon$.

Therefore, $|f(x)-f(2)|<\epsilon$, as desired.
Exercise 3. Let $f:[-4,0] \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)= \begin{cases}\frac{2 x^{2}-18}{x+3} & \text { if } x \neq 3 \\ -12 & \text { if } x=-3\end{cases}
$$

Then f is continuous at -3 .

Solution. To prove f is continuous at $-3 \in[-4,0]$, let $\epsilon>0$ be given.
Let $\delta=\frac{\epsilon}{2}$.
Then $\delta>0$.
Let $x \in[-4,0]$ such that $|x-(-3)|<\delta$.
Then $0 \leq|x+3|<\delta$.
Either $x=-3$ or $x \neq-3$.
We consider these cases separately.
Case 1: Suppose $x=-3$.
Then $|f(x)-f(-3)|=|f(-3)-f(-3)|=0<\epsilon$.
Hence, the conditional if $|x-(-3)|<\delta$, then $|f(x)-f(-3)|<\epsilon$ is trivially true.

Case 2: Suppose $x \neq-3$.
Then $|f(x)-f(-3)|=\left|\frac{2 x^{2}-18}{x+3}+12\right|=\left|\frac{2(x-3)(x+3)}{x+3}+12\right|=|2(x-3)+12|=$ $|2 x+6|=2|x+3|<2 \delta=\epsilon$, so $|f(x)-f(-3)|<\epsilon$.

Therefore, f is continuous at -3 , as desired.
Exercise 4. Let $f(x)=\frac{x^{2}+x-6}{x-2}$ be defined for all real numbers $x \neq 2$.
Define f so that f is continuous at 2 .
Solution. Since $\operatorname{dom} f=\mathbb{R}-\{2\}$, then 2 is not in the domain of f, so f is discontinuous at 2 .

Define $f(2)=5$.
Then $\operatorname{dom} f=\mathbb{R}$.
For $x \neq 2$, observe that

$$
\begin{aligned}
\lim _{x \rightarrow 2} f(x) & =\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{(x-2)(x+3)}{x-2} \\
& =\lim _{x \rightarrow 2}(x+3) \\
& =2+3 \\
& =5 \\
& =f(2)
\end{aligned}
$$

Since $2 \in \mathbb{R}$ and 2 is an accumulation point of \mathbb{R} and $\lim _{x \rightarrow 2} f(x)=f(2)$, then by the characterization of continuity, f is continuous at 2 .
Exercise 5. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be the function defined by $f(x)=\frac{1}{x}$.
Let $0<c<1$.
If $\delta>0$ satisfies the ϵ, δ definition of continuity at c for $\epsilon=1$, then $\delta<\frac{c^{2}}{1+c}$.
Solution. Suppose $\delta>0$ and δ satisfies the ϵ, δ definition of continuity at c for $\epsilon=1$.

Since f is continuous at c for any $c>0$ and $c>0$, then f is continuous at c.
Thus, $\delta=\min \left\{\frac{c}{2}, \frac{c^{2} \epsilon}{2}\right\}=\min \left\{\frac{c}{2}, \frac{c^{2}}{2}\right\}$.

Since $c<1$ and $c>0$, then $c^{2}<c$, so $\frac{c^{2}}{2}<\frac{c}{2}$.
Hence, $\delta=\frac{c^{2}}{2}$.
Since $c<1$, then $1+c<2$, so $\frac{1}{2}<\frac{1}{1+c}$.
Since $c^{2}>0$, then $\frac{c^{2}}{2}<\frac{c^{2}}{1+c}$, so $\delta<\frac{c^{2}}{1+c}$, as desired.
Exercise 6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=2 x^{2}+3 x+1$.
Then f is continuous.
Solution. Let $c \in \mathbb{R}$ be given.
To prove f is continuous, we must prove f is continuous at c.
Let $\epsilon>0$ be given.
Let $\delta=\min \left\{1, \frac{\epsilon}{5+4|c|}\right\}$.
Then $\delta \leq 1$ and $\delta \leq \frac{\epsilon}{5+4|c|}$ and $\delta>0$.
Let $x \in \mathbb{R}$ such that $|x-c|<\delta$.
Then $0 \leq|x-c|<\delta$.
Since $|x|=|(x-c)+c| \leq|x-c|+|c|<\delta+|c| \leq 1+|c|$, then $|x|<1+|c|$.
Hence, $|2 x+2 c+3| \leq 2|x|+2|c|+3<2(1+|c|)+2|c|+3=5+4|c|$, so $0 \leq|2 x+2 c+3|<5+4|c|$.

Thus,

$$
\begin{aligned}
|f(x)-f(c)| & =\left|\left(2 x^{2}+3 x+1\right)-\left(2 c^{2}+3 c+1\right)\right| \\
& =\left|2\left(x^{2}-c^{2}\right)+3(x-c)\right| \\
& =|2(x-c)(x+c)+3(x-c)| \\
& =|(x-c)[2(x+c)+3]| \\
& =|(x-c)(2 x+2 c+3)| \\
& =|x-c||2 x+2 c+3| \\
& <\delta \cdot(5+4|c|) \\
& \leq \frac{\epsilon}{5+4|c|} \cdot(5+4|c|) \\
& =\epsilon
\end{aligned}
$$

Therefore, $|f(x)-f(c)|<\epsilon$, as desired.
Exercise 7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)= \begin{cases}x & \text { if } x \text { is rational } \\ x^{2} & \text { if } x \text { is irrational }\end{cases}
$$

Then f is continuous at 1 and f is discontinuous at 2 .
Proof. To prove f is continuous at 1 , let $\epsilon>0$ be given.
Let $\delta=\min \left\{1, \frac{\epsilon}{3}\right\}$.
Then $\delta \leq 1$ and $\delta \leq \frac{\epsilon}{3}$ and $\delta>0$.

Let $x \in \mathbb{R}$ such that $|x-1|<\delta$.
Since $x \in \mathbb{R}$, then either x is rational or x is irrational.
We consider each case separately.
Case 1: Suppose x is rational.
Then $|f(x)-f(1)|=|x-1|<\delta \leq \frac{\epsilon}{3}<\epsilon$.
Case 2: Suppose x is irrational.
Since $|x+1|=|x-1+2| \leq|x-1|+2<\delta+2 \leq 3$, then $|x+1|<3$.
Thus,

$$
\begin{aligned}
|f(x)-f(1)| & =\left|x^{2}-1\right| \\
& =|x-1||x+1| \\
& <3 \delta \\
& \leq 3 \cdot \frac{\epsilon}{3} \\
& =\epsilon
\end{aligned}
$$

Therefore, in either case, $|f(x)-f(1)|<\epsilon$, so f is continuous at 1 .
Proof. To prove f is discontinuous at 2, we prove $(\exists \epsilon>0)(\forall \delta>0)(\exists x \in$ $\mathbb{R})(|x-2|<\delta \wedge|f(x)-f(2)| \geq \epsilon)$.

Let $\epsilon=2$.
Let $\delta>0$ be given.
Since $2<2+\delta$ and $\mathbb{R}-\mathbb{Q}$ is dense in \mathbb{R}, then there exists $r \in \mathbb{R}-\mathbb{Q}$ such that $2<r<2+\delta$.

Since $r \in \mathbb{R}-\mathbb{Q}$, then $r \in \mathbb{R}$ and $f(r)=r^{2}$.
Since $2<r<2+\delta$, then $0<r-2<\delta$, so $|r-2|=r-2<\delta$.
Since $r>2$, then $r^{2}>4$, so $r^{2}-2>2>0$.
Thus, $|f(r)-f(2)|=\left|r^{2}-2\right|=r^{2}-2>2=\epsilon$.
Therefore, there exists $r \in \mathbb{R}$ such that $|r-2|<\delta$ and $|f(r)-f(2)|>\epsilon$, as desired.

Exercise 8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)= \begin{cases}8 x & \text { if } x \text { is rational } \\ 2 x^{2}+8 & \text { if } x \text { is irrational }\end{cases}
$$

Then f is continuous at 2 and f is discontinuous at 1 .
Proof. To prove f is continuous at 2 , let $\epsilon>0$ be given.
Let $\delta=\min \left\{1, \frac{\epsilon}{10}\right\}$.
Then $\delta \leq 1$ and $\delta \leq \frac{\epsilon}{10}$ and $\delta>0$.
Let $x \in \mathbb{R}$ such that $|x-2|<\delta$.
Since $x \in \mathbb{R}$, then either x is rational or x is irrational.
We consider each case separately.
Case 1: Suppose x is rational.
Then $|f(x)-f(2)|=|8 x-16|=8|x-2|<8 \delta \leq 8 \cdot \frac{\epsilon}{10}<\epsilon$.

Case 2: Suppose x is irrational.
Since $|x+2|=|(x-2)+4| \leq|x-2|+4<\delta+4 \leq 5$, then $0 \leq|x+2|<5$.
Thus, $|f(x)-f(2)|=\left|\left(2 x^{2}+8\right)-16\right|=\left|2 x^{2}-8\right|=2\left|x^{2}-4\right|=2|x-2||x+2|<$ $10 \delta \leq \epsilon$.

Therefore, in either case, $|f(x)-f(2)|<\epsilon$, so f is continuous at 2 .
Proof. To prove f is discontinuous at 1 , we prove $(\exists \epsilon>0)(\forall \delta>0)(\exists x \in$ $\mathbb{R})(|x-1|<\delta \wedge|f(x)-f(1)| \geq \epsilon)$.

Let $\epsilon=2$.
Let $\delta>0$ be given.
Since $1<1+\delta$ and $\mathbb{R}-\mathbb{Q}$ is dense in \mathbb{R}, then there exists $r \in \mathbb{R}-\mathbb{Q}$ such that $1<r<1+\delta$.

Since $r \in \mathbb{R}-\mathbb{Q}$, then $r \in \mathbb{R}$ and $f(r)=2 r^{2}+8$.
Since $1<r<1+\delta$, then $0<r-1<\delta$, so $|r-1|=r-1<\delta$.
Since $r>1$, then $r^{2}>1$, so $2 r^{2}>2$.
Thus, $|f(r)-f(1)|=\left|\left(2 r^{2}+8\right)-8\right|=\left|2 r^{2}\right|=2 r^{2}>2=\epsilon$.
Therefore, there exists $r \in \mathbb{R}$ such that $|r-1|<\delta$ and $|f(r)-f(1)|>\epsilon$, as desired.

Exercise 9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)= \begin{cases}x & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

Then f is continuous at 0 and f is discontinuous for all $x \neq 0$.
(Therefore, f is continuous only at $x=0$).
Proof. To prove f is continuous at 0 , let $\epsilon>0$ be given.
Let $\delta=\epsilon$.
Then $\delta>0$.
Let $x \in \mathbb{R}$ such that $|x|<\delta$.
Since $x \in \mathbb{R}$, then either x is rational or x is irrational.
We consider each case separately.
Case 1: Suppose x is rational.
Then $|f(x)-f(0)|=|x-0|=|x|<\delta=\epsilon$.
Case 2: Suppose x is irrational.
Then $|f(x)-f(0)|=|0-0|=0<\epsilon$.
Therefore, in either case, $|f(x)-f(0)|<\epsilon$, so f is continuous at 0 .
Proof. Let $c \in \mathbb{R}$ such that $c \neq 0$.
We must prove f is discontinuous at c.
Let $\epsilon=\frac{|c|}{2}$.
Since $c \neq 0$, then $|c|>0$, so $\epsilon=\frac{|c|}{2}>0$.
Let $\delta>0$ be given.
Since $c \in \mathbb{R}$, then either $c \in \mathbb{Q}$ or $c \notin \mathbb{Q}$.
We consider these cases separately.

Case 1: Suppose $c \in \mathbb{Q}$.
Since $c<c+\delta$ and $\mathbb{R}-\mathbb{Q}$ is dense in \mathbb{R}, then there exists $r \in \mathbb{R}-\mathbb{Q}$ such that $c<r<c+\delta$.

Since $c<r<c+\delta$, then $0<r-c<\delta$, so $|r-c|=r-c<\delta$.
Observe that $|f(r)-f(c)|=|0-c|=|c|>\frac{|c|}{2}=\epsilon$.
Therefore, there exists $r \in \mathbb{R}$ such that $|r-c|<\delta$ and $|f(r)-f(c)|>\epsilon$, as desired.

Case 2: Suppose $c \notin \mathbb{Q}$.
Since $c \neq 0$, then either $c>0$ or $c<0$.
We consider these cases separately.
Case 2a: Suppose $c>0$.
Since $c<c+\delta$ and \mathbb{Q} is dense in \mathbb{R}, then there exists $r \in \mathbb{Q}$ such that $c<r<c+\delta$, so $0<r-c<\delta$.

Hence, $|r-c|=r-c<\delta$.
Since $r>c>0$, then $r>0$.
Thus, $|f(r)-f(c)|=|r-0|=|r|=r>c=|c|>\frac{|c|}{2}$.
Case 2b: Suppose $c<0$.
Since $c-\delta<c$ and \mathbb{Q} is dense in \mathbb{R}, then there exists $r \in \mathbb{Q}$ such that $c-\delta<r<c$, so $-\delta<r-c<0$.

Hence, $|r-c|=-(r-c)<\delta$.
Since $r<c<0$, then $r<0$.
Thus, $|f(r)-f(c)|=|r-0|=|r|=-r>-c=|c|>\frac{|c|}{2}$.
Therefore, there exists $r \in \mathbb{R}$ such that $|r-c|<\delta$ and $|f(r)-f(c)|>\epsilon$, as desired.

Exercise 10. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)= \begin{cases}2 x & \text { if } x \text { is rational } \\ x+3 & \text { if } x \text { is irrational }\end{cases}
$$

Then f is continuous at 3 and discontinuous at $c \neq 3$.
Proof. We prove f is continuous at 3 .
Let $\epsilon>0$ be given.
Let $\delta=\frac{\epsilon}{2}$.
Then $\delta>0$.
Let $x \in \mathbb{R}$ such that $|x-3|<\delta$.
Since $x \in \mathbb{R}$, then either x is rational or x is irrational.
We consider these cases separately.
Case 1: Suppose x is rational.
Then $|f(x)-f(3)|=|2 x-6|=|2(x-3)|=2|x-3|<2 \delta=\epsilon$.
Case 2: Suppose x is irrational.
Then $|f(x)-f(3)|=|x+3-6|=|x-3|<\delta=\frac{\epsilon}{2}<\epsilon$.
Hence, in all cases, $|f(x)-f(3)|<\epsilon$, as desired.
Lemma 11. Every real number is an accumulation point of $\mathbb{R}-\mathbb{Q}$.

Proof. Let $p \in \mathbb{R}$ be arbitrary.
To prove p is an accumulation point of $\mathbb{R}-\mathbb{Q}$, let $\delta>0$ be given.
Then $\delta>p-p$, so $p+\delta>p$.
Since $p<p+\delta$ and $\mathbb{R}-\mathbb{Q}$ is dense in \mathbb{R}, then there exists $r \in \mathbb{R}-\mathbb{Q}$ such that $p<r<p+\delta$.

Thus, $0<r-p<\delta$ and $p<r$.
Since $0<r-p<\delta$, then $|r-p|=r-p<\delta$, so $r \in N(p ; \delta)$.
Since $r>p$, then $r \neq p$, so $r \in N^{\prime}(p ; \delta)$.
Thus, there exists $r \in \mathbb{R}-\mathbb{Q}$ such that $r \in N^{\prime}(p ; \delta)$, so p is an accumulation point of $\mathbb{R}-\mathbb{Q}$, as desired.

Proof. Let $c \in \mathbb{R}$ such that $c \neq 3$.
We must prove f is discontinuous at c.
Since every real number is an accumulation point of \mathbb{Q} and $c \in \mathbb{R}$, then c is an accumulation point of \mathbb{Q}, so there exists a sequence of points in $\mathbb{Q}-\{c\}$ that converges to c.

Let $\left(a_{n}\right)$ be a sequence of points in $\mathbb{Q}-\{c\}$ such that $\lim _{n \rightarrow \infty} a_{n}=c$.
Since every real number is an accumulation point of $\mathbb{R}-\mathbb{Q}$ and $c \in \mathbb{R}$, then c is an accumulation point of $\mathbb{R}-\mathbb{Q}$, so there exists a sequence of points in $\mathbb{R}-\mathbb{Q}-\{c\}$ that converges to c.

Let $\left(b_{n}\right)$ be a sequence of points in $\mathbb{R}-\mathbb{Q}-\{c\}$ such that $\lim _{n \rightarrow \infty} b_{n}=c$.
Suppose f is continuous at c.
Then by the sequential characterization of continuity, $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=\lim _{n \rightarrow \infty} f\left(b_{n}\right)$.
Thus, $\lim _{n \rightarrow \infty}\left(2 a_{n}\right)=\lim _{n \rightarrow \infty}\left(b_{n}+3\right)$, so $2 \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}+$ $\lim _{n \rightarrow \infty} 3$.

Hence, $2 c=c+3$, so $c=3$.
But, this contradicts the assumption that $c \neq 3$.
Therefore, f is discontinuous at c, as desired.
Exercise 12. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the greatest integer function given by $f(x)=$ $\lfloor x\rfloor=\max \{n \in \mathbb{Z}: n \leq x\}$ for all $x \in \mathbb{R}$.

Then f is discontinuous at n for all $n \in \mathbb{Z}$ and f is continuous at c for all $c \in \mathbb{R}-\mathbb{Z}$.

Proof. To prove f is discontinuous at n for all $n \in \mathbb{Z}$, let $n \in \mathbb{Z}$ be given.
We must prove $(\exists \epsilon>0)(\forall \delta>0)(\exists x \in \mathbb{R})(|x-n|<\delta \wedge|f(x)-f(n)| \geq \epsilon)$.
Let $\epsilon=\frac{1}{2}$.
Let $\delta>0$ be given.
Let $M=\max \{n-\delta, n-1\}$.
Then $n-\delta \leq M$ and $n-1 \leq M$, and either $M=n-\delta$ or $M=n-1$.
Since $n-1<n$ and $n-\delta<n$, then $M<n$.
Since \mathbb{R} is dense, then there exists $x \in \mathbb{R}$ such that $M<x<n$.
Since $n-\delta \leq M<x<n$, then $n-\delta<x$ and $x<n$, so $n-x<\delta$ and $n-x>0$.

Thus, $|x-n|=|n-x|=n-x<\delta$.
Since $n-1 \leq M<x<n$, then $n-1<x<n$, so $f(x)=n-1$.
Hence, $|f(x)-f(n)|=|(n-1)-n|=1>\frac{1}{2}=\epsilon$.

Proof. To prove f is continuous at c for all $c \in \mathbb{R}-\mathbb{Z}$, let $c \in \mathbb{R}-\mathbb{Z}$ be given.
Then $c \in \mathbb{R}$ and $c \notin \mathbb{Z}$, so there is a unique integer n such that $n<c<n+1$.
Let $\epsilon>0$ be given.
Let $M=\min \{n+1-c, c-n\}$.
Then $M \leq n+1-c$ and $M \leq c-n$, and either $M=n+1-c$ or $M=c-n$.
Let $\delta=\frac{M}{2}$.
Since $n<c$, then $c-n>0$.
Since $c<n+1$, then $n+1-c>0$.
Thus, $M>0$, so $\frac{M}{2}>0$.
Hence, $\delta>0$.
Let $x \in \mathbb{R}$ such that $|x-c|<\delta$.
Then $c-\delta<x<c+\delta$.
Since $\delta=\frac{M}{2}<M \leq n+1-c$, then $\delta<n+1-c$, so $c+\delta<n+1$.
Since $\delta=\frac{M}{2}<M \leq c-n$, then $\delta<c-n$, so $n<c-\delta$.
Hence, $n<c-\delta<x<c+\delta<n+1$, so $n<x<n+1$.
Thus, $|f(x)-f(c)|=|n-n|=0<\epsilon$.
Therefore, f is continuous at c, as desired.
Exercise 13. continuity of a restriction of a function does not necessarily imply continuity of the function

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)= \begin{cases}1 & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

Let g be the restriction of f to $[0, \infty)$.
Then $g(x)=1$ for all $x \in[0, \infty)$.
Since the constant function given by $h(x)=1$ is continuous and g is a restriction of h to $[0, \infty)$, then g is continuous, so g is continuous on $[0, \infty)$.

Since $0 \in[0, \infty)$, then g is continuous at 0 .
Since 0 is an accumulation point of \mathbb{R}, but $\lim _{x \rightarrow 0} f(x)$ does not exist, then f is not continuous at 0 , so f is not continuous.

Therefore, g is continuous at 0 , but f is not continuous at 0 .
Thus, if g is a restriction of f and g is continuous, then f is not necessarily continuous.

Exercise 14. Let $S \subset \mathbb{R}$ and $c \in \mathbb{R}$ and $\alpha>0$.
Let $I=(c-\alpha, c+\alpha) \subset S$.
Let $f: S \rightarrow \mathbb{R}$ be a function.
If the restriction of f to I, denoted f_{I}, is continuous at c, then f is continuous at c.

Proof. Suppose f_{I} is continuous at c.
To prove f is continuous at c, let $\epsilon>0$ be given.
Since f_{I} is continuous at c, then there exists $\beta>0$ such that for all $x \in I$, if $|x-c|<\beta$, then $\left|f_{I}(x)-f_{I}(c)\right|<\epsilon$.

Let $m=\min \{\alpha, \beta\}$.
Then $m \leq \alpha$ and $m \leq \beta$.
Since $\alpha>0$ and $\beta>0$, then $m>0$, so $\frac{m}{2}>0$.
Let $\delta=\frac{m}{2}$.
Then $\delta>0$.
Let $x \in S$ such that $|x-c|<\delta$.
Since $|x-c|<\delta=\frac{m}{2}<m \leq \alpha$, then $|x-c|<\alpha$, so $x \in N(c ; \alpha)=$ $(c-\alpha, c+\alpha)=I$.

Since $|x-c|<\delta=\frac{m}{2}<m \leq \beta$, then $|x-c|<\beta$.
Since $x \in I$ and $|x-c|<\beta$, then $\left|f_{I}(x)-f_{I}(c)\right|<\epsilon$.
Therefore, $|f(x)-f(c)|=\left|f_{I}(x)-f_{I}(c)\right|<\epsilon$, so f is continuous at c, as desired.

Exercise 15. Let $K>0$.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $|f(x)-f(y)| \leq K|x-y|$ for all $x, y \in \mathbb{R}$.

Then f is continuous on \mathbb{R}.
Proof. To prove f is continuous on \mathbb{R}, let $c \in \mathbb{R}$ be arbitrary.
To prove f is continuous at c, let $\epsilon>0$ be given.
Let $\delta=\frac{\epsilon}{K}$.
Since $\epsilon>0$ and $K>0$, then $\delta>0$.
Let $x \in \mathbb{R}$ such that $|x-c|<\delta$.
Since $x \in \mathbb{R}$ and $c \in \mathbb{R}$, then $|f(x)-f(c)| \leq K|x-c|<K \delta=\epsilon$.
Therefore, $|f(x)-f(c)|<\epsilon$, so f is continuous at c, as desired.
Exercise 16. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(x)=x^{2}$ for all $x \in \mathbb{Q}$.

Compute $f(\sqrt{2})$.
Solution. Since f is continuous on \mathbb{R} and $\sqrt{2} \in \mathbb{R}$, then f is continuous at $\sqrt{2}$.
Hence, by the sequential characterization of continuity, for every sequence $\left(x_{n}\right)$ in \mathbb{R} that converges to $\sqrt{2}$, the sequence $\left(f\left(x_{n}\right)\right)$ converges to $f(\sqrt{2})$.

Let $\left(x_{n}\right)$ be a sequence of rational numbers defined recursively by $x_{1}=2$ and $x_{n+1}=\frac{x_{n}}{2}+\frac{1}{x_{n}}$ for all $n \in \mathbb{N}$.

Then we know $\lim _{n \rightarrow \infty} x_{n}=\sqrt{2}$.
Since $\left(x_{n}\right)$ is a sequence of rational numbers, then $x_{n} \in \mathbb{Q}$ for all $n \in \mathbb{N}$.
Let $n \in \mathbb{N}$.
Then $x_{n} \in \mathbb{Q}$.
Since $\mathbb{Q} \subset \mathbb{R}$, then $x_{n} \in \mathbb{R}$.
Hence, $x_{n} \in \mathbb{R}$ for all $n \in \mathbb{N}$, so $\left(x_{n}\right)$ is a sequence in \mathbb{R}.
Since $\left(x_{n}\right)$ is a sequence in \mathbb{R} and $\lim _{n \rightarrow \infty} x_{n}=\sqrt{2}$, then $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=$ $f(\sqrt{2})$.

Hence,

$$
\begin{aligned}
f(\sqrt{2}) & =\lim _{n \rightarrow \infty} f\left(x_{n}\right) \\
& =\lim _{n \rightarrow \infty}\left(x_{n} x_{n}\right) \\
& =\left(\lim _{n \rightarrow \infty} x_{n}\right)\left(\lim _{n \rightarrow \infty} x_{n}\right) \\
& =\sqrt{2} \cdot \sqrt{2} \\
& =2 .
\end{aligned}
$$

Therefore, $f(\sqrt{2})=2$.
Exercise 17. If $f: \mathbb{Z} \rightarrow \mathbb{R}$ is a function, then f is continuous.
Proof. Suppose $f: \mathbb{Z} \rightarrow \mathbb{R}$ is a function.
To prove f is continuous, let $n \in \mathbb{Z}$.
Since there are no accumulation points of \mathbb{Z}, then n is not an accumulation point of \mathbb{Z}.

Since $n \in \mathbb{Z}$, then by the characterization of continuity, f is continuous at n.

Therefore, f is continuous on \mathbb{Z}, so f is continuous.
Exercise 18. Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
If $c \in E$ and c is not an accumulation point of E, then for every sequence $\left(x_{n}\right)$ of points in E such that $\left(x_{n}\right)$ converges to c, the sequence $\left(f\left(x_{n}\right)\right)$ converges to $f(c)$.

Proof. Suppose $c \in E$ and c is not an accumulation point of E.
Then f is continuous at c.
Therefore, by the sequential characterization of continuity, for every sequence $\left(x_{n}\right)$ of points in E such that $\left(x_{n}\right)$ converges to c, the sequence $\left(f\left(x_{n}\right)\right)$ converges to $f(c)$.

Exercise 19. Using the sequential characterization of continuity prove the function $f:(0, \infty) \rightarrow \mathbb{R}$ defined by $f(x)=\frac{1}{x}$ is continuous.

Proof. To prove f is continuous on its domain, we must prove f is continuous on the interval $(0, \infty)$.

Let $c \in(0, \infty)$ be arbitrary.
Then $c>0$, so $c \neq 0$.
To prove f is continuous at c using the sequential characterization of continuity, let $\left(x_{n}\right)$ be an arbitrary sequence of real numbers in $(0, \infty)$ such that $\lim _{n \rightarrow \infty} x_{n}=c$.

We must prove $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c)$.

Since $\lim _{n \rightarrow \infty} x_{n}=c \neq 0$, then

$$
\begin{aligned}
f(c) & =\frac{1}{c} \\
& =\frac{\lim _{n \rightarrow \infty} 1}{\lim _{n \rightarrow \infty} x_{n}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{x_{n}} \\
& =\lim _{n \rightarrow \infty} f\left(x_{n}\right)
\end{aligned}
$$

Therefore, $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c)$, as desired.
Exercise 20. Show that the sequence $\left(a_{n}\right)$ defined by $a_{n}=\sqrt[n]{e^{n+1}}$ for all $n \in \mathbb{N}$ is convergent.

Solution. We see intuitively that the sequence converges to e.
Proof. To prove $\left(a_{n}\right)$ is convergent, we prove $\lim _{n \rightarrow \infty} \sqrt[n]{e^{n+1}}=e$.
We first prove $\lim _{n \rightarrow \infty} e^{\frac{1}{n}}=1$.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=e^{x}$.
We assume f is continuous on \mathbb{R}.
Since f is continuous at 0 , then by the sequential characterization of continuity, if $\left(x_{n}\right)$ is a sequence of points in \mathbb{R} that converges to 0 , then the sequence $\left(f\left(x_{n}\right)\right)$ converges to $f(0)$.

Since $\left(\frac{1}{n}\right)$ is a sequence of real numbers that converges to 0 , then the sequence $\left(f\left(\frac{1}{n}\right)\right)$ converges to $f(0)$.

Thus, $1=e^{0}=f(0)=\lim _{n \rightarrow \infty} f\left(\frac{1}{n}\right)=\lim _{n \rightarrow \infty} e^{\frac{1}{n}}$.
Observe that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sqrt[n]{e^{n+1}} & =\lim _{n \rightarrow \infty} e^{\frac{n+1}{n}} \\
& =\lim _{n \rightarrow \infty} e^{1+\frac{1}{n}} \\
& =\lim _{n \rightarrow \infty} e e^{\frac{1}{n}} \\
& =e \lim _{n \rightarrow \infty} e^{\frac{1}{n}} \\
& =e \cdot 1 \\
& =e
\end{aligned}
$$

Exercise 21. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function.
Let $S=\{x \in \mathbb{R}: f(x)=0\}$.
Let $\left(x_{n}\right)$ be a sequence in S such that $\lim _{n \rightarrow \infty} x_{n}=c$.
Then $c \in S$.

Proof. Since $\left(x_{n}\right)$ is a sequence in S, then $x_{n} \in S$ for each $n \in \mathbb{N}$.
Let $n \in \mathbb{N}$.
Then $x_{n} \in S$.
Since $S \subset \mathbb{R}$, then $x_{n} \in \mathbb{R}$ for each $n \in \mathbb{N}$, so $\left(x_{n}\right)$ is a sequence in \mathbb{R}.
Since $\lim _{n \rightarrow \infty} x_{n}=c$, then $c \in \mathbb{R}$.
To prove $c \in S$, we must prove $f(c)=0$.
Since f is continuous on \mathbb{R} and $c \in \mathbb{R}$, then f is continuous at c.
Since $\left(x_{n}\right)$ is a sequence in \mathbb{R} and $\lim _{n \rightarrow \infty} x_{n}=c$, then by the sequential characterization of continuity, we conclude $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c)$.

Since $x_{n} \in S$ for each $n \in \mathbb{N}$, then $f\left(x_{n}\right)=0$ for each $n \in \mathbb{N}$, so the sequence $\left(f\left(x_{n}\right)\right)$ is the constant sequence 0 .

Thus, $0=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c)$, so $f(c)=0$, as desired.
Exercise 22. Let $f: E \rightarrow \mathbb{R}$ be a function.
Let $c \in E$.
If f is continuous at c, then there exists $M>0$ and $\delta>0$ such that $|f(x)|<M$ for all $x \in N(c ; \delta) \cap E$.

Proof. Suppose f is continuous at c.
Let $\epsilon=1$ be given.
Then there exists $\delta>0$ such that for all $x \in E$, if $|x-c|<\delta$, then $|f(x)-f(c)|<1$.

Let $M=1+|f(c)|$.
Since $1>0$ and $|f(c)| \geq 0$, then $M>0$.
Let $x \in N(c ; \delta) \cap E$.
Then $x \in N(c ; \delta)$ and $x \in E$.
Since $x \in N(c ; \delta)$, then $|x-c|<\delta$.
Since $x \in E$ and $|x-c|<\delta$, then $|f(x)-f(c)|<1$.
Thus, $|f(x)|=|f(x)-f(c)+f(c)| \leq|f(x)-f(c)|+|f(c)|<1+|f(c)|=M$, so $|f(x)|<M$.

Lemma 23. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function continuous at $c \in \mathbb{R}$ and $f(c)>0$.
Then there exists $\delta>0$ such that if $x \in N(c ; \delta)$, then $f(x)>0$.
Proof. Since $f(c)>0$, then $\frac{f(c)}{2}>0$.
Since f is continuous at c, then there exists $\delta>0$ such that for all $x \in \mathbb{R}$, if $|x-c|<\delta$, then $|f(x)-f(c)|<\frac{f(c)}{2}$.

Let $x \in N(c ; \delta)$.
Then $x \in \mathbb{R}$ and $|x-c|<\delta$, so $|f(x)-f(c)|<\frac{f(c)}{2}$.
Hence, $\frac{-f(c)}{2}<f(x)-f(c)<\frac{f(c)}{2}$, so $\frac{-f(c)}{2}<f(x)-f(c)$.
Thus, $0<\frac{f(c)}{2}<f(x)$, so $0<f(x)$.
Therefore, $f(x)>0$, as desired.
Exercise 24. Let f and g be real valued functions continuous on \mathbb{R}.
Let $S=\{x \in \mathbb{R}: f(x) \geq g(x)\}$.
If $\left(x_{n}\right)$ is a sequence in S such that $\lim _{n \rightarrow \infty} x_{n}=c$, then $c \in S$.

Proof. Let $\left(x_{n}\right)$ be a sequence in S such that $\lim _{n \rightarrow \infty} x_{n}=c$.
Since $\left(x_{n}\right)$ is in S, then $x_{n} \in S$ for all $n \in \mathbb{N}$, so $f\left(x_{n}\right) \geq g\left(x_{n}\right)$ for all $n \in \mathbb{N}$. Suppose for the sake of contradiction $c \notin S$.
Then $c \in \mathbb{R}$ and $f(c)<g(c)$, so $f(c)-g(c)<0$.
Let $h=f-g$.
Then $h: \mathbb{R} \rightarrow \mathbb{R}$ is a function defined by $h(x)=(f-g)(x)=f(x)-g(x)$ for all $x \in \mathbb{R}$.

Thus, $h(c)=f(c)-g(c)<0$, so $h(c)<0$.
Since f and g are continuous functions and $h=f-g$, then h is continuous, so h is continuous at c.

Since $\left(x_{n}\right)$ is an arbitrary sequence in \mathbb{R} such that $\lim _{n \rightarrow \infty} x_{n}=c$, then by the sequential characterization of continuity, we have $\lim _{n \rightarrow \infty} h\left(x_{n}\right)=h(c)$, so the sequence $\left(h\left(x_{n}\right)\right)$ is convergent.

Since $f\left(x_{n}\right) \geq g\left(x_{n}\right)$ for all $n \in \mathbb{N}$, then $h\left(x_{n}\right)=f\left(x_{n}\right)-g\left(x_{n}\right) \geq 0$ for all $n \in \mathbb{N}$.

Since $0 \leq h\left(x_{n}\right)$ for all $n \in \mathbb{N}$, then 0 is a lower bound of $\left(h\left(x_{n}\right)\right)$.
Since $\left(h\left(x_{n}\right)\right)$ is a convergent sequence in \mathbb{R} and 0 is a lower bound of $\left(h\left(x_{n}\right)\right)$, then $0 \leq \lim _{n \rightarrow \infty} h\left(x_{n}\right)$, so $0 \leq h(c)$.

Thus, we have $h(c) \geq 0$ and $h(c)<0$, a contradiction.
Therefore, $c \in S$, as desired.
Proof. Let $\left(x_{n}\right)$ be a sequence in S such that $\lim _{n \rightarrow \infty} x_{n}=c$.
Since $\left(x_{n}\right)$ is in S, then $x_{n} \in S$ for all $n \in \mathbb{N}$, so $f\left(x_{n}\right) \geq g\left(x_{n}\right)$ for all $n \in \mathbb{N}$.
Suppose for the sake of contradiction $c \notin S$.
Then $c \in \mathbb{R}$ and $f(c)<g(c)$, so $g(c)-f(c)>0$.
Let $h=g-f$.
Then h is a function defined by $h(x)=(g-f)(x)=g(x)-f(x)$ for all $x \in \mathbb{R}$. Thus, $h(c)=g(c)-f(c)>0$, so $h(c)>0$.
Since g and f are continuous functions and $h=g-f$, then h is continuous, so h is continuous at c.

By the previous lemma, since h is continuous at c and $h(c)>0$, then there exists $\epsilon>0$ such that if $x \in N(c ; \epsilon)$, then $h(x)>0$.

Since $\lim _{n \rightarrow \infty} x_{n}=c$ and $\epsilon>0$, then there exists $N \in \mathbb{N}$ such that if $n>N$, then $\left|x_{n}-c\right|<\epsilon$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $\left|x_{n}-c\right|<\epsilon$, so $x_{n} \in N(c ; \epsilon)$.
Hence, $h\left(x_{n}\right)>0$, so $g\left(x_{n}\right)-f\left(x_{n}\right)>0$.
Thus, $g\left(x_{n}\right)>f\left(x_{n}\right)$, so $f\left(x_{n}\right)<g\left(x_{n}\right)$.
Since $n \in \mathbb{N}$, then $f\left(x_{n}\right) \geq g\left(x_{n}\right)$.
Therefore, we have $f\left(x_{n}\right)<g\left(x_{n}\right)$ and $f\left(x_{n}\right) \geq g\left(x_{n}\right)$, a contradiction.
Consequently, $c \in S$, as desired.
Exercise 25. Let $f: E \rightarrow \mathbb{R}$ be a function continuous at $c \in E$.
Then for every $\epsilon>0$, there exists $\delta>0$ such that if $x, y \in E \cap N(c ; \delta)$, then $|f(x)-f(y)|<\epsilon$.

Proof. Let $\epsilon>0$ be given.
Then $\frac{\epsilon}{2}>0$.
Since f is continuous at c, then there exists $\delta>0$ such that for all $x \in E$, if $|x-c|<\delta$, then $|f(x)-f(c)|<\frac{\epsilon}{2}$.

Since $c \in E$ and $c \in N(c ; \delta)$, then $c \in E \cap N(c ; \delta)$, so $E \cap N(c ; \delta) \neq \emptyset$.
Let $x, y \in E \cap N(c ; \delta)$.
Then $x \in E \cap N(c ; \delta)$ and $y \in E \cap N(c ; \delta)$.
Hence, $x \in E$ and $x \in N(c ; \delta)$ and $y \in E$ and $y \in N(c ; \delta)$.
Since $x \in N(c ; \delta)$ and $y \in N(c ; \delta)$, then $|x-c|<\delta$ and $|y-c|<\delta$.
Since $x \in E$ and $|x-c|<\delta$, then $|f(x)-f(c)|<\frac{\epsilon}{2}$.
Since $y \in E$ and $|y-c|<\delta$, then $|f(y)-f(c)|<\frac{\epsilon}{2}$.
Observe that

$$
\begin{aligned}
|f(x)-f(y)| & =|f(x)-f(c)+f(c)-f(y)| \\
& \leq|f(x)-f(c)|+|f(c)-f(y)| \\
& =|f(x)-f(c)|+|f(y)-f(c)| \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon .
\end{aligned}
$$

Therefore, $|f(x)-f(y)|<\epsilon$, as desired.

Algebraic properties of continuous functions

Exercise 26. The function $r:(0, \infty) \rightarrow \mathbb{R}$ defined by $r(x)=\sin \left(\frac{1}{x}\right)$ is continuous on $(0, \infty)$.

Proof. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be the function defined by $f(x)=\frac{1}{x}$.
Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $g(x)=\sin (x)$.
Then $g \circ f$ is the composite function.
Since $\operatorname{dom}(g \circ f)=\{x \in \operatorname{domf}: f(x) \in \operatorname{domg}\}=\left\{x \in(0, \infty): \frac{1}{x} \in \mathbb{R}\right\}=$ $\{x \in(0, \infty): x \neq 0\}=(0, \infty)=\operatorname{domr}$, then $\operatorname{dom}(g \circ f)=\operatorname{domr}$.

Let $x \in \operatorname{dom}(g \circ f)$.
Then $(g \circ f)(x)=g(f(x))=g\left(\frac{1}{x}\right)=\sin \left(\frac{1}{x}\right)=r(x)$, so $(g \circ f)(x)=r(x)$ for all $x \in \operatorname{dom}(g \circ f)$.

Since $\operatorname{dom}(g \circ f)=\operatorname{domr}$ and $(g \circ f)(x)=r(x)$ for all $x \in \operatorname{dom}(g \circ f)$, then $g \circ f=r$.

Since f is continuous and g is continuous, then $g \circ f=r$ is continuous, so r is continuous on $(0, \infty)$.

Exercise 27. The function $f:[-1,1] \rightarrow \mathbb{R}$ defined by $f(x)=\sqrt{1-x^{2}}$ is continuous at 1.

Solution. If $y=f(x)=\sqrt{1-x^{2}}$, then $y^{2}=1-x^{2}$, so $x^{2}+y^{2}=1$.
Thus, we have the unit circle centered at the origin.

The graph of f is the top semicircle and the limit of f as x approaches 1 is 0 and $\lim _{x \rightarrow 1} f(x)=0=f(1)$.

Proof. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $g(x)=1-x^{2}$.
Let $h:[0, \infty) \rightarrow \mathbb{R}$ be the function defined by $h(x)=\sqrt{x}$.
Then $h \circ g$ is the composite function.
Since $\operatorname{dom}(h \circ g)=\{x \in \operatorname{domg}: g(x) \in \operatorname{domh}\}=\left\{x \in \mathbb{R}: 1-x^{2} \in[0, \infty)\right\}=$ $\left\{x \in \mathbb{R}: 1-x^{2} \geq 0\right\}=\left\{x \in \mathbb{R}: 1 \geq x^{2}\right\}=\left\{x \in \mathbb{R}: x^{2} \leq 1\right\}=\left\{x \in \mathbb{R}:|x|^{2} \leq\right.$ $1\}=\{x \in \mathbb{R}:|x| \leq 1\}=[-1,1]=\operatorname{domf}$, then $\operatorname{dom}(h \circ g)=\operatorname{dom} f$.

Let $x \in \operatorname{dom}(h \circ g)$.
Then $(h \circ g)(x)=h(g(x))=h\left(1-x^{2}\right)=\sqrt{1-x^{2}}=f(x)$, so $(h \circ g)(x)=f(x)$ for all $x \in \operatorname{dom}(h \circ g)$.

Since $\operatorname{dom}(h \circ g)=\operatorname{domf}$ and $(h \circ g)(x)=f(x)$ for all $x \in \operatorname{dom}(h \circ g)$, then $h \circ g=f$.

Since g is a polynomial function, then g is continuous.
Since the square root function is continuous, then h is continuous.
Since g is continuous and h is continuous, then $h \circ g=f$ is continuous, so f is continuous on $[-1,1]$.

Since $1 \in[-1,1]$, then f is continuous at 1 .
Lemma 28. Let $x, y \in \mathbb{R}$.
Then $\max \{x, y\}=\frac{x+y}{2}+\frac{|x-y|}{2}$ and $\min \{x, y\}=\frac{x+y}{2}-\frac{|x-y|}{2}$.
Proof. Let $S=\{x, y\}$.
We must prove $\max S=\frac{x+y}{2}+\frac{|x-y|}{2}$ and $\min S=\frac{x+y}{2}-\frac{|x-y|}{2}$.
Since $x, y \in \mathbb{R}$, then either $x \geq y$ or $x<y$.
We consider these cases separately.
Case 1: Suppose $x \geq y$.
Then $x-y \geq 0$ and $\max S=x$ and $\min S=y$.
Observe that

$$
\begin{aligned}
\max S & =x \\
& =\frac{2 x}{2} \\
& =\frac{x+x}{2} \\
& =\frac{x+y+x-y}{2} \\
& =\frac{x+y}{2}+\frac{x-y}{2} \\
& =\frac{x+y}{2}+\frac{|x-y|}{2} .
\end{aligned}
$$

Therefore, $\max S=\frac{x+y}{2}+\frac{|x-y|}{2}$, as desired.

Observe that

$$
\begin{aligned}
\min S & =y \\
& =\frac{2 y}{2} \\
& =\frac{y+y}{2} \\
& =\frac{x+y+y-x}{2} \\
& =\frac{x+y}{2}+\frac{y-x}{2} \\
& =\frac{x+y}{2}-\frac{x-y}{2} \\
& =\frac{x+y}{2}-\frac{|x-y|}{2} .
\end{aligned}
$$

Therefore, $\min S=\frac{x+y}{2}-\frac{|x-y|}{2}$, as desired.
Case 2: Suppose $x<y$.
Then $x-y<0$ and $\max S=y$ and $\min S=x$.
Observe that

$$
\begin{aligned}
\max S & =y \\
& =\frac{2 y}{2} \\
& =\frac{y+y}{2} \\
& =\frac{x+y+y-x}{2} \\
& =\frac{x+y}{2}+\frac{y-x}{2} \\
& =\frac{x+y}{2}+\frac{-(x-y)}{2} \\
& =\frac{x+y}{2}+\frac{|x-y|}{2} .
\end{aligned}
$$

Therefore, $\max S=\frac{x+y}{2}+\frac{|x-y|}{2}$, as desired.

Observe that

$$
\begin{aligned}
\min S & =x \\
& =\frac{2 x}{2} \\
& =\frac{x+x}{2} \\
& =\frac{x+y+x-y}{2} \\
& =\frac{x+y}{2}+\frac{x-y}{2} \\
& =\frac{x+y}{2}-\frac{-(x-y)}{2} \\
& =\frac{x+y}{2}-\frac{|x-y|}{2} .
\end{aligned}
$$

Therefore, $\min S=\frac{x+y}{2}-\frac{|x-y|}{2}$, as desired.
Exercise 29. Let f and g be real valued functions continuous on $E \subset \mathbb{R}$.
Let $h: E \rightarrow \mathbb{R}$ be a function defined by $h(x)=\max \{f(x), g(x)\}$.
Then h is continuous.
Proof. Let $x \in E$.
Then $f(x) \in \mathbb{R}$ and $g(x) \in \mathbb{R}$.
Hence, by the previous lemma, $h(x)=\max \{f(x), g(x)\}=\frac{f(x)+g(x)}{2}+$ $\frac{|f(x)-g(x)|}{2}$.

Thus, $h=\frac{f+g}{2}+\frac{|f-g|}{2}$.
Since f and g are continuous on E, then f and g are continuous, so the sum $f+g$ and difference $f-g$ are continuous.

Since $f+g$ is continuous, then the scalar multiple $\frac{f+g}{2}$ is continuous.
Since $f-g$ is continuous, then $|f-g|$ is continuous, so the scalar multiple $\frac{|f-g|}{2}$ is continuous.

Since $\frac{f+g}{2}$ is continuous and $\frac{|f-g|}{2}$ is continuous, then the sum $\frac{f+g}{2}+\frac{|f-g|}{2}$ is continuous.

Therefore, h is continuous, as desired.
Exercise 30. Let $a, b, c \in \mathbb{R}$ such that $a<b<c$.
Let $f:[a, b] \rightarrow \mathbb{R}$ be a function continuous on $[a, b]$ and $g:[b, c] \rightarrow \mathbb{R}$ be a function continuous on $[b, c]$ such that $f(b)=g(b)$.

Let $h:[a, c] \rightarrow \mathbb{R}$ be a function defined by

$$
h(x)= \begin{cases}f(x) & \text { if } x \in[a, b] \\ g(x) & \text { if } x \in[b, c]\end{cases}
$$

Then h is continuous on $[a, c]$.

Proof. To prove h is continuous on $[a, c]$, let $\alpha \in[a, c]$ be arbitrary.
We must prove h is continuous at α.
Since $\alpha \in[a, c]$ and $[a, c]=[a, b) \cup\{b\} \cup(b, c]$, then either $\alpha \in[a, b)$ or $\alpha=b$ or $\alpha \in(b, c]$.

We consider these cases separately.
Case 1: Suppose $\alpha \in[a, b)$.
Since $[a, b] \subset[a, c]$ and $f(x)=h(x)$ for all $x \in[a, b]$, then f is a restriction of h to $[a, b]$.

Since f is continuous on $[a, b]$, then f is continuous at x for all $x \in[a, b]$.
Hence, a restriction of h to $[a, b]$ is continuous at x for all $x \in[a, b]$, so h is continuous on $[a, b]$.

This is not correct!!! We must fix this!!!
Since $\alpha \in[a, b)$ and $[a, b) \subset[a, b]$, then $\alpha \in[a, b]$, so h is continuous at α.
Case 2: Suppose $\alpha \in(b, c]$.
Since $[b, c] \subset[a, c]$ and $g(x)=h(x)$ for all $x \in[b, c]$, then g is a restriction of h to $[b, c]$.

Since g is continuous on $[b, c]$, then g is continuous at x for all $x \in[b, c]$.
Hence, a restriction of h to $[b, c]$ is continuous at x for all $x \in[b, c]$, so h is continuous on $[b, c]$.

Since $\alpha \in(b, c]$ and $(b, c] \subset[b, c]$, then $\alpha \in[b, c]$, so h is continuous at α.
Case 3: Suppose $\alpha=b$.
We prove h is continuous at b.
Let $\epsilon>0$ be given.
We must prove there exists $\delta>0$ such that for all $x \in[a, c]$, if $|x-b|<\delta$, then $|h(x)-h(b)|<\epsilon$.

Since f is continuous on $[a, b]$ and $b \in[a, b]$, then f is continuous at b, so there exists $\delta_{1}>0$ such that for all $x \in[a, b]$, if $|x-b|<\delta_{1}$, then $|f(x)-f(b)|<\epsilon$.

Since g is continuous on $[b, c]$ and $b \in[b, c]$, then g is continuous at b, so there exists $\delta_{2}>0$ such that for all $x \in[b, c]$, if $|x-b|<\delta_{2}$, then $|g(x)-g(b)|<\epsilon$.

Let $\delta=\frac{\min \left\{\delta_{1}, \delta_{2}\right\}}{2}$.
Then $\delta>0$ and $2 \delta=\min \left\{\delta_{1}, \delta_{2}\right\}$, so $2 \delta \leq \delta_{1}$ and $2 \delta \leq \delta_{2}$.
Thus, $\delta \leq \frac{\delta_{1}}{2}$ and $\delta \leq \frac{\delta_{2}}{2}$.
Let $x \in[a, c]$ such that $|x-b|<\delta$.
Since $x \in[a, c]$ and $[a, c]=[a, b] \cup[b, c]$, then either $x \in[a, b]$ or $x \in[b, c]$.
We consider these cases separately.
Case 3.1: Suppose $x \in[a, b]$.
Since $|x-b|<\delta \leq \frac{\delta_{1}}{2}<\delta_{1}$, then $|x-b|<\delta_{1}$.
Since $x \in[a, b]$ and $|x-b|<\delta_{1}$, then $|f(x)-f(b)|<\epsilon$.
Thus, $|h(x)-h(b)|=|f(x)-f(b)|<\epsilon$, so $|h(x)-h(b)|<\epsilon$.
Case 3.2: Suppose $x \in[b, c]$.
Since $|x-b|<\delta \leq \frac{\delta_{2}}{2}<\delta_{2}$, then $|x-b|<\delta_{2}$.
Since $x \in[b, c]$ and $|x-b|<\delta_{2}$, then $|g(x)-g(b)|<\epsilon$.
Thus, $|h(x)-h(b)|=|g(x)-g(b)|<\epsilon$, so $|h(x)-h(b)|<\epsilon$.
Therefore, in all cases, $|h(x)-h(b)|<\epsilon$, so h is continuous at b.

Exercise 31. Let $E \subset \mathbb{R}$ and $c \in E$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
If for every sequence $\left(x_{n}\right)$ in E such that $\lim _{n \rightarrow \infty} x_{n}=c$, the sequence $\left(f\left(x_{n}\right)\right)$ is convergent, then f is continuous at c.

Proof. We prove by contrapositive.
Suppose f is not continuous at c.
Then there exists $\epsilon_{0}>0$ such that for each $\delta>0$ there corresponds $x \in E$ such that $|x-c|<\delta$ and $|f(x)-f(c)| \geq \epsilon_{0}$.

Let $\delta=\frac{1}{n}$ for each $n \in \mathbb{N}$.
Then for each $n \in \mathbb{N}$, there corresponds $x \in E$ such that $|x-c|<\frac{1}{n}$ and $|f(x)-f(c)| \geq \epsilon_{0}$.

Thus, there exists a function $g: \mathbb{N} \rightarrow E$ such that $g(n) \in E$ and $|g(n)-c|<\frac{1}{n}$ and $|f(g(n))-f(c)| \geq \epsilon_{0}$ for each $n \in \mathbb{N}$, so there exists a sequence $\left(x_{n}\right)$ such that $x_{n} \in E$ and $\left|x_{n}-c\right|<\frac{1}{n}$ and $\left|f\left(x_{n}\right)-f(c)\right| \geq \epsilon_{0}$ for each $n \in \mathbb{N}$.

Since $x_{n} \in E$ for each $n \in \mathbb{N}$, then $\left(x_{n}\right)$ is a sequence of points in E.
We prove $\lim _{n \rightarrow \infty} x_{n}=c$.
Let $\epsilon>0$ be given.
Then $\epsilon \neq 0$, so $\frac{1}{\epsilon} \in \mathbb{R}$.
Hence, by the Archimedean property of \mathbb{R}, there exists $N \in \mathbb{N}$ such that $N>\frac{1}{\epsilon}$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $n>N>\frac{1}{\epsilon}$, so $n>\frac{1}{\epsilon}$.
Hence, $\epsilon>\frac{1}{n}$, so $\frac{1}{n}<\epsilon$.
Since $n \in \mathbb{N}$ and $\left|x_{n}-c\right|<\frac{1}{n}$ for each $n \in \mathbb{N}$, then $\left|x_{n}-c\right|<\frac{1}{n}$.
Thus, $\left|x_{n}-c\right|<\frac{1}{n}<\epsilon$, so $\left|x_{n}-c\right|<\epsilon$.
Therefore, $\lim _{n \rightarrow \infty} x_{n}=c$, as desired.
We prove the sequence $\left(f\left(x_{n}\right)\right)$ is divergent.
Thus, we must prove for every real L there exists $\epsilon_{0}>0$ such that for each $N \in \mathbb{N}$ there corresponds $n \in \mathbb{N}$ with $n>N$ and $\left|f\left(x_{n}\right)-L\right| \geq \epsilon_{0}$.

Let $L \in \mathbb{R}$ be arbitrary.
Let $N \in \mathbb{N}$.
Let $n=N+1$.
Then $n \in \mathbb{N}$ and $n=N+1>N$ and
Use triangle inequality to figure out how we can ensure for any $L \in \mathbb{R}$ that if $\left|f\left(x_{n}\right)-f(c)\right| \geq \epsilon_{0}$ for each $n \in \mathbb{N}$, then $\left|f\left(x_{n}\right)-L\right| \geq \epsilon_{0}$ for each $n \in \mathbb{N}$.

Exercise 32. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be functions.
Let $a, b \in \mathbb{R}$.
If $\lim _{x \rightarrow a} f=b$ and g is continuous at b, then $\lim _{x \rightarrow a} g \circ f=g(b)$.
Proof. Suppose $\lim _{x \rightarrow a} f=b$ and g is continuous at b.
Observe that a is an accumulation point of \mathbb{R}, the domain of $g \circ f$.

To prove $\lim _{x \rightarrow a} g \circ f=g(b)$, let $\epsilon>0$ be given.
We must prove there exists $\delta>0$ such that for all $x \in \mathbb{R}$, if $0<|x-a|<\delta$, then $|(g \circ f)(x)-g(b)|<\epsilon$.

Since g is continuous at b and $\epsilon>0$, then there exists $\delta_{1}>0$ such that for all $x \in \mathbb{R}$, if $|x-b|<\delta_{1}$, then $|g(x)-g(b)|<\epsilon$.

Since $\lim _{x \rightarrow a} f=b$ and $\delta_{1}>0$, then there exists $\delta_{2}>0$ such that for all $x \in \mathbb{R}$, if $0<|x-a|<\delta_{2}$, then $|f(x)-b|<\delta_{1}$.

Let $\delta=\delta_{2}>0$.
Let $x \in \mathbb{R}$ such that $0<|x-a|<\delta$.
Then $0<|x-a|<\delta_{2}$, so $|f(x)-b|<\delta_{1}$.
Since $f(x) \in \mathbb{R}$ and $|f(x)-b|<\delta_{1}$, then $|g(f(x))-g(b)|<\epsilon$, so $\mid(g \circ f)(x)-$ $g(b) \mid<\epsilon$, as desired.

Exercise 33. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function.
Let $k \in \mathbb{R}$.
The set $\{x \in \mathbb{R}: f(x) \neq k\}$ is open.
Proof. Let $S=\{x \in \mathbb{R}: f(x) \neq k\}$.
We must prove S is open.
Either S is empty or not.
We consider these cases separately.
Case 1: Suppose $S=\emptyset$.
Since the empty set is open, then S is open.
Case 2: Suppose $S \neq \emptyset$.
Then there is an element in S.
Let p be an arbitrary element of S.
Then $p \in S$, so $p \in \mathbb{R}$ and $f(p) \neq k$.
Since $f(p) \neq k$, then $f(p)-k \neq 0$, so $|f(p)-k|>0$.
Since f is continuous on \mathbb{R} and $p \in \mathbb{R}$, then f is continuous at p.
Thus, there exists $\delta>0$ such that for all $x \in \mathbb{R}$, if $|x-p|<\delta$, then $|f(x)-f(p)|<|f(p)-k|$.

Let $x \in \mathbb{R}$ such that $|x-p|<\delta$.
Then $|f(x)-f(p)|<|f(p)-k|$.
Since $|f(x)-k| \in \mathbb{R}$, then $|f(x)-k| \geq 0$.
Suppose $|f(x)-k|=0$.
Then $f(x)-k=0$, so $f(x)=k$.
Thus, $|f(p)-k|=|k-f(p)|=|f(x)-f(p)|<|f(p)-k|$.
Hence, $|f(p)-k|<|f(p)-k|$, a contradiction.
Therefore, $|f(x)-k| \neq 0$.
Since $|f(x)-k| \geq 0$, then this implies $|f(x)-k|>0$, so $f(x)-k \neq 0$.
Thus, $f(x) \neq k$.
Since $x \in \mathbb{R}$ and $f(x) \neq k$, then $x \in S$.
Therefore, there exists $\delta>0$ such that for all $x \in \mathbb{R}$, if $|x-p|<\delta$, then $x \in S$.

Hence, there exists $\delta>0$ such that for all $x \in \mathbb{R}$, if $x \in N(p ; \delta)$, then $x \in S$, so there exists $\delta>0$ such that $N(p ; \delta) \subset S$.

Thus, p is an interior point of S.
Since p is arbitrary, then every point in S is an interior point of S, so S is open.

Exercise 34. Let $a, b \in \mathbb{R}$ with $a<b$.
Let $f:[a, b] \rightarrow \mathbb{R}$ and $g:[a, b] \rightarrow \mathbb{R}$ be continuous functions.
Let $S=\{x \in[a, b]: f(x)=g(x)\}$.
Then S is closed.
Proof. Let c be an arbitrary accumulation point of S.
Since $S \subset[a, b]$, then c is an accumulation point of $[a, b]$.
Since the interval $[a, b]$ is closed, then $c \in[a, b]$.
Since f and g are continuous on $[a, b]$, then f and g are continuous at c.

Suppose $f(c) \neq g(c)$.
Then $f(c)-g(c) \neq 0$, so $|f(c)-g(c)|>0$.
Hence, $\frac{|f(c)-g(c)|}{2}>0$.
Since f is continuous at c, then there exists $\delta_{1}>0$ such that for all $x \in[a, b]$, if $|x-c|<\delta_{1}$, then $|f(x)-f(c)|<\frac{|f(c)-g(c)|}{2}$.

Since g is continuous at c, then there exists $\delta_{2}>0$ such that for all $x \in[a, b]$, if $|x-c|<\delta_{2}$, then $|g(x)-g(c)|<\frac{|f(c)-g(c)|}{2}$.

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$.
Then $\delta \leq \delta_{1}$ and $\delta \leq \delta_{2}$ and $\delta>0$.
Since c is an accumulation point of S and $\delta>0$, then there exists $x \in S$ such that $x \in N^{\prime}(c ; \delta)$.

Since $x \in S$, then $x \in[a, b]$ and $f(x)=g(x)$.
Since $x \in N^{\prime}(c ; \delta)$ and $N^{\prime}(c ; \delta) \subset N(c ; \delta)$, then $x \in N(c ; \delta)$, so $|x-c|<\delta$.
Since $|x-c|<\delta$ and $\delta \leq \delta_{1}$, then $|x-c|<\delta_{1}$.
Since $x \in[a, b]$ and $|x-c|<\delta_{1}$, then $|f(x)-f(c)|<\frac{|f(c)-g(c)|}{2}$.
Since $|x-c|<\delta$ and $\delta \leq \delta_{2}$, then $|x-c|<\delta_{2}$.
Since $x \in[a, b]$ and $|x-c|<\delta_{2}$, then $|g(x)-g(c)|<\frac{|f(c)-g(c)|}{2}$.
Observe that

$$
\begin{aligned}
|f(c)-g(c)| & =|f(c)-f(x)+f(x)-g(c)| \\
& =|f(c)-f(x)+g(x)-g(c)| \\
& \leq|f(c)-f(x)|+|g(x)-g(c)| \\
& =|f(x)-f(c)|+|g(x)-g(c)| \\
& <\frac{|f(c)-g(c)|}{2}+\frac{|f(c)-g(c)|}{2} \\
& =|f(c)-g(c)| .
\end{aligned}
$$

Hence, $|f(c)-g(c)|<|f(c)-g(c)|$, a contradiction.

Thus, $f(c)=g(c)$.
Since $c \in[a, b]$ and $f(c)=g(c)$, then $c \in S$.
Therefore, S is closed.
Exercise 35. Let I be a closed set.
Let $f: I \rightarrow \mathbb{R}$ be a continuous function.
Let $S=\{x \in I: f(x)=k\}$.
Then S is closed.
Proof. Either $S=\emptyset$ or $S \neq \emptyset$.
We consider these cases separately.
Case 1: Suppose $S=\emptyset$.
Since the empty set is closed, then S is closed.
Case 2: Suppose $S \neq \emptyset$.
Let p be an arbitrary accumulation point of S.
To prove S is closed, we must prove $p \in S$.
Since p is an accumulation point of S and $S \subset I$, then p is an accumulation point of I.

Since I is closed, then $p \in I$.
Since f is continuous on I, then f is continuous at p.
Since p is an accumulation point of S, then for every $\delta>0$ there exists $x \in S$ such that $x \in N^{\prime}(p ; \delta)$.

Let $\delta=\frac{1}{n}$ for each $n \in \mathbb{N}$.
Then for each $n \in \mathbb{N}$, there exists $x \in S$ such that $x \in N^{\prime}\left(p ; \frac{1}{n}\right)$, so there exists a function $f: \mathbb{N} \rightarrow S$ such that $f(n) \in S$ and $f(n) \in N^{\prime}\left(p ; \frac{1}{n}\right)$ for each $n \in \mathbb{N}$.

Hence, there exists a sequence $\left(x_{n}\right)$ such that $x_{n} \in S$ and $x_{n} \in N^{\prime}\left(p ; \frac{1}{n}\right)$ for each $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$.
Then $x_{n} \in S$, so $x_{n} \in I$ and $f\left(x_{n}\right)=k$.
Hence, $x_{n} \in I$ and $f\left(x_{n}\right)=k$ for all $n \in \mathbb{N}$.
Since $x_{n} \in I$ for all $n \in \mathbb{N}$, then $\left(x_{n}\right)$ is a sequence in I.
Since $f\left(x_{n}\right)=k$ for all $n \in \mathbb{N}$, then $\left(f\left(x_{n}\right)\right)$ is the constant sequence k, so $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=k$.

We prove the sequence $\left(x_{n}\right)$ converges to p.
Let $\epsilon>0$ be given.
Then $\frac{1}{\epsilon}>0$, so by the Archimedean property of \mathbb{R}, there exists $N \in \mathbb{N}$ such that $N>\frac{1}{\epsilon}$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $n>N>\frac{1}{\epsilon}$, so $n>\frac{1}{\epsilon}$.
Hence, $\epsilon>\frac{1}{n}$.
Since $n \in \mathbb{N}^{n}$, then $x_{n} \in N^{\prime}\left(p ; \frac{1}{n}\right)$, so $x_{n} \in N\left(p ; \frac{1}{n}\right)$.
Thus, $\left|x_{n}-p\right|<\frac{1}{n}<\epsilon$, so $\left|x_{n}-p\right|<\epsilon$.
Therefore, $\lim _{n \rightarrow \infty} x_{n}=p$.

Since f is continuous at p and $\left(x_{n}\right)$ is a sequence of points in I and $\lim _{n \rightarrow \infty} x_{n}=$ p, then by the sequential characterization of continuity, $k=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=$ $f(p)$.

Therefore, $f(p)=k$.
Since $p \in I$ and $f(p)=k$, then $p \in S$, so S is closed.
Thus, in all cases, S is closed, as desired.
Exercise 36. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(x)=0$ for all $x \in \mathbb{Q}$.

Then $f(x)=0$ for all $x \in \mathbb{R}$.
Proof. We prove $f(c)=0$ for all $c \in \mathbb{R}$ by contradiction.
Suppose there exists $c \in \mathbb{R}$ such that $f(c) \neq 0$.
Since $f(c) \neq 0$, then $|f(c)|>0$.
Since f is continuous on \mathbb{R} and $c \in \mathbb{R}$, then f is continuous at c.
Since $|f(c)|>0$, then there exists $\delta>0$ such that for all $x \in \mathbb{R}$, if $|x-c|<\delta$, then $|f(x)-f(c)|<|f(c)|$.

Since $c<c+\delta$ and \mathbb{Q} is dense in \mathbb{R}, then there exists $q \in \mathbb{Q}$ such that $c<q<c+\delta$.

Since $q \in \mathbb{Q}$ and $\mathbb{Q} \subset \mathbb{R}$, then $q \in \mathbb{R}$.
Since $c<q<c+\delta$, then $0<q-c<\delta$, so $|q-c|<\delta$.
Since $q \in \mathbb{R}$ and $|q-c|<\delta$, then $|f(q)-f(c)|<|f(c)|$.
Since $q \in \mathbb{Q}$, then $f(q)=0$.
Therefore, $|0-f(c)|<|f(c)|$, so $|-f(c)|<|f(c)|$.
Thus, $|f(c)|<|f(c)|$, a contradiction.
Therefore, $f(c)=0$ for all $c \in \mathbb{R}$, as desired
Exercise 37. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions such that $f(x)=g(x)$ for all $x \in \mathbb{Q}$.

Then $f(x)=g(x)$ for all $x \in \mathbb{R}$. (Hence, function $f=g$).
Proof. We prove $f(c)=g(c)$ for all $c \in \mathbb{R}$ by contradiction.
Suppose there exists $c \in \mathbb{R}$ such that $f(c) \neq g(c)$.
Then $|f(c)-g(c)|>0$, so $\frac{|f(c)-g(c)|}{2}>0$.
Since f is continuous on \mathbb{R} and $c \in \mathbb{R}$, then f is continuous at c.
Since g is continuous on \mathbb{R} and $c \in \mathbb{R}$, then g is continuous at c.
Since $\frac{|f(c)-g(c)|}{2}>0$ and f is continuous at c, then there exists $\delta_{1}>0$ such that for all $x \in \mathbb{R}$, if $|x-c|<\delta_{1}$, then $|f(x)-f(c)|<\frac{|f(c)-g(c)|}{2}$.

Since $\frac{|f(c)-g(c)|}{2}>0$ and g is continuous at c, then there exists $\delta_{2}>0$ such that for all $x \in \mathbb{R}$, if $|x-c|<\delta_{2}$, then $|g(x)-g(c)|<\frac{|f(c)-g(c)|}{2}$.

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$.
Then $\delta \leq \delta_{1}$ and $\delta \leq \delta_{2}$ and $\delta>0$.
Since $c<c+\delta$ and \mathbb{Q} is dense in \mathbb{R}, then there exists $q \in \mathbb{Q}$ such that $c<q<c+\delta$.

Hence, $0<q-c<\delta$, so $|q-c|<\delta$.
Since $|q-c|<\delta \leq \delta_{1}$, then $|q-c|<\delta_{1}$, so $|f(q)-f(c)|<\frac{|f(c)-g(c)|}{2}$.

Since $|q-c|<\delta \leq \delta_{2}$, then $|q-c|<\delta_{2}$, so $|g(q)-g(c)|<\frac{|f(c)-g(c)|}{2}$. Since $q \in \mathbb{Q}$, then $f(q)=g(q)$, so $|f(q)-g(c)|<\frac{|f(c)-g(c)|}{2}$.
Observe that

$$
\begin{aligned}
|f(c)-g(c)| & =|f(c)-f(q)+f(q)-g(c)| \\
& \leq|f(c)-f(q)|+|f(q)-g(c)| \\
& =|f(q)-f(c)|+|f(q)-g(c)| \\
& <\frac{|f(c)-g(c)|}{2}+\frac{|f(c)-g(c)|}{2} \\
& =|f(c)-g(c)| .
\end{aligned}
$$

Hence, $|f(c)-g(c)|<|f(c)-g(c)|$, a contradiction.
Therefore, $f(c)=g(c)$ for all $c \in \mathbb{R}$, as desired.

Definition 38. additive map

An additive map preserves the operation of addition.
Let f be a real valued function.
Let $\operatorname{dom} f$ be an additive group.
Then f is said to be additive iff $f(x+y)=f(x)+f(y)$ for all $x, y \in \operatorname{dom} f$.
Lemma 39. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function.
If there exist real numbers k and L such that $\lim _{x \rightarrow 0} f(x)=L$ and $k \neq 0$, then $\lim _{x \rightarrow 0} f(k x)=L$.

Proof. Suppose there exist real numbers k and L such that $\lim _{x \rightarrow 0} f(x)=L$ and $k \neq 0$.

To prove $\lim _{x \rightarrow 0} f(k x)=L$, let $\epsilon>0$ be given.
We must prove there exists $\delta>0$ such that for all $x \in \mathbb{R}$, if $0<|x|<\delta$, then $|f(k x)-L|<\epsilon$.

Since $\lim _{x \rightarrow 0} f(x)=L$, then there exists $\delta_{1}>0$ such that for all $x \in \mathbb{R}$, if $0<|x|<\delta_{1}$, then $|f(x)-L|<\epsilon$.

Let $\delta=\frac{\delta_{1}}{|k|}$.
Since $k \neq 0$, then $|k|>0$.
Since $|k|>0$ and $\delta_{1}>0$, then $\delta>0$.
Let $x \in \mathbb{R}$ such that $0<|x|<\delta$.
Then $0<|x|<\frac{\delta_{1}}{|k|}$, so $0<|k||x|<\delta_{1}$.
Hence, $0<|k x|<\delta_{1}$.
Since $k x \in \mathbb{R}$ and $0<|k x|<\delta_{1}$, then $|f(k x)-L|<\epsilon$, as desired.
Exercise 40. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an additive function.
If the limit of f at 0 exists, then $\lim _{x \rightarrow 0} f(x)=0$.
Proof. Suppose the limit of f at 0 exists.
Then there exists a real number L such that $\lim _{x \rightarrow 0} f(x)=L$.
To prove $\lim _{x \rightarrow 0} f(x)=0$, we must prove $L=0$.
Let $x \in \mathbb{R}$.

Then $f(2 x)=f(x+x)=f(x)+f(x)=2 f(x)$, so $f(2 x)=2 f(x)$ for all $x \in \mathbb{R}$.

By the previous lemma, if $\lim _{x \rightarrow 0} f(x)=L$ and $k \neq 0$, then $\lim _{x \rightarrow 0} f(k x)=$ L.

Thus, if $\lim _{x \rightarrow 0} f(x)=L$, then $\lim _{x \rightarrow 0} f(2 x)=L$.
Since $\lim _{x \rightarrow 0} f(x)=L$, then $\lim _{x \rightarrow 0} f(2 x)=L$, so $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} f(2 x)$.
Hence,

$$
\begin{aligned}
L & =\lim _{x \rightarrow 0} f(x) \\
& =\lim _{x \rightarrow 0} f(2 x) \\
& =\lim _{x \rightarrow 0} 2 f(x) \\
& =2 \lim _{x \rightarrow 0} f(x) \\
& =2 L .
\end{aligned}
$$

Thus, $L=2 L$, so $2 L=L$.
Subtracting L from both sides, we obtain $L=0$, as desired.
Lemma 41. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an additive function.
Then $f(a-b)=f(a)-f(b)$ for all $a, b \in \mathbb{R}$ and $f(0)=0$.
Proof. We prove $f(a-b)=f(a)-f(b)$ for all $a, b \in \mathbb{R}$.
Let $a, b \in \mathbb{R}$.
Then $f(a)=f(a-b+b)=f(a-b)+f(b)$, so $f(a)=f(a-b)+f(b)$.
Hence, $f(a)-f(b)=f(a-b)$.
Proof. We prove $f(0)=0$.
Since $f(0)=f(0+0)=f(0)+f(0)$, then $f(0)=f(0)+f(0)$.
Therefore, $f(0)=f(0)-f(0)=0$.
Lemma 42. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an additive function.
If $\lim _{x \rightarrow 0} f(x)=0$, then $\lim _{x \rightarrow a} f(x)=f(a)$ for all $a \in \mathbb{R}$.
Proof. Suppose $\lim _{x \rightarrow 0} f(x)=0$.
Let $a \in \mathbb{R}$ be arbitrary.
Observe that a is an accumulation point of \mathbb{R}, the domain of f.
To prove $\lim _{x \rightarrow a} f(x)=f(a)$, let $\epsilon>0$ be given.
We must prove there exists $\delta>0$ such that for all $x \in \mathbb{R}$, if $0<|x-a|<\delta$, then $|f(x)-f(a)|<\epsilon$.

Since $\lim _{x \rightarrow 0} f(x)=0$, then there exists $\delta>0$ such that for all $x \in \mathbb{R}$, if $0<|x|<\delta$, then $|f(x)|<\epsilon$.

Let $x \in \mathbb{R}$ such that $0<|x-a|<\delta$.
Since $x-a \in \mathbb{R}$ and $0<|x-a|<\delta$, then $|f(x-a)|<\epsilon$.
Since f is additive, then $|f(x)-f(a)|=|f(x-a)|<\epsilon$, as desired.
Lemma 43. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an additive function.
If f is continuous at $x_{0} \in \mathbb{R}$, then f is continuous at 0 .

Proof. Suppose f is continuous at $x_{0} \in \mathbb{R}$.
To prove f is continuous at 0 , let $\epsilon>0$ be given.
We must prove there exists $\delta>0$ such that for all $x \in \mathbb{R}$, if $|x|<\delta$, then $|f(x)-f(0)|<\epsilon$.

Since f is continuous at x_{0}, then there exists $\delta>0$ such that for all $x \in \mathbb{R}$, if $\left|x-x_{0}\right|<\delta$, then $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$.

Let $x \in \mathbb{R}$ such that $|x|<\delta$.
Let $y=x+x_{0}$.
Then $y \in \mathbb{R}$ and $x=y-x_{0}$, so $\left|y-x_{0}\right|<\delta$.
Since $y \in \mathbb{R}$ and $\left|y-x_{0}\right|<\delta$, then $\left|f(y)-f\left(x_{0}\right)\right|<\epsilon$.
Since f is additive, then $|f(x)-f(0)|=|f(x-0)|=|f(x)|=\left|f\left(y-x_{0}\right)\right|=$ $\left|f(y)-f\left(x_{0}\right)\right|<\epsilon$, so $|f(x)-f(0)|<\epsilon$, as desired.

Exercise 44. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an additive function.
If f is continuous at $x_{0} \in \mathbb{R}$, then f is continuous.
Proof. Suppose f is continuous at $x_{0} \in \mathbb{R}$.
To prove f is continuous, let $c \in \mathbb{R}$ be given.
We must prove f is continuous at c.
Since f is additive and f is continuous at x_{0}, then by a previous lemma, f is continuous at 0 .

Since 0 is an accumulation point of \mathbb{R} and f is continuous at 0 , then by the characterization of continuity, $\lim _{x \rightarrow 0} f(x)=f(0)$.

Since f is additive, then $f(0)=0$.
Thus, $\lim _{x \rightarrow 0} f(x)=f(0)=0$.
Since f is additive and $\lim _{x \rightarrow 0} f(x)=0$, then by a previous lemma, $\lim _{x \rightarrow a} f(x)=$ $f(a)$ for all $a \in \mathbb{R}$, so $\lim _{x \rightarrow c} f(x)=f(c)$,

Since c is an accumulation point of \mathbb{R} and $\lim _{x \rightarrow c} f(x)=f(c)$, then by the characterization of continuity, f is continuous at c, as desired.

Lemma 45. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an additive function.
Then $f(n r)=n f(r)$ for all $n \in \mathbb{Z}, r \in \mathbb{R}$.
Proof. Let $r \in \mathbb{R}$ be given.
To prove $f(n r)=n f(r)$ for all $n \in \mathbb{Z}$, we must prove $f(n r)=n f(r)$ for all $n \in \mathbb{Z}^{+}$and $f(-n r)=-n f(r)$ for all $n \in \mathbb{Z}^{+}$.

We prove $f(n r)=n f(r)$ for all $n \in \mathbb{Z}^{+}$by induction on n.
Let $S=\left\{n \in \mathbb{Z}^{+}: f(n r)=n f(r)\right\}$.

Basis:

Since $1 \in \mathbb{Z}^{+}$and $f(1 \cdot r)=f(r)=1 \cdot f(r)$, then $1 \in S$.

Induction:

Let $k \in S$.
Then $k \in \mathbb{Z}^{+}$and $f(k r)=k f(r)$.
Since $k \in \mathbb{Z}^{+}$, then $k+1 \in \mathbb{Z}^{+}$.

Observe that

$$
\begin{aligned}
f((k+1) r) & =f(k r+r) \\
& =f(k r)+f(r) \\
& =k f(r)+f(r) \\
& =(k+1) f(r) .
\end{aligned}
$$

Since $k+1 \in \mathbb{Z}^{+}$and $f((k+1) r)=(k+1) f(r)$, then $k+1 \in S$.
Hence, $k \in S$ implies $k+1 \in S$, so by PMI, $S=\mathbb{Z}^{+}$.
Therefore, $f(n r)=n f(r)$ for all $n \in \mathbb{Z}^{+}$.
Proof. We prove $f(-n r)=-n f(r)$ for all $n \in \mathbb{Z}^{+}$by induction on n.
Let $S=\left\{n \in \mathbb{Z}^{+}: f(-n r)=-n f(r)\right\}$.
Basis:
Since f is additive, then $f(-r)=f(0-r)=f(0)-f(r)=0-f(r)=-f(r)$.
Since $1 \in \mathbb{Z}^{+}$and $f(-r)=-f(r)$, then $1 \in S$.

Induction:

Let $k \in S$.
Then $k \in \mathbb{Z}^{+}$and $f(-k r)=-k f(r)$.
Since $k \in \mathbb{Z}^{+}$, then $k+1 \in \mathbb{Z}^{+}$.
Observe that

$$
\begin{aligned}
f(-(k+1) r) & =f(-k r-r) \\
& =f(-k r)-f(r) \\
& =-k f(r)-f(r) \\
& =-(k+1) f(r) .
\end{aligned}
$$

Since $k+1 \in \mathbb{Z}^{+}$and $f(-(k+1) r)=-(k+1) f(r)$, then $k+1 \in S$.
Hence, $k \in S$ implies $k+1 \in S$, so by PMI, $S=\mathbb{Z}^{+}$.
Therefore, $f(-n r)=-n f(r)$ for all $n \in \mathbb{Z}^{+}$.
Lemma 46. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an additive function.
Then $f\left(\frac{1}{n}\right)=\frac{f(1)}{n}$ for all nonzero integers n.
Proof. Let n be an arbitrary nonzero integer.
Then $n \in \mathbb{Z}$ and $n \neq 0$.
Since $n \in \mathbb{Z}$ and $\mathbb{Z} \subset \mathbb{R}$, then $n \in \mathbb{R}$.
Since $n \in \mathbb{R}$ and $n \neq 0$, then $\frac{1}{n} \in \mathbb{R}$.
Since f is additive and $n \in \mathbb{Z}$ and $\frac{1}{n} \in \mathbb{R}$, then $f(1)=f\left(n \cdot \frac{1}{n}\right)=n \cdot f\left(\frac{1}{n}\right)$.
Since $f(1)=n \cdot f\left(\frac{1}{n}\right)$ and $n \neq 0$, then $\frac{f(1)}{n}=f\left(\frac{1}{n}\right)$.
Exercise 47. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous additive function.
If $f(1)=c$, then $f(x)=c x$ for all $x \in \mathbb{R}$.

Proof. Suppose $f(1)=c$.
We first prove $f(q)=c q$ for all $q \in \mathbb{Q}$.
Let $q \in \mathbb{Q}$.
Then there exist integers a, b with $b \neq 0$ such that $q=\frac{a}{b}$.
Since a and b are integers, then $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$.
Since $b \in \mathbb{Z}$ and $b \neq 0$, then b is a nonzero integer.
Since f is additive and $a \in \mathbb{Z}$ and b is a nonzero integer, then

$$
\begin{aligned}
f(q) & =f\left(\frac{a}{b}\right) \\
& =f\left(a \cdot \frac{1}{b}\right) \\
& =a \cdot f\left(\frac{1}{b}\right) \\
& =a \cdot \frac{f(1)}{b} \\
& =a \cdot \frac{c}{b} \\
& =\frac{a c}{b} \\
& =\frac{c a}{b} \\
& =c \cdot \frac{a}{b} \\
& =c q
\end{aligned}
$$

Hence, $f(q)=c q$ for all $q \in \mathbb{Q}$.
Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $g(x)=c x$ for all $x \in \mathbb{R}$.
Since g is a polynomial function, then g is continuous.
Let $x \in \mathbb{Q}$.
Since $\mathbb{Q} \subset \mathbb{R}$, then $x \in \mathbb{R}$, so $g(x)=c x=f(x)$.
Hence, $f(x)=g(x)$ for all $x \in \mathbb{Q}$.
Since f and g are continuous and $f(x)=g(x)$ for all $x \in \mathbb{Q}$, then by a previous exercise, $f(x)=g(x)$ for all $x \in \mathbb{R}$.

Therefore, $f(x)=c x$ for all $x \in \mathbb{R}$, as desired.
Exercise 48. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f(x+y)=f(x) f(y)$ for all $x, y \in \mathbb{R}$.

Then

1. If $f(c)=0$ for some $c \in \mathbb{R}$, then $f(x)=0$ for all $x \in \mathbb{R}$.
2. If the limit of f at 0 exists, then the limit of f at c exists for all $c \in \mathbb{R}$.

Proof. Let $x \in \mathbb{R}$.
Then $f(x) \in \mathbb{R}$ and $f(x)=f\left(\frac{x}{2}+\frac{x}{2}\right)=f\left(\frac{x}{2}\right) f\left(\frac{x}{2}\right)=\left[f\left(\frac{x}{2}\right)\right]^{2} \geq 0$, so $f(x) \geq 0$ for all $x \in \mathbb{R}$.

Either there is $c \in \mathbb{R}$ such that $f(c)=0$ or there is no $c \in \mathbb{R}$ such that $f(c)=0$.

We consider these cases separately.
Case 1: Suppose there is $c \in \mathbb{R}$ such that $f(c)=0$.
Let $x \in \mathbb{R}$.
Then $f(x)=f(0+x)=f(c-c+x)=f(c+x-c)=f(c) f(x-c)=$ $0 \cdot f(x-c)=0$, so $f(x)=0$.

Therefore, $f(x)=0$ for all $x \in \mathbb{R}$.
Case 2: Suppose there is no $c \in \mathbb{R}$ such that $f(c)=0$.
Since $f(0)=f(0+0)=f(0) f(0)$, then $f(0)=f(0) f(0)$, so $0=f(0) f(0)-$ $f(0)=f(0)[f(0)-1]$.

Thus, $0=f(0)[f(0)-1]$, so either $f(0)=0$ or $f(0)-1=0$.
Since there is no $c \in \mathbb{R}$ such that $f(c)=0$, then $f(0) \neq 0$.
Therefore, $f(0)-1=0$, so $f(0)=1$.

Suppose the limit of f at 0 exists.
Then there is a real number L such that $\lim _{x \rightarrow 0} f(x)=L$.
We must prove $L=1$.
Let $c \in \mathbb{R}$.
To prove the limit of f at c exists, we must prove there exists $M \in \mathbb{R}$ such that $\lim _{x \rightarrow c} f(x)=M$.

Continuous functions on compact sets

Exercise 49. Let $a, b \in \mathbb{R}$ with $a<b$.
Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous.
If f has no zeroes on $[a, b]$, then either $f(x)>0$ for all $x \in[a, b]$ or $f(x)<0$ for all $x \in[a, b]$.

Proof. Suppose f has no zeroes on $[a, b]$.
To prove either $f(x)>0$ for all $x \in[a, b]$ or $f(x)<0$ for all $x \in[a, b]$, we prove by contradiction.

Suppose it is not the case that either $f(x)>0$ for all $x \in[a, b]$ or $f(x)<0$ for all $x \in[a, b]$.

Then it is not the case that $f(x)>0$ for all $x \in[a, b]$ and it is not the case that $f(x)<0$ for all $x \in[a, b]$.

Hence, there exists $x \in[a, b]$ such that $f(x) \leq 0$ and there exists $y \in[a, b]$ such that $f(y) \geq 0$.

Since $x \in[a, b]$ and f has no zeroes on $[a, b]$, then $f(x) \neq 0$.
Since $f(x) \leq 0$ and $f(x) \neq 0$, then $f(x)<0$.
Since $y \in[a, b]$ and f has no zeroes on $[a, b]$, then $f(y) \neq 0$.
Since $f(y) \geq 0$ and $f(y) \neq 0$, then $f(y)>0$.
Since $x \in[a, b]$ and $y \in[a, b]$, then $[x, y] \subset[a, b]$.
Since f is continuous on $[a, b]$ and $[x, y] \subset[a, b]$, then f is continuous on $[x, y]$.

Since $f(x)<0<f(y)$, then by IVT, there exists $c \in(x, y)$ such that $f(c)=0$.

Since $(x, y) \subset[x, y] \subset[a, b]$, then $(x, y) \subset[a, b]$.
Since $c \in(x, y)$ and $(x, y) \subset[a, b]$, then $c \in[a, b]$.
Thus, there exists $c \in[a, b]$ such that $f(c)=0$.
But, this contradicts the assumption that f has no zeroes on $[a, b]$.
Therefore, either $f(x)>0$ for all $x \in[a, b]$ or $f(x)<0$ for all $x \in[a, b]$.
Exercise 50. Let $a, b \in \mathbb{R}$.
Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function.
If there exists $k \in \mathbb{R}$ such that $f(a) \geq k \geq f(b)$, then there exists $c \in[a, b]$ such that $f(c)=k$.

Proof. Suppose there exists $k \in \mathbb{R}$ such that $f(a) \geq k \geq f(b)$.
Since $f(a) \geq k \geq f(b)$, then $f(a) \geq k$ and $k \geq f(b)$, so either $f(a)=k$ or $f(b)=k$ or $f(a)>k>f(b)$.

We consider these cases separately.
Case 1: Suppose $f(a)=k$.
Observe that $a \in[a, b]$ and $f(a)=k$.
Case 2: Suppose $f(b)=k$.
Observe that $b \in[a, b]$ and $f(b)=k$.
Case 3: Suppose $f(a)>k>f(b)$.
Since f is continuous on the interval $[a, b]$ and $f(a)>k>f(b)$, then by IVT, there exists $c \in(a, b)$ such that $f(c)=k$.

Exercise 51. Let E be a nonempty closed bounded set.
Let $f: E \rightarrow \mathbb{R}$ be a continuous function such that $f(x)>0$ for all $x \in E$.
Then there exists $k>0$ such that $f(x) \geq k$ for all $x \in E$.
Proof. Let $\frac{1}{f}: E \rightarrow \mathbb{R}$ be a function defined by $\frac{1}{f}(x)=\frac{1}{f(x)}$ for all $x \in E$.
Since $E \neq \emptyset$, then there is some element in E.
Let $c \in E$ be given.
Then $f(c)>0$, so $f(c) \neq 0$.
Since f is continuous on E and $c \in E$, then f is continuous at c.
Since the constant function 1 is continuous at c and f is continuous at c and $f(c) \neq 0$, then $\frac{1}{f}$ is continuous at c.

Since c is arbitrary, then $\frac{1}{f}$ is continuous on E.
Since E is a closed bounded set, then by the boundedness theorem, the function $\frac{1}{f}$ is bounded.

Hence, there exists $M \in \mathbb{R}$ such that $\left|\frac{1}{f(x)}\right| \leq M$ for all $x \in E$.
Let $x \in E$.
Then $f(x)>0$ and $\left|\frac{1}{f(x)}\right| \leq M$.
Thus, $0<\frac{1}{f(x)}=\frac{1}{|f(x)|}=\left|\frac{1}{f(x)}\right| \leq M$, so $0<M$ and $\frac{1}{f(x)} \leq M$.
Hence, $0<\frac{1}{M} \leq f(x)$, so $f(x) \geq \frac{1}{M}>0$.
Let $k=\frac{1}{M}$.
Then $k>0$ and $f(x) \geq k$.

Therefore, there exists $k>0$ such that $f(x) \geq k$ for all $x \in E$, as desired.
Proof. Since f is continuous on E and E is a nonempty closed bounded set, then by EVT, f has a minimum on E.

Hence, there exists $m \in E$ such that $f(m) \leq f(x)$ for all $x \in E$.
Since $m \in E$ and $f(x)>0$ for all $x \in E$, then $f(m)>0$.
Let $k=f(m)$.
Then $k>0$ and $k \leq f(x)$ for all $x \in E$, so there exists $k>0$ such that $f(x) \geq k$ for all $x \in E$, as desired.

Exercise 52. Let $E \subset \mathbb{R}$ be a closed, bounded set.
Let f and g be real valued functions continuous on E.
Let $S=\{x \in E: f(x)=g(x)\}$.
If $\left(x_{n}\right)$ is a sequence in S and $\lim _{n \rightarrow \infty} x_{n}=c$, then $c \in S$.
Proof. Suppose $\left(x_{n}\right)$ is a sequence in S and $\lim _{n \rightarrow \infty} x_{n}=c$.
Since $\left(x_{n}\right)$ is a sequence in S, then $x_{n} \in S$ for all $n \in \mathbb{N}$, so $x_{n} \in E$ and $f\left(x_{n}\right)=g\left(x_{n}\right)$ for all $n \in \mathbb{N}$.

Thus, $x_{n} \in E$ for all $n \in \mathbb{N}$ and $f\left(x_{n}\right)=g\left(x_{n}\right)$ for all $n \in \mathbb{N}$.
Since $x_{n} \in E$ for all $n \in \mathbb{N}$, then $\left(x_{n}\right)$ is a sequence in E.
Since E is a closed and bounded set and $\left(x_{n}\right)$ is a sequence in E, then by the Bolzano-Weierstrass property of compact sets, there exists a subsequence $\left(y_{n}\right)$ in E such that $\lim _{n \rightarrow \infty} y_{n} \in E$.

Since $\left(x_{n}\right)$ is a convergent sequence in \mathbb{R} and $\left(y_{n}\right)$ is a subsequence of $\left(x_{n}\right)$, then $\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} x_{n}=c$.

Hence, $c \in E$.

Let $h=f-g$.
Then $h: E \rightarrow \mathbb{R}$ is the function defined by $h(x)=f(x)-g(x)$.
Since f is continuous on E and g is continuous on E, then the difference $f-g=h$ is continuous on E.

Since $c \in E$, then h is continuous at c.
Since $f\left(x_{n}\right)=g\left(x_{n}\right)$ for all $n \in \mathbb{N}$, then $h\left(x_{n}\right)=f\left(x_{n}\right)-g\left(x_{n}\right)=0$ for all $n \in \mathbb{N}$, so $\left(h\left(x_{n}\right)\right)$ is the 0 constant sequence.

Hence, $\lim _{n \rightarrow \infty} h\left(x_{n}\right)=0$.
Since h is continuous at c and $\left(x_{n}\right)$ is a sequence of points in E such that $\lim _{n \rightarrow \infty} x_{n}=c$, then by the sequential characterization of continuity, we have $\lim _{n \rightarrow \infty} h\left(x_{n}\right)=h(c)$.

Thus, $f(c)-g(c)=h(c)=\lim _{n \rightarrow \infty} h\left(x_{n}\right)=0$, so $f(c)-g(c)=0$.
Hence, $f(c)=g(c)$.
Since $c \in E$ and $f(c)=g(c)$, then $c \in S$, as desired.
Exercise 53. Let E be a closed bounded infinite set.
Let $f: E \rightarrow \mathbb{R}$ be a continuous function.
If for every $x \in E$, there exists $y \in E$ such that $|f(y)| \leq \frac{1}{2}|f(x)|$, then there exists $c \in E$ such that $f(c)=0$.

Proof. Since E is infinite, then $E \neq \emptyset$, so let $x_{0} \in E$.
Then there exists $x_{1} \in E$ such that $\left|f\left(x_{1}\right)\right| \leq \frac{1}{2}\left|f\left(x_{0}\right)\right|$.
Suppose there exists $k \in \mathbb{N}$ such that $x_{k} \in E$ and $\left|f\left(x_{k}\right)\right| \leq \frac{\left|f\left(x_{0}\right)\right|}{2^{k}}$.
Since $k \in \mathbb{N}$, then $k+1 \in \mathbb{N}$.
Since $x_{k} \in E$, then there exists $x_{k+1} \in E$ such that $\left|f\left(x_{k+1}\right)\right| \leq \frac{1}{2}\left|f\left(x_{k}\right)\right|$.
Thus, $\left|f\left(x_{k+1}\right)\right| \leq \frac{1}{2}\left|f\left(x_{k}\right)\right| \leq \frac{\left|f\left(x_{0}\right)\right|}{2^{k+1}}$, so $\left|f\left(x_{k+1}\right)\right| \leq \frac{\left|f\left(x_{0}\right)\right|}{2^{k+1}}$.
Hence, by PMI, $x_{n} \in E$ for all $n \in \mathbb{N}$ and $\left|f\left(x_{n}\right)\right| \leq \frac{\left|f^{\left(x_{0}\right)}\right|}{2^{n}}$ for all $n \in \mathbb{N}$.
Since $x_{n} \in E$ for all $n \in \mathbb{N}$, then $\left(x_{n}\right)$ is a sequence in E.
Since $0 \leq\left|f\left(x_{n}\right)\right| \leq \frac{\left|f\left(x_{0}\right)\right|}{2^{n}}$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} 0=0=\lim _{n \rightarrow \infty} \frac{\left|f\left(x_{0}\right)\right|}{2^{n}}$, then by the squeeze rule, $\lim _{n \rightarrow \infty}\left|f\left(x_{n}\right)\right|=0$.

Since $-\left|f\left(x_{n}\right)\right| \leq f\left(x_{n}\right) \leq\left|f\left(x_{n}\right)\right|$ for all $n \in \mathbb{N}$ and $0=-0=-\lim _{n \rightarrow \infty}\left|f\left(x_{n}\right)\right|=$ $\lim _{n \rightarrow \infty}-\left|f\left(x_{n}\right)\right|$, then by the squeeze rule, $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=0$, so the sequence $\left(f\left(x_{n}\right)\right)$ is convergent.

Since $\left(x_{n}\right)$ is a sequence in E and E is a closed bounded set, then by the Bolzano-Weierstrass property of compact sets, there exists a subsequence $\left(y_{n}\right)$ in E such that $\lim _{n \rightarrow \infty} y_{n} \in E$.

Let $c=\lim _{n \rightarrow \infty} y_{n}$.
Then $c \in E$.
Since f is continuous on E, then f is continuous at c.
Since $\left(y_{n}\right)$ is a sequence in E and $\lim _{n \rightarrow \infty} y_{n}=c$, then by the sequential characterization of continuity, we have $\lim _{n \rightarrow \infty} f\left(y_{n}\right)=f(c)$.

Since $\left(y_{n}\right)$ is a subsequence of $\left(x_{n}\right)$, then there exists a strictly increasing function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that $y_{n}=x_{g(n)}$ for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$.
Then $y_{n}=x_{g(n)}$, so $f\left(y_{n}\right)=f\left(x_{g(n)}\right)$ for all $n \in \mathbb{N}$.
Since $g: \mathbb{N} \rightarrow \mathbb{N}$ is a strictly increasing function such that $f\left(y_{n}\right)=f\left(x_{g(n)}\right)$ for all $n \in \mathbb{N}$, then $\left(f\left(y_{n}\right)\right)$ is a subsequence of $\left(f\left(x_{n}\right)\right)$.

Since $\left(f\left(x_{n}\right)\right)$ is convergent and $\left(f\left(y_{n}\right)\right)$ is a subsequence of $\left(f\left(x_{n}\right)\right)$, then $f(c)=\lim _{n \rightarrow \infty} f\left(y_{n}\right)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=0$, so $f(c)=0$.

Therefore, there exists $c \in E$ such that $f(c)=0$, as desired.
Exercise 54. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function such that $f(0)=f(1)$.
Then there exists $c \in\left[0, \frac{1}{2}\right]$ such that $f(c)=f\left(c+\frac{1}{2}\right)$.
Proof. Either $f\left(\frac{1}{2}\right)=f(0)$ or $f\left(\frac{1}{2}\right) \neq f(0)$.
We consider these cases separately.
Case 1: Suppose $f\left(\frac{1}{2}\right)=f(0)$.
Let $c=0$.
Since $0 \in\left[0, \frac{1}{2}\right]$, then $c \in \frac{1}{2}$.
Observe that $f(c)=f(0)=f\left(\frac{1}{2}\right)=f\left(0+\frac{1}{2}\right)=f\left(c+\frac{1}{2}\right)$.
Case 2: Suppose $f\left(\frac{1}{2}\right) \neq f(0)$.
Then $f\left(\frac{1}{2}\right)-f(0) \neq 0$.
Let $k=f\left(\frac{1}{2}\right)-f(0)$.
Then $k \neq 0$.

Let $g:\left[0, \frac{1}{2}\right] \rightarrow \mathbb{R}$ be a function defined by $g(x)=f\left(x+\frac{1}{2}\right)$.
To prove g is continuous, let $c \in\left[0, \frac{1}{2}\right]$ be given.
Then $0 \leq c \leq \frac{1}{2}$, so $\frac{1}{2} \leq c+\frac{1}{2} \leq 1$.
Let $a=c+\frac{1}{2}$.
Then $\frac{1}{2} \leq a \leq 1$, so $a \in\left[\frac{1}{2}, 1\right]$.
Since $\left[\frac{1}{2}, 1\right] \subset[0,1]$, then $a \in[0,1]$.
Since f is continuous on $[0,1]$, then f is continuous at a.
Let $\epsilon>0$ be given.
Then there exists $\delta>0$ such that for all $x \in[0,1]$ if $|x-a|<\delta$, then $|f(x)-f(a)|<\epsilon$.

Let $x \in\left[0, \frac{1}{2}\right]$ such that $|x-c|<\delta$.
Since $x \in\left[0, \frac{1}{2}\right]$, then $0 \leq x \leq \frac{1}{2}$, so $\frac{1}{2} \leq x+\frac{1}{2} \leq 1$.
Hence, $x+\frac{1}{2} \in\left[\frac{1}{2}, 1\right]$.
Since $\left[\frac{1}{2}, 1\right] \subset[0,1]$, then $x+\frac{1}{2} \in[0,1]$.
Since $|x-c|<\delta$ and $-c=\frac{1}{2}-a$, then $\left|x+\frac{1}{2}-a\right|<\delta$.
Since $x+\frac{1}{2} \in[0,1]$ and $\left|\left(x+\frac{1}{2}\right)-a\right|<\delta$, then we conclude $\left|f\left(x+\frac{1}{2}\right)-f(a)\right|<\epsilon$.
Thus, $|g(x)-g(c)|=\left|f\left(x+\frac{1}{2}\right)-f\left(c+\frac{1}{2}\right)\right|=\left|f\left(x+\frac{1}{2}\right)-f(a)\right|<\epsilon$.
Therefore, g is continuous at c, so g is continuous on [$0, \frac{1}{2}$].

Let $h=g-f$ be defined on $\left[0, \frac{1}{2}\right]$.
Then $h:\left[0, \frac{1}{2}\right] \rightarrow \mathbb{R}$ is the function defined by $h(x)=f\left(x+\frac{1}{2}\right)-f(x)$.
Since g is continuous on $\left[0, \frac{1}{2}\right]$ and f is continuous on $[0,1]$, then $g-f=h$ is continuous on the intersection $\left[0, \frac{1}{2}\right] \cap[0,1]=\left[0, \frac{1}{2}\right]$.

Observe that $h(0)=f\left(0+\frac{1}{2}\right)-f(0)=f\left(\frac{1}{2}\right)-f(0)=k$ and $h\left(\frac{1}{2}\right)=f\left(\frac{1}{2}+\right.$ $\left.\frac{1}{2}\right)-f\left(\frac{1}{2}\right)=f(1)-f\left(\frac{1}{2}\right)=f(0)-f\left(\frac{1}{2}\right)=-k$.

Since $k \neq 0$, then either $k>0$ or $k<0$.
If $k>0$, then $h\left(\frac{1}{2}\right)=-k<0<k=h(0)$, so $h\left(\frac{1}{2}\right)<0<h(0)$.
If $k<0$, then $h(0)=k<0<-k=h\left(\frac{1}{2}\right)$, so $h(0)<0<h\left(\frac{1}{2}\right)$.
Thus, in either case, 0 is between $h(0)$ and $h\left(\frac{1}{2}\right)$.
Since h is continuous on $\left[0, \frac{1}{2}\right]$ and the interval $\left[0, \frac{1}{2}\right]$ is closed and bounded and 0 is between $h(0)$ and $h\left(\frac{1}{2}\right)$, then by IVT, there exists $c \in\left(0, \frac{1}{2}\right)$ such that $h(c)=0$.

Thus, $0=h(c)=f\left(c+\frac{1}{2}\right)-f(c)$, so $f(c)=f\left(c+\frac{1}{2}\right)$.
Since $c \in\left(0, \frac{1}{2}\right)$ and $\left(0, \frac{1}{2}\right) \subset\left[0, \frac{1}{2}\right]$, then $c \in\left[0, \frac{1}{2}\right]$.
Therefore, there exists $c \in\left[0, \frac{1}{2}\right]$ such that $f(c)=f\left(c+\frac{1}{2}\right)$, as desired.
Proposition 55. Fixed Point Theorem
Let $a, b \in \mathbb{R}$ with $a<b$.
Let $f:[a, b] \rightarrow[a, b]$ be a continuous function.
Then there exists $x \in[a, b]$ such that $f(x)=x$.
Proof. Since $a \in[a, b]$ and $[a, b]=r n g f$, then $a \in \operatorname{rng} f$, so there exists $x_{1} \in[a, b]$ such that $f\left(x_{1}\right)=a$.

Since $b \in[a, b]$ and $[a, b]=r n g f$, then $b \in r n g f$, so there exists $x_{2} \in[a, b]$ such that $f\left(x_{2}\right)=b$.

Suppose $x_{1}=x_{2}$.
Then $a=f\left(x_{1}\right)=f\left(x_{2}\right)=b$, so $a=b$.
But, this contradicts the assumption $a<b$.
Hence, $x_{1} \neq x_{2}$, so either $x_{1}<x_{2}$ or $x_{1}>x_{2}$.
Without loss of generality, assume $x_{1}<x_{2}$.
Since $x_{1} \in[a, b]$, then $a \leq x_{1} \leq b$, so $a \leq x_{1}$.
Since $x_{2} \in[a, b]$, then $a \leq x_{2} \leq b$, so $x_{2} \leq b$.
Thus, $a \leq x_{1}$ and $x_{2} \leq b$.
Hence, either $x_{1}=a$ or $x_{2}=b$ or both $a<x_{1}$ and $x_{2}<b$.
We consider these cases separately.
Case 1: Suppose $x_{1}=a$.
Then $f(a)=f\left(x_{1}\right)=a$.
Therefore, we have $a \in[a, b]$ and $f(a)=a$.
Case 2: Suppose $x_{2}=b$.
Then $f(b)=f\left(x_{2}\right)=b$.
Therefore, we have $b \in[a, b]$ and $f(b)=b$.
Case 3: Suppose $a<x_{1}$ and $x_{2}<b$.
Then $a-x_{1}<0$ and $0<b-x_{2}$.
Let $g:[a, b] \rightarrow \mathbb{R}$ be a function defined by $g(x)=f(x)-x$.
Since $x_{1} \in[a, b]$, then $g\left(x_{1}\right)=f\left(x_{1}\right)-x_{1}=a-x_{1}<0$.
Since $x_{2} \in[a, b]$, then $g\left(x_{2}\right)=f\left(x_{2}\right)-x_{2}=b-x_{2}>0$.
Since f is continuous and the line $y=x$ is continuous, then the difference g is continuous, so g is continuous on $[a, b]$.

Since g is continuous on the closed interval $[a, b]$ and $g\left(x_{1}\right)<0<g\left(x_{2}\right)$, then by IVT, there exists $c \in\left(x_{1}, x_{2}\right)$ such that $g(c)=0$.

Since $0=g(c)=f(c)-c$, then $f(c)=c$.
Since $c \in\left(x_{1}, x_{2}\right)$, then $x_{1}<c<x_{2}$, so $x_{1}<c$ and $c<x_{2}$.
Since $a<x_{1}$ and $x_{1}<c$ and $c<x_{2}$ and $x_{2}<b$, then $a<c<b$, so $c \in(a, b)$.
Since $(a, b) \subset[a, b]$, then $c \in[a, b]$.
Therefore, there exists $c \in[a, b]$ such that $f(c)=c$.
Exercise 56. Let $f:[-1,1] \rightarrow \mathbb{R}$ be a function defined by $f(x)=x^{3}-3 x^{2}+17$.
Then f is not one to one on the interval $[-1,1]$.
Proof. Since f is a polynomial function, then f is continuous, so f is continuous on $[-1,1]$.

Since $[-1,0] \subset[-1,1]$, then f is continuous on $[-1,0]$.
Since $f(-1)=13<15<17=f(0)$, then by IVT, there is $c \in(-1,0)$ such that $f(c)=15$.

Since $f(c)=15=f(1)$, then $f(c)=f(1)$.
Since $c \in(-1,0)$, then $-1<c<0$, so $c<0$.
Since $c<0<1$, then $c<1$, so $c \neq 1$.
Since $c \in(-1,0)$ and $(-1,0) \subset[-1,1]$, then $c \in[-1,1]$.
Thus, there is $c \in[-1,1]$ such that $c \neq 1$ and $f(c)=f(1)$.
Therefore, f is not one to one.

Uniform continuity

Exercise 57. Let $f:(0,6) \rightarrow \mathbb{R}$ be a function defined by $f(x)=x^{2}+2 x-5$.
Then f is uniformly continuous on the interval $(0,6)$.
Proof. To prove f is uniformly continuous on $(0,6)$, let $\epsilon>0$ be given.
Let $\delta=\frac{\epsilon}{14}$.
Then $\delta>0$.
Let $x, y \in(0,6)$ such that $|x-y|<\delta$.
Then $0<x<6$ and $0<y<6$, so $0<x+y<12$.
Hence, $0<2<x+y+2<14$, so $0<x+y+2<14$.
Thus, $|x+y+2|<14$.
Observe that

$$
\begin{aligned}
|f(x)-f(y)| & =\left|\left(x^{2}+2 x-5\right)-\left(y^{2}+2 y-5\right)\right| \\
& =\left|x^{2}-y^{2}+2 x-2 y\right| \\
& =|(x-y)(x+y)+2(x-y)| \\
& =|(x-y)(x+y+2)| \\
& =|x-y \| x+y+2| \\
& <14 \delta \\
& =\epsilon .
\end{aligned}
$$

Therefore, $|f(x)-f(y)|<\epsilon$, as desired.
Exercise 58. Let $f:[2.5,3] \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{3}{x-2}$.
Then f is uniformly continuous on the interval $[2.5,3]$.
Proof. To prove f is uniformly continuous on [2.5,3], let $\epsilon>0$ be given.
Let $\delta=\frac{\epsilon}{12}$.
Then $\delta>0$.
Let $x, y \in[2.5,3]$ such that $|x-y|<\delta$.
Then $2.5 \leq x \leq 3$ and $2.5 \leq y \leq 3$, so $\frac{1}{2} \leq x-2 \leq 1$ and $\frac{1}{2} \leq y-2 \leq 1$.
Hence, $\frac{1}{4} \leq(x-2)(y-2) \leq 1$, so $0<\frac{1}{4} \leq(x-2)(y-2)$.
Thus, $0<\frac{1}{(x-2)(y-2)} \leq 4$.

Observe that

$$
\begin{aligned}
|f(x)-f(y)| & =\left|\frac{3}{x-2}-\frac{3}{y-2}\right| \\
& =\left|\frac{3(y-2)-3(x-2)}{(x-2)(y-2)}\right| \\
& =\left|\frac{3 y-3 x}{(x-2)(y-2)}\right| \\
& =\left|\frac{3 x-3 y}{(x-2)(y-2)}\right| \\
& =3\left|\frac{x-y}{(x-2)(y-2)}\right| \\
& =3|x-y|\left|\frac{1}{(x-2)(y-2)}\right| \\
& =3|x-y|\left(\frac{1}{(x-2)(y-2)}\right) \\
& <3 \delta \cdot 4 \\
& =12 \delta \\
& =\epsilon .
\end{aligned}
$$

Therefore, $|f(x)-f(y)|<\epsilon$, as desired.
Exercise 59. Let $f:[3.4,5] \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{2}{x-3}$.
Then f is uniformly continuous on the interval $[3.4,5]$.
Proof. To prove f is uniformly continuous on [3.4,5], let $\epsilon>0$ be given.
Let $\delta=0.08 \epsilon$.
Then $\delta>0$.
Let $x, y \in[3.4,5]$ such that $|x-y|<\delta$.
Then $3.4 \leq x \leq 5$ and $3.4 \leq y \leq 5$, so $0.4 \leq x-3 \leq 2$ and $0.4 \leq y-3 \leq 2$.
Hence, $0.16 \leq(x-3)(y-3) \leq 4$, so $0.16 \leq(x-3)(y-3)$.
Thus, $0<\frac{1}{(x-3)(y-3)} \leq 6.25$.
Since $x \geq 3.4>3$, then $x>3$, so $x-3>0$.
Since $y \geq 3.4>3$, then $y>3$, so $y-3>0$.

Observe that

$$
\begin{aligned}
|f(x)-f(y)| & =\left|\frac{2}{x-3}-\frac{2}{y-3}\right| \\
& =\left|\frac{2(y-3)-2(x-3)}{(x-3)(y-3)}\right| \\
& =\left|\frac{2 y-2 x}{(x-3)(y-3)}\right| \\
& =\left|\frac{2 x-2 y}{(x-3)(y-3)}\right| \\
& =2\left|\frac{x-y}{(x-3)(y-3)}\right| \\
& =2|x-y|\left|\frac{1}{(x-3)(y-3)}\right| \\
& =2|x-y| \frac{1}{(x-3)(y-3)} \\
& <2 \delta \cdot 6.25 \\
& =12.5 \delta \\
& =\epsilon .
\end{aligned}
$$

Therefore, $|f(x)-f(y)|<\epsilon$, as desired.
Exercise 60. Let $f:(2,7) \rightarrow \mathbb{R}$ be a function defined by $f(x)=x^{3}-x+1$. Then f is uniformly continuous on the interval $(2,7)$.

Proof. To prove f is uniformly continuous on $(2,7)$, let $\epsilon>0$ be given.
Let $\delta=\frac{\epsilon}{148}$.
Then $\delta>0$.
Let $x, y \in(2,7)$ such that $|x-y|<\delta$.
Then $2<x<7$ and $2<y<7$, so $4<x^{2}<49$ and $4<y^{2}<49$ and $4<x y<49$.

Thus, $\left|x^{2}+x y+y^{2}-1\right| \leq\left|x^{2}\right|+|x y|+\left|y^{2}\right|+|-1|=x^{2}+x y+y^{2}+1<$ $49+49+49+1=148$.

Observe that

$$
\begin{aligned}
|f(x)-f(y)| & =\left|\left(x^{3}-x+1\right)-\left(y^{3}-y+1\right)\right| \\
& =\left|x^{3}-y^{3}-x+y\right| \\
& =\left|(x-y)\left(x^{2}+x y+y^{2}\right)-(x-y)\right| \\
& =\left|(x-y)\left(x^{2}+x y+y^{2}-1\right)\right| \\
& =\left|x-y \| x^{2}+x y+y^{2}-1\right| \\
& <\delta \cdot 148 \\
& =\epsilon .
\end{aligned}
$$

Therefore, $|f(x)-f(y)|<\epsilon$, as desired.

Exercise 61. Let $a>0$.
Let $f:[a, \infty) \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{1}{x}$.
Then f is uniformly continuous on the interval $[a, \infty)$.
Proof. To prove f is uniformly continuous on $[a, \infty)$, let $\epsilon>0$ be given.
Let $\delta=\epsilon a^{2}$.
Since $\epsilon>0$ and $a^{2}>0$, then $\delta>0$.
Let $x, y \in[a, \infty)$ such that $|x-y|<\delta$.
Then $x \geq a$ and $y \geq a$.
Since $x \geq a>0$, then $\frac{1}{a} \geq \frac{1}{x}>0$.
Since $y \geq a>0$, then $\frac{1}{a} \geq \frac{1}{y}>0$.
Thus, $\frac{1}{a^{2}} \geq \frac{1}{x y}$.
Observe that

$$
\begin{aligned}
|f(x)-f(y)| & =\left|\frac{1}{x}-\frac{1}{y}\right| \\
& =\left|\frac{y-x}{x y}\right| \\
& =\left|\frac{x-y}{x y}\right| \\
& =\frac{1}{x y}|x-y| \\
& <\frac{\delta}{a^{2}} \\
& =\epsilon
\end{aligned}
$$

Therefore, $|f(x)-f(y)|<\epsilon$, as desired.
Exercise 62. Let $f:[1, \infty) \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{1}{x^{2}}$. Then f is uniformly continuous on the interval $[1, \infty)$.

Proof. To prove f is uniformly continuous on $[1, \infty)$, let $\epsilon>0$ be given.
Let $\delta=\frac{\epsilon}{2}$.
Then $\delta>0$.
Let $x, y \in[1, \infty)$ such that $|x-y|<\delta$.
Then $x \geq 1$ and $y \geq 1$, so $x y \geq 1$.
Hence, $1 \geq \frac{1}{x y}>0$, so $0<\frac{1}{x y} \leq 1$.
Observe that

$$
\begin{aligned}
\left|\frac{1}{x}-\frac{1}{y}\right| & =\left|\frac{y-x}{x y}\right| \\
& =\left|\frac{x-y}{x y}\right| \\
& =\frac{1}{x y}|x-y| \\
& <\delta
\end{aligned}
$$

Thus, $\left|\frac{1}{x}-\frac{1}{y}\right|<\delta$.
Since $x \geq 1$, then $1 \geq \frac{1}{x}>0$.
Since $y \geq 1$, then $1 \geq \frac{1}{y}>0$.
Thus, $2 \geq \frac{1}{x}+\frac{1}{y}>0$, so $0<\frac{1}{x}+\frac{1}{y} \leq 2$.
Observe that

$$
\begin{aligned}
|f(x)-f(y)| & =\left|\frac{1}{x^{2}}-\frac{1}{y^{2}}\right| \\
& =\left|\left(\frac{1}{x}-\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{y}\right)\right| \\
& =\left|\frac{1}{x}-\frac{1}{y}\right|\left|\frac{1}{x}+\frac{1}{y}\right| \\
& =\left|\frac{1}{x}-\frac{1}{y}\right|\left(\frac{1}{x}+\frac{1}{y}\right) \\
& <2 \delta \\
& =\epsilon
\end{aligned}
$$

Therefore, $|f(x)-f(y)|<\epsilon$, as desired.
Exercise 63. Let m and b be fixed real numbers.
Let I be an interval.
Then the linear function $f(x)=m x+b$ is uniformly continuous on I.
Proof. To prove f is uniformly continuous on I, let $\epsilon>0$ be given.
We must prove there exists $\delta>0$ such that for all $x, y \in I$, if $|x-y|<\delta$, then $|f(x)-f(y)|<\epsilon$.

Either $m=0$ or $m \neq 0$.
We consider these cases separately.
Case 1: Suppose $m=0$.
Then $f(x)=0 x+b=b$ for all $x \in \mathbb{R}$.
Let $\delta=\epsilon$.
Then $\delta>0$.
Let $x, y \in I$.
Then $|f(x)-f(y)|=|b-b|=0<\epsilon$.
Hence, the implication if $|x-y|<\delta$, then $|f(x)-f(y)|<\epsilon$ is trivially true.
Case 2: Suppose $m \neq 0$.
Let $\delta=\frac{\epsilon}{|m|}$.
Since $m \neq 0$, then $|m|>0$.
Since $\epsilon>0$ and $|m|>0$, then $\delta>0$.
Let $x, y \in I$ such that $|x-y|<\delta$.

Then

$$
\begin{aligned}
|f(x)-f(y)| & =|(m x+b)-(m y+b)| \\
& =|m x+b-m y-b| \\
& =|m x-m y| \\
& =|m(x-y)| \\
& =|m||x-y| \\
& <|m| \delta \\
& =|m| \cdot \frac{\epsilon}{|m|} \\
& =\epsilon .
\end{aligned}
$$

Therefore, $|f(x)-f(y)|<\epsilon$, as desired.
Exercise 64. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be the function given by $f(x)=x^{2}$.
Then f is not uniformly continuous on $(0, \infty)$.
Proof. To prove f is not uniformly continuous on $(0, \infty)$, we prove $(\exists \epsilon>0)(\forall \delta>$ $0)(\exists x, y \in(0, \infty))(|x-y|<\delta \wedge|f(x)-f(y)| \geq \epsilon)$.

Let $\epsilon=1$.
Let $\delta>0$ be given.
Let $\alpha=\min \{2, \delta\}$.
Then $\alpha \leq 2$ and $\alpha \leq \delta$ and $\alpha>0$.
Let $x=\frac{1}{\alpha}-\frac{\alpha}{5}$.
Let $y=x+\frac{\alpha}{2}$.
Since $0<\alpha \leq 2$, then $0<\alpha^{2} \leq 4<5$, so $0<\alpha^{2}<5$.
Hence, $\frac{\alpha}{5}<\frac{1}{\alpha}$, so $\frac{1}{\alpha}-\frac{\alpha}{5}>0$.
Thus, $x>0$, so $x \in(0, \infty)$.
Since $x>0$ and $\alpha>0$, then $y>0$, so $y \in(0, \infty)$.
Since $|x-y|=|y-x|=\left|\frac{\alpha}{2}\right|=\frac{\alpha}{2}<\alpha \leq \delta$, then $|x-y|<\delta$.
Since $4<5$ and $\alpha>0$, then $4 \alpha<5 \alpha$, so $\frac{\alpha}{5}<\frac{\alpha}{4}$.
Hence, $\frac{-\alpha}{5}>\frac{-\alpha}{4}$, so $\frac{1}{\alpha}-\frac{\alpha}{5}>\frac{1}{\alpha}-\frac{\alpha}{4}$.
Thus, $x>\frac{1}{\alpha}-\frac{\alpha}{4}$, so $x+\frac{\alpha}{4}>\frac{1}{\alpha}$.
Observe that

$$
\begin{aligned}
|f(x)-f(y)| & =\left|x^{2}-y^{2}\right| \\
& =|(x-y)(x+y)| \\
& =|x-y||x+y| \\
& =|x-y|(x+y) \\
& =\frac{\alpha}{2}\left[x+\left(x+\frac{\alpha}{2}\right)\right] \\
& =\frac{\alpha}{2}\left(2 x+\frac{\alpha}{2}\right) \\
& =\alpha\left(x+\frac{\alpha}{4}\right) \\
& >\alpha \cdot \frac{1}{\alpha} \\
& =1
\end{aligned}
$$

Therefore, $|f(x)-f(y)|>1=\epsilon$, so f is not uniformly continuous on the interval $(0, \infty)$.
Exercise 65. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be the function given by $f(x)=\frac{1}{x^{2}}$.
Then f is not uniformly continuous on $(0, \infty)$.
Proof. To prove f is not uniformly continuous on $(0, \infty)$, we prove $(\exists \epsilon>0)(\forall \delta>$ $0)(\exists x, y \in(0, \infty))(|x-y|<\delta \wedge|f(x)-f(y)| \geq \epsilon)$.

Let $\epsilon=1$.
Let $\delta>0$ be given.
Let $\alpha=\min \{1, \delta\}$.
Then $\alpha \leq 1$ and $\alpha \leq \delta$ and $\alpha>0$.
Let $x=\alpha$.
Let $y=\frac{\alpha}{2}$.
Then $x>0$ and $y>0$, so $x \in(0, \infty)$ and $y \in(0, \infty)$.
Since $|x-y|=\left|\alpha-\frac{\alpha}{2}\right|=\frac{\alpha}{2}<\alpha \leq \delta$, then $|x-y|<\delta$.
Since $0<\alpha \leq 1$, then $0<\alpha^{2} \leq 1<3$, so $0<\alpha^{2}<3$.
Hence, $1<\frac{3}{\alpha^{2}}$.
Observe that

$$
\begin{aligned}
|f(x)-f(y)| & =\left|f(\alpha)-f\left(\frac{\alpha}{2}\right)\right| \\
& =\left|\frac{1}{\alpha^{2}}-\frac{4}{\alpha^{2}}\right| \\
& =\frac{3}{\alpha^{2}} \\
& >1
\end{aligned}
$$

Therefore, $|f(x)-f(y)|>1=\epsilon$, so f is not uniformly continuous on the interval $(0, \infty)$.

Proposition 66. the sum of uniformly continuous functions is uniformly continuous

Let f and g be real valued functions defined on a set E.
If f is uniformly continuous on E and g is uniformly continuous on E, then $f+g$ is uniformly continuous on E.

Proof. To prove the function $f+g$ is uniformly continuous on E, let $\epsilon>0$ be given.

We must prove there exists $\delta>0$ such that for all $x, y \in E$, if $|x-y|<\delta$, then $|(f+g)(x)-(f+g)(y)|<\epsilon$.

Since $\epsilon>0$, then $\frac{\epsilon}{2}>0$.
Since f is uniformly continuous on E and $\frac{\epsilon}{2}>0$, then there exists $\delta_{1}>0$ such that for all $x, y \in E$, if $|x-y|<\delta_{1}$, then $|f(x)-f(y)|<\frac{\epsilon}{2}$.

Since g is uniformly continuous on E and $\frac{\epsilon}{2}>0$, then there exists $\delta_{2}>0$ such that for all $x, y \in E$, if $|x-y|<\delta_{2}$, then $|g(x)-g(y)|<\frac{\epsilon}{2}$.

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$.
Then $\delta \leq \delta_{1}$ and $\delta \leq \delta_{2}$ and $\delta>0$.
Let $x, y \in E$ such that $|x-y|<\delta$.
Since $|x-y|<\delta \leq \delta_{1}$, then $|x-y|<\delta_{1}$, so $|f(x)-f(y)|<\frac{\epsilon}{2}$.
Since $|x-y|<\delta \leq \delta_{2}$, then $|x-y|<\delta_{2}$, so $|g(x)-g(y)|<\frac{\epsilon}{2}$.
Therefore,

$$
\begin{aligned}
|(f+g)(x)-(f+g)(y)| & =|f(x)+g(x)-(f(y)+g(y))| \\
& =|f(x)+g(x)-f(y)-g(y)| \\
& =|f(x)-f(y)+g(x)-g(y)| \\
& \leq|f(x)-f(y)|+|g(x)-g(y)| \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon .
\end{aligned}
$$

Exercise 67. Let f and g be real valued functions defined on a set E.
If f is uniformly continuous on E and g is uniformly continuous on E, show that $f g$ is not necessarily uniformly continuous on E.

Solution. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be the identity function $f(x)=x$.
Let g be a function such that $g=f$.
Then $g(x)=f(x)=x$ for all $x \in(0, \infty)$.
Since f is a linear function defined on the interval $(0, \infty)$, then f is uniformly continuous on $(0, \infty)$.

Since $g=f$, then g is uniformly continuous on $(0, \infty)$.
However, the function $f g$ given by $(f g)(x)=f(x) g(x)=x x=x^{2}$ is not uniformly continuous on $(0, \infty)$.

Proposition 68. the product of uniformly continuous bounded functions is uniformly continuous

Let f and g be bounded real valued functions defined on a set E.
If f is uniformly continuous on E and g is uniformly continuous on E, then $f g$ is uniformly continuous on E.

Proof. To prove the function $f g$ is uniformly continuous on E, let $\epsilon>0$ be given.

We must prove there exists $\delta>0$ such that for all $x, y \in E$, if $|x-y|<\delta$, then $|(f g)(x)-(f g)(y)|<\epsilon$.

Since f is bounded in \mathbb{R}, then there exists a real number $K>0$ such that $|f(x)|<K$ for all $x \in E$.

Since g is bounded in \mathbb{R}, then there exists a real number $M>0$ such that $|g(x)|<M$ for all $x \in E$.

Since $\epsilon>0$ and $M>0$, then $\frac{\epsilon}{2 M}>0$.
Since f is uniformly continuous on E and $\frac{\epsilon}{2 M}>0$, then there exists $\delta_{1}>0$ such that for all $x, y \in E$, if $|x-y|<\delta_{1}$, then $|f(x)-f(y)|<\frac{\epsilon}{2 M}$.

Since $\epsilon>0$ and $K>0$, then $\frac{\epsilon}{2 K}>0$.
Since g is uniformly continuous on E and $\frac{\epsilon}{2 K}>0$, then there exists $\delta_{2}>0$ such that for all $x, y \in E$, if $|x-y|<\delta_{2}$, then $|g(x)-g(y)|<\frac{\epsilon}{2 K}$.

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$.
Then $\delta \leq \delta_{1}$ and $\delta \leq \delta_{2}$ and $\delta>0$.
Let $x, y \in E$ such that $|x-y|<\delta$.
Since $|x-y|<\delta \leq \delta_{1}$, then $|x-y|<\delta_{1}$, so $|f(x)-f(y)|<\frac{\epsilon}{2 M}$.
Since $|x-y|<\delta \leq \delta_{2}$, then $|x-y|<\delta_{2}$, so $|g(x)-g(y)|<\frac{\epsilon}{2 K}$.
Since $x \in E$, then $|f(x)|<K$.
Since $y \in E$, then $|g(y)|<M$.
Therefore,

$$
\begin{aligned}
|(f g)(x)-(f g)(y)| & =|f(x) g(x)-f(y) g(y)| \\
& =|f(x)(g(x)-g(y))+f(x) g(y)-f(y) g(y)| \\
& =|f(x)(g(x)-g(y))+g(y)(f(x)-f(y))| \\
& \leq|f(x)(g(x)-g(y))|+|g(y)(f(x)-f(y))| \\
& =|f(x)||g(x)-g(y)|+|g(y)||f(x)-f(y)| \\
& <K \cdot \frac{\epsilon}{2 K}+M \cdot \frac{\epsilon}{2 M} \\
& =\epsilon .
\end{aligned}
$$

Proposition 69. composition of uniformly continuous functions is uniformly continuous

Let f and g be real valued functions of a real variable.
If f is uniformly continuous and g is uniformly continuous, then $g \circ f$ is uniformly continuous.

Proof. Suppose f is uniformly continuous and g is uniformly continuous.
To prove the function $g \circ f$ is uniformly continuous, let $\epsilon>0$ be given.
Since g is uniformly continuous, then there exists $\delta_{1}>0$ such that for all $x, y \in d o m g$, if $|x-y|<\delta_{1}$, then $|g(x)-g(y)|<\epsilon$.

Since f is uniformly continuous and $\delta_{1}>0$, then there exists $\delta>0$ such that for all $x, y \in \operatorname{dom} f$, if $|x-y|<\delta$, then $|f(x)-f(y)|<\delta_{1}$.

Let $x, y \in \operatorname{dom}(g \circ f)$ such that $|x-y|<\delta$.
Since $x \in \operatorname{dom}(g \circ f)$ and $\operatorname{dom}(g \circ f)=\{x \in \operatorname{dom} f: f(x) \in \operatorname{domg}\}$, then $x \in \operatorname{dom} f$ and $f(x) \in$ domg.

Since $y \in \operatorname{dom}(g \circ f)$ and $\operatorname{dom}(g \circ f)=\{x \in \operatorname{dom} f: f(x) \in \operatorname{domg}\}$, then $y \in \operatorname{dom} f$ and $f(y) \in$ domg.

Since $x \in \operatorname{domf}$ and $y \in \operatorname{domf}$ and $|x-y|<\delta$, then $|f(x)-f(y)|<\delta_{1}$.
Since $f(x) \in d o m g$ and $f(y) \in d o m g$ and $|f(x)-f(y)|<\delta_{1}$, then $\mid g(f(x)-$ $g(f(y)) \mid<\epsilon$.

Therefore, $|(g \circ f)(x)-(g \circ f)(y)|<\epsilon$, as desired.

