Continuous functions Notes

Jason Sass

May 25, 2023

Sets of Numbers

$\mathbb{R}=$ set of all real numbers
$\mathbb{R}^{+}=\{x \in \mathbb{R}: x>0\}=$ set of all positive real numbers
$\mathbb{R}^{*}=\{x \in \mathbb{R}: x \neq 0\}=(-\infty, 0) \cup(0, \infty)=$ set of all nonzero real numbers
$\mathbb{R}_{+}=\{x \in \mathbb{R}: x \geq 0\}=[0, \infty)=[0, \infty[=$ set of all nonnegative real numbers

Continuity

A function f is continuous at a point c iff $f(x)$ is arbitrarily close to $f(c)$ whenever x is sufficiently close to c.

Intuitively, this means f is continuous at c if there is no hole in the graph of f at c and there is no break in the graph of f in the immediate vicinity of c.

Definition 1. ϵ, δ definition of continuity of a function at a point
Let $\left(E_{1}, d_{1}\right)$ and $\left(E_{2}, d_{2}\right)$ be metric spaces.
Let $f: E_{1} \rightarrow E_{2}$ be a function.
Then f is continuous at $c \in E_{1}$ iff for every real number $\epsilon>0$, there exists a real number $\delta>0$, such that $d_{2}(f(x), f(c))<\epsilon$ whenever $x \in E_{1}$ and $d_{1}(x, c)<\delta$.

Therefore, f is continuous at $c \in E_{1}$ iff for every real number $\epsilon>0$, there exists a real number $\delta>0$ such that if $x \in E_{1}$ and $d_{1}(x, c)<\delta$, then $d_{2}(f(x), f(c))<\epsilon$.

Therefore, f is continuous at $c \in E_{1}$ iff
$(\forall \epsilon>0)(\exists \delta>0)\left(\forall x \in E_{1}\right)\left(d_{1}(x, c)<\delta \rightarrow d_{2}(f(x), f(c))<\epsilon\right)$.

Definition 2. ϵ, δ definition of continuity of a real valued function at a

 pointLet $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Then f is continuous at $c \in E$ iff $(\forall \epsilon>0)(\exists \delta>0)(\forall x \in E)(|x-c|<\delta \rightarrow$ $|f(x)-f(c)|<\epsilon)$.

If f is not continuous at $c \in E$, then we say f is discontinuous at c.

Observe that

$$
\begin{array}{r}
(\forall \epsilon>0)(\exists \delta>0)(\forall x \in E)(|x-c|<\delta \rightarrow|f(x)-f(c)|<\epsilon) \Leftrightarrow \\
(\forall \epsilon>0)(\exists \delta>0)(\forall x \in E)(x \in N(c ; \delta) \rightarrow f(x) \in N(f(c) ; \epsilon)) \Leftrightarrow \\
\quad(\forall \epsilon>0)(\exists \delta>0)(\forall x \in E \cap N(c ; \delta))(f(x) \in N(f(c) ; \epsilon))
\end{array}
$$

Therefore, f is continuous at $c \in E$ iff for every ϵ neighborhood of $f(c)$, there exists a δ neighborhood of c such that for each $x \in E$, if $x \in N(c ; \delta)$, then $f(x) \in N(f(c) ; \epsilon)$.

Observe that

$$
\begin{aligned}
& \neg(\forall \epsilon>0)(\exists \delta>0)(\forall x \in E)(|x-c|<\delta \rightarrow|f(x)-f(c)|<\epsilon) \Leftrightarrow \\
& \quad(\exists \epsilon>0)(\forall \delta>0)(\exists x \in E)(|x-c|<\delta \wedge|f(x)-f(c)| \geq \epsilon)
\end{aligned}
$$

Therefore, f is discontinuous at $c \in E$ iff $(\exists \epsilon>0)(\forall \delta>0)(\exists x \in E)(|x-c|<$ $\delta \wedge|f(x)-f(c)| \geq \epsilon)$.

Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Suppose f is continuous at c.
Then $c \in E$, so $c \in \operatorname{dom} f$.
Therefore, if f is continuous at c, then $c \in \operatorname{dom} f$.
Hence, if $c \notin \operatorname{dom} f$, then f is not continuous at c.
Therefore, if $c \notin \operatorname{dom} f$, then f is discontinuous at c.

Proposition 3. characterization of continuity at a point

Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function and $c \in E$. Then

1. If c is not an accumulation point of E, then f is continuous at c.
2. If c is an accumulation point of E, then f is continuous at c iff the limit of f at c exists and $\lim _{x \rightarrow c} f(x)=f(c)$.

Thus, if $c \in \operatorname{domf}$ and c is an accumulation point of domf and the limit of f at c exists and $\lim _{x \rightarrow c} f(x)=f(c)$, then f is continuous at c.

Since the existence of a limit of f at c implies c is an accumulation point of domf, then if $c \in \operatorname{dom} f$ and the limit of f at c exists and $\lim _{x \rightarrow c} f(x)=f(c)$, then f is continuous at c.

Therefore, f is continuous at c if

1. $c \in \operatorname{dom} f$.
2. limit of f at c exists.
3. $\lim _{x \rightarrow c} f(x)=f(c)$.

Theorem 4. sequential characterization of continuity
Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let $c \in E$.
Then f is continuous at c iff for every sequence $\left(x_{n}\right)$ of points in E such that $\lim _{n \rightarrow \infty} x_{n}=c, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(c)$.

Therefore, f is discontinuous at c iff there exists a sequence $\left(x_{n}\right)$ of points in E such that $\lim _{n \rightarrow \infty} x_{n}=c$ and $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq f(c)$.

A function continuous on a set is continuous at each point of the set.

Definition 5. continuity of a function defined on a set

A function f is continuous on a set $E \subset \operatorname{dom} f$ iff f is continuous at c for all $c \in E$.

Definition 6. continuous function

A function f is continuous iff f is continuous on $\operatorname{dom} f$.
Therefore, a function f is continuous iff f is continuous at c for all $c \in \operatorname{dom} f$. Therefore, a function f is continuous iff $(\forall c \in \operatorname{domf})(\forall \epsilon>0)(\exists \delta>0)(\forall x \in$ $E)(|x-c|<\delta \rightarrow|f(x)-f(c)|<\epsilon)$.

Observe that δ depends on both $c \in \operatorname{domf}$ and ϵ.
Example 7. every constant function is continuous
Let $k \in \mathbb{R}$.
The function given by $f(x)=k$ is continuous.

Example 8. identity function is continuous

The function given by $f(x)=x$ is continuous.

Example 9. square function is continuous

The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is continuous.
Example 10. The function $f:(0, \infty) \rightarrow \mathbb{R}$ defined by $f(x)=\frac{1}{x}$ is continuous.
Example 11. absolute value function is continuous
The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=|x|$ is continuous.
Example 12. square root function is continuous
The function $f:[0, \infty) \rightarrow \mathbb{R}$ defined by $f(x)=\sqrt{x}$ is continuous.
Example 13. function with a removable discontinuity
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)= \begin{cases}x+1 & \text { if } x \neq 1 \\ 5 & \text { if } x=1\end{cases}
$$

Then f is discontinuous at 1 .
If f is redefined so that $f(1)=2$, then $\lim _{x \rightarrow 1} f(x)=2=f(1)$, so f would be continuous at 1 .

Therefore, we can remove the discontinuity by redefining f at 1 so that f is continuous at 1 , so 1 is a removable discontinuity.

Example 14. function with a jump discontinuity

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)= \begin{cases}1 & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

Then f is discontinuous at 0 .

Example 15. unbounded function, infinite discontinuity

The function $f:(0, \infty) \rightarrow \mathbb{R}$ defined by $f(x)=\frac{1}{x}$ is discontinuous at 0 since $0 \notin(0, \infty)$, the domain of f.

Let $r \in \mathbb{R}$ be arbitrary.
Let $g:[0, \infty) \rightarrow \mathbb{R}$ be a function defined by

$$
g(x)= \begin{cases}\frac{1}{x} & \text { if } x>0 \\ r & \text { if } x=0\end{cases}
$$

Then g is discontinuous at 0 , so there is no way to extend f to make f continuous at 0 .

Therefore, 0 is a non removable discontinuity of f.

Example 16. oscillating function

The function $f: \mathbb{R}^{*} \rightarrow \mathbb{R}$ defined by $f(x)=\sin \left(\frac{1}{x}\right)$ is discontinuous at 0 since $0 \notin \mathbb{R}^{*}$, the domain of f.

Let $r \in \mathbb{R}$ be arbitrary.
Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
g(x)= \begin{cases}\sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ r & \text { if } x=0\end{cases}
$$

Since 0 is an accumulation point of \mathbb{R}, but $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ does not exist in \mathbb{R}, then g is discontinuous at 0 .

Hence, there is no way to define f at 0 to make f continuous at 0 .
Therefore, 0 is a non removable discontinuity of f.
Example 17. Dirichlet function is discontinuous everywhere
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)= \begin{cases}1 & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

Then f is not continuous at any point in its domain.

Example 18. Thomae's (popcorn) function
Let $f:(0,1) \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)= \begin{cases}\frac{1}{m} & \text { if } k, m \in \mathbb{N} \text { and } \operatorname{gcd}(k, m)=1 \text { and } x=\frac{k}{m} \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

Then f is
Proposition 19. restriction of a continuous function is continuous
Let f be a real valued function of a real variable.
Let g be a restriction of f to a nonempty set $E \subset \operatorname{dom} f$.
If f is continuous, then the restriction g is continuous.

Algebraic properties of continuous functions

Theorem 20. Let $\lambda \in \mathbb{R}$.
Let f be a real valued function.
Let $c \in \operatorname{domf}$.
If f is continuous at c, then λf is continuous at c.
Corollary 21. scalar multiple of a continuous function is continuous Let $\lambda \in \mathbb{R}$.
Let f be a real valued function.
If f is continuous, then λf is continuous.
Theorem 22. Let f and g be real valued functions.
Let $c \in \operatorname{domf} \cap \operatorname{domg}$.
If f is continuous at c and g is continuous at c, then $f+g$ is continuous at c.

Corollary 23. sum of continuous functions is continuous
Let f and g be real valued functions.
If f is continuous and g is continuous, then $f+g$ is continuous.
Corollary 24. Let f and g be real valued functions.
Let $c \in \operatorname{domf} \cap \operatorname{domg}$.
If f is continuous at c and g is continuous at c, then $f-g$ is continuous at c.

Corollary 25. difference of continuous functions is continuous
Let f and g be real valued functions.
If f is continuous and g is continuous, then $f-g$ is continuous.
Theorem 26. Let f and g be real valued functions.
Let $c \in \operatorname{domf} \cap \operatorname{domg}$.
If f is continuous at c and g is continuous at c, then $f g$ is continuous at c.

Corollary 27. product of continuous functions is continuous
Let f and g be real valued functions.
If f is continuous and g is continuous, then $f g$ is continuous.
Theorem 28. Let f and g be real valued functions.
Let $c \in \operatorname{dom} f \cap \operatorname{domg}$.
If f is continuous at c and g is continuous at c and $g(c) \neq 0$, then $\frac{f}{g}$ is continuous at c.
Corollary 29. quotient of continuous functions is continuous wherever defined

Let f and g be real valued functions.
If f is continuous and g is continuous, then $\frac{f}{g}$ is continuous for all $x \in$ $\operatorname{dom} f \cap \operatorname{domg}$ such that $g(x) \neq 0$.

Theorem 30. polynomial functions are continuous
Every polynomial function is continuous.
Theorem 31. rational functions are continuous wherever defined
Let r be a rational function defined by $r(x)=\frac{p(x)}{q(x)}$ such that p and q are polynomial functions.

Then r is continuous for all $x \in \mathbb{R}$ such that $q(x) \neq 0$.
Theorem 32. Let f and g be real valued functions of a real variable.
If f is continuous at c and g is continuous at $f(c)$, then $g \circ f$ is continuous at c.

Corollary 33. composition of continuous functions is continuous
Let f and g be real valued functions of a real variable.
If f is continuous and g is continuous, then $g \circ f$ is continuous.
Proposition 34. If f is a continuous function, then so is $|f|$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let $|f|: E \rightarrow \mathbb{R}$ be a function defined by $|f|(x)=|f(x)|$.
If f is continuous, then $|f|$ is continuous.
Proposition 35. If f is a continuous function, then so is \sqrt{f}.
Let $f: E \rightarrow \mathbb{R}$ be a function such that $f(x) \geq 0$ for all $x \in E$.
Let \sqrt{f} be a function defined by $\sqrt{f}(x)=\sqrt{f(x)}$ for all $x \in E$ such that $f(x) \geq 0$.

If f is continuous, then \sqrt{f} is continuous.

Transcendental functions like $e^{x}, \ln x, \sin x, \cos x$ are continuous wherever defined.

Definition 36. Continuous from left and right

Let $a, r \in \mathbb{R}$.
Let a be fixed.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined on $[a, a+r)$ for some $r>0$.
Then f is right continuous at a iff $\lim _{x \rightarrow a^{+}} f(x)=f(a)$.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined on $(a-r, a]$ for some $r>0$.
Then f is left continuous at a iff $\lim _{x \rightarrow a^{-}} f(x)=f(a)$.

Continuous functions on compact sets

Lemma 37. Bolzano-Weierstrass property of compact sets

Let $E \subset \mathbb{R}$ be a closed bounded set.
Then every sequence in E has a subsequence $\left(y_{n}\right)$ in E such that $\lim _{n \rightarrow \infty} y_{n} \in$ E.

Theorem 38. Boundedness Theorem
Every real valued function continuous on a closed bounded set is bounded.
Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function.
Since $[a, b]$ is closed and bounded, then by the boundedness theorem, f is bounded.

Therefore, there exists $B \in \mathbb{R}$ such that $|f(x)| \leq B$ for all $x \in[a, b]$.
Theorem 39. Extreme Value Theorem
Every real valued function continuous on a nonempty closed bounded set attains a maximum and minimum on the set.

Let $a, b \in \mathbb{R}$ with $a<b$.
Then by the density of \mathbb{R}, the interval $[a, b]$ is not empty.
Let f be a real valued function continuous on the closed interval $[a, b]$.
Since the closed bounded interval $[a, b]$ is compact, then by EVT, f attains a maximum and minimum on $[a, b]$.

Since f has a maximum on $[a, b]$, then there exists $M \in[a, b]$ such that $f(x) \leq f(M)$ for all $x \in[a, b]$.

Since f has a minimum on $[a, b]$, then there exists $m \in[a, b]$ such that $f(m) \leq f(x)$ for all $x \in[a, b]$.

Therefore, there exist $m, M \in[a, b]$ such that $f(m) \leq f(x) \leq f(M)$ for all $x \in[a, b]$.

Therefore, f is bounded.
Lemma 40. Let f be a continuous real valued function.
Let x_{0}, c, d be real numbers such that $x_{0} \in \operatorname{domf}$ and $c<f\left(x_{0}\right)<d$.
Then there exists a positive real number δ such that $c<f(x)<d$ for all $x \in N\left(x_{0} ; \delta\right) \cap \operatorname{dom} f$.

Theorem 41. Intermediate Value Theorem
Let $a, b \in \mathbb{R}$.
Let f be a real valued function continuous on the closed interval $[a, b]$.
For every real number k such that $f(a)<k<f(b)$, there exists $c \in(a, b)$ such that $f(c)=k$.

Therefore, a continuous function $f:[a, b] \rightarrow \mathbb{R}$ has all values between $f(a)$ and $f(b)$.

Therefore, the graph of a function continuous on a closed and bounded interval $[a, b]$ must pass through every horizontal line $y=y_{0}$, where $f(a)<$ $y_{0}<f(b)$. It doesn't jump over any such line, so there are no 'breaks' or 'missing points'.

Lemma 42. Let I be an interval and $a \in I$ and $b \in I$ and $a<b$.
Then $[a, b] \subset I$.
Theorem 43. intervals are preserved by continuous functions
Let f be a real valued function continuous on an interval I.
Then $f(I)$ is an interval.
Therefore, the image of an interval under a continuous function is an interval.

Uniform continuity is a condition that guarantees continuity of a function f in which δ depends on ϵ only and not on a particular point $c \in E$.

Uniform continuity

Definition 44. uniform continuity

Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Then f is uniformly continuous on E iff $(\forall \epsilon>0)(\exists \delta>0)(\forall x \in E)(\forall y \in$ $E)(|x-y|<\delta \rightarrow|f(x)-f(y)|<\epsilon)$.

The definition of uniform continuity implies that δ depends on ϵ and not on a specific point in E.

Thus, δ chosen is independent of a specific point c in the domain of a function f, so the same δ works for any point $c \in \operatorname{domf}$.

Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Then f is not uniformly continuous on E iff $(\exists \epsilon>0)(\forall \delta>0)(\exists x \in E)(\exists y \in$ $E)(|x-y|<\delta \wedge|f(x)-f(y)| \geq \epsilon)$.

Example 45. Let $a>0$.
Let $f:(0, a) \rightarrow \mathbb{R}$ be the function given by $f(x)=x^{2}$.
Then f is uniformly continuous on the interval $(0, a)$.
Example 46. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function given by $f(x)=x^{2}$.
Then f is not uniformly continuous on \mathbb{R}.
Example 47. Let $f:(1, \infty) \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{1}{x}$.
Then f is uniformly continuous on the interval $(1, \infty)$.

Example 48. Let $f:(0,1) \rightarrow \mathbb{R}$ be the function given by $f(x)=\frac{1}{x}$. Then f is not uniformly continuous on the interval $(0,1)$.

Proposition 49. uniform continuity implies continuity
Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
If f is uniformly continuous on E, then f is continuous on E.
Example 50. continuity does not necessarily imply uniform continuity Let $f:(0,1) \rightarrow \mathbb{R}$ be the function given by $f(x)=\frac{1}{x}$.
Then f is not uniformly continuous on $(0,1)$.
Since the reciprocal function is continuous on $(0, \infty)$ and f is a restriction of the reciprocal function to $(0,1) \subset(0, \infty)$, then f is continuous on $(0,1)$.

Since f is continuous on $(0,1)$, but f is not uniformly continuous on $(0,1)$, then f is continuous on $(0,1)$ does not imply f is uniformly continuous on $(0,1)$.

Lemma 51. Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
If f is not uniformly continuous on E, then there exist $\epsilon_{1}>0$ and sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in E such that $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{1}$ for all $n \in \mathbb{N}$.

Theorem 52. Heine-Cantor Uniform Continuity Theorem
Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
If f is continuous on E and E is compact, then f is uniformly continuous on E.

Therefore, if f is a continuous function on a compact set E, then f is uniformly continuous on E.

Thus, a function continuous on a compact set is uniformly continuous.

Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function.
Since the closed bounded interval $[a, b]$ is compact, then f is uniformly continuous on $[a, b]$.

Therefore, every real valued function continuous on a closed bounded interval is uniformly continuous.

