Continuous functions Notes

Jason Sass

May 25, 2023

Sets of Numbers

$$\begin{split} \mathbb{R} &= \text{ set of all real numbers} \\ \mathbb{R}^+ &= \{x \in \mathbb{R} : x > 0\} = \text{ set of all positive real numbers} \\ \mathbb{R}^* &= \{x \in \mathbb{R} : x \neq 0\} = (-\infty, 0) \cup (0, \infty) = \text{ set of all nonzero real numbers} \\ \mathbb{R}_+ &= \{x \in \mathbb{R} : x \geq 0\} = [0, \infty) = [0, \infty] = \text{ set of all nonnegative real numbers} \end{split}$$

Continuity

A function f is continuous at a point c iff f(x) is arbitrarily close to f(c) whenever x is sufficiently close to c.

Intuitively, this means f is continuous at c if there is no hole in the graph of f at c and there is no break in the graph of f in the immediate vicinity of c.

Definition 1. ϵ, δ definition of continuity of a function at a point

Let (E_1, d_1) and (E_2, d_2) be metric spaces.

Let $f: E_1 \to E_2$ be a function.

Then f is continuous at $c \in E_1$ iff for every real number $\epsilon > 0$, there exists a real number $\delta > 0$, such that $d_2(f(x), f(c)) < \epsilon$ whenever $x \in E_1$ and $d_1(x, c) < \delta$.

Therefore, f is continuous at $c \in E_1$ iff for every real number $\epsilon > 0$, there exists a real number $\delta > 0$ such that if $x \in E_1$ and $d_1(x,c) < \delta$, then $d_2(f(x), f(c)) < \epsilon$.

Therefore, f is continuous at $c \in E_1$ iff

 $(\forall \epsilon > 0) (\exists \delta > 0) (\forall x \in E_1) (d_1(x, c) < \delta \to d_2(f(x), f(c)) < \epsilon).$

Definition 2. ϵ,δ definition of continuity of a real valued function at a point

Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function.

Then f is continuous at $c \in E$ iff $(\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in E)(|x - c| < \delta \rightarrow |f(x) - f(c)| < \epsilon).$

If f is not continuous at $c \in E$, then we say f is **discontinuous at** c.

Observe that

$$\begin{aligned} (\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in E)(|x - c| < \delta \to |f(x) - f(c)| < \epsilon) \Leftrightarrow \\ (\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in E)(x \in N(c; \delta) \to f(x) \in N(f(c); \epsilon)) \Leftrightarrow \\ (\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in E \cap N(c; \delta))(f(x) \in N(f(c); \epsilon)). \end{aligned}$$

Therefore, f is continuous at $c \in E$ iff for every ϵ neighborhood of f(c), there exists a δ neighborhood of c such that for each $x \in E$, if $x \in N(c; \delta)$, then $f(x) \in N(f(c); \epsilon)$.

Observe that

$$\neg (\forall \epsilon > 0) (\exists \delta > 0) (\forall x \in E) (|x - c| < \delta \rightarrow |f(x) - f(c)| < \epsilon) \Leftrightarrow \\ (\exists \epsilon > 0) (\forall \delta > 0) (\exists x \in E) (|x - c| < \delta \land |f(x) - f(c)| \ge \epsilon).$$

Therefore, f is discontinuous at $c \in E$ iff $(\exists \epsilon > 0)(\forall \delta > 0)(\exists x \in E)(|x-c| < \delta \land |f(x) - f(c)| \ge \epsilon).$

Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function. Suppose f is continuous at c. Then $c \in E$, so $c \in dom f$. Therefore, if f is continuous at c, then $c \in dom f$. Hence, if $c \notin dom f$, then f is not continuous at c. Therefore, if $c \notin dom f$, then f is discontinuous at c.

Proposition 3. characterization of continuity at a point Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function and $c \in E$. Then

1. If c is not an accumulation point of E, then f is continuous at c.

2. If c is an accumulation point of E, then f is continuous at c iff the limit of f at c exists and $\lim_{x\to c} f(x) = f(c)$.

Thus, if $c \in dom f$ and c is an accumulation point of dom f and the limit of f at c exists and $\lim_{x\to c} f(x) = f(c)$, then f is continuous at c.

Since the existence of a limit of f at c implies c is an accumulation point of dom f, then if $c \in dom f$ and the limit of f at c exists and $\lim_{x\to c} f(x) = f(c)$, then f is continuous at c.

Therefore, f is continuous at c if

1. $c \in dom f$.

2. limit of f at c exists.

3. $\lim_{x \to c} f(x) = f(c)$.

Theorem 4. sequential characterization of continuity

Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function.

Let $c \in E$.

Then f is continuous at c iff for every sequence (x_n) of points in E such that $\lim_{n\to\infty} x_n = c$, $\lim_{n\to\infty} f(x_n) = f(c)$.

Therefore, f is discontinuous at c iff there exists a sequence (x_n) of points in E such that $\lim_{n\to\infty} x_n = c$ and $\lim_{n\to\infty} f(x_n) \neq f(c)$.

A function continuous on a set is continuous at each point of the set.

Definition 5. continuity of a function defined on a set

A function f is continuous on a set $E \subset dom f$ iff f is continuous at c for all $c \in E$.

Definition 6. continuous function

A function f is **continuous** iff f is continuous on dom f.

Therefore, a function f is continuous iff f is continuous at c for all $c \in dom f$. Therefore, a function f is continuous iff $(\forall c \in dom f)(\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in E)(|x - c| < \delta \rightarrow |f(x) - f(c)| < \epsilon)$.

Observe that δ depends on both $c \in domf$ and ϵ .

Example 7. every constant function is continuous Let $k \in \mathbb{R}$.

The function given by f(x) = k is continuous.

Example 8. identity function is continuous The function given by f(x) = x is continuous.

The function given by f(x) = x is continuous.

Example 9. square function is continuous

The function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is continuous.

Example 10. The function $f:(0,\infty) \to \mathbb{R}$ defined by $f(x) = \frac{1}{x}$ is continuous.

Example 11. absolute value function is continuous The function $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = |x| is continuous.

Example 12. square root function is continuous The function $f : [0, \infty) \to \mathbb{R}$ defined by $f(x) = \sqrt{x}$ is continuous.

Example 13. function with a removable discontinuity

Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} x+1 & \text{if } x \neq 1\\ 5 & \text{if } x = 1 \end{cases}$$

Then f is discontinuous at 1.

If f is redefined so that f(1) = 2, then $\lim_{x \to 1} f(x) = 2 = f(1)$, so f would be continuous at 1.

Therefore, we can remove the discontinuity by redefining f at 1 so that f is continuous at 1, so 1 is a removable discontinuity.

Example 14. function with a jump discontinuity

Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} 1 & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

Then f is discontinuous at 0.

Example 15. unbounded function, infinite discontinuity

The function $f: (0, \infty) \to \mathbb{R}$ defined by $f(x) = \frac{1}{x}$ is discontinuous at 0 since $0 \notin (0, \infty)$, the domain of f.

Let $r \in \mathbb{R}$ be arbitrary.

Let $g: [0,\infty) \to \mathbb{R}$ be a function defined by

$$g(x) = \begin{cases} \frac{1}{x} & \text{if } x > 0\\ r & \text{if } x = 0 \end{cases}$$

Then g is discontinuous at 0, so there is no way to extend f to make f continuous at 0.

Therefore, 0 is a non removable discontinuity of f.

Example 16. oscillating function

The function $f : \mathbb{R}^* \to \mathbb{R}$ defined by $f(x) = \sin(\frac{1}{x})$ is discontinuous at 0 since $0 \notin \mathbb{R}^*$, the domain of f.

Let $r \in \mathbb{R}$ be arbitrary.

Let $g: \mathbb{R} \to \mathbb{R}$ be a function defined by

$$g(x) = \begin{cases} \sin(\frac{1}{x}) & \text{if } x \neq 0\\ r & \text{if } x = 0 \end{cases}$$

Since 0 is an accumulation point of \mathbb{R} , but $\lim_{x\to 0} \sin(\frac{1}{x})$ does not exist in \mathbb{R} , then g is discontinuous at 0.

Hence, there is no way to define f at 0 to make f continuous at 0. Therefore, 0 is a non removable discontinuity of f.

Example 17. Dirichlet function is discontinuous everywhere

Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

Then f is not continuous at any point in its domain.

Example 18. Thomae's (popcorn) function

Let $f:(0,1) \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} \frac{1}{m} & \text{if } k, m \in \mathbb{N} \text{ and } \gcd(k, m) = 1 \text{ and } x = \frac{k}{m} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

Then f is

Let g be a restriction of f to a nonempty set $E \subset dom f$.

If f is continuous, then the restriction g is continuous.

Algebraic properties of continuous functions

Theorem 20. Let $\lambda \in \mathbb{R}$.

Let f be a real valued function. Let $c \in dom f$. If f is continuous at c, then λf is continuous at c.

Corollary 21. scalar multiple of a continuous function is continuous Let $\lambda \in \mathbb{R}$.

Let f be a real valued function. If f is continuous, then λf is continuous.

Theorem 22. Let f and g be real valued functions. Let $c \in dom f \cap dom g$. If f is continuous at c and g is continuous at c, then f + g is continuous at c.

Corollary 23. sum of continuous functions is continuous

Let f and g be real valued functions. If f is continuous and g is continuous, then f + g is continuous.

Corollary 24. Let f and g be real valued functions. Let $c \in dom f \cap dom g$.

If f is continuous at c and g is continuous at c, then f - g is continuous at c.

Corollary 25. difference of continuous functions is continuous

Let f and g be real valued functions.

If f is continuous and g is continuous, then f - g is continuous.

Theorem 26. Let f and g be real valued functions.

Let $c \in dom f \cap dom g$.

If f is continuous at c and g is continuous at c, then fg is continuous at c.

Corollary 27. product of continuous functions is continuous

Let f and g be real valued functions.

If f is continuous and g is continuous, then fg is continuous.

Theorem 28. Let f and g be real valued functions.

Let $c \in dom f \cap dom g$.

If f is continuous at c and g is continuous at c and $g(c) \neq 0$, then $\frac{f}{g}$ is continuous at c.

Corollary 29. quotient of continuous functions is continuous wherever defined

Let f and g be real valued functions.

If f is continuous and g is continuous, then $\frac{f}{g}$ is continuous for all $x \in dom f \cap dom g$ such that $g(x) \neq 0$.

Theorem 30. polynomial functions are continuous

Every polynomial function is continuous.

Theorem 31. rational functions are continuous wherever defined

Let r be a rational function defined by $r(x) = \frac{p(x)}{q(x)}$ such that p and q are polynomial functions.

Then r is continuous for all $x \in \mathbb{R}$ such that $q(x) \neq 0$.

Theorem 32. Let f and g be real valued functions of a real variable.

If f is continuous at c and g is continuous at f(c), then $g \circ f$ is continuous at c.

Corollary 33. composition of continuous functions is continuous Let f and g be real valued functions of a real variable.

If f is continuous and g is continuous, then $g \circ f$ is continuous.

Proposition 34. If f is a continuous function, then so is |f|.

Let $f: E \to \mathbb{R}$ be a function.

Let $|f|: E \to \mathbb{R}$ be a function defined by |f|(x) = |f(x)|. If f is continuous, then |f| is continuous.

Proposition 35. If f is a continuous function, then so is \sqrt{f} .

Let $f: E \to \mathbb{R}$ be a function such that $f(x) \ge 0$ for all $x \in E$. Let \sqrt{f} be a function defined by $\sqrt{f}(x) = \sqrt{f(x)}$ for all $x \in E$ such that $f(x) \ge 0$.

If f is continuous, then \sqrt{f} is continuous.

Transcendental functions like e^x , $\ln x$, $\sin x$, $\cos x$ are continuous wherever defined.

Definition 36. Continuous from left and right

Let $a, r \in \mathbb{R}$. Let a be fixed. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined on [a, a + r) for some r > 0. Then f is **right continuous at a** iff $\lim_{x\to a^+} f(x) = f(a)$. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined on (a - r, a] for some r > 0. Then f is **left continuous at a** iff $\lim_{x\to a^-} f(x) = f(a)$.

Continuous functions on compact sets

Lemma 37. Bolzano-Weierstrass property of compact sets

Let $E \subset \mathbb{R}$ be a closed bounded set.

Then every sequence in E has a subsequence (y_n) in E such that $\lim_{n\to\infty} y_n \in E$.

Theorem 38. Boundedness Theorem

Every real valued function continuous on a closed bounded set is bounded.

Let $f : [a, b] \to \mathbb{R}$ be a continuous function.

Since [a, b] is closed and bounded, then by the boundedness theorem, f is bounded.

Therefore, there exists $B \in \mathbb{R}$ such that $|f(x)| \leq B$ for all $x \in [a, b]$.

Theorem 39. Extreme Value Theorem

Every real valued function continuous on a nonempty closed bounded set attains a maximum and minimum on the set.

Let $a, b \in \mathbb{R}$ with a < b.

Then by the density of \mathbb{R} , the interval [a, b] is not empty.

Let f be a real valued function continuous on the closed interval [a, b].

Since the closed bounded interval [a, b] is compact, then by EVT, f attains a maximum and minimum on [a, b].

Since f has a maximum on [a, b], then there exists $M \in [a, b]$ such that $f(x) \leq f(M)$ for all $x \in [a, b]$.

Since f has a minimum on [a, b], then there exists $m \in [a, b]$ such that $f(m) \leq f(x)$ for all $x \in [a, b]$.

Therefore, there exist $m, M \in [a, b]$ such that $f(m) \leq f(x) \leq f(M)$ for all $x \in [a, b]$.

Therefore, f is bounded.

Lemma 40. Let f be a continuous real valued function.

Let x_0, c, d be real numbers such that $x_0 \in domf$ and $c < f(x_0) < d$.

Then there exists a positive real number δ such that c < f(x) < d for all $x \in N(x_0; \delta) \cap dom f$.

Theorem 41. Intermediate Value Theorem

Let $a, b \in \mathbb{R}$.

Let f be a real valued function continuous on the closed interval [a, b].

For every real number k such that f(a) < k < f(b), there exists $c \in (a, b)$ such that f(c) = k.

Therefore, a continuous function $f : [a, b] \to \mathbb{R}$ has all values between f(a) and f(b).

Therefore, the graph of a function continuous on a closed and bounded interval [a, b] must pass through every horizontal line $y = y_0$, where $f(a) < y_0 < f(b)$. It doesn't jump over any such line, so there are no 'breaks' or 'missing points'.

Lemma 42. Let I be an interval and $a \in I$ and $b \in I$ and a < b. Then $[a, b] \subset I$.

Theorem 43. intervals are preserved by continuous functions Let f be a real valued function continuous on an interval I. Then f(I) is an interval.

Therefore, the image of an interval under a continuous function is an interval.

Uniform continuity is a condition that guarantees continuity of a function f in which δ depends on ϵ only and not on a particular point $c \in E$.

Uniform continuity

Definition 44. uniform continuity

Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function.

Then f is **uniformly continuous on** E iff $(\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in E)(\forall y \in E)(|x - y| < \delta \rightarrow |f(x) - f(y)| < \epsilon).$

The definition of uniform continuity implies that δ depends on ϵ and not on a specific point in E.

Thus, δ chosen is independent of a specific point c in the domain of a function f, so the same δ works for any point $c \in dom f$.

Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function.

Then f is not uniformly continuous on E iff $(\exists \epsilon > 0)(\forall \delta > 0)(\exists x \in E)(\exists y \in E)(|x - y| < \delta \land |f(x) - f(y)| \ge \epsilon).$

Example 45. Let a > 0.

Let $f: (0, a) \to \mathbb{R}$ be the function given by $f(x) = x^2$. Then f is uniformly continuous on the interval (0, a).

- **Example 46.** Let $f : \mathbb{R} \to \mathbb{R}$ be the function given by $f(x) = x^2$. Then f is not uniformly continuous on \mathbb{R} .
- **Example 47.** Let $f: (1, \infty) \to \mathbb{R}$ be a function defined by $f(x) = \frac{1}{x}$. Then f is uniformly continuous on the interval $(1, \infty)$.

Example 48. Let $f: (0,1) \to \mathbb{R}$ be the function given by $f(x) = \frac{1}{x}$. Then f is not uniformly continuous on the interval (0,1).

Proposition 49. uniform continuity implies continuity

Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function.

If f is uniformly continuous on E, then f is continuous on E.

Example 50. continuity does not necessarily imply uniform continuity Let $f: (0,1) \to \mathbb{R}$ be the function given by $f(x) = \frac{1}{x}$.

Then f is not uniformly continuous on (0, 1).

Since the reciprocal function is continuous on $(0, \infty)$ and f is a restriction of the reciprocal function to $(0, 1) \subset (0, \infty)$, then f is continuous on (0, 1).

Since f is continuous on (0, 1), but f is not uniformly continuous on (0, 1), then f is continuous on (0, 1) does not imply f is uniformly continuous on (0, 1).

Lemma 51. Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function.

If f is not uniformly continuous on E, then there exist $\epsilon_1 > 0$ and sequences (x_n) and (y_n) in E such that $\lim_{n\to\infty}(x_n - y_n) = 0$ and $|f(x_n) - f(y_n)| \ge \epsilon_1$ for all $n \in \mathbb{N}$.

Theorem 52. Heine-Cantor Uniform Continuity Theorem

Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function.

If f is continuous on E and E is compact, then f is uniformly continuous on E.

Therefore, if f is a continuous function on a compact set E, then f is uniformly continuous on E.

Thus, a function continuous on a compact set is uniformly continuous.

Let $f : [a, b] \to \mathbb{R}$ be a continuous function.

Since the closed bounded interval [a, b] is compact, then f is uniformly continuous on [a, b].

Therefore, every real valued function continuous on a closed bounded interval is uniformly continuous.