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Sets of Numbers

R = set of all real numbers
R+ = {x ∈ R : x > 0} = set of all positive real numbers
R∗ = {x ∈ R : x 6= 0} = (−∞, 0) ∪ (0,∞) = set of all nonzero real numbers
R+ = {x ∈ R : x ≥ 0} = [0,∞) = [0,∞[= set of all nonnegative real numbers

Continuity

A function f is continuous at a point c iff f(x) is arbitrarily close to f(c)
whenever x is sufficiently close to c.

Intuitively, this means f is continuous at c if there is no hole in the graph
of f at c and there is no break in the graph of f in the immediate vicinity of c.

Definition 1. ε, δ definition of continuity of a function at a point
Let (E1, d1) and (E2, d2) be metric spaces.
Let f : E1 → E2 be a function.
Then f is continuous at c ∈ E1 iff for every real number ε > 0, there

exists a real number δ > 0, such that d2(f(x), f(c)) < ε whenever x ∈ E1 and
d1(x, c) < δ.

Therefore, f is continuous at c ∈ E1 iff for every real number ε > 0,
there exists a real number δ > 0 such that if x ∈ E1 and d1(x, c) < δ, then
d2(f(x), f(c)) < ε.

Therefore, f is continuous at c ∈ E1 iff
(∀ε > 0)(∃δ > 0)(∀x ∈ E1)(d1(x, c) < δ → d2(f(x), f(c)) < ε).

Definition 2. ε, δ definition of continuity of a real valued function at a
point

Let E ⊂ R.
Let f : E → R be a function.
Then f is continuous at c ∈ E iff (∀ε > 0)(∃δ > 0)(∀x ∈ E)(|x− c| < δ →

|f(x)− f(c)| < ε).
If f is not continuous at c ∈ E, then we say f is discontinuous at c.



Observe that

(∀ε > 0)(∃δ > 0)(∀x ∈ E)(|x− c| < δ → |f(x)− f(c)| < ε)⇔
(∀ε > 0)(∃δ > 0)(∀x ∈ E)(x ∈ N(c; δ)→ f(x) ∈ N(f(c); ε))⇔

(∀ε > 0)(∃δ > 0)(∀x ∈ E ∩N(c; δ))(f(x) ∈ N(f(c); ε)).

Therefore, f is continuous at c ∈ E iff for every ε neighborhood of f(c),
there exists a δ neighborhood of c such that for each x ∈ E, if x ∈ N(c; δ), then
f(x) ∈ N(f(c); ε).

Observe that

¬(∀ε > 0)(∃δ > 0)(∀x ∈ E)(|x− c| < δ → |f(x)− f(c)| < ε)⇔
(∃ε > 0)(∀δ > 0)(∃x ∈ E)(|x− c| < δ ∧ |f(x)− f(c)| ≥ ε).

Therefore, f is discontinuous at c ∈ E iff (∃ε > 0)(∀δ > 0)(∃x ∈ E)(|x−c| <
δ ∧ |f(x)− f(c)| ≥ ε).

Let E ⊂ R.
Let f : E → R be a function.
Suppose f is continuous at c.
Then c ∈ E, so c ∈ domf .
Therefore, if f is continuous at c, then c ∈ domf .
Hence, if c 6∈ domf , then f is not continuous at c.
Therefore, if c 6∈ domf , then f is discontinuous at c.

Proposition 3. characterization of continuity at a point
Let E ⊂ R.
Let f : E → R be a function and c ∈ E. Then
1. If c is not an accumulation point of E, then f is continuous at c.
2. If c is an accumulation point of E, then f is continuous at c iff the limit

of f at c exists and limx→c f(x) = f(c).

Thus, if c ∈ domf and c is an accumulation point of domf and the limit of
f at c exists and limx→c f(x) = f(c), then f is continuous at c.

Since the existence of a limit of f at c implies c is an accumulation point of
domf , then if c ∈ domf and the limit of f at c exists and limx→c f(x) = f(c),
then f is continuous at c.

Therefore, f is continuous at c if
1. c ∈ domf .
2. limit of f at c exists.
3. limx→c f(x) = f(c).

Theorem 4. sequential characterization of continuity
Let E ⊂ R.
Let f : E → R be a function.
Let c ∈ E.
Then f is continuous at c iff for every sequence (xn) of points in E such

that limn→∞ xn = c, limn→∞ f(xn) = f(c).
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Therefore, f is discontinuous at c iff there exists a sequence (xn) of points
in E such that limn→∞ xn = c and limn→∞ f(xn) 6= f(c).

A function continuous on a set is continuous at each point of the set.

Definition 5. continuity of a function defined on a set
A function f is continuous on a set E ⊂ domf iff f is continuous at c

for all c ∈ E.

Definition 6. continuous function
A function f is continuous iff f is continuous on domf .

Therefore, a function f is continuous iff f is continuous at c for all c ∈ domf .
Therefore, a function f is continuous iff (∀c ∈ domf)(∀ε > 0)(∃δ > 0)(∀x ∈

E)(|x− c| < δ → |f(x)− f(c)| < ε).
Observe that δ depends on both c ∈ domf and ε.

Example 7. every constant function is continuous
Let k ∈ R.
The function given by f(x) = k is continuous.

Example 8. identity function is continuous
The function given by f(x) = x is continuous.

Example 9. square function is continuous
The function f : R→ R defined by f(x) = x2 is continuous.

Example 10. The function f : (0,∞)→ R defined by f(x) = 1
x is continuous.

Example 11. absolute value function is continuous
The function f : R→ R defined by f(x) = |x| is continuous.

Example 12. square root function is continuous
The function f : [0,∞)→ R defined by f(x) =

√
x is continuous.

Example 13. function with a removable discontinuity
Let f : R→ R be a function defined by

f(x) =

{
x+ 1 if x 6= 1

5 if x = 1

Then f is discontinuous at 1.
If f is redefined so that f(1) = 2, then limx→1 f(x) = 2 = f(1), so f would

be continuous at 1.
Therefore, we can remove the discontinuity by redefining f at 1 so that f is

continuous at 1, so 1 is a removable discontinuity.
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Example 14. function with a jump discontinuity
Let f : R→ R be a function defined by

f(x) =

{
1 if x ≥ 0

0 if x < 0

Then f is discontinuous at 0.

Example 15. unbounded function, infinite discontinuity
The function f : (0,∞)→ R defined by f(x) = 1

x is discontinuous at 0 since
0 6∈ (0,∞), the domain of f .

Let r ∈ R be arbitrary.
Let g : [0,∞)→ R be a function defined by

g(x) =

{
1
x if x > 0

r if x = 0

Then g is discontinuous at 0, so there is no way to extend f to make f
continuous at 0.

Therefore, 0 is a non removable discontinuity of f .

Example 16. oscillating function
The function f : R∗ → R defined by f(x) = sin( 1

x ) is discontinuous at 0
since 0 6∈ R∗, the domain of f .

Let r ∈ R be arbitrary.
Let g : R→ R be a function defined by

g(x) =

{
sin( 1

x ) if x 6= 0

r if x = 0

Since 0 is an accumulation point of R, but limx→0 sin( 1
x ) does not exist in

R, then g is discontinuous at 0.
Hence, there is no way to define f at 0 to make f continuous at 0.
Therefore, 0 is a non removable discontinuity of f .

Example 17. Dirichlet function is discontinuous everywhere
Let f : R→ R be a function defined by

f(x) =

{
1 if x is rational

0 if x is irrational

Then f is not continuous at any point in its domain.

4



Example 18. Thomae’s (popcorn) function
Let f : (0, 1)→ R be a function defined by

f(x) =

{
1
m if k,m ∈ N and gcd(k,m) = 1 and x = k

m

0 if x is irrational

Then f is

Proposition 19. restriction of a continuous function is continuous
Let f be a real valued function of a real variable.
Let g be a restriction of f to a nonempty set E ⊂ domf .
If f is continuous, then the restriction g is continuous.

Algebraic properties of continuous functions

Theorem 20. Let λ ∈ R.
Let f be a real valued function.
Let c ∈ domf .
If f is continuous at c, then λf is continuous at c.

Corollary 21. scalar multiple of a continuous function is continuous
Let λ ∈ R.
Let f be a real valued function.
If f is continuous, then λf is continuous.

Theorem 22. Let f and g be real valued functions.
Let c ∈ domf ∩ domg.
If f is continuous at c and g is continuous at c, then f + g is continuous at

c.

Corollary 23. sum of continuous functions is continuous
Let f and g be real valued functions.
If f is continuous and g is continuous, then f + g is continuous.

Corollary 24. Let f and g be real valued functions.
Let c ∈ domf ∩ domg.
If f is continuous at c and g is continuous at c, then f − g is continuous at

c.

Corollary 25. difference of continuous functions is continuous
Let f and g be real valued functions.
If f is continuous and g is continuous, then f − g is continuous.

Theorem 26. Let f and g be real valued functions.
Let c ∈ domf ∩ domg.
If f is continuous at c and g is continuous at c, then fg is continuous at c.
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Corollary 27. product of continuous functions is continuous
Let f and g be real valued functions.
If f is continuous and g is continuous, then fg is continuous.

Theorem 28. Let f and g be real valued functions.
Let c ∈ domf ∩ domg.
If f is continuous at c and g is continuous at c and g(c) 6= 0, then f

g is
continuous at c.

Corollary 29. quotient of continuous functions is continuous wher-
ever defined

Let f and g be real valued functions.
If f is continuous and g is continuous, then f

g is continuous for all x ∈
domf ∩ domg such that g(x) 6= 0.

Theorem 30. polynomial functions are continuous
Every polynomial function is continuous.

Theorem 31. rational functions are continuous wherever defined

Let r be a rational function defined by r(x) = p(x)
q(x) such that p and q are

polynomial functions.
Then r is continuous for all x ∈ R such that q(x) 6= 0.

Theorem 32. Let f and g be real valued functions of a real variable.
If f is continuous at c and g is continuous at f(c), then g ◦ f is continuous

at c.

Corollary 33. composition of continuous functions is continuous
Let f and g be real valued functions of a real variable.
If f is continuous and g is continuous, then g ◦ f is continuous.

Proposition 34. If f is a continuous function, then so is |f |.
Let f : E → R be a function.
Let |f | : E → R be a function defined by |f |(x) = |f(x)|.
If f is continuous, then |f | is continuous.

Proposition 35. If f is a continuous function, then so is
√
f .

Let f : E → R be a function such that f(x) ≥ 0 for all x ∈ E.
Let
√
f be a function defined by

√
f(x) =

√
f(x) for all x ∈ E such that

f(x) ≥ 0.
If f is continuous, then

√
f is continuous.

Transcendental functions like ex, lnx, sinx, cosx are continuous wherever de-
fined.

Definition 36. Continuous from left and right
Let a, r ∈ R.
Let a be fixed.
Let f : R→ R be a function defined on [a, a+ r) for some r > 0.
Then f is right continuous at a iff limx→a+ f(x) = f(a).
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Let f : R→ R be a function defined on (a− r, a] for some r > 0.
Then f is left continuous at a iff limx→a− f(x) = f(a).

Continuous functions on compact sets

Lemma 37. Bolzano-Weierstrass property of compact sets
Let E ⊂ R be a closed bounded set.
Then every sequence in E has a subsequence (yn) in E such that limn→∞ yn ∈

E.

Theorem 38. Boundedness Theorem
Every real valued function continuous on a closed bounded set is bounded.

Let f : [a, b]→ R be a continuous function.
Since [a, b] is closed and bounded, then by the boundedness theorem, f is

bounded.
Therefore, there exists B ∈ R such that |f(x)| ≤ B for all x ∈ [a, b].

Theorem 39. Extreme Value Theorem
Every real valued function continuous on a nonempty closed bounded set

attains a maximum and minimum on the set.

Let a, b ∈ R with a < b.
Then by the density of R, the interval [a, b] is not empty.
Let f be a real valued function continuous on the closed interval [a, b].
Since the closed bounded interval [a, b] is compact, then by EVT, f attains

a maximum and minimum on [a, b].
Since f has a maximum on [a, b], then there exists M ∈ [a, b] such that

f(x) ≤ f(M) for all x ∈ [a, b].
Since f has a minimum on [a, b], then there exists m ∈ [a, b] such that

f(m) ≤ f(x) for all x ∈ [a, b].
Therefore, there exist m,M ∈ [a, b] such that f(m) ≤ f(x) ≤ f(M) for all

x ∈ [a, b].
Therefore, f is bounded.

Lemma 40. Let f be a continuous real valued function.
Let x0, c, d be real numbers such that x0 ∈ domf and c < f(x0) < d.
Then there exists a positive real number δ such that c < f(x) < d for all

x ∈ N(x0; δ) ∩ domf .

Theorem 41. Intermediate Value Theorem
Let a, b ∈ R.
Let f be a real valued function continuous on the closed interval [a, b].
For every real number k such that f(a) < k < f(b), there exists c ∈ (a, b)

such that f(c) = k.
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Therefore, a continuous function f : [a, b] → R has all values between f(a)
and f(b).

Therefore, the graph of a function continuous on a closed and bounded
interval [a, b] must pass through every horizontal line y = y0, where f(a) <
y0 < f(b). It doesn’t jump over any such line, so there are no ‘breaks’ or
‘missing points’.

Lemma 42. Let I be an interval and a ∈ I and b ∈ I and a < b.
Then [a, b] ⊂ I.

Theorem 43. intervals are preserved by continuous functions
Let f be a real valued function continuous on an interval I.
Then f(I) is an interval.

Therefore, the image of an interval under a continuous function is an interval.

Uniform continuity is a condition that guarantees continuity of a function f
in which δ depends on ε only and not on a particular point c ∈ E.

Uniform continuity

Definition 44. uniform continuity
Let E ⊂ R.
Let f : E → R be a function.
Then f is uniformly continuous on E iff (∀ε > 0)(∃δ > 0)(∀x ∈ E)(∀y ∈

E)(|x− y| < δ → |f(x)− f(y)| < ε).

The definition of uniform continuity implies that δ depends on ε and not on
a specific point in E.

Thus, δ chosen is independent of a specific point c in the domain of a function
f , so the same δ works for any point c ∈ domf .

Let E ⊂ R.
Let f : E → R be a function.
Then f is not uniformly continuous on E iff (∃ε > 0)(∀δ > 0)(∃x ∈ E)(∃y ∈

E)(|x− y| < δ ∧ |f(x)− f(y)| ≥ ε).

Example 45. Let a > 0.
Let f : (0, a)→ R be the function given by f(x) = x2.
Then f is uniformly continuous on the interval (0, a).

Example 46. Let f : R→ R be the function given by f(x) = x2.
Then f is not uniformly continuous on R.

Example 47. Let f : (1,∞)→ R be a function defined by f(x) = 1
x .

Then f is uniformly continuous on the interval (1,∞).
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Example 48. Let f : (0, 1)→ R be the function given by f(x) = 1
x .

Then f is not uniformly continuous on the interval (0, 1).

Proposition 49. uniform continuity implies continuity
Let E ⊂ R.
Let f : E → R be a function.
If f is uniformly continuous on E, then f is continuous on E.

Example 50. continuity does not necessarily imply uniform continuity
Let f : (0, 1)→ R be the function given by f(x) = 1

x .
Then f is not uniformly continuous on (0, 1).
Since the reciprocal function is continuous on (0,∞) and f is a restriction

of the reciprocal function to (0, 1) ⊂ (0,∞), then f is continuous on (0, 1).
Since f is continuous on (0, 1), but f is not uniformly continuous on (0, 1),

then f is continuous on (0, 1) does not imply f is uniformly continuous on (0, 1).

Lemma 51. Let E ⊂ R.
Let f : E → R be a function.
If f is not uniformly continuous on E, then there exist ε1 > 0 and sequences

(xn) and (yn) in E such that limn→∞(xn − yn) = 0 and |f(xn) − f(yn)| ≥ ε1
for all n ∈ N.

Theorem 52. Heine-Cantor Uniform Continuity Theorem
Let E ⊂ R.
Let f : E → R be a function.
If f is continuous on E and E is compact, then f is uniformly continuous

on E.

Therefore, if f is a continuous function on a compact set E, then f is uni-
formly continuous on E.

Thus, a function continuous on a compact set is uniformly continuous.

Let f : [a, b]→ R be a continuous function.
Since the closed bounded interval [a, b] is compact, then f is uniformly con-

tinuous on [a, b].
Therefore, every real valued function continuous on a closed bounded interval

is uniformly continuous.
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