# Differentiation of real valued functions Calculus Exercises 

Jason Sass

May 19, 2023

## Derivative of a real valued function

Exercise 1. A manufacturer of lighting fixtures has daily production costs of $C=800-10 x+\frac{x^{2}}{4}$.

How many fixtures $x$ should be produced each day to minimize costs?
Solution. The daily production cost $C$ is a function of fixtures $x$ produced each day.

Let $C:[0, \infty) \rightarrow \mathbb{R}$ be the function defined by $C(x)=800-10 x+\frac{x^{2}}{4}$.
Then $\frac{d C}{d x}=-10+\frac{x}{2}=\frac{x}{2}-10=\frac{x-20}{2}$ for all $x \geq 0$.
We see that $\frac{d C}{d x}=0$ iff $x=20$.
Consider a $\delta$ neighborhood of 20 .
Since $C$ is a polynomial function, then $C$ is continuous, so $C$ is continuous on $(20-\delta, 20+\delta)$.

If $x<20$, then $x-20<0$, so $\frac{d C}{d x}<0$.
Hence, $\frac{d C}{d x}<0$ for all $x \in[0,20)$.
Since $(20-\delta, 20) \subset[0,20)$, then $\frac{d C}{d x}<0$ for all $x \in(20-\delta, 20)$.
Thus, $C$ is decreasing on the interval $(20-\delta, 20)$.
If $x>20$, then $x-20>0$, so $\frac{d C}{d x}>0$.
Hence, $\frac{d C}{d x}>0$ for all $x \in(20, \infty)$.
Since $(20,20+\delta) \subset(20, \infty)$, then $\frac{d C}{d x}>0$ for all $x \in(20,20+\delta)$.
Thus, $C$ is increasing on the interval $(20,20+\delta)$.
Therefore, by the first derivative test, $C(20)$ is a relative minimum, so the cost $C$ is minimized when $x=20$.

We conclude that 20 fixtures should be produced each day to minimize the production costs.

