Differentiation of real valued functions Theory

Jason Sass

June 29, 2021

Derivative of a real valued function

Theorem 1. Alternate definition of derivative of a function
Let E be an open subset of \mathbb{R}.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let $c \in E$.
Since E is open, then c is an interior point of E, so there exists $\delta>0$ such that $N(c ; \delta) \subset E$.

Let $Q:(0, \delta) \rightarrow \mathbb{R}$ be a function defined by $Q(h)=\frac{f(c+h)-f(c)}{h}$.
If $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$ exists, then f is differentiable at c and $f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$.
Proof. Suppose $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$ exists.
Let $L=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$.
Then $L \in \mathbb{R}$.
Since c is an interior point of E, then c is an accumulation point of E.
To prove f is differentiable at c, we prove $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=L$.
Let $\epsilon>0$ be given.
Since $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=L$, then there exists $\gamma>0$ such that for all h, if
$0<|h|<\gamma$, then $\left|\frac{f(c+h)-f(c)}{h}-L\right|<\epsilon$.
Let $x \in E$ such that $0<|x-c|<\gamma$.
Let $h=x-c$.
Then $0<|h|<\gamma$, so $\left|\frac{f(c+h)-f(c)}{h}-L\right|<\epsilon$.
Since $c+h=x$, then $\left|\frac{f(x)-f(c)}{x-c}-L\right|<\epsilon$.
Thus, $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=L$.
Therefore, f is differentiable at c and $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=L=$ $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$.
Proposition 2. the derivative of a constant is zero
Let $k \in \mathbb{R}$ be fixed.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=k$.
Then $f^{\prime}(x)=0$ for all $x \in \mathbb{R}$.

Proof. We prove $f^{\prime}(x)=0$ for all $x \in \mathbb{R}$ using the definition of derivative.
Let $c \in \mathbb{R}$ be given.
We must prove $f^{\prime}(c)=0$.
Let $q: \mathbb{R}-\{c\} \rightarrow \mathbb{R}$ be a function defined by $q(x)=\frac{f(x)-f(c)}{x-c}$ for all $x \in \mathbb{R}-\{c\}$.

Since $c \in \mathbb{R}$ and every real number is an accumulation point of \mathbb{R}, then c is an accumulation point of \mathbb{R}, so c is an accumulation point of $\mathbb{R}-\{c\}$, the domain of q.

For $x \in \mathbb{R}-\{c\}$, we have $x \in \mathbb{R}$ and $x \neq c$, so $x-c \neq 0$.
Observe that

$$
\begin{aligned}
\lim _{x \rightarrow c} q(x) & =\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \\
& =\lim _{x \rightarrow c} \frac{k-k}{x-c} \\
& =\lim _{x \rightarrow c} \frac{0}{x-c} \\
& =\lim _{x \rightarrow c} 0 \\
& =0
\end{aligned}
$$

Thus, $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=0$, as desired.
Proposition 3. the derivative of the identity function is 1
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x$.
Then $f^{\prime}(x)=1$ for all $x \in \mathbb{R}$.
Proof. We prove $f^{\prime}(x)=1$ for all $x \in \mathbb{R}$ using the definition of derivative.
Let $c \in \mathbb{R}$ be given.
We must prove $f^{\prime}(c)=1$.
Let $q: \mathbb{R}-\{c\} \rightarrow \mathbb{R}$ be a function defined by $q(x)=\frac{f(x)-f(c)}{x-c}$ for all $x \in \mathbb{R}-\{c\}$.

Since $c \in \mathbb{R}$ and every real number is an accumulation point of \mathbb{R}, then c is an accumulation point of \mathbb{R}, so c is an accumulation point of $\mathbb{R}-\{c\}$, the domain of q.

For $x \in \mathbb{R}-\{c\}$, we have $x \in \mathbb{R}$ and $x \neq c$, so $x-c \neq 0$.
Observe that

$$
\begin{aligned}
\lim _{x \rightarrow c} q(x) & =\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \\
& =\lim _{x \rightarrow c} \frac{x-c}{x-c} \\
& =\lim _{x \rightarrow c} 1 \\
& =1
\end{aligned}
$$

Thus, $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=1$, as desired.

Theorem 4. differentiability implies continuity
Let f be a real valued function of a real variable x.
If f is differentiable at c, then f is continuous at c.
Proof. Suppose f is differentiable at c.
Then $c \in \operatorname{dom} f$ and c is an accumulation point of $\operatorname{dom} f$ and $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=$ $f^{\prime}(c)$ exists and $f^{\prime}(c) \in \mathbb{R}$.

Let $q: \operatorname{dom} f-\{c\} \rightarrow \mathbb{R}$ be a function defined by $q(x)=\frac{f(x)-f(c)}{x-c}$.
For each $x \in \operatorname{dom} f-\{c\}$, we have $x \in \operatorname{dom} f$ and $x \neq c$, so $x-c \neq 0$.
Thus,

$$
\begin{aligned}
f(c) & =0 \cdot f^{\prime}(c)+f(c) \\
& =\lim _{x \rightarrow c}(x-c) \cdot \lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}+\lim _{x \rightarrow c} f(c) \\
& =\lim _{x \rightarrow c}(x-c) \cdot \frac{f(x)-f(c)}{x-c}+\lim _{x \rightarrow c} f(c) \\
& =\lim _{x \rightarrow c}[f(x)-f(c)]+\lim _{x \rightarrow c} f(c) \\
& =\lim _{x \rightarrow c}[f(x)-f(c)+f(c)] \\
& =\lim _{x \rightarrow c} f(x) .
\end{aligned}
$$

Since c is an accumulation point of $\operatorname{dom} f$ and $\lim _{x \rightarrow c} f(x)=f(c)$, then f is continuous at c.

Corollary 5. Every differentiable function is continuous.

Let f be a real valued function of a real variable x.
If f is differentiable, then f is continuous.
Proof. Suppose f is differentiable.
To prove f is continuous, let $x \in \operatorname{dom} f$.
We must prove f is continuous at x.
Since f is differentiable, then f is differentiable on $\operatorname{dom} f$.
Since $x \in \operatorname{dom} f$, then f is differentiable at x, so f is continuous at x.

Algebraic properties of derivatives

Theorem 6. scalar multiple rule for derivatives
Let f be a real valued function of a real variable x.
If f is differentiable at c, then for every $\lambda \in \mathbb{R}$, the function λf is differentiable at c and $(\lambda f)^{\prime}(c)=\lambda f^{\prime}(c)$.

Proof. Suppose f is differentiable at c.
Then $c \in \operatorname{domf}$ and c is an accumulation point of $\operatorname{dom} f$ and $f^{\prime}(c) \in \mathbb{R}$ and $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$.

Let $\lambda \in \mathbb{R}$ be given.

Since $\operatorname{dom}(\lambda f)=\operatorname{dom} f$ and $c \in \operatorname{dom} f$ and c is an accumulation point of $\operatorname{dom} f$, then $c \in \operatorname{dom}(\lambda f)$ and c is an accumulation point of $\operatorname{dom}(\lambda f)$.

Observe that

$$
\begin{aligned}
\lambda f^{\prime}(c) & =\lambda \lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \\
& =\lim _{x \rightarrow c} \frac{\lambda[f(x)-f(c)]}{x-c} \\
& =\lim _{x \rightarrow c} \frac{\lambda f(x)-\lambda f(c)}{x-c} \\
& =\lim _{x \rightarrow c} \frac{(\lambda f)(x)-(\lambda f)(c)}{x-c} \\
& =(\lambda f)^{\prime}(c)
\end{aligned}
$$

Therefore, λf is differentiable at c and $(\lambda f)^{\prime}(c)=\lambda f^{\prime}(c)$.
Theorem 7. derivative of a sum equals sum of a derivative
Let f and g be real valued functions of a real variable x.
Let c be an accumulation point of $\operatorname{dom} f \cap \operatorname{domg}$.
If f is differentiable at c and g is differentiable at c, then the function $f+g$ is differentiable at c and
$(f+g)^{\prime}(c)=f^{\prime}(c)+g^{\prime}(c)$.
Proof. Suppose f is differentiable at c and g is differentiable at c.
Since f is differentiable at c, then $c \in \operatorname{dom} f$ and $f^{\prime}(c) \in \mathbb{R}$ and $f^{\prime}(c)=$ $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$.

Since g is differentiable at c, then $c \in \operatorname{domg}$ and $g^{\prime}(c) \in \mathbb{R}$ and $g^{\prime}(c)=$ $\lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c}$.

Since $c \in \operatorname{dom} f$ and $c \in \operatorname{domg}$, then $c \in \operatorname{domf} \cap \operatorname{domg}$.
Since $\operatorname{dom}(f+g)=\operatorname{dom} f \cap \operatorname{domg}$ and $c \in \operatorname{dom} f \cap \operatorname{domg}$ and c is an accumulation point of $\operatorname{dom} f \cap \operatorname{domg}$, then $c \in \operatorname{dom}(f+g)$ and c is an accumulation point of $\operatorname{dom}(f+g)$.

Observe that

$$
\begin{aligned}
f^{\prime}(c)+g^{\prime}(c) & =\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}+\lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c} \\
& =\lim _{x \rightarrow c}\left[\frac{f(x)-f(c)}{x-c}+\frac{g(x)-g(c)}{x-c}\right] \\
& =\lim _{x \rightarrow c} \frac{f(x)-f(c)+g(x)-g(c)}{x-c} \\
& =\lim _{x \rightarrow c} \frac{f(x)+g(x)-f(c)-g(c)}{x-c} \\
& =\lim _{x \rightarrow c} \frac{[f(x)+g(x)]-[f(c)+g(c)]}{x-c} \\
& =\lim _{x \rightarrow c} \frac{(f+g)(x)-(f+g)(c)}{x-c} \\
& =(f+g)^{\prime}(c) .
\end{aligned}
$$

Therefore, $f+g$ is differentiable at c and $(f+g)^{\prime}(c)=f^{\prime}(c)+g^{\prime}(c)$.
Corollary 8. derivative of a difference equals difference of a derivative
Let f and g be real valued functions of a real variable x.
Let c be an accumulation point of $\operatorname{dom} f \cap \operatorname{domg}$.
If f is differentiable at c and g is differentiable at c, then the function $f-g$ is differentiable at c and
$(f-g)^{\prime}(c)=f^{\prime}(c)-g^{\prime}(c)$.
Proof. Suppose f is differentiable at c and g is differentiable at c.
Since g is differentiable at c, then the function $-g$ is differentiable at c and $(-g)^{\prime}(c)=(-1) g^{\prime}(c)$.

Since c is an accumulation point of $\operatorname{dom} f \cap \operatorname{domg}$ and $\operatorname{dom}(-g)=\operatorname{domg}$, then c is an accumulation point of $\operatorname{dom} f \cap \operatorname{dom}(-g)$.

Since f is differentiable at c and $-g$ is differentiable at c, then the function $f+(-g)$ is differentiable at c and $(f+(-g))^{\prime}(c)=f^{\prime}(c)+(-g)^{\prime}(c)$.

Observe that

$$
\begin{aligned}
f^{\prime}(c)-g^{\prime}(c) & =f^{\prime}(c)+(-1) g^{\prime}(c) \\
& =f^{\prime}(c)+(-g)^{\prime}(c) \\
& =(f+(-g))^{\prime}(c) \\
& =(f-g)^{\prime}(c)
\end{aligned}
$$

Therefore, $f-g$ is differentiable at c and $(f-g)^{\prime}(c)=f^{\prime}(c)-g^{\prime}(c)$.

Theorem 9. product rule for derivatives

Let f and g be real valued functions of a real variable x.
Let c be an accumulation point of $\operatorname{dom} f \cap$ domg.
If f is differentiable at c and g is differentiable at c, then the function $f g$ is differentiable at c and
$(f g)^{\prime}(c)=f(c) g^{\prime}(c)+g(c) f^{\prime}(c)$.
Proof. Suppose f is differentiable at c and g is differentiable at c.
Since f is differentiable at c, then $c \in \operatorname{dom} f$ and $f^{\prime}(c) \in \mathbb{R}$ and $f^{\prime}(c)=$ $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$.

Since g is differentiable at c, then $c \in \operatorname{domg}$ and $g^{\prime}(c) \in \mathbb{R}$ and $g^{\prime}(c)=$ $\lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c}$.

Since $c \in \operatorname{domf}$ and $c \in \operatorname{domg}$, then $c \in \operatorname{domf} \cap \operatorname{domg}$.
Since c is an accumulation point of $\operatorname{dom} f \cap \operatorname{domg}$ and $\operatorname{dom} f \cap \operatorname{domg}$ is a subset of $\operatorname{dom} f$, then c is an accumulation point of $\operatorname{dom} f$.

Since f is differentiable at c, then f is continuous at c.
Since $c \in \operatorname{dom} f$ and c is an accumulation point of $\operatorname{dom} f$ and f is continuous at c, then $\lim _{x \rightarrow c} f(x)=f(c)$.

Since $\operatorname{dom}(f g)=\operatorname{domf} \cap \operatorname{domg}$ and $c \in \operatorname{domf} \cap \operatorname{domg}$ and c is an accumulation point of $\operatorname{dom} f \cap \operatorname{domg}$, then $c \in \operatorname{dom}(f g)$ and c is an accumulation point of $\operatorname{dom}(f g)$.

Observe that

$$
\begin{aligned}
f(c) g^{\prime}(c)+g(c) f^{\prime}(c) & =\lim _{x \rightarrow c} f(x) \cdot \lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c}+g(c) \cdot \lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \\
& =\lim _{x \rightarrow c} \frac{f(x)[g(x)-g(c)]}{x-c}+\lim _{x \rightarrow c} \frac{g(c)[f(x)-f(c)]}{x-c} \\
& =\lim _{x \rightarrow c} \frac{f(x)[g(x)-g(c)]}{x-c}+\frac{g(c)[f(x)-f(c)]}{x-c} \\
& =\lim _{x \rightarrow c} \frac{f(x)[g(x)-g(c)]+g(c)[f(x)-f(c)]}{x-c} \\
& =\lim _{x \rightarrow c} \frac{f(x) g(x)-f(x) g(c)+g(c) f(x)-g(c) f(c)}{x-c} \\
& =\lim _{x \rightarrow c} \frac{f(x) g(x)-f(x) g(c)+f(x) g(c)-f(c) g(c)}{x-c} \\
& =\lim _{x \rightarrow c} \frac{f(x) g(x)-f(c) g(c)}{x-c} \\
& =\lim _{x \rightarrow c} \frac{(f g)(x)-(f g)(c)}{x-c} \\
& =(f g)^{\prime}(c) .
\end{aligned}
$$

Therefore, $f g$ is differentiable at c and $(f g)^{\prime}(c)=f(c) g^{\prime}(c)+g(c) f^{\prime}(c)$.

Theorem 10. quotient rule for derivatives

Let f and g be real valued functions of a real variable x.
Let c be an accumulation point of dom $f \cap$ domg.
If f is differentiable at c and g is differentiable at c and $g(c) \neq 0$, then the function $\frac{f}{g}$ is differentiable at c and
$\left(\frac{f}{g}\right)^{\prime}(c)=\frac{g(c) f^{\prime}(c)-f(c) g^{\prime}(c)}{(g(c))^{2}}$.
Proof. Suppose f is differentiable at c and g is differentiable at c.
Since f is differentiable at c, then $c \in \operatorname{dom} f$ and $f^{\prime}(c) \in \mathbb{R}$ and $f^{\prime}(c)=$ $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$.

Since g is differentiable at c, then $c \in \operatorname{domg}$ and $g^{\prime}(c) \in \mathbb{R}$ and $g^{\prime}(c)=$ $\lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c}$.

Since c is an accumulation point of $\operatorname{dom} f \cap \operatorname{domg}$ and $\operatorname{dom} f \cap \operatorname{domg}$ is a subset of domg, then c is an accumulation point of domg.

Since g is differentiable at c, then g is continuous at c.
Since $c \in d o m g$ and c is an accumulation point of $d o m g$ and g is continuous at c, then $\lim _{x \rightarrow c} g(x)=g(c)$.

Since $\lim _{x \rightarrow c} g(x)=g(c)$ and $g(c) \neq 0$, then $\lim _{x \rightarrow c} \frac{1}{g(x)}=\frac{1}{\lim _{x \rightarrow c} g(x)}=\frac{1}{g(c)}$. Since $c \in \operatorname{domf}$ and $c \in \operatorname{domg}$, then $c \in \operatorname{domf} \cap \operatorname{domg}$.
Since $c \in \operatorname{dom} f \cap \operatorname{domg}$ and $g(c) \neq 0$, then c is in the domain of $\frac{f}{g}$.
Since c is an accumulation point of $\operatorname{dom} f \cap \operatorname{domg}$, then c is an accumulation point of the domain of $\frac{f}{g}$.

Observe that

$$
\begin{aligned}
\frac{g(c) f^{\prime}(c)-f(c) g^{\prime}(c)}{(g(c))^{2}} & =\frac{1}{g(c)} \cdot f^{\prime}(c)-\frac{f(c)}{g(c)} \cdot \frac{1}{g(c)} \cdot g^{\prime}(c) \\
& =\lim _{x \rightarrow c} \frac{1}{g(x)} \cdot \lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}-\frac{f(c)}{g(c)} \cdot \lim _{x \rightarrow c} \frac{1}{g(x)} \cdot \lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c} \\
& =\lim _{x \rightarrow c} \frac{f(x)-f(c)}{g(x)(x-c)}-\frac{f(c)}{g(c)} \cdot \lim _{x \rightarrow c} \frac{g(x)-g(c)}{g(x)(x-c)} \\
& =\lim _{x \rightarrow c} \frac{[f(x)-f(c)] g(c)}{g(x) g(c)(x-c)}-\lim _{x \rightarrow c} \frac{f(c)[g(x)-g(c)]}{g(x) g(c)(x-c)} \\
& =\lim _{x \rightarrow c} \frac{[f(x)-f(c)] g(c)-f(c)[g(x)-g(c)]}{g(x) g(c)(x-c)} \\
& =\lim _{x \rightarrow c} \frac{f(x) g(c)-f(c) g(c)-f(c) g(x)+f(c) g(c)}{g(x) g(c)(x-c)} \\
& =\lim _{x \rightarrow c} \frac{f(x) g(c)-f(c) g(x)}{g(x) g(c)(x-c)} \\
& =\lim _{x \rightarrow c} \frac{\frac{f(x)}{g(x)}-\frac{f(c)}{g(c)}}{x-c} \\
& =\lim _{x \rightarrow c} \frac{\left(\frac{f}{g}\right)(x)-\left(\frac{f}{g}\right)(c)}{x-c} \\
& =\left(\frac{f}{g}\right)^{\prime}(c) .
\end{aligned}
$$

Therefore, $\frac{f}{g}$ is differentiable at c and $\left(\frac{f}{g}\right)^{\prime}(c)=\frac{g(c) f^{\prime}(c)-f(c) g^{\prime}(c)}{(g(c))^{2}}$.

Corollary 11. power rule for derivatives

Let $n \in \mathbb{Z}$ be fixed.
Let $f: \mathbb{R}^{*} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x^{n}$.
Then $f^{\prime}(x)=n x^{n-1}$.
Proof. We prove for $n=0$, if $f(x)=x^{n}$ for all nonzero $x \in \mathbb{R}$, then $f^{\prime}(x)=$ $n x^{n-1}$.

Let $n=0$.
Suppose $f(x)=x^{n}$ for all nonzero $x \in \mathbb{R}$.
Then $f(x)=x^{n}=x^{0}=1$ for all nonzero $x \in \mathbb{R}$, so $f^{\prime}(x)=0$ for all nonzero $x \in \mathbb{R}$.

Let $x \in \mathbb{R}$ with $x \neq 0$.
Then $f^{\prime}(x)=0=0 \cdot x^{-1}=0 x^{0-1}=n x^{n-1}$.
Proof. We prove for all positive integers n, if $f(x)=x^{n}$ for all nonzero $x \in \mathbb{R}$, then $f^{\prime}(x)=n x^{n-1}$ by induction on n.

Let $S=\left\{n \in \mathbb{Z}^{+}:\right.$if $f(x)=x^{n}$ for all nonzero $x \in \mathbb{R}$, then $\left.f^{\prime}(x)=n x^{n-1}\right\}$.
Basis:
Suppose $f(x)=x^{1}=x$ for all nonzero $x \in \mathbb{R}$.

Then $f^{\prime}(x)=1$ for all nonzero $x \in \mathbb{R}$.
Let $x \in \mathbb{R}$ with $x \neq 0$.
Since $x \neq 0$, then $f^{\prime}(x)=1=1 \cdot 1=1 \cdot x^{0}=1 \cdot x^{1-1}$, so $1 \in S$.

Induction:

Suppose $k \in S$.
Then $k \in \mathbb{Z}^{+}$and if $f(x)=x^{k}$ for all nonzero $x \in \mathbb{R}$, then $f^{\prime}(x)=k x^{k-1}$.
Since $k \in \mathbb{Z}^{+}$, then $k+1 \in \mathbb{Z}^{+}$.
Suppose $g(x)=x^{k+1}$ for all nonzero $x \in \mathbb{R}$.
Then $g(x)=x^{k} \cdot x$ for all nonzero $x \in \mathbb{R}$.
Let f and h be functions defined by $f(x)=x^{k}$ and $h(x)=x$ for all nonzero $x \in \mathbb{R}$.

Then $g=f h$ is the function defined by $g(x)=f(x) \cdot h(x)$ for all nonzero $x \in \mathbb{R}$.

Since $f(x)=x^{k}$ for all nonzero $x \in \mathbb{R}$, then $f^{\prime}(x)=k x^{k-1}$.
Since $h(x)=x$ for all nonzero $x \in \mathbb{R}$, then $h^{\prime}(x)=1$ for all nonzero $x \in \mathbb{R}$.
Let $x \in \mathbb{R}$ with $x \neq 0$.
Since $\operatorname{domf} \cap \operatorname{domh}=\mathbb{R} \cap \mathbb{R}=\mathbb{R}$ and $x \in \mathbb{R}$ and every real number is an accumulation point of \mathbb{R}, then x is an accumulation point of $\operatorname{domf} \cap \operatorname{domh}$.

Since x is a nonzero real number, then $f(x)=x^{k}$ and $f^{\prime}(x)=k x^{k-1}$ and $h(x)=x$ and $h^{\prime}(x)=1$.

Thus,

$$
\begin{aligned}
g^{\prime}(x) & =(f h)^{\prime}(x) \\
& =f(x) \cdot h^{\prime}(x)+h(x) \cdot f^{\prime}(x) \\
& =x^{k} \cdot 1+x \cdot k x^{k-1} \\
& =x^{k}+k x^{k} \\
& =(1+k) x^{k} \\
& =(k+1) x^{k} .
\end{aligned}
$$

Hence, if $g(x)=x^{k+1}$ for all nonzero $x \in \mathbb{R}$, then $g^{\prime}(x)=(k+1) x^{k}$.
Since $k+1 \in \mathbb{Z}^{+}$, then this implies $k+1 \in S$.
Hence, $k \in S$ implies $k+1 \in S$ for all $k \in \mathbb{Z}^{+}$.
Since $1 \in S$ and $k \in S$ implies $k+1 \in S$ for all $k \in \mathbb{Z}^{+}$, then by induction, $S=\mathbb{Z}^{+}$.

Therefore, for all $n \in \mathbb{Z}^{+}$, if $f(x)=x^{n}$ for all nonzero $x \in \mathbb{R}$, then $f^{\prime}(x)=$ $n x^{n-1}$.

Proof. We prove for all negative integers n, if $f(x)=x^{n}$ for all nonzero $x \in \mathbb{R}$, then $f^{\prime}(x)=n x^{n-1}$.

Let n be an arbitrary negative integer.
Then $n \in \mathbb{Z}$ and $n<0$.
Thus, there exists $k \in \mathbb{Z}$ such that $k=-n>0$, so $n=-k$ and k is a positive integer.

Suppose $f(x)=x^{n}$ for all nonzero $x \in \mathbb{R}$.

Let $x \in \mathbb{R}$ with $x \neq 0$.
Then $f(x)=x^{n}=x^{-k}=\frac{1}{x^{k}}$.
Let g and h be functions defined by $g(x)=1$ and $h(x)=x^{k}$ for all nonzero $x \in \mathbb{R}$.

Then $f=\frac{g}{h}$ is the function defined by $f(x)=\frac{g(x)}{h(x)}$ for all nonzero $x \in \mathbb{R}$.
Since $g(x)=1$ for all nonzero $x \in \mathbb{R}$, then $g^{\prime}(x)=0$ for all nonzero $x \in \mathbb{R}$.
Since k is a positive integer and $h(x)=x^{k}$ for all nonzero $x \in \mathbb{R}$, then $h^{\prime}(x)=k x^{k-1}$.

Let $x \in \mathbb{R}^{*}$.
Then $x \in \mathbb{R}$ and $x \neq 0$.
Since $x \in \mathbb{R}^{*}$ and \mathbb{R}^{*} is an open set, then x is an interior point of \mathbb{R}^{*}, so x is an accumulation point of \mathbb{R}^{*}.

Since domg $\cap \operatorname{domh}=\mathbb{R}^{*} \cap \mathbb{R}^{*}=\mathbb{R}^{*}$, then this implies x is an accumulation point of domg \cap domh.

Since x is a nonzero real number, then $g(x)=1$ and $g^{\prime}(x)=0$ and $h(x)=x^{k}$ and $h^{\prime}(x)=k x^{k-1}$.

Since $x \neq 0$ and $k>0$, then $x^{k} \neq 0$, so $h(x) \neq 0$.
Thus,

$$
\begin{aligned}
f^{\prime}(x) & =\left(\frac{g}{h}\right)^{\prime}(x) \\
& =\frac{h(x) \cdot g^{\prime}(x)-g(x) \cdot h^{\prime}(x)}{[h(x)]^{2}} \\
& =\frac{x^{k} \cdot 0-1 \cdot k x^{k-1}}{\left(x^{k}\right)^{2}} \\
& =\frac{-k x^{k-1}}{x^{2 k}} \\
& =-k x^{-k-1} \\
& =n x^{n-1} .
\end{aligned}
$$

Therefore, if $f(x)=x^{n}$ for all nonzero $x \in \mathbb{R}$, then $f^{\prime}(x)=n x^{n-1}$.

Proposition 12. derivatives of trig functions

1. $\frac{d}{d x}(\tan x)=\sec ^{2} x$.
2. $\frac{d}{d x}(\cot x)=-\csc ^{2} x$.
3. $\frac{d}{d x}(\sec x)=\sec x \tan x$.
4. $\frac{d}{d x}(\csc x)=-\csc x \cot x$.

Proof. We prove 1.
Observe that

$$
\begin{aligned}
\frac{d}{d x}(\tan x) & =\frac{d}{d x}\left(\frac{\sin x}{\cos x}\right) \\
& =\frac{(\cos x)(\cos x)-(\sin x)(-\sin x)}{\cos ^{2} x} \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x} \\
& =\frac{1}{\cos ^{2} x} \\
& =\sec ^{2} x
\end{aligned}
$$

Proof. We prove 2.
Observe that

$$
\begin{aligned}
\frac{d}{d x}(\cot x) & =\frac{d}{d x}\left(\frac{\cos x}{\sin x}\right) \\
& =\frac{(\sin x)(-\sin x)-(\cos x)(\cos x)}{\sin ^{2} x} \\
& =\frac{-\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x} \\
& =\frac{-\left(\sin ^{2} x+\cos ^{2} x\right)}{\sin ^{2} x} \\
& =\frac{-1}{\sin ^{2} x} \\
& =-\csc ^{2} x
\end{aligned}
$$

Proof. We prove 3.
Observe that

$$
\begin{aligned}
\frac{d}{d x}(\sec x) & =\frac{d}{d x}\left(\frac{1}{\cos x}\right) \\
& =\frac{(\cos x)(0)-(1)(-\sin x)}{\cos ^{2} x} \\
& =\frac{\sin x}{\cos ^{2} x} \\
& =\frac{1 \cdot \sin x}{\cos x \cdot \cos x} \\
& =\frac{1}{\cos x} \cdot \frac{\sin x}{\cos x} \\
& =\sec x \tan x
\end{aligned}
$$

Proof. We prove 4.
Observe that

$$
\begin{aligned}
\frac{d}{d x}(\csc x) & =\frac{d}{d x}\left(\frac{1}{\sin x}\right) \\
& =\frac{(\sin x)(0)-(1)(\cos x)}{\sin ^{2} x} \\
& =\frac{-\cos x}{\sin ^{2} x} \\
& =\frac{-1 \cdot \cos x}{\sin x \cdot \sin x} \\
& =\frac{-1}{\sin x} \cdot \frac{\cos x}{\sin x} \\
& =-\csc x \cot x .
\end{aligned}
$$

Theorem 13. chain rule for derivatives

Let f and g be real valued functions such that rngf \subset domg.
If f is differentiable at c and g is differentiable at $f(c)$, then the function $g \circ f$ is differentiable at c and
$(g \circ f)^{\prime}(c)=g^{\prime}(f(c)) \cdot f^{\prime}(c)$.
Proof. Suppose f is differentiable at c and g is differentiable at $f(c)$.
Since f is differentiable at c, then $c \in \operatorname{dom} f$ and c is an accumulation point of domf and $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ and f is continuous at c.

Since g is differentiable at $f(c)$, then $f(c) \in d o m g$ and $f(c)$ is an accumulation point of domg and $g^{\prime}(f(c))$ exists.

Let $\delta>0$ be given.
Since c is an accumulation point of $\operatorname{dom} f$, then there exists $x \in \operatorname{domf}$ such that $x \in N^{\prime}(c ; \delta)$.

Let $x \in \operatorname{domf}$ such that $x \in N^{\prime}(c ; \delta)$.
Since $x \in \operatorname{dom} f$, then $f(x) \in r n g f$.
Since $r n g f \subset d o m g$, then $f(x) \in d o m g$.
Since $x \in N^{\prime}(c ; \delta)$, then $x \in N(c ; \delta)$ and $x \neq c$.
Since $f(x) \in d o m g$ and $f(c) \in d o m g$, then either $f(x)=f(c)$ or $f(x) \neq f(c)$.
We consider these cases separately.
Case 1: Suppose $f(x) \neq f(c)$.
Then $f(x)-f(c) \neq 0$.
Let $h: \operatorname{domg} \rightarrow \mathbb{R}$ be a function defined by $h(y)=\frac{g(y)-g(f(c))}{y-f(c)}$ if $y \neq f(c)$ and $h(f(c))=g^{\prime}(f(c))$.

Since $f(x) \in d o m g$ and $f(x) \neq f(c)$, then $h(f(x))=\frac{g(f(x))-g(f(c))}{f(x)-f(c)}$.

If $y \in d o m g$ and $y \neq f(c)$, then

$$
\begin{aligned}
h(f(c)) & =g^{\prime}(f(c)) \\
& =\lim _{y \rightarrow f(c)} \frac{g(y)-g(f(c))}{y-f(c)} \\
& =\lim _{y \rightarrow f(c)} h(y)
\end{aligned}
$$

Let $y=f(x)$.
Then $y \in d o m g$ and $y \neq f(c)$ and $h(y)=\frac{g(y)-g(f(c))}{y-f(c)}$.
Since $y \in d o m g$ and $y \neq f(c)$, then we conclude $h(f(c))=\lim _{y \rightarrow f(c)} h(y)$.
Since $f(c)$ is an accumulation point of $d o m g$ and domh $=d o m g$, then $f(c)$ is an accumulation point of domh.

Since $f(c)$ is an accumulation point of domh and $\lim _{y \rightarrow f(c)} h(y)=h(f(c))$, then by the characterization of continuity at a point, h is continuous at $f(c)$.

Since f is continuous at c and h is continuous at $f(c)$, then $h \circ f$ is continuous at c.

Observe that $\operatorname{dom}(h \circ f)=\{x \in \operatorname{domf}: f(x) \in \operatorname{domh}\}=\{x \in \operatorname{domf}:$ $f(x) \in d o m g\}$.

Since $x \in \operatorname{dom} f$ and $f(x) \in \operatorname{domg}$, then $x \in \operatorname{dom}(h \circ f)$.
Thus, there exists $x \in \operatorname{dom}(h \circ f)$ such that $x \in N^{\prime}(c ; \delta)$ for every $\delta>0$.
Therefore, c is an accumulation point of $\operatorname{dom}(h \circ f)$.
Since c is an accumulation point of $\operatorname{dom}(h \circ f)$ and $h \circ f$ is continuous at c, then by the characterization of continuity at a point, $\lim _{x \rightarrow c}(h \circ f)(x)=$ $(h \circ f)(c)=h(f(c))=g^{\prime}(f(c))$, so $\lim _{x \rightarrow c}(h \circ f)(x)=g^{\prime}(f(c))$.

Since $x \neq c$ and $f(x)-f(c) \neq 0$, then

$$
\begin{aligned}
g^{\prime}(f(c)) \cdot f^{\prime}(c) & =\lim _{x \rightarrow c}(h \circ f)(x) \cdot \lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \\
& =\lim _{x \rightarrow c}(h \circ f)(x) \cdot \frac{f(x)-f(c)}{x-c} \\
& =\lim _{x \rightarrow c}\left(h(f(x)) \cdot \frac{f(x)-f(c)}{x-c}\right. \\
& =\lim _{x \rightarrow c} \frac{g(f(x))-g(f(c))}{f(x)-f(c)} \cdot \frac{f(x)-f(c)}{x-c} \\
& =\lim _{x \rightarrow c} \frac{g(f(x))-g(f(c))}{x-c} \\
& =\lim _{x \rightarrow c} \frac{(g \circ f)(x)-(g \circ f)(c)}{x-c} \\
& =(g \circ f)^{\prime}(c) .
\end{aligned}
$$

Therefore, if $f(x) \neq f(c)$, then $(g \circ f)^{\prime}(c)=g^{\prime}(f(c)) \cdot f^{\prime}(c)$.
Case 2: Suppose $f(x)=f(c)$.
Since f is differentiable at c and $x \neq c$, then $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=$ $\lim _{x \rightarrow c} \frac{f(c)-f(c)}{x-c}=\lim _{x \rightarrow c} \frac{0}{x-c}=0$, so $f^{\prime}(c)=0$.

Observe that

$$
\begin{aligned}
g^{\prime}(f(c)) \cdot f^{\prime}(c) & =g^{\prime}(f(c)) \cdot 0 \\
& =0 \\
& =\lim _{x \rightarrow c} \frac{0}{x-c} \\
& =\lim _{x \rightarrow c} \frac{g(f(c))-g(f(c))}{x-c} \\
& =\lim _{x \rightarrow c} \frac{g(f(x))-g(f(c))}{x-c} \\
& =\lim _{x \rightarrow c} \frac{(g \circ f)(x)-(g \circ f)(c)}{x-c} \\
& =(g \circ f)^{\prime}(c) .
\end{aligned}
$$

Therefore, if $f(x)=f(c)$, then $(g \circ f)^{\prime}(c)=g^{\prime}(f(c)) \cdot f^{\prime}(c)$.

Mean Value Theorem

Lemma 14. Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let $c \in E$.

1. If $f(c)$ is a relative maximum and f is differentiable at c, then $f^{\prime}(c)=0$.
2. If $f(c)$ is a relative minimum and f is differentiable at c, then $f^{\prime}(c)=0$.

Proof. We prove 1.
Suppose $f(c)$ is a relative maximum and f is differentiable at c.
Since $f(c)$ is a relative maximum, then there exists $\delta_{1}>0$ such that $N\left(c ; \delta_{1}\right) \subset$ E and $f(c) \geq f(x)$ for all $x \in N\left(c ; \delta_{1}\right)$.

Since f is differentiable at c, then $c \in E$ and there is a real number $f^{\prime}(c)$ such that $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$.

Since $f^{\prime}(c) \in \mathbb{R}$, then either $f^{\prime}(c)>0$ or $f^{\prime}(c)=0$ or $f^{\prime}(c)<0$.

Suppose $f^{\prime}(c)>0$.
Since $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$, then there exists $\delta_{2}>0$ such that for all $x \in E-\{c\}$, if $0<|x-c|<\delta_{2}$, then $\left|\frac{f(x)-f(c)}{x-c}-f^{\prime}(c)\right|<f^{\prime}(c)$.

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$.
Then $\delta \leq \delta_{1}$ and $\delta \leq \delta_{2}$ and $\delta>0$.
Since $\delta>0$, then $\frac{\delta}{2}>0$.
Let $x=c+\frac{\delta}{2}$.
Since $d(x, c)=|x-c|=\left|\frac{\delta}{2}\right|=\frac{\delta}{2}<\delta \leq \delta_{1}$, then $d(x, c)<\delta_{1}$, so $x \in N\left(c ; \delta_{1}\right)$.
Hence, $f(c) \geq f(x)$.
Since $x \in N\left(c ; \delta_{1}\right)$ and $N\left(c ; \delta_{1}\right) \subset E$, then $x \in E$.
Since $x-c=\frac{\delta}{2}>0$, then $x-c>0$, so $x-c \neq 0$.
Hence, $x \neq c$.
Since $x \in E$ and $x \neq c$, then $x \in E-\{c\}$.

Since $0<|x-c|=\left|\frac{\delta}{2}\right|=\frac{\delta}{2}<\delta \leq \delta_{2}$, then $0<|x-c|<\delta_{2}$.
Since $x \in E-\{c\}$ and $0<|x-c|<\delta_{2}$, then $\left|\frac{f(x)-f(c)}{x-c}-f^{\prime}(c)\right|<f^{\prime}(c)$.
Thus, $-f^{\prime}(c)<\frac{f(x)-f(c)}{x-c}-f^{\prime}(c)<f^{\prime}(c)$, so $-f^{\prime}(c)<\frac{f(x)-f(c)}{x-c}-f^{\prime}(c)$.
Hence, $0<\frac{f(x)-f(c)}{x-c}$.
Since $x-c>\stackrel{x-c}{0}$, then $0<f(x)-f(c)$, so $f(c)<f(x)$.
Thus, we have $f(c) \geq f(x)$ and $f(c)<f(x)$, a contradiction.
Therefore, $f^{\prime}(c)$ cannot be positive.
Suppose $f^{\prime}(c)<0$.
Then $-f^{\prime}(c)>0$.
Since $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$, then there exists $\delta_{2}>0$ such that for all $x \in E-\{c\}$, if $0<|x-c|<\delta_{2}$, then $\left|\frac{f(x)-f(c)}{x-c}-f^{\prime}(c)\right|<-f^{\prime}(c)$.

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$.
Then $\delta \leq \delta_{1}$ and $\delta \leq \delta_{2}$ and $\delta>0$.
Since $\delta>0$, then $\frac{\delta}{2}>0$.
Let $x=c-\frac{\delta}{2}$.
Since $d(x, c)=|x-c|=\left|\frac{-\delta}{2}\right|=\left|\frac{\delta}{2}\right|=\frac{\delta}{2}<\delta \leq \delta_{1}$, then $d(x, c)<\delta_{1}$, so $x \in N\left(c ; \delta_{1}\right)$.

Hence, $f(c) \geq f(x)$.
Since $x \in N\left(c ; \delta_{1}\right)$ and $N\left(c ; \delta_{1}\right) \subset E$, then $x \in E$.
Since $x-c=\frac{-\delta}{2}<0$, then $x-c<0$, so $x-c \neq 0$.
Hence, $x \neq c$.
Since $x \in E$ and $x \neq c$, then $x \in E-\{c\}$.
Since $0<|x-c|=\left|\frac{-\delta}{2}\right|=\left|\frac{\delta}{2}\right|=\frac{\delta}{2}<\delta \leq \delta_{2}$, then $0<|x-c|<\delta_{2}$.
Since $x \in E-\{c\}$ and $0<|x-c|<\delta_{2}$, then $\left|\frac{f(x)-f(c)}{x-c}-f^{\prime}(c)\right|<-f^{\prime}(c)$.
Thus, $f^{\prime}(c)<\frac{f(x)-f(c)}{x-c}-f^{\prime}(c)<-f^{\prime}(c)$, so $\frac{f(x)-f(c)}{x-c}-f^{\prime}(c)<-f^{\prime}(c)$.
Hence, $\frac{f(x)-f(c)}{x-c}<0$.
Since $x-c<0$, then $f(x)-f(c)>0$, so $f(x)>f(c)$.
Thus, we have $f(c) \geq f(x)$ and $f(c)<f(x)$, a contradiction.
Therefore, $f^{\prime}(c)$ cannot be negative.

Since $f^{\prime}(c)$ is neither positive nor negative, then $f^{\prime}(c)$ must be zero, so $f^{\prime}(c)=$ 0.

Proof. We prove 2.
Suppose $f(c)$ is a relative minimum and f is differentiable at c.
Since $f(c)$ is a relative minimum, then there exists $\delta_{1}>0$ such that $N\left(c ; \delta_{1}\right) \subset$ E and $f(c) \leq f(x)$ for all $x \in N\left(c ; \delta_{1}\right)$.

Since f is differentiable at c, then $c \in E$ and there is a real number $f^{\prime}(c)$ such that $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$.

Since $f^{\prime}(c) \in \mathbb{R}$, then either $f^{\prime}(c)>0$ or $f^{\prime}(c)=0$ or $f^{\prime}(c)<0$.

Suppose $f^{\prime}(c)>0$.
Since $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$, then there exists $\delta_{2}>0$ such that for all $x \in E-\{c\}$, if $0<|x-c|<\delta_{2}$, then $\left|\frac{f(x)-f(c)}{x-c}-f^{\prime}(c)\right|<f^{\prime}(c)$.

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$.
Then $\delta \leq \delta_{1}$ and $\delta \leq \delta_{2}$ and $\delta>0$.
Since $\delta>0$, then $\frac{\delta}{2}>0$.
Let $x=c-\frac{\delta}{2}$.
Since $d(x, c)=|x-c|=\left|\frac{-\delta}{2}\right|=\left|\frac{\delta}{2}\right|=\frac{\delta}{2}<\delta \leq \delta_{1}$, then $d(x, c)<\delta_{1}$, so $x \in N\left(c ; \delta_{1}\right)$.

Hence, $f(c) \leq f(x)$.
Since $x \in N\left(c ; \delta_{1}\right)$ and $N\left(c ; \delta_{1}\right) \subset E$, then $x \in E$.
Since $x-c=\frac{-\delta}{2}<0$, then $x-c<0$, so $x-c \neq 0$.
Hence, $x \neq c$.
Since $x \in E$ and $x \neq c$, then $x \in E-\{c\}$.
Since $0<|x-c|=\left|\frac{-\delta}{2}\right|=\left|\frac{\delta}{2}\right|=\frac{\delta}{2}<\delta \leq \delta_{2}$, then $0<|x-c|<\delta_{2}$.
Since $x \in E-\{c\}$ and $0<|x-c|<\delta_{2}$, then $\left|\frac{f(x)-f(c)}{x-c}-f^{\prime}(c)\right|<f^{\prime}(c)$.
Thus, $-f^{\prime}(c)<\frac{f(x)-f(c)}{x-c}-f^{\prime}(c)<f^{\prime}(c)$, so $-f^{\prime}(c)<\frac{f(x)-f(c)}{x-c}-f^{\prime}(c)$.
Hence, $0<\frac{f(x)-f(c)}{x-c}$.
Since $x-c<\stackrel{x-c}{0}$, then $0>f(x)-f(c)$, so $f(c)>f(x)$.
Thus, we have $f(c) \leq f(x)$ and $f(c)>f(x)$, a contradiction.
Therefore, $f^{\prime}(c)$ cannot be positive.
Suppose $f^{\prime}(c)<0$.
Then $-f^{\prime}(c)>0$.
Since $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$, then there exists $\delta_{2}>0$ such that for all $x \in E-\{c\}$, if $0<|x-c|<\delta_{2}$, then $\left|\frac{f(x)-f(c)}{x-c}-f^{\prime}(c)\right|<-f^{\prime}(c)$.

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$.
Then $\delta \leq \delta_{1}$ and $\delta \leq \delta_{2}$ and $\delta>0$.
Since $\delta>0$, then $\frac{\delta}{2}>0$.
Let $x=c+\frac{\delta}{2}$.
Since $d(x, c)=|x-c|=\left|\frac{\delta}{2}\right|=\frac{\delta}{2}<\delta \leq \delta_{1}$, then $d(x, c)<\delta_{1}$, so $x \in N\left(c ; \delta_{1}\right)$.
Hence, $f(c) \leq f(x)$.
Since $x \in N\left(c ; \delta_{1}\right)$ and $N\left(c ; \delta_{1}\right) \subset E$, then $x \in E$.
Since $x-c=\frac{\delta}{2}>0$, then $x-c>0$, so $x-c \neq 0$.
Hence, $x \neq c$.
Since $x \in E$ and $x \neq c$, then $x \in E-\{c\}$.
Since $0<|x-c|=\left|\frac{\delta}{2}\right|=\frac{\delta}{2}<\delta \leq \delta_{2}$, then $0<|x-c|<\delta_{2}$.
Since $x \in E-\{c\}$ and $0<|x-c|<\delta_{2}$, then $\left|\frac{f(x)-f(c)}{x-c}-f^{\prime}(c)\right|<-f^{\prime}(c)$.
Thus, $f^{\prime}(c)<\frac{f(x)-f(c)}{x-c}-f^{\prime}(c)<-f^{\prime}(c)$, so $\frac{f(x)-f(c)}{x-c}-f^{\prime}(c)<-f^{\prime}(c)$.
Hence, $\frac{f(x)-f(c)}{x-c}<0$.
Since $x-c>0$, then $f(x)-f(c)<0$, so $f(x)<f(c)$.
Thus, we have $f(c) \leq f(x)$ and $f(c)>f(x)$, a contradiction.
Therefore, $f^{\prime}(c)$ cannot be negative.

Since $f^{\prime}(c)$ is neither positive nor negative, then $f^{\prime}(c)$ must be zero, so $f^{\prime}(c)=$ 0.

Theorem 15. Rolle's Theorem
Let $a, b \in \mathbb{R}$ with $a<b$.
Let f be a real valued function continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b).

If $f(a)=f(b)$, then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.
Proof. Suppose $f(a)=f(b)$.
We must prove there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.
Let $k=f(a)=f(b)$.
Either $f(x)=k$ for all $x \in[a, b]$ or not.
We consider these cases separately.
Case 1: Suppose $f(x)=k$ for all $x \in[a, b]$.
Since $a<b$, then by the density of \mathbb{R}, there exists a real number c such that $a<c<b$.

Hence, $c \in(a, b)$.
Since $(a, b) \subset[a, b]$, then $c \in[a, b]$.
Since every point in $[a, b]$ is an accumulation point of $[a, b]$, then c is an accumulation point of $[a, b]$.

Since $[a, b] \subset \mathbb{R}$ and c is an accumulation point of $[a, b]$, then c is an accumulation point of $[a, b]-\{c\}$.

Let $q:[a, b]-\{c\} \rightarrow \mathbb{R}$ be a function defined by $q(x)=\frac{f(x)-f(c)}{x-c}$ for all $x \in[a, b]-\{c\}$.

Let $x \in[a, b]-\{c\}$.
Then $x \in[a, b]$ and $x \neq c$.
Since $x \neq c$, then $x-c \neq 0$.
Since $x \in[a, b]$ and $c \in[a, b]$ and $f(x)=k$ for all $x \in[a, b]$, then $f(x)=k=$ $f(c)$.

Thus, $f(x)-f(c)=0$.
Since $0=\lim _{x \rightarrow c} \frac{0}{x-c}=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=\lim _{x \rightarrow c} q(x)=f^{\prime}(c)$, then $f^{\prime}(c)=0$.

Therefore, there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$, as desired.
Case 2: Suppose it is not the case that $f(x)=k$ for all $x \in[a, b]$.
Then there exists $x \in[a, b]$ such that $f(x) \neq k$.
Since $f(x) \neq k$, then either $f(x)>k$ or $f(x)<k$.
We consider these cases separately.
Case 2a: Suppose $f(x)>k$.
Since f is a real valued function continuous on the nonempty closed bounded interval $[a, b]$, then by EVT, f has a maximum on $[a, b]$.

Let $f(c)$ be a maximum of f on $[a, b]$.
Then there exists $c \in[a, b]$ such that $f(c) \geq f(x)$ for all $x \in[a, b]$.
Since $c \in[a, b]$, then $a \leq c \leq b$, so $a \leq c$ and $c \leq b$.
Since $x \in[a, b]$ and $f(c)$ is a maximum of f on $[a, b]$, then $f(c) \geq f(x)$.
Since $f(c) \geq f(x)$ and $f(x)>k$, then $f(c)>k$.
Since $c=a$ implies $f(c)=f(a)$, then $f(c) \neq f(a)$ implies $c \neq a$.
Since $f(c)>k=f(a)$, then $f(c)>f(a)$, so $f(c) \neq f(a)$.
Hence, $c \neq a$.
Since $c \geq a$ and $c \neq a$, then $c>a$.
Since $c=b$ implies $f(c)=f(b)$, then $f(c) \neq f(b)$ implies $c \neq b$.
Since $f(c)>k=f(b)$, then $f(c)>f(b)$, so $f(c) \neq f(b)$.
Hence, $c \neq b$.
Since $c \leq b$ and $c \neq b$, then $c<b$.
Hence, $a<c$ and $c<b$, so $a<c<b$.
Thus, $c \in(a, b)$.

Since the open interval (a, b) is an open set, then c is an interior point of (a, b), so there exists $\delta>0$ such that $N(c ; \delta) \subset(a, b)$.

Since $N(c ; \delta) \subset(a, b)$ and $(a, b) \subset[a, b]$, then $N(c ; \delta) \subset[a, b]$.
Thus, there exists $\delta>0$ such that $N(c ; \delta) \subset[a, b]$.

Let $p \in N(c ; \delta)$.
Since $N(c ; \delta) \subset[a, b]$, then $p \in[a, b]$.
Since $f(c)$ is a maximum of f on $[a, b]$, then $f(c) \geq f(p)$.
Thus, $f(c) \geq f(p)$ for all $p \in N(c ; \delta)$.

Since there exists $\delta>0$ such that $N(c ; \delta) \subset[a, b]$ and $f(c) \geq f(p)$ for all $p \in N(c ; \delta)$, then $f(c)$ is a relative maximum of f on $[a, b]$.

Since f is differentiable on (a, b) and $c \in(a, b)$, then f is differentiable at c.
Since $f(c)$ is a relative maximum and f is differentiable at c, then by the previous lemma, $f^{\prime}(c)=0$.

Therefore, there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$, as desired.
Case 2b: Suppose $f(x)<k$.
Since f is a real valued function continuous on the nonempty closed bounded interval $[a, b]$, then by EVT, f has a minimum on $[a, b]$.

Let $f(c)$ be a minimum of f on $[a, b]$.
Then there exists $c \in[a, b]$ such that $f(c) \leq f(x)$ for all $x \in[a, b]$.
Since $c \in[a, b]$, then $a \leq c \leq b$, so $a \leq c$ and $c \leq b$.
Since $x \in[a, b]$ and $f(c)$ is a minimum of f on $[a, b]$, then $f(c) \leq f(x)$.
Since $f(c) \leq f(x)$ and $f(x)<k$, then $f(c)<k$.
Since $c=a$ implies $f(c)=f(a)$, then $f(c) \neq f(a)$ implies $c \neq a$.
Since $f(c)<k=f(a)$, then $f(c)<f(a)$, so $f(c) \neq f(a)$.
Hence, $c \neq a$.
Since $c \geq a$ and $c \neq a$, then $c>a$.

Since $c=b$ implies $f(c)=f(b)$, then $f(c) \neq f(b)$ implies $c \neq b$.
Since $f(c)<k=f(b)$, then $f(c)<f(b)$, so $f(c) \neq f(b)$.
Hence, $c \neq b$.
Since $c \leq b$ and $c \neq b$, then $c<b$.
Hence, $a<c$ and $c<b$, so $a<c<b$.
Thus, $c \in(a, b)$.

Since the open interval (a, b) is an open set, then c is an interior point of (a, b), so there exists $\delta>0$ such that $N(c ; \delta) \subset(a, b)$.

Since $N(c ; \delta) \subset(a, b)$ and $(a, b) \subset[a, b]$, then $N(c ; \delta) \subset[a, b]$.
Thus, there exists $\delta>0$ such that $N(c ; \delta) \subset[a, b]$.
Let $p \in N(c ; \delta)$.
Since $N(c ; \delta) \subset[a, b]$, then $p \in[a, b]$.
Since $f(c)$ is a minimum of f on $[a, b]$, then $f(c) \leq f(p)$.
Thus, $f(c) \leq f(p)$ for all $p \in N(c ; \delta)$.

Since there exists $\delta>0$ such that $N(c ; \delta) \subset[a, b]$ and $f(c) \leq f(p)$ for all $p \in N(c ; \delta)$, then $f(c)$ is a relative minimum of f on $[a, b]$.

Since f is differentiable on (a, b) and $c \in(a, b)$, then f is differentiable at c.
Since $f(c)$ is a relative minimum and f is differentiable at c, then by the previous lemma, $f^{\prime}(c)=0$.

Therefore, there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$, as desired.

Theorem 16. Mean Value Theorem

Let $a, b \in \mathbb{R}$ with $a<b$.
Let f be a real valued function continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b).

Then there exists $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
Proof. We must prove there exists $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
Since $a<b$, then $b-a>0$, so $\frac{f(b)-f(a)}{b-a}$ is a real number.
Let L be a real valued function defined by $L(x)=\frac{f(b)-f(a)}{b-a}(x-a)+f(a)$ for all $x \in[a, b]$.

Let g be defined by $g=f-L$.
Then g is a real valued function defined by $g(x)=f(x)-L(x)$ for all $x \in[a, b]$.

Thus, $g(x)=f(x)-\frac{f(b)-f(a)}{b-a}(x-a)-f(a)$ for all $x \in[a, b]$.
Since f is continuous on $[a, b]$, then f is continuous.
Since L is a linear function, then L is continuous.
Since the difference of continuous functions is continuous, then g is continuous, so g is continuous on $[a, b]$.

Since L is a linear function, then L is differentiable, so L is differentiable on $[a, b]$.

Since $(a, b) \subset[a, b]$, then L is differentiable on (a, b).
Since f is differentiable on (a, b) and L is differentiable on (a, b), then the difference $g=f-L$ is differentiable on (a, b).

Let $x \in(a, b)$.
Since $L(x)=\frac{f(b)-f(a)}{b-a}(x-a)+f(a)$, then $L^{\prime}(x)=\frac{f(b)-f(a)}{b-a}$.
Since $g(x)=f(x)-L(x)$, then $g^{\prime}(x)=f^{\prime}(x)-L^{\prime}(x)=f^{\prime}(x)-\frac{f(b)-f(a)}{b-a}$, so $g^{\prime}(x)=f^{\prime}(x)-\frac{f(b)-f(a)}{b-a}$.

Hence, g is differentiable at x.
Thus, g is differentiable at x for all $x \in(a, b)$, so g is differentiable on (a, b).

Observe that

$$
\begin{aligned}
g(a) & =f(a)-\frac{f(b)-f(a)}{b-a}(a-a)-f(a) \\
& =0 \\
& =f(b)-f(b)+f(a)-f(a) \\
& =f(b)-(f(b)-f(a))-f(a) \\
& =f(b)-\frac{f(b)-f(a)}{b-a}(b-a)-f(a) \\
& =g(b)
\end{aligned}
$$

Since g is continuous on $[a, b]$ and g is differentiable on (a, b) and $g(a)=g(b)$, then by Rolle's theorem, there exists $c \in(a, b)$ such that $g^{\prime}(c)=0$.

Since $0=g^{\prime}(c)=f^{\prime}(c)-L^{\prime}(c)=f^{\prime}(c)-\frac{f(b)-f(a)}{b-a}$, then $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)$.
Therefore, there exists $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$, as desired.
Corollary 17. Let f be a real valued function differentiable on an interval I. Then

1. If $f^{\prime}(x)=0$ for all $x \in I$, then f is constant on I.
2. If $f^{\prime}(x)>0$ for all $x \in I$, then f is strictly increasing on I.
3. If $f^{\prime}(x)<0$ for all $x \in I$, then f is strictly decreasing on I.

Proof. We prove 1.
Suppose $f^{\prime}(x)=0$ for all $x \in I$.
To prove f is constant on I, let $a, b \in I$ such that $a \neq b$.
We must prove $f(a)=f(b)$.
Since $a \neq b$, then either $a<b$ or $a>b$.
Without loss of generality, assume $a<b$.
Since $a \in I$ and $b \in I$ and $a<b$, then $[a, b] \subset I$.
Since f is differentiable on I and $[a, b] \subset I$, then f is differentiable on $[a, b]$, so f is continuous on $[a, b]$.

Since $(a, b) \subset[a, b]$ and $[a, b] \subset I$, then $(a, b) \subset I$.
Since f is differentiable on I and $(a, b) \subset I$, then f is differentiable on (a, b).

Since f is continuous on $[a, b]$ and differentiable on (a, b), then by MVT, there exists $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Since $c \in(a, b)$ and $(a, b) \subset I$, then $c \in I$, so $f^{\prime}(c)=0$.
Hence, $0=f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$, so $0=\frac{f(b)-f(a)}{b-a}$.
Since $b \neq a$, then $b-a \neq 0$, so $0=f(b)-f(a)$.
Therefore, $f(a)=f(b)$, as desired.
Proof. We prove 2.
Suppose $f^{\prime}(x)>0$ for all $x \in I$.
To prove f is strictly increasing on I, let $a, b \in I$ such that $a<b$.
We must prove $f(a)<f(b)$.
Since $a \in I$ and $b \in I$ and $a<b$, then $[a, b] \subset I$.
Since f is differentiable on I and $[a, b] \subset I$, then f is differentiable on $[a, b]$, so f is continuous on $[a, b]$.

Since f is differentiable on $[a, b]$ and $(a, b) \subset[a, b]$, then f is differentiable on (a, b).

Since f is continuous on $[a, b]$ and differentiable on (a, b), then by MVT, there exists $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Since $c \in(a, b)$ and $(a, b) \subset[a, b] \subset I$, then $c \in I$.
Hence, $f^{\prime}(c)>0$.
Thus, $0<f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$, so $0<\frac{f(b)-f(a)}{b-a}$.
Since $a<b$, then $b-a>0$, so $0<f(b)-f(a)$.
Therefore, $f(a)<f(b)$, as desired.
Proof. We prove 3.
Suppose $f^{\prime}(x)<0$ for all $x \in I$.
To prove f is strictly decreasing on I, let $a, b \in I$ such that $a<b$.
We must prove $f(a)>f(b)$.
Since $a \in I$ and $b \in I$ and $a<b$, then $[a, b] \subset I$.
Since f is differentiable on I and $[a, b] \subset I$, then f is differentiable on $[a, b]$, so f is continuous on $[a, b]$.

Since f is differentiable on $[a, b]$ and $(a, b) \subset[a, b]$, then f is differentiable on (a, b).

Since f is continuous on $[a, b]$ and differentiable on (a, b), then by MVT, there exists $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Since $c \in(a, b)$ and $(a, b) \subset[a, b] \subset I$, then $c \in I$.
Hence, $f^{\prime}(c)<0$.
Thus, $0>f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$, so $0>\frac{f(b)-f(a)}{b-a}$.
Since $a<b$, then $b-a>0$, so $0>f(b)-f(a)$.
Therefore, $f(a)>f(b)$, as desired.

Corollary 18. functions with the same derivative on an interval differ by a constant

Let f and g be real valued functions differentiable on an interval I.
If $f^{\prime}(x)=g^{\prime}(x)$ for all $x \in I$, then there exists $C \in \mathbb{R}$ such that $f-g=C$.

Proof. Suppose $f^{\prime}(x)=g^{\prime}(x)$ for all $x \in I$.
Let $h=f-g$.
Then $h: I \rightarrow \mathbb{R}$ is the function defined by $h(x)=f(x)-g(x)$.
Let $x \in I$.
Then $h(x)=f(x)-g(x)$, so $h^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)=f^{\prime}(x)-f^{\prime}(x)=0$.
Hence, $h^{\prime}(x)=0$ for all $x \in I$, so h is differentiable on I.
Since h is differentiable on I and $h^{\prime}(x)=0$ for all $x \in I$, then h is constant on I.

Thus, there exists $C \in \mathbb{R}$ such that $h(x)=C$ for all $x \in I$.
Hence, $C=h(x)=f(x)-g(x)$, so $C=f(x)-g(x)$ for all $x \in I$.
Therefore, $C=f-g$.
Theorem 19. First Derivative Test for relative extrema of a function continuous on an open interval

Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let $c \in E$.
Let there exist $\delta>0$ such that $(c-\delta, c+\delta) \subset E$.
Suppose f is continuous on $(c-\delta, c+\delta)$ and differentiable on $(c-\delta, c)$ and $(c, c+\delta)$.

1. If $f^{\prime}(x)<0$ for all $x \in(c-\delta, c)$ and $f^{\prime}(x)>0$ for all $x \in(c, c+\delta)$, then $f(c)$ is a relative minimum.
2. If $f^{\prime}(x)>0$ for all $x \in(c-\delta, c)$ and $f^{\prime}(x)<0$ for all $x \in(c, c+\delta)$, then $f(c)$ is a relative maximum.

Proof. We prove 1.
Suppose $f^{\prime}(x)<0$ for all $x \in(c-\delta, c)$ and $f^{\prime}(x)>0$ for all $x \in(c, c+\delta)$.
Since $N(c ; \delta)=(c-\delta, c+\delta)$ and $(c-\delta, c+\delta) \subset E$, then $N(c ; \delta) \subset E$.
Thus, there exists $\delta>0$ such that $N(c ; \delta) \subset E$.
To prove $f(c)$ is a relative minimum, let $x \in N(c ; \delta)$.
We must prove $f(c) \leq f(x)$.
Since $x, c \in \mathbb{R}$, then either $x<c$ or $x=c$ or $x>c$.
We consider these cases separately.
Case 1: Suppose $x=c$.
Then $f(c)=f(x)$.
Case 2: Suppose $x<c$.
Since $x \in N(c ; \delta)$, then $|x-c|<\delta$.
Since $x<c$, then $x-c<0$, so $|x-c|=-(x-c)=c-x<\delta$.
Hence, $c-\delta<x$.
Since $c-\delta<x<c<c+\delta$, then $[x, c] \subset(c-\delta, c+\delta)$ and $(x, c) \subset(c-\delta, c)$.
Since f is continuous on $(c-\delta, c+\delta)$ and $[x, c] \subset(c-\delta, c+\delta)$, then f is continuous on $[x, c]$.

Since f is differentiable on $(c-\delta, c)$ and $(x, c) \subset(c-\delta, c)$, then f is differentiable on (x, c).

Thus, by MVT, there exists $p \in(x, c)$ such that $f^{\prime}(p)=\frac{f(c)-f(x)}{c-x}$.
Since $p \in(x, c)$ and $(x, c) \subset(c-\delta, c)$, then $p \in(c-\delta, c)$, so ${ }^{c-x} f^{\prime}(p)<0$.

Hence, $\frac{f(c)-f(x)}{c-x}<0$.
Since $x<c$, then $c-x>0$, so $f(c)-f(x)<0$.
Thus, $f(c)<f(x)$.
Case 3: Suppose $x>c$.
Since $x \in N(c ; \delta)$, then $|x-c|<\delta$.
Since $x>c$, then $x-c>0$, so $|x-c|=x-c<\delta$.
Hence, $x<c+\delta$.
Since $c-\delta<c<x<c+\delta$, then $[c, x] \subset(c-\delta, c+\delta)$ and $(c, x) \subset(c, c+\delta)$.
Since f is continuous on $(c-\delta, c+\delta)$ and $[c, x] \subset(c-\delta, c+\delta)$, then f is continuous on $[c, x]$.

Since f is differentiable on $(c, c+\delta)$ and $(c, x) \subset(c, c+\delta)$, then f is differentiable on (c, x).

Thus, by MVT, there exists $q \in(c, x)$ such that $f^{\prime}(q)=\frac{f(x)-f(c)}{x-c}$.
Since $q \in(c, x)$ and $(c, x) \subset(c, c+\delta)$, then $q \in(c, c+\delta)$, so $f^{x-c}(q)>0$.
Hence, $\frac{f(x)-f(c)}{x-c}>0$.
Since $x>c$, then $x-c>0$, so $f(x)-f(c)>0$.
Thus, $f(x)>f(c)$, so $f(c)<f(x)$.
Therefore, in all cases, $f(c) \leq f(x)$, as desired.
Proof. We prove 2.
Suppose $f^{\prime}(x)>0$ for all $x \in(c-\delta, c)$ and $f^{\prime}(x)<0$ for all $x \in(c, c+\delta)$.
Since $N(c ; \delta)=(c-\delta, c+\delta)$ and $(c-\delta, c+\delta) \subset E$, then $N(c ; \delta) \subset E$.
Thus, there exists $\delta>0$ such that $N(c ; \delta) \subset E$.
To prove $f(c)$ is a relative maximum, let $x \in N(c ; \delta)$.
We must prove $f(c) \geq f(x)$.
Since $x, c \in \mathbb{R}$, then either $x<c$ or $x=c$ or $x>c$.
We consider these cases separately.
Case 1: Suppose $x=c$.
Then $f(c)=f(x)$.
Case 2: Suppose $x<c$.
Since $x \in N(c ; \delta)$, then $|x-c|<\delta$.
Since $x<c$, then $x-c<0$, so $|x-c|=-(x-c)=c-x<\delta$.
Hence, $c-\delta<x$.
Since $c-\delta<x<c<c+\delta$, then $[x, c] \subset(c-\delta, c+\delta)$ and $(x, c) \subset(c-\delta, c)$.
Since f is continuous on $(c-\delta, c+\delta)$ and $[x, c] \subset(c-\delta, c+\delta)$, then f is continuous on $[x, c]$.

Since f is differentiable on $(c-\delta, c)$ and $(x, c) \subset(c-\delta, c)$, then f is differentiable on (x, c).

Thus, by MVT, there exists $p \in(x, c)$ such that $f^{\prime}(p)=\frac{f(c)-f(x)}{c-x}$.
Since $p \in(x, c)$ and $(x, c) \subset(c-\delta, c)$, then $p \in(c-\delta, c)$, so $f^{\prime}(p)>0$.
Hence, $\frac{f(c)-f(x)}{c-x}>0$.
Since $x<c$, then $c-x>0$, so $f(c)-f(x)>0$.
Thus, $f(c)>f(x)$.
Case 3: Suppose $x>c$.
Since $x \in N(c ; \delta)$, then $|x-c|<\delta$.

Since $x>c$, then $x-c>0$, so $|x-c|=x-c<\delta$.
Hence, $x<c+\delta$.
Since $c-\delta<c<x<c+\delta$, then $[c, x] \subset(c-\delta, c+\delta)$ and $(c, x) \subset(c, c+\delta)$.
Since f is continuous on $(c-\delta, c+\delta)$ and $[c, x] \subset(c-\delta, c+\delta)$, then f is continuous on $[c, x]$.

Since f is differentiable on $(c, c+\delta)$ and $(c, x) \subset(c, c+\delta)$, then f is differentiable on (c, x).

Thus, by MVT, there exists $q \in(c, x)$ such that $f^{\prime}(q)=\frac{f(x)-f(c)}{x-c}$.
Since $q \in(c, x)$ and $(c, x) \subset(c, c+\delta)$, then $q \in(c, c+\delta)$, so $f^{\prime}(q)<0$.
Hence, $\frac{f(x)-f(c)}{x-c}<0$.
Since $x>c$, then $x-c>0$, so $f(x)-f(c)<0$.
Thus, $f(x)<f(c)$, so $f(c)>f(x)$.
Therefore, in all cases, $f(c) \geq f(x)$, as desired.
Lemma 20. Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let c be a point.

1. If the limit of f at c exists and is positive, then there exists $\delta>0$ such that $f(x)>0$ for all $x \in N^{\prime}(c ; \delta) \cap E$.
2. If the limit of f at c exists and is negative, then there exists $\delta>0$ such that $f(x)<0$ for all $x \in N^{\prime}(c ; \delta) \cap E$.
Proof. We prove 1.
Suppose the limit of f at c exists and is positive.
Then there exists $L \in \mathbb{R}$ with $L>0$ such that $L=\lim _{x \rightarrow c} f(x)$.
Since $L>0$, then there exists $\delta>0$ such that for all $x \in E$, if $0<|x-c|<\delta$, then $|f(x)-L|<L$.

Let $x \in N^{\prime}(c ; \delta) \cap E$.
Then $x \in N^{\prime}(c ; \delta)$ and $x \in E$.
Since $x \in N^{\prime}(c ; \delta)$, then $x \in N(c ; \delta)$ and $x \neq c$.
Since $x \in N(c ; \delta)$, then $d(x, c)=|x-c|<\delta$.
Since $x \neq c$, then $x-c \neq 0$, so $|x-c|>0$.
Thus, $0<|x-c|$ and $|x-c|<\delta$, so $0<|x-c|<\delta$.
Since $x \in E$ and $0<|x-c|<\delta$, then $|f(x)-L|<L$.
Hence, $-L<f(x)-L<L$, so $-L<f(x)-L$.
Thus, $0<f(x)$, so $f(x)>0$.
Consequently, $f(x)>0$ for all $x \in N^{\prime}(c ; \delta) \cap E$.
Therefore, there exists $\delta>0$ such that $f(x)>0$ for all $x \in N^{\prime}(c ; \delta) \cap E$, as desired.

Proof. We prove 2.
Suppose the limit of f at c exists and is negative.
Then there exists $L \in \mathbb{R}$ with $L<0$ such that $L=\lim _{x \rightarrow c} f(x)$.
Since $L<0$, then $-L>0$, so there exists $\delta>0$ such that for all $x \in E$, if $0<|x-c|<\delta$, then $|f(x)-L|<-L$.

Let $x \in N^{\prime}(c ; \delta) \cap E$.
Then $x \in N^{\prime}(c ; \delta)$ and $x \in E$.
Since $x \in N^{\prime}(c ; \delta)$, then $x \in N(c ; \delta)$ and $x \neq c$.
Since $x \in N(c ; \delta)$, then $d(x, c)=|x-c|<\delta$.
Since $x \neq c$, then $x-c \neq 0$, so $|x-c|>0$.
Thus, $0<|x-c|$ and $|x-c|<\delta$, so $0<|x-c|<\delta$.
Since $x \in E$ and $0<|x-c|<\delta$, then $|f(x)-L|<-L$.
Hence, $L<f(x)-L<-L$, so $f(x)-L<-L$.
Thus, $f(x)<0$.
Consequently, $f(x)<0$ for all $x \in N^{\prime}(c ; \delta) \cap E$.
Therefore, there exists $\delta>0$ such that $f(x)<0$ for all $x \in N^{\prime}(c ; \delta) \cap E$, as desired.

Lemma 21. Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let f be differentiable at $c \in E$.

1. If $f^{\prime}(c)>0$, then there exists $\delta>0$ such that $f(c)>f(x)$ for all $x \in(c-\delta, c) \cap E$.
2. If $f^{\prime}(c)<0$, then there exists $\delta>0$ such that $f(c)>f(x)$ for all $x \in(c, c+\delta) \cap E$.

Proof. We prove 1.
Suppose $f^{\prime}(c)>0$.
Then $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}>0$.
Since $E-\{c\} \subset E$ and $E \subset \mathbb{R}$, then $E-\{c\} \subset \mathbb{R}$.
Let $q: E-\{c\} \rightarrow \mathbb{R}$ be a function defined by $q(x)=\frac{f(x)-f(c)}{x-c}$.
Then $f^{\prime}(c)=\lim _{x \rightarrow c} q(x)>0$, so the limit of q at c exists and is positive.
Hence, by the previous lemma, there exists $\delta>0$ such that $q(x)>0$ for all $x \in N^{\prime}(c ; \delta) \cap E$.

Thus, there exists $\delta>0$ such that $\frac{f(x)-f(c)}{x-c}>0$ for all $x \in N^{\prime}(c ; \delta) \cap E$.
Let $x \in(c-\delta, c) \cap E$.
Then $x \in(c-\delta, c)$ and $x \in E$.
Since $(c-\delta, c) \subset(c-\delta, c) \cup(c, c+\delta)=N^{\prime}(c ; \delta)$, then $(c-\delta, c) \subset N^{\prime}(c, \delta)$.
Since $x \in(c-\delta, c)$ and $(c-\delta, c) \subset N^{\prime}(c, \delta)$, then $x \in N^{\prime}(c, \delta)$.
Since $x \in N^{\prime}(c, \delta)$ and $x \in E$, then $x \in N^{\prime}(c, \delta) \cap E$, so $\frac{f(x)-f(c)}{x-c}>0$.
Since $x \in(c-\delta, c)$, then $c-\delta<x<c$, so $x<c$.
Thus, $x-c<0$.
Since $\frac{f(x)-f(c)}{x-c}>0$, then $f(x)-f(c)<0$, so $f(x)<f(c)$.
Hence, $f(c)>f(x)$, so $f(c)>f(x)$ for all $x \in(c-\delta, c) \cap E$.
Therefore, there exists $\delta>0$ such that $f(c)>f(x)$ for all $x \in(c-\delta, c) \cap E$, as desired.

Proof. We prove 2.
Suppose $f^{\prime}(c)<0$.
Then $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}<0$.

Since $E-\{c\} \subset E$ and $E \subset \mathbb{R}$, then $E-\{c\} \subset \mathbb{R}$.
Let $q: E-\{c\} \rightarrow \mathbb{R}$ be a function defined by $q(x)=\frac{f(x)-f(c)}{x-c}$.
Then $f^{\prime}(c)=\lim _{x \rightarrow c} q(x)<0$, so the limit of q at c exists and is negative.
Hence, by the previous lemma, there exists $\delta>0$ such that $q(x)<0$ for all $x \in N^{\prime}(c ; \delta) \cap E$.

Thus, there exists $\delta>0$ such that $\frac{f(x)-f(c)}{x-c}<0$ for all $x \in N^{\prime}(c ; \delta) \cap E$.
Let $x \in(c, c+\delta) \cap E$.
Then $x \in(c, c+\delta)$ and $x \in E$.
Since $(c, c+\delta) \subset(c-\delta, c) \cup(c, c+\delta)=N^{\prime}(c ; \delta)$, then $(c, c+\delta) \subset N^{\prime}(c, \delta)$.
Since $x \in(c, c+\delta)$ and $(c, c+\delta) \subset N^{\prime}(c, \delta)$, then $x \in N^{\prime}(c, \delta)$.
Since $x \in N^{\prime}(c, \delta)$ and $x \in E$, then $x \in N^{\prime}(c, \delta) \cap E$, so $\frac{f(x)-f(c)}{x-c}<0$.
Since $x \in(c, c+\delta)$, then $c<x<c+\delta$, so $c<x$.
Thus, $x-c>0$.
Since $\frac{f(x)-f(c)}{x-c}<0$, then $f(x)-f(c)<0$, so $f(x)<f(c)$.
Hence, $f^{x-c}(c)^{\prime}>f(x)$, so $f(c)>f(x)$ for all $x \in(c, c+\delta) \cap E$.
Therefore, there exists $\delta>0$ such that $f(c)>f(x)$ for all $x \in(c, c+\delta) \cap E$, as desired.

Theorem 22. Intermediate Value property of Derivatives

Let $a, b \in \mathbb{R}$ with $a<b$.
Let f be a real valued function differentiable on the closed interval $[a, b]$.
For every real number k such that $f^{\prime}(a)<k<f^{\prime}(b)$, there exists $c \in(a, b)$ such that $f^{\prime}(c)=k$.

Proof. Let k be an arbitrary real number such that $f^{\prime}(a)<k<f^{\prime}(b)$.
Then $f^{\prime}(a)<k$ and $k<f^{\prime}(b)$, so $f^{\prime}(a)-k<0$ and $0<f^{\prime}(b)-k$.
Let $g:[a, b] \rightarrow \mathbb{R}$ be a function defined by $g(x)=f(x)-k x$.
Since f is differentiable on $[a, b]$, then $g^{\prime}(x)=f^{\prime}(x)-k$ for all $x \in[a, b]$, so g is differentiable on $[a, b]$.

Hence, g is differentiable, so g is continuous.
Thus, g is continuous on $[a, b]$.
Since $a<b$, then the closed interval $[a, b]$ is not empty, so by EVT, g attains a minimum on $[a, b]$.

Let $g(c)$ be a minimum of g on $[a, b]$.
Then there exists $c \in[a, b]$ such that $g(c) \leq g(x)$ for all $x \in[a, b]$.
Since $c \in[a, b]$, then $a \leq c \leq b$, so $a \leq c$ and $c \leq b$.
We prove $c<b$.
Since $b \in[a, b]$, then $g^{\prime}(b)=f^{\prime}(b)-k>0$, so g is differentiable at b.
Thus, by the previous lemma, there exists $\delta_{1}>0$ such that $g(b)>g(x)$ for all $x \in\left(b-\delta_{1}, b\right) \cap[a, b]$.

Let $x \in\left(b-\delta_{1}, b\right) \cap[a, b]$.
Then $x \in\left(b-\delta_{1}, b\right)$ and $x \in[a, b]$ and $g(b)>g(x)$.
Since $x \in[a, b]$ and $g(c)$ is a minimum of g on $[a, b]$, then $g(c) \leq g(x)$.
Thus, $g(c) \leq g(x)$ and $g(x)<g(b)$, so $g(c)<g(b)$.
Since $c=b$ implies $g(c)=g(b)$, then $g(c) \neq g(b)$ implies $c \neq b$.
Since $g(c)<g(b)$, then $g(c) \neq g(b)$, so $c \neq b$.
Since $c \leq b$ and $c \neq b$, then $c<b$.

We prove $a<c$.
Since $a \in[a, b]$, then $g^{\prime}(a)=f^{\prime}(a)-k<0$, so g is differentiable at a.
Thus, by the previous lemma, there exists $\delta_{2}>0$ such that $g(a)>g(x)$ for all $x \in\left(a, a+\delta_{2}\right) \cap[a, b]$.

Let $y \in\left(a, a+\delta_{2}\right) \cap[a, b]$.
Then $y \in\left(a, a+\delta_{2}\right)$ and $y \in[a, b]$ and $g(a)>g(y)$.
Since $y \in[a, b]$ and $g(c)$ is a minimum of g on $[a, b]$, then $g(c) \leq g(y)$.
Thus, $g(c) \leq g(y)$ and $g(y)<g(a)$, so $g(c)<g(a)$.
Since $c=a$ implies $g(c)=g(a)$, then $g(c) \neq g(a)$ implies $c \neq a$.
Since $g(c)<g(a)$, then $g(c) \neq g(a)$, so $c \neq a$.
Since $c \geq a$ and $c \neq a$, then $c>a$.

Since $a<c$ and $c<b$, then $a<c<b$, so $c \in(a, b)$.
Since the open interval (a, b) is an open set, then c is an interior point of (a, b).

Hence, there exists $\delta>0$ such that $N(c ; \delta) \subset(a, b)$.
Since $N(c ; \delta) \subset(a, b)$ and $(a, b) \subset[a, b]$, then $N(c ; \delta) \subset[a, b]$.
Thus, there exists $\delta>0$ such that $N(c ; \delta) \subset[a, b]$.

Let $p \in N(c ; \delta)$.
Since $N(c ; \delta) \subset[a, b]$, then $p \in[a, b]$.
Since $g(c)$ is a minimum of g on $[a, b]$, then $g(c) \leq g(p)$.
Hence, $g(c) \leq g(p)$ for all $p \in N(c ; \delta)$.

Since there exists $\delta>0$ such that $N(c ; \delta) \subset[a, b]$ and $g(c) \leq g(p)$ for all $p \in N(c ; \delta)$, then $g(c)$ is a relative minimum of g.

Since $c \in[a, b]$, then $g^{\prime}(c)=f^{\prime}(c)-k$, so g is differentiable at c.
Since $g(c)$ is a relative minimum of g and g is differentiable at c, then by a previous lemma to Rolle's theorem, $g^{\prime}(c)=0$.

Thus, $0=g^{\prime}(c)=f^{\prime}(c)-k$, so $f^{\prime}(c)=k$.
Therefore, there exists $c \in(a, b)$ such that $f^{\prime}(c)=k$, as desired.

L'Hopital's Rule

Theorem 23. Cauchy Mean Value Theorem
Let $a, b \in \mathbb{R}$ with $a<b$.
Let f be a real valued function continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b).

Let g be a real valued function continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b).

Then there exists $c \in(a, b)$ such that $f^{\prime}(c)(g(b)-g(a))=g^{\prime}(c)(f(b)-f(a))$.
Proof. Let $h:[a, b] \rightarrow \mathbb{R}$ be a function defined by $h(x)=f(x)(g(b)-g(a))-$ $g(x)(f(b)-f(a))$.

Then $h=f(g(b)-g(a))-g(f(b)-f(a))$.
Since f is continuous on $[a, b]$, then the scalar multiple $f(g(b)-g(a))$ is continuous on $[a, b]$.

Since g is continuous on $[a, b]$, then the scalar multiple $g(f(b)-f(a))$ is continuous on $[a, b]$.

Hence, the difference $h=f(g(b)-g(a))-g(f(b)-f(a))$ is continuous on $[a, b]$.

Let $x \in(a, b)$.
Since f is differentiable on (a, b) and g is differentiable on (a, b), then $h^{\prime}(x)=$ $f^{\prime}(x)(g(b)-g(a))-g^{\prime}(x)(f(b)-f(a))$, so h is differentiable on (a, b).

Observe that

$$
\begin{aligned}
h(a) & =f(a)(g(b)-g(a))-g(a)(f(b)-f(a)) \\
& =f(a) g(b)-f(a) g(a)-g(a) f(b)+g(a) f(a) \\
& =f(a) g(b)-g(a) f(b) \\
& =f(b) g(b)-g(a) f(b)-g(b) f(b)+f(a) g(b) \\
& =f(b)(g(b)-g(a))-g(b)(f(b)-f(a)) \\
& =h(b) .
\end{aligned}
$$

Since h is continuous on $[a, b]$ and differentiable on (a, b) and $h(a)=h(b)$, then by Rolle's theorem, there exists $c \in(a, b)$ such that $h^{\prime}(c)=0$.

Thus, $0=h^{\prime}(c)=f^{\prime}(c)(g(b)-g(a))-g^{\prime}(c)(f(b)-f(a))$, so $g^{\prime}(c)(f(b)-$ $f(a))=f^{\prime}(c)(g(b)-g(a))$.

Therefore, there exists $c \in(a, b)$ such that $f^{\prime}(c)(g(b)-g(a))=g^{\prime}(c)(f(b)-$ $f(a)$), as desired.

