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Derivative of a real valued function

Theorem 1. Alternate definition of derivative of a function
Let E be an open subset of R.
Let f : E → R be a function.
Let c ∈ E.
Since E is open, then c is an interior point of E, so there exists δ > 0 such

that N(c; δ) ⊂ E.

Let Q : (0, δ)→ R be a function defined by Q(h) = f(c+h)−f(c)
h .

If limh→0
f(c+h)−f(c)

h exists, then f is differentiable at c and f ′(c) = limh→0
f(c+h)−f(c)

h .

Proof. Suppose limh→0
f(c+h)−f(c)

h exists.

Let L = limh→0
f(c+h)−f(c)

h .
Then L ∈ R.
Since c is an interior point of E, then c is an accumulation point of E.

To prove f is differentiable at c, we prove limx→c
f(x)−f(c)

x−c = L.
Let ε > 0 be given.

Since limh→0
f(c+h)−f(c)

h = L, then there exists γ > 0 such that for all h, if

0 < |h| < γ, then | f(c+h)−f(c)h − L| < ε.
Let x ∈ E such that 0 < |x− c| < γ.
Let h = x− c.
Then 0 < |h| < γ, so | f(c+h)−f(c)h − L| < ε.

Since c+ h = x, then | f(x)−f(c)x−c − L| < ε.

Thus, limx→c
f(x)−f(c)

x−c = L.

Therefore, f is differentiable at c and f ′(c) = limx→c
f(x)−f(c)

x−c = L =

limh→0
f(c+h)−f(c)

h .

Proposition 2. the derivative of a constant is zero
Let k ∈ R be fixed.
Let f : R→ R be the function defined by f(x) = k.
Then f ′(x) = 0 for all x ∈ R.



Proof. We prove f ′(x) = 0 for all x ∈ R using the definition of derivative.
Let c ∈ R be given.
We must prove f ′(c) = 0.

Let q : R − {c} → R be a function defined by q(x) = f(x)−f(c)
x−c for all

x ∈ R− {c}.
Since c ∈ R and every real number is an accumulation point of R, then c

is an accumulation point of R, so c is an accumulation point of R − {c}, the
domain of q.

For x ∈ R− {c}, we have x ∈ R and x 6= c, so x− c 6= 0.
Observe that

lim
x→c

q(x) = lim
x→c

f(x)− f(c)

x− c

= lim
x→c

k − k
x− c

= lim
x→c

0

x− c
= lim

x→c
0

= 0.

Thus, f ′(c) = limx→c
f(x)−f(c)

x−c = 0, as desired.

Proposition 3. the derivative of the identity function is 1
Let f : R→ R be the function defined by f(x) = x.
Then f ′(x) = 1 for all x ∈ R.

Proof. We prove f ′(x) = 1 for all x ∈ R using the definition of derivative.
Let c ∈ R be given.
We must prove f ′(c) = 1.

Let q : R − {c} → R be a function defined by q(x) = f(x)−f(c)
x−c for all

x ∈ R− {c}.
Since c ∈ R and every real number is an accumulation point of R, then c

is an accumulation point of R, so c is an accumulation point of R − {c}, the
domain of q.

For x ∈ R− {c}, we have x ∈ R and x 6= c, so x− c 6= 0.
Observe that

lim
x→c

q(x) = lim
x→c

f(x)− f(c)

x− c

= lim
x→c

x− c
x− c

= lim
x→c

1

= 1.

Thus, f ′(c) = limx→c
f(x)−f(c)

x−c = 1, as desired.
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Theorem 4. differentiability implies continuity
Let f be a real valued function of a real variable x.
If f is differentiable at c, then f is continuous at c.

Proof. Suppose f is differentiable at c.

Then c ∈ domf and c is an accumulation point of domf and limx→c
f(x)−f(c)

x−c =
f ′(c) exists and f ′(c) ∈ R.

Let q : domf − {c} → R be a function defined by q(x) = f(x)−f(c)
x−c .

For each x ∈ domf − {c}, we have x ∈ domf and x 6= c, so x− c 6= 0.
Thus,

f(c) = 0 · f ′(c) + f(c)

= lim
x→c

(x− c) · lim
x→c

f(x)− f(c)

x− c
+ lim
x→c

f(c)

= lim
x→c

(x− c) · f(x)− f(c)

x− c
+ lim
x→c

f(c)

= lim
x→c

[f(x)− f(c)] + lim
x→c

f(c)

= lim
x→c

[f(x)− f(c) + f(c)]

= lim
x→c

f(x).

Since c is an accumulation point of domf and limx→c f(x) = f(c), then f is
continuous at c.

Corollary 5. Every differentiable function is continuous.
Let f be a real valued function of a real variable x.
If f is differentiable, then f is continuous.

Proof. Suppose f is differentiable.
To prove f is continuous, let x ∈ domf .
We must prove f is continuous at x.
Since f is differentiable, then f is differentiable on domf .
Since x ∈ domf , then f is differentiable at x, so f is continuous at x.

Algebraic properties of derivatives

Theorem 6. scalar multiple rule for derivatives
Let f be a real valued function of a real variable x.
If f is differentiable at c, then for every λ ∈ R, the function λf is differen-

tiable at c and (λf)′(c) = λf ′(c).

Proof. Suppose f is differentiable at c.
Then c ∈ domf and c is an accumulation point of domf and f ′(c) ∈ R and

f ′(c) = limx→c
f(x)−f(c)

x−c .
Let λ ∈ R be given.
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Since dom(λf) = domf and c ∈ domf and c is an accumulation point of
domf , then c ∈ dom(λf) and c is an accumulation point of dom(λf).

Observe that

λf ′(c) = λ lim
x→c

f(x)− f(c)

x− c

= lim
x→c

λ[f(x)− f(c)]

x− c

= lim
x→c

λf(x)− λf(c)

x− c

= lim
x→c

(λf)(x)− (λf)(c)

x− c
= (λf)′(c).

Therefore, λf is differentiable at c and (λf)′(c) = λf ′(c).

Theorem 7. derivative of a sum equals sum of a derivative
Let f and g be real valued functions of a real variable x.
Let c be an accumulation point of domf ∩ domg.
If f is differentiable at c and g is differentiable at c, then the function f + g

is differentiable at c and
(f + g)′(c) = f ′(c) + g′(c).

Proof. Suppose f is differentiable at c and g is differentiable at c.
Since f is differentiable at c, then c ∈ domf and f ′(c) ∈ R and f ′(c) =

limx→c
f(x)−f(c)

x−c .
Since g is differentiable at c, then c ∈ domg and g′(c) ∈ R and g′(c) =

limx→c
g(x)−g(c)
x−c .

Since c ∈ domf and c ∈ domg, then c ∈ domf ∩ domg.
Since dom(f + g) = domf ∩ domg and c ∈ domf ∩ domg and c is an accu-

mulation point of domf ∩ domg, then c ∈ dom(f + g) and c is an accumulation
point of dom(f + g).

Observe that

f ′(c) + g′(c) = lim
x→c

f(x)− f(c)

x− c
+ lim
x→c

g(x)− g(c)

x− c

= lim
x→c

[
f(x)− f(c)

x− c
+
g(x)− g(c)

x− c
]

= lim
x→c

f(x)− f(c) + g(x)− g(c)

x− c

= lim
x→c

f(x) + g(x)− f(c)− g(c)

x− c

= lim
x→c

[f(x) + g(x)]− [f(c) + g(c)]

x− c

= lim
x→c

(f + g)(x)− (f + g)(c)

x− c
= (f + g)′(c).
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Therefore, f + g is differentiable at c and (f + g)′(c) = f ′(c) + g′(c).

Corollary 8. derivative of a difference equals difference of a derivative
Let f and g be real valued functions of a real variable x.
Let c be an accumulation point of domf ∩ domg.
If f is differentiable at c and g is differentiable at c, then the function f − g

is differentiable at c and
(f − g)′(c) = f ′(c)− g′(c).

Proof. Suppose f is differentiable at c and g is differentiable at c.
Since g is differentiable at c, then the function −g is differentiable at c and

(−g)′(c) = (−1)g′(c).
Since c is an accumulation point of domf ∩ domg and dom(−g) = domg,

then c is an accumulation point of domf ∩ dom(−g).
Since f is differentiable at c and −g is differentiable at c, then the function

f + (−g) is differentiable at c and (f + (−g))′(c) = f ′(c) + (−g)′(c).
Observe that

f ′(c)− g′(c) = f ′(c) + (−1)g′(c)

= f ′(c) + (−g)′(c)

= (f + (−g))′(c)

= (f − g)′(c).

Therefore, f − g is differentiable at c and (f − g)′(c) = f ′(c)− g′(c).

Theorem 9. product rule for derivatives
Let f and g be real valued functions of a real variable x.
Let c be an accumulation point of domf ∩ domg.
If f is differentiable at c and g is differentiable at c, then the function fg is

differentiable at c and
(fg)′(c) = f(c)g′(c) + g(c)f ′(c).

Proof. Suppose f is differentiable at c and g is differentiable at c.
Since f is differentiable at c, then c ∈ domf and f ′(c) ∈ R and f ′(c) =

limx→c
f(x)−f(c)

x−c .
Since g is differentiable at c, then c ∈ domg and g′(c) ∈ R and g′(c) =

limx→c
g(x)−g(c)
x−c .

Since c ∈ domf and c ∈ domg, then c ∈ domf ∩ domg.
Since c is an accumulation point of domf ∩ domg and domf ∩ domg is a

subset of domf , then c is an accumulation point of domf .
Since f is differentiable at c, then f is continuous at c.
Since c ∈ domf and c is an accumulation point of domf and f is continuous

at c, then limx→c f(x) = f(c).
Since dom(fg) = domf ∩ domg and c ∈ domf ∩ domg and c is an accumu-

lation point of domf ∩ domg, then c ∈ dom(fg) and c is an accumulation point
of dom(fg).
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Observe that

f(c)g′(c) + g(c)f ′(c) = lim
x→c

f(x) · lim
x→c

g(x)− g(c)

x− c
+ g(c) · lim

x→c

f(x)− f(c)

x− c

= lim
x→c

f(x)[g(x)− g(c)]

x− c
+ lim
x→c

g(c)[f(x)− f(c)]

x− c

= lim
x→c

f(x)[g(x)− g(c)]

x− c
+
g(c)[f(x)− f(c)]

x− c

= lim
x→c

f(x)[g(x)− g(c)] + g(c)[f(x)− f(c)]

x− c

= lim
x→c

f(x)g(x)− f(x)g(c) + g(c)f(x)− g(c)f(c)

x− c

= lim
x→c

f(x)g(x)− f(x)g(c) + f(x)g(c)− f(c)g(c)

x− c

= lim
x→c

f(x)g(x)− f(c)g(c)

x− c

= lim
x→c

(fg)(x)− (fg)(c)

x− c
= (fg)′(c).

Therefore, fg is differentiable at c and (fg)′(c) = f(c)g′(c) + g(c)f ′(c).

Theorem 10. quotient rule for derivatives
Let f and g be real valued functions of a real variable x.
Let c be an accumulation point of domf ∩ domg.
If f is differentiable at c and g is differentiable at c and g(c) 6= 0, then the

function f
g is differentiable at c and

( fg )′(c) = g(c)f ′(c)−f(c)g′(c)
(g(c))2 .

Proof. Suppose f is differentiable at c and g is differentiable at c.
Since f is differentiable at c, then c ∈ domf and f ′(c) ∈ R and f ′(c) =

limx→c
f(x)−f(c)

x−c .
Since g is differentiable at c, then c ∈ domg and g′(c) ∈ R and g′(c) =

limx→c
g(x)−g(c)
x−c .

Since c is an accumulation point of domf ∩ domg and domf ∩ domg is a
subset of domg, then c is an accumulation point of domg.

Since g is differentiable at c, then g is continuous at c.
Since c ∈ domg and c is an accumulation point of domg and g is continuous

at c, then limx→c g(x) = g(c).
Since limx→c g(x) = g(c) and g(c) 6= 0, then limx→c

1
g(x) = 1

limx→c g(x)
= 1

g(c) .

Since c ∈ domf and c ∈ domg, then c ∈ domf ∩ domg.
Since c ∈ domf ∩ domg and g(c) 6= 0, then c is in the domain of f

g .
Since c is an accumulation point of domf ∩ domg, then c is an accumulation

point of the domain of f
g .

Observe that
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g(c)f ′(c)− f(c)g′(c)

(g(c))2
=

1

g(c)
· f ′(c)− f(c)

g(c)
· 1

g(c)
· g′(c)

= lim
x→c

1

g(x)
· lim
x→c

f(x)− f(c)

x− c
− f(c)

g(c)
· lim
x→c

1

g(x)
· lim
x→c

g(x)− g(c)

x− c

= lim
x→c

f(x)− f(c)

g(x)(x− c)
− f(c)

g(c)
· lim
x→c

g(x)− g(c)

g(x)(x− c)

= lim
x→c

[f(x)− f(c)]g(c)

g(x)g(c)(x− c)
− lim
x→c

f(c)[g(x)− g(c)]

g(x)g(c)(x− c)

= lim
x→c

[f(x)− f(c)]g(c)− f(c)[g(x)− g(c)]

g(x)g(c)(x− c)

= lim
x→c

f(x)g(c)− f(c)g(c)− f(c)g(x) + f(c)g(c)

g(x)g(c)(x− c)

= lim
x→c

f(x)g(c)− f(c)g(x)

g(x)g(c)(x− c)

= lim
x→c

f(x)
g(x) −

f(c)
g(c)

x− c

= lim
x→c

( fg )(x)− ( fg )(c)

x− c

= (
f

g
)′(c).

Therefore, f
g is differentiable at c and ( fg )′(c) = g(c)f ′(c)−f(c)g′(c)

(g(c))2 .

Corollary 11. power rule for derivatives
Let n ∈ Z be fixed.
Let f : R∗ → R be the function defined by f(x) = xn.
Then f ′(x) = nxn−1.

Proof. We prove for n = 0, if f(x) = xn for all nonzero x ∈ R, then f ′(x) =
nxn−1.

Let n = 0.
Suppose f(x) = xn for all nonzero x ∈ R.
Then f(x) = xn = x0 = 1 for all nonzero x ∈ R, so f ′(x) = 0 for all nonzero

x ∈ R.
Let x ∈ R with x 6= 0.
Then f ′(x) = 0 = 0 · x−1 = 0x0−1 = nxn−1.

Proof. We prove for all positive integers n, if f(x) = xn for all nonzero x ∈ R,
then f ′(x) = nxn−1 by induction on n.

Let S = {n ∈ Z+ : if f(x) = xn for all nonzero x ∈ R, then f ′(x) = nxn−1}.
Basis:
Suppose f(x) = x1 = x for all nonzero x ∈ R.
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Then f ′(x) = 1 for all nonzero x ∈ R.
Let x ∈ R with x 6= 0.
Since x 6= 0, then f ′(x) = 1 = 1 · 1 = 1 · x0 = 1 · x1−1, so 1 ∈ S.
Induction:
Suppose k ∈ S.
Then k ∈ Z+ and if f(x) = xk for all nonzero x ∈ R, then f ′(x) = kxk−1.
Since k ∈ Z+, then k + 1 ∈ Z+.
Suppose g(x) = xk+1 for all nonzero x ∈ R.
Then g(x) = xk · x for all nonzero x ∈ R.
Let f and h be functions defined by f(x) = xk and h(x) = x for all nonzero

x ∈ R.
Then g = fh is the function defined by g(x) = f(x) · h(x) for all nonzero

x ∈ R.
Since f(x) = xk for all nonzero x ∈ R, then f ′(x) = kxk−1.
Since h(x) = x for all nonzero x ∈ R, then h′(x) = 1 for all nonzero x ∈ R.
Let x ∈ R with x 6= 0.
Since domf ∩ domh = R ∩ R = R and x ∈ R and every real number is an

accumulation point of R, then x is an accumulation point of domf ∩ domh.
Since x is a nonzero real number, then f(x) = xk and f ′(x) = kxk−1 and

h(x) = x and h′(x) = 1.
Thus,

g′(x) = (fh)′(x)

= f(x) · h′(x) + h(x) · f ′(x)

= xk · 1 + x · kxk−1

= xk + kxk

= (1 + k)xk

= (k + 1)xk.

Hence, if g(x) = xk+1 for all nonzero x ∈ R, then g′(x) = (k + 1)xk.
Since k + 1 ∈ Z+, then this implies k + 1 ∈ S.
Hence, k ∈ S implies k + 1 ∈ S for all k ∈ Z+.
Since 1 ∈ S and k ∈ S implies k + 1 ∈ S for all k ∈ Z+, then by induction,

S = Z+.
Therefore, for all n ∈ Z+, if f(x) = xn for all nonzero x ∈ R, then f ′(x) =

nxn−1.

Proof. We prove for all negative integers n, if f(x) = xn for all nonzero x ∈ R,
then f ′(x) = nxn−1.

Let n be an arbitrary negative integer.
Then n ∈ Z and n < 0.
Thus, there exists k ∈ Z such that k = −n > 0, so n = −k and k is a positive

integer.
Suppose f(x) = xn for all nonzero x ∈ R.
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Let x ∈ R with x 6= 0.
Then f(x) = xn = x−k = 1

xk .

Let g and h be functions defined by g(x) = 1 and h(x) = xk for all nonzero
x ∈ R.

Then f = g
h is the function defined by f(x) = g(x)

h(x) for all nonzero x ∈ R.

Since g(x) = 1 for all nonzero x ∈ R, then g′(x) = 0 for all nonzero x ∈ R.
Since k is a positive integer and h(x) = xk for all nonzero x ∈ R, then

h′(x) = kxk−1.
Let x ∈ R∗.
Then x ∈ R and x 6= 0.
Since x ∈ R∗ and R∗ is an open set, then x is an interior point of R∗, so x

is an accumulation point of R∗.
Since domg ∩ domh = R∗ ∩R∗ = R∗, then this implies x is an accumulation

point of domg ∩ domh.
Since x is a nonzero real number, then g(x) = 1 and g′(x) = 0 and h(x) = xk

and h′(x) = kxk−1.
Since x 6= 0 and k > 0, then xk 6= 0, so h(x) 6= 0.
Thus,

f ′(x) = (
g

h
)′(x)

=
h(x) · g′(x)− g(x) · h′(x)

[h(x)]2

=
xk · 0− 1 · kxk−1

(xk)2

=
−kxk−1

x2k

= −kx−k−1

= nxn−1.

Therefore, if f(x) = xn for all nonzero x ∈ R, then f ′(x) = nxn−1.

Proposition 12. derivatives of trig functions
1. d

dx (tanx) = sec2 x.

2. d
dx (cotx) = − csc2 x.

3. d
dx (secx) = secx tanx.

4. d
dx (cscx) = − cscx cotx.

Proof. We prove 1.
Observe that
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d

dx
(tanx) =

d

dx
(

sinx

cosx
)

=
(cosx)(cosx)− (sinx)(− sinx)

cos2 x

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x

= sec2 x.

Proof. We prove 2.
Observe that

d

dx
(cotx) =

d

dx
(
cosx

sinx
)

=
(sinx)(− sinx)− (cosx)(cosx)

sin2 x

=
− sin2 x− cos2 x

sin2 x

=
−(sin2 x+ cos2 x)

sin2 x

=
−1

sin2 x

= − csc2 x.

Proof. We prove 3.
Observe that

d

dx
(secx) =

d

dx
(

1

cosx
)

=
(cosx)(0)− (1)(− sinx)

cos2 x

=
sinx

cos2 x

=
1 · sinx

cosx · cosx

=
1

cosx
· sinx

cosx
= secx tanx.
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Proof. We prove 4.
Observe that

d

dx
(cscx) =

d

dx
(

1

sinx
)

=
(sinx)(0)− (1)(cosx)

sin2 x

=
− cosx

sin2 x

=
−1 · cosx

sinx · sinx

=
−1

sinx
· cosx

sinx
= − cscx cotx.

Theorem 13. chain rule for derivatives
Let f and g be real valued functions such that rngf ⊂ domg.
If f is differentiable at c and g is differentiable at f(c), then the function

g ◦ f is differentiable at c and
(g ◦ f)′(c) = g′(f(c)) · f ′(c).

Proof. Suppose f is differentiable at c and g is differentiable at f(c).
Since f is differentiable at c, then c ∈ domf and c is an accumulation point

of domf and f ′(c) = limx→c
f(x)−f(c)

x−c and f is continuous at c.
Since g is differentiable at f(c), then f(c) ∈ domg and f(c) is an accumula-

tion point of domg and g′(f(c)) exists.

Let δ > 0 be given.
Since c is an accumulation point of domf , then there exists x ∈ domf such

that x ∈ N ′(c; δ).
Let x ∈ domf such that x ∈ N ′(c; δ).
Since x ∈ domf , then f(x) ∈ rngf .
Since rngf ⊂ domg, then f(x) ∈ domg.
Since x ∈ N ′(c; δ), then x ∈ N(c; δ) and x 6= c.
Since f(x) ∈ domg and f(c) ∈ domg, then either f(x) = f(c) or f(x) 6= f(c).
We consider these cases separately.
Case 1: Suppose f(x) 6= f(c).
Then f(x)− f(c) 6= 0.

Let h : domg → R be a function defined by h(y) = g(y)−g(f(c))
y−f(c) if y 6= f(c)

and h(f(c)) = g′(f(c)).

Since f(x) ∈ domg and f(x) 6= f(c), then h(f(x)) = g(f(x))−g(f(c))
f(x)−f(c) .

11



If y ∈ domg and y 6= f(c), then

h(f(c)) = g′(f(c))

= lim
y→f(c)

g(y)− g(f(c))

y − f(c)

= lim
y→f(c)

h(y).

Let y = f(x).

Then y ∈ domg and y 6= f(c) and h(y) = g(y)−g(f(c))
y−f(c) .

Since y ∈ domg and y 6= f(c), then we conclude h(f(c)) = limy→f(c) h(y).
Since f(c) is an accumulation point of domg and domh = domg, then f(c)

is an accumulation point of domh.
Since f(c) is an accumulation point of domh and limy→f(c) h(y) = h(f(c)),

then by the characterization of continuity at a point, h is continuous at f(c).
Since f is continuous at c and h is continuous at f(c), then h◦f is continuous

at c.
Observe that dom(h ◦ f) = {x ∈ domf : f(x) ∈ domh} = {x ∈ domf :

f(x) ∈ domg}.
Since x ∈ domf and f(x) ∈ domg, then x ∈ dom(h ◦ f).
Thus, there exists x ∈ dom(h ◦ f) such that x ∈ N ′(c; δ) for every δ > 0.
Therefore, c is an accumulation point of dom(h ◦ f).
Since c is an accumulation point of dom(h ◦ f) and h ◦ f is continuous at

c, then by the characterization of continuity at a point, limx→c(h ◦ f)(x) =
(h ◦ f)(c) = h(f(c)) = g′(f(c)), so limx→c(h ◦ f)(x) = g′(f(c)).

Since x 6= c and f(x)− f(c) 6= 0, then

g′(f(c)) · f ′(c) = lim
x→c

(h ◦ f)(x) · lim
x→c

f(x)− f(c)

x− c

= lim
x→c

(h ◦ f)(x) · f(x)− f(c)

x− c

= lim
x→c

(h(f(x)) · f(x)− f(c)

x− c

= lim
x→c

g(f(x))− g(f(c))

f(x)− f(c)
· f(x)− f(c)

x− c

= lim
x→c

g(f(x))− g(f(c))

x− c

= lim
x→c

(g ◦ f)(x)− (g ◦ f)(c)

x− c
= (g ◦ f)′(c).

Therefore, if f(x) 6= f(c), then (g ◦ f)′(c) = g′(f(c)) · f ′(c).
Case 2: Suppose f(x) = f(c).

Since f is differentiable at c and x 6= c, then f ′(c) = limx→c
f(x)−f(c)

x−c =

limx→c
f(c)−f(c)
x−c = limx→c

0
x−c = 0, so f ′(c) = 0.
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Observe that

g′(f(c)) · f ′(c) = g′(f(c)) · 0
= 0

= lim
x→c

0

x− c

= lim
x→c

g(f(c))− g(f(c))

x− c

= lim
x→c

g(f(x))− g(f(c))

x− c

= lim
x→c

(g ◦ f)(x)− (g ◦ f)(c)

x− c
= (g ◦ f)′(c).

Therefore, if f(x) = f(c), then (g ◦ f)′(c) = g′(f(c)) · f ′(c).

Mean Value Theorem

Lemma 14. Let E ⊂ R.
Let f : E → R be a function.
Let c ∈ E.
1. If f(c) is a relative maximum and f is differentiable at c, then f ′(c) = 0.
2. If f(c) is a relative minimum and f is differentiable at c, then f ′(c) = 0.

Proof. We prove 1.
Suppose f(c) is a relative maximum and f is differentiable at c.
Since f(c) is a relative maximum, then there exists δ1 > 0 such thatN(c; δ1) ⊂

E and f(c) ≥ f(x) for all x ∈ N(c; δ1).
Since f is differentiable at c, then c ∈ E and there is a real number f ′(c)

such that f ′(c) = limx→c
f(x)−f(c)

x−c .
Since f ′(c) ∈ R, then either f ′(c) > 0 or f ′(c) = 0 or f ′(c) < 0.

Suppose f ′(c) > 0.

Since f ′(c) = limx→c
f(x)−f(c)

x−c , then there exists δ2 > 0 such that for all

x ∈ E − {c}, if 0 < |x− c| < δ2, then | f(x)−f(c)x−c − f ′(c)| < f ′(c).
Let δ = min{δ1, δ2}.
Then δ ≤ δ1 and δ ≤ δ2 and δ > 0.
Since δ > 0, then δ

2 > 0.

Let x = c+ δ
2 .

Since d(x, c) = |x− c| = | δ2 | =
δ
2 < δ ≤ δ1, then d(x, c) < δ1, so x ∈ N(c; δ1).

Hence, f(c) ≥ f(x).
Since x ∈ N(c; δ1) and N(c; δ1) ⊂ E, then x ∈ E.
Since x− c = δ

2 > 0, then x− c > 0, so x− c 6= 0.
Hence, x 6= c.
Since x ∈ E and x 6= c, then x ∈ E − {c}.
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Since 0 < |x− c| = | δ2 | =
δ
2 < δ ≤ δ2, then 0 < |x− c| < δ2.

Since x ∈ E − {c} and 0 < |x− c| < δ2, then | f(x)−f(c)x−c − f ′(c)| < f ′(c).

Thus, −f ′(c) < f(x)−f(c)
x−c − f ′(c) < f ′(c), so −f ′(c) < f(x)−f(c)

x−c − f ′(c).
Hence, 0 < f(x)−f(c)

x−c .
Since x− c > 0, then 0 < f(x)− f(c), so f(c) < f(x).
Thus, we have f(c) ≥ f(x) and f(c) < f(x), a contradiction.
Therefore, f ′(c) cannot be positive.

Suppose f ′(c) < 0.
Then −f ′(c) > 0.

Since f ′(c) = limx→c
f(x)−f(c)

x−c , then there exists δ2 > 0 such that for all

x ∈ E − {c}, if 0 < |x− c| < δ2, then | f(x)−f(c)x−c − f ′(c)| < −f ′(c).
Let δ = min{δ1, δ2}.
Then δ ≤ δ1 and δ ≤ δ2 and δ > 0.
Since δ > 0, then δ

2 > 0.

Let x = c− δ
2 .

Since d(x, c) = |x − c| = |−δ2 | = | δ2 | = δ
2 < δ ≤ δ1, then d(x, c) < δ1, so

x ∈ N(c; δ1).
Hence, f(c) ≥ f(x).
Since x ∈ N(c; δ1) and N(c; δ1) ⊂ E, then x ∈ E.
Since x− c = −δ

2 < 0, then x− c < 0, so x− c 6= 0.
Hence, x 6= c.
Since x ∈ E and x 6= c, then x ∈ E − {c}.
Since 0 < |x− c| = |−δ2 | = |

δ
2 | =

δ
2 < δ ≤ δ2, then 0 < |x− c| < δ2.

Since x ∈ E − {c} and 0 < |x− c| < δ2, then | f(x)−f(c)x−c − f ′(c)| < −f ′(c).
Thus, f ′(c) < f(x)−f(c)

x−c − f ′(c) < −f ′(c), so f(x)−f(c)
x−c − f ′(c) < −f ′(c).

Hence, f(x)−f(c)
x−c < 0.

Since x− c < 0, then f(x)− f(c) > 0, so f(x) > f(c).
Thus, we have f(c) ≥ f(x) and f(c) < f(x), a contradiction.
Therefore, f ′(c) cannot be negative.

Since f ′(c) is neither positive nor negative, then f ′(c) must be zero, so f ′(c) =
0.

Proof. We prove 2.
Suppose f(c) is a relative minimum and f is differentiable at c.
Since f(c) is a relative minimum, then there exists δ1 > 0 such thatN(c; δ1) ⊂

E and f(c) ≤ f(x) for all x ∈ N(c; δ1).
Since f is differentiable at c, then c ∈ E and there is a real number f ′(c)

such that f ′(c) = limx→c
f(x)−f(c)

x−c .
Since f ′(c) ∈ R, then either f ′(c) > 0 or f ′(c) = 0 or f ′(c) < 0.
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Suppose f ′(c) > 0.

Since f ′(c) = limx→c
f(x)−f(c)

x−c , then there exists δ2 > 0 such that for all

x ∈ E − {c}, if 0 < |x− c| < δ2, then | f(x)−f(c)x−c − f ′(c)| < f ′(c).
Let δ = min{δ1, δ2}.
Then δ ≤ δ1 and δ ≤ δ2 and δ > 0.
Since δ > 0, then δ

2 > 0.

Let x = c− δ
2 .

Since d(x, c) = |x − c| = |−δ2 | = | δ2 | = δ
2 < δ ≤ δ1, then d(x, c) < δ1, so

x ∈ N(c; δ1).
Hence, f(c) ≤ f(x).
Since x ∈ N(c; δ1) and N(c; δ1) ⊂ E, then x ∈ E.
Since x− c = −δ

2 < 0, then x− c < 0, so x− c 6= 0.
Hence, x 6= c.
Since x ∈ E and x 6= c, then x ∈ E − {c}.
Since 0 < |x− c| = |−δ2 | = |

δ
2 | =

δ
2 < δ ≤ δ2, then 0 < |x− c| < δ2.

Since x ∈ E − {c} and 0 < |x− c| < δ2, then | f(x)−f(c)x−c − f ′(c)| < f ′(c).

Thus, −f ′(c) < f(x)−f(c)
x−c − f ′(c) < f ′(c), so −f ′(c) < f(x)−f(c)

x−c − f ′(c).
Hence, 0 < f(x)−f(c)

x−c .
Since x− c < 0, then 0 > f(x)− f(c), so f(c) > f(x).
Thus, we have f(c) ≤ f(x) and f(c) > f(x), a contradiction.
Therefore, f ′(c) cannot be positive.

Suppose f ′(c) < 0.
Then −f ′(c) > 0.

Since f ′(c) = limx→c
f(x)−f(c)

x−c , then there exists δ2 > 0 such that for all

x ∈ E − {c}, if 0 < |x− c| < δ2, then | f(x)−f(c)x−c − f ′(c)| < −f ′(c).
Let δ = min{δ1, δ2}.
Then δ ≤ δ1 and δ ≤ δ2 and δ > 0.
Since δ > 0, then δ

2 > 0.

Let x = c+ δ
2 .

Since d(x, c) = |x− c| = | δ2 | =
δ
2 < δ ≤ δ1, then d(x, c) < δ1, so x ∈ N(c; δ1).

Hence, f(c) ≤ f(x).
Since x ∈ N(c; δ1) and N(c; δ1) ⊂ E, then x ∈ E.
Since x− c = δ

2 > 0, then x− c > 0, so x− c 6= 0.
Hence, x 6= c.
Since x ∈ E and x 6= c, then x ∈ E − {c}.
Since 0 < |x− c| = | δ2 | =

δ
2 < δ ≤ δ2, then 0 < |x− c| < δ2.

Since x ∈ E − {c} and 0 < |x− c| < δ2, then | f(x)−f(c)x−c − f ′(c)| < −f ′(c).
Thus, f ′(c) < f(x)−f(c)

x−c − f ′(c) < −f ′(c), so f(x)−f(c)
x−c − f ′(c) < −f ′(c).

Hence, f(x)−f(c)
x−c < 0.

Since x− c > 0, then f(x)− f(c) < 0, so f(x) < f(c).
Thus, we have f(c) ≤ f(x) and f(c) > f(x), a contradiction.
Therefore, f ′(c) cannot be negative.
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Since f ′(c) is neither positive nor negative, then f ′(c) must be zero, so f ′(c) =
0.

Theorem 15. Rolle’s Theorem
Let a, b ∈ R with a < b.
Let f be a real valued function continuous on the closed interval [a, b] and

differentiable on the open interval (a, b).
If f(a) = f(b), then there exists c ∈ (a, b) such that f ′(c) = 0.

Proof. Suppose f(a) = f(b).
We must prove there exists c ∈ (a, b) such that f ′(c) = 0.

Let k = f(a) = f(b).
Either f(x) = k for all x ∈ [a, b] or not.
We consider these cases separately.
Case 1: Suppose f(x) = k for all x ∈ [a, b].
Since a < b, then by the density of R, there exists a real number c such that

a < c < b.
Hence, c ∈ (a, b).
Since (a, b) ⊂ [a, b], then c ∈ [a, b].
Since every point in [a, b] is an accumulation point of [a, b], then c is an

accumulation point of [a, b].
Since [a, b] ⊂ R and c is an accumulation point of [a, b], then c is an accu-

mulation point of [a, b]− {c}.
Let q : [a, b] − {c} → R be a function defined by q(x) = f(x)−f(c)

x−c for all
x ∈ [a, b]− {c}.

Let x ∈ [a, b]− {c}.
Then x ∈ [a, b] and x 6= c.
Since x 6= c, then x− c 6= 0.
Since x ∈ [a, b] and c ∈ [a, b] and f(x) = k for all x ∈ [a, b], then f(x) = k =

f(c).
Thus, f(x)− f(c) = 0.

Since 0 = limx→c
0
x−c = limx→c

f(x)−f(c)
x−c = limx→c q(x) = f ′(c), then

f ′(c) = 0.
Therefore, there exists c ∈ (a, b) such that f ′(c) = 0, as desired.
Case 2: Suppose it is not the case that f(x) = k for all x ∈ [a, b].
Then there exists x ∈ [a, b] such that f(x) 6= k.
Since f(x) 6= k, then either f(x) > k or f(x) < k.
We consider these cases separately.
Case 2a: Suppose f(x) > k.
Since f is a real valued function continuous on the nonempty closed bounded

interval [a, b], then by EVT, f has a maximum on [a, b].

16



Let f(c) be a maximum of f on [a, b].
Then there exists c ∈ [a, b] such that f(c) ≥ f(x) for all x ∈ [a, b].
Since c ∈ [a, b], then a ≤ c ≤ b, so a ≤ c and c ≤ b.
Since x ∈ [a, b] and f(c) is a maximum of f on [a, b], then f(c) ≥ f(x).
Since f(c) ≥ f(x) and f(x) > k, then f(c) > k.
Since c = a implies f(c) = f(a), then f(c) 6= f(a) implies c 6= a.
Since f(c) > k = f(a), then f(c) > f(a), so f(c) 6= f(a).
Hence, c 6= a.
Since c ≥ a and c 6= a, then c > a.
Since c = b implies f(c) = f(b), then f(c) 6= f(b) implies c 6= b.
Since f(c) > k = f(b), then f(c) > f(b), so f(c) 6= f(b).
Hence, c 6= b.
Since c ≤ b and c 6= b, then c < b.
Hence, a < c and c < b, so a < c < b.
Thus, c ∈ (a, b).

Since the open interval (a, b) is an open set, then c is an interior point of
(a, b), so there exists δ > 0 such that N(c; δ) ⊂ (a, b).

Since N(c; δ) ⊂ (a, b) and (a, b) ⊂ [a, b], then N(c; δ) ⊂ [a, b].
Thus, there exists δ > 0 such that N(c; δ) ⊂ [a, b].

Let p ∈ N(c; δ).
Since N(c; δ) ⊂ [a, b], then p ∈ [a, b].
Since f(c) is a maximum of f on [a, b], then f(c) ≥ f(p).
Thus, f(c) ≥ f(p) for all p ∈ N(c; δ).

Since there exists δ > 0 such that N(c; δ) ⊂ [a, b] and f(c) ≥ f(p) for all
p ∈ N(c; δ), then f(c) is a relative maximum of f on [a, b].

Since f is differentiable on (a, b) and c ∈ (a, b), then f is differentiable at c.
Since f(c) is a relative maximum and f is differentiable at c, then by the

previous lemma, f ′(c) = 0.
Therefore, there exists c ∈ (a, b) such that f ′(c) = 0, as desired.
Case 2b: Suppose f(x) < k.
Since f is a real valued function continuous on the nonempty closed bounded

interval [a, b], then by EVT, f has a minimum on [a, b].

Let f(c) be a minimum of f on [a, b].
Then there exists c ∈ [a, b] such that f(c) ≤ f(x) for all x ∈ [a, b].
Since c ∈ [a, b], then a ≤ c ≤ b, so a ≤ c and c ≤ b.
Since x ∈ [a, b] and f(c) is a minimum of f on [a, b], then f(c) ≤ f(x).
Since f(c) ≤ f(x) and f(x) < k, then f(c) < k.
Since c = a implies f(c) = f(a), then f(c) 6= f(a) implies c 6= a.
Since f(c) < k = f(a), then f(c) < f(a), so f(c) 6= f(a).
Hence, c 6= a.
Since c ≥ a and c 6= a, then c > a.
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Since c = b implies f(c) = f(b), then f(c) 6= f(b) implies c 6= b.
Since f(c) < k = f(b), then f(c) < f(b), so f(c) 6= f(b).
Hence, c 6= b.
Since c ≤ b and c 6= b, then c < b.
Hence, a < c and c < b, so a < c < b.
Thus, c ∈ (a, b).

Since the open interval (a, b) is an open set, then c is an interior point of
(a, b), so there exists δ > 0 such that N(c; δ) ⊂ (a, b).

Since N(c; δ) ⊂ (a, b) and (a, b) ⊂ [a, b], then N(c; δ) ⊂ [a, b].
Thus, there exists δ > 0 such that N(c; δ) ⊂ [a, b].

Let p ∈ N(c; δ).
Since N(c; δ) ⊂ [a, b], then p ∈ [a, b].
Since f(c) is a minimum of f on [a, b], then f(c) ≤ f(p).
Thus, f(c) ≤ f(p) for all p ∈ N(c; δ).

Since there exists δ > 0 such that N(c; δ) ⊂ [a, b] and f(c) ≤ f(p) for all
p ∈ N(c; δ), then f(c) is a relative minimum of f on [a, b].

Since f is differentiable on (a, b) and c ∈ (a, b), then f is differentiable at c.
Since f(c) is a relative minimum and f is differentiable at c, then by the

previous lemma, f ′(c) = 0.
Therefore, there exists c ∈ (a, b) such that f ′(c) = 0, as desired.

Theorem 16. Mean Value Theorem
Let a, b ∈ R with a < b.
Let f be a real valued function continuous on the closed interval [a, b] and

differentiable on the open interval (a, b).

Then there exists c ∈ (a, b) such that f ′(c) = f(b)−f(a)
b−a .

Proof. We must prove there exists c ∈ (a, b) such that f ′(c) = f(b)−f(a)
b−a .

Since a < b, then b− a > 0, so f(b)−f(a)
b−a is a real number.

Let L be a real valued function defined by L(x) = f(b)−f(a)
b−a (x − a) + f(a)

for all x ∈ [a, b].
Let g be defined by g = f − L.
Then g is a real valued function defined by g(x) = f(x) − L(x) for all

x ∈ [a, b].

Thus, g(x) = f(x)− f(b)−f(a)
b−a (x− a)− f(a) for all x ∈ [a, b].

Since f is continuous on [a, b], then f is continuous.
Since L is a linear function, then L is continuous.
Since the difference of continuous functions is continuous, then g is contin-

uous, so g is continuous on [a, b].
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Since L is a linear function, then L is differentiable, so L is differentiable on
[a, b].

Since (a, b) ⊂ [a, b], then L is differentiable on (a, b).
Since f is differentiable on (a, b) and L is differentiable on (a, b), then the

difference g = f − L is differentiable on (a, b).
Let x ∈ (a, b).

Since L(x) = f(b)−f(a)
b−a (x− a) + f(a), then L′(x) = f(b)−f(a)

b−a .

Since g(x) = f(x)−L(x), then g′(x) = f ′(x)−L′(x) = f ′(x)− f(b)−f(a)
b−a , so

g′(x) = f ′(x)− f(b)−f(a)
b−a .

Hence, g is differentiable at x.
Thus, g is differentiable at x for all x ∈ (a, b), so g is differentiable on (a, b).

Observe that

g(a) = f(a)− f(b)− f(a)

b− a
(a− a)− f(a)

= 0

= f(b)− f(b) + f(a)− f(a)

= f(b)− (f(b)− f(a))− f(a)

= f(b)− f(b)− f(a)

b− a
(b− a)− f(a)

= g(b).

Since g is continuous on [a, b] and g is differentiable on (a, b) and g(a) = g(b),
then by Rolle’s theorem, there exists c ∈ (a, b) such that g′(c) = 0.

Since 0 = g′(c) = f ′(c)− L′(c) = f ′(c)− f(b)−f(a)
b−a , then f(b)−f(a)

b−a = f ′(c).

Therefore, there exists c ∈ (a, b) such that f ′(c) = f(b)−f(a)
b−a , as desired.

Corollary 17. Let f be a real valued function differentiable on an interval I.
Then

1. If f ′(x) = 0 for all x ∈ I, then f is constant on I.
2. If f ′(x) > 0 for all x ∈ I, then f is strictly increasing on I.
3. If f ′(x) < 0 for all x ∈ I, then f is strictly decreasing on I.

Proof. We prove 1.
Suppose f ′(x) = 0 for all x ∈ I.
To prove f is constant on I, let a, b ∈ I such that a 6= b.
We must prove f(a) = f(b).
Since a 6= b, then either a < b or a > b.
Without loss of generality, assume a < b.
Since a ∈ I and b ∈ I and a < b, then [a, b] ⊂ I.
Since f is differentiable on I and [a, b] ⊂ I, then f is differentiable on [a, b],

so f is continuous on [a, b].
Since (a, b) ⊂ [a, b] and [a, b] ⊂ I, then (a, b) ⊂ I.
Since f is differentiable on I and (a, b) ⊂ I, then f is differentiable on (a, b).
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Since f is continuous on [a, b] and differentiable on (a, b), then by MVT,

there exists c ∈ (a, b) such that f ′(c) = f(b)−f(a)
b−a .

Since c ∈ (a, b) and (a, b) ⊂ I, then c ∈ I, so f ′(c) = 0.

Hence, 0 = f ′(c) = f(b)−f(a)
b−a , so 0 = f(b)−f(a)

b−a .
Since b 6= a, then b− a 6= 0, so 0 = f(b)− f(a).
Therefore, f(a) = f(b), as desired.

Proof. We prove 2.
Suppose f ′(x) > 0 for all x ∈ I.
To prove f is strictly increasing on I, let a, b ∈ I such that a < b.
We must prove f(a) < f(b).
Since a ∈ I and b ∈ I and a < b, then [a, b] ⊂ I.
Since f is differentiable on I and [a, b] ⊂ I, then f is differentiable on [a, b],

so f is continuous on [a, b].
Since f is differentiable on [a, b] and (a, b) ⊂ [a, b], then f is differentiable

on (a, b).
Since f is continuous on [a, b] and differentiable on (a, b), then by MVT,

there exists c ∈ (a, b) such that f ′(c) = f(b)−f(a)
b−a .

Since c ∈ (a, b) and (a, b) ⊂ [a, b] ⊂ I, then c ∈ I.
Hence, f ′(c) > 0.

Thus, 0 < f ′(c) = f(b)−f(a)
b−a , so 0 < f(b)−f(a)

b−a .
Since a < b, then b− a > 0, so 0 < f(b)− f(a).
Therefore, f(a) < f(b), as desired.

Proof. We prove 3.
Suppose f ′(x) < 0 for all x ∈ I.
To prove f is strictly decreasing on I, let a, b ∈ I such that a < b.
We must prove f(a) > f(b).
Since a ∈ I and b ∈ I and a < b, then [a, b] ⊂ I.
Since f is differentiable on I and [a, b] ⊂ I, then f is differentiable on [a, b],

so f is continuous on [a, b].
Since f is differentiable on [a, b] and (a, b) ⊂ [a, b], then f is differentiable

on (a, b).
Since f is continuous on [a, b] and differentiable on (a, b), then by MVT,

there exists c ∈ (a, b) such that f ′(c) = f(b)−f(a)
b−a .

Since c ∈ (a, b) and (a, b) ⊂ [a, b] ⊂ I, then c ∈ I.
Hence, f ′(c) < 0.

Thus, 0 > f ′(c) = f(b)−f(a)
b−a , so 0 > f(b)−f(a)

b−a .
Since a < b, then b− a > 0, so 0 > f(b)− f(a).
Therefore, f(a) > f(b), as desired.

Corollary 18. functions with the same derivative on an interval differ
by a constant

Let f and g be real valued functions differentiable on an interval I.
If f ′(x) = g′(x) for all x ∈ I, then there exists C ∈ R such that f − g = C.
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Proof. Suppose f ′(x) = g′(x) for all x ∈ I.
Let h = f − g.
Then h : I → R is the function defined by h(x) = f(x)− g(x).
Let x ∈ I.
Then h(x) = f(x)− g(x), so h′(x) = f ′(x)− g′(x) = f ′(x)− f ′(x) = 0.
Hence, h′(x) = 0 for all x ∈ I, so h is differentiable on I.
Since h is differentiable on I and h′(x) = 0 for all x ∈ I, then h is constant

on I.
Thus, there exists C ∈ R such that h(x) = C for all x ∈ I.
Hence, C = h(x) = f(x)− g(x), so C = f(x)− g(x) for all x ∈ I.
Therefore, C = f − g.

Theorem 19. First Derivative Test for relative extrema of a function
continuous on an open interval

Let E ⊂ R.
Let f : E → R be a function.
Let c ∈ E.
Let there exist δ > 0 such that (c− δ, c+ δ) ⊂ E.
Suppose f is continuous on (c− δ, c+ δ) and differentiable on (c− δ, c) and

(c, c+ δ).
1. If f ′(x) < 0 for all x ∈ (c− δ, c) and f ′(x) > 0 for all x ∈ (c, c+ δ), then

f(c) is a relative minimum.
2. If f ′(x) > 0 for all x ∈ (c− δ, c) and f ′(x) < 0 for all x ∈ (c, c+ δ), then

f(c) is a relative maximum.

Proof. We prove 1.
Suppose f ′(x) < 0 for all x ∈ (c− δ, c) and f ′(x) > 0 for all x ∈ (c, c+ δ).
Since N(c; δ) = (c− δ, c+ δ) and (c− δ, c+ δ) ⊂ E, then N(c; δ) ⊂ E.
Thus, there exists δ > 0 such that N(c; δ) ⊂ E.
To prove f(c) is a relative minimum, let x ∈ N(c; δ).
We must prove f(c) ≤ f(x).
Since x, c ∈ R, then either x < c or x = c or x > c.
We consider these cases separately.
Case 1: Suppose x = c.
Then f(c) = f(x).
Case 2: Suppose x < c.
Since x ∈ N(c; δ), then |x− c| < δ.
Since x < c, then x− c < 0, so |x− c| = −(x− c) = c− x < δ.
Hence, c− δ < x.
Since c− δ < x < c < c+ δ, then [x, c] ⊂ (c− δ, c+ δ) and (x, c) ⊂ (c− δ, c).
Since f is continuous on (c − δ, c + δ) and [x, c] ⊂ (c − δ, c + δ), then f is

continuous on [x, c].
Since f is differentiable on (c − δ, c) and (x, c) ⊂ (c − δ, c), then f is differ-

entiable on (x, c).

Thus, by MVT, there exists p ∈ (x, c) such that f ′(p) = f(c)−f(x)
c−x .

Since p ∈ (x, c) and (x, c) ⊂ (c− δ, c), then p ∈ (c− δ, c), so f ′(p) < 0.
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Hence, f(c)−f(x)
c−x < 0.

Since x < c, then c− x > 0, so f(c)− f(x) < 0.
Thus, f(c) < f(x).
Case 3: Suppose x > c.
Since x ∈ N(c; δ), then |x− c| < δ.
Since x > c, then x− c > 0, so |x− c| = x− c < δ.
Hence, x < c+ δ.
Since c− δ < c < x < c+ δ, then [c, x] ⊂ (c− δ, c+ δ) and (c, x) ⊂ (c, c+ δ).
Since f is continuous on (c − δ, c + δ) and [c, x] ⊂ (c − δ, c + δ), then f is

continuous on [c, x].
Since f is differentiable on (c, c+ δ) and (c, x) ⊂ (c, c+ δ), then f is differ-

entiable on (c, x).

Thus, by MVT, there exists q ∈ (c, x) such that f ′(q) = f(x)−f(c)
x−c .

Since q ∈ (c, x) and (c, x) ⊂ (c, c+ δ), then q ∈ (c, c+ δ), so f ′(q) > 0.

Hence, f(x)−f(c)
x−c > 0.

Since x > c, then x− c > 0, so f(x)− f(c) > 0.
Thus, f(x) > f(c), so f(c) < f(x).
Therefore, in all cases, f(c) ≤ f(x), as desired.

Proof. We prove 2.
Suppose f ′(x) > 0 for all x ∈ (c− δ, c) and f ′(x) < 0 for all x ∈ (c, c+ δ).
Since N(c; δ) = (c− δ, c+ δ) and (c− δ, c+ δ) ⊂ E, then N(c; δ) ⊂ E.
Thus, there exists δ > 0 such that N(c; δ) ⊂ E.
To prove f(c) is a relative maximum, let x ∈ N(c; δ).
We must prove f(c) ≥ f(x).
Since x, c ∈ R, then either x < c or x = c or x > c.
We consider these cases separately.
Case 1: Suppose x = c.
Then f(c) = f(x).
Case 2: Suppose x < c.
Since x ∈ N(c; δ), then |x− c| < δ.
Since x < c, then x− c < 0, so |x− c| = −(x− c) = c− x < δ.
Hence, c− δ < x.
Since c− δ < x < c < c+ δ, then [x, c] ⊂ (c− δ, c+ δ) and (x, c) ⊂ (c− δ, c).
Since f is continuous on (c − δ, c + δ) and [x, c] ⊂ (c − δ, c + δ), then f is

continuous on [x, c].
Since f is differentiable on (c − δ, c) and (x, c) ⊂ (c − δ, c), then f is differ-

entiable on (x, c).

Thus, by MVT, there exists p ∈ (x, c) such that f ′(p) = f(c)−f(x)
c−x .

Since p ∈ (x, c) and (x, c) ⊂ (c− δ, c), then p ∈ (c− δ, c), so f ′(p) > 0.

Hence, f(c)−f(x)
c−x > 0.

Since x < c, then c− x > 0, so f(c)− f(x) > 0.
Thus, f(c) > f(x).
Case 3: Suppose x > c.
Since x ∈ N(c; δ), then |x− c| < δ.
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Since x > c, then x− c > 0, so |x− c| = x− c < δ.
Hence, x < c+ δ.
Since c− δ < c < x < c+ δ, then [c, x] ⊂ (c− δ, c+ δ) and (c, x) ⊂ (c, c+ δ).
Since f is continuous on (c − δ, c + δ) and [c, x] ⊂ (c − δ, c + δ), then f is

continuous on [c, x].
Since f is differentiable on (c, c+ δ) and (c, x) ⊂ (c, c+ δ), then f is differ-

entiable on (c, x).

Thus, by MVT, there exists q ∈ (c, x) such that f ′(q) = f(x)−f(c)
x−c .

Since q ∈ (c, x) and (c, x) ⊂ (c, c+ δ), then q ∈ (c, c+ δ), so f ′(q) < 0.

Hence, f(x)−f(c)
x−c < 0.

Since x > c, then x− c > 0, so f(x)− f(c) < 0.
Thus, f(x) < f(c), so f(c) > f(x).
Therefore, in all cases, f(c) ≥ f(x), as desired.

Lemma 20. Let E ⊂ R.
Let f : E → R be a function.
Let c be a point.
1. If the limit of f at c exists and is positive, then there exists δ > 0 such

that f(x) > 0 for all x ∈ N ′(c; δ) ∩ E.
2. If the limit of f at c exists and is negative, then there exists δ > 0 such

that f(x) < 0 for all x ∈ N ′(c; δ) ∩ E.

Proof. We prove 1.
Suppose the limit of f at c exists and is positive.
Then there exists L ∈ R with L > 0 such that L = limx→c f(x).
Since L > 0, then there exists δ > 0 such that for all x ∈ E, if 0 < |x−c| < δ,

then |f(x)− L| < L.

Let x ∈ N ′(c; δ) ∩ E.
Then x ∈ N ′(c; δ) and x ∈ E.
Since x ∈ N ′(c; δ), then x ∈ N(c; δ) and x 6= c.
Since x ∈ N(c; δ), then d(x, c) = |x− c| < δ.
Since x 6= c, then x− c 6= 0, so |x− c| > 0.
Thus, 0 < |x− c| and |x− c| < δ, so 0 < |x− c| < δ.
Since x ∈ E and 0 < |x− c| < δ, then |f(x)− L| < L.
Hence, −L < f(x)− L < L, so −L < f(x)− L.
Thus, 0 < f(x), so f(x) > 0.
Consequently, f(x) > 0 for all x ∈ N ′(c; δ) ∩ E.
Therefore, there exists δ > 0 such that f(x) > 0 for all x ∈ N ′(c; δ) ∩ E, as

desired.

Proof. We prove 2.
Suppose the limit of f at c exists and is negative.
Then there exists L ∈ R with L < 0 such that L = limx→c f(x).
Since L < 0, then −L > 0, so there exists δ > 0 such that for all x ∈ E, if

0 < |x− c| < δ, then |f(x)− L| < −L.
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Let x ∈ N ′(c; δ) ∩ E.
Then x ∈ N ′(c; δ) and x ∈ E.
Since x ∈ N ′(c; δ), then x ∈ N(c; δ) and x 6= c.
Since x ∈ N(c; δ), then d(x, c) = |x− c| < δ.
Since x 6= c, then x− c 6= 0, so |x− c| > 0.
Thus, 0 < |x− c| and |x− c| < δ, so 0 < |x− c| < δ.
Since x ∈ E and 0 < |x− c| < δ, then |f(x)− L| < −L.
Hence, L < f(x)− L < −L, so f(x)− L < −L.
Thus, f(x) < 0.
Consequently, f(x) < 0 for all x ∈ N ′(c; δ) ∩ E.
Therefore, there exists δ > 0 such that f(x) < 0 for all x ∈ N ′(c; δ) ∩ E, as

desired.

Lemma 21. Let E ⊂ R.
Let f : E → R be a function.
Let f be differentiable at c ∈ E.
1. If f ′(c) > 0, then there exists δ > 0 such that f(c) > f(x) for all

x ∈ (c− δ, c) ∩ E.
2. If f ′(c) < 0, then there exists δ > 0 such that f(c) > f(x) for all

x ∈ (c, c+ δ) ∩ E.

Proof. We prove 1.
Suppose f ′(c) > 0.

Then f ′(c) = limx→c
f(x)−f(c)

x−c > 0.
Since E − {c} ⊂ E and E ⊂ R, then E − {c} ⊂ R.

Let q : E − {c} → R be a function defined by q(x) = f(x)−f(c)
x−c .

Then f ′(c) = limx→c q(x) > 0, so the limit of q at c exists and is positive.
Hence, by the previous lemma, there exists δ > 0 such that q(x) > 0 for all

x ∈ N ′(c; δ) ∩ E.

Thus, there exists δ > 0 such that f(x)−f(c)
x−c > 0 for all x ∈ N ′(c; δ) ∩ E.

Let x ∈ (c− δ, c) ∩ E.
Then x ∈ (c− δ, c) and x ∈ E.
Since (c− δ, c) ⊂ (c− δ, c) ∪ (c, c+ δ) = N ′(c; δ), then (c− δ, c) ⊂ N ′(c, δ).
Since x ∈ (c− δ, c) and (c− δ, c) ⊂ N ′(c, δ), then x ∈ N ′(c, δ).
Since x ∈ N ′(c, δ) and x ∈ E, then x ∈ N ′(c, δ) ∩ E, so f(x)−f(c)

x−c > 0.
Since x ∈ (c− δ, c), then c− δ < x < c, so x < c.
Thus, x− c < 0.

Since f(x)−f(c)
x−c > 0, then f(x)− f(c) < 0, so f(x) < f(c).

Hence, f(c) > f(x), so f(c) > f(x) for all x ∈ (c− δ, c) ∩ E.
Therefore, there exists δ > 0 such that f(c) > f(x) for all x ∈ (c− δ, c)∩E,

as desired.

Proof. We prove 2.
Suppose f ′(c) < 0.

Then f ′(c) = limx→c
f(x)−f(c)

x−c < 0.
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Since E − {c} ⊂ E and E ⊂ R, then E − {c} ⊂ R.

Let q : E − {c} → R be a function defined by q(x) = f(x)−f(c)
x−c .

Then f ′(c) = limx→c q(x) < 0, so the limit of q at c exists and is negative.
Hence, by the previous lemma, there exists δ > 0 such that q(x) < 0 for all

x ∈ N ′(c; δ) ∩ E.

Thus, there exists δ > 0 such that f(x)−f(c)
x−c < 0 for all x ∈ N ′(c; δ) ∩ E.

Let x ∈ (c, c+ δ) ∩ E.
Then x ∈ (c, c+ δ) and x ∈ E.
Since (c, c+ δ) ⊂ (c− δ, c) ∪ (c, c+ δ) = N ′(c; δ), then (c, c+ δ) ⊂ N ′(c, δ).
Since x ∈ (c, c+ δ) and (c, c+ δ) ⊂ N ′(c, δ), then x ∈ N ′(c, δ).
Since x ∈ N ′(c, δ) and x ∈ E, then x ∈ N ′(c, δ) ∩ E, so f(x)−f(c)

x−c < 0.
Since x ∈ (c, c+ δ), then c < x < c+ δ, so c < x.
Thus, x− c > 0.

Since f(x)−f(c)
x−c < 0, then f(x)− f(c) < 0, so f(x) < f(c).

Hence, f(c) > f(x), so f(c) > f(x) for all x ∈ (c, c+ δ) ∩ E.
Therefore, there exists δ > 0 such that f(c) > f(x) for all x ∈ (c, c+ δ)∩E,

as desired.

Theorem 22. Intermediate Value property of Derivatives
Let a, b ∈ R with a < b.
Let f be a real valued function differentiable on the closed interval [a, b].
For every real number k such that f ′(a) < k < f ′(b), there exists c ∈ (a, b)

such that f ′(c) = k.

Proof. Let k be an arbitrary real number such that f ′(a) < k < f ′(b).
Then f ′(a) < k and k < f ′(b), so f ′(a)− k < 0 and 0 < f ′(b)− k.
Let g : [a, b]→ R be a function defined by g(x) = f(x)− kx.
Since f is differentiable on [a, b], then g′(x) = f ′(x)− k for all x ∈ [a, b], so

g is differentiable on [a, b].
Hence, g is differentiable, so g is continuous.
Thus, g is continuous on [a, b].
Since a < b, then the closed interval [a, b] is not empty, so by EVT, g attains

a minimum on [a, b].
Let g(c) be a minimum of g on [a, b].
Then there exists c ∈ [a, b] such that g(c) ≤ g(x) for all x ∈ [a, b].
Since c ∈ [a, b], then a ≤ c ≤ b, so a ≤ c and c ≤ b.

We prove c < b.
Since b ∈ [a, b], then g′(b) = f ′(b)− k > 0, so g is differentiable at b.
Thus, by the previous lemma, there exists δ1 > 0 such that g(b) > g(x) for

all x ∈ (b− δ1, b) ∩ [a, b].
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Let x ∈ (b− δ1, b) ∩ [a, b].
Then x ∈ (b− δ1, b) and x ∈ [a, b] and g(b) > g(x).
Since x ∈ [a, b] and g(c) is a minimum of g on [a, b], then g(c) ≤ g(x).
Thus, g(c) ≤ g(x) and g(x) < g(b), so g(c) < g(b).
Since c = b implies g(c) = g(b), then g(c) 6= g(b) implies c 6= b.
Since g(c) < g(b), then g(c) 6= g(b), so c 6= b.
Since c ≤ b and c 6= b, then c < b.

We prove a < c.
Since a ∈ [a, b], then g′(a) = f ′(a)− k < 0, so g is differentiable at a.
Thus, by the previous lemma, there exists δ2 > 0 such that g(a) > g(x) for

all x ∈ (a, a+ δ2) ∩ [a, b].

Let y ∈ (a, a+ δ2) ∩ [a, b].
Then y ∈ (a, a+ δ2) and y ∈ [a, b] and g(a) > g(y).
Since y ∈ [a, b] and g(c) is a minimum of g on [a, b], then g(c) ≤ g(y).
Thus, g(c) ≤ g(y) and g(y) < g(a), so g(c) < g(a).
Since c = a implies g(c) = g(a), then g(c) 6= g(a) implies c 6= a.
Since g(c) < g(a), then g(c) 6= g(a), so c 6= a.
Since c ≥ a and c 6= a, then c > a.

Since a < c and c < b, then a < c < b, so c ∈ (a, b).
Since the open interval (a, b) is an open set, then c is an interior point of

(a, b).
Hence, there exists δ > 0 such that N(c; δ) ⊂ (a, b).
Since N(c; δ) ⊂ (a, b) and (a, b) ⊂ [a, b], then N(c; δ) ⊂ [a, b].
Thus, there exists δ > 0 such that N(c; δ) ⊂ [a, b].

Let p ∈ N(c; δ).
Since N(c; δ) ⊂ [a, b], then p ∈ [a, b].
Since g(c) is a minimum of g on [a, b], then g(c) ≤ g(p).
Hence, g(c) ≤ g(p) for all p ∈ N(c; δ).

Since there exists δ > 0 such that N(c; δ) ⊂ [a, b] and g(c) ≤ g(p) for all
p ∈ N(c; δ), then g(c) is a relative minimum of g.

Since c ∈ [a, b], then g′(c) = f ′(c)− k, so g is differentiable at c.
Since g(c) is a relative minimum of g and g is differentiable at c, then by a

previous lemma to Rolle’s theorem, g′(c) = 0.
Thus, 0 = g′(c) = f ′(c)− k, so f ′(c) = k.
Therefore, there exists c ∈ (a, b) such that f ′(c) = k, as desired.
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L’Hopital’s Rule

Theorem 23. Cauchy Mean Value Theorem
Let a, b ∈ R with a < b.
Let f be a real valued function continuous on the closed interval [a, b] and

differentiable on the open interval (a, b).
Let g be a real valued function continuous on the closed interval [a, b] and

differentiable on the open interval (a, b).
Then there exists c ∈ (a, b) such that f ′(c)(g(b)− g(a)) = g′(c)(f(b)− f(a)).

Proof. Let h : [a, b] → R be a function defined by h(x) = f(x)(g(b) − g(a)) −
g(x)(f(b)− f(a)).

Then h = f(g(b)− g(a))− g(f(b)− f(a)).
Since f is continuous on [a, b], then the scalar multiple f(g(b) − g(a)) is

continuous on [a, b].
Since g is continuous on [a, b], then the scalar multiple g(f(b) − f(a)) is

continuous on [a, b].
Hence, the difference h = f(g(b) − g(a)) − g(f(b) − f(a)) is continuous on

[a, b].
Let x ∈ (a, b).
Since f is differentiable on (a, b) and g is differentiable on (a, b), then h′(x) =

f ′(x)(g(b)− g(a))− g′(x)(f(b)− f(a)), so h is differentiable on (a, b).

Observe that

h(a) = f(a)(g(b)− g(a))− g(a)(f(b)− f(a))

= f(a)g(b)− f(a)g(a)− g(a)f(b) + g(a)f(a)

= f(a)g(b)− g(a)f(b)

= f(b)g(b)− g(a)f(b)− g(b)f(b) + f(a)g(b)

= f(b)(g(b)− g(a))− g(b)(f(b)− f(a))

= h(b).

Since h is continuous on [a, b] and differentiable on (a, b) and h(a) = h(b),
then by Rolle’s theorem, there exists c ∈ (a, b) such that h′(c) = 0.

Thus, 0 = h′(c) = f ′(c)(g(b) − g(a)) − g′(c)(f(b) − f(a)), so g′(c)(f(b) −
f(a)) = f ′(c)(g(b)− g(a)).

Therefore, there exists c ∈ (a, b) such that f ′(c)(g(b)− g(a)) = g′(c)(f(b)−
f(a)), as desired.
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