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Derivative of a real valued function

Theorem 1. Alternate definition of derivative of a function
Let E be an open subset of R.
Let f: E— R be a function.
Letce E.
Since E is open, then c is an interior point of E, so there exists § > 0 such
that N(c;6) C E.
Let Q : (0,0) — R be a function defined by Q(h) = w
Iflimy,_,q w exists, then f is differentiable at ¢ and f'(¢) = limy 0 w

fleth)—f(c)

Proof. Suppose limj_,g =———=~ exists.
Let L = limh_>0 w
Then L € R.

Since ¢ is an interior point of F, then ¢ is an accumulation point of E.

To prove f is differentiable at ¢, we prove lim,_. % = L.

Let € > 0 be given.

Since limy,_,q w = L, then there exists v > 0 such that for all h, if
0 < |h] <7, then|w—lj| < e

Let z € E such that 0 < |z — ¢| < 7.

Let h=2—c.

Then 0 < |h| < 7, SO|M—L| < e

Since ¢ + h = z, then \w —Ll<e

c

Thus, lim,_,¢ % = L.

Therefore, f is differentiable at ¢ and f'(c) = lim,_,, £&=1© — 1 —

r—c

limp_yo £EEM=IE). 0
Proposition 2. the derivative of a constant is zero

Let k € R be fized.

Let f : R — R be the function defined by f(x) = k.

Then f'(x) =0 for all x € R.



Proof. We prove f'(x) =0 for all € R using the definition of derivative.

Let ¢ € R be given.

We must prove f'(c) = 0.

Let ¢ : R — {¢} — R be a function defined by ¢(z) = % for all
x e€R—{c}.

Since ¢ € R and every real number is an accumulation point of R, then ¢
is an accumulation point of R, so ¢ is an accumulation point of R — {c}, the
domain of q.

For z € R — {c}, we have x €e R and =z # ¢, so v — ¢ # 0.

Observe that

lim ¢(z) = lim
Tr—c Tr—c xr — C

Thus, f/(c) = limg_¢ % =0, as desired. O

Proposition 3. the derivative of the identity function is 1
Let f : R — R be the function defined by f(x) = x.
Then f'(x) =1 for all x € R.

Proof. We prove f’(z) =1 for all z € R using the definition of derivative.

Let ¢ € R be given.

We must prove f/(c) = 1.

Let ¢ : R — {¢} — R be a function defined by ¢(z) = w for all
ze€R—{c}.

Since ¢ € R and every real number is an accumulation point of R, then ¢
is an accumulation point of R, so ¢ is an accumulation point of R — {c}, the
domain of q.

For z € R — {c}, we have x € R and = # ¢, so x — ¢ # 0.

Observe that

lim g(z) = lim 7]”(:5) — (o)
T—c T—c xr—c
= lim r-c
T—ec X — C
= lim1
xr—c
= 1.
Thus, f/(c) = lim,_,. % =1, as desired. O



Theorem 4. differentiability implies continuity
Let f be a real valued function of a real variable x.
If f is differentiable at c, then f is continuous at c.

Proof. Suppose f is differentiable at c.

Then ¢ € dom f and c is an accumulation point of dom f and lim,,_, . w =
f'(c) exists and f'(c) € R.

Let g : domf — {¢} — R be a function defined by ¢(z) = w

For each © € domf — {c}, we have x € domf and = # ¢, so x — ¢ # 0.

Thus,

fle) = 0-f'(c)+ f(c)
= e i T 10
- im(x—c)~w+ii_>nlcf(0)
= lim[f(2) = f()] + lim f(c)
= lim[f(2) = f(c) + f(c)]

Since ¢ is an accumulation point of domf and lim,_,. f(x) = f(c), then f is
continuous at c. O

Corollary 5. FEvery differentiable function is continuous.
Let f be a real valued function of a real variable x.
If f is differentiable, then f is continuous.

Proof. Suppose f is differentiable.
To prove f is continuous, let x € domf.
We must prove f is continuous at x.
Since f is differentiable, then f is differentiable on domf.
Since x € domf, then f is differentiable at x, so f is continuous at x. O

Algebraic properties of derivatives

Theorem 6. scalar multiple rule for derivatives

Let f be a real valued function of a real variable x.

If f is differentiable at c, then for every A € R, the function \f is differen-
tiable at ¢ and (M\f)'(c) = Af'(c).

Proof. Suppose f is differentiable at c.

Then ¢ € domf and c is an accumulation point of domf and f’(c) € R and
f'(e) = limg . 7f(m2:£(c).

Let A € R be given.



Since dom(\f) = domf and ¢ € domf and ¢ is an accumulation point of
domf, then ¢ € dom(Af) and ¢ is an accumulation point of dom(Af).
Observe that

NN O B
T—c T —cC
@) - £(0)
Tr—c r — C
= lim M
z—c r—c
L AN - (AN
T—c r—c
= (AN (o).
Therefore, Af is differentiable at ¢ and (Af)'(c¢) = Af'(c). O

Theorem 7. derivative of a sum equals sum of a derivative

Let f and g be real valued functions of a real variable x.

Let ¢ be an accumulation point of domf N domg.

If f is differentiable at ¢ and g is differentiable at c, then the function f+g
is differentiable at ¢ and

(f+9)(c)=f'(c)+4(c).
Proof. Suppose f is differentiable at ¢ and g is differentiable at c.

Since f is differentiable at ¢, then ¢ € domf and f'(¢) € R and f'(c) =
lim,, ., LE=L),

Since g is differentiable at ¢, then ¢ € domg and ¢'(c) € R and ¢'(c) =
lim, . g(x;:g(C)

Since ¢ € domf and ¢ € domg, then ¢ € domf N domyg.

Since dom(f + g) = domf Ndomg and ¢ € domf N domg and c is an accu-
mulation point of dom f N domg, then ¢ € dom(f + ¢) and ¢ is an accumulation
point of dom(f + g).

Observe that

o) +ge) = tim =IO gy o000
N E R CEEE)
@) = Q)+ ew) — g(0)
@)+ al) — 19— 900
@) o))~ 7O + 90
@ 9
_ G



Therefore, f + g is differentiable at ¢ and (f + g)'(¢) = f'(¢) + ¢'(¢). O

Corollary 8. derivative of a difference equals difference of a derivative
Let f and g be real valued functions of a real variable x.
Let ¢ be an accumulation point of domf N domg.
If f is differentiable at ¢ and g s differentiable at c, then the function f —g
1s differentiable at ¢ and

(f =9)(c) = f'(c) = ¢ ().

Proof. Suppose f is differentiable at ¢ and g is differentiable at c.

Since g is differentiable at ¢, then the function —g is differentiable at ¢ and
(~g)'(0) = (~1)g'(c).

Since ¢ is an accumulation point of domjf N domg and dom(—g) = domg,
then ¢ is an accumulation point of domf N dom(—g).

Since f is differentiable at ¢ and —g is differentiable at ¢, then the function
I+ (—g) is differentiable at ¢ and (f + (—g))'(¢) = f'(¢) + (—g)'(¢).

Observe that

flle)=g'(e) = fe

Therefore, f — g is differentiable at ¢ and (f — g)'(c) = f'(¢) — ¢'(¢). O

Theorem 9. product rule for derivatives

Let f and g be real valued functions of a real variable x.

Let ¢ be an accumulation point of domf N domg.

If f is differentiable at c and g is differentiable at c, then the function fg is
differentiable at ¢ and

(f9)'(c) = f(e)g'(c) + g(c) f'(c).

Proof. Suppose f is differentiable at ¢ and g is differentiable at c.

Since f is differentiable at ¢, then ¢ € domf and f’(c) € R and f'(c)
lim,_,, £@)=1@)

Since g is differentiable at ¢, then ¢ € domg and ¢'(¢) € R and ¢'(¢) =

Since ¢ € domf and ¢ € domg, then ¢ € domf N domyg.

Since ¢ is an accumulation point of domf N domg and domf N domg is a
subset of dom f, then c is an accumulation point of domf.

Since f is differentiable at ¢, then f is continuous at c.

Since ¢ € dom f and c is an accumulation point of dom f and f is continuous
at ¢, then lim,_,. f(z) = f(c¢).

Since dom(fg) = domf Ndomg and ¢ € domf N domg and ¢ is an accumu-
lation point of dom f N domg, then ¢ € dom(fg) and ¢ is an accumulation point

of dom(fg).



Observe that

FOd(©) + 9@ (€) = lim f(a)- tim LIy g0y gy LD =S
o @l (0] a0l ~ S0)
o @) —gte)] | (e)f@) — FC)
o F@lae) — 0] + (6N e) — £
o F@ele) — F(@)gle) + 0 (a) — a0} (0
L Hedete) — £(@)gle) + Fa)ate) — ()
) - e
L U9 - (o
- e

Therefore, fg is differentiable at ¢ and (fg)'(c) = f(c)g'(c) + g(c)f'(c). O

Theorem 10. quotient rule for derivatives

Let f and g be real valued functions of a real variable x.

Let ¢ be an accumulation point of domf N domg.

If f is differentiable at ¢ and g is differentiable at ¢ and g(c) # 0, then the
function 5 is differentiable at ¢ and

(5)/(0) _ g(f ((Z)(c)J;gC)g (c)

Proof. Suppose f is differentiable at ¢ and g is differentiable at c.

Since f is differentiable at ¢, then ¢ € domf and f'(c) € R and f'(c) =
lim, , LB

Since g is differentiable at ¢, then ¢ € domg and ¢'(¢) € R and ¢'(¢) =
lim, , £0)=00)

Since ¢ is an accumulation point of domf N domg and domf N domg is a
subset of domg, then c is an accumulation point of domg.

Since g is differentiable at ¢, then g is continuous at c.

Since ¢ € domg and c is an accumulation point of domg and g is continuous
at ¢, then lim,_,. g(x) = g(c).

Since lim,_,. g(z) = g(c) and g(c) # 0, then lim,_,. ﬁ = m = ﬁ.

Since ¢ € domf and ¢ € domg, then ¢ € domf N domyg.

Since ¢ € domf Ndomg and g(c) # 0, then ¢ is in the domain of 5.

Since ¢ is an accumulation point of dom f Ndomg, then ¢ is an accumulation
point of the domain of 5.

Observe that



9(c)f'(c) — f(e)g'(c) 1 flep 1,
(4())? @ T g0 gt 0
@O 1@ L g~ gle)
z—c g(x) a—c T —c g(c) z—cg(x) z—ec x—c
@@ @) ) -0
a=e g(x)(z —c)  g(c) (x) )

@)~ 1@l — Slo() —gle)
= 9(x)a(@)(z —

T — F(ale) — F©)g() + F(e)oo
i @9 —

_ i T®)9(0) — f(e)g(z)
2 g @e@e — o)

f@) _ f(o)

—  lim &) 9(c)

_ oy (D)@ = (L))

e

= (g) (c).

Therefore, 5 is differentiable at ¢ and (g)’(c) = W. O

Corollary 11. power rule for derivatives
Letn € Z be fized.
Let f : R* — R be the function defined by f(x) = z™.
Then f'(z) = nz" L.

Proof. We prove for n = 0, if f(z) = 2™ for all nonzero = € R, then f'(x) =
na" L

Let n = 0.

Suppose f(x) = z™ for all nonzero x € R.

Then f(z) = 2™ = 2° = 1 for all nonzero z € R, so f/(x) = 0 for all nonzero
rz e R

Let x € R with = # 0.

Then f'(z) =0=0-2"1 = 02071 = na"~1. O

Proof. We prove for all positive integers n, if f(z) = 2™ for all nonzero = € R,
then f’(z) = nz"~! by induction on n.
Let S = {n € Z* : if f(x) = 2" for all nonzero z € R, then f'(x) = na""1}.
Basis:

Suppose f(z) = x!

= g for all nonzero x € R.



Then f'(z) =1 for all nonzero z € R.

Let z € R with = # 0.

Since # # 0, then f/(z)=1=1-1=1-2°=1-21"Y s01€ S.

Induction:

Suppose k € S.

Then k € Z* and if f(z) = 2" for all nonzero x € R, then f'(z) = kaF~1.

Since k € Zt, then k+1 € Z™.

Suppose g(x) = z**1 for all nonzero = € R.

Then g(z) = z* - x for all nonzero = € R.

Let f and h be functions defined by f(z) = x* and h(x) = z for all nonzero
z €R.

Then g = fh is the function defined by g(x) = f(x) - h(x) for all nonzero
rz e R

Since f(z) = 2" for all nonzero = € R, then f’(z) = ka*~1.

Since h(x) = x for all nonzero z € R, then h/(z) = 1 for all nonzero x € R.

Let z € R with « # 0.

Since domf Ndomh = RNR = R and « € R and every real number is an
accumulation point of R, then z is an accumulation point of dom f N domh.

Since x is a nonzero real number, then f(z) = z* and f/(z) = k2*~! and
h(z) =z and W' (z) = 1.

Thus,

g'(x) = (fh)(2)
f(@) W (z) + h(z) - f(z)
" 1+ kab!
¥ + ka®
= (1+k)z*
(k4 1)z".

Hence, if g(z) = 2**! for all nonzero z € R, then ¢'(x) = (k + 1)z*.

Since k + 1 € Z*, then this implies k +1 € S.

Hence, k € S implies k +1 € S for all k € ZT.

Since 1 € S and k € S implies k + 1 € S for all k € Z*, then by induction,
S=17r.

Therefore, for all n € Z*, if f(x) = 2™ for all nonzero x € R, then f'(z) =
nz" 1L, O

Proof. We prove for all negative integers n, if f(z) = 2™ for all nonzero = € R,
then f/(z) = na"~ 1.

Let n be an arbitrary negative integer.

Then n € Z and n < 0.

Thus, there exists k € Z such that k = —n > 0, so n = —k and k is a positive
integer.

Suppose f(x) = z™ for all nonzero x € R.



Let x € R with z # 0.

Then f(z) =a" =27% = .

Let g and h be functions defined by g(x) = 1 and h(x) = 2" for all nonzero
z € R.

Then f = { is the function defined by f(z) = (zg for all nonzero = € R.

h

Since g(z) = 1 for all nonzero x € R, then ¢'(x) = 0 for all nonzero z € R.

Since k is a positive integer and h( ) = 2% for all nonzero x € R, then
h'(x) = kab~1.

Let z € R*.

Then z € R and z # 0.

Since z € R* and R* is an open set, then x is an interior point of R*, so x
is an accumulation point of R*.

Since domg N domh = R* NR* = R*, then this implies x is an accumulation
point of domg N dombh.

Since x is a nonzero real number, then g(z) = 1 and ¢’(z) = 0 and h(x) = z*
and h/(z) = kz*~ L.
Since x # 0 and k > 0, then z* # 0, so h(z) # 0.
Thus,
g
P = (Y@
_ h(z)-g'(z) —g(x) - W(z)
[h(x)]?
_ k.0 -1 kzk?
- (xk)Q
—kakt

- 22k

= —kgk1

= na" L
Therefore, if f(z) = 2™ for all nonzero z € R, then f’(z) = naz"~!. O

Proposition 12. derivatives of trig functions

1. (tan r) =sec’x.
2. (cot x) = —csc? .
3. (sec x) =secztanz.
4. 7 (csc x) = —cscxcotx.

Proof. We prove 1.
Observe that



Proof. We prove 2.
Observe that

dx

Proof. We prove 3.
Observe that

di (tanx)

(cot )

d sinzx

@(cosx)
(cosz)(cosz) — (sinx)(—sinz)

cos? x
2 . 9
cos”x + sin“ x
cos? x
1
cos? x

SeC2 x.

d cosx
%( sinx)
(sinx)(—sinz) — (cos z)(cos x)

sin’ x
—sin®x — cos? x
sin? z
—(sin® & + cos® x)
sin® z
-1

sin® x

— CSC™ .

d, 1

= ——(—)

dz “cosz
(cosz)(0) — (1)(—sinz)
cos?

sin x
cos? x
1-sinx
COSX - COST
1 sinx

COST COSXT

= secxtancz.
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Proof. We prove 4.
Observe that

d, 1
ﬁ(cscx) T dx sinx)
(sinx)(0) — (1)(cosx)

sin® x

—cosx
sin® x
—1-cosx
sinx - sinx
—1 cosxz

sinx sinz
= —cscxcotx.

Theorem 13. chain rule for derivatives

Let f and g be real valued functions such that rngf C domg.

If f is differentiable at ¢ and g is differentiable at f(c), then the function
go f is differentiable at c and

(go f)(e) =g (f(c)- f'(c).

Proof. Suppose f is differentiable at ¢ and ¢ is differentiable at f(c).

Since f is differentiable at ¢, then ¢ € domf and c is an accumulation point
of domf and f'(c) = lim,_,. W and f is continuous at c.

Since ¢ is differentiable at f(c), then f(c) € domg and f(c) is an accumula-
tion point of domg and ¢'(f(c)) exists.

Let 0 > 0 be given.

Since ¢ is an accumulation point of domf, then there exists x € domf such
that x € N'(¢; 9).

Let 2 € domf such that © € N'(¢;6).

Since x € domf, then f(x) € rngf.

Since rngf C domg, then f(z) € domg.

Since © € N'(¢;9), then x € N(¢;0) and x # c.

Since f(z) € domg and f(c) € domg, then either f(x) = f(c) or f(x) # f(c).

We consider these cases separately.

Case 1: Suppose f(z) # f(c).

Then f(z)— f(c) #0.

Let h : domg — R be a function defined by h(y) = %}((J:)(C)) ify # f(c)
and h(f(c)) = g'(f(c)).

Since f(z) € domg and f(x) # f(c), then h(f(z)) = %w.

11



If y € domg and y # f(c), then

h(f(e) = 4 (f(c))

= lim g
y—=f(e)  y— fle)
= lim h(y).
y—=f(c) )
Let y = f(x).
Then y € domg and y # f(c) and h(y) = %f%gc)).

Since y € domg and y # f(c), then we conclude h(f(c)) = lim,_, ¢(c) h(y).

Since f(c) is an accumulation point of domg and domh = domg, then f(c)
is an accumulation point of domh.

Since f(c) is an accumulation point of domh and lim,_, ¢y h(y) = h(f(c)),
then by the characterization of continuity at a point, h is continuous at f(c).

Since f is continuous at ¢ and h is continuous at f(c), then ho f is continuous
at c.

Observe that dom(h o f) = {a& € domf : f(x) € domh} = {x € domf :
f(z) € domg}.

Since = € domf and f(x) € domg, then x € dom(h o f).

Thus, there exists € dom(h o f) such that x € N'(c; ) for every 6 > 0.

Therefore, ¢ is an accumulation point of dom(h o f).

Since ¢ is an accumulation point of dom(h o f) and h o f is continuous at
¢, then by the characterization of continuity at a point, lim, ,.(h o f)(z) =
(ho 1)) = h(F(0)) = ¢/(£(0)), 50 lim,..(ho f)(x) = ¢'(f(c)).

Since x # ¢ and f(z) — f(c) # 0, then

U F10) = Tmho f)w) - tim IO
= tim(ho f)a) LT
=t (h(f(a)) - LT
@) —alfe) @) - )

r—c f(l‘) — f(C) r—cC

L U @) — g(f(e)
L oD@ (900
— (o)

Therefore, if f(z) # £(c), then (g0 £)'(¢) = ¢/(F()) - £/(0).
Case 2: Suppose f(z) = f(c).
Since f is differentiable at ¢ and x # ¢, then f/'(¢) = limg_. % =

limy . L= — im0 = 0,50 f/(c) = 0.

12



Observe that

g (f(e)-f'le) = g(f()-0

= lim
@) - s
e N g0 5O
= erf@.
Therefore, if f(a) = f(c), then (g f)/(¢) = (/(c)) - F(c). =

Mean Value Theorem

Lemma 14. Let E C R.
Let f : E — R be a function.
Letce E.
1. If f(e) is a relative mazimum and f is differentiable at c, then f'(c) = 0.
2. If f(c) is a relative minimum and f is differentiable at ¢, then f'(c) = 0.

Proof. We prove 1.

Suppose f(c) is a relative maximum and f is differentiable at c.

Since f(c) is a relative maximum, then there exists 61 > 0 such that N(¢;d1) C
E and f(c) > f(x) for all z € N(c;01).

Since f is differentiable at ¢, then ¢ € E and there is a real number f/(c)
such that f’(c) = lim,_, f(z) f(c)

Since f'(c) € R, then either fi(¢c)>0o0r f'(e)=0o0r f'(c) <0

Suppose f'(c) >

Since f'(c) = hm f(m) f( ). then there exists 6 > 0 such that for all
z€E—{c}, 1f0<|xfc| <52, then|%f f(e)| < f'(c).

Let § = min{dy, 2 }.

Then § < §; and § < d5 and § > 0.

Since § > 0, then % > 0.

Let x =c+ g

Since d(z,¢) = |z —c| = |g| = % < 0§ < 01, then d(x,c) < d1, s0 z € N(c;01).

Hence, f(c) > f(z).

Since x € N(c;61) and N(c;81) C F, then z € E.

Sincex—c-%>0 then x — ¢ >0, s0 x — ¢ # 0.

Hence, = # c.

Since z € F and x # ¢, then x € E — {c}.

13



Since 0 < |z —c| =[5 =3 < 6 < 55, then 0 < |z — ¢| < &.
SincexEEf{c}andO<|xfc|<62,then|w fe)] < f (o).
Thus, —'(c) < LE=H — f/(e) < (), s0 = '(e) < HEZHD — f/(e).
Hence, 0 < M.

Slncex—c>0 then 0 < f(x) = f(c), so f(c) < f(x).

Thus, we have f(c) > f(z) and f(¢) < f(x), a contradiction.
Therefore, f’'(¢) cannot be positive.

Suppose f'(c) < 0.
Then —f'(c) >0
Since f'(¢) = limg_, M then there exists d, > 0 such that for all

ze€E—{c},if0<|z— <52, theﬁ%— F(e)| < =f'(e).

Let § = min{51, 52}

Then 6 < 6, and § < dp and § > 0.

Since § > 0, then % > 0.

Let x =c— g.

Since d(z,¢) = |z — | = |F2| = |§] = § < § < 4, then d(z,c) < 41, so
x € N(c;61).

Hence, f(c) > f(x).

Since x € N(c;61) and N(c;81) C F, then z € E.

Since:v—c:%S <0, then z — ¢ <0, s0 x —c#0.

Hence, = # c.

Since z € F and x # ¢, then x € E — {c}.

Since 0 < |z —c| = [Z2| =[5 = 2 < § < by, then 0 < |z — ¢| < b.

Since z € E — {c} and 0 < |z — ¢| < d2, then |W — f'(e)] < =f'(c).

Thus, f'(c) < LE=HD — () < —f'(¢), so LE=HD — () < —f'(0).

Hence, M < 0.

Since & — ¢ < 0, then f(z) — f(c) >0, so f(x) > f(c).

Thus, we have f( ) > f(x) and f(c) < f(x), a contradiction.

Therefore, f/(c) cannot be negative.

Since f’(c) is neither positive nor negative, then f’(c) must be zero, so f'(¢) =
0. O

Proof. We prove 2.

Suppose f(c) is a relative minimum and f is differentiable at c.

Since f(c) is a relative minimum, then there exists é; > 0 such that N(c¢; 1) C
E and f(c) < f(x) for all x € N(c;d1).

Since f is differentiable at ¢, then ¢ € E and there is a real number f(c)
such that f/(c) = lim,_, f(x) g(c)

Since f'(c) € R, then cither flley>0o0r fi(c)=00r f'(c) <0

14



Suppose f'(c) >0
Since f'(¢) = lim,, M then there exists d2 > 0 such that for all

xr—
v€eE— {c},1f0<|scfc|<52 theMM f ()| < f'(c).
Let § = min{dy, 2 }.
Then § < §; and § < d5 and § > 0.
Since § > 0, then % > 0.

Letx:c—g.
Since d(z,¢) = |x — ¢| = |%5| = |g| = g < § < 01, then d(z,c) < 41, so
x € N(c;01).

Hence, f(c) < f(x).

Since z € N(c;61) and N(¢;d1) C E, then © € E.
Sincex—CZ%‘s<0,thenx—c<07sox—c740.
Hence, = # c.
Sinceerandx;écthener {c}.

Since 0 < |z —c| = |F2| =|3| =34 < § < &, then 0 < |z — | < bs.
Since z € E — {c} and0<|x—c|<6g7then|% )] < f(c).

Thus, —f() < L= — f1(e) < f(e), s0 —f'(e) < LE = (o),
Hence, 0 < (I) f(c).

Since z — ¢ < () then 0 > f(z) = f(c), so f(c) > f(x).

Thus, we have f(c) < f(z) and f(c) > f(x), a contradiction.

Therefore, f'(c) cannot be positive.

Suppose f'(c) < 0.
Then —f'(c) > 0.
Since f'(c) = limg_,. M then there exists do > 0 such that for all

meE—{c},if0<|x—c|<62,then|w— 7)) < —=f(e).
Let 5:min{51,62}.
Then § < §; and § < 5 and § > 0.
Since § > 0, then g > 0.
Letx:c+é
Since d(z,c) = |z —¢|
Hence, f(c) < f(
Since = € N(c; 01
Since x —c =
Hence, = # c.
Since z € F and x # ¢, then x € E — {c}.
Since 0 < |z —c| =[$] = & <6 < b5, then 0 < |z — ¢| < Ja.
Since z € E — {c} and 0 < |z — ¢| < d2, then |% — )] < =f(e).

Thus, f'(c) < ZEZHD — f/(e) < = f/(c), so HE=HD — f(0) < —'(e).
Hence, f(x; Z(c) < 0.

Since x — ¢ > 0, then f(z) — f(c) <0, so f(z) < f(c).

Thus, we have f(c) < f(z) and f(c) > f(z), a contradiction.
Therefore, f'(c) cannot be negative.

12| = 4 < § <64, then d(z,¢) < &1, so x € N(c;61).

x
) nd N(e;61) C E, then z € E.

g>0 then z — ¢ > 0, s0 x —c # 0.
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Since f’(c) is neither positive nor negative, then f’(c) must be zero, so f’(c)
0.

oo

Theorem 15. Rolle’s Theorem

Let a,b € R with a < b.

Let f be a real valued function continuous on the closed interval [a,b] and
differentiable on the open interval (a,b).

If f(a) = f(b), then there exists ¢ € (a,b) such that f'(c) = 0.

Proof. Suppose f(a) = f(b).
We must prove there exists ¢ € (a,b) such that f'(c) = 0.

Let k = f(a) = f(b).

Either f(z) = k for all € [a, b] or not.

We consider these cases separately.

Case 1: Suppose f(z) =k for all x € [a, b].

Since a < b, then by the density of R, there exists a real number ¢ such that
a<c<b.

Hence, ¢ € (a,b).

Since (a,b) C [a,b], then ¢ € [a, b].

Since every point in [a,b] is an accumulation point of [a,b], then ¢ is an
accumulation point of [a, b].

Since [a,b] C R and ¢ is an accumulation point of [a, ], then ¢ is an accu-
mulation point of [a, b] — {c}.

Let g : [a,b] — {¢} — R be a function defined by ¢(z) = % for all
z € [a,b] — {c}.

Let z € [a,b] — {c}.

Then z € [a,b] and z # c.

Since x # ¢, then x — ¢ # 0.

Since = € [a,b] and ¢ € [a,b] and f(z) =k for all x € [a,b], then f(z) =k =
7).

Thus, f(z) — f(c) =0.

Since 0 = limg,_,, xﬂc =
f'(c) =0.

Therefore, there exists ¢ € (a,b) such that f'(c) =0, as desired.

Case 2: Suppose it is not the case that f(x) =k for all z € [a, b].

Then there exists = € [a,b] such that f(x) # k.

Since f(z) # k, then either f(z) >k or f(z) < k.

We consider these cases separately.

Case 2a: Suppose f(z) > k.

Since f is a real valued function continuous on the nonempty closed bounded
interval [a, b], then by EVT, f has a maximum on [a, b].

limg e 2210 = Yim, . q(z) = f'(c), then
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Let f(c) be a maximum of f on [a,b].
Then there exists ¢ € [a, b] such that f(c) > f(z) for all = € [a, b].
Since ¢ € [a,b], then a < ¢ < b, s0 a < cand ¢ <.
Since z € [a,b] and f(c) is a maximum of f on [a, b], then f(c) > f(x).
Since f(c) > f(x) and f(x) > k, then f(c) > k.
Since ¢ = a implies f(c) = f(a), then f(c) # f(a) implies ¢ # a.
Since f(c) > k = f(a), then f(c) > f(a), so f(c) # f(a).
Hence, ¢ # a.
Since ¢ > a and ¢ # a, then ¢ > a.
Since ¢ = b implies f(c) = f(b), then f(c) # f(b) implies ¢ # b.
Since f(c) > k = £(b), then f(c) > f(b), 50 £(¢) # F(b).
Hence, ¢ # b.
Since ¢ < b and ¢ # b, then ¢ < b.
Hence, a < cand ¢ < b,s0 a < ¢ <b.
Thus, ¢ € (a,b).

Since the open interval (a,b) is an open set, then ¢ is an interior point of
(a,b), so there exists § > 0 such that N(¢;d) C (a,b).
Since N(¢;6) C (a,b) and (a,b) C [a,b], then N(c;6) C [a, b].
Thus, there exists § > 0 such that N(c¢;0) C [a,b].

Let p € N(¢;9).
Since N(c;d) C [a, b], then p € [a,b].
Since f(c) is a maximum of f on [a,b], then f(c) > f(p).
Thus, f(c) > f(p) for all p € N(c; ).

Since there exists 0 > 0 such that N(c;d) C [a,b] and f(c) > f(p) for all

p € N(c; ), then f(c) is a relative maximum of f on [a, b].

Since f is differentiable on (a,b) and ¢ € (a,b), then f is differentiable at c.

Since f(c) is a relative maximum and f is differentiable at ¢, then by the
previous lemma, f/(c) = 0.

Therefore, there exists ¢ € (a,b) such that f'(c) =0, as desired.

Case 2b: Suppose f(x) < k.

Since f is a real valued function continuous on the nonempty closed bounded
interval [a, b], then by EVT, f has a minimum on [a, b].

Let f(c) be a minimum of f on [a, b].
Then there exists ¢ € [a, b] such that f(c) < f(z) for all z € [a, b].
Since ¢ € [a,b], then a < ¢ < b, s0 a < cand ¢ <.
Since z € [a,b] and f(c) is a minimum of f on [a, b], then f(c) < f(x).
Since f(c) < f(z) and f(z) < k, then f(c) < k.
Since ¢ = a implies f(c) = f(a), then f(c) # f(a) implies ¢ # a.
Since f(c) < k= f(a), then f(c) < f(a), so f(c) # f(a).
Hence, ¢ # a.
Since ¢ > a and ¢ # a, then ¢ > a.
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Since ¢ = b implies f(c) = f(b), then f(c) # f(b) implies ¢ # b.
Since f(c) < k= f(b), then f(c) < f(b), so f(c) # f(b).
Hence, ¢ # b.

Since ¢ < b and ¢ # b, then ¢ < b.

Hence, a < cand ¢ < b,s0 a <c <b.

Thus, ¢ € (a,b).

Since the open interval (a,b) is an open set, then ¢ is an interior point of
(a,b), so there exists § > 0 such that N(c;0) C (a,b).
Since N(c;9) C (a,b) and (a,b) C [a,b], then N(¢;d) C [a, b].
Thus, there exists § > 0 such that N(c¢;0) C [a,b].

Let p € N(¢;9).
Since N(¢; ) C [a,b], then p € [a, b].
Since f(c) is a minimum of f on [a, b], then f(c) < f(p).
Thus, f(c) < f(p) for all p € N(c; ).

Since there exists § > 0 such that N(¢;0) C [a,b] and f(c) < f(p) for all
p € N(c;9), then f(c) is a relative minimum of f on [a, b].
Since f is differentiable on (a,b) and ¢ € (a,b), then f is differentiable at c.
Since f(c) is a relative minimum and f is differentiable at ¢, then by the
previous lemma, f'(c) = 0.
Therefore, there exists ¢ € (a,b) such that f/(c) = 0, as desired. O

Theorem 16. Mean Value Theorem

Let a,b € R with a < b.

Let f be a real valued function continuous on the closed interval [a,b] and
differentiable on the open interval (a,b).

Then there exists ¢ € (a,b) such that f'(c) = M

Proof. We must prove there exists ¢ € (a, b) such that f'(c) = W.

Since a < b, then b —a > 0, so w is a real number.

Let L be a real valued function defined by L(x) = W(x —a) + f(a)
for all x € [a, b].

Let g be defined by g = f — L.

Then g is a real valued function defined by g(x) = f(z) — L(x) for all
z € [a,b).

Thus, g(x) = f(z) — W(aﬁ —a)— f(a) for all z € [a,b].

Since f is continuous on [a,b], then f is continuous.

Since L is a linear function, then L is continuous.

Since the difference of continuous functions is continuous, then g is contin-
uous, so g is continuous on [a, b].
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Since L is a linear function, then L is differentiable, so L is differentiable on
[a, b].
Since (a,b) C [a,b], then L is differentiable on (a, b).
Since f is differentiable on (a,b) and L is differentiable on (a,b), then the
difference g = f — L is differentiable on (a,b).
Let z € (a,b).

Since L(z) = f(b) f(a)( a) + f(a), then L'(z) = f(b) f(a)
Since g(z) = f(l“) — L(x), then ¢'(x) = f'(z) - L'(z) = f’(r) e =
b)—f(a
g(x) = f(@) - 151D,
Hence, g is differentiable at x.
Thus, g is differentiable at x for all « € (a,b), so g is differentiable on (a,b).

Observe that

Since g is continuous on [a, b] and g is differentiable on (a, b) and g(a) = g(b),
then by Rolle’s theorem, there exists ¢ € (a, b) such that ¢'(c) = 0.

Since 0= ¢/(c) = f'(c) = L'(c) = f'(e) — H4=L, then LG — p(c).

Therefore, there exists ¢ € (a,b) such that f/(c) = w, as desired. O

Corollary 17. Let f be a real valued function differentiable on an interval I.
Then

1. If f'(x) =0 for all x € I, then f is constant on I.

2. If f'(z) >0 for all x € I, then f is strictly increasing on I.

3. If f'(x) <0 for all x € I, then f is strictly decreasing on I.

Proof. We prove 1.

Suppose f'(z) =0 for all z € I.

To prove f is constant on I, let a,b € I such that a # b.

We must prove f(a) = f(b).

Since a # b, then either a < b or a > b.

Without loss of generality, assume a < b.

Since a € I and b € I and a < b, then [a,b] C I.

Since f is differentiable on I and [a,b] C I, then f is differentiable on [a, b],
so f is continuous on [a, b].

Since (a,b) C [a,b] and [a,b] C I, then (a,b) C I.

Since f is differentiable on I and (a,b) C I, then f is differentiable on (a, ).
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Since f is continuous on [a,b] and differentiable on (a,b), then by MVT,
there exists ¢ € (a,b) such that f(c) = £¢ 1)) f(a)

Since ¢ € (a,b) and (a,b) C I, thencGIasof( ) =0.

Hence, 0 = f'(c) = f(b) 1) 550= 7“1)) fa)

Since b # a, then b — a 7& 0,s0 0= f(b) — f(a).

Therefore, f(a) = f(b), as desired. O

Proof. We prove 2.

Suppose f/(z) > 0 for all z € I.

To prove f is strictly increasing on I, let a,b € I such that a < b.

We must prove f(a) < f(b).

Since a € [ and b € I and a < b, then [a,b] C I.

Since f is differentiable on I and [a,b] C I, then f is differentiable on [a, b],
so f is continuous on [a, b].

Since f is differentiable on [a,b] and (a,b) C [a,b], then f is differentiable

n (a,b).

Since f is continuous on [a,b] and differentiable on (a,b), then by MVT,
there exists ¢ € (a,b) such that f'(c) = M

Since ¢ € (a,b) and (a,b) C [a,b] C I, then c € I.

Hence, f'(c) >

Thus, 0 < f'(c )— f(bl); g(a) so 0 < f(z ﬁ( ).

Since a < b, then b—a > 0, so 0 < f(b) — f(a).

Therefore, f(a) < f(b), as desired. O

Proof. We prove 3.

Suppose f'(z) < 0 for all z € I.

To prove f is strictly decreasing on I, let a,b € I such that a < b.

We must prove f(a) > f(b).

Since a € [ and b € I and a < b, then [a,b] C I.

Since f is differentiable on I and [a,b] C I, then f is differentiable on [a, b],
so f is continuous on [a, b].

Since f is differentiable on [a,b] and (a,b) C [a,b], then f is differentiable

n (a,b).

Since f is continuous on [a,b] and differentiable on (a,b), then by MVT,
there exists ¢ € (a,b) such that f'(c) = W.

Since ¢ € (a,b) and (a,b) C [a,b] C I, then c € I.

Hence, f'(c) < 0.

Thus, 0 > f'(c) = 7f(bl)):£(a), so 0 > 7f(b) g(a)

Since a < b, then b —a > 0,50 0 > f(b ) f(a).

Therefore, f(a) > f(b), as desired. O

Corollary 18. functions with the same derivative on an interval differ
by a constant

Let f and g be real valued functions differentiable on an interval I.

If f'(z) = ¢'(z) for all x € I, then there exists C' € R such that f —g = C.
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Proof. Suppose f'(z) = ¢'(x) for all x € T.
Leth=f—g.
Then h : I — R is the function defined by h(z) = f(z) — g(x).
Let x € I.
Then h(z) = f(z) — g(z), s0 W' (2) = (&) — ¢ () = J'(z) — f'(z) = .
Hence, h/(z) =0 for all = € I, so h is differentiable on I.
Since h is differentiable on I and h'(z) = 0 for all « € I, then h is constant
on I.
Thus, there exists C' € R such that h(z) = C for all z € I.
Hence, C = h(z) = f(z) — g(z), so C = f(zx) — g(x) for all x € I.
Therefore, C = f — g. O

Theorem 19. First Derivative Test for relative extrema of a function
continuous on an open interval

Let E C R.

Let f: E — R be a function.

Letce E.

Let there exist 6 > 0 such that (c — 0,¢+ ) C E.

Suppose | is continuous on (¢ — §,c+ §) and differentiable on (¢ — d,¢) and
(c,c+9).

1. If f'(x) <0 for all x € (¢ —0d,¢) and f'(x) >0 for all z € (¢,c+0), then
f(e) is a relative minimum.

2. If f'(x) >0 for all z € (¢ —§,¢) and f'(x) <O for all x € (¢,c+ ), then
f(e) is a relative mazimum.

Proof. We prove 1.

Suppose f/'(z) < 0 for all z € (¢ — d,¢) and f'(x) > 0 for all z € (¢,c+ 9).

Since N(¢;6) = (¢ —d,¢+ ) and (¢ — d,¢+0) C E, then N(¢;9) C E.

Thus, there exists ¢ > 0 such that N(¢;d) C E.

To prove f(c) is a relative minimum, let x € N(c;9).

We must prove f(c) < f(x).

Since x, ¢ € R, then either x < cor x =cor z > c.

We consider these cases separately.

Case 1: Suppose z = c.

Then f(c) = f(z).

Case 2: Suppose = < c.

Since z € N(¢;0), then |z —c| < 4.

Since z < ¢, then z —¢ < 0,80 |t —¢c| = —(x —¢c) =c—x < 0.

Hence, ¢ — § < .

Since c—d <z < ¢ < ¢+ 9, then [z,c] C (¢c—d,¢+ ) and (z,¢) C (¢ —0d,c).

Since f is continuous on (¢ — d,c+ ) and [z,¢] C (¢ — d,¢ + §), then f is
continuous on [z, c].

Since f is differentiable on (¢ — §,¢) and (z,¢) C (¢ — 4, ¢), then f is differ-
entiable on (z, ¢).

Thus, by MVT, there exists p € (z, ¢) such that f'(p) = w

Since p € (z,¢) and (z,¢) C (¢ — d,¢), then p € (¢ — §,¢), so f'(p) < 0.
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Hence, W < 0.

Since z < ¢, then ¢ —x > 0, so f(c) — f(z) <O.

Thus, f(c) < f(x).

Case 3: Suppose = > c.

Since x € N(c;6), then |z — | < 4.

Since z > ¢, then x —¢ > 0,80 |z — | =z — ¢ < 0.

Hence, z < ¢+ 9.

Since c—d < c <z < c+9, then [¢,z] C (¢c—d,c+ ) and (¢, z) C (¢, c+9).

Since f is continuous on (¢ — §,¢+ §) and [e,z] C (¢ — §,¢ + §), then f is
continuous on [c, x].

Since f is differentiable on (c,c+ §) and (c,x) C (c,c+ §), then f is differ-
entiable on (¢, z).

Thus, by MVT, there exists q € (¢, ) such that f'(¢q) = %

Since q € (¢, z) and (¢,x) C (¢,c+ d), then g € (¢,c+ ), so f'(gq) > 0.

Hence, W > 0.

Since z > ¢, then z — ¢ > 0, so f(z) — f(c) > 0.

(
Thus, f(z) > f(c), so f(c) < f(x).

Therefore, in all cases, f(c) < f(x), as desired. O

Proof. We prove 2.
Suppose f'(z) > 0 for all z € (¢ — d,¢) and f'(x) <0 for all € (¢,c+ 9).
Since N(¢;6) = (¢ —d,c¢+0) and (¢ — d,c+J) C E, then N(¢;0) C E.
Thus, there exists 0 > 0 such that N(c¢;0) C E.
To prove f(c) is a relative maximum, let € N(¢;4).
We must prove f(c) > f(z).
Since z, ¢ € R, then either x < cor x =cor z > c.
We consider these cases separately.
Case 1: Suppose = = c.
Then f(c) = f(x).
Case 2: Suppose z < c.
Since x € N(¢;9), then |z — c| < 4.
Since z < ¢, then x —¢ < 0,80 |zt —¢| = —(x —¢) =c—x < 0.
Hence, ¢ — § < x.
Since c—d <z < ¢ < c+4, then [x,¢] C (¢c—d,¢+6) and (z,¢) C (c—J,c).
Since f is continuous on (¢ — d§,c+ §) and [z,¢] C (¢ — §,¢ + §), then f is
continuous on [z, c].
Since f is differentiable on (¢ — 6, ¢) and (x,¢) C (¢ — d,¢), then f is differ-
entiable on (z,¢).
Thus, by MVT, there exists p € (x, ¢) such that f’'(p) = %
Since p € (z,c¢) and (z,¢) C (¢ — d,¢), then p € (¢ —d,¢), so f'(p) > 0.
Hence, w > 0.
Since z < ¢, then ¢ —z > 0, so f(c) — f(x) > 0.
Thus, f(c) > f(x).
Case 3: Suppose = > c.
Since z € N(c;6), then |z — ¢ < 4.
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Since > ¢, thenz —¢ > 0,80 [t —c| =2 —c < J.

Hence, z < ¢+ 9.

Since c—d < c < x < ¢+, then [c,z] C (¢ —d,c+6) and (¢, x) C (¢, c+9).

Since f is continuous on (¢ — d,c+ d) and [c,z] C (¢ — d,¢ + §), then f is
continuous on [c, x].

Since f is differentiable on (¢,c¢+ d) and (¢,x) C (¢,c¢+ ), then f is differ-
entiable on (c, z).

Thus, by MVT, there exists ¢ € (¢, z) such that f/'(¢) = %:5(6)

Since g € (¢,z) and (¢,z) C (¢,c¢+ 0), then g € (¢,c+0), so f'(¢q) <O.

Hence, W < 0.

Since z > ¢, then z — ¢ > 0, so f(z) — f(c¢) <O.

(
Thus, f(z) < f(c), so f(c) > f(z).

Therefore, in all cases, f(c) > f(x), as desired. O

Lemma 20. Let E C R.

Let f: E — R be a function.

Let ¢ be a point.

1. If the limit of f at c exists and is positive, then there exists § > 0 such
that f(x) > 0 for allxz € N'(¢;6) N E.

2. If the limit of f at ¢ exists and is negative, then there exists § > 0 such
that f(x) <0 for all z € N'(¢;0) N E.

Proof. We prove 1.

Suppose the limit of f at ¢ exists and is positive.

Then there exists L € R with L > 0 such that L = lim,_,. f(x).

Since L > 0, then there exists § > 0 such that for allz € E,if 0 < |z—¢| < 4,
then |f(z) — L| < L.

Let 2 € N'(¢;0) N E.

Then € N'(¢;6) and = € E.

Since z € N'(¢;d), then z € N(c¢;6) and = # c.

Since x € N(c;6), then d(z,c) = |z — c| < 6.

Since x # ¢, then x — ¢ # 0, so |z — ¢| > 0.

Thus, 0 < |z —c| and |x —¢| < J,50 0 < |z —¢| < 0.

Since z € F and 0 < |z — ¢| < §, then |f(z) — L| < L.

Hence, —L < f(z) =L < L,so —L < f(x) — L.

Thus, 0 < f(x), so f(z) > 0.

Consequently, f(z) > 0 for all z € N'(¢; ) N E.

Therefore, there exists 6 > 0 such that f(z) > 0 for all z € N'(¢;0) N E, as
desired. O

Proof. We prove 2.

Suppose the limit of f at ¢ exists and is negative.

Then there exists L € R with L < 0 such that L = lim,_,. f(z).

Since L < 0, then —L > 0, so there exists 6 > 0 such that for all z € E, if
0 < |z —c¢|l <4, then |f(x) — L| < —L.
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Let 2 € N'(¢;0) N E.

Then € N'(¢;6) and = € E.

Since x € N'(¢; ), then x € N(¢;0) and x # c.

Since x € N(c;0), then d(z,c) = |x — ¢| < 6.

Since x # ¢, then x — ¢ # 0, so |v — ¢[ > 0.

Thus, 0 < |z —¢| and |z — ¢| < J,80 0 < |z —¢| < 4.

Since z € F and 0 < |z — ¢| < §, then |f(x) — L| < —L.

Hence, L < f(x) — L < —L,so f(z)— L < —L.

Thus, f(z) <O0.

Consequently, f(z) < 0 for all z € N'(¢; ) N E.

Therefore, there exists ¢ > 0 such that f(z) < 0 for all € N'(¢;0) N E, as
desired. O

Lemma 21. Let E C R.

Let f : E — R be a function.

Let f be differentiable at c € E.

1. If f'(¢) > 0, then there exists § > 0 such that f(c) > f(x) for all
z€(c—0d,c)NE.

2. If f'(¢c) < 0, then there exists § > 0 such that f(c) > f(z) for all
z€(c,ce+d)NE.

Proof. We prove 1.

Suppose f/(c) > 0.

Then f/(c) = lim,_,. % > 0.

Since E — {c} C E and E C R, then E — {c} C R.

Let ¢ : E — {c} — R be a function defined by ¢(z) = %

Then f'(c) = lim,_,.q(x) > 0, so the limit of ¢ at ¢ exists and is positive.

Hence, by the previous lemma, there exists § > 0 such that g(z) > 0 for all
x € N'(c;6)NE.

Thus, there exists § > 0 such that w >0 for all z € N'(¢;0) N E.

Let x € (¢ —d,¢) N E.

Then z € (¢ —d,¢) and z € E.

Since (¢ — d,¢) C (¢ —d,¢) U (¢,c+d) = N'(¢;0), then (¢ — d,¢) C N'(e,9).

Since x € (¢ — d,¢) and (¢ — d,¢) C N'(c,9), then x € N'(c, ).

Since z € N'(¢,d) and z € E, then x € N'(¢,6) N E, so w > 0.

Since z € (¢ — d,¢), then c— 6 <z < ¢, s0 x < c.

Thus, z —c < 0.

Since L:Z(C) > 0, then f(z) — f(c) <0, s0 f(x) < f(c).

Hence, f(c) > f(z), so f(c) > f(z) for all z € (¢ — §,c) N E.

Therefore, there exists § > 0 such that f(c) > f(x) for all z € (¢ —d,¢)NE,
as desired. O

Proof. We prove 2.
Suppose f/(c) < 0.
Then f'(c) = lim,_.. L—({(c) <0.

Tr—
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Since E — {c} C E and E C R, then E — {c} C R.

Let ¢ : E — {c} — R be a function defined by ¢(z) = %

Then f/(c) = lim,_,.q(x) < 0, so the limit of ¢ at ¢ exists and is negative.

Hence, by the previous lemma, there exists § > 0 such that ¢(z) < 0 for all
x € N'(c;6)NE.

Thus, there exists § > 0 such that % <Oforall z € N'(¢;d)NE.

Let z € (¢c,c+ )N E.

Then x € (¢,c+0) and z € E.

Since (¢,c+9) C (¢ —d,¢) U (¢,c+6) = N'(¢; ), then (¢,c+6) C N'(c,9).

Since x € (¢,c+ d) and (¢,c+ d) C N'(¢,d), then x € N'(c, 9).

Since € N'(¢,d) and z € E, then x € N'(¢,6) N E, so w < 0.

Since z € (¢,c+ ), then c <z < c+ 4, s0 c < x.

Thus, z — ¢ > 0.

Since w < 0, then f(z) — f(c) <0, so f(z) < f(c).

Hence, f(c) > f(z), so f(c) > f(z) for all z € (c,c+ )N E.

Therefore, there exists § > 0 such that f(c) > f(x) for all x € (¢,c+ ) NE,
as desired. 0

Theorem 22. Intermediate Value property of Derivatives
Let a,b € R with a < b.
Let f be a real valued function differentiable on the closed interval [a,b].
For every real number k such that f'(a) < k < f'(b), there exists c € (a,b)
such that f'(c) = k.

Proof. Let k be an arbitrary real number such that f'(a) < k < f/(b).

Then f’'(a) < k and k < f'(b), so f'(a) —k <0 and 0 < f'(b) — k.

Let g : [a,b] — R be a function defined by g(z) = f(x) — ka.

Since f is differentiable on [a,b], then ¢'(x) = f/'(x) — k for all z € [a, b], so
g is differentiable on [a, b].

Hence, g is differentiable, so g is continuous.

Thus, g is continuous on [a, b].

Since a < b, then the closed interval [a, b] is not empty, so by EVT, g attains
a minimum on |[a, b].

Let g(c¢) be a minimum of g on [a, b].

Then there exists ¢ € [a, b] such that g(c) < g(z) for all z € [a, b].

Since ¢ € [a,b], then a < ¢ < b, s0 a < cand ¢ <b.

We prove ¢ < b.
Since b € [a, b], then ¢’(b) = f'(b) — k > 0, so g is differentiable at b.
Thus, by the previous lemma, there exists §; > 0 such that g(b) > g(x) for
all z € (b—d1,b) NJa,b].
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Let 2 € (b— 01,b) NJa,b].
Then z € (b— d1,b) and x € [a,b] and g(b) > g(z).
Since x € [a,b] and g(c) is a minimum of g on [a, ], then g(c) < g(z).
Thus, g(c) < g() and g(z) < g(b), so g(c) < g(b).
Since ¢ = b implies g(c) = g(b), then g(c) # g(b) implies ¢ # b.
Since g(c) < g(b), then g(c) # g(b), so ¢ # b.
Since ¢ < b and ¢ # b, then ¢ < b.

We prove a < c.
Since a € [a, b], then ¢'(a) = f/'(a) — k < 0, so g is differentiable at a.
Thus, by the previous lemma, there exists do > 0 such that g(a) > g(x) for
all z € (a,a+ d2) N a, b].

Let y € (a,a+ d2) N [a,b].
Then y € (a,a + 02) and y € [a,b] and g(a) > g(y
Since y € [a,b] and g(c) is a minimum of g on [a,
Thus, g(c) < g(y) and g(y) < g(a), so g(c) < g(a).
Since ¢ = a implies g(c) = g(a), then g(c) # g(a) implies ¢ # a.
Since g(c) < g(a), then g(c) # g(a), so ¢ # a.

Since ¢ > a and ¢ # a, then ¢ > a.

)
b], then g(c) < g(y).

Since a < ¢ and ¢ < b, then a < ¢ < b, so ¢ € (a,b).
Since the open interval (a,b) is an open set, then ¢ is an interior point of

(a,b).
Hence, there exists § > 0 such that N(c;d) C (a,b).
Since N(¢;6) C (a,b) and (a,b) C [a,b], then N(c 8) C [a,b].

Thus, there exists 6 > 0 such that N( ) C [a,b].

Let p € N(c;9).
Since N(c; ) C [a, b], then p € [a,b].
Since g(c) is a minimum of g on [a, b], then g(c¢) < g(p).
Hence, g(c) < g(p) for all p € N(¢;9).

Since there exists 6 > 0 such that N(¢;d) C [a,b] and g(c) < g(p) for all
p € N(¢;9), then g(c) is a relative minimum of g.
Since ¢ € [a, b], then ¢'(c) = f'(c) — k, so g is differentiable at c.
Since g(c) is a relative minimum of g and g is differentiable at ¢, then by a
previous lemma to Rolle’s theorem, ¢'(c) = 0.
Thus, 0 = ¢'(c) = f'(¢) — k, so f'(c) = k.
Therefore, there exists ¢ € (a,b) such that f'(c) = k, as desired. O
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L’Hopital’s Rule

Theorem 23. Cauchy Mean Value Theorem

Let a,b € R with a < b.

Let f be a real valued function continuous on the closed interval [a,b] and
differentiable on the open interval (a,b).

Let g be a real valued function continuous on the closed interval [a,b] and
differentiable on the open interval (a,b).

Then there ezists ¢ € (a,b) such that f'(c)(g(b) —g(a)) = ¢'(c)(f(b) — f(a)).
Proof. Let h : [a,b] — R be a function defined by h(z) = f(z)(g(b) — g(a)) —
9(x)(f(b) — f(a)).

Then h = f(9(b) — 9(a)) — g(/(8) — f(a)).

Since f is continuous on [a,b], then the scalar multiple f(g(b) — g(a)) is
continuous on [a, b].

Since g is continuous on [a,b], then the scalar multiple g(f(b) — f(a)) is
continuous on [a, b].

Hence, the difference h = f(g(b) — g(a)) — g(f(b) — f(a)) is continuous on
[a, b].

Let z € (a,b).

Since f is differentiable on (a, b) and g is differentiable on (a, b), then h'(z) =
F(x)(g(b) — g(a)) — ¢ (x)(f(b) — f(a)), so h is differentiable on (a,b).

Observe that

h(a) = f(a)(g(b) —g(a)) — g(a)(f(b) — f(a))
= f(a)g(b) — fla)g(a) — g(a) f(b) + g(a)f(a)
= f(a)g(d) —g(a)f(D)
= f(0)g(b) —g(a)f(b) — g(b)f(b) + f(a)g(b)
= f(®)(9(b) —g(a)) — g(b)(f(b) — f(a))
= h(b).

Since h is continuous on [a,b] and differentiable on (a,b) and h(a) = h(b),
then by Rolle’s theorem, there exists ¢ € (a, b) such that h'(c) = 0.

Thus, 0 = 1(c) = [(e)(g(b) — 9(a)) — ¢/ ()FB) — F(@), 50 ¢'(c)(f(b) —
F(@) = F()(g(b) - g(a).

Therefore, there exists ¢ € (a,b) such that f'(c)(g(b) — g(a)) = ¢'(c)(f(b) —
f(a)), as desired. O

27



