Differentiation of real valued functions Theory

Jason Sass

June 29, 2021

Derivative of a real valued function

Theorem 1. Alternate definition of derivative of a function

Let E be an open subset of \mathbb{R} . Let $f: E \to \mathbb{R}$ be a function. Let $c \in E$. Since E is open, then c is an interior point of E, so there exists $\delta > 0$ such that $N(c; \delta) \subset E$. Let $Q: (0, \delta) \to \mathbb{R}$ be a function defined by $Q(h) = \frac{f(c+h) - f(c)}{h}$. $If \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} \text{ exists, then } f \text{ is differentiable at } c \text{ and } f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}.$ Proof. Suppose $\lim_{h\to 0} \frac{f(c+h)-f(c)}{h}$ exists. Let $L = \lim_{h\to 0} \frac{f(c+h)-f(c)}{h}$. Then $L \in \mathbb{R}$. Since c is an interior point of E, then c is an accumulation point of E. To prove f is differentiable at c, we prove $\lim_{x\to c} \frac{f(x)-f(c)}{x-c} = L$. Let $\epsilon > 0$ be given. Since $\lim_{h\to 0} \frac{f(c+h)-f(c)}{h} = L$, then there exists $\gamma > 0$ such that for all h, if $0 < |h| < \gamma$, then $|\frac{f(c+h)-f(c)}{h} - L| < \epsilon$. Let $x \in E$ such that $0 < |x - c| < \gamma$. Let h = x - c. Then $0 < |h| < \gamma$, so $\left|\frac{f(c+h)-f(c)}{h} - L\right| < \epsilon$. Since c+h=x, then $\left|\frac{f(x)-f(c)}{x-c} - L\right| < \epsilon$. Thus, $\lim_{x\to c} \frac{f(x)-f(c)}{x-c} = L$. Therefore, f is differentiable at c and $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = L =$ $\lim_{h \to 0} \frac{f(c+h) - f(c)}{h}.$ \square Proposition 2. the derivative of a constant is zero

Let $k \in \mathbb{R}$ be fixed. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by f(x) = k. Then f'(x) = 0 for all $x \in \mathbb{R}$. *Proof.* We prove f'(x) = 0 for all $x \in \mathbb{R}$ using the definition of derivative.

Let $c \in \mathbb{R}$ be given.

We must prove f'(c) = 0.

Let $q : \mathbb{R} - \{c\} \to \mathbb{R}$ be a function defined by $q(x) = \frac{f(x) - f(c)}{x - c}$ for all $x \in \mathbb{R} - \{c\}$.

Since $c \in \mathbb{R}$ and every real number is an accumulation point of \mathbb{R} , then c is an accumulation point of \mathbb{R} , so c is an accumulation point of $\mathbb{R} - \{c\}$, the domain of q.

For $x \in \mathbb{R} - \{c\}$, we have $x \in \mathbb{R}$ and $x \neq c$, so $x - c \neq 0$. Observe that

$$\lim_{x \to c} q(x) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$
$$= \lim_{x \to c} \frac{k - k}{x - c}$$
$$= \lim_{x \to c} \frac{0}{x - c}$$
$$= \lim_{x \to c} 0$$
$$= 0.$$

Thus, $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = 0$, as desired.

Proposition 3. the derivative of the identity function is 1 Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by f(x) = x. Then f'(x) = 1 for all $x \in \mathbb{R}$.

Proof. We prove f'(x) = 1 for all $x \in \mathbb{R}$ using the definition of derivative.

Let $c \in \mathbb{R}$ be given.

We must prove f'(c) = 1.

Let $q : \mathbb{R} - \{c\} \to \mathbb{R}$ be a function defined by $q(x) = \frac{f(x) - f(c)}{x - c}$ for all $x \in \mathbb{R} - \{c\}$.

Since $c \in \mathbb{R}$ and every real number is an accumulation point of \mathbb{R} , then c is an accumulation point of \mathbb{R} , so c is an accumulation point of $\mathbb{R} - \{c\}$, the domain of q.

For $x \in \mathbb{R} - \{c\}$, we have $x \in \mathbb{R}$ and $x \neq c$, so $x - c \neq 0$. Observe that

$$\lim_{x \to c} q(x) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$
$$= \lim_{x \to c} \frac{x - c}{x - c}$$
$$= \lim_{x \to c} 1$$
$$= 1.$$

Thus, $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = 1$, as desired.

Theorem 4. differentiability implies continuity

Let f be a real valued function of a real variable x. If f is differentiable at c, then f is continuous at c.

Proof. Suppose f is differentiable at c.

Then $c \in dom f$ and c is an accumulation point of dom f and $\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'(c)$ exists and $f'(c) \in \mathbb{R}$.

Let $q: dom f - \{c\} \to \mathbb{R}$ be a function defined by $q(x) = \frac{f(x) - f(c)}{x - c}$. For each $x \in dom f - \{c\}$, we have $x \in dom f$ and $x \neq c$, so $x - c \neq 0$. Thus,

$$\begin{aligned} f(c) &= 0 \cdot f'(c) + f(c) \\ &= \lim_{x \to c} (x - c) \cdot \lim_{x \to c} \frac{f(x) - f(c)}{x - c} + \lim_{x \to c} f(c) \\ &= \lim_{x \to c} (x - c) \cdot \frac{f(x) - f(c)}{x - c} + \lim_{x \to c} f(c) \\ &= \lim_{x \to c} [f(x) - f(c)] + \lim_{x \to c} f(c) \\ &= \lim_{x \to c} [f(x) - f(c) + f(c)] \\ &= \lim_{x \to c} f(x). \end{aligned}$$

Since c is an accumulation point of dom f and $\lim_{x\to c} f(x) = f(c)$, then f is continuous at c.

Corollary 5. Every differentiable function is continuous.

Let f be a real valued function of a real variable x. If f is differentiable, then f is continuous.

Proof. Suppose f is differentiable. To prove f is continuous, let $x \in dom f$. We must prove f is continuous at x. Since f is differentiable, then f is differentiable on dom f. Since $x \in dom f$, then f is differentiable at x, so f is continuous at x.

Algebraic properties of derivatives

Theorem 6. scalar multiple rule for derivatives

Let f be a real valued function of a real variable x.

If f is differentiable at c, then for every $\lambda \in \mathbb{R}$, the function λf is differentiable at c and $(\lambda f)'(c) = \lambda f'(c)$.

Proof. Suppose f is differentiable at c.

Then $c \in dom f$ and c is an accumulation point of dom f and $f'(c) \in \mathbb{R}$ and $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$.

Let $\lambda \in \mathbb{R}$ be given.

Since $dom(\lambda f) = dom f$ and $c \in dom f$ and c is an accumulation point of dom f, then $c \in dom(\lambda f)$ and c is an accumulation point of $dom(\lambda f)$.

Observe that

$$\begin{split} \lambda f'(c) &= \lambda \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \\ &= \lim_{x \to c} \frac{\lambda [f(x) - f(c)]}{x - c} \\ &= \lim_{x \to c} \frac{\lambda f(x) - \lambda f(c)}{x - c} \\ &= \lim_{x \to c} \frac{(\lambda f)(x) - (\lambda f)(c)}{x - c} \\ &= (\lambda f)'(c). \end{split}$$

Therefore, λf is differentiable at c and $(\lambda f)'(c) = \lambda f'(c)$.

Theorem 7. derivative of a sum equals sum of a derivative

Let f and g be real valued functions of a real variable x.

Let c be an accumulation point of $dom f \cap dom g$.

If f is differentiable at c and g is differentiable at c, then the function f + g is differentiable at c and

(f+g)'(c) = f'(c) + g'(c).

Proof. Suppose f is differentiable at c and g is differentiable at c.

Since f is differentiable at c, then $c \in domf$ and $f'(c) \in \mathbb{R}$ and $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$.

Since g is differentiable at c, then $c \in domg$ and $g'(c) \in \mathbb{R}$ and $g'(c) = \lim_{x \to c} \frac{g(x) - g(c)}{x - c}$.

Since $c \in dom f$ and $c \in dom g$, then $c \in dom f \cap dom g$.

Since $dom(f+g) = domf \cap domg$ and $c \in domf \cap domg$ and c is an accumulation point of $domf \cap domg$, then $c \in dom(f+g)$ and c is an accumulation point of dom(f+g).

Observe that

$$\begin{aligned} f'(c) + g'(c) &= \lim_{x \to c} \frac{f(x) - f(c)}{x - c} + \lim_{x \to c} \frac{g(x) - g(c)}{x - c} \\ &= \lim_{x \to c} \left[\frac{f(x) - f(c)}{x - c} + \frac{g(x) - g(c)}{x - c} \right] \\ &= \lim_{x \to c} \frac{f(x) - f(c) + g(x) - g(c)}{x - c} \\ &= \lim_{x \to c} \frac{f(x) + g(x) - f(c) - g(c)}{x - c} \\ &= \lim_{x \to c} \frac{[f(x) + g(x)] - [f(c) + g(c)]}{x - c} \\ &= \lim_{x \to c} \frac{(f + g)(x) - (f + g)(c)}{x - c} \\ &= (f + g)'(c). \end{aligned}$$

Therefore, f + g is differentiable at c and (f + g)'(c) = f'(c) + g'(c).

Corollary 8. derivative of a difference equals difference of a derivative Let f and g be real valued functions of a real variable x.

Let c be an accumulation point of $dom f \cap dom g$.

If f is differentiable at c and g is differentiable at c, then the function f - g is differentiable at c and

(f-g)'(c) = f'(c) - g'(c).

Proof. Suppose f is differentiable at c and g is differentiable at c.

Since g is differentiable at c, then the function -g is differentiable at c and (-g)'(c) = (-1)g'(c).

Since c is an accumulation point of $dom f \cap dom g$ and dom(-g) = dom g, then c is an accumulation point of $dom f \cap dom(-g)$.

Since f is differentiable at c and -g is differentiable at c, then the function f + (-g) is differentiable at c and (f + (-g))'(c) = f'(c) + (-g)'(c).

Observe that

$$\begin{aligned} f'(c) - g'(c) &= f'(c) + (-1)g'(c) \\ &= f'(c) + (-g)'(c) \\ &= (f + (-g))'(c) \\ &= (f - g)'(c). \end{aligned}$$

Therefore, f - g is differentiable at c and (f - g)'(c) = f'(c) - g'(c).

Theorem 9. product rule for derivatives

Let f and g be real valued functions of a real variable x.

Let c be an accumulation point of $dom f \cap dom g$.

If f is differentiable at c and g is differentiable at c, then the function fg is differentiable at c and

(fg)'(c) = f(c)g'(c) + g(c)f'(c).

Proof. Suppose f is differentiable at c and g is differentiable at c.

Since f is differentiable at c, then $c \in domf$ and $f'(c) \in \mathbb{R}$ and $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$. Since g is differentiable at c, then $c \in domg$ and $g'(c) \in \mathbb{R}$ and g'(c) = g'(c) = g'(c).

Since g is differentiable at c, then $c \in domg$ and $g'(c) \in \mathbb{R}$ and $g'(c) = \lim_{x \to c} \frac{g(x) - g(c)}{x - c}$.

Since $c \in dom f$ and $c \in dom g$, then $c \in dom f \cap dom g$.

Since c is an accumulation point of $dom f \cap dom g$ and $dom f \cap dom g$ is a subset of dom f, then c is an accumulation point of dom f.

Since f is differentiable at c, then f is continuous at c.

Since $c \in dom f$ and c is an accumulation point of dom f and f is continuous at c, then $\lim_{x\to c} f(x) = f(c)$.

Since $dom(fg) = domf \cap domg$ and $c \in domf \cap domg$ and c is an accumulation point of $domf \cap domg$, then $c \in dom(fg)$ and c is an accumulation point of dom(fg).

Observe that

$$\begin{split} f(c)g'(c) + g(c)f'(c) &= \lim_{x \to c} f(x) \cdot \lim_{x \to c} \frac{g(x) - g(c)}{x - c} + g(c) \cdot \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)[g(x) - g(c)]}{x - c} + \lim_{x \to c} \frac{g(c)[f(x) - f(c)]}{x - c} \\ &= \lim_{x \to c} \frac{f(x)[g(x) - g(c)]}{x - c} + \frac{g(c)[f(x) - f(c)]}{x - c} \\ &= \lim_{x \to c} \frac{f(x)[g(x) - g(c)] + g(c)[f(x) - f(c)]}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(x) - f(x)g(c) + g(c)f(x) - g(c)f(c)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(x) - f(x)g(c) + f(x)g(c) - f(c)g(c)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(x) - f(c)g(c)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(x) - f(c)g(c)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(x) - f(c)g(c)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(x) - f(c)g(c)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(x) - f(c)g(c)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(x) - f(c)g(c)}{x - c} \end{split}$$

Therefore, fg is differentiable at c and (fg)'(c) = f(c)g'(c) + g(c)f'(c). \Box

Theorem 10. quotient rule for derivatives

Let f and g be real valued functions of a real variable x. Let c be an accumulation point of $dom f \cap dom g$.

If f is differentiable at c and g is differentiable at c and $g(c) \neq 0$, then the

function $\frac{f}{g}$ is differentiable at c and $(\frac{f}{g})'(c) = \frac{g(c)f'(c) - f(c)g'(c)}{(g(c))^2}.$

Proof. Suppose f is differentiable at c and g is differentiable at c.

Since f is differentiable at c, then $c \in domf$ and $f'(c) \in \mathbb{R}$ and f'(c) =

 $\lim_{x\to c} \frac{f(x)-f(c)}{x-c}.$ Since g is differentiable at c, then $c \in domg$ and $g'(c) \in \mathbb{R}$ and $g'(c) = \lim_{x\to c} \frac{g(x)-g(c)}{x-c}.$

Since c is an accumulation point of $dom f \cap dom g$ and $dom f \cap dom g$ is a subset of domq, then c is an accumulation point of domq.

Since g is differentiable at c, then g is continuous at c.

Since $c \in domg$ and c is an accumulation point of domg and g is continuous at c, then $\lim_{x\to c} g(x) = g(c)$.

Since $\lim_{x \to c} g(x) = g(c)$ and $g(c) \neq 0$, then $\lim_{x \to c} \frac{1}{g(x)} = \frac{1}{\lim_{x \to c} g(x)} = \frac{1}{g(c)}$. Since $c \in domf$ and $c \in domg$, then $c \in domf \cap domg$.

Since $c \in dom f \cap dom g$ and $g(c) \neq 0$, then c is in the domain of $\frac{I}{q}$.

Since c is an accumulation point of $dom f \cap dom g$, then c is an accumulation point of the domain of $\frac{f}{a}$.

Observe that

$$\begin{aligned} \frac{g(c)f'(c) - f(c)g'(c)}{(g(c))^2} &= \frac{1}{g(c)} \cdot f'(c) - \frac{f(c)}{g(c)} \cdot \frac{1}{g(c)} \cdot g'(c) \\ &= \lim_{x \to c} \frac{1}{g(x)} \cdot \lim_{x \to c} \frac{f(x) - f(c)}{x - c} - \frac{f(c)}{g(c)} \cdot \lim_{x \to c} \frac{1}{g(x)} \cdot \lim_{x \to c} \frac{g(x) - g(c)}{x - c} \\ &= \lim_{x \to c} \frac{f(x) - f(c)}{g(x)(x - c)} - \frac{f(c)}{g(c)} \cdot \lim_{x \to c} \frac{g(x) - g(c)}{g(x)(x - c)} \\ &= \lim_{x \to c} \frac{[f(x) - f(c)]g(c)}{g(x)g(c)(x - c)} - \lim_{x \to c} \frac{f(c)[g(x) - g(c)]}{g(x)g(c)(x - c)} \\ &= \lim_{x \to c} \frac{[f(x) - f(c)]g(c) - f(c)[g(x) - g(c)]}{g(x)g(c)(x - c)} \\ &= \lim_{x \to c} \frac{f(x)g(c) - f(c)g(c) - f(c)g(x) + f(c)g(c)}{g(x)g(c)(x - c)} \\ &= \lim_{x \to c} \frac{f(x)g(c) - f(c)g(x)}{g(x)g(c)(x - c)} \\ &= \lim_{x \to c} \frac{f(x)g(c) - f(c)g(x)}{g(x)g(c)(x - c)} \\ &= \lim_{x \to c} \frac{f(x)g(c) - f(c)g(x)}{g(x)g(c)(x - c)} \\ &= \lim_{x \to c} \frac{f(x)g(c) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(c) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(c) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(c) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(c) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(c) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(c) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(c) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(c) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(c) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(c) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(c) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(c) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(c) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(c) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(c) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(c) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(c) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(x) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(x) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(x) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(x) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(x) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(x) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(x) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(x) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(x) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(x) - f(c)g(x)}{x - c} \\ &= \lim_{x \to c} \frac{f(x)g(x) - f(c)g(x)}{$$

Therefore, $\frac{f}{g}$ is differentiable at c and $(\frac{f}{g})'(c) = \frac{g(c)f'(c) - f(c)g'(c)}{(g(c))^2}$.

Corollary 11. power rule for derivatives

Let $n \in \mathbb{Z}$ be fixed. Let $f : \mathbb{R}^* \to \mathbb{R}$ be the function defined by $f(x) = x^n$. Then $f'(x) = nx^{n-1}$.

Proof. We prove for n = 0, if $f(x) = x^n$ for all nonzero $x \in \mathbb{R}$, then $f'(x) = nx^{n-1}$.

Let n = 0. Suppose $f(x) = x^n$ for all nonzero $x \in \mathbb{R}$. Then $f(x) = x^n = x^0 = 1$ for all nonzero $x \in \mathbb{R}$, so f'(x) = 0 for all nonzero $x \in \mathbb{R}$. Let $x \in \mathbb{R}$ with $x \neq 0$. Then $f'(x) = 0 = 0 \cdot x^{-1} = 0x^{0-1} = nx^{n-1}$.

Proof. We prove for all positive integers n, if $f(x) = x^n$ for all nonzero $x \in \mathbb{R}$, then $f'(x) = nx^{n-1}$ by induction on n.

Let $S = \{n \in \mathbb{Z}^+ : \text{ if } f(x) = x^n \text{ for all nonzero } x \in \mathbb{R}, \text{ then } f'(x) = nx^{n-1}\}.$ Basis:

Suppose $f(x) = x^1 = x$ for all nonzero $x \in \mathbb{R}$.

Then f'(x) = 1 for all nonzero $x \in \mathbb{R}$. Let $x \in \mathbb{R}$ with $x \neq 0$. Since $x \neq 0$, then $f'(x) = 1 = 1 \cdot 1 = 1 \cdot x^0 = 1 \cdot x^{1-1}$, so $1 \in S$. **Induction:** Suppose $k \in S$. Then $k \in \mathbb{Z}^+$ and if $f(x) = x^k$ for all nonzero $x \in \mathbb{R}$, then $f'(x) = kx^{k-1}$. Since $k \in \mathbb{Z}^+$, then $k + 1 \in \mathbb{Z}^+$. Suppose $g(x) = x^{k+1}$ for all nonzero $x \in \mathbb{R}$. Then $g(x) = x^k \cdot x$ for all nonzero $x \in \mathbb{R}$. Let f and h be functions defined by $f(x) = x^k$ and h(x) = x for all nonzero $x \in \mathbb{R}$. Then g = fh is the function defined by $g(x) = f(x) \cdot h(x)$ for all nonzero $x \in \mathbb{R}$. Since $f(x) = x^k$ for all nonzero $x \in \mathbb{R}$, then $f'(x) = kx^{k-1}$.

Since h(x) = x for all nonzero $x \in \mathbb{R}$, then h'(x) = 1 for all nonzero $x \in \mathbb{R}$. Let $x \in \mathbb{R}$ with $x \neq 0$.

Since $dom f \cap dom h = \mathbb{R} \cap \mathbb{R} = \mathbb{R}$ and $x \in \mathbb{R}$ and every real number is an accumulation point of \mathbb{R} , then x is an accumulation point of $dom f \cap dom h$.

Since x is a nonzero real number, then $f(x) = x^k$ and $f'(x) = kx^{k-1}$ and h(x) = x and h'(x) = 1.

Thus,

$$g'(x) = (fh)'(x) = f(x) \cdot h'(x) + h(x) \cdot f'(x) = x^{k} \cdot 1 + x \cdot kx^{k-1} = x^{k} + kx^{k} = (1+k)x^{k} = (k+1)x^{k}.$$

Hence, if $g(x) = x^{k+1}$ for all nonzero $x \in \mathbb{R}$, then $g'(x) = (k+1)x^k$. Since $k+1 \in \mathbb{Z}^+$, then this implies $k+1 \in S$.

Hence, $k \in S$ implies $k + 1 \in S$ for all $k \in \mathbb{Z}^+$.

Since $1 \in S$ and $k \in S$ implies $k + 1 \in S$ for all $k \in \mathbb{Z}^+$, then by induction, $S = \mathbb{Z}^+$.

Therefore, for all $n \in \mathbb{Z}^+$, if $f(x) = x^n$ for all nonzero $x \in \mathbb{R}$, then $f'(x) = nx^{n-1}$.

Proof. We prove for all negative integers n, if $f(x) = x^n$ for all nonzero $x \in \mathbb{R}$, then $f'(x) = nx^{n-1}$.

Let n be an arbitrary negative integer.

Then $n \in \mathbb{Z}$ and n < 0.

Thus, there exists $k \in \mathbb{Z}$ such that k = -n > 0, so n = -k and k is a positive integer.

Suppose $f(x) = x^n$ for all nonzero $x \in \mathbb{R}$.

Let $x \in \mathbb{R}$ with $x \neq 0$.

Then $f(x) = x^n = x^{-k} = \frac{1}{x^k}$.

Let g and h be functions defined by g(x) = 1 and $h(x) = x^k$ for all nonzero $x \in \mathbb{R}$.

Then $f = \frac{g}{h}$ is the function defined by $f(x) = \frac{g(x)}{h(x)}$ for all nonzero $x \in \mathbb{R}$. Since g(x) = 1 for all nonzero $x \in \mathbb{R}$, then g'(x) = 0 for all nonzero $x \in \mathbb{R}$. Since k is a positive integer and $h(x) = x^k$ for all nonzero $x \in \mathbb{R}$, then

 $h'(x) = kx^{k-1}.$

Let $x \in \mathbb{R}^*$.

Then $x \in \mathbb{R}$ and $x \neq 0$.

Since $x \in \mathbb{R}^*$ and \mathbb{R}^* is an open set, then x is an interior point of \mathbb{R}^* , so x is an accumulation point of \mathbb{R}^* .

Since $domg \cap domh = \mathbb{R}^* \cap \mathbb{R}^* = \mathbb{R}^*$, then this implies x is an accumulation point of $dom g \cap dom h$.

Since x is a nonzero real number, then g(x) = 1 and g'(x) = 0 and $h(x) = x^k$ and $h'(x) = kx^{k-1}$.

Since $x \neq 0$ and k > 0, then $x^k \neq 0$, so $h(x) \neq 0$. Thus,

$$f'(x) = \left(\frac{g}{h}\right)'(x) = \frac{h(x) \cdot g'(x) - g(x) \cdot h'(x)}{[h(x)]^2} = \frac{x^k \cdot 0 - 1 \cdot kx^{k-1}}{(x^k)^2} = \frac{-kx^{k-1}}{x^{2k}} = -kx^{-k-1} = nx^{n-1}.$$

Therefore, if $f(x) = x^n$ for all nonzero $x \in \mathbb{R}$, then $f'(x) = nx^{n-1}$.

Proposition 12. derivatives of trig functions

- 1. $\frac{d}{dx}(\tan x) = \sec^2 x.$ 2. $\frac{d}{dx}(\cot x) = -\csc^2 x.$ 3. $\frac{d}{dx}(\sec x) = \sec x \tan x.$ 4. $\frac{d}{dx}(\csc x) = -\csc x \cot x.$

Proof. We prove 1.

Observe that

$$\frac{d}{dx}(\tan x) = \frac{d}{dx}(\frac{\sin x}{\cos x})$$

$$= \frac{(\cos x)(\cos x) - (\sin x)(-\sin x)}{\cos^2 x}$$

$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$$

$$= \frac{1}{\cos^2 x}$$

$$= \sec^2 x.$$

Proof. We prove 2. Observe that

$$\frac{d}{dx}(\cot x) = \frac{d}{dx}(\frac{\cos x}{\sin x})$$

$$= \frac{(\sin x)(-\sin x) - (\cos x)(\cos x)}{\sin^2 x}$$

$$= \frac{-\sin^2 x - \cos^2 x}{\sin^2 x}$$

$$= \frac{-(\sin^2 x + \cos^2 x)}{\sin^2 x}$$

$$= \frac{-1}{\sin^2 x}$$

$$= -\csc^2 x.$$

Proof. We prove 3. Observe that

$$\frac{d}{dx}(\sec x) = \frac{d}{dx}\left(\frac{1}{\cos x}\right)$$
$$= \frac{(\cos x)(0) - (1)(-\sin x)}{\cos^2 x}$$
$$= \frac{\sin x}{\cos^2 x}$$
$$= \frac{1 \cdot \sin x}{\cos x \cdot \cos x}$$
$$= \frac{1}{\cos x} \cdot \frac{\sin x}{\cos x}$$
$$= \sec x \tan x.$$

Proof. We prove 4. Observe that

$$\frac{d}{dx}(\csc x) = \frac{d}{dx}(\frac{1}{\sin x})$$

$$= \frac{(\sin x)(0) - (1)(\cos x)}{\sin^2 x}$$

$$= \frac{-\cos x}{\sin^2 x}$$

$$= \frac{-1 \cdot \cos x}{\sin x \cdot \sin x}$$

$$= \frac{-1}{\sin x} \cdot \frac{\cos x}{\sin x}$$

$$= -\csc x \cot x.$$

Theorem 13. chain rule for derivatives

Let f and g be real valued functions such that $rngf \subset domg$. If f is differentiable at c and g is differentiable at f(c), then the function $g \circ f$ is differentiable at c and $(g \circ f)'(c) = g'(f(c)) \cdot f'(c).$

Proof. Suppose f is differentiable at c and g is differentiable at f(c).

Since f is differentiable at c, then $c \in dom f$ and c is an accumulation point of dom f and $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ and f is continuous at c. Since g is differentiable at f(c), then $f(c) \in dom g$ and f(c) is an accumula-

tion point of *domg* and g'(f(c)) exists.

Let $\delta > 0$ be given.

Since c is an accumulation point of dom f, then there exists $x \in dom f$ such that $x \in N'(c; \delta)$.

Let $x \in dom f$ such that $x \in N'(c; \delta)$. Since $x \in dom f$, then $f(x) \in rngf$. Since $rngf \subset domg$, then $f(x) \in domg$. Since $x \in N'(c; \delta)$, then $x \in N(c; \delta)$ and $x \neq c$. Since $f(x) \in domg$ and $f(c) \in domg$, then either f(x) = f(c) or $f(x) \neq f(c)$. We consider these cases separately. **Case 1:** Suppose $f(x) \neq f(c)$. Then $f(x) - f(c) \neq 0$. Let $h: domg \to \mathbb{R}$ be a function defined by $h(y) = \frac{g(y) - g(f(c))}{y - f(c)}$ if $y \neq f(c)$ and h(f(c)) = g'(f(c)).

Since $f(x) \in domg$ and $f(x) \neq f(c)$, then $h(f(x)) = \frac{g(f(x)) - g(f(c))}{f(x) - f(c)}$.

If $y \in domg$ and $y \neq f(c)$, then

$$h(f(c)) = g'(f(c))$$

=
$$\lim_{y \to f(c)} \frac{g(y) - g(f(c))}{y - f(c)}$$

=
$$\lim_{y \to f(c)} h(y).$$

Let y = f(x).

Then $y \in domg$ and $y \neq f(c)$ and $h(y) = \frac{g(y) - g(f(c))}{y - f(c)}$. Since $y \in domg$ and $y \neq f(c)$, then we conclude $h(f(c)) = \lim_{y \to f(c)} h(y)$. Since f(c) is an accumulation point of domg and domh = domg, then f(c) is an accumulation point of domh.

Since f(c) is an accumulation point of domh and $\lim_{y\to f(c)} h(y) = h(f(c))$, then by the characterization of continuity at a point, h is continuous at f(c).

Since f is continuous at c and h is continuous at f(c), then $h \circ f$ is continuous at c.

Observe that $dom(h \circ f) = \{x \in domf : f(x) \in domh\} = \{x \in domf : f(x) \in domg\}.$

Since $x \in dom f$ and $f(x) \in dom g$, then $x \in dom(h \circ f)$.

Thus, there exists $x \in dom(h \circ f)$ such that $x \in N'(c; \delta)$ for every $\delta > 0$. Therefore, c is an accumulation point of $dom(h \circ f)$.

Since c is an accumulation point of $dom(h \circ f)$ and $h \circ f$ is continuous at c, then by the characterization of continuity at a point, $\lim_{x\to c} (h \circ f)(x) = (h \circ f)(c) = h(f(c)) = g'(f(c))$, so $\lim_{x\to c} (h \circ f)(x) = g'(f(c))$.

Since $x \neq c$ and $f(x) - f(c) \neq 0$, then

$$\begin{aligned} g'(f(c)) \cdot f'(c) &= \lim_{x \to c} (h \circ f)(x) \cdot \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \\ &= \lim_{x \to c} (h \circ f)(x) \cdot \frac{f(x) - f(c)}{x - c} \\ &= \lim_{x \to c} (h(f(x)) \cdot \frac{f(x) - f(c)}{x - c} \\ &= \lim_{x \to c} \frac{g(f(x)) - g(f(c))}{f(x) - f(c)} \cdot \frac{f(x) - f(c)}{x - c} \\ &= \lim_{x \to c} \frac{g(f(x)) - g(f(c))}{x - c} \\ &= \lim_{x \to c} \frac{(g \circ f)(x) - (g \circ f)(c)}{x - c} \\ &= (g \circ f)'(c). \end{aligned}$$

Therefore, if $f(x) \neq f(c)$, then $(g \circ f)'(c) = g'(f(c)) \cdot f'(c)$. Case 2: Suppose f(x) = f(c).

Since f is differentiable at c and $x \neq c$, then $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{f(c) - f(c)}{x - c} = \lim_{x \to c} \frac{f(c) - f(c)}{x - c} = \lim_{x \to c} \frac{f(c) - f(c)}{x - c} = 0$, so f'(c) = 0.

Observe that

$$g'(f(c)) \cdot f'(c) = g'(f(c)) \cdot 0$$

= 0
= $\lim_{x \to c} \frac{0}{x - c}$
= $\lim_{x \to c} \frac{g(f(c)) - g(f(c))}{x - c}$
= $\lim_{x \to c} \frac{g(f(x)) - g(f(c))}{x - c}$
= $\lim_{x \to c} \frac{(g \circ f)(x) - (g \circ f)(c)}{x - c}$
= $(g \circ f)'(c).$

Therefore, if f(x) = f(c), then $(g \circ f)'(c) = g'(f(c)) \cdot f'(c)$.

Mean Value Theorem

Lemma 14. Let $E \subset \mathbb{R}$. Let $f : E \to \mathbb{R}$ be a function. Let $c \in E$. 1. If f(c) is a relative maximum and f is differentiable at c, then f'(c) = 0. 2. If f(c) is a relative minimum and f is differentiable at c, then f'(c) = 0.

Proof. We prove 1.

Suppose f(c) is a relative maximum and f is differentiable at c. Since f(c) is a relative maximum, then there exists $\delta_1 > 0$ such that $N(c; \delta_1) \subset$

E and $f(c) \ge f(x)$ for all $x \in N(c; \delta_1)$.

Since f is differentiable at c, then $c \in E$ and there is a real number f'(c) such that $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$.

Since $f'(c) \in \mathbb{R}$, then either f'(c) > 0 or f'(c) = 0 or f'(c) < 0.

Suppose f'(c) > 0. Since $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$, then there exists $\delta_2 > 0$ such that for all $x \in E - \{c\}$, if $0 < |x - c| < \delta_2$, then $|\frac{f(x) - f(c)}{x - c} - f'(c)| < f'(c)$. Let $\delta = \min\{\delta_1, \delta_2\}$. Then $\delta \le \delta_1$ and $\delta \le \delta_2$ and $\delta > 0$. Since $\delta > 0$, then $\frac{\delta}{2} > 0$. Let $x = c + \frac{\delta}{2}$. Since $d(x, c) = |x - c| = |\frac{\delta}{2}| = \frac{\delta}{2} < \delta \le \delta_1$, then $d(x, c) < \delta_1$, so $x \in N(c; \delta_1)$. Hence, $f(c) \ge f(x)$. Since $x \in N(c; \delta_1)$ and $N(c; \delta_1) \subset E$, then $x \in E$. Since $x - c = \frac{\delta}{2} > 0$, then x - c > 0, so $x - c \ne 0$. Hence, $x \ne c$. Since $x \in E$ and $x \ne c$, then $x \in E - \{c\}$.

Since $0 < |x - c| = |\frac{\delta}{2}| = \frac{\delta}{2} < \delta \le \delta_2$, then $0 < |x - c| < \delta_2$. Since $x \in E - \{c\}$ and $0 < |x - c| < \delta_2$, then $|\frac{f(x) - f(c)}{x - c} - f'(c)| < f'(c)$. Thus, $-f'(c) < \frac{f(x) - f(c)}{x - c} - f'(c) < f'(c)$, so $-f'(c) < \frac{f(x) - f(c)}{x - c} - f'(c)$. Hence, $0 < \frac{f(x) - f(c)}{x - c}$. Since x - c > 0, then 0 < f(x) - f(c), so f(c) < f(x). Thus, we have $f(c) \ge f(x)$ and f(c) < f(x), a contradiction. Therefore, f'(c) cannot be positive.

Suppose f'(c) < 0. Then -f'(c) > 0. Since $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$, then there exists $\delta_2 > 0$ such that for all $x \in E - \{c\}$, if $0 < |x - c| < \delta_2$, then $\left|\frac{f(x) - f(c)}{x - c} - f'(c)\right| < -f'(c)$. Let $\delta = \min\{\delta_1, \delta_2\}.$ Then $\delta \leq \delta_1$ and $\delta \leq \delta_2$ and $\delta > 0$. Since $\delta > 0$, then $\frac{\delta}{2} > 0$. Let $x = c - \frac{\delta}{2}$. Since $d(x,c) = |x-c| = |\frac{-\delta}{2}| = |\frac{\delta}{2}| = \frac{\delta}{2} < \delta \leq \delta_1$, then $d(x,c) < \delta_1$, so $x \in N(c; \delta_1).$ Hence, $f(c) \ge f(x)$. Since $x \in N(c; \delta_1)$ and $N(c; \delta_1) \subset E$, then $x \in E$. Since $x - c = \frac{-\delta}{2} < 0$, then x - c < 0, so $x - c \neq 0$. Hence, $x \neq c$. Since $x \in E$ and $x \neq c$, then $x \in E - \{c\}$. Since $0 < |x - c| = |\frac{-\delta}{2}| = |\frac{\delta}{2}| = \frac{\delta}{2} < \delta \leq \delta_2$, then $0 < |x - c| < \delta_2$. Since $0 < |x - c| = |\frac{1}{2}| - |\frac{1}{2}| - \frac{1}{2} < 0 \le 0^2$, then $0 < |x - c| < 0^2$. Since $x \in E - \{c\}$ and $0 < |x - c| < \delta_2$, then $|\frac{f(x) - f(c)}{x - c} - f'(c)| < -f'(c)$. Thus, $f'(c) < \frac{f(x) - f(c)}{x - c} - f'(c) < -f'(c)$, so $\frac{f(x) - f(c)}{x - c} - f'(c) < -f'(c)$. Hence, $\frac{f(x) - f(c)}{x - c} < 0$. Since x - c < 0, then f(x) - f(c) > 0, so f(x) > f(c). Thus, we have $f(c) \ge f(x)$ and f(c) < f(x), a contradiction. Therefore, f'(c) cannot be negative.

Since f'(c) is neither positive nor negative, then f'(c) must be zero, so f'(c) =0.

Proof. We prove 2.

Suppose f(c) is a relative minimum and f is differentiable at c. Since f(c) is a relative minimum, then there exists $\delta_1 > 0$ such that $N(c; \delta_1) \subset$ E and $f(c) \leq f(x)$ for all $x \in N(c; \delta_1)$.

Since f is differentiable at c, then $c \in E$ and there is a real number f'(c)such that $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$. Since $f'(c) \in \mathbb{R}$, then either f'(c) > 0 or f'(c) = 0 or f'(c) < 0.

Suppose f'(c) > 0. Since $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$, then there exists $\delta_2 > 0$ such that for all $x \in E - \{c\}$, if $0 < |x - c| < \delta_2$, then $\left|\frac{f(x) - f(c)}{x - c} - f'(c)\right| < f'(c)$. Let $\delta = \min\{\delta_1, \delta_2\}.$ Then $\delta \leq \delta_1$ and $\delta \leq \delta_2$ and $\delta > 0$. Since $\delta > 0$, then $\frac{\delta}{2} > 0$. Let $x = c - \frac{\delta}{2}$. Since $d(x,c) = |x-c| = |\frac{-\delta}{2}| = |\frac{\delta}{2}| = \frac{\delta}{2} < \delta \leq \delta_1$, then $d(x,c) < \delta_1$, so $x \in N(c; \delta_1).$ Hence, $f(c) \leq f(x)$. Since $x \in N(c; \delta_1)$ and $N(c; \delta_1) \subset E$, then $x \in E$. Since $x - c = \frac{-\delta}{2} < 0$, then x - c < 0, so $x - c \neq 0$. Hence, $x \neq c$. Since $x \in E$ and $x \neq c$, then $x \in E - \{c\}$. Since $0 < |x - c| = |\frac{-\delta}{2}| = |\frac{\delta}{2}| = \frac{\delta}{2} < \delta \leq \delta_2$, then $0 < |x - c| < \delta_2$. Since $x \in E - \{c\}$ and $0 < |x - c| < \delta_2$, then $|\frac{f(x) - f(c)}{x - c} - f'(c)| < f'(c)$. Thus, $-f'(c) < \frac{f(x) - f(c)}{x - c} - f'(c) < f'(c)$, so $-f'(c) < \frac{f(x) - f(c)}{x - c} - f'(c)$. Hence, $0 < \frac{f(x) - f(c)}{x - c}$. Since x - c < 0, then 0 > f(x) - f(c), so f(c) > f(x). Thus, we have $f(c) \leq f(x)$ and f(c) > f(x), a contradiction. Therefore, f'(c) cannot be positive. Suppose f'(c) < 0. Then -f'(c) > 0. Since $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$, then there exists $\delta_2 > 0$ such that for all $x \in E - \{c\}$, if $0 < |x - c| < \delta_2$, then $\left|\frac{f(x) - f(c)}{x - c} - f'(c)\right| < -f'(c)$. Let $\delta = \min\{\delta_1, \delta_2\}.$ Then $\delta \leq \delta_1$ and $\delta \leq \delta_2$ and $\delta > 0$.

Let $x = c + \frac{\delta}{2}$. Since $d(x, c) = |x - c| = |\frac{\delta}{2}| = \frac{\delta}{2} < \delta \le \delta_1$, then $d(x, c) < \delta_1$, so $x \in N(c; \delta_1)$. Hence, $f(c) \le f(x)$. Since $x \in N(c; \delta_1)$ and $N(c; \delta_1) \subset E$, then $x \in E$. Since $x - c = \frac{\delta}{2} > 0$, then x - c > 0, so $x - c \ne 0$. Hence, $x \ne c$. Since $x \in E$ and $x \ne c$, then $x \in E - \{c\}$.

Since $\delta > 0$, then $\frac{\delta}{2} > 0$.

Since $x \in D$ and $x \neq c$, then $x \in D$ (c). Since $0 < |x - c| = |\frac{\delta}{2}| = \frac{\delta}{2} < \delta \le \delta_2$, then $0 < |x - c| < \delta_2$. Since $x \in E - \{c\}$ and $0 < |x - c| < \delta_2$, then $|\frac{f(x) - f(c)}{x - c} - f'(c)| < -f'(c)$. Thus, $f'(c) < \frac{f(x) - f(c)}{x - c} - f'(c) < -f'(c)$, so $\frac{f(x) - f(c)}{x - c} - f'(c) < -f'(c)$. Hence, $\frac{f(x) - f(c)}{x - c} < 0$. Since x - c > 0, then f(x) - f(c) < 0, so f(x) < f(c). Thus, we have $f(c) \le f(x)$ and f(c) > f(x), a contradiction. Therefore, f'(c) cannot be negative. Since f'(c) is neither positive nor negative, then f'(c) must be zero, so f'(c) = 0.

Theorem 15. Rolle's Theorem

Let $a, b \in \mathbb{R}$ with a < b.

Let f be a real valued function continuous on the closed interval [a, b] and differentiable on the open interval (a, b).

If f(a) = f(b), then there exists $c \in (a, b)$ such that f'(c) = 0.

Proof. Suppose
$$f(a) = f(b)$$

We must prove there exists $c \in (a, b)$ such that f'(c) = 0.

Let k = f(a) = f(b).

Either f(x) = k for all $x \in [a, b]$ or not.

We consider these cases separately.

Case 1: Suppose f(x) = k for all $x \in [a, b]$.

Since a < b, then by the density of \mathbb{R} , there exists a real number c such that a < c < b.

Hence, $c \in (a, b)$.

Since $(a, b) \subset [a, b]$, then $c \in [a, b]$.

Since every point in [a, b] is an accumulation point of [a, b], then c is an accumulation point of [a, b].

Since $[a, b] \subset \mathbb{R}$ and c is an accumulation point of [a, b], then c is an accumulation point of $[a, b] - \{c\}$.

Let $q : [a,b] - \{c\} \to \mathbb{R}$ be a function defined by $q(x) = \frac{f(x) - f(c)}{x - c}$ for all $x \in [a,b] - \{c\}$.

Let $x \in [a, b] - \{c\}$.

Then $x \in [a, b]$ and $x \neq c$.

Since $x \neq c$, then $x - c \neq 0$.

Since $x \in [a, b]$ and $c \in [a, b]$ and f(x) = k for all $x \in [a, b]$, then f(x) = k = f(c).

Thus, f(x) - f(c) = 0.

Since $0 = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} q(x) = f'(c)$, then f'(c) = 0.

Therefore, there exists $c \in (a, b)$ such that f'(c) = 0, as desired.

Case 2: Suppose it is not the case that f(x) = k for all $x \in [a, b]$.

Then there exists $x \in [a, b]$ such that $f(x) \neq k$.

Since $f(x) \neq k$, then either f(x) > k or f(x) < k.

We consider these cases separately. $\tilde{\alpha}$

Case 2a: Suppose f(x) > k.

Since f is a real valued function continuous on the nonempty closed bounded interval [a, b], then by EVT, f has a maximum on [a, b].

Let f(c) be a maximum of f on [a, b]. Then there exists $c \in [a, b]$ such that $f(c) \ge f(x)$ for all $x \in [a, b]$. Since $c \in [a, b]$, then $a \le c \le b$, so $a \le c$ and $c \le b$. Since $x \in [a, b]$ and f(c) is a maximum of f on [a, b], then $f(c) \ge f(x)$. Since $f(c) \ge f(x)$ and f(x) > k, then f(c) > k. Since c = a implies f(c) = f(a), then $f(c) \ne f(a)$ implies $c \ne a$. Since f(c) > k = f(a), then f(c) > f(a), so $f(c) \ne f(a)$. Hence, $c \ne a$. Since $c \ge a$ and $c \ne a$, then c > a. Since $c \ge b$ implies f(c) = f(b), then $f(c) \ne f(b)$ implies $c \ne b$. Since f(c) > k = f(b), then f(c) > f(b), so $f(c) \ne f(b)$. Hence, $c \ne b$. Since $c \le b$ and $c \ne b$, then c < b. Hence, a < c and c < b, so a < c < b. Thus, $c \in (a, b)$.

Since the open interval (a, b) is an open set, then c is an interior point of (a, b), so there exists $\delta > 0$ such that $N(c; \delta) \subset (a, b)$.

Since $N(c; \delta) \subset (a, b)$ and $(a, b) \subset [a, b]$, then $N(c; \delta) \subset [a, b]$. Thus, there exists $\delta > 0$ such that $N(c; \delta) \subset [a, b]$.

Let $p \in N(c; \delta)$. Since $N(c; \delta) \subset [a, b]$, then $p \in [a, b]$. Since f(c) is a maximum of f on [a, b], then $f(c) \geq f(p)$. Thus, $f(c) \geq f(p)$ for all $p \in N(c; \delta)$.

Since there exists $\delta > 0$ such that $N(c; \delta) \subset [a, b]$ and $f(c) \geq f(p)$ for all $p \in N(c; \delta)$, then f(c) is a relative maximum of f on [a, b].

Since f is differentiable on (a, b) and $c \in (a, b)$, then f is differentiable at c. Since f(c) is a relative maximum and f is differentiable at c, then by the previous lemma, f'(c) = 0.

Therefore, there exists $c \in (a, b)$ such that f'(c) = 0, as desired.

Case 2b: Suppose f(x) < k.

Since f is a real valued function continuous on the nonempty closed bounded interval [a, b], then by EVT, f has a minimum on [a, b].

Let f(c) be a minimum of f on [a, b].

Then there exists $c \in [a, b]$ such that $f(c) \leq f(x)$ for all $x \in [a, b]$. Since $c \in [a, b]$, then $a \leq c \leq b$, so $a \leq c$ and $c \leq b$. Since $x \in [a, b]$ and f(c) is a minimum of f on [a, b], then $f(c) \leq f(x)$. Since $f(c) \leq f(x)$ and f(x) < k, then f(c) < k. Since c = a implies f(c) = f(a), then $f(c) \neq f(a)$ implies $c \neq a$. Since f(c) < k = f(a), then f(c) < f(a), so $f(c) \neq f(a)$. Hence, $c \neq a$. Since $c \geq a$ and $c \neq a$, then c > a.

Since c = b implies f(c) = f(b), then $f(c) \neq f(b)$ implies $c \neq b$. Since f(c) < k = f(b), then f(c) < f(b), so $f(c) \neq f(b)$. Hence, $c \neq b$. Since $c \leq b$ and $c \neq b$, then c < b. Hence, a < c and c < b, so a < c < b. Thus, $c \in (a, b)$.

Since the open interval (a, b) is an open set, then c is an interior point of (a, b), so there exists $\delta > 0$ such that $N(c; \delta) \subset (a, b)$.

Since $N(c; \delta) \subset (a, b)$ and $(a, b) \subset [a, b]$, then $N(c; \delta) \subset [a, b]$. Thus, there exists $\delta > 0$ such that $N(c; \delta) \subset [a, b]$.

Let $p \in N(c; \delta)$. Since $N(c; \delta) \subset [a, b]$, then $p \in [a, b]$. Since f(c) is a minimum of f on [a, b], then $f(c) \leq f(p)$. Thus, $f(c) \leq f(p)$ for all $p \in N(c; \delta)$.

Since there exists $\delta > 0$ such that $N(c; \delta) \subset [a, b]$ and $f(c) \leq f(p)$ for all $p \in N(c; \delta)$, then f(c) is a relative minimum of f on [a, b].

Since f is differentiable on (a, b) and $c \in (a, b)$, then f is differentiable at c. Since f(c) is a relative minimum and f is differentiable at c, then by the previous lemma, f'(c) = 0.

Therefore, there exists $c \in (a, b)$ such that f'(c) = 0, as desired.

Theorem 16. Mean Value Theorem

Let $a, b \in \mathbb{R}$ with a < b.

Let f be a real valued function continuous on the closed interval [a, b] and differentiable on the open interval (a, b).

Then there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b-a}$.

Proof. We must prove there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Since a < b, then b - a > 0, so $\frac{f(b) - f(a)}{b - a}$ is a real number.

Let L be a real valued function defined by $L(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a)$ for all $x \in [a, b]$.

Let g be defined by q = f - L.

Then g is a real valued function defined by g(x) = f(x) - L(x) for all $x \in [a, b].$

Thus, $g(x) = f(x) - \frac{f(b) - f(a)}{b-a}(x-a) - f(a)$ for all $x \in [a, b]$. Since f is continuous on [a, b], then f is continuous.

Since L is a linear function, then L is continuous.

Since the difference of continuous functions is continuous, then g is continuous, so q is continuous on [a, b].

Since L is a linear function, then L is differentiable, so L is differentiable on [a,b].

Since $(a, b) \subset [a, b]$, then L is differentiable on (a, b).

Since f is differentiable on (a, b) and L is differentiable on (a, b), then the difference q = f - L is differentiable on (a, b).

Let $x \in (a, b)$. Since $L(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a)$, then $L'(x) = \frac{f(b) - f(a)}{b - a}$. Since g(x) = f(x) - L(x), then $g'(x) = f'(x) - L'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$, so

 $g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}.$

Hence, g is differentiable at x.

Thus, g is differentiable at x for all $x \in (a, b)$, so g is differentiable on (a, b).

Observe that

$$g(a) = f(a) - \frac{f(b) - f(a)}{b - a}(a - a) - f(a)$$

= 0
= f(b) - f(b) + f(a) - f(a)
= f(b) - (f(b) - f(a)) - f(a)
= f(b) - \frac{f(b) - f(a)}{b - a}(b - a) - f(a)
= g(b).

Since g is continuous on [a, b] and g is differentiable on (a, b) and g(a) = g(b),

then by Rolle's theorem, there exists $c \in (a, b)$ such that g'(c) = 0. Since $0 = g'(c) = f'(c) - L'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}$, then $\frac{f(b) - f(a)}{b - a} = f'(c)$. Therefore, there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$, as desired. \Box

Corollary 17. Let f be a real valued function differentiable on an interval I. Then

1. If f'(x) = 0 for all $x \in I$, then f is constant on I.

2. If f'(x) > 0 for all $x \in I$, then f is strictly increasing on I.

3. If f'(x) < 0 for all $x \in I$, then f is strictly decreasing on I.

Proof. We prove 1.

Suppose f'(x) = 0 for all $x \in I$. To prove f is constant on I, let $a, b \in I$ such that $a \neq b$. We must prove f(a) = f(b). Since $a \neq b$, then either a < b or a > b. Without loss of generality, assume a < b. Since $a \in I$ and $b \in I$ and a < b, then $[a, b] \subset I$. Since f is differentiable on I and $[a, b] \subset I$, then f is differentiable on [a, b], so f is continuous on [a, b]. Since $(a, b) \subset [a, b]$ and $[a, b] \subset I$, then $(a, b) \subset I$.

Since f is differentiable on I and $(a, b) \subset I$, then f is differentiable on (a, b).

Since f is continuous on [a, b] and differentiable on (a, b), then by MVT,

there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$. Since $c \in (a, b)$ and $(a, b) \subset I$, then $c \in I$, so f'(c) = 0. Hence, $0 = f'(c) = \frac{f(b) - f(a)}{b - a}$, so $0 = \frac{f(b) - f(a)}{b - a}$. Since $b \neq a$, then $b - a \neq 0$, so 0 = f(b) - f(a). Therefore, f(a) = f(b), as desired.

Proof. We prove 2.

Suppose f'(x) > 0 for all $x \in I$. To prove f is strictly increasing on I, let $a, b \in I$ such that a < b. We must prove f(a) < f(b). Since $a \in I$ and $b \in I$ and a < b, then $[a, b] \subset I$. Since f is differentiable on I and $[a, b] \subset I$, then f is differentiable on [a, b], so f is continuous on [a, b]. Since f is differentiable on [a, b] and $(a, b) \subset [a, b]$, then f is differentiable on (a, b). Since f is continuous on [a, b] and differentiable on (a, b), then by MVT, there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$. Since $c \in (a, b)$ and $(a, b) \subset [a, b] \subset I$, then $c \in I$. Hence, f'(c) > 0. Thus, $0 < f'(c) = \frac{f(b) - f(a)}{b - a}$, so $0 < \frac{f(b) - f(a)}{b - a}$. Since a < b, then b - a > 0, so 0 < f(b) - f(a). Therefore, f(a) < f(b), as desired.

Proof. We prove 3.

Suppose f'(x) < 0 for all $x \in I$.

To prove f is strictly decreasing on I, let $a, b \in I$ such that a < b. We must prove f(a) > f(b).

Since $a \in I$ and $b \in I$ and a < b, then $[a, b] \subset I$.

Since f is differentiable on I and $[a, b] \subset I$, then f is differentiable on [a, b], so f is continuous on [a, b].

Since f is differentiable on [a, b] and $(a, b) \subset [a, b]$, then f is differentiable on (a, b).

Since f is continuous on [a, b] and differentiable on (a, b), then by MVT, there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$. Since $c \in (a, b)$ and $(a, b) \subset [a, b] \subset I$, then $c \in I$.

Hence, f'(c) < 0.

Thus, $0 > f'(c) = \frac{f(b) - f(a)}{b - a}$, so $0 > \frac{f(b) - f(a)}{b - a}$. Since a < b, then b - a > 0, so 0 > f(b) - f(a). Therefore, f(a) > f(b), as desired.

Corollary 18. functions with the same derivative on an interval differ by a constant

Let f and g be real valued functions differentiable on an interval I. If f'(x) = g'(x) for all $x \in I$, then there exists $C \in \mathbb{R}$ such that f - g = C. Proof. Suppose f'(x) = g'(x) for all $x \in I$. Let h = f - g. Then $h: I \to \mathbb{R}$ is the function defined by h(x) = f(x) - g(x). Let $x \in I$. Then h(x) = f(x) - g(x), so h'(x) = f'(x) - g'(x) = f'(x) - f'(x) = 0. Hence, h'(x) = 0 for all $x \in I$, so h is differentiable on I. Since h is differentiable on I and h'(x) = 0 for all $x \in I$, then h is constant on I. Thus, there exists $C \in \mathbb{R}$ such that h(x) = C for all $x \in I$. Hence f(x) = f(x) - f(x) = f(x) = f(x) - f(x) = f(x) =

Hence, C = h(x) = f(x) - g(x), so C = f(x) - g(x) for all $x \in I$. Therefore, C = f - g.

Theorem 19. First Derivative Test for relative extrema of a function continuous on an open interval

Let $E \subset \mathbb{R}$. Let $f : E \to \mathbb{R}$ be a function. Let $c \in E$. Let there exist $\delta > 0$ such that $(c - \delta, c + \delta) \subset E$. Suppose f is continuous on $(c - \delta, c + \delta)$ and differentiable on $(c - \delta, c)$ and $(c, c + \delta)$. 1. If f'(x) < 0 for all $x \in (c - \delta, c)$ and f'(x) > 0 for all $x \in (c, c + \delta)$, then

f(c) is a relative minimum. 2. If f'(x) > 0 for all $x \in (c - \delta, c)$ and f'(x) < 0 for all $x \in (c, c + \delta)$, then f(c) is a relative maximum.

Proof. We prove 1.

Suppose f'(x) < 0 for all $x \in (c - \delta, c)$ and f'(x) > 0 for all $x \in (c, c + \delta)$. Since $N(c; \delta) = (c - \delta, c + \delta)$ and $(c - \delta, c + \delta) \subset E$, then $N(c; \delta) \subset E$. Thus, there exists $\delta > 0$ such that $N(c; \delta) \subset E$. To prove f(c) is a relative minimum, let $x \in N(c; \delta)$. We must prove $f(c) \leq f(x)$. Since $x, c \in \mathbb{R}$, then either x < c or x = c or x > c. We consider these cases separately. Case 1: Suppose x = c. Then f(c) = f(x). Case 2: Suppose x < c. Since $x \in N(c; \delta)$, then $|x - c| < \delta$. Since x < c, then x - c < 0, so $|x - c| = -(x - c) = c - x < \delta$. Hence, $c - \delta < x$. Since $c - \delta < x < c < c + \delta$, then $[x, c] \subset (c - \delta, c + \delta)$ and $(x, c) \subset (c - \delta, c)$. Since f is continuous on $(c - \delta, c + \delta)$ and $[x, c] \subset (c - \delta, c + \delta)$, then f is continuous on [x, c]. Since f is differentiable on $(c - \delta, c)$ and $(x, c) \subset (c - \delta, c)$, then f is differ-

entiable on (x, c). Thus, by MVT, there exists $p \in (x, c)$ such that $f'(p) = \frac{f(c) - f(x)}{c - x}$. Since $p \in (x, c)$ and $(x, c) \subset (c - \delta, c)$, then $p \in (c - \delta, c)$, so f'(p) < 0.

Hence, $\frac{f(c)-f(x)}{c-x} < 0$. Since x < c, then c - x > 0, so f(c) - f(x) < 0. Thus, f(c) < f(x). Case 3: Suppose x > c. Since $x \in N(c; \delta)$, then $|x - c| < \delta$. Since x > c, then x - c > 0, so $|x - c| = x - c < \delta$. Hence, $x < c + \delta$. Since $c - \delta < c < x < c + \delta$, then $[c, x] \subset (c - \delta, c + \delta)$ and $(c, x) \subset (c, c + \delta)$. Since f is continuous on $(c - \delta, c + \delta)$ and $[c, x] \subset (c - \delta, c + \delta)$, then f is continuous on [c, x]. Since f is differentiable on $(c, c + \delta)$ and $(c, x) \subset (c, c + \delta)$, then f is differentiable on (c, x). Thus, by MVT, there exists $q \in (c, x)$ such that $f'(q) = \frac{f(x) - f(c)}{x - c}$. Since $q \in (c, x)$ and $(c, x) \subset (c, c + \delta)$, then $q \in (c, c + \delta)$, so f'(q) > 0. Hence, $\frac{f(x) - f(c)}{x - c} > 0.$ Since x > c, then x - c > 0, so f(x) - f(c) > 0. Thus, f(x) > f(c), so f(c) < f(x). Therefore, in all cases, $f(c) \leq f(x)$, as desired. *Proof.* We prove 2. Suppose f'(x) > 0 for all $x \in (c - \delta, c)$ and f'(x) < 0 for all $x \in (c, c + \delta)$. Since $N(c; \delta) = (c - \delta, c + \delta)$ and $(c - \delta, c + \delta) \subset E$, then $N(c; \delta) \subset E$. Thus, there exists $\delta > 0$ such that $N(c; \delta) \subset E$. To prove f(c) is a relative maximum, let $x \in N(c; \delta)$. We must prove $f(c) \ge f(x)$. Since $x, c \in \mathbb{R}$, then either x < c or x = c or x > c. We consider these cases separately. Case 1: Suppose x = c. Then f(c) = f(x). Case 2: Suppose x < c. Since $x \in N(c; \delta)$, then $|x - c| < \delta$. Since x < c, then x - c < 0, so $|x - c| = -(x - c) = c - x < \delta$. Hence, $c - \delta < x$. Since $c - \delta < x < c < c + \delta$, then $[x, c] \subset (c - \delta, c + \delta)$ and $(x, c) \subset (c - \delta, c)$. Since f is continuous on $(c - \delta, c + \delta)$ and $[x, c] \subset (c - \delta, c + \delta)$, then f is continuous on [x, c]. Since f is differentiable on $(c - \delta, c)$ and $(x, c) \subset (c - \delta, c)$, then f is differentiable on (x, c). Thus, by MVT, there exists $p \in (x, c)$ such that $f'(p) = \frac{f(c) - f(x)}{c - x}$. Since $p \in (x, c)$ and $(x, c) \subset (c - \delta, c)$, then $p \in (c - \delta, c)$, so f'(p) > 0. Hence, $\frac{f(c) - f(x)}{c - x} > 0$. Since x < c, then c - x > 0, so f(c) - f(x) > 0. Thus, f(c) > f(x). Case 3: Suppose x > c. Since $x \in N(c; \delta)$, then $|x - c| < \delta$.

Since x > c, then x - c > 0, so $|x - c| = x - c < \delta$. Hence, $x < c + \delta$. Since $c - \delta < c < x < c + \delta$, then $[c, x] \subset (c - \delta, c + \delta)$ and $(c, x) \subset (c, c + \delta)$. Since f is continuous on $(c - \delta, c + \delta)$ and $[c, x] \subset (c - \delta, c + \delta)$, then f is continuous on [c, x]. Since f is differentiable on $(c, c + \delta)$ and $(c, x) \subset (c, c + \delta)$, then f is differentiable on (c, x).

Thus, by MVT, there exists $q \in (c, x)$ such that $f'(q) = \frac{f(x) - f(c)}{x - c}$. Since $q \in (c, x)$ and $(c, x) \subset (c, c + \delta)$, then $q \in (c, c + \delta)$, so f'(q) < 0. Hence, $\frac{f(x) - f(c)}{x - c} < 0$. Since x > c, then x - c > 0, so f(x) - f(c) < 0. Thus, f(x) < f(c), so f(c) > f(x). Therefore, in all cases, $f(c) \ge f(x)$, as desired.

Lemma 20. Let $E \subset \mathbb{R}$.

Let $f : E \to \mathbb{R}$ be a function. Let c be a point.

1. If the limit of f at c exists and is positive, then there exists $\delta > 0$ such that f(x) > 0 for all $x \in N'(c; \delta) \cap E$.

2. If the limit of f at c exists and is negative, then there exists $\delta > 0$ such that f(x) < 0 for all $x \in N'(c; \delta) \cap E$.

Proof. We prove 1.

Suppose the limit of f at c exists and is positive.

Then there exists $L \in \mathbb{R}$ with L > 0 such that $L = \lim_{x \to c} f(x)$. Since L > 0, then there exists $\delta > 0$ such that for all $x \in E$, if $0 < |x-c| < \delta$, then |f(x) - L| < L.

Let $x \in N'(c; \delta) \cap E$.

Then $x \in N'(c; \delta)$ and $x \in E$. Since $x \in N'(c; \delta)$, then $x \in N(c; \delta)$ and $x \neq c$. Since $x \in N(c; \delta)$, then $d(x, c) = |x - c| < \delta$. Since $x \neq c$, then $x - c \neq 0$, so |x - c| > 0. Thus, 0 < |x - c| and $|x - c| < \delta$, so $0 < |x - c| < \delta$. Since $x \in E$ and $0 < |x - c| < \delta$, then |f(x) - L| < L. Hence, -L < f(x) - L < L, so -L < f(x) - L. Thus, 0 < f(x), so f(x) > 0. Consequently, f(x) > 0 for all $x \in N'(c; \delta) \cap E$. Therefore, there exists $\delta > 0$ such that f(x) > 0 for all $x \in N'(c; \delta) \cap E$, as desired.

Proof. We prove 2.

Suppose the limit of f at c exists and is negative.

Then there exists $L \in \mathbb{R}$ with L < 0 such that $L = \lim_{x \to c} f(x)$.

Since L < 0, then -L > 0, so there exists $\delta > 0$ such that for all $x \in E$, if $0 < |x - c| < \delta$, then |f(x) - L| < -L.

Let $x \in N'(c; \delta) \cap E$. Then $x \in N'(c; \delta)$ and $x \in E$. Since $x \in N'(c; \delta)$, then $x \in N(c; \delta)$ and $x \neq c$. Since $x \in N(c; \delta)$, then $d(x, c) = |x - c| < \delta$. Since $x \neq c$, then $x - c \neq 0$, so |x - c| > 0. Thus, 0 < |x - c| and $|x - c| < \delta$, so $0 < |x - c| < \delta$. Since $x \in E$ and $0 < |x - c| < \delta$, then |f(x) - L| < -L. Hence, L < f(x) - L < -L, so f(x) - L < -L. Thus, f(x) < 0. Consequently, f(x) < 0 for all $x \in N'(c; \delta) \cap E$. Therefore, there exists $\delta > 0$ such that f(x) < 0 for all $x \in N'(c; \delta) \cap E$, as desired.

Lemma 21. Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function. Let f be differentiable at $c \in E$. 1. If f'(c) > 0, then there exists $\delta > 0$ such that f(c) > f(x) for all $x \in (c - \delta, c) \cap E$. 2. If f'(c) < 0, then there exists $\delta > 0$ such that f(c) > f(x) for all $x \in (c, c + \delta) \cap E$.

Proof. We prove 1.

Suppose f'(c) > 0. Then $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} > 0$. Since $E - \{c\} \subset E$ and $E \subset \mathbb{R}$, then $E - \{c\} \subset \mathbb{R}$. Let $q: E - \{c\} \to \mathbb{R}$ be a function defined by $q(x) = \frac{f(x) - f(c)}{x - c}$. Then $f'(c) = \lim_{x \to c} q(x) > 0$, so the limit of q at c exists and is positive. Hence, by the previous lemma, there exists $\delta > 0$ such that q(x) > 0 for all $C = N'(x, \delta) \subset E$.

$$x \in N'(c; \delta) \cap E.$$

Thus, there exists $\delta > 0$ such that $\frac{f(x) - f(c)}{x - c} > 0$ for all $x \in N'(c; \delta) \cap E$.

Let $x \in (c - \delta, c) \cap E$. Then $x \in (c - \delta, c)$ and $x \in E$. Since $(c - \delta, c) \subset (c - \delta, c) \cup (c, c + \delta) = N'(c; \delta)$, then $(c - \delta, c) \subset N'(c, \delta)$. Since $x \in (c - \delta, c)$ and $(c - \delta, c) \subset N'(c, \delta)$, then $x \in N'(c, \delta)$. Since $x \in N'(c, \delta)$ and $x \in E$, then $x \in N'(c, \delta) \cap E$, so $\frac{f(x) - f(c)}{x - c} > 0$. Since $x \in (c - \delta, c)$, then $c - \delta < x < c$, so x < c. Thus, x - c < 0. Since $\frac{f(x) - f(c)}{x - c} > 0$, then f(x) - f(c) < 0, so f(x) < f(c). Hence, f(c) > f(x), so f(c) > f(x) for all $x \in (c - \delta, c) \cap E$. Therefore, there exists $\delta > 0$ such that f(c) > f(x) for all $x \in (c - \delta, c) \cap E$, as desired.

Proof. We prove 2. Suppose f'(c) < 0. Then $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} < 0$. Since $E - \{c\} \subset E$ and $E \subset \mathbb{R}$, then $E - \{c\} \subset \mathbb{R}$.

Let $q: E - \{c\} \to \mathbb{R}$ be a function defined by $q(x) = \frac{f(x) - f(c)}{r - c}$.

Then $f'(c) = \lim_{x \to c} q(x) < 0$, so the limit of q at c exists and is negative. Hence, by the previous lemma, there exists $\delta > 0$ such that q(x) < 0 for all $x \in N'(c; \delta) \cap E$.

Thus, there exists $\delta > 0$ such that $\frac{f(x) - f(c)}{x - c} < 0$ for all $x \in N'(c; \delta) \cap E$.

Let $x \in (c, c + \delta) \cap E$. Then $x \in (c, c + \delta)$ and $x \in E$. Since $(c, c + \delta) \subset (c - \delta, c) \cup (c, c + \delta) = N'(c; \delta)$, then $(c, c + \delta) \subset N'(c, \delta)$. Since $x \in (c, c + \delta)$ and $(c, c + \delta) \subset N'(c, \delta)$, then $x \in N'(c, \delta)$. Since $x \in N'(c, \delta)$ and $x \in E$, then $x \in N'(c, \delta) \cap E$, so $\frac{f(x) - f(c)}{x - c} < 0$. Since $x \in (c, c + \delta)$, then $c < x < c + \delta$, so c < x. Thus, x - c > 0. Since $\frac{f(x) - f(c)}{x - c} < 0$, then f(x) - f(c) < 0, so f(x) < f(c). Hence, f(c) > f(x), so f(c) > f(x) for all $x \in (c, c + \delta) \cap E$. Therefore, there exists $\delta > 0$ such that f(c) > f(x) for all $x \in (c, c + \delta) \cap E$, as desired.

Theorem 22. Intermediate Value property of Derivatives

Let $a, b \in \mathbb{R}$ with a < b. Let f be a real valued function differentiable on the closed interval [a, b].

For every real number k such that f'(a) < k < f'(b), there exists $c \in (a,b)$ such that f'(c) = k.

Proof. Let k be an arbitrary real number such that f'(a) < k < f'(b). Then f'(a) < k and k < f'(b), so f'(a) - k < 0 and 0 < f'(b) - k. Let $g : [a, b] \to \mathbb{R}$ be a function defined by g(x) = f(x) - kx. Since f is differentiable on [a, b], then g'(x) = f'(x) - k for all $x \in [a, b]$, so g is differentiable on [a, b].

Hence, g is differentiable, so g is continuous.

Thus, q is continuous on [a, b].

Since a < b, then the closed interval [a, b] is not empty, so by EVT, g attains a minimum on [a, b].

Let g(c) be a minimum of g on [a, b].

Then there exists $c \in [a, b]$ such that $g(c) \leq g(x)$ for all $x \in [a, b]$. Since $c \in [a, b]$, then $a \leq c \leq b$, so $a \leq c$ and $c \leq b$.

We prove c < b.

Since $b \in [a, b]$, then g'(b) = f'(b) - k > 0, so g is differentiable at b. Thus, by the previous lemma, there exists $\delta_1 > 0$ such that g(b) > g(x) for

all $x \in (b - \delta_1, b) \cap [a, b]$.

Let $x \in (b - \delta_1, b) \cap [a, b]$. Then $x \in (b - \delta_1, b)$ and $x \in [a, b]$ and g(b) > g(x). Since $x \in [a, b]$ and g(c) is a minimum of g on [a, b], then $g(c) \le g(x)$. Thus, $g(c) \le g(x)$ and g(x) < g(b), so g(c) < g(b). Since c = b implies g(c) = g(b), then $g(c) \ne g(b)$ implies $c \ne b$. Since g(c) < g(b), then $g(c) \ne g(b)$, so $c \ne b$. Since $c \le b$ and $c \ne b$, then c < b.

We prove a < c.

Since $a \in [a, b]$, then g'(a) = f'(a) - k < 0, so g is differentiable at a. Thus, by the previous lemma, there exists $\delta_2 > 0$ such that g(a) > g(x) for all $x \in (a, a + \delta_2) \cap [a, b]$.

Let $y \in (a, a + \delta_2) \cap [a, b]$. Then $y \in (a, a + \delta_2)$ and $y \in [a, b]$ and g(a) > g(y). Since $y \in [a, b]$ and g(c) is a minimum of g on [a, b], then $g(c) \leq g(y)$. Thus, $g(c) \leq g(y)$ and g(y) < g(a), so g(c) < g(a). Since c = a implies g(c) = g(a), then $g(c) \neq g(a)$ implies $c \neq a$. Since g(c) < g(a), then $g(c) \neq g(a)$, so $c \neq a$. Since $c \geq a$ and $c \neq a$, then c > a.

Since a < c and c < b, then a < c < b, so $c \in (a, b)$. Since the open interval (a, b) is an open set, then c is an interior point of (a, b).

Hence, there exists $\delta > 0$ such that $N(c; \delta) \subset (a, b)$. Since $N(c; \delta) \subset (a, b)$ and $(a, b) \subset [a, b]$, then $N(c; \delta) \subset [a, b]$. Thus, there exists $\delta > 0$ such that $N(c; \delta) \subset [a, b]$.

Let $p \in N(c; \delta)$. Since $N(c; \delta) \subset [a, b]$, then $p \in [a, b]$. Since g(c) is a minimum of g on [a, b], then $g(c) \leq g(p)$. Hence, $g(c) \leq g(p)$ for all $p \in N(c; \delta)$.

Since there exists $\delta > 0$ such that $N(c; \delta) \subset [a, b]$ and $g(c) \leq g(p)$ for all $p \in N(c; \delta)$, then g(c) is a relative minimum of g.

Since $c \in [a, b]$, then g'(c) = f'(c) - k, so g is differentiable at c.

Since g(c) is a relative minimum of g and g is differentiable at c, then by a previous lemma to Rolle's theorem, g'(c) = 0.

Thus, 0 = g'(c) = f'(c) - k, so f'(c) = k.

Therefore, there exists $c \in (a, b)$ such that f'(c) = k, as desired. \Box

L'Hopital's Rule

Theorem 23. Cauchy Mean Value Theorem

Let $a, b \in \mathbb{R}$ with a < b.

Let f be a real valued function continuous on the closed interval [a, b] and differentiable on the open interval (a, b).

Let g be a real valued function continuous on the closed interval [a, b] and differentiable on the open interval (a, b).

Then there exists $c \in (a, b)$ such that f'(c)(g(b) - g(a)) = g'(c)(f(b) - f(a)).

Proof. Let $h : [a,b] \to \mathbb{R}$ be a function defined by h(x) = f(x)(g(b) - g(a)) - g(x)(f(b) - f(a)).

Then h = f(g(b) - g(a)) - g(f(b) - f(a)).

Since f is continuous on [a, b], then the scalar multiple f(g(b) - g(a)) is continuous on [a, b].

Since g is continuous on [a, b], then the scalar multiple g(f(b) - f(a)) is continuous on [a, b].

Hence, the difference h = f(g(b) - g(a)) - g(f(b) - f(a)) is continuous on [a, b].

Let $x \in (a, b)$.

Since f is differentiable on (a, b) and g is differentiable on (a, b), then h'(x) = f'(x)(g(b) - g(a)) - g'(x)(f(b) - f(a)), so h is differentiable on (a, b).

Observe that

$$\begin{aligned} h(a) &= f(a)(g(b) - g(a)) - g(a)(f(b) - f(a)) \\ &= f(a)g(b) - f(a)g(a) - g(a)f(b) + g(a)f(a) \\ &= f(a)g(b) - g(a)f(b) \\ &= f(b)g(b) - g(a)f(b) - g(b)f(b) + f(a)g(b) \\ &= f(b)(g(b) - g(a)) - g(b)(f(b) - f(a)) \\ &= h(b). \end{aligned}$$

Since h is continuous on [a, b] and differentiable on (a, b) and h(a) = h(b), then by Rolle's theorem, there exists $c \in (a, b)$ such that h'(c) = 0.

Thus, 0 = h'(c) = f'(c)(g(b) - g(a)) - g'(c)(f(b) - f(a)), so g'(c)(f(b) - f(a)) = f'(c)(g(b) - g(a)).

Therefore, there exists $c \in (a, b)$ such that f'(c)(g(b) - g(a)) = g'(c)(f(b) - f(a)), as desired.