Differentiation of real valued functions Examples

Jason Sass

May 19, 2023

Differentiation of real valued functions

Example 1. the square function is differentiable

Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = x^2$. Then f'(x) = 2x for all $x \in \mathbb{R}$. Therefore, $f'(x) = \frac{d}{dx}(x^2) = 2x$.

Proof. We prove f'(x) = 2x for all $x \in \mathbb{R}$ using the definition of derivative. Let $c \in \mathbb{R}$ be given.

We must prove f'(c) = 2c.

Let $q : \mathbb{R} - \{c\} \to \mathbb{R}$ be a function defined by $q(x) = \frac{f(x) - f(c)}{x - c}$ for all $x \in \mathbb{R} - \{c\}$.

Since $c \in \mathbb{R}$ and every real number is an accumulation point of \mathbb{R} , then c is an accumulation point of \mathbb{R} , so c is an accumulation point of $\mathbb{R} - \{c\}$, the domain of q.

For $x \in \mathbb{R} - \{c\}$, we have $x \in \mathbb{R}$ and $x \neq c$, so $x - c \neq 0$. Observe that

$$\lim_{x \to c} q(x) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$
$$= \lim_{x \to c} \frac{x^2 - c^2}{x - c}$$
$$= \lim_{x \to c} \frac{(x - c)(x + c)}{x - c}$$
$$= \lim_{x \to c} (x + c)$$
$$= 2c.$$

Thus, $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = 2c$, as desired.

Example 2. the reciprocal function is differentiable for nonzero x

Let $f : \mathbb{R}^* \to \mathbb{R}$ be the function defined by $f(x) = \frac{1}{x}$ for all nonzero real x. Then $f'(x) = \frac{-1}{x^2}$ for all nonzero real x. Therefore, $f'(x) = \frac{d}{dx}(\frac{1}{x}) = \frac{-1}{x^2}$ if $x \neq 0$.

Proof. We prove $f'(x) = \frac{-1}{x^2}$ for all nonzero real x using the definition of derivative.

Let c be a nonzero real number.

We must prove $f'(c) = \frac{-1}{c^2}$.

Let $q : \mathbb{R}^* - \{c\} \to \mathbb{R}$ be a function defined by $q(x) = \frac{f(x) - f(c)}{x - c}$ for all $x \in \mathbb{R}^* - \{c\}$.

Since $\mathbb{R}^* = \{x \in \mathbb{R} : x \neq 0\} = (-\infty, 0) \cup (0, \infty)$ is a union of open intervals, then \mathbb{R}^* is an open set, so every point of \mathbb{R}^* is an interior point of \mathbb{R}^* .

Since $c \in \mathbb{R}^*$, then c is an interior point of \mathbb{R}^* , so c is an accumulation point of \mathbb{R}^* .

Hence, c is an accumulation point of $\mathbb{R}^* - \{c\}$, the domain of q. For $x \in \mathbb{R}^* - \{c\}$, we have $x \in \mathbb{R}^*$ and $x \neq c$, so $x - c \neq 0$. Observe that

$$\lim_{x \to c} q(x) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$
$$= \lim_{x \to c} \frac{\frac{1}{x} - \frac{1}{c}}{x - c}$$
$$= \lim_{x \to c} \frac{c - x}{xc(x - c)}$$
$$= \lim_{x \to c} \frac{-1}{xc}$$
$$= \frac{-1}{c^2}.$$

Thus, $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \frac{-1}{c^2}$, as desired.

Example 3. the absolute value function is not differentiable at zero

Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by f(x) = |x| for all $x \in \mathbb{R}$. Then f is not differentiable at 0.

Proof. Let $q : \mathbb{R} - \{0\} \to \mathbb{R}$ be a function defined by $q(x) = \frac{f(x) - f(0)}{x - 0} = \frac{|x|}{x}$ for all $x \in \mathbb{R} - \{0\} = \mathbb{R}^*$.

Since $0 \in \mathbb{R}$ and every real number is an accumulation point of \mathbb{R} , then 0 is an accumulation point of \mathbb{R} , so 0 is an accumulation point of $\mathbb{R} - \{0\} = \mathbb{R}^*$, the domain of q.

We consider the limit $\lim_{x\to 0} q(x) = \lim_{x\to 0} \frac{|x|}{x}$. For $x \in \mathbb{R}^*$, we have $x \in \mathbb{R}$ and $x \neq 0$, so either x > 0 or x < 0. If x > 0, then $\lim_{x\to 0} q(x) = \lim_{x\to 0} \frac{|x|}{x} = \lim_{x\to 0} \frac{x}{x} = \lim_{x\to 0} 1 = 1$. If x < 0, then $\lim_{x\to 0} q(x) = \lim_{x\to 0} \frac{|x|}{x} = \lim_{x\to 0} \frac{-x}{x} = \lim_{x\to 0} -1 = -1$. Therefore, $\lim_{x\to 0} q(x)$ does not exist, so f is not differentiable at 0.

Example 4. the square root function is differentiable for positive real \boldsymbol{x}

Let $f: [0, \infty) \to \mathbb{R}$ be the function defined by $f(x) = \sqrt{x}$. Then $f'(x) = \frac{1}{2\sqrt{x}}$ for all positive real x and f is not differentiable at 0. Therefore, $f'(x) = \frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}}$ if x > 0 and f is not differentiable at 0. *Proof.* We prove f is not differentiable at 0.

Observe that $0 \in [0, \infty)$ and 0 is an accumulation point of $[0, \infty)$, the domain of f.

We prove $\lim_{x\to 0} \frac{\sqrt{x}}{x}$ does not exist. Let $g: \mathbb{R}^+ \to \mathbb{R}$ be the function defined by $g(x) = \frac{\sqrt{x}}{x}$. Let $x \in \mathbb{R}^+$. Then $x \in \mathbb{R}$ and x > 0, so $g(x) = \frac{\sqrt{x}}{x} = \frac{1}{\sqrt{x}}$. Thus, $g(x) = \frac{1}{\sqrt{x}}$ for all $x \in \mathbb{R}^+$. We prove there is no real number L such that $\lim_{x\to 0} g(x) = L$. Observe that

$$\neg (\exists L \in \mathbb{R}) (\lim_{x \to 0} g(x) = L) \quad \Leftrightarrow \\ \neg (\exists L \in \mathbb{R}) (\forall \epsilon > 0) (\exists \delta > 0) (\forall x \in \mathbb{R}^+) (0 < |x| < \delta \rightarrow |g(x) - L| < \epsilon) \quad \Leftrightarrow \\ (\forall L \in \mathbb{R}) (\exists \epsilon > 0) (\forall \delta > 0) (\exists x \in \mathbb{R}^+) (0 < |x| < \delta \land |g(x) - L| \ge \epsilon).$$

Thus, we prove $(\forall L \in \mathbb{R})(\exists \epsilon > 0)(\forall \delta > 0)(\exists x \in \mathbb{R}^+)(0 < |x| < \delta \land |\frac{1}{\sqrt{x}} - L| \ge \epsilon).$

Let *L* be an arbitrary real number. Let $\epsilon = |L| + 1$. Since $|L| \ge 0$, then $\epsilon = |L| + 1 \ge 1 > 0$, so $\epsilon > 0$. Let $\delta > 0$ be given. We must prove there exists x > 0 such that $0 < |x| < \delta$ and $|\frac{1}{\sqrt{x}} - L| \ge \epsilon$.

Let $x = \min\{\frac{\delta}{2}, \frac{1}{(|L|+\epsilon)^2}\}$. Then $x \leq \frac{\delta}{2}$ and $x \leq \frac{1}{(|L|+\epsilon)^2}$ and either $x = \frac{\delta}{2}$ or $x = \frac{1}{(|L|+\epsilon)^2}$. Since $|L| \geq 0$ and $\epsilon > 0$, then $|L| + \epsilon > 0$, so $(|L| + \epsilon)^2 > 0$. Hence, $\frac{1}{(|L|+\epsilon)^2} > 0$. Since $\delta > 0$, then $\frac{\delta}{2} > 0$. Since either $x = \frac{\delta}{2}$ or $x = \frac{1}{(|L|+\epsilon)^2}$ and $\frac{\delta}{2} > 0$ and $\frac{1}{(|L|+\epsilon)^2} > 0$, then x > 0. Since $\delta > 0$ and $0 < x = |x| \leq \frac{\delta}{2} < \delta$, then $0 < |x| < \delta$. Since $x \leq \frac{1}{(|L|+\epsilon)^2}$ and $(|L| + \epsilon)^2 > 0$, then $x(|L| + \epsilon)^2 \leq 1$. Since x > 0, then $0 < (|L| + \epsilon)^2 \leq \frac{1}{x}$. Thus, $0 < ||L| + \epsilon| \leq \sqrt{\frac{1}{x}} = \frac{1}{\sqrt{x}}$, so $0 < |L| + \epsilon \leq \frac{1}{\sqrt{x}}$. Hence, $|L| + \epsilon \leq \frac{1}{\sqrt{x}}$, so $\epsilon \leq \frac{1}{\sqrt{x}} - |L|$. Therefore, $|\frac{1}{\sqrt{x}} - L| \geq |\frac{1}{\sqrt{x}}| - |L| = \frac{1}{\sqrt{x}} - |L| \geq \epsilon$, so $|\frac{1}{\sqrt{x}} - L| \geq \epsilon$. Thus, there exists x > 0 such that $0 < |x| < \delta$ and $|\frac{1}{\sqrt{x}} - L| \geq \epsilon$. Consequently, there is no real number L such that $\lim_{x\to 0} g(x) = L$, so $\lim_{x\to 0} g(x)$ does not exist.

Since $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0} \frac{\sqrt{x}}{x} = \lim_{x\to 0} g(x)$ does not exist, then f is not differentiable at 0.

Proof. We prove $f'(x) = \frac{1}{2\sqrt{x}}$ for all positive real x using the definition of derivative.

Let c be a positive real number.

Then $c \in \mathbb{R}^+$, so $c \in \mathbb{R}$ and c > 0.

Since c > 0, then $\sqrt{c} > 0$.

We must prove $f'(c) = \frac{1}{2\sqrt{c}}$.

Let $q: \mathbb{R}^+ - \{c\} \to \mathbb{R}$ be a function defined by $q(x) = \frac{f(x) - f(c)}{x - c}$ for all $x \in \mathbb{R}^+ - \{c\}.$

Since $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\} = (0, \infty)$ is an open set, then every point of \mathbb{R}^+ is an interior point of \mathbb{R}^+ .

Since $c \in \mathbb{R}^+$, then c is an interior point of \mathbb{R}^+ , so c is an accumulation point of \mathbb{R}^+ .

Hence, c is an accumulation point of $\mathbb{R}^+ - \{c\}$, the domain of q. For $x \in \mathbb{R}^+ - \{c\}$, we have $x \in \mathbb{R}^+$ and $x \neq c$, so x > 0. Since x > 0 and c > 0, then $\sqrt{x} = \sqrt{c}$ iff x = c iff x - c = 0. Since $x \neq c$, then $\sqrt{x} \neq \sqrt{c}$, so $\sqrt{x} - \sqrt{c} \neq 0$.

Since c > 0, then $\lim_{x \to c} (\sqrt{x} + \sqrt{c}) = \lim_{x \to c} \sqrt{x} + \lim_{x \to c} \sqrt{c} = \sqrt{c} + \sqrt{c} =$ $2\sqrt{c} > 0$, so $\lim_{x \to c} (\sqrt{x} + \sqrt{c}) \neq 0$.

Observe that

$$\lim_{x \to c} q(x) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

$$= \lim_{x \to c} \frac{\sqrt{x} - \sqrt{c}}{x - c}$$

$$= \lim_{x \to c} \frac{\sqrt{x} - \sqrt{c}}{(\sqrt{x} - \sqrt{c})(\sqrt{x} + \sqrt{c})}$$

$$= \lim_{x \to c} \frac{1}{\sqrt{x} + \sqrt{c}}$$

$$= \frac{1}{\lim_{x \to c} (\sqrt{x} + \sqrt{c})}$$

$$= \frac{1}{2\sqrt{c}}.$$

Therefore, $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \frac{1}{2\sqrt{c}}$, as desired.

Lemma 5. $\lim_{x\to 0} \frac{1-\cos x}{x} = 0$ and $\lim_{x\to 0} \frac{\cos x-1}{x} = 0$.

Proof. We first prove $\lim_{x\to 0} \frac{1-\cos x}{x} = 0$.

Since $\cos x$ is continuous, then $\cos x$ is continuous at 0.

Since 0 is an accumulation point of \mathbb{R} , the domain of $\cos x$, then by the characterization of continuity, $\lim_{x\to 0} \cos x = \cos 0 = 1$.

Since $\sin x$ is continuous, then $\sin x$ is continuous at 0.

Since 0 is an accumulation point of \mathbb{R} , the domain of $\sin x$, then by the characterization of continuity, $\lim_{x\to 0} \sin x = \sin 0 = 0$.

We use the unproven fact that $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

Let $g(x) = \frac{1+\cos x}{1+\cos x}$. Since $1 + \cos x = 0$ iff $\cos x = -1$ iff x is an odd integer multiple of π , then the domain of g is the set $\mathbb{R} - \{x : x \text{ is an odd integer multiple of } \pi \}$. Let $x \in domg$. Then $x \in \mathbb{R}$ and x is not an odd integer multiple of π , so $1 + \cos x \neq 0$. Thus, $g(x) = \frac{1+\cos x}{1+\cos x} = 1$, so g(x) = 1 for all $x \in domg$. Hence, $1 = \lim_{x \to 0} 1 = \lim_{x \to 0} g(x) = \lim_{x \to 0} \frac{1+\cos x}{1+\cos x}$. Observe that

$$\begin{array}{lll} 0 & = & \frac{0}{2} \\ & = & \frac{0}{1+1} \\ & = & \frac{\lim_{x \to 0} \sin x}{\lim_{x \to 0} 1 + \lim_{x \to 0} \cos x} \\ & = & \frac{\lim_{x \to 0} \sin x}{\lim_{x \to 0} (1 + \cos x)} \\ & = & \lim_{x \to 0} \frac{\sin x}{1 + \cos x} \\ & = & 1 \cdot \lim_{x \to 0} \frac{\sin x}{1 + \cos x} \\ & = & \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{\sin x}{1 + \cos x} \\ & = & \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{\sin x}{1 + \cos x} \\ & = & \lim_{x \to 0} \frac{\sin^2 x}{x(1 + \cos x)} \\ & = & \lim_{x \to 0} \frac{1 - \cos^2 x}{x(1 + \cos x)} \\ & = & \lim_{x \to 0} \frac{1 - \cos x}{x} \cdot \frac{1 + \cos x}{1 + \cos x} \\ & = & \lim_{x \to 0} \frac{1 - \cos x}{x} \cdot \frac{1 + \cos x}{1 + \cos x} \\ & = & \lim_{x \to 0} \frac{1 - \cos x}{x} \cdot \frac{1 + \cos x}{1 + \cos x} \\ & = & \lim_{x \to 0} \frac{1 - \cos x}{x} \cdot 1 \\ & = & \lim_{x \to 0} \frac{1 - \cos x}{x} \cdot 1 \\ & = & \lim_{x \to 0} \frac{1 - \cos x}{x} \cdot 1 \end{array}$$

Therefore, $\lim_{x\to 0} \frac{1-\cos x}{x} = 0.$

Proof. We next prove $\lim_{x\to 0} \frac{\cos x - 1}{x} = 0$. Since $\lim_{x\to 0} \frac{1 - \cos x}{x} = 0$, then by the scalar multiple rule for limits, we have

$$0 = -1 \cdot 0$$

$$= -1 \cdot \lim_{x \to 0} \frac{1 - \cos x}{x}$$

$$= \lim_{x \to 0} (-1 \cdot \frac{1 - \cos x}{x})$$

$$= \lim_{x \to 0} \frac{-1 + \cos x}{x}$$

$$= \lim_{x \to 0} \frac{\cos x - 1}{x}.$$

Therefore, $\lim_{x\to 0} \frac{\cos x - 1}{x} = 0.$

Proposition 6. If $f(x) = \sin x$, then $f'(x) = \cos x$. Therefore, $\frac{d}{dx} \sin x = \cos x$.

Proof. We use the unproven fact $\lim_{h\to 0} \frac{\sin h}{h} = 1$. The domain of f is the open set \mathbb{R} . For $x \in \mathbb{R}$, we have

$$\begin{aligned} \cos x &= 0 + \cos x \\ &= \sin x \cdot 0 + \cos x \cdot 1 \\ &= \sin x \cdot \lim_{h \to 0} \frac{\cos h - 1}{h} + \cos x \cdot \lim_{h \to 0} \frac{\sin h}{h} \\ &= \lim_{h \to 0} \sin x \cdot \frac{\cos h - 1}{h} + \lim_{h \to 0} \cos x \cdot \frac{\sin h}{h} \\ &= \lim_{h \to 0} [\sin x \cdot \frac{\cos h - 1}{h} + \cos x \cdot \frac{\sin h}{h}] \\ &= \lim_{h \to 0} [\frac{\sin x \cos h - \sin x}{h} + \frac{\cos x \sin h}{h}] \\ &= \lim_{h \to 0} [\frac{\sin x \cos h - \sin x}{h} + \frac{\cos x \sin h}{h}] \\ &= \lim_{h \to 0} [\frac{\sin x \cos h - \sin x + \cos x \sin h}{h}] \\ &= \lim_{h \to 0} [\frac{\sin x \cos h + \cos x \sin h - \sin x}{h}] \\ &= \lim_{h \to 0} [\frac{\sin (x + h) - \sin x}{h}] \\ &= \lim_{h \to 0} [\frac{f(x + h) - f(x)}{h}] \\ &= f'(x). \end{aligned}$$

Therefore, $f'(x) = \cos x$.

Proposition 7. If $f(x) = \cos x$, then $f'(x) = -\sin x$. Therefore, $\frac{d}{dx} \cos x = -\sin x$. *Proof.* We use the unproven fact $\lim_{h\to 0} \frac{\sin h}{h} = 1$. The domain of f is the open set \mathbb{R} . For $x \in \mathbb{R}$, we have

$$\begin{aligned} -\sin x &= 0 - \sin x \\ &= \cos x \cdot 0 - \sin x \cdot 1 \\ &= \cos x \cdot \lim_{h \to 0} \frac{\cos h - 1}{h} - \sin x \cdot \lim_{h \to 0} \frac{\sin h}{h} \\ &= \lim_{h \to 0} \cos x \cdot \frac{\cos h - 1}{h} - \lim_{h \to 0} \sin x \cdot \frac{\sin h}{h} \\ &= \lim_{h \to 0} [\cos x \cdot \frac{\cos h - 1}{h} - \sin x \cdot \frac{\sin h}{h}] \\ &= \lim_{h \to 0} [\frac{\cos x \cos h - \cos x}{h} - \frac{\sin x \sin h}{h}] \\ &= \lim_{h \to 0} [\frac{\cos x \cos h - \cos x - \sin x \sin h}{h}] \\ &= \lim_{h \to 0} [\frac{\cos x \cos h - \cos x - \sin x \sin h}{h}] \\ &= \lim_{h \to 0} [\frac{\cos x \cos h - \sin x \sin h - \cos x}{h}] \\ &= \lim_{h \to 0} [\frac{\cos (x + h) - \cos x}{h}] \\ &= \lim_{h \to 0} [\frac{f(x + h) - f(x)}{h}] \\ &= f'(x). \end{aligned}$$

Therefore, $f'(x) = -\sin x$.