Differentiation of real valued functions Examples

Jason Sass

May 19, 2023

Differentiation of real valued functions

Example 1. the square function is differentiable
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x^{2}$.
Then $f^{\prime}(x)=2 x$ for all $x \in \mathbb{R}$.
Therefore, $f^{\prime}(x)=\frac{d}{d x}\left(x^{2}\right)=2 x$.
Proof. We prove $f^{\prime}(x)=2 x$ for all $x \in \mathbb{R}$ using the definition of derivative.
Let $c \in \mathbb{R}$ be given.
We must prove $f^{\prime}(c)=2 c$.
Let $q: \mathbb{R}-\{c\} \rightarrow \mathbb{R}$ be a function defined by $q(x)=\frac{f(x)-f(c)}{x-c}$ for all $x \in \mathbb{R}-\{c\}$.

Since $c \in \mathbb{R}$ and every real number is an accumulation point of \mathbb{R}, then c is an accumulation point of \mathbb{R}, so c is an accumulation point of $\mathbb{R}-\{c\}$, the domain of q.

For $x \in \mathbb{R}-\{c\}$, we have $x \in \mathbb{R}$ and $x \neq c$, so $x-c \neq 0$.
Observe that

$$
\begin{aligned}
\lim _{x \rightarrow c} q(x) & =\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \\
& =\lim _{x \rightarrow c} \frac{x^{2}-c^{2}}{x-c} \\
& =\lim _{x \rightarrow c} \frac{(x-c)(x+c)}{x-c} \\
& =\lim _{x \rightarrow c}(x+c) \\
& =2 c .
\end{aligned}
$$

Thus, $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=2 c$, as desired.
Example 2. the reciprocal function is differentiable for nonzero x
Let $f: \mathbb{R}^{*} \rightarrow \mathbb{R}$ be the function defined by $f(x)=\frac{1}{x}$ for all nonzero real x.
Then $f^{\prime}(x)=\frac{-1}{x^{2}}$ for all nonzero real x.
Therefore, $f^{\prime}(x)=\frac{d}{d x}\left(\frac{1}{x}\right)=\frac{-1}{x^{2}}$ if $x \neq 0$.

Proof. We prove $f^{\prime}(x)=\frac{-1}{x^{2}}$ for all nonzero real x using the definition of derivative.

Let c be a nonzero real number.
We must prove $f^{\prime}(c)=\frac{-1}{c^{2}}$.
Let $q: \mathbb{R}^{*}-\{c\} \rightarrow \mathbb{R}$ be a function defined by $q(x)=\frac{f(x)-f(c)}{x-c}$ for all $x \in \mathbb{R}^{*}-\{c\}$.

Since $\mathbb{R}^{*}=\{x \in \mathbb{R}: x \neq 0\}=(-\infty, 0) \cup(0, \infty)$ is a union of open intervals, then \mathbb{R}^{*} is an open set, so every point of \mathbb{R}^{*} is an interior point of \mathbb{R}^{*}.

Since $c \in \mathbb{R}^{*}$, then c is an interior point of \mathbb{R}^{*}, so c is an accumulation point of \mathbb{R}^{*}.

Hence, c is an accumulation point of $\mathbb{R}^{*}-\{c\}$, the domain of q.
For $x \in \mathbb{R}^{*}-\{c\}$, we have $x \in \mathbb{R}^{*}$ and $x \neq c$, so $x-c \neq 0$.
Observe that

$$
\begin{aligned}
\lim _{x \rightarrow c} q(x) & =\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \\
& =\lim _{x \rightarrow c} \frac{\frac{1}{x}-\frac{1}{c}}{x-c} \\
& =\lim _{x \rightarrow c} \frac{c-x}{x c(x-c)} \\
& =\lim _{x \rightarrow c} \frac{-1}{x c} \\
& =\frac{-1}{c^{2}}
\end{aligned}
$$

Thus, $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=\frac{-1}{c^{2}}$, as desired.

Example 3. the absolute value function is not differentiable at zero

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=|x|$ for all $x \in \mathbb{R}$.
Then f is not differentiable at 0 .
Proof. Let $q: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$ be a function defined by $q(x)=\frac{f(x)-f(0)}{x-0}=\frac{|x|}{x}$ for all $x \in \mathbb{R}-\{0\}=\mathbb{R}^{*}$.

Since $0 \in \mathbb{R}$ and every real number is an accumulation point of \mathbb{R}, then 0 is an accumulation point of \mathbb{R}, so 0 is an accumulation point of $\mathbb{R}-\{0\}=\mathbb{R}^{*}$, the domain of q.

We consider the limit $\lim _{x \rightarrow 0} q(x)=\lim _{x \rightarrow 0} \frac{|x|}{x}$.
For $x \in \mathbb{R}^{*}$, we have $x \in \mathbb{R}$ and $x \neq 0$, so either $x>0$ or $x<0$.
If $x>0$, then $\lim _{x \rightarrow 0} q(x)=\lim _{x \rightarrow 0} \frac{|x|}{x}=\lim _{x \rightarrow 0} \frac{x}{x}=\lim _{x \rightarrow 0} 1=1$.
If $x<0$, then $\lim _{x \rightarrow 0} q(x)=\lim _{x \rightarrow 0} \frac{|x|}{x}=\lim _{x \rightarrow 0} \frac{-x}{x}=\lim _{x \rightarrow 0}-1=-1$.
Therefore, $\lim _{x \rightarrow 0} q(x)$ does not exist, so f is not differentiable at 0 .

Example 4. the square root function is differentiable for positive real

 xLet $f:[0, \infty) \rightarrow \mathbb{R}$ be the function defined by $f(x)=\sqrt{x}$.
Then $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ for all positive real x and f is not differentiable at 0 .
Therefore, $f^{\prime}(x)=\frac{d}{d x}(\sqrt{x})=\frac{1}{2 \sqrt{x}}$ if $x>0$ and f is not differentiable at 0 .

Proof. We prove f is not differentiable at 0 .
Observe that $0 \in[0, \infty)$ and 0 is an accumulation point of $[0, \infty)$, the domain of f.

We prove $\lim _{x \rightarrow 0} \frac{\sqrt{x}}{x}$ does not exist.
Let $g: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be the function defined by $g(x)=\frac{\sqrt{x}}{x}$.
Let $x \in \mathbb{R}^{+}$.
Then $x \in \mathbb{R}$ and $x>0$, so $g(x)=\frac{\sqrt{x}}{x}=\frac{1}{\sqrt{x}}$.
Thus, $g(x)=\frac{1}{\sqrt{x}}$ for all $x \in \mathbb{R}^{+}$.
We prove there is no real number L such that $\lim _{x \rightarrow 0} g(x)=L$.
Observe that

$$
\begin{array}{r}
\neg(\exists L \in \mathbb{R})\left(\lim _{x \rightarrow 0} g(x)=L\right)
\end{array} \begin{array}{r}
\Leftrightarrow \\
\neg(\exists L \in \mathbb{R})(\forall \epsilon>0)(\exists \delta>0)\left(\forall x \in \mathbb{R}^{+}\right)(0<|x|<\delta \rightarrow|g(x)-L|<\epsilon)
\end{array} \quad \Leftrightarrow
$$

Thus, we prove $(\forall L \in \mathbb{R})(\exists \epsilon>0)(\forall \delta>0)\left(\exists x \in \mathbb{R}^{+}\right)\left(0<|x|<\delta \wedge\left|\frac{1}{\sqrt{x}}-L\right| \geq\right.$ $\epsilon)$.

Let L be an arbitrary real number.
Let $\epsilon=|L|+1$.
Since $|L| \geq 0$, then $\epsilon=|L|+1 \geq 1>0$, so $\epsilon>0$.
Let $\delta>0$ be given.
We must prove there exists $x>0$ such that $0<|x|<\delta$ and $\left|\frac{1}{\sqrt{x}}-L\right| \geq \epsilon$.
Let $x=\min \left\{\frac{\delta}{2}, \frac{1}{(|L|+\epsilon)^{2}}\right\}$.
Then $x \leq \frac{\delta}{2}$ and $x \leq \frac{1}{(|L|+\epsilon)^{2}}$ and either $x=\frac{\delta}{2}$ or $x=\frac{1}{(|L|+\epsilon)^{2}}$.
Since $|L| \geq 0$ and $\epsilon>0$, then $|L|+\epsilon>0$, so $(|L|+\epsilon)^{2}>0$.
Hence, $\frac{1}{(|L|+\epsilon)^{2}}>0$.
Since $\delta>0$, then $\frac{\delta}{2}>0$.
Since either $x=\frac{\delta}{2}$ or $x=\frac{1}{(|L|+\epsilon)^{2}}$ and $\frac{\delta}{2}>0$ and $\frac{1}{(|L|+\epsilon)^{2}}>0$, then $x>0$.
Since $\delta>0$ and $0<x=|x| \leq \frac{\delta}{2}<\delta$, then $0<|x|<\delta$.
Since $x \leq \frac{1}{(|L|+\epsilon)^{2}}$ and $(|L|+\epsilon)^{2}>0$, then $x(|L|+\epsilon)^{2} \leq 1$.
Since $x>0$, then $0<(|L|+\epsilon)^{2} \leq \frac{1}{x}$.
Thus, $0<||L|+\epsilon| \leq \sqrt{\frac{1}{x}}=\frac{1}{\sqrt{x}}$, so $0<|L|+\epsilon \leq \frac{1}{\sqrt{x}}$.
Hence, $|L|+\epsilon \leq \frac{1}{\sqrt{x}}$, so $\epsilon \leq \frac{1}{\sqrt{x}}-|L|$.
Therefore, $\left|\frac{1}{\sqrt{x}}-L\right| \geq\left|\frac{1}{\sqrt{x}}\right|-|L|=\frac{1}{\sqrt{x}}-|L| \geq \epsilon$, so $\left|\frac{1}{\sqrt{x}}-L\right| \geq \epsilon$.
Thus, there exists $x>0$ such that $0<|x|<\delta$ and $\left|\frac{1}{\sqrt{x}}-L\right| \geq \epsilon$.
Consequently, there is no real number L such that $\lim _{x \rightarrow 0} g(x)=L$, so $\lim _{x \rightarrow 0} g(x)$ does not exist.

Since $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{\sqrt{x}}{x}=\lim _{x \rightarrow 0} g(x)$ does not exist, then f is not differentiable at 0 .

Proof. We prove $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ for all positive real x using the definition of derivative.

Let c be a positive real number.
Then $c \in \mathbb{R}^{+}$, so $c \in \mathbb{R}$ and $c>0$.
Since $c>0$, then $\sqrt{c}>0$.
We must prove $f^{\prime}(c)=\frac{1}{2 \sqrt{c}}$.
Let $q: \mathbb{R}^{+}-\{c\} \rightarrow \mathbb{R}$ be a function defined by $q(x)=\frac{f(x)-f(c)}{x-c}$ for all $x \in \mathbb{R}^{+}-\{c\}$.

Since $\mathbb{R}^{+}=\{x \in \mathbb{R}: x>0\}=(0, \infty)$ is an open set, then every point of \mathbb{R}^{+} is an interior point of \mathbb{R}^{+}.

Since $c \in \mathbb{R}^{+}$, then c is an interior point of \mathbb{R}^{+}, so c is an accumulation point of \mathbb{R}^{+}.

Hence, c is an accumulation point of $\mathbb{R}^{+}-\{c\}$, the domain of q.
For $x \in \mathbb{R}^{+}-\{c\}$, we have $x \in \mathbb{R}^{+}$and $x \neq c$, so $x>0$.
Since $x>0$ and $c>0$, then $\sqrt{x}=\sqrt{c}$ iff $x=c$ iff $x-c=0$.
Since $x \neq c$, then $\sqrt{x} \neq \sqrt{c}$, so $\sqrt{x}-\sqrt{c} \neq 0$.
Since $c>0$, then $\lim _{x \rightarrow c}(\sqrt{x}+\sqrt{c})=\lim _{x \rightarrow c} \sqrt{x}+\lim _{x \rightarrow c} \sqrt{c}=\sqrt{c}+\sqrt{c}=$ $2 \sqrt{c}>0$, so $\lim _{x \rightarrow c}(\sqrt{x}+\sqrt{c}) \neq 0$.

Observe that

$$
\begin{aligned}
\lim _{x \rightarrow c} q(x) & =\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \\
& =\lim _{x \rightarrow c} \frac{\sqrt{x}-\sqrt{c}}{x-c} \\
& =\lim _{x \rightarrow c} \frac{\sqrt{x}-\sqrt{c}}{(\sqrt{x}-\sqrt{c})(\sqrt{x}+\sqrt{c})} \\
& =\lim _{x \rightarrow c} \frac{1}{\sqrt{x}+\sqrt{c}} \\
& =\frac{1}{\lim _{x \rightarrow c}(\sqrt{x}+\sqrt{c})} \\
& =\frac{1}{2 \sqrt{c}}
\end{aligned}
$$

Therefore, $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=\frac{1}{2 \sqrt{c}}$, as desired.
Lemma 5. $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0$ and $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0$.
Proof. We first prove $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0$.
Since $\cos x$ is continuous, then $\cos x$ is continuous at 0 .
Since 0 is an accumulation point of \mathbb{R}, the domain of $\cos x$, then by the characterization of continuity, $\lim _{x \rightarrow 0} \cos x=\cos 0=1$.

Since $\sin x$ is continuous, then $\sin x$ is continuous at 0 .
Since 0 is an accumulation point of \mathbb{R}, the domain of $\sin x$, then by the characterization of continuity, $\lim _{x \rightarrow 0} \sin x=\sin 0=0$.

We use the unproven fact that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.

Let $g(x)=\frac{1+\cos x}{1+\cos x}$.
Since $1+\cos x=0$ iff $\cos x=-1$ iff x is an odd integer multiple of π, then the domain of g is the set $\mathbb{R}-\{x: x$ is an odd integer multiple of $\pi\}$.

Let $x \in$ domg.
Then $x \in \mathbb{R}$ and x is not an odd integer multiple of π, so $1+\cos x \neq 0$.
Thus, $g(x)=\frac{1+\cos x}{1+\cos x}=1$, so $g(x)=1$ for all $x \in$ domg.
Hence, $1=\lim _{x \rightarrow 0} 1=\lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0} \frac{1+\cos x}{1+\cos x}$.
Observe that

$$
\begin{aligned}
0 & =\frac{0}{2} \\
& =\frac{0}{1+1} \\
& =\frac{\lim _{x \rightarrow 0} \sin x}{\lim _{x \rightarrow 0} 1+\lim _{x \rightarrow 0} \cos x} \\
& =\frac{\lim _{x \rightarrow 0} \sin x}{\lim _{x \rightarrow 0}(1+\cos x)} \\
& =\lim _{x \rightarrow 0} \frac{\sin x}{1+\cos x} \\
& =1 \cdot \lim _{x \rightarrow 0} \frac{\sin x}{1+\cos x} \\
& =\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \lim _{x \rightarrow 0} \frac{\sin x}{1+\cos x} \\
& =\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \frac{\sin x}{1+\cos x} \\
& =\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x(1+\cos x)} \\
& =\lim _{x \rightarrow 0} \frac{1-\cos { }^{2} x}{x(1+\cos x)} \\
& =\lim _{x \rightarrow 0} \frac{(1-\cos x)(1+\cos x)}{x(1+\cos x)} \\
& =\lim _{x \rightarrow 0} \frac{1-\cos x}{x} \cdot \frac{1+\cos x}{1+\cos x} \\
& =\lim _{x \rightarrow 0} \frac{1-\cos x}{x} \cdot \lim _{x \rightarrow 0} \frac{1+\cos x}{1+\cos x} \\
& =\lim _{x \rightarrow 0} \frac{1-\cos x}{x} \cdot 1 \\
& =\lim _{x \rightarrow 0} \frac{1-\cos x}{x} .
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0$.
Proof. We next prove $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0$.
Since $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0$, then by the scalar multiple rule for limits, we have

$$
\begin{aligned}
0 & =-1 \cdot 0 \\
& =-1 \cdot \lim _{x \rightarrow 0} \frac{1-\cos x}{x} \\
& =\lim _{x \rightarrow 0}\left(-1 \cdot \frac{1-\cos x}{x}\right) \\
& =\lim _{x \rightarrow 0} \frac{-1+\cos x}{x} \\
& =\lim _{x \rightarrow 0} \frac{\cos x-1}{x}
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0$.
Proposition 6. If $f(x)=\sin x$, then $f^{\prime}(x)=\cos x$.
Therefore, $\frac{d}{d x} \sin x=\cos x$.
Proof. We use the unproven fact $\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$.
The domain of f is the open set \mathbb{R}.
For $x \in \mathbb{R}$, we have

$$
\begin{aligned}
\cos x & =0+\cos x \\
& =\sin x \cdot 0+\cos x \cdot 1 \\
& =\sin x \cdot \lim _{h \rightarrow 0} \frac{\cos h-1}{h}+\cos x \cdot \lim _{h \rightarrow 0} \frac{\sin h}{h} \\
& =\lim _{h \rightarrow 0} \sin x \cdot \frac{\cos h-1}{h}+\lim _{h \rightarrow 0} \cos x \cdot \frac{\sin h}{h} \\
& =\lim _{h \rightarrow 0}\left[\sin x \cdot \frac{\cos h-1}{h}+\cos x \cdot \frac{\sin h}{h}\right] \\
& =\lim _{h \rightarrow 0}\left[\frac{\sin x \cos h-\sin x}{h}+\frac{\cos x \sin h}{h}\right] \\
& =\lim _{h \rightarrow 0}\left[\frac{\sin x \cos h-\sin x+\cos x \sin h}{h}\right] \\
& =\lim _{h \rightarrow 0}\left[\frac{\sin x \cos h+\cos x \sin h-\sin x}{h}\right] \\
& =\lim _{h \rightarrow 0}\left[\frac{\sin (x+h)-\sin x}{h}\right] \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =f^{\prime}(x) .
\end{aligned}
$$

Therefore, $f^{\prime}(x)=\cos x$.
Proposition 7. If $f(x)=\cos x$, then $f^{\prime}(x)=-\sin x$.
Therefore, $\frac{d}{d x} \cos x=-\sin x$.

Proof. We use the unproven fact $\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$.
The domain of f is the open set \mathbb{R}.
For $x \in \mathbb{R}$, we have

$$
\begin{aligned}
-\sin x & =0-\sin x \\
& =\cos x \cdot 0-\sin x \cdot 1 \\
& =\cos x \cdot \lim _{h \rightarrow 0} \frac{\cos h-1}{h}-\sin x \cdot \lim _{h \rightarrow 0} \frac{\sin h}{h} \\
& =\lim _{h \rightarrow 0} \cos x \cdot \frac{\cos h-1}{h}-\lim _{h \rightarrow 0} \sin x \cdot \frac{\sin h}{h} \\
& =\lim _{h \rightarrow 0}\left[\cos x \cdot \frac{\cos h-1}{h}-\sin x \cdot \frac{\sin h}{h}\right] \\
& =\lim _{h \rightarrow 0}\left[\frac{\cos x \cos h-\cos x}{h}-\frac{\sin x \sin h}{h}\right] \\
& =\lim _{h \rightarrow 0}\left[\frac{\cos x \cos h-\cos x-\sin x \sin h}{h}\right] \\
& =\lim _{h \rightarrow 0}\left[\frac{\cos x \cos h-\sin x \sin h-\cos x}{h}\right] \\
& =\lim _{h \rightarrow 0}\left[\frac{\cos (x+h)-\cos x}{h}\right] \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =f^{\prime}(x) .
\end{aligned}
$$

Therefore, $f^{\prime}(x)=-\sin x$.

