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Differentiation of real valued functions

Example 1. the square function is differentiable
Let f: R — R be the function defined by f(z) = z2.
Then f'(z) = 2z for all z € R.

Therefore, f'(z) = & (z?) = 2z.

Proof. We prove f'(x) = 2z for all z € R using the definition of derivative.

Let ¢ € R be given.

We must prove f'(c) = 2c¢.

Let ¢ : R — {¢} — R be a function defined by ¢(z) = % for all
zeR—{c}.

Since ¢ € R and every real number is an accumulation point of R, then ¢
is an accumulation point of R, so ¢ is an accumulation point of R — {c}, the
domain of q.

For z € R — {c}, we have x €e R and = # ¢, so v — ¢ # 0.

Observe that

lim g(z) = lim fl) = fle)
Tr—c Tr—c Tr — C
2% — 2
= lim
e T —C
— lim (x —c)(x +¢)
T—c T —cC
= G0
= 2c.
Thus, f/(c) = lim,_,. w = 2c¢, as desired. O

Example 2. the reciprocal function is differentiable for nonzero =
Let f: R* — R be the function defined by f(z) = % for all nonzero real z.
Then f’(z) = =3 for all nonzero real .

Therefore, f'(z) = &£ (1) ==} ifz #0.



Proof. We prove f'(z) = ;—21 for all nonzero real x using the definition of deriva-
tive.

Let ¢ be a nonzero real number.

We must prove f'(c) = =3.

Let ¢ : R* — {¢} — R be a function defined by ¢(z) = %:5(0) for all
x € R* — {c}.

Since R* = {z € R: z # 0} = (—00,0) U (0,00) is a union of open intervals,
then R* is an open set, so every point of R* is an interior point of R*.

Since ¢ € R*, then c is an interior point of R*, so ¢ is an accumulation point
of R*.

Hence, ¢ is an accumulation point of R* — {c}, the domain of g.

For x € R* — {c}, we have x € R* and = # ¢, so x — ¢ # 0.

Observe that

lim g(z) = lim
T—c T—c T —cC

Thus, f/(c) = limg_. f@)=Jfe) _ ;—21, as desired. O

r—c

Example 3. the absolute value function is not differentiable at zero
Let f: R — R be the function defined by f(x) = |z| for all z € R.
Then f is not differentiable at 0.

T

Proof. Let g : R — {0} — R be a function defined by ¢(z) = % = %I for
all z € R — {0} = R*.

Since 0 € R and every real number is an accumulation point of R, then 0 is
an accumulation point of R, so 0 is an accumulation point of R — {0} = R*, the
domain of q.

We consider the limit lim, ¢ ¢(z) = lim,_o E—l

For x € R*, we have x € R and « # 0, so either x > 0 or x < 0.

If 2 > 0, then lim, 0 ¢(z) = lim,_,0 ‘i—l
If x <0, then lim, 0 ¢(z) = lim, ‘i—l = lim, 0 =* = lim, 0 —1 = —1.
Therefore, lim,_,o g(x) does not exist, so f is not differentiable at 0. O

Example 4. the square root function is differentiable for positive real

T
Let f:[0,00) — R be the function defined by f(z) = /.
Then f'(z) = ﬁ for all positive real  and f is not differentiable at 0.

Therefore, f'(z) = & (/z) = ﬁ if x > 0 and f is not differentiable at 0.



Proof. We prove f is not differentiable at 0.

Observe that 0 € [0, 00) and 0 is an accumulation point of [0, 00), the domain

of f.

€).

We prove lim,_.¢ g does not exist.

Let g : RT™ — R be the function defined by g(z) = @
Let z € RT.

ThenxeRandx>O,sog(x)=g:%.
Thus, g(z) = ﬁ for all x € RT.

We prove there is no real number L such that lim,_, g(x) = L.
Observe that

~(L e R)(lim g(z) = L) &
—(3L € R)(Ve > 0)(30 > 0)(Vz e R0 < |[z] < § = [g(z) — L] <€) <
(VL € R)(3e > 0)(Vd > 0)(3x € RT)(0 < |z| < S A |g(z) — L| > e).

Thus, we prove (VL € R)(Je > 0)(Vd > 0)(3z € RT)(0 < |z] < 5/\|ﬁfL| >

Let L be an arbitrary real number.

Let e = |L| + 1.

Since |L| > 0, then e = |L|+1>1>0,s0 € > 0.

Let § > 0 be given.

We must prove there exists « > 0 such that 0 < |z| < ¢ and \ﬁ — Ll >e

Let x = mli{%, m} 5
1 . _ _ 1
Thenxﬁ5andxgmandelthera:—iorx—m.
Since |L| > 0 and € > 0, then |L| 4+ € > 0, so (|L]| + €)? > 0.
1

Hence, W > 0.

Since 6 > 0, then g > 0.
Sinceeitherx:gorxzm andg>0and (\L|+ T+ > 0, then = > 0.
Since(5>0and0<x—|x|< 3 < 4, then 0 < |z| < 6.
Since z < (lLH'E)2 and (|L| +¢€)? > 0, then z(|L| +¢)? < 1.
Since z > 0, then 0 < (|L[ +¢€)? < 1.
Thus, 0 < ||L| +e| <y/i=
Hence, |L| + € < f’
Therefore, |ﬁ —L|> \ﬁ| —|L| = ﬁ —|L| > €, so |ﬁ —L|>e
Thus, there exists > 0 such that 0 < |z| < ¢ and |ﬁ —L|>e
Consequently, there is no real number L such that lim, ,og(x) = L, so

I7SOO<|L‘+€<I

soe§ﬁ7|L|.

lim, 0 g(z) does not exist.

Since lim,_, (m) f(o) = limg_,0 ? = lim, ¢ g(x) does not exist, then f is

not diﬁerentiable at 0 O



Proof. We prove f'(z) = ﬁ for all positive real z using the definition of
derivative.

Let ¢ be a positive real number.

Then c € RT, so ¢ € R and ¢ > 0.

Since ¢ > 0, then y/c > 0.

We must prove f/(c) = 2\1/6'

Let ¢ : RT — {¢} — R be a function defined by q(z) = f(m) f(c) for all
r € RT — {c}.

Since Rt = {z € R: 2z > 0} = (0,00) is an open set, then every point of R
is an interior point of RT.

Since ¢ € RT, then c is an interior point of R, so ¢ is an accumulation point
of RT.

Hence, ¢ is an accumulation point of RT — {¢}, the domain of q.

For x € Rt — {c}, we have x € RT and z # ¢, so z > 0.

Since > 0 and ¢ > 0, then /z =/cif e =ciff x —c=0.

Since x # ¢, then \/x # /¢, so v/x — /c # 0.

Since ¢ > 0, then lim, (/2 + 1/¢) = limg e /2 + limg . /e = e+ e =
2y/c >0, so lim,_.(y/T + /) # 0.

Observe that

lim g(z) = limM

T—cC T—cC xr—c

= hmﬂ

T—c I —C

Vi e

:iﬂw;ﬂW+f>
R AVCERV:
1
Tl (V7 +0)
1
= 37
Therefore, f'(c) = lim,_, % 5 \/’ as desired. O

l—cosx cosz—1 =0

=0 and lim,_,¢

Lemma 5. lim,_,g

Proof. We first prove lim,_,q w =0.

Since cos z is continuous, then cosz is continuous at 0.

Since 0 is an accumulation point of R, the domain of cosz, then by the
characterization of continuity, lim,_,g cosz = cos0 = 1.

Since sin z is continuous, then sin x is continuous at 0.

Since 0 is an accumulation point of R, the domain of sinx, then by the
characterization of continuity, lim,_.¢sinx = sin0 = 0.

We use the unproven fact that lim,_,o S22 = 1.




Let g(z) = ﬁ‘c’%

Since 1 + cosz = 0 iff cosx = —1 iff = is an odd integer multiple of 7, then
the domain of g is the set R — {z : z is an odd integer multiple of 7 }.

Let z € domyg.

Then z € R and z is not an odd integer multiple of 7, so 1 + cosx # 0.

Thus, g(z) = }ﬁ% =1, s0 g(z) =1 for all z € domyg.

Hence, 1 = lim, ,0 1 = lim,_,¢ g(x) = lim,_,o }iggzi

Observe that

lim, _,gsinx

lim,_,o 1+ lim,_,gcosx
lim, o sinx

lim,_,o(1 + cosz)
sinx
im ——
z—0 14 cosx
. sin x
= 1-lim ——
z—0 1+ cosx
. sinz . sinx
= lim - lim
z—0 I z—0 1+ cosx
sinx sinx

1m —_—
=0 T 1-+cosz
sin?

im —
z—0 z(1 + cos x)
. 1—cos?z
= lim ———

z—0 z(1 4 cosx)

1-— 1

_ im (1 —cosz)(1+ cosx)
@0 x(1 + cosx)

1—cosx 14 cosx

z—0 T 1+ cosx
1—cosz | 1+cosz

im
z—0 T z—0 1+ cosx

Therefore, lim,_,q H% =0. ]

Proof. We next prove lim,_,o <52=1 — (.

lzcosz _ ), then by the scalar multiple rule for limits, we have

Since lim, o —5



. 1l—cosz
= —1-Ilim
x—0 €T
1—cosx
= lim(—1 )
x—0 x
. —l4cosz
= lim
x—0 €T
. cosx—1
= lim .
x—0 x

cosz—1 __ 0

Therefore, lim; o <=7

Proposition 6. If f(x) =sinz, then f'(z) = cosz.

Therefore, di sinx = cosz.
xXr

Proof. We use the unproven fact limy_,
The domain of f is the open set R.
For z € R, we have

sinh __
nho_ .

cosr = 0-+cosz
= sinx-0+cosx-1
. . cosh—1 . sinh
= sinz-lim —— +cosx - lim
h—0 h h—0 h
. . cosh—1 . sin h
= limsing- ——— + limcosz - ——
h—0 h h—0 h
Jim [si cosh—1+ sinh]
= lim[sing - ——— 4+ cosx -
h—0 h h
. [sin:ccosh —sinx L cosxsinh]
= lim
h—0 h h
. sinzcosh —sinx + cosxsinh
= lim| ]
h—0 h
sinz cosh + cosxsinh — sinx
= lim| ]
h—0 h
_ hm[sin(erh)fsinx}
h—0 h
h) —
g et = @)
h—0 h
~ [,

Therefore, f'(x) = cosz.

Proposition 7. If f(x) = cosx, then f'(x) = —sinx.
Therefore, % cosr = —sinz.



sin h

Proof. We use the unproven fact limy o 3~ = 1.
The domain of f is the open set R.

For z € R, we have

—sinz

0—sinx

cosr-0—sinz-1

. cosh—1 . . sinh
cosx - lim ——— —sinx - lim
h—0 h h—0 h
. cosh—1 . . sin h
lim cosz - ———— — lim sin@w - ——
h—0 h h—0 h
Jim [cos cosh —1 . sinh]
hli% Ccos T h sin x .
cosxcosh —cosx  sinxsin h]
im —
h—0 h h
. .cosxcosh —cosx —sinzsinh
lim | ]
h—0 h
. .cosxrcosh —sinxsinh — cosx
lim | ]
h—0 h
lim [cos(x +h)— cosa:]
h—0 h
i L@ ) — flz)
h—0 h
f'().
Therefore, f'(xz) = —sinz.



