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Differentiation of real valued functions

Example 1. the square function is differentiable
Let f : R→ R be the function defined by f(x) = x2.
Then f ′(x) = 2x for all x ∈ R.
Therefore, f ′(x) = d

dx (x2) = 2x.

Proof. We prove f ′(x) = 2x for all x ∈ R using the definition of derivative.
Let c ∈ R be given.
We must prove f ′(c) = 2c.

Let q : R − {c} → R be a function defined by q(x) = f(x)−f(c)
x−c for all

x ∈ R− {c}.
Since c ∈ R and every real number is an accumulation point of R, then c

is an accumulation point of R, so c is an accumulation point of R − {c}, the
domain of q.

For x ∈ R− {c}, we have x ∈ R and x 6= c, so x− c 6= 0.
Observe that

lim
x→c

q(x) = lim
x→c

f(x)− f(c)

x− c

= lim
x→c

x2 − c2

x− c

= lim
x→c

(x− c)(x+ c)

x− c
= lim

x→c
(x+ c)

= 2c.

Thus, f ′(c) = limx→c
f(x)−f(c)

x−c = 2c, as desired.

Example 2. the reciprocal function is differentiable for nonzero x
Let f : R∗ → R be the function defined by f(x) = 1

x for all nonzero real x.
Then f ′(x) = −1

x2 for all nonzero real x.

Therefore, f ′(x) = d
dx ( 1

x ) = −1
x2 if x 6= 0.



Proof. We prove f ′(x) = −1
x2 for all nonzero real x using the definition of deriva-

tive.
Let c be a nonzero real number.
We must prove f ′(c) = −1

c2 .

Let q : R∗ − {c} → R be a function defined by q(x) = f(x)−f(c)
x−c for all

x ∈ R∗ − {c}.
Since R∗ = {x ∈ R : x 6= 0} = (−∞, 0) ∪ (0,∞) is a union of open intervals,

then R∗ is an open set, so every point of R∗ is an interior point of R∗.
Since c ∈ R∗, then c is an interior point of R∗, so c is an accumulation point

of R∗.
Hence, c is an accumulation point of R∗ − {c}, the domain of q.
For x ∈ R∗ − {c}, we have x ∈ R∗ and x 6= c, so x− c 6= 0.
Observe that

lim
x→c

q(x) = lim
x→c

f(x)− f(c)

x− c

= lim
x→c

1
x −

1
c

x− c

= lim
x→c

c− x
xc(x− c)

= lim
x→c

−1

xc

=
−1

c2
.

Thus, f ′(c) = limx→c
f(x)−f(c)

x−c = −1
c2 , as desired.

Example 3. the absolute value function is not differentiable at zero
Let f : R→ R be the function defined by f(x) = |x| for all x ∈ R.
Then f is not differentiable at 0.

Proof. Let q : R− {0} → R be a function defined by q(x) = f(x)−f(0)
x−0 = |x|

x for
all x ∈ R− {0} = R∗.

Since 0 ∈ R and every real number is an accumulation point of R, then 0 is
an accumulation point of R, so 0 is an accumulation point of R−{0} = R∗, the
domain of q.

We consider the limit limx→0 q(x) = limx→0
|x|
x .

For x ∈ R∗, we have x ∈ R and x 6= 0, so either x > 0 or x < 0.

If x > 0, then limx→0 q(x) = limx→0
|x|
x = limx→0

x
x = limx→0 1 = 1.

If x < 0, then limx→0 q(x) = limx→0
|x|
x = limx→0

−x
x = limx→0−1 = −1.

Therefore, limx→0 q(x) does not exist, so f is not differentiable at 0.

Example 4. the square root function is differentiable for positive real
x

Let f : [0,∞)→ R be the function defined by f(x) =
√
x.

Then f ′(x) = 1
2
√
x

for all positive real x and f is not differentiable at 0.

Therefore, f ′(x) = d
dx (
√
x) = 1

2
√
x

if x > 0 and f is not differentiable at 0.
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Proof. We prove f is not differentiable at 0.
Observe that 0 ∈ [0,∞) and 0 is an accumulation point of [0,∞), the domain

of f .

We prove limx→0

√
x
x does not exist.

Let g : R+ → R be the function defined by g(x) =
√
x
x .

Let x ∈ R+.
Then x ∈ R and x > 0, so g(x) =

√
x
x = 1√

x
.

Thus, g(x) = 1√
x

for all x ∈ R+.

We prove there is no real number L such that limx→0 g(x) = L.
Observe that

¬(∃L ∈ R)( lim
x→0

g(x) = L) ⇔

¬(∃L ∈ R)(∀ε > 0)(∃δ > 0)(∀x ∈ R+)(0 < |x| < δ → |g(x)− L| < ε) ⇔
(∀L ∈ R)(∃ε > 0)(∀δ > 0)(∃x ∈ R+)(0 < |x| < δ ∧ |g(x)− L| ≥ ε).

Thus, we prove (∀L ∈ R)(∃ε > 0)(∀δ > 0)(∃x ∈ R+)(0 < |x| < δ∧| 1√
x
−L| ≥

ε).
Let L be an arbitrary real number.
Let ε = |L|+ 1.
Since |L| ≥ 0, then ε = |L|+ 1 ≥ 1 > 0, so ε > 0.
Let δ > 0 be given.
We must prove there exists x > 0 such that 0 < |x| < δ and | 1√

x
− L| ≥ ε.

Let x = min{ δ2 ,
1

(|L|+ε)2 }.
Then x ≤ δ

2 and x ≤ 1
(|L|+ε)2 and either x = δ

2 or x = 1
(|L|+ε)2 .

Since |L| ≥ 0 and ε > 0, then |L|+ ε > 0, so (|L|+ ε)2 > 0.
Hence, 1

(|L|+ε)2 > 0.

Since δ > 0, then δ
2 > 0.

Since either x = δ
2 or x = 1

(|L|+ε)2 and δ
2 > 0 and 1

(|L|+ε)2 > 0, then x > 0.

Since δ > 0 and 0 < x = |x| ≤ δ
2 < δ, then 0 < |x| < δ.

Since x ≤ 1
(|L|+ε)2 and (|L|+ ε)2 > 0, then x(|L|+ ε)2 ≤ 1.

Since x > 0, then 0 < (|L|+ ε)2 ≤ 1
x .

Thus, 0 < ||L|+ ε| ≤
√

1
x = 1√

x
, so 0 < |L|+ ε ≤ 1√

x
.

Hence, |L|+ ε ≤ 1√
x

, so ε ≤ 1√
x
− |L|.

Therefore, | 1√
x
− L| ≥ | 1√

x
| − |L| = 1√

x
− |L| ≥ ε, so | 1√

x
− L| ≥ ε.

Thus, there exists x > 0 such that 0 < |x| < δ and | 1√
x
− L| ≥ ε.

Consequently, there is no real number L such that limx→0 g(x) = L, so
limx→0 g(x) does not exist.

Since limx→0
f(x)−f(0)

x−0 = limx→0

√
x
x = limx→0 g(x) does not exist, then f is

not differentiable at 0.
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Proof. We prove f ′(x) = 1
2
√
x

for all positive real x using the definition of

derivative.
Let c be a positive real number.
Then c ∈ R+, so c ∈ R and c > 0.
Since c > 0, then

√
c > 0.

We must prove f ′(c) = 1
2
√
c
.

Let q : R+ − {c} → R be a function defined by q(x) = f(x)−f(c)
x−c for all

x ∈ R+ − {c}.
Since R+ = {x ∈ R : x > 0} = (0,∞) is an open set, then every point of R+

is an interior point of R+.
Since c ∈ R+, then c is an interior point of R+, so c is an accumulation point

of R+.
Hence, c is an accumulation point of R+ − {c}, the domain of q.
For x ∈ R+ − {c}, we have x ∈ R+ and x 6= c, so x > 0.
Since x > 0 and c > 0, then

√
x =
√
c iff x = c iff x− c = 0.

Since x 6= c, then
√
x 6=
√
c, so

√
x−
√
c 6= 0.

Since c > 0, then limx→c(
√
x+
√
c) = limx→c

√
x+ limx→c

√
c =
√
c+
√
c =

2
√
c > 0, so limx→c(

√
x+
√
c) 6= 0.

Observe that

lim
x→c

q(x) = lim
x→c

f(x)− f(c)

x− c

= lim
x→c

√
x−
√
c

x− c

= lim
x→c

√
x−
√
c

(
√
x−
√
c)(
√
x+
√
c)

= lim
x→c

1√
x+
√
c

=
1

limx→c(
√
x+
√
c)

=
1

2
√
c
.

Therefore, f ′(c) = limx→c
f(x)−f(c)

x−c = 1
2
√
c
, as desired.

Lemma 5. limx→0
1−cos x

x = 0 and limx→0
cos x−1

x = 0.

Proof. We first prove limx→0
1−cos x

x = 0.
Since cosx is continuous, then cosx is continuous at 0.
Since 0 is an accumulation point of R, the domain of cosx, then by the

characterization of continuity, limx→0 cosx = cos 0 = 1.
Since sinx is continuous, then sinx is continuous at 0.
Since 0 is an accumulation point of R, the domain of sinx, then by the

characterization of continuity, limx→0 sinx = sin 0 = 0.
We use the unproven fact that limx→0

sin x
x = 1.
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Let g(x) = 1+cos x
1+cos x .

Since 1 + cosx = 0 iff cosx = −1 iff x is an odd integer multiple of π, then
the domain of g is the set R− {x : x is an odd integer multiple of π }.

Let x ∈ domg.
Then x ∈ R and x is not an odd integer multiple of π, so 1 + cosx 6= 0.
Thus, g(x) = 1+cos x

1+cos x = 1, so g(x) = 1 for all x ∈ domg.

Hence, 1 = limx→0 1 = limx→0 g(x) = limx→0
1+cos x
1+cos x .

Observe that

0 =
0

2

=
0

1 + 1

=
limx→0 sinx

limx→0 1 + limx→0 cosx

=
limx→0 sinx

limx→0(1 + cosx)

= lim
x→0

sinx

1 + cosx

= 1 · lim
x→0

sinx

1 + cosx

= lim
x→0

sinx

x
· lim
x→0

sinx

1 + cosx

= lim
x→0

sinx

x
· sinx

1 + cosx

= lim
x→0

sin2 x

x(1 + cosx)

= lim
x→0

1− cos2 x

x(1 + cosx)

= lim
x→0

(1− cosx)(1 + cosx)

x(1 + cosx)

= lim
x→0

1− cosx

x
· 1 + cosx

1 + cosx

= lim
x→0

1− cosx

x
· lim
x→0

1 + cosx

1 + cosx

= lim
x→0

1− cosx

x
· 1

= lim
x→0

1− cosx

x
.

Therefore, limx→0
1−cos x

x = 0.

Proof. We next prove limx→0
cos x−1

x = 0.
Since limx→0

1−cos x
x = 0, then by the scalar multiple rule for limits, we have

5



0 = −1 · 0

= −1 · lim
x→0

1− cosx

x

= lim
x→0

(−1 · 1− cosx

x
)

= lim
x→0

−1 + cosx

x

= lim
x→0

cosx− 1

x
.

Therefore, limx→0
cos x−1

x = 0.

Proposition 6. If f(x) = sinx, then f ′(x) = cosx.
Therefore, d

dx sinx = cosx.

Proof. We use the unproven fact limh→0
sinh
h = 1.

The domain of f is the open set R.
For x ∈ R, we have

cosx = 0 + cosx

= sinx · 0 + cosx · 1

= sinx · lim
h→0

cosh− 1

h
+ cosx · lim

h→0

sinh

h

= lim
h→0

sinx · cosh− 1

h
+ lim
h→0

cosx · sinh

h

= lim
h→0

[sinx · cosh− 1

h
+ cosx · sinh

h
]

= lim
h→0

[
sinx cosh− sinx

h
+

cosx sinh

h
]

= lim
h→0

[
sinx cosh− sinx+ cosx sinh

h
]

= lim
h→0

[
sinx cosh+ cosx sinh− sinx

h
]

= lim
h→0

[
sin(x+ h)− sinx

h
]

= lim
h→0

f(x+ h)− f(x)

h

= f ′(x).

Therefore, f ′(x) = cosx.

Proposition 7. If f(x) = cosx, then f ′(x) = − sinx.
Therefore, d

dx cosx = − sinx.
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Proof. We use the unproven fact limh→0
sinh
h = 1.

The domain of f is the open set R.
For x ∈ R, we have

− sinx = 0− sinx

= cosx · 0− sinx · 1

= cosx · lim
h→0

cosh− 1

h
− sinx · lim

h→0

sinh

h

= lim
h→0

cosx · cosh− 1

h
− lim
h→0

sinx · sinh

h

= lim
h→0

[cosx · cosh− 1

h
− sinx · sinh

h
]

= lim
h→0

[
cosx cosh− cosx

h
− sinx sinh

h
]

= lim
h→0

[
cosx cosh− cosx− sinx sinh

h
]

= lim
h→0

[
cosx cosh− sinx sinh− cosx

h
]

= lim
h→0

[
cos(x+ h)− cosx

h
]

= lim
h→0

f(x+ h)− f(x)

h

= f ′(x).

Therefore, f ′(x) = − sinx.
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