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Derivative of a real valued function

Exercise 1. the cube function is differentiable
Let f : R→ R be the function defined by f(x) = x3.
Then f ′(x) = 3x2 for all x ∈ R.

Proof. We prove f ′(x) = 3x2 for all x ∈ R using the definition of derivative.
Let c ∈ R be given.
We must prove f ′(c) = 3c2.

Let q : R − {c} → R be a function defined by q(x) = f(x)−f(c)
x−c for all

x ∈ R− {c}.
Since c ∈ R and every real number is an accumulation point of R, then c

is an accumulation point of R, so c is an accumulation point of R − {c}, the
domain of q.

For x ∈ R− {c}, we have x ∈ R and x 6= c, so so x− c 6= 0.
Observe that

lim
x→c

q(x) = lim
x→c

f(x)− f(c)

x− c

= lim
x→c

x3 − c3

x− c

= lim
x→c

(x− c)(x2 + cx+ c2)

x− c
= lim

x→c
(x2 + cx+ c2)

= c2 + c2 + c2

= 3c2.

Thus, f ′(c) = limx→c
f(x)−f(c)

x−c = 3c2, as desired.

Exercise 2. Let f : (0, 1)→ R be the function defined by f(x) =
√

2x2 − 3x+ 6.
Then f ′(x) = 4x−3

2
√
2x2−3x+6

for all x ∈ (0, 1).

Proof. To prove f ′(x) = 4x−3
2
√
2x2−3x+6

for all x ∈ (0, 1), let c ∈ (0, 1) be given.

We must prove f ′(c) = 4c−3
2
√
2c2−3c+6

.



Let g : (0, 1)→ R be the function defined by g(x) = 2x2 − 3x+ 6.
Let h : [0,∞)→ R be the function defined by h(x) =

√
x.

We first prove domf = dom(h ◦ g).
Since dom(h◦g) = {x ∈ domg : g(x) ∈ domh} = {x ∈ (0, 1) : g(x) ∈ [0,∞)},

then dom(h ◦ g) ⊂ (0, 1).

Let x ∈ (0, 1).
Then 0 < x < 1 and g(x) = 2x2 − 3x+ 6.
Since 0 < x < 1, then either x = 3

4 or x 6= 3
4 .

If x = 3
4 , then g(x) = g( 3

4 ) = 39
8 > 0.

If x 6= 3
4 , then x− 3

4 6= 0, so (x− 3
4 )2 > 0.

Since 9
16 − 3 = −39

16 < 0, then 9
16 − 3 < 0.

Since (x− 3
4 )2 > 0 and 0 > 9

16 − 3, then (x− 3
4 )2 > 9

16 − 3, so x2− 3x
2 + 9

16 >
9
16 − 3.

Thus, x2 − 3x
2 > −3, so 2x2 − 3x > −6.

Hence g(x) = 2x2 − 3x+ 6 > 0, so g(x) > 0.
Therefore, in either case, g(x) > 0.
Consequently, g(x) ∈ (0,∞), so g(x) ∈ (0,∞) for all x ∈ (0, 1).
Since g(x) ∈ (0,∞) and (0,∞) ⊂ [0,∞), then g(x) ∈ [0,∞).
Since x ∈ (0, 1) and g(x) ∈ [0,∞), then x ∈ dom(h◦g), so (0, 1) ⊂ dom(h◦g).
Since (0, 1) ⊂ dom(h ◦ g) and dom(h ◦ g) ⊂ (0, 1), then (0, 1) = dom(h ◦ g).
Thus, domf = dom(h ◦ g).

We next prove f(x) = (h ◦ g)(x) for all x ∈ (0, 1).
Let x ∈ (0, 1) be given.
Then

(h ◦ g)(x) = h(g(x))

= h(2x2 − 3x+ 6)

=
√

2x2 − 3x+ 6

= f(x).

Thus, f(x) = (h ◦ g)(x), so f(x) = (h ◦ g)(x) for all x ∈ (0, 1).
Since domf = dom(h ◦ g) and f(x) = (h ◦ g)(x) for all x ∈ (0, 1), then

f = h ◦ g.

We next prove rngg ⊂ domh.
Let y ∈ rngg.
Then y = g(x) for some x ∈ (0, 1).
Since x ∈ (0, 1), then g(x) ∈ (0,∞).
Since (0,∞) ⊂ [0,∞), then g(x) ∈ [0,∞), so y ∈ [0,∞).
Since [0,∞) = domh, then y ∈ domh, so rngg ⊂ domh.
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Since g′(x) = 4x − 3 for all x ∈ R and c ∈ R, then g′(c) = 4c − 3, so g is
differentiable at c.

Since c ∈ (0, 1), then g(c) = 2c2 − 3c+ 6 and g(c) ∈ (0,∞).
Since g(c) ∈ (0,∞), then g(c) > 0.
Since h′(x) = 1

2
√
x

for all x > 0 and g(c) > 0, then h′(g(c)) = 1

2
√
g(c)

, so h is

differentiable at g(c).
Hence, by the chain rule,

f ′(c) = (h ◦ g)′(c)

= h′(g(c)) · g′(c)

=
1

2
√
g(c)

· (4c− 3)

=
4c− 3

2
√

2c2 − 3c+ 6
.

Therefore, f ′(c) = 4c−3
2
√
2c2−3c+6

, as desired.

Exercise 3. Let a, b, c, d, p, q ∈ R such that a < b and c < d and p < q.
Let f : [a, b] → [c, d] and g : [c, d] → [p, q] and h : [p, q] → R be functions

such that f is differentiable at x0 ∈ [a, b] and g is differentiable at f(x0) and h
is differentiable at g(f(x0)).

Then [h ◦ (g ◦ f)]′(x0) = h′[(g ◦ f)(x0)] · (g ◦ f)′(x0).

Proof. Since the range of f is a subset of its codomain, the interval [c, d], and
the interval [c, d] is the domain of g, then the range of f is a subset of the
domain of g.

Since f is differentiable at x0 and g is differentiable at f(x0), then by the
chain rule, the function g ◦ f is differentiable at x0 and (g ◦ f)′(x0) = g′(f(x0)) ·
f ′(x0).

Since the range of g ◦ f is a subset of its codomain, the interval [p, q], and
the interval [p, q] is the domain of h, then the range of g ◦ f is a subset of the
domain of h.

Since g◦f is differentiable at x0 and h is differentiable at (g◦f)(x0), then by
the chain rule, the function h◦(g◦f) is differentiable at x0 and [h◦(g◦f)]′(x0) =
h′[(g ◦ f)(x0)] · (g ◦ f)′(x0).

Lemma 4. Let f : R→ R be a function.
Let a ∈ R.
If limx→a |f(x)| = 0, then limx→a f(x) = 0.

Proof. Suppose limx→a |f(x)| = 0.
Then 0 = −0 = −(limx→a |f(x)|) = limx→a−|f(x)|.
Let x ∈ R.
Then f(x) ∈ R, so −|f(x)| ≤ f(x) ≤ |f(x)|.
Thus, −|f(x)| ≤ f(x) ≤ |f(x)| for all x ∈ R.
Observe that a is an accumulation point of R, the domain of f .
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Since −|f(x)| ≤ f(x) ≤ |f(x)| for all x ∈ R and limx→a−|f(x)| = 0 =
limx→a |f(x)|, then by the squeeze rule for limits, limx→a f(x) = 0.

Exercise 5. Let f : (a, b)→ R be a function.

If f is differentiable at x ∈ (a, b), then limh→0
f(x+h)−f(x−h)

2h = f ′(x).

Proof. Suppose f is differentiable at x ∈ (a, b).

Then there is a real number L such that L = limh→0
f(x+h)−f(x)

h = f ′(x).

We first prove limh→0
f(x)−f(x−h)

h = L.
Let ε > 0 be given.

Since L = limh→0
f(x+h)−f(x)

h , then there is a real δ > 0 such that for all

h ∈ R, if 0 < |h| < δ, then | f(x+h)−f(x)h − L| < ε.
Let h ∈ R such that 0 < |h| < δ.
Then 0 < |h| and |h| < δ.
Since h ∈ R, then −h ∈ R.
Since |h| > 0, then h 6= 0, so −h 6= 0.
Hence, | − h| > 0.
Since | − h| = |h| < δ, then we have 0 < | − h| < δ.

Thus, | f(x−h)−f(x)−h − L| < ε, so |−f(x−h)+f(x)h − L| < ε.

Therefore, | f(x)−f(x−h)h − L| < ε, so limh→0
f(x)−f(x−h)

h = L.

We must prove limh→0
f(x+h)−f(x−h)

2h = L.
Observe that

2L = L+ L

= lim
h→0

f(x+ h)− f(x)

h
+ lim
h→0

f(x)− f(x− h)

h

= lim
h→0

[
f(x+ h)− f(x)

h
+
f(x)− f(x− h)

h
]

= lim
h→0

f(x+ h)− f(x) + f(x)− f(x− h)

h

= lim
h→0

f(x+ h)− f(x− h)

h
.

Thus, 2L = limh→0
f(x+h)−f(x−h)

h , so L = 1
2 limh→0

f(x+h)−f(x−h)
h = limh→0

f(x+h)−f(x−h)
2h .

Therefore, L = limh→0
f(x+h)−f(x−h)

2h , as desired.

Exercise 6. Let δ > 0.
Let f : (−δ, δ)→ R be a function.
If |f(x)| ≤ x2 for all x ∈ (−δ, δ), then f ′(0) = 0.

Proof. Let I = (−δ, δ).
Suppose |f(x)| ≤ x2 for all x ∈ I.
Since 0 ∈ I, then |f(0)| ≤ 02 = 0.
Since f(0) ∈ R and |f(0)| ≥ 0 and |f(0)| ≤ 0, then |f(0)| = 0, so f(0) = 0.
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Let x ∈ I and x 6= 0.
Since x ∈ I, then |f(x)| ≤ x2.
Since x 6= 0, then |x| > 0.

Hence, | f(x)x | =
|f(x)|
|x| ≤

x2

|x| = |x|2
|x| = |x|, so 0 ≤ | f(x)x | ≤ |x|.

Thus, 0 ≤ | f(x)x | ≤ |x| for all x ∈ I − {0}.
Observe that 0 is an accumulation point of the deleted δ neighborhood of 0,

the set N ′(0; δ) = I − {0}.
Since 0 ≤ | f(x)x | ≤ |x| for all x ∈ I − {0} and limx→0 0 = 0 = limx→0 |x|,

then by the squeeze rule for limits, limx→0 | f(x)x | = 0.

Hence, by the previous lemma, limx→0
f(x)
x = 0.

Therefore, 0 = limx→0
f(x)
x = limx→0

f(x)−f(0)
x−0 = f ′(0), so f ′(0) = 0, as

desired.

Exercise 7. Let f : (a, b)→ R be a function continuous on (a, b) and differen-
tiable at c ∈ (a, b).

Let g : (a, b)→ R be a function defined by

g(x) =

{
f(x)−f(c)

x−c if x ∈ (a, b)− {c}
f ′(c) if x = c

Then g is continuous on (a, b).

Proof. Let x0 ∈ (a, b).
Either x0 = c or x0 6= c.
We consider these cases separately.
Case 1: Suppose x0 = c.
Since f is differentiable at c, then f ′(c) exists, so c is an accumulation point

of (a, b).

Thus, limx→x0 g(x) = limx→c g(x) = limx→c
f(x)−f(c)

x−c = f ′(c) = g(c) =
g(x0), so g is continuous at x0.

Case 2: Suppose x0 6= c.
Let s : R→ R be the function defined by s(x) = f(c).
Let f − s : (a, b)→ R be the function defined by (f − s)(x) = f(x)− s(x) =

f(x)− f(c).
Since f is continuous on (a, b), then f is continuous.
Since s is a constant function and every constant function is continuous,

then s is continuous.
Since f is continuous and s is continuous, then f − s is continuous.
Let I : R→ R be the function defined by I(x) = x.
Let t : R→ R be the function defined by t(x) = c.
Let I− t : R→ R be the function defined by (I− t)(x) = I(x)− t(x) = x−c.
Since I is the identity function on R and the identity function is continuous,

then I is continuous.
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Since t is a constant function and every constant function is continuous, then
t is continuous.

Since I is continuous and t is continuous, then I − t is continuous.

Let f−s
I−t be the real valued function defined by ( f−sI−t )(x) = (f−s)(x)

(I−t)(x) for all

x ∈ dom(f − s) ∩ dom(I − t) such that (I − t)(x) 6= 0.

Then ( f−sI−t )(x) = (f−s)(x)
(I−t)(x) = f(x)−s(x)

I(x)−t(x) = f(x)−f(c)
x−c for all x ∈ (a, b) ∩ R such

that I(x)− t(x) = x− c 6= 0, so ( f−sI−t )(x) = f(x)−f(c)
x−c for all x ∈ (a, b) such that

x 6= c.
Since x0 ∈ (a, b) and x0 6= c, then x0 is an arbitrary element in the domain

of f−s
I−t .
To prove g is continuous at x0 when x0 6= c is equivalent to proving that the

function f−s
I−t is continuous.

Since f − s is continuous and I − t is continuous, then f−s
I−t is continuous, so

g is continuous at x0 when x0 6= c.

Exercise 8. uniform differentiability
Let E ⊂ R be non empty.
A function f : E → R is said to be uniformly differentiable on E iff
1. f is differentiable on E.

2. (∀ε > 0)(∃δ > 0)(∀x, y ∈ E)(0 < |x− y| < δ → | f(x)−f(y)x−y − f ′(x)| < ε).
Let f : E → R be a function uniformly differentiable on a nonempty set

E ⊂ R.
Then f ′ is continuous on E.

Proof. Since f is uniformly differentiable on E, then f is differentiable on E.

Hence, f ′ : E → R is a function defined by f ′(c) = limx→c
f(x)−f(c)

x−c for each
c ∈ E.

To prove f ′ is continuous on E, let c ∈ E.
We must prove f ′ is continuous at c.
To prove f ′ is continuous at c, let ε > 0 be given.
We must prove there exists δ > 0 such that for all x ∈ E, if |x− c| < δ, then

|f ′(x)− f ′(c)| < ε.

Since c ∈ E, then f ′(c) = limx→c
f(x)−f(c)

x−c .
Since ε > 0, then ε

2 > 0, so there exists δ1 > 0 such that for every x ∈ E−{c},
if 0 < |x− c| < δ1, then | f(x)−f(c)x−c − f ′(c)| < ε

2 .
Since f is uniformly differentiable on E and ε

2 > 0, then there exists δ2 > 0

such that for every x, y ∈ E, if 0 < |x− y| < δ2, then | f(x)−f(y)x−y − f ′(x)| < ε
2 .

Let δ = min{δ1, δ2}.
Then δ ≤ δ1 and δ ≤ δ2.
Since δ1 > 0 and δ2 > 0, then δ > 0.
Let x ∈ E such that |x− c| < δ.
Either x = c or x 6= c.
We consider these cases separately.
Case 1: Suppose x = c.
Then |f ′(x)− f ′(c)| = |f ′(c)− f ′(c)| = 0 < ε.
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Case 2: Suppose x 6= c.
Then |x− c| > 0, so 0 < |x− c| < δ.
Since 0 < |x− c| < δ ≤ δ1, then 0 < |x− c| < δ1.
Since x ∈ E and x 6= c, then x ∈ E − {c}.
Since x ∈ E − {c} and 0 < |x− c| < δ1, then | f(x)−f(c)x−c − f ′(c)| < ε

2 .
Since 0 < |x− c| < δ ≤ δ2, then 0 < |x− c| < δ2.

Since x ∈ E and c ∈ E and 0 < |x− c| < δ2, then | f(x)−f(c)x−c − f ′(x)| < ε
2 .

Observe that

|f ′(x)− f ′(c)| = |f ′(x)− f(x)− f(c)

x− c
+
f(x)− f(c)

x− c
− f ′(c)|

≤ |f ′(x)− f(x)− f(c)

x− c
|+ |f(x)− f(c)

x− c
− f ′(c)|

= |f(x)− f(c)

x− c
− f ′(x)|+ |f(x)− f(c)

x− c
− f ′(c)|

<
ε

2
+
ε

2
= ε.

Thus, |f ′(x)− f ′(c)| < ε.

Exercise 9. Let f : R→ R be a function such that f is differentiable at c and
f(c) = 0.

Let g : R→ R be a function defined by g(x) = |f(x)|.
Then g is differentiable at c iff f ′(c) = 0.

Proof. We first prove if f ′(c) = 0, then g is differentiable at c.
Suppose f ′(c) = 0.

Then 0 = f ′(c) = limx→c
f(x)−f(c)

x−c = limx→c
f(x)−0
x−c = limx→c

f(x)
x−c .

Let h : R− {c} → R be the function defined by h(x) = |f(x)|
x−c for all x 6= c.

Observe that c is an accumulation point of the set R−{c}, the domain of h.
We first prove limx→c h(x) = 0.
Let ε > 0 be given.

Since limx→c
f(x)
x−c = 0, then there exists δ > 0 such that for all x ∈ R− {c},

if 0 < |x− c| < δ, then | f(x)x−c | < ε.
Let x ∈ R− {c} such that 0 < |x− c| < δ.

Then | f(x)x−c | < ε.

Thus, |h(x)| = | |f(x)|x−c | =
||f(x)||
|x−c| = |f(x)|

|x−c| = | f(x)x−c | < ε.

Hence, limx→c h(x) = 0.

Since 0 = limx→c h(x) = limx→c
|f(x)|
x−c = limx→c

|f(x)|−0
x−c = limx→c

|f(x)|−|f(c)|
x−c =

limx→c
g(x)−g(c)
x−c , then 0 = g′(c), so g is differentiable at c.

Proof. Conversely, we prove if g is differentiable at c, then f ′(c) = 0.
Suppose g is differentiable at c.
Then there is a real number L such that g′(c) = L.
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Hence, L = g′(c) = limx→c
g(x)−g(c)
x−c = limx→c

|f(x)|−|f(c)|
x−c = limx→c

|f(x)|
x−c .

Either L > 0 or L = 0 or L < 0.

Suppose L > 0.

Since limx→c
|f(x)|
x−c = L, then there is a δ > 0 such that for all x 6= c, if

0 < |x− c| < δ, then | |f(x)|x−c − L| < L.

Let x = c− δ
2 .

Then 0 < |x− c| = |−δ2 | =
δ
2 < δ, so 0 < |x− c| < δ.

Hence, | |f(x)|x−c − L| < L.

Thus, −L < |f(x)|
x−c − L < L, so −L < |f(x)|

x−c − L.

Consequently, 0 < |f(x)|
x−c .

Since x− c = −δ
2 < 0, then x− c < 0, so 0 > |f(x)|.

Therefore, |f(x)| < 0, a contradiction since the absolute value of a real
number is non-negative.

Hence, L cannot be positive.

Suppose L < 0.

Since limx→c
|f(x)|
x−c = L, then there is a δ > 0 such that for all x 6= c, if

0 < |x− c| < δ, then | |f(x)|x−c − L| < L.

Let x = c+ δ
2 .

Then 0 < |x− c| = | δ2 | =
δ
2 < δ, so 0 < |x− c| < δ.

Hence, | |f(x)|x−c − L| < L.

Thus, −L < |f(x)|
x−c − L < L, so |f(x)|x−c − L < L.

Consequently, |f(x)|x−c < 2L.

Since L < 0, then 2L < 0, so |f(x)|x−c < 2L < 0.

Hence, |f(x)|x−c < 0.

Since x− c = δ
2 > 0, then x− c > 0, so |f(x)| < 0.

Therefore, |f(x)| < 0, a contradiction since the absolute value of a real
number is non-negative.

Hence, L cannot be negative.

Since L is a real number and L is neither positive nor negative, then L must
be zero.

Therefore, 0 = L = limx→c
|f(x)|
x−c .

We next prove limx→c
f(x)
x−c = 0 using the ε− δ definition of a limit.

Let ε > 0 be given.

Since limx→c
|f(x)|
x−c = 0, then there is a δ > 0 such that for all real numbers

x 6= c, if 0 < |x− c| < δ, then | |f(x)|x−c | < ε.
Let x 6= c be an arbitrary real number such that 0 < |x− c| < δ.
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Then | |f(x)|x−c | < ε.

Since | f(x)x−c | =
|f(x)|
|x−c| = ||f(x)||

|x−c| = | |f(x)|x−c | < ε, then limx→c
f(x)
x−c = 0.

Therefore, 0 = limx→c
f(x)
x−c = limx→c

f(x)−f(c)
x−c = f ′(c), so f ′(c) = 0, as

desired.

Exercise 10. Let f : R→ R be a function defined by f(x) = 1
1+x2 .

Then f has an absolute maximum.

Proof. Let x ∈ R be arbitrary.
Then x2 ≥ 0, so 1 + x2 ≥ 1.
Hence, 1 ≥ 1

1+x2 = f(x), so 1 ≥ f(x) for all x ∈ R.
Since f(0) = 1 ≥ f(x), then f(0) = 1 is an absolute maximum of f on R.

Mean Value Theorem

Exercise 11. Let f : [−1, 1] → R be the function defined by f(x) = 2x3 +
3x2 − 36x+ 5.

Then f is one to one.

Proof. Let x ∈ [−1, 1].
Then −1 ≤ x ≤ 1 and f ′(x) = 6x2+6x−36 = 6(x2+x−6) = 6(x+3)(x−2).
Since −1 ≤ x ≤ 1, then −1 ≤ x and x ≤ 1.
Since x ≥ −1, then x+ 3 ≥ 2 > 0, so x+ 3 > 0.
Since x ≤ 1, then x− 2 ≤ −1 < 0, so x− 2 < 0.
Since x+ 3 > 0 and x− 2 < 0, then f ′(x) = 6(x+ 3)(x− 2) < 0.
Hence, f ′(x) < 0 for all x ∈ [−1, 1], so f is strictly decreasing on [−1, 1].
Thus, f is monotonic, so f is one to one on the interval [−1, 1].

Exercise 12. Let A,B,C ∈ R be fixed with A 6= 0.
Let a, b ∈ R with a < b.
Let p : [a, b]→ R be the function defined by p(x) = Ax2 +Bx+ C.
The value of c guaranteed by MVT is the midpoint of the interval [a, b].

Proof. Since p is a polynomial function, then p is continuous, so p is continuous
on [a, b].

Let x ∈ [a, b].
Then p(x) = Ax2 +Bx+ C, so p′(x) = 2Ax+B for all x ∈ [a, b].
Thus, p is differentiable, so p is differentiable on [a, b].
Since (a, b) ⊂ [a, b], then p is differentiable on (a, b).
Since p is continuous on the closed interval [a, b] and differentiable on the

open interval (a, b), then by MVT, there exists c ∈ (a, b) such that p′(c) =
p(b)−p(a)
b−a .
Since c ∈ (a, b) and (a, b) ⊂ [a, b], then c ∈ [a, b].
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Thus,

2Ac+B = p′(c)

=
p(b)− p(a)

b− a

=
(Ab2 +Bb+ C)− (Aa2 +Ba+ C)

b− a

=
Ab2 +Bb−Aa2 −Ba

b− a

=
Ab2 −Aa2 +Bb−Ba

b− a

=
A(b2 − a2) +B(b− a)

b− a

=
A(b− a)(b+ a) +B(b− a)

b− a
= A(b+ a) +B

= A(a+ b) +B.

Hence, 2Ac+B = A(a+ b) +B, so 2Ac = A(a+ b).

Since A 6= 0, then c = A(a+b)
2A = a+b

2 , so c is the average of a and b.
Therefore, c is the midpoint of the interval [a, b].

Exercise 13. Let a and b be fixed real numbers with a > 0 and let n be a fixed
positive integer.

Let p : R→ R be the function defined by p(x) = x2n+1 + ax+ b.
Then p cannot have two real roots.

Proof. Suppose for the sake of contradiction p has two real roots.
Then there exist real numbers c1 and c2 with c1 6= c2 and p(c1) = 0 = p(c2).
Since p is a polynomial function, then p is continuous and differentiable and

p′(x) = (2n+ 1)x2n + a.
Since p is continuous, then p is continuous on the closed interval [c1, c2].
Since p is differentiable, then p is differentiable on the open interval (c1, c2).
Since p(c1) = p(c2), then by Rolle’s theorem, there exists c ∈ (c1, c2) such

that p′(c) = 0.
Either c = 0 or c 6= 0.
Suppose c = 0.
Then 0 = p′(c) = p′(0) = (2n+ 1)02n + a = 0 + a = a, so 0 = a.
But, a > 0, so c 6= 0.
Thus, 0 = p′(c) = (2n+ 1)c2n + a, so a = −(2n+ 1)c2n = −(2n+ 1)(cn)2.
Since n is a positive integer, then n > 0.
Hence, 2n > 0, so 2n+ 1 > 1 > 0.
Thus, 2n+ 1 > 0.
Since c 6= 0 and n > 0, then cn 6= 0, so (cn)2 > 0.
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Since −1 < 0 and 2n + 1 > 0 and (cn)2 > 0, then the product −(2n +
1)(cn)2 < 0, so a < 0.

But, this contradicts the hypothesis a > 0.
Therefore, p cannot have two real roots.

Exercise 14. Let p be a nonconstant polynomial function of x.
Between any two consecutive zeros of p′ there is at most one zero of p.

Proof. Let x1 and x2 be arbitrary consecutive zeros of p′.
Then x1 6= x2 and p′(x1) = 0 = p′(x2) and there are no zeros of p′ between

x1 and x2.
Since x1 6= x2, then either x1 < x2 or x1 > x2.
Without loss of generality, assume x1 < x2.
To prove there is at most one zero of p between x1 and x2, we prove by

contradiction.
Suppose there is more than one zero of p between x1 and x2.
Then there exist at least two zeros of p between x1 and x2.
Let c1 and c2 be two zeros of p between x1 and x2.
Then c1 6= c2 and p(c1) = 0 = p(c2) and x1 < c1 < x2 and x1 < c2 < x2.
Since c1 6= c2, then either c1 < c2 or c1 > c2.
Without loss of generality, assume c1 < c2.
Then x1 < c1 < c2 < x2.
Since p is a polynomial function of x, then p is continuous and differentiable.
Since p is continuous, then p is continuous on the closed interval [c1, c2].
Since p is differentiable, then p is differentiable on the open interval (c1, c2).
Thus, by Rolle’s theorem, there exists c ∈ (c1, c2) such that p′(c) = 0.
Since c ∈ (c1, c2), then c1 < c < c2.
Hence, x1 < c1 < c < c2 < x2, so x1 < c < x2.
Therefore, c is between x1 and x2 and p′(c) = 0, so there is a zero of p′

between x1 and x2.
This contradicts the fact that x1 and x2 are consecutive zeros of p′.
Therefore, there is not more than one zero of p between x1 and x2, so there

is at most one zero of p between x1 and x2.

Exercise 15. The equation cosx = x3 + x2 + 4x has exactly one root on the
interval [0, π2 ].

Proof. Let f : R→ R be defined by f(x) = cosx.
Let g : R→ R be defined by g(x) = x3 + x2 + 4x.
Then f and g are continuous.
Let h = f − g.
Then h is a function defined by h(x) = f(x)− g(x) = cosx− (x3 + x2 + 4x)

for all x ∈ [0, π2 ].
Since f is continuous and g is continuous and the difference of continuous

functions is continuous, then h is continuous, so h is continuous on [0, π2 ].
Since h(0) = cos 0 − (03 + 02 + 4 · 0) = 1 > 0 > 0 − ((π2 )3 + (π2 )2 + 2π) =

cos(π2 )− ((π2 )3 + (π2 )2 + 4 · π2 ) = h(π2 ), then h(0) > 0 > h(π2 ).
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Since h is continuous on the closed interval [0, π2 ] and h(0) > 0 > h(π2 ), then
by IVT, there exists c ∈ (0, π2 ) such that h(c) = 0.

Thus, there is at least one root of the equation on the open interval (0, π2 ).
Since h(0) > 0, then 0 is not a root of the equation.
Since h(π2 ) < 0, then π

2 is not a root of the equation.

Suppose c1 and c2 are distinct roots of the equation.
Then c1 ∈ (0, π2 ) and h(c1) = 0 and c2 ∈ (0, π2 ) and h(c2) = 0 and c1 6= c2.
Since h(c1) = 0 = h(c2), then h(c1) = h(c2).
Since c1 6= c2, then either c1 < c2 or c1 > c2.
Without loss of generality, assume c1 < c2.
Observe that h′(x) = f ′(x)− g′(x) = − sin(x)− (3x2 + 2x+ 4) = − sin(x)−

3x2 − 2x− 4 = (−1)(sinx+ 3x2 + 2x+ 4) for all x ∈ (0, π2 ).

Let x ∈ (0, π2 ).
Then 0 < x < π

2 , so 0 < x.
Hence, 0 < x2, so 0 < 3x2.
Since 0 < x, then 0 < 2x, so 0 < 3x2 + 2x.
Thus, 4 < 3x2 + 2x+ 4.
Since sinx > 0 for all x ∈ (0, π2 ), then sinx > 0.
Since sinx > 0 and 3x2 + 2x+ 4 > 4, then sinx+ 3x2 + 2x+ 4 > 4 > 0, so

sinx+ 3x2 + 2x+ 4 > 0.
Hence, h′(x) = (−1)(sinx+ 3x2 + 2x+ 4) < 0, so h′(x) < 0.
Thus, h′(x) < 0 for all x ∈ (0, π2 ).
Therefore, h is strictly decreasing.
Since c1 < c2, then h(c1) > h(c2).
But, this contradicts the fact that h(c1) = h(c2).
Therefore, c1 and c2 are not distinct roots of the equation, so there are no

distinct roots of the equation.
Hence, there is at most one root of the equation.

Since there is at least one root of the equation and there is at most one root
of the equation, then there is exactly one root of the equation.

Exercise 16. Let b ∈ R be a fixed constant.
The equation x3 − 3x+ b = 0 has at most one root in the interval [−1, 1].

Proof. Let f : [−1, 1]→ R be a function defined by f(x) = x3 − 3x+ b.
To prove there is at most one root of the equation on the interval, we must

prove there is at most one zero of f in the interval [−1, 1].
Let c1 and c2 be real zeros of f in the interval [−1, 1].
Then c1, c2 ∈ [−1, 1] and f(c1) = 0 = f(c2).
We must prove c1 = c2.
Suppose for the sake of contradiction c1 6= c2.
Then either c1 < c2 or c1 > c2.
Without loss of generality, assume c1 < c2.
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Since c1, c2 ∈ [−1, 1], then −1 ≤ c1 ≤ 1 and −1 ≤ c2 ≤ 1.
Thus, −1 ≤ c1 < c2 ≤ 1, so [c1, c2] ⊂ [−1, 1] and (c1, c2) ⊂ [−1, 1].
Since f is a polynomial function, then f is differentiable and continuous.
Since f is continuous, then f is continuous on [−1, 1].
Since [c1, c2] ⊂ [−1, 1], then f is continuous on [c1, c2].
Since f is differentiable, then f is differentiable on [−1, 1].
Since (c1, c2) ⊂ [−1, 1], then f is differentiable on (c1, c2).
Since f is continuous on the closed interval [c1, c2] and differentiable on the

open interval (c1, c2) and f(c1) = f(c2), then by Rolle’s theorem, there exists
c ∈ (c1, c2) such that f ′(c) = 0.

If x ∈ [−1, 1], then f(x) = x3 − 3x+ b, so f ′(x) = 3x2 − 3.
Thus, f ′(x) = 3x2 − 3 for all x ∈ [−1, 1].
Since c ∈ (c1, c2) and (c1, c2) ⊂ [−1, 1], then c ∈ [−1, 1].
Hence, f ′(c) = 3c2 − 3.
Since 3c2 − 3 = f ′(c) = 0, then 3c2 − 3 = 0, so 3c2 = 3.
Thus, c2 = 1, so either c = 1 or c = −1.
Since c ∈ (c1, c2), then c1 < c < c2.
Since −1 ≤ c1 < c2 ≤ 1 and c1 < c < c2, then −1 ≤ c1 < c < c2 ≤ 1, so

−1 < c < 1.
Hence, c 6= −1 and c 6= 1.
But, this contradicts the fact that either c = 1 or c = −1.
Therefore, c1 = c2, as desired.

Exercise 17. Let f : [0, 2]→ R be a differentiable function such that f(0) = 0
and f(1) = 1 = f(2).

Then
1. There is c1 ∈ (1, 2) such that f ′(c1) = 0.
2. There is c2 ∈ (0, 1) such that f ′(c2) = 1.
3. There is c3 ∈ (0, 2) such that f ′(c3) = 1

3 .

Proof. We prove 1.
Since f is differentiable, then f is differentiable on [0, 2].
Since f is differentiable on [0, 2] and [1, 2] ⊂ [0, 2], then f is differentiable on

[1, 2], so f is continuous on [1, 2].
Since f is differentiable on [0, 2] and (1, 2) ⊂ [0, 2], then f is differentiable

on (1, 2).
Since f(1) = 1 = f(2), then f(1) = f(2).
Since f is a function continuous on the closed interval [1, 2] and differentiable

on the open interval (1, 2) and f(1) = f(2), then by Rolle’s theorem, there exists
c1 ∈ (1, 2) such that f ′(c1) = 0.

Proof. We prove 2.
Since f is differentiable, then f is differentiable on [0, 2].
Since f is differentiable on [0, 2] and [0, 1] ⊂ [0, 2], then f is differentiable on

[0, 1] so f is continuous on [0, 1].
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Since f is differentiable on [0, 1] and (0, 1) ⊂ [0, 1], then f is differentiable
on (0, 1).

Since f is a function continuous on the closed interval [0, 1] and differentiable
on the open interval (0, 1), then by MVT, there exists c2 ∈ (0, 1) such that

f ′(c2) = f(1)−f(0)
1−0 = 1−0

1−0 = 1.

Proof. We prove 3.
Observe that there exists c1 ∈ (1, 2) such that f ′(c1) = 0 and there exists

c2 ∈ (0, 1) such that f ′(c2) = 1.
Since c2 ∈ (0, 1) and c1 ∈ (1, 2), then 0 < c2 < 1 and 1 < c1 < 2.
Hence, 0 < c2 < 1 < c1 < 2, so c2 < c1 and [c2, c1] ⊂ [0, 2] and (c2, c1) ⊂

(0, 2).
Since f is differentiable on [0, 2] and [c2, c1] ⊂ [0, 2], then f is differentiable

on [c2, c1].
Since c2 < c1 and f is differentiable on the closed interval [c2, c1] and f ′(c2) =

1 > 1
3 > 0 = f ′(c1), then by the intermediate value property of derivatives, there

exists c ∈ (c2, c1) such that f ′(c) = 1
3 .

Since c ∈ (c2, c1) and (c2, c1) ⊂ (0, 2), then c ∈ (0, 2).
Therefore, there exists c ∈ (0, 2) such that f ′(c) = 1

3 , as desired.

Exercise 18. Let n ∈ N and 0 < a < b.
Then nan−1(b− a) ≤ bn − an ≤ nbn−1(b− a).

Proof. Let f : [a, b]→ R be a function defined by f(x) = xn.
Let x ∈ [a, b].
Then f(x) = xn, so f ′(x) = nxn−1.
Hence, f ′(x) = nxn−1 for all x ∈ R, so f is differentiable.
Since f is a polynomial function in x, then f is continuous, so f is continuous

on [a, b].
Since f is differentiable and (a, b) ⊂ [a, b], then f is differentiable on (a, b).
Since f is continuous on the closed interval [a, b] and differentiable on the

open interval (a, b), then by MVT, there exists c ∈ (a, b) such that f ′(c) =
f(b)−f(a)

b−a .

Since bn−an
b−a = f(b)−f(a)

b−a = f ′(c) = ncn−1, then bn−an
b−a = ncn−1.

Since c ∈ (a, b), then a < c < b, so 0 < a < c < b.
Since n ∈ N, then n ≥ 1, so n− 1 ≥ 0.
Thus, an−1 ≤ cn−1 ≤ bn−1.
Since n ≥ 1 > 0, then n > 0, so nan−1 ≤ ncn−1 ≤ nbn−1.
Hence, nan−1 ≤ bn−an

b−a ≤ nb
n−1.

Since a < b, then b − a > 0, so nan−1(b − a) ≤ bn − an ≤ nbn−1(b − a), as
desired.

Exercise 19. For all real x ≥ 0, −x ≤ sinx ≤ x.

Proof. Let x ≥ 0 be given.
Then either x > 0 or x = 0.
We consider these cases separately.
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Case 1: Suppose x = 0.
Then −x = −0 = 0 = sin 0 = sinx = 0 = x, so −x = sinx = x.
Case 2: Suppose x > 0.
Let f : R→ R be the function f(x) = sinx.
Since f is continuous and [0, x] ⊂ R, then f is continuous on [0, x].
Since f ′(x) = cosx, then f is differentiable on R.
Since (0, x) ⊂ R, then f is differentiable on (0, x).
Since f is continuous on the closed interval [0, x] and differentiable on the

open interval (0, x), then by MVT, there exists c ∈ (0, x) such that f ′(c) =
f(x)−f(0)

x−0 .
Since c ∈ (0, x), then f ′(c) = cos c.
Since c ∈ (0, x) and (0, x) ⊂ R, then c ∈ R.
Since −1 ≤ cosx ≤ 1 for all x ∈ R and c ∈ R, then −1 ≤ cos c ≤ 1.

Hence, −1 ≤ cos c = f ′(c) = f(x)−f(0)
x−0 ≤ 1.

Thus, −1 ≤ sin x
x ≤ 1.

Since x > 0, then −x ≤ sinx ≤ x.

Exercise 20. The inequality | sinx− sin y| ≤ |x− y| is true for all real x and y.

Proof. Let x, y ∈ R be arbitrary.
Then either x = y or x 6= y.
We consider these cases separately.
Case 1: Suppose x = y.
Then | sinx−sin y| = | sinx−sinx| = 0 = |0−0| = |x−y|, so | sinx−sin y| =

|x− y|.
Case 2: Suppose x 6= y.
Then either x < y or x > y.
Without loss of generality, assume x < y.
Let f : R→ R be the function defined by f(x) = sinx.
Since the sin function is continuous on R and [x, y] ⊂ R, then f is continuous

on the interval [x, y].
Since f ′(x) = cosx for all x ∈ R, then f is differentiable on R.
Since (x, y) ⊂ R, then f is differentiable on (x, y).
Since f is continuous on the closed interval [x, y] and differentiable on the

open interval (x, y), then by MVT, there exists c ∈ (x, y) such that f ′(c) =
f(y)−f(x)

y−x .

Since | cosx| ≤ 1 for all x ∈ R, then we have 1 ≥ | cos c| = |f ′(c)| =

| f(y)−f(x)y−x | = | sin y−sin xy−x | = | sin y−sin x|
|y−x| = | sin x−sin y|

|x−y| .

Thus, 1 ≥ | sin x−sin y||x−y| .

Since x 6= y, then x− y 6= 0, so |x− y| > 0.
Therefore, |x− y| ≥ | sinx− sin y|, so | sinx− sin y| ≤ |x− y|.

Exercise 21. For all real x, ex ≥ 1 + x.
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Proof. Let x ∈ R be arbitrary.
Then either x > 0 or x = 0 or x < 0.
We consider these cases separately.
Case 1: Suppose x = 0.
Then ex = e0 = 1 = 1 + 0 = 1 + x, so ex = 1 + x.
Case 2: Suppose x > 0.
Let f : R→ R be the function f(x) = ex.
Since f is continuous and [0, x] ⊂ R, then f is continuous on [0, x].
Since f ′(x) = ex, then f is differentiable on R.
Since (0, x) ⊂ R, then f is differentiable on (0, x).
Since f is continuous on the closed interval [0, x] and differentiable on the

open interval (0, x), then by MVT, there exists c ∈ (0, x) such that f ′(c) =
f(x)−f(0)

x−0 .
Since c ∈ (0, x), then 0 < c < x, so 0 < c.
Since f ′(x) > 1 for all x > 0 and c > 0, then f ′(c) > 1.

Thus, 1 < f ′(c) = f(x)−f(0)
x−0 = ex−1

x , so 1 < ex−1
x .

Since x > 0, then x < ex − 1, so 1 + x < ex.
Hence, ex > 1 + x.
Case 3: Suppose x < 0.
Let f : R→ R be the function f(x) = ex.
Since f is continuous and [x, 0] ⊂ R, then f is continuous on [x, 0].
Since f ′(x) = ex, then f is differentiable on R.
Since (x, 0) ⊂ R, then f is differentiable on (x, 0).
Since f is continuous on the closed interval [x, 0] and differentiable on the

open interval (x, 0), then by MVT, there exists c ∈ (x, 0) such that f ′(c) =
f(0)−f(x)

0−x .
Since c ∈ (x, 0), then x < c < 0, so c < 0.
Since f ′(x) < 1 for all x < 0 and c < 0, then f ′(c) < 1.

Thus, 1 > f ′(c) = f(0)−f(x)
0−x = 1−ex

−x = ex−1
x , so 1 > ex−1

x .
Since x < 0, then x < ex − 1, so 1 + x < ex.
Hence, ex > 1 + x.
Therefore, in all cases, either ex > 1 + x or ex = 1 + x, so ex ≥ 1 + x.

Exercise 22. Bernoulli’s Inequality
Let p > 1.
Then (1 + x)p > 1 + px for all real x > 0.

Proof. Let x > 0 be given.
We must prove (1 + x)p > 1 + px.
Let f : R→ R be the function f(x) = (1 + x)p.
Since the power function is continuous and the linear function 1 + x is con-

tinuous, then the composition f is continuous.
Since f is continuous and [0, x] ⊂ R, then f is continuous on [0, x].
Since f ′(x) = p(1 + x)p−1, then f is differentiable on R.
Since (0, x) ⊂ R, then f is differentiable on (0, x).
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Since f is continuous on the closed interval [0, x] and differentiable on the
open interval (0, x), then by MVT, there exists c ∈ (0, x) such that f ′(c) =
f(x)−f(0)

x−0 .

Since c ∈ (0, x), then 0 < c < x and f ′(c) = p(1 + c)p−1.

Hence, p(1+c)p−1 = f ′(c) = f(x)−f(0)
x−0 = (1+x)p−1

x , so p(1+c)p−1 = (1+x)p−1
x .

Since x > 0, then px(1 + c)p−1 = (1 +x)p−1, so 1 +px(1 + c)p−1 = (1 +x)p.
Since c ∈ (0, x), then 0 < c < x, so 0 < c.
Hence, c > 0, so 1 + c > 1.
Since p > 1, then p− 1 > 0, so (1 + c)p−1 > 1.
Since p > 0 and x > 0, then px > 0, so px(1 + c)p−1 > px.
Therefore, (1 + x)p = 1 + px(1 + c)p−1 > 1 + px, so (1 + x)p > 1 + px, as

desired.

Exercise 23. For all real x > 0,
√

1 + x < 1 + x
2 .

Proof. Let x > 0 be given.

Then x2 > 0, so x2

4 > 0.
Since 0 < 1, then x < 1 + x.
Since 0 < x and x < 1 + x, then 0 < 1 + x.

Thus, 0 < 1 + x < 1 + x+ x2

4 = (1 + x
2 )2, so 0 < 1 + x < (1 + x

2 )2.
Since −2 < 0 < x, then −2 < x, so −1 < x

2 .
Hence, 0 < 1 + x

2 = |1 + x
2 |.

Therefore, 0 <
√

1 + x <
√

(1 + x
2 )2 = |1+x

2 | = 1+x
2 , so

√
1 + x < 1+x

2 .

Proof. Alternate proof using MVT.
To prove

√
1 + x < 1 + x

2 for all x > 0, let h > 0.

We must prove
√

1 + h < 1 + h
2 .

Let f : [0, h]→ R be a function defined by f(x) =
√

1 + x.
Since the square root function is continuous and the linear function 1 + x is

continuous, then the composition f is continuous, so f is continuous on [0, h].
Observe that f ′(x) = 1

2
√
1+x

for all x ≥ 0.

Thus, f is differentiable on [0,∞).
Since (0, h) ⊂ [0,∞), then f is differentiable on (0, h).
Since f is continuous on the closed interval [0, h] and differentiable on the

open interval (0, h), then by MVT, there exists c ∈ (0, h) such that f ′(c) =
f(h)−f(0)

h−0 .

Since c ∈ (0, h), then f ′(c) = 1
2
√
1+c

.

Thus, 1
2
√
1+c

= f ′(c) = f(h)−f(0)
h−0 = f(h)−1

h , so 1
2
√
1+c

= f(h)−1
h .

Hence, f(h) = 1 + h
2
√
1+c

.

Since c ∈ (0, h), then 0 < c < h, so 0 < c.
Thus, 1 < 1 + c, so 1 <

√
1 + c.

Consequently, 1√
1+c

< 1.

Since h
2 > 0, then h

2
√
1+c

< h
2 .
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Therefore,
√

1 + h = f(h) = 1 + h
2
√
1+c

< 1 + h
2 , so

√
1 + h < 1 + h

2 , as

desired.

Exercise 24. Let 0 < p < 1.
Then (1 + x)p < 1 + px for all real x > 0.

Proof. To prove (1 + x)p < 1 + px for all real x > 0, let h > 0.
We must prove (1 + h)p < 1 + ph.
Let f : [0, h]→ R be a function defined by f(x) = (1 + x)p.
Since the power function is continuous and the linear function 1 + x is con-

tinuous, then the composition f is continuous, so f is continuous on [0, h].
Observe that f ′(x) = p(1 + x)p−1 for all x ≥ 0.
Thus, f is differentiable on [0,∞).
Since (0, h) ⊂ [0,∞), then f is differentiable on (0, h).
Since f is continuous on the closed interval [0, h] and differentiable on the

open interval (0, h), then by MVT, there exists c ∈ (0, h) such that f ′(c) =
f(h)−f(0)

h−0 .

Since c ∈ (0, h), then f ′(c) = p(1 + c)p−1.

Thus, p(1 + c)p−1 = f ′(c) = f(h)−f(0)
h−0 = f(h)−1

h , so p(1 + c)p−1 = f(h)−1
h .

Hence, f(h) = 1 + ph(1 + c)p−1.
Since 0 < p < 1, then 0 < p and p < 1, so 1− p > 0.
Thus, f(h) = 1 + ph

(1+c)1−p .

Since c ∈ (0, h), then 0 < c < h, so 0 < c.
Thus, 1 < 1 + c, so 1 < (1 + c)1−p.
Consequently, 1

(1+c)1−p < 1.

Since p > 0 and h > 0, then ph > 0, so ph
(1+c)1−p < ph.

Therefore, (1 + h)p = f(h) = 1 + ph
(1+c)1−p < 1 + ph, so (1 + h)p < 1 + ph, as

desired.

Exercise 25. Let f be a real valued function differentiable on an interval I.
If f ′(x) 6= 0 for all x ∈ I, then either f ′(x) > 0 for all x ∈ I or f ′(x) < 0 for

all x ∈ I.

Proof. We prove by contrapositive.
Suppose there exists a ∈ I such that f ′(a) ≤ 0 and there exists b ∈ I such

that f ′(b) ≥ 0.
We must prove there exists c ∈ I such that f ′(c) = 0.
Since f ′(a) ≤ 0, then either f ′(a) < 0 or f ′(a) = 0.
Since f ′(b) ≥ 0, then either f ′(b) > 0 or f ′(b) = 0.
Thus, there are 4 cases.
We consider these cases separately.
Case 1: Suppose f ′(a) = 0 and f ′(b) = 0.
Then there exists a ∈ I such that f ′(a) = 0.
Case 2: Suppose f ′(a) = 0 and f ′(b) > 0.
Then there exists a ∈ I such that f ′(a) = 0.
Case 3: Suppose f ′(a) < 0 and f ′(b) = 0.
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Then there exists b ∈ I such that f ′(b) = 0.
Case 4: Suppose f ′(a) < 0 and f ′(b) > 0.
Since f ′(a) < 0 and 0 < f ′(b), then f ′(a) < 0 < f ′(b), so f ′(a) < f ′(b).
Hence, a 6= b, so either a < b or a > b.
We consider these cases separately.
Case 4a: Suppose a < b.
Since f is differentiable on the closed interval [a, b] and a < b and f ′(a) <

0 < f ′(b), then by the intermediate value property of derivatives, there exists
c ∈ (a, b) such that f ′(c) = 0.

Since c ∈ (a, b) and (a, b) ⊂ I, then c ∈ I.
Thus, there exists c ∈ I such that f ′(c) = 0, as desired.
Case 4b: Suppose a > b.
Since f is differentiable on the closed interval [b, a] and b < a and f ′(b) >

0 > f ′(a), then by the intermediate value property of derivatives, there exists
c ∈ (b, a) such that f ′(c) = 0.

Since c ∈ (b, a) and (b, a) ⊂ I, then c ∈ I.
Thus, there exists c ∈ I such that f ′(c) = 0, as desired.

Exercise 26. Let f : R→ R be a differentiable function.
Let g : R→ R be a differentiable function.
Let f(0) = g(0) and f ′(x) > g′(x) for all x ∈ R.
Then f(x) > g(x) for all x ∈ (0,∞).

Proof. Let h = f − g for all x ∈ R.
Then h is a real valued function defined by h(x) = f(x)− g(x) for all x ∈ R.
Since f is differentiable and g is differentiable, then the difference f − g is

differentiable, so h is differentiable.
Thus, h is differentiable on R, so h′(x) = f ′(x)− g′(x) for all x ∈ R.

Let c ∈ R be arbitrary.
Then f ′(c) > g′(c) and h′(c) = f ′(c)− g′(c).
Hence, h′(c) = f ′(c)− g′(c) > 0, so h′(c) > 0.
Thus, h′(c) > 0 for all c ∈ R, so h′(x) > 0 for all x ∈ R.
Consequently, h is strictly increasing on the interval (−∞,∞) = R.

Let x ∈ (0,∞).
Then 0 < x.
Since h is strictly increasing on R and 0 ∈ R and x ∈ R and 0 < x, then

h(0) < h(x), so h(x) > h(0).
Thus, f(x) − g(x) = h(x) > h(0) = f(0) − g(0) = f(0) − f(0) = 0, so

f(x)− g(x) > 0.
Hence, f(x) > g(x).
Therefore, f(x) > g(x) for all x ∈ (0,∞), as desired.

Exercise 27. Let f : [a, b]→ R be function.
Let c ∈ (a, b).
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If f is differentiable at c and f ′(c) > 0, then there exists x ∈ (c, b) such that
f(x) > f(c).

Proof. Suppose f is differentiable at c and f ′(c) > 0.

Then f ′(c) = limx→c
f(x)−f(c)

x−c > 0.

Let q : [a, b]− {c} → R be a function defined by q(x) = f(x)−f(c)
x−c .

Then f ′(c) = limx→c q(x) > 0, so the limit of q at c exists and is positive.
Hence, by a previous lemma, there exists δ > 0 such that q(x) > 0 for all

x ∈ N ′(c; δ) ∩ [a, b].

Thus, there exists δ > 0 such that f(x)−f(c)
x−c > 0 for all x ∈ N ′(c; δ) ∩ [a, b].

Let K = min{c+ δ, b}.
Then K ≤ c+ δ and K ≤ b and either K = c+ δ or K = b.
Since c ∈ (a, b), then a < c < b, so a < c and c < b.
Let x = c+K

2 .

We prove c < x.
Since δ > 0 = c− c, then c+ δ > c.
Since c < c+ δ and c < b and either K = c+ δ or K = b, then c < K.
Thus, 2c = c+ c < c+K, so 2c < c+K.
Hence, c < c+K

2 = x, so c < x.

We prove x < b.
Since K ≤ b, then c+K ≤ c+ b < b+ b = 2b, so c+K < 2b.
Thus, x = c+K

2 < b, so x < b.

We prove x ∈ [a, b].
Since c < x and x < b, then c < x < b, so x ∈ (c, b).
Since (c, b) ⊂ [a, b], then x ∈ [a, b].

We prove x ∈ N ′(c; δ).
Since c < K and K ≤ c+ δ, then c < K ≤ c+ δ, so 0 < K− c = |K− c| ≤ δ.
Hence, |K − c| ≤ δ.
Observe that
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d(x, c) = |x− c|

= |c+K

2
− c|

= |c+K − 2c

2
|

= |K − c
2
|

=
1

2
|K − c|

≤ δ

2
< δ.

Thus, d(x, c) < δ, so x ∈ N(c; δ).
Since x > c, then x 6= c, so x ∈ N ′(c; δ).

Since x ∈ N ′(c; δ) and x ∈ [a, b], then x ∈ N ′(c; δ) ∩ [a, b].

Hence, f(x)−f(c)
x−c > 0.

Since x > c, then x− c > 0, so f(x)− f(c) > 0.
Thus, f(x) > f(c).
Therefore, there exists x ∈ (c, b) such that f(x) > f(c), as desired.

Exercise 28. Let a, b ∈ R with a < b.
Let f : [a, b] → R be a function continuous on [a, b] and differentiable on

(a, b).
If there is a real number L such that limx→a f

′(x) = L, then f ′(a) = L.

Proof. Suppose there is a real number L such that limx→a f
′(x) = L.

Let ε > 0 be given.
Then there is a δ1 > 0 such that for all x ∈ [a, b], if 0 < |x − a| < δ1, then

|f ′(x)− L| < ε.
Let δ = min{δ1, b− a}.
Then δ ≤ δ1 and δ ≤ b− a.
Since a < b, then b− a > 0.
Since δ1 > 0 and b− a > 0, then δ > 0.
Let x ∈ [a, b] such that 0 < |x− a| < δ.
Since 0 < |x− a| < δ and δ ≤ δ1, then 0 < |x− a| < δ1.
Since x ∈ [a, b] and 0 < |x− a| < δ1, then |f ′(x)− L| < ε.
Since x ∈ [a, b], then a ≤ x ≤ b, so a ≤ x.
Since 0 < |x− a| < δ, then 0 < |x− a| and |x− a| < δ.
Since |x− a| > 0, then x− a 6= 0, so x 6= a.
Since x ≥ a and x 6= a, then x > a.
Since 0 < |x−a| < δ and δ ≤ b−a, then 0 < |x−a| < b−a, so |x−a| < b−a.
Hence, x− a < b− a, so x < b.
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Since a < x and x < b, then a < x < b, so [a, x] ⊂ [a, b] and (a, x) ⊂ (a, b).
Since f is continuous on [a, b] and [a, x] ⊂ [a, b], then f is continuous on

[a, x].
Since f is differentiable on (a, b) and (a, x) ⊂ (a, b), then f is differentiable

on (a, x).
Since f is continuous on [a, x] and differentiable on (a, x), then by MVT,

there is c ∈ (a, x) such that f ′(c) = f(x)−f(a)
x−a .

Since c ∈ (a, x) and (a, x) ⊂ (a, b) ⊂ [a, b], then c ∈ [a, b].
Since c ∈ (a, x), then a < c < x, so a < c.
Since c > a, then c− a > 0, so |c− a| > 0.
Since |x− a| < δ, then x− a < δ, so x < a+ δ.
Since a < c < x and x < a+ δ, then a < c < x < a+ δ, so c < a+ δ.
Hence, c− a < δ.
Since 0 < c− a = |c− a| < δ, then 0 < |c− a| < δ.
Since 0 < |c− a| < δ and δ ≤ δ1, then 0 < |c− a| < δ1.

Since c ∈ [a, b] and 0 < |c−a| < δ1, then |f ′(c)−L| < ε, so | f(x)−f(a)x−a −L| < ε.
Thus, for every ε > 0, there is δ > 0 such that for all x ∈ [a, b], if 0 <

|x− a| < δ, then | f(x)−f(a)x−a − L| < ε, so limx→a
f(x)−f(a)

x−a = L.

Therefore, there is a real number L such that L = limx→a
f(x)−f(a)

x−a = f ′(a),
so f ′(a) = L, as desired.

Exercise 29. Let f be a real valued function of a real variable.
Let I be an interval of at least two elements such that I ⊂ domf .
Let f be differentiable on I. Then
1. If f is strictly increasing on I, then f ′(x) ≥ 0 for all x ∈ I.
2. If f is strictly decreasing on I, then f ′(x) ≤ 0 for all x ∈ I.

Proof. We prove 1.
Suppose f is strictly increasing on I.
To prove f ′(x) ≥ 0 for all x ∈ I, let c ∈ I be arbitrary.
We must prove f ′(c) ≥ 0.

Let q : I − {c} → R be a function defined by q(x) = f(x)−f(c)
x−c for all

x ∈ I − {c}.
Let x ∈ I − {c}.
Then x ∈ I and x 6= c and q(x) = f(x)−f(c)

x−c .
Since x ∈ R and x 6= c, then either x > c or x < c.
We consider these cases separately.
Case 1: Suppose x > c.
Then c < x.
Since f is strictly increasing on I and c ∈ I and x ∈ I, then f(c) < f(x).
Since x > c, then x− c > 0.
Since f(c) < f(x), then f(x)− f(c) > 0.

Thus, q(x) = f(x)−f(c)
x−c > 0, so q(x) > 0.

Case 2: Suppose x < c.
Since f is strictly increasing on I and x ∈ I and c ∈ I, then f(x) < f(c).
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Since x < c, then x− c < 0.
Since f(x) < f(c), then f(x)− f(c) < 0.

Thus, q(x) = f(x)−f(c)
x−c > 0, so q(x) > 0.

Hence, in all cases, q(x) > 0, so q(x) ≥ 0.
Consequently, 0 ≤ q(x), so 0 ≤ q(x) for all x ∈ I − {c}.
Observe that c is an accumulation point of R ∩ I − {c} = I − {c}.
Since a limit preserves a non-strict inequality, then 0 = limx→c 0 ≤ limx→c q(x) =

limx→c
f(x)−f(c)

x−c = f ′(c).
Therefore, 0 ≤ f ′(c), so f ′(c) ≥ 0, as desired.

Proof. We prove 2.
Suppose f is strictly decreasing on I.
To prove f ′(x) ≤ 0 for all x ∈ I, let c ∈ I be arbitrary.
We must prove f ′(c) ≤ 0.

Let q : I − {c} → R be a function defined by q(x) = f(x)−f(c)
x−c for all

x ∈ I − {c}.
Let x ∈ I − {c}.
Then x ∈ I and x 6= c and q(x) = f(x)−f(c)

x−c .
Since x ∈ R and x 6= c, then either x > c or x < c.
We consider these cases separately.
Case 1: Suppose x > c.
Then c < x.
Since f is strictly decreasing on I and c ∈ I and x ∈ I, then f(c) > f(x).
Since x > c, then x− c > 0.
Since f(x) < f(c), then f(x)− f(c) < 0.

Thus, q(x) = f(x)−f(c)
x−c < 0, so q(x) < 0.

Case 2: Suppose x < c.
Since f is strictly decreasing on I and x ∈ I and c ∈ I, then f(x) > f(c).
Since x < c, then x− c < 0.
Since f(x) > f(c), then f(x)− f(c) > 0.

Thus, q(x) = f(x)−f(c)
x−c < 0, so q(x) < 0.

Hence, in all cases, q(x) < 0, so q(x) ≤ 0.
Consequently, q(x) ≤ 0 for all x ∈ I − {c}.
Observe that c is an accumulation point of R ∩ I − {c} = I − {c}.
Since a limit preserves a non-strict inequality, then f ′(c) = limx→c

f(x)−f(c)
x−c =

limx→c q(x) ≤ limx→c 0 = 0.
Therefore, f ′(c) ≤ 0, as desired.
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