Differentiation of real valued functions Notes

Jason Sass

September 16, 2021

Sets of Numbers

$\mathbb{R}=$ set of all real numbers
$\mathbb{R}^{+}=\{x \in \mathbb{R}: x>0\}=(0, \infty)=$ set of all positive real numbers $\mathbb{R}^{*}=\{x \in \mathbb{R}: x \neq 0\}=(-\infty, 0) \cup(0, \infty)=$ set of all nonzero real numbers

Derivative of a real valued function

The derivative of a function represents the instantaneous rate of change of a function.

It represents the slope of the line tangent to the graph of a function at some point on the function.

Definition 1. derivative of a function at a point
Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let $c \in E$ be an accumulation point of E.
Let $q: E-\{c\} \rightarrow \mathbb{R}$ be a function defined by $q(x)=\frac{f(x)-f(c)}{x-c}$.
We say that f is differentiable at c iff $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ exists and we write $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$.

We say that $f^{\prime}(c)$ is the derivative of f at c.
Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let $c \in E$ be an accumulation point of E.
Let $q: E-\{c\} \rightarrow \mathbb{R}$ be a function defined by $q(x)=\frac{f(x)-f(c)}{x-c}$ for all $x \in E-\{c\}$.

We call $\frac{f(x)-f(c)}{x-c}$ the difference quotient.
Since c is an accumulation point of E, then c is an accumulation point of $E-\{c\}$, the domain of q.

For each $x \in E-\{c\}$, we have $x \in E$ and $x \neq c$.

Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Suppose f is differentiable at c.
Then $c \in \operatorname{domf}$ and c is an accumulation point of domf and $f^{\prime}(c)=$ $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ exists and $f^{\prime}(c) \in \mathbb{R}$.

Let $q: E-\{c\} \rightarrow \mathbb{R}$ be a function defined by $q(x)=\frac{f(x)-f(c)}{x-c}$ for all $x \in E-\{c\}$.

For each $x \in E-\{c\}$, we have $x \in E$ and $x \neq c$, so $x \in \operatorname{domf}$ and $x \neq c$.

Definition 2. Alternate definition of derivative of a function

Let E be an open subset of \mathbb{R}.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let $c \in E$.
Since E is open, then c is an interior point of E, so there exists $\delta>0$ such that $N(c ; \delta) \subset E$.

Let $Q:(0, \delta) \rightarrow \mathbb{R}$ be a function defined by $Q(h)=\frac{f(c+h)-f(c)}{h}$.
We say that f is differentiable at c iff $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$ exists and we write $f^{\prime}(c)=\lim _{h \rightarrow 0} Q(h)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$.

We say that $f^{\prime}(c)$ is the derivative of f at c.

Let E be an open subset of \mathbb{R}.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let $c \in E$.
Since E is open and $c \in E$, then c is an interior point of E, so there exists $\delta>0$ such that $N(c ; \delta) \subset E$.

Let $Q:(0, \delta) \rightarrow \mathbb{R}$ be a function defined by $Q(h)=\frac{f(c+h)-f(c)}{h}$.
Suppose f is differentiable at c.
Then $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$.
A function differentiable on a set is differentiable at each point of the set.

Definition 3. function differentiable on a set

A function f is differentiable on a set $E \subset \operatorname{domf}$ iff f is differentiable at c for all $c \in E$.

Definition 4. differentiable function

A function f is differentiable iff f is differentiable on $\operatorname{dom} f$.
Therefore, a function f is differentiable iff f is differentiable at c for all $c \in \operatorname{domf}$.

Let $E \subset \mathbb{R}$.
Let f be a real valued function differentiable on E.
Then f is differentiable at c for each $c \in E$.
Hence, $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ exists and $f^{\prime}(c) \in \mathbb{R}$.

Since c is arbitrary, then $f^{\prime}(c) \in \mathbb{R}$ for each $c \in E$.
Thus, $f^{\prime}: E \rightarrow \mathbb{R}$ is a function defined by $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ for each $c \in E$.

Hence, if f is a real valued function differentiable on E, then f^{\prime} is a function defined on E.

Therefore, the derivative is a function.

Let $E \subset \mathbb{R}$.
Let f be a real valued function differentiable on E.
If $y=f(x)$, we denote the derivative of f at $x \in E$ by $y^{\prime}=f^{\prime}(x)=\frac{d y}{d x}=$ $\frac{d}{d x} f(x)=D_{x} y$.

Equivalently, $f^{\prime}=\frac{d f}{d x}=D f$.
Proposition 5. the derivative of a constant is zero
Let $k \in \mathbb{R}$ be fixed.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=k$.
Then $f^{\prime}(x)=0$ for all $x \in \mathbb{R}$.
Let $k \in \mathbb{R}$.
If $f(x)=k$, then $f^{\prime}(x)=\frac{d}{d x}(k)=0$.
Proposition 6. the derivative of the identity function is 1
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x$.
Then $f^{\prime}(x)=1$ for all $x \in \mathbb{R}$.
If $f(x)=x$, then $f^{\prime}(x)=\frac{d}{d x}(x)=1$.
Example 7. the square function is differentiable
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x^{2}$.
Then $f^{\prime}(x)=2 x$ for all $x \in \mathbb{R}$.
Therefore, $f^{\prime}(x)=\frac{d}{d x}\left(x^{2}\right)=2 x$.
Example 8. the reciprocal function is differentiable for nonzero x
Let $f: \mathbb{R}^{*} \rightarrow \mathbb{R}$ be the function defined by $f(x)=\frac{1}{x}$ for all nonzero real x. Then $f^{\prime}(x)=\frac{-1}{x^{2}}$ for all nonzero real x.
Therefore, $f^{\prime}(x)=\frac{d}{d x}\left(\frac{1}{x}\right)=\frac{-1}{x^{2}}$ if $x \neq 0$.
Example 9. the absolute value function is not differentiable at zero
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=|x|$ for all $x \in \mathbb{R}$.
Then f is not differentiable at 0 .
Example 10. the square root function is differentiable for positive real x

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be the function defined by $f(x)=\sqrt{x}$.
Then $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ for all positive real x and f is not differentiable at 0 .
Therefore, $f^{\prime}(x)=\frac{d}{d x}(\sqrt{x})=\frac{1}{2 \sqrt{x}}$ if $x>0$ and f is not differentiable at 0 .
Lemma 11. $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0$ and $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0$.

Proposition 12. If $f(x)=\sin x$, then $f^{\prime}(x)=\cos x$.
Therefore, $\frac{d}{d x} \sin x=\cos x$.
Proposition 13. If $f(x)=\cos x$, then $f^{\prime}(x)=-\sin x$.
Therefore, $\frac{d}{d x} \cos x=-\sin x$.
Theorem 14. differentiability implies continuity
Let f be a real valued function of a real variable x.
If f is differentiable at c, then f is continuous at c.
Thus, if f is not continuous at c, then f is not differentiable at c. Therefore, if f is discontinuous at c, then f is not differentiable at c.

Corollary 15. Every differentiable function is continuous.

Let f be a real valued function of a real variable x.
If f is differentiable, then f is continuous.
Example 16. not every continuous function is differentiable
The absolute value function is continuous on \mathbb{R}, but it is not differentiable at zero.

Algebraic properties of derivatives

Theorem 17. scalar multiple rule for derivatives
Let f be a real valued function of a real variable x.
If f is differentiable at c, then for every $\lambda \in \mathbb{R}$, the function λf is differen-
tiable at c and $(\lambda f)^{\prime}(c)=\lambda f^{\prime}(c)$.
Let f be a real valued differentiable function of a real variable x.
Let $\lambda \in \mathbb{R}$.
Then the scalar multiple λf is differentiable and $(\lambda f)^{\prime}=\lambda f^{\prime}$.
Equivalently, $D(\lambda f)=\lambda D f$.
Theorem 18. derivative of a sum equals sum of a derivative
Let f and g be real valued functions of a real variable x.
Let c be an accumulation point of $\operatorname{dom} f \cap \operatorname{domg}$.
If f is differentiable at c and g is differentiable at c, then the function $f+g$
is differentiable at c and
$(f+g)^{\prime}(c)=f^{\prime}(c)+g^{\prime}(c)$.
Let f and g be real valued differentiable functions of a real variable x.
Then the sum $f+g$ is differentiable and $(f+g)^{\prime}=f^{\prime}+g^{\prime}$.
Equivalently, $D(f+g)=D f+D g$.
Corollary 19. derivative of a difference equals difference of a derivative

Let f and g be real valued functions of a real variable x.
Let c be an accumulation point of $\operatorname{dom} f \cap \operatorname{domg}$.

If f is differentiable at c and g is differentiable at c, then the function $f-g$ is differentiable at c and
$(f-g)^{\prime}(c)=f^{\prime}(c)-g^{\prime}(c)$.
Let f and g be real valued differentiable functions of a real variable x.
Then the difference $f-g$ is differentiable and $(f-g)^{\prime}=f^{\prime}-g^{\prime}$.
Equivalently, $D(f-g)=D f-D g$.
TODO We need to write up a proposition to cover the derivative of a finite sum of functions. The proof would involve using math induction. We'll write this up later since we don't have time right now.
Theorem 20. product rule for derivatives
Let f and g be real valued functions of a real variable x.
Let c be an accumulation point of $\operatorname{domf} \cap \operatorname{domg}$.
If f is differentiable at c and g is differentiable at c, then the function $f g$ is differentiable at c and
$(f g)^{\prime}(c)=f(c) g^{\prime}(c)+g(c) f^{\prime}(c)$.
Let f and g be real valued differentiable functions of a real variable x.
Then the product $f g$ is differentiable and $(f g)^{\prime}=f g^{\prime}+g f^{\prime}$.
Equivalently, $D(f g)=f D g+g D f$.

Theorem 21. quotient rule for derivatives

Let f and g be real valued functions of a real variable x.
Let c be an accumulation point of $\operatorname{dom} f \cap d o m g$.
If f is differentiable at c and g is differentiable at c and $g(c) \neq 0$, then the function $\frac{f}{g}$ is differentiable at c and
$\left(\frac{f}{g}\right)^{\prime}(c)=\frac{g(c) f^{\prime}(c)-f(c) g^{\prime}(c)}{(g(c))^{2}}$.
Let f and g be real valued differentiable functions of a real variable x such that $g(x) \neq 0$ for all $x \in \operatorname{dom} f \cap \operatorname{domg}$.

Then the quotient $\frac{f}{g}$ is differentiable and $\left(\frac{f}{g}\right)^{\prime}=\frac{g f^{\prime}-f g^{\prime}}{g^{2}}$.
Equivalently, $D\left(\frac{f}{g}\right)=\frac{g D f-f D g}{g^{2}}$.
Corollary 22. power rule for derivatives
Let $n \in \mathbb{Z}$ be fixed.
Let $f: \mathbb{R}^{*} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x^{n}$.
Then $f^{\prime}(x)=n x^{n-1}$.
Let $n \in \mathbb{Z}$ be fixed.
Let $f: \mathbb{R}^{*} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x^{n}$.
Then $f^{\prime}(x)=n x^{n-1}$ for all $x \in \mathbb{R}^{*}$.
Therefore, $f^{\prime}(x)=\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$.
Proposition 23. derivatives of trig functions

1. $\frac{d}{d x}(\tan x)=\sec ^{2} x$.
2. $\frac{d}{d x}(\cot x)=-\csc ^{2} x$.
3. $\frac{d}{d x}(\sec x)=\sec x \tan x$.
4. $\frac{d}{d x}(\csc x)=-\csc x \cot x$.

Theorem 24. chain rule for derivatives

Let f and g be real valued functions such that rngf \subset domg.
If f is differentiable at c and g is differentiable at $f(c)$, then the function $g \circ f$ is differentiable at c and
$(g \circ f)^{\prime}(c)=g^{\prime}(f(c)) \cdot f^{\prime}(c)$.
Let f and g be real valued functions such that $r n g f \subset d o m g$.
If f is differentiable at x and g is differentiable at $f(x)$, then the function $g \circ f$ is differentiable at x and
$(g \circ f)^{\prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x)$.
Let $y=g(u)$ be a differentiable function of u and let $u=f(x)$ be a differentiable function of x such that rngf \subset domg.

Then $y=g(u)=g(f(x))=(g \circ f)(x)$ is a differentiable function of x.
Since $y=g(u)$ is a differentiable function of u, then $\frac{d y}{d u}=g^{\prime}(u)$.
Since $u=f(x)$ is a differentiable function of x, then $\frac{d u}{d x}=f^{\prime}(x)$.
Hence, $\frac{d y}{d x}=\frac{d}{d x}(g \circ f)(x)=(g \circ f)^{\prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x)=g^{\prime}(u) \cdot f^{\prime}(x)=$ $\frac{d y}{d u} \cdot \frac{d u}{d x}$.

Therefore, $\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$.

Mean Value Theorem

Lemma 25. Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let $c \in E$.

1. If $f(c)$ is a relative maximum and f is differentiable at c, then $f^{\prime}(c)=0$.
2. If $f(c)$ is a relative minimum and f is differentiable at c, then $f^{\prime}(c)=0$.

Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Suppose $f(c)$ is a relative maximum.
Either f is not differentiable at c or f is differentiable at c.
If f is differentiable at c, then $f^{\prime}(c)=0$.
Thus, either f is not differentiable at c or $f^{\prime}(c)=0$.
Therefore, if $f(c)$ is a relative maximum, then either f is not differentiable at c or $f^{\prime}(c)=0$.

Suppose $f(c)$ is a relative minimum.
Either f is not differentiable at c or f is differentiable at c.
If f is differentiable at c, then $f^{\prime}(c)=0$.
Thus, either f is not differentiable at c or $f^{\prime}(c)=0$.
Therefore, if $f(c)$ is a relative minimum, then either f is not differentiable at c or $f^{\prime}(c)=0$.

Therefore, if $f(c)$ is a relative extremum, then either f is not differentiable at c or $f^{\prime}(c)=0$.

Let $a, b \in \mathbb{R}$ with $a<b$.
Let f be a real valued function continuous on $[a, b]$.
Then by EVT, f has a maximum on $[a, b]$.
Let $f(c)$ be a maximum of f on $[a, b]$.
Then there exists $c \in[a, b]$ such that $f(c) \geq f(x)$ for all $x \in[a, b]$.
Either c is an endpoint of $[a, b]$ or not.
If c is an endpoint of $[a, b]$, then either $c=a$ or $c=b$, so either $f(a)$ or $f(b)$ is a maximum of f.

If c is not an endpoint of $[a, b]$, then $c \neq a$ and $c \neq b$.
Since $c \in[a, b]$ and $c \neq a$ and $c \neq b$, then $c \in(a, b)$.
Since the open interval (a, b) is an open set, then c is an interior point of (a, b).

Hence, there exists $\delta>0$ such that $N(c ; \delta) \subset(a, b)$.
Let $x \in N(c ; \delta)$.
Since $N(c ; \delta) \subset(a, b)$ and $(a, b) \subset[a, b]$, then $x \in[a, b]$ and $N(c ; \delta) \subset[a, b]$.
Since $x \in[a, b]$, then $f(c) \geq f(x)$, so $f(c) \geq f(x)$ for all $x \in N(c ; \delta)$.
Since there exists $\delta>0$ such that $N(c ; \delta) \subset[a, b]$ and $f(c) \geq f(x)$ for all $x \in N(c ; \delta)$, then $f(c)$ is a relative maximum.

Thus, either f is not differentiable at c or $f^{\prime}(c)=0$.

Let f be a real valued function continuous on the interval $[a, b]$.
If $f(c)$ is a maximum of f on $[a, b]$, then

1. either $f(a)$ or $f(b)$ is a maximum or
2. $c \in(a, b)$ and f is not differentiable at c or
3. $c \in(a, b)$ and $f^{\prime}(c)=0$.

Let $a, b \in \mathbb{R}$ with $a<b$.
Let f be a real valued function continuous on $[a, b]$.
Then by EVT, f has a minimum on $[a, b]$.
Let $f(c)$ be a minimum of f on $[a, b]$.
Then there exists $c \in[a, b]$ such that $f(c) \leq f(x)$ for all $x \in[a, b]$.
Either c is an endpoint of $[a, b]$ or not.
If c is an endpoint of $[a, b]$, then either $c=a$ or $c=b$, so either $f(a)$ or $f(b)$ is a minimum of f.

If c is not an endpoint of $[a, b]$, then $c \neq a$ and $c \neq b$.
Since $c \in[a, b]$ and $c \neq a$ and $c \neq b$, then $c \in(a, b)$.
Since the open interval (a, b) is an open set, then c is an interior point of (a, b).

Hence, there exists $\delta>0$ such that $N(c ; \delta) \subset(a, b)$.
Let $x \in N(c ; \delta)$.
Since $N(c ; \delta) \subset(a, b)$ and $(a, b) \subset[a, b]$, then $x \in[a, b]$ and $N(c ; \delta) \subset[a, b]$.
Since $x \in[a, b]$, then $f(c) \leq f(x)$, so $f(c) \leq f(x)$ for all $x \in N(c ; \delta)$.

Since there exists $\delta>0$ such that $N(c ; \delta) \subset[a, b]$ and $f(c) \leq f(x)$ for all $x \in N(c ; \delta)$, then $f(c)$ is a relative minimum.

Thus, either f is not differentiable at c or $f^{\prime}(c)=0$.

Let f be a real valued function continuous on the interval $[a, b]$.
If $f(c)$ is a minimum of f on $[a, b]$, then

1. either $f(a)$ or $f(b)$ is a minimum or
2. $c \in(a, b)$ and f is not differentiable at c or
3. $c \in(a, b)$ and $f^{\prime}(c)=0$.

Let f be a real valued function continuous on the interval $[a, b]$.
If $f(c)$ is an extreme value of f on $[a, b]$, then

1. either $f(a)$ or $f(b)$ is an extreme value or
2. $c \in(a, b)$ and f is not differentiable at c or
3. $c \in(a, b)$ and $f^{\prime}(c)=0$

Theorem 26. Rolle's Theorem
Let $a, b \in \mathbb{R}$ with $a<b$.
Let f be a real valued function continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b).

If $f(a)=f(b)$, then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.
Theorem 27. Mean Value Theorem
Let $a, b \in \mathbb{R}$ with $a<b$.
Let f be a real valued function continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b).

Then there exists $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
Let $a, b \in \mathbb{R}$ with $a<b$.
Let f be a real valued function continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b).

Then by MVT, there exists $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
Therefore, MVT implies that there exists a point $c \in(a, b)$ at which the instantaneous rate of change equals the average rate of change of f over the interval $[a, b]$.

Corollary 28. Let f be a real valued function differentiable on an interval I. Then

1. If $f^{\prime}(x)=0$ for all $x \in I$, then f is constant on I.
2. If $f^{\prime}(x)>0$ for all $x \in I$, then f is strictly increasing on I.
3. If $f^{\prime}(x)<0$ for all $x \in I$, then f is strictly decreasing on I.

Corollary 29. functions with the same derivative on an interval differ by a constant

Let f and g be real valued functions differentiable on an interval I.
If $f^{\prime}(x)=g^{\prime}(x)$ for all $x \in I$, then there exists $C \in \mathbb{R}$ such that $f-g=C$.

Theorem 30. First Derivative Test for relative extrema of a function continuous on an open interval

Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let $c \in E$.
Let there exist $\delta>0$ such that $(c-\delta, c+\delta) \subset E$.
Suppose f is continuous on $(c-\delta, c+\delta)$ and differentiable on $(c-\delta, c)$ and $(c, c+\delta)$.

1. If $f^{\prime}(x)<0$ for all $x \in(c-\delta, c)$ and $f^{\prime}(x)>0$ for all $x \in(c, c+\delta)$, then $f(c)$ is a relative minimum.
2. If $f^{\prime}(x)>0$ for all $x \in(c-\delta, c)$ and $f^{\prime}(x)<0$ for all $x \in(c, c+\delta)$, then $f(c)$ is a relative maximum.

Lemma 31. Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let c be a point.

1. If the limit of f at c exists and is positive, then there exists $\delta>0$ such that $f(x)>0$ for all $x \in N^{\prime}(c ; \delta) \cap E$.
2. If the limit of f at c exists and is negative, then there exists $\delta>0$ such that $f(x)<0$ for all $x \in N^{\prime}(c ; \delta) \cap E$.
Lemma 32. Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let f be differentiable at $c \in E$.
3. If $f^{\prime}(c)>0$, then there exists $\delta>0$ such that $f(c)>f(x)$ for all $x \in(c-\delta, c) \cap E$.
4. If $f^{\prime}(c)<0$, then there exists $\delta>0$ such that $f(c)>f(x)$ for all $x \in(c, c+\delta) \cap E$.

Theorem 33. Intermediate Value property of Derivatives
Let $a, b \in \mathbb{R}$ with $a<b$.
Let f be a real valued function differentiable on the closed interval $[a, b]$.
For every real number k such that $f^{\prime}(a)<k<f^{\prime}(b)$, there exists $c \in(a, b)$ such that $f^{\prime}(c)=k$.

Therefore, the derivative of a function differentiable on a closed bounded interval has the intermediate value property.

L'Hopital's Rule

Theorem 34. Cauchy Mean Value Theorem
Let $a, b \in \mathbb{R}$ with $a<b$.
Let f be a real valued function continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b).

Let g be a real valued function continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b).

Then there exists $c \in(a, b)$ such that $f^{\prime}(c)(g(b)-g(a))=g^{\prime}(c)(f(b)-f(a))$.

