Differentiation of real valued functions Notes

Jason Sass

September 16, 2021

Sets of Numbers

 $\mathbb{R} =$ set of all real numbers

 $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\} = (0, \infty) = \text{ set of all positive real numbers}$ $\mathbb{R}^* = \{x \in \mathbb{R} : x \neq 0\} = (-\infty, 0) \cup (0, \infty) = \text{ set of all nonzero real numbers}$

Derivative of a real valued function

The derivative of a function represents the instantaneous rate of change of a function.

It represents the slope of the line tangent to the graph of a function at some point on the function.

Definition 1. derivative of a function at a point

Let $E \subset \mathbb{R}$. Let $f : E \to \mathbb{R}$ be a function. Let $c \in E$ be an accumulation point of E. Let $q : E - \{c\} \to \mathbb{R}$ be a function defined by $q(x) = \frac{f(x) - f(c)}{x - c}$. We say that f is differentiable at c iff $\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ exists and we write $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$. We say that f'(c) is the **derivative of** f at c. Let $E \subset \mathbb{R}$. Let $f : E \to \mathbb{R}$ be a function. Let $c \in E$ be an accumulation point of E. Let $q : E - \{c\} \to \mathbb{R}$ be a function defined by $q(x) = \frac{f(x) - f(c)}{x - c}$ for all

 $x \in E - \{c\}.$

We call $\frac{f(x)-f(c)}{x-c}$ the difference quotient.

Since c is an accumulation point of E, then c is an accumulation point of $E - \{c\}$, the domain of q.

For each $x \in E - \{c\}$, we have $x \in E$ and $x \neq c$.

Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function.

Suppose f is differentiable at c.

Then $c \in domf$ and c is an accumulation point of domf and $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ exists and $f'(c) \in \mathbb{R}$.

Let $q: E - \{c\} \to \mathbb{R}$ be a function defined by $q(x) = \frac{f(x) - f(c)}{x - c}$ for all $x \in E - \{c\}$.

For each $x \in E - \{c\}$, we have $x \in E$ and $x \neq c$, so $x \in domf$ and $x \neq c$.

Definition 2. Alternate definition of derivative of a function

Let E be an open subset of \mathbb{R} .

Let $f: E \to \mathbb{R}$ be a function.

Let $c \in E$.

Since E is open, then c is an interior point of E, so there exists $\delta > 0$ such that $N(c; \delta) \subset E$.

Let $Q: (0, \delta) \to \mathbb{R}$ be a function defined by $Q(h) = \frac{f(c+h) - f(c)}{h}$.

We say that f is differentiable at c iff $\lim_{h\to 0} \frac{f(c+h)-f(c)}{h}$ exists and we write $f'(c) = \lim_{h\to 0} Q(h) = \lim_{h\to 0} \frac{f(c+h)-f(c)}{h}$.

We say that f'(c) is the **derivative of** f at c.

Let E be an open subset of \mathbb{R} .

Let $f: E \to \mathbb{R}$ be a function.

Let $c \in E$.

Since E is open and $c \in E$, then c is an interior point of E, so there exists $\delta > 0$ such that $N(c; \delta) \subset E$.

Let $Q: (0, \delta) \to \mathbb{R}$ be a function defined by $Q(h) = \frac{f(c+h) - f(c)}{h}$. Suppose f is differentiable at c. Then $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$.

A function differentiable on a set is differentiable at each point of the set.

Definition 3. function differentiable on a set

A function f is differentiable on a set $E \subset dom f$ iff f is differentiable at c for all $c \in E$.

Definition 4. differentiable function

A function f is **differentiable** iff f is differentiable on dom f.

Therefore, a function f is differentiable iff f is differentiable at c for all $c \in dom f$.

Let $E \subset \mathbb{R}$. Let f be a real valued function differentiable on E. Then f is differentiable at c for each $c \in E$. Hence, $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ exists and $f'(c) \in \mathbb{R}$. Since c is arbitrary, then $f'(c) \in \mathbb{R}$ for each $c \in E$.

Thus, $f': E \to \mathbb{R}$ is a function defined by $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ for each $c \in E$.

Hence, if f is a real valued function differentiable on E, then f' is a function defined on E.

Therefore, the derivative is a function.

Let $E \subset \mathbb{R}$.

Let f be a real valued function differentiable on E.

If y = f(x), we denote the derivative of f at $x \in E$ by $y' = f'(x) = \frac{dy}{dx} = \frac{d}{dx}f(x) = D_x y$.

Equivalently, $f' = \frac{df}{dx} = Df$.

Proposition 5. the derivative of a constant is zero

Let $k \in \mathbb{R}$ be fixed. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by f(x) = k. Then f'(x) = 0 for all $x \in \mathbb{R}$.

Let $k \in \mathbb{R}$. If f(x) = k, then $f'(x) = \frac{d}{dx}(k) = 0$.

Proposition 6. the derivative of the identity function is 1 Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by f(x) = x.

Then f'(x) = 1 for all $x \in \mathbb{R}$.

If f(x) = x, then $f'(x) = \frac{d}{dx}(x) = 1$.

Example 7. the square function is differentiable

Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = x^2$. Then f'(x) = 2x for all $x \in \mathbb{R}$. Therefore, $f'(x) = \frac{d}{dx}(x^2) = 2x$.

- **Example 8. the reciprocal function is differentiable for nonzero** xLet $f : \mathbb{R}^* \to \mathbb{R}$ be the function defined by $f(x) = \frac{1}{x}$ for all nonzero real x. Then $f'(x) = \frac{-1}{x^2}$ for all nonzero real x. Therefore, $f'(x) = \frac{d}{dx}(\frac{1}{x}) = \frac{-1}{x^2}$ if $x \neq 0$.
- **Example 9. the absolute value function is not differentiable at zero** Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by f(x) = |x| for all $x \in \mathbb{R}$. Then f is not differentiable at 0.

Example 10. the square root function is differentiable for positive real x

Let $f: [0, \infty) \to \mathbb{R}$ be the function defined by $f(x) = \sqrt{x}$. Then $f'(x) = \frac{1}{2\sqrt{x}}$ for all positive real x and f is not differentiable at 0. Therefore, $f'(x) = \frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}}$ if x > 0 and f is not differentiable at 0.

Lemma 11. $\lim_{x\to 0} \frac{1-\cos x}{x} = 0$ and $\lim_{x\to 0} \frac{\cos x-1}{x} = 0$.

Proposition 12. If $f(x) = \sin x$, then $f'(x) = \cos x$. Therefore, $\frac{d}{dx} \sin x = \cos x$.

Proposition 13. If $f(x) = \cos x$, then $f'(x) = -\sin x$. Therefore, $\frac{d}{dx}\cos x = -\sin x$.

Theorem 14. differentiability implies continuity

Let f be a real valued function of a real variable x. If f is differentiable at c, then f is continuous at c.

Thus, if f is not continuous at c, then f is not differentiable at c. Therefore, if f is discontinuous at c, then f is not differentiable at c.

Corollary 15. Every differentiable function is continuous. Let f be a real valued function of a real variable x. If f is differentiable, then f is continuous.

Example 16. not every continuous function is differentiable

The absolute value function is continuous on \mathbb{R} , but it is not differentiable at zero.

Algebraic properties of derivatives

Theorem 17. scalar multiple rule for derivatives

Let f be a real valued function of a real variable x.

If f is differentiable at c, then for every $\lambda \in \mathbb{R}$, the function λf is differentiable at c and $(\lambda f)'(c) = \lambda f'(c)$.

Let f be a real valued differentiable function of a real variable x. Let $\lambda \in \mathbb{R}$.

Then the scalar multiple λf is differentiable and $(\lambda f)' = \lambda f'$. Equivalently, $D(\lambda f) = \lambda D f$.

Theorem 18. derivative of a sum equals sum of a derivative

Let f and g be real valued functions of a real variable x. Let c be an accumulation point of dom $f \cap$ domg. If f is differentiable at c and g is differentiable at c, then the function f + g

If f is differentiable at c and g is differentiable at c, then the function f + g is differentiable at c and

(f+g)'(c) = f'(c) + g'(c).

Let f and g be real valued differentiable functions of a real variable x. Then the sum f + g is differentiable and (f + g)' = f' + g'. Equivalently, D(f + g) = Df + Dg.

Corollary 19. derivative of a difference equals difference of a derivative

Let f and g be real valued functions of a real variable x. Let c be an accumulation point of dom $f \cap dom g$.

If f is differentiable at c and g is differentiable at c, then the function f - gis differentiable at c and

(f-g)'(c) = f'(c) - g'(c).

Let f and q be real valued differentiable functions of a real variable x. Then the difference f - g is differentiable and (f - g)' = f' - g'. Equivalently, D(f - g) = Df - Dg.

TODO We need to write up a proposition to cover the derivative of a finite sum of functions. The proof would involve using math induction. We'll write this up later since we don't have time right now.

Theorem 20. product rule for derivatives

Let f and g be real valued functions of a real variable x.

Let c be an accumulation point of $dom f \cap dom g$.

If f is differentiable at c and g is differentiable at c, then the function fg is $differentiable \ at \ c \ and$

(fg)'(c) = f(c)g'(c) + g(c)f'(c).

Let f and g be real valued differentiable functions of a real variable x. Then the product fg is differentiable and (fg)' = fg' + gf'. Equivalently, D(fg) = fDg + gDf.

Theorem 21. quotient rule for derivatives

Let f and q be real valued functions of a real variable x. Let c be an accumulation point of dom $f \cap dom q$.

If f is differentiable at c and g is differentiable at c and $g(c) \neq 0$, then the

function $\frac{f}{g}$ is differentiable at c and $(\frac{f}{g})'(c) = \frac{g(c)f'(c) - f(c)g'(c)}{(g(c))^2}.$

Let f and g be real valued differentiable functions of a real variable x such that $g(x) \neq 0$ for all $x \in dom f \cap dom g$.

Then the quotient $\frac{f}{g}$ is differentiable and $(\frac{f}{g})' = \frac{gf'-fg'}{g^2}$. Equivalently, $D(\frac{f}{g}) = \frac{gDf-fDg}{g^2}$.

Corollary 22. power rule for derivatives

Let $n \in \mathbb{Z}$ be fixed. Let $f : \mathbb{R}^* \to \mathbb{R}$ be the function defined by $f(x) = x^n$. Then $f'(x) = nx^{n-1}$.

Let $n \in \mathbb{Z}$ be fixed. Let $f : \mathbb{R}^* \to \mathbb{R}$ be the function defined by $f(x) = x^n$. Then $f'(x) = nx^{n-1}$ for all $x \in \mathbb{R}^*$. Therefore, $f'(x) = \frac{d}{dx}(x^n) = nx^{n-1}$.

Proposition 23. derivatives of trig functions

- 1. $\frac{d}{dx}(\tan x) = \sec^2 x.$ 2. $\frac{d}{dx}(\cot x) = -\csc^2 x.$ 3. $\frac{d}{dx}(\sec x) = \sec x \tan x.$ 4. $\frac{d}{dx}(\csc x) = -\csc x \cot x.$

Theorem 24. chain rule for derivatives

Let f and g be real valued functions such that $rngf \subset domg$.

If f is differentiable at c and g is differentiable at f(c), then the function $g \circ f$ is differentiable at c and

 $(g \circ f)'(c) = g'(f(c)) \cdot f'(c).$

Let f and g be real valued functions such that $rngf \subset domg$.

If f is differentiable at x and g is differentiable at f(x), then the function $g \circ f$ is differentiable at x and

 $(g \circ f)'(x) = g'(f(x)) \cdot f'(x).$

Let y = g(u) be a differentiable function of u and let u = f(x) be a differentiable function of x such that $rngf \subset domg$.

Then $y = g(u) = g(f(x)) = (g \circ f)(x)$ is a differentiable function of x. Since y = g(u) is a differentiable function of u, then $\frac{dy}{du} = g'(u)$. Since u = f(x) is a differentiable function of x, then $\frac{du}{dx} = f'(x)$. Hence, $\frac{dy}{dx} = \frac{d}{dx}(g \circ f)(x) = (g \circ f)'(x) = g'(f(x)) \cdot f'(x) = g'(u) \cdot f'(x) = \frac{dy}{du} \cdot \frac{du}{dx}$. Therefore, $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$.

Mean Value Theorem

Lemma 25. Let $E \subset \mathbb{R}$.

Let $f : E \to \mathbb{R}$ be a function. Let $c \in E$. 1. If f(c) is a relative maximum and f is differentiable at c, then f'(c) = 0. 2. If f(c) is a relative minimum and f is differentiable at c, then f'(c) = 0.

Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function.

Suppose f(c) is a relative maximum.

Either f is not differentiable at c or f is differentiable at c.

If f is differentiable at c, then f'(c) = 0.

Thus, either f is not differentiable at c or f'(c) = 0.

Therefore, if f(c) is a relative maximum, then either f is not differentiable at c or f'(c) = 0.

Suppose f(c) is a relative minimum.

Either f is not differentiable at c or f is differentiable at c.

If f is differentiable at c, then f'(c) = 0.

Thus, either f is not differentiable at c or f'(c) = 0.

Therefore, if f(c) is a relative minimum, then either f is not differentiable at c or f'(c) = 0.

Therefore, if f(c) is a relative extremum, then either f is not differentiable at c or f'(c) = 0.

Let $a, b \in \mathbb{R}$ with a < b. Let f be a real valued function continuous on [a, b]. Then by EVT, f has a maximum on [a, b]. Let f(c) be a maximum of f on [a, b]. Then there exists $c \in [a, b]$ such that $f(c) \ge f(x)$ for all $x \in [a, b]$. Either c is an endpoint of [a, b] or not. If c is an endpoint of [a, b], then either c = a or c = b, so either f(a) or f(b)is a maximum of f. If c is not an endpoint of [a, b], then $c \neq a$ and $c \neq b$. Since $c \in [a, b]$ and $c \neq a$ and $c \neq b$, then $c \in (a, b)$. Since the open interval (a, b) is an open set, then c is an interior point of (a,b).Hence, there exists $\delta > 0$ such that $N(c; \delta) \subset (a, b)$. Let $x \in N(c; \delta)$. Since $N(c; \delta) \subset (a, b)$ and $(a, b) \subset [a, b]$, then $x \in [a, b]$ and $N(c; \delta) \subset [a, b]$. Since $x \in [a, b]$, then $f(c) \ge f(x)$, so $f(c) \ge f(x)$ for all $x \in N(c; \delta)$. Since there exists $\delta > 0$ such that $N(c; \delta) \subset [a, b]$ and $f(c) \geq f(x)$ for all $x \in N(c; \delta)$, then f(c) is a relative maximum. Thus, either f is not differentiable at c or f'(c) = 0. Let f be a real valued function continuous on the interval [a, b]. If f(c) is a maximum of f on [a, b], then 1. either f(a) or f(b) is a maximum or 2. $c \in (a, b)$ and f is not differentiable at c or 3. $c \in (a, b)$ and f'(c) = 0. Let $a, b \in \mathbb{R}$ with a < b. Let f be a real valued function continuous on [a, b]. Then by EVT, f has a minimum on [a, b]. Let f(c) be a minimum of f on [a, b]. Then there exists $c \in [a, b]$ such that $f(c) \leq f(x)$ for all $x \in [a, b]$. Either c is an endpoint of [a, b] or not. If c is an endpoint of [a, b], then either c = a or c = b, so either f(a) or f(b)is a minimum of f. If c is not an endpoint of [a, b], then $c \neq a$ and $c \neq b$. Since $c \in [a, b]$ and $c \neq a$ and $c \neq b$, then $c \in (a, b)$. Since the open interval (a, b) is an open set, then c is an interior point of (a,b).Hence, there exists $\delta > 0$ such that $N(c; \delta) \subset (a, b)$. Let $x \in N(c; \delta)$. Since $N(c; \delta) \subset (a, b)$ and $(a, b) \subset [a, b]$, then $x \in [a, b]$ and $N(c; \delta) \subset [a, b]$. Since $x \in [a, b]$, then $f(c) \leq f(x)$, so $f(c) \leq f(x)$ for all $x \in N(c; \delta)$.

Since there exists $\delta > 0$ such that $N(c; \delta) \subset [a, b]$ and $f(c) \leq f(x)$ for all $x \in N(c; \delta)$, then f(c) is a relative minimum.

Thus, either f is not differentiable at c or f'(c) = 0.

Let f be a real valued function continuous on the interval [a, b].

If f(c) is a minimum of f on [a, b], then

1. either f(a) or f(b) is a minimum or

2. $c \in (a, b)$ and f is not differentiable at c or

3. $c \in (a, b)$ and f'(c) = 0.

Let f be a real valued function continuous on the interval [a, b]. If f(c) is an extreme value of f on [a, b], then 1. either f(a) or f(b) is an extreme value or 2. $c \in (a, b)$ and f is not differentiable at c or

3. $c \in (a, b)$ and f'(c) = 0

Theorem 26. Rolle's Theorem

Let $a, b \in \mathbb{R}$ with a < b.

Let f be a real valued function continuous on the closed interval [a, b] and differentiable on the open interval (a, b).

If f(a) = f(b), then there exists $c \in (a, b)$ such that f'(c) = 0.

Theorem 27. Mean Value Theorem

Let $a, b \in \mathbb{R}$ with a < b.

Let f be a real valued function continuous on the closed interval [a, b] and differentiable on the open interval (a, b).

Then there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b-a}$.

Let $a, b \in \mathbb{R}$ with a < b.

Let f be a real valued function continuous on the closed interval [a, b] and differentiable on the open interval (a, b).

Then by MVT, there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b-a}$. Therefore, MVT implies that there exists a point $c \in (a, b)$ at which the instantaneous rate of change equals the average rate of change of f over the interval [a, b].

Corollary 28. Let f be a real valued function differentiable on an interval I. Then

1. If f'(x) = 0 for all $x \in I$, then f is constant on I.

2. If f'(x) > 0 for all $x \in I$, then f is strictly increasing on I.

3. If f'(x) < 0 for all $x \in I$, then f is strictly decreasing on I.

Corollary 29. functions with the same derivative on an interval differ by a constant

Let f and g be real valued functions differentiable on an interval I. If f'(x) = g'(x) for all $x \in I$, then there exists $C \in \mathbb{R}$ such that f - g = C.

Theorem 30. First Derivative Test for relative extrema of a function continuous on an open interval

Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function.

Let $c \in E$.

Let there exist $\delta > 0$ such that $(c - \delta, c + \delta) \subset E$.

Suppose f is continuous on $(c - \delta, c + \delta)$ and differentiable on $(c - \delta, c)$ and $(c, c + \delta)$.

1. If f'(x) < 0 for all $x \in (c - \delta, c)$ and f'(x) > 0 for all $x \in (c, c + \delta)$, then f(c) is a relative minimum.

2. If f'(x) > 0 for all $x \in (c - \delta, c)$ and f'(x) < 0 for all $x \in (c, c + \delta)$, then f(c) is a relative maximum.

Lemma 31. Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function.

Let c be a point.

1. If the limit of f at c exists and is positive, then there exists $\delta > 0$ such that f(x) > 0 for all $x \in N'(c; \delta) \cap E$.

2. If the limit of f at c exists and is negative, then there exists $\delta > 0$ such that f(x) < 0 for all $x \in N'(c; \delta) \cap E$.

Lemma 32. Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function.

Let f be differentiable at $c \in E$.

1. If f'(c) > 0, then there exists $\delta > 0$ such that f(c) > f(x) for all $x \in (c - \delta, c) \cap E$.

2. If f'(c) < 0, then there exists $\delta > 0$ such that f(c) > f(x) for all $x \in (c, c + \delta) \cap E$.

Theorem 33. Intermediate Value property of Derivatives

Let $a, b \in \mathbb{R}$ with a < b.

Let f be a real valued function differentiable on the closed interval [a, b].

For every real number k such that f'(a) < k < f'(b), there exists $c \in (a, b)$ such that f'(c) = k.

Therefore, the derivative of a function differentiable on a closed bounded interval has the intermediate value property.

L'Hopital's Rule

Theorem 34. Cauchy Mean Value Theorem

Let $a, b \in \mathbb{R}$ with a < b.

Let f be a real valued function continuous on the closed interval [a, b] and differentiable on the open interval (a, b).

Let g be a real valued function continuous on the closed interval [a, b] and differentiable on the open interval (a, b).

Then there exists $c \in (a, b)$ such that f'(c)(g(b) - g(a)) = g'(c)(f(b) - f(a)).