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Sets of Numbers

R = set of all real numbers
R+ = {x ∈ R : x > 0} = (0,∞) = set of all positive real numbers
R∗ = {x ∈ R : x 6= 0} = (−∞, 0) ∪ (0,∞) = set of all nonzero real numbers

Derivative of a real valued function

The derivative of a function represents the instantaneous rate of change of a
function.

It represents the slope of the line tangent to the graph of a function at some
point on the function.

Definition 1. derivative of a function at a point
Let E ⊂ R.
Let f : E → R be a function.
Let c ∈ E be an accumulation point of E.

Let q : E − {c} → R be a function defined by q(x) = f(x)−f(c)
x−c .

We say that f is differentiable at c iff limx→c
f(x)−f(c)

x−c exists and we write

f ′(c) = limx→c
f(x)−f(c)

x−c .
We say that f ′(c) is the derivative of f at c.

Let E ⊂ R.
Let f : E → R be a function.
Let c ∈ E be an accumulation point of E.

Let q : E − {c} → R be a function defined by q(x) = f(x)−f(c)
x−c for all

x ∈ E − {c}.
We call f(x)−f(c)

x−c the difference quotient.
Since c is an accumulation point of E, then c is an accumulation point of

E − {c}, the domain of q.
For each x ∈ E − {c}, we have x ∈ E and x 6= c.



Let E ⊂ R.
Let f : E → R be a function.
Suppose f is differentiable at c.
Then c ∈ domf and c is an accumulation point of domf and f ′(c) =

limx→c
f(x)−f(c)

x−c exists and f ′(c) ∈ R.

Let q : E − {c} → R be a function defined by q(x) = f(x)−f(c)
x−c for all

x ∈ E − {c}.
For each x ∈ E − {c}, we have x ∈ E and x 6= c, so x ∈ domf and x 6= c.

Definition 2. Alternate definition of derivative of a function
Let E be an open subset of R.
Let f : E → R be a function.
Let c ∈ E.
Since E is open, then c is an interior point of E, so there exists δ > 0 such

that N(c; δ) ⊂ E.

Let Q : (0, δ)→ R be a function defined by Q(h) = f(c+h)−f(c)
h .

We say that f is differentiable at c iff limh→0
f(c+h)−f(c)

h exists and we

write f ′(c) = limh→0Q(h) = limh→0
f(c+h)−f(c)

h .
We say that f ′(c) is the derivative of f at c.

Let E be an open subset of R.
Let f : E → R be a function.
Let c ∈ E.
Since E is open and c ∈ E, then c is an interior point of E, so there exists

δ > 0 such that N(c; δ) ⊂ E.

Let Q : (0, δ)→ R be a function defined by Q(h) = f(c+h)−f(c)
h .

Suppose f is differentiable at c.

Then f ′(c) = limx→c
f(x)−f(c)

x−c = limh→0
f(c+h)−f(c)

h .

A function differentiable on a set is differentiable at each point of the set.

Definition 3. function differentiable on a set
A function f is differentiable on a set E ⊂ domf iff f is differentiable

at c for all c ∈ E.

Definition 4. differentiable function
A function f is differentiable iff f is differentiable on domf .

Therefore, a function f is differentiable iff f is differentiable at c for all
c ∈ domf .

Let E ⊂ R.
Let f be a real valued function differentiable on E.
Then f is differentiable at c for each c ∈ E.

Hence, f ′(c) = limx→c
f(x)−f(c)

x−c exists and f ′(c) ∈ R.
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Since c is arbitrary, then f ′(c) ∈ R for each c ∈ E.

Thus, f ′ : E → R is a function defined by f ′(c) = limx→c
f(x)−f(c)

x−c for each
c ∈ E.

Hence, if f is a real valued function differentiable on E, then f ′ is a function
defined on E.

Therefore, the derivative is a function.

Let E ⊂ R.
Let f be a real valued function differentiable on E.
If y = f(x), we denote the derivative of f at x ∈ E by y′ = f ′(x) = dy

dx =
d
dxf(x) = Dxy.

Equivalently, f ′ = df
dx = Df .

Proposition 5. the derivative of a constant is zero
Let k ∈ R be fixed.
Let f : R→ R be the function defined by f(x) = k.
Then f ′(x) = 0 for all x ∈ R.

Let k ∈ R.
If f(x) = k, then f ′(x) = d

dx (k) = 0.

Proposition 6. the derivative of the identity function is 1
Let f : R→ R be the function defined by f(x) = x.
Then f ′(x) = 1 for all x ∈ R.

If f(x) = x, then f ′(x) = d
dx (x) = 1.

Example 7. the square function is differentiable
Let f : R→ R be the function defined by f(x) = x2.
Then f ′(x) = 2x for all x ∈ R.
Therefore, f ′(x) = d

dx (x2) = 2x.

Example 8. the reciprocal function is differentiable for nonzero x
Let f : R∗ → R be the function defined by f(x) = 1

x for all nonzero real x.
Then f ′(x) = −1

x2 for all nonzero real x.

Therefore, f ′(x) = d
dx ( 1

x ) = −1
x2 if x 6= 0.

Example 9. the absolute value function is not differentiable at zero
Let f : R→ R be the function defined by f(x) = |x| for all x ∈ R.
Then f is not differentiable at 0.

Example 10. the square root function is differentiable for positive real
x

Let f : [0,∞)→ R be the function defined by f(x) =
√
x.

Then f ′(x) = 1
2
√
x

for all positive real x and f is not differentiable at 0.

Therefore, f ′(x) = d
dx (
√
x) = 1

2
√
x

if x > 0 and f is not differentiable at 0.

Lemma 11. limx→0
1−cos x

x = 0 and limx→0
cos x−1

x = 0.
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Proposition 12. If f(x) = sinx, then f ′(x) = cosx.
Therefore, d

dx sinx = cosx.

Proposition 13. If f(x) = cosx, then f ′(x) = − sinx.
Therefore, d

dx cosx = − sinx.

Theorem 14. differentiability implies continuity
Let f be a real valued function of a real variable x.
If f is differentiable at c, then f is continuous at c.

Thus, if f is not continuous at c, then f is not differentiable at c.
Therefore, if f is discontinuous at c, then f is not differentiable at c.

Corollary 15. Every differentiable function is continuous.
Let f be a real valued function of a real variable x.
If f is differentiable, then f is continuous.

Example 16. not every continuous function is differentiable
The absolute value function is continuous on R, but it is not differentiable

at zero.

Algebraic properties of derivatives

Theorem 17. scalar multiple rule for derivatives
Let f be a real valued function of a real variable x.
If f is differentiable at c, then for every λ ∈ R, the function λf is differen-

tiable at c and (λf)′(c) = λf ′(c).

Let f be a real valued differentiable function of a real variable x.
Let λ ∈ R.
Then the scalar multiple λf is differentiable and (λf)′ = λf ′.
Equivalently, D(λf) = λDf .

Theorem 18. derivative of a sum equals sum of a derivative
Let f and g be real valued functions of a real variable x.
Let c be an accumulation point of domf ∩ domg.
If f is differentiable at c and g is differentiable at c, then the function f + g

is differentiable at c and
(f + g)′(c) = f ′(c) + g′(c).

Let f and g be real valued differentiable functions of a real variable x.
Then the sum f + g is differentiable and (f + g)′ = f ′ + g′.
Equivalently, D(f + g) = Df +Dg.

Corollary 19. derivative of a difference equals difference of a deriva-
tive

Let f and g be real valued functions of a real variable x.
Let c be an accumulation point of domf ∩ domg.
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If f is differentiable at c and g is differentiable at c, then the function f − g
is differentiable at c and

(f − g)′(c) = f ′(c)− g′(c).

Let f and g be real valued differentiable functions of a real variable x.
Then the difference f − g is differentiable and (f − g)′ = f ′ − g′.
Equivalently, D(f − g) = Df −Dg.
TODO We need to write up a proposition to cover the derivative of a finite

sum of functions. The proof would involve using math induction. We’ll write
this up later since we don’t have time right now.

Theorem 20. product rule for derivatives
Let f and g be real valued functions of a real variable x.
Let c be an accumulation point of domf ∩ domg.
If f is differentiable at c and g is differentiable at c, then the function fg is

differentiable at c and
(fg)′(c) = f(c)g′(c) + g(c)f ′(c).

Let f and g be real valued differentiable functions of a real variable x.
Then the product fg is differentiable and (fg)′ = fg′ + gf ′.
Equivalently, D(fg) = fDg + gDf .

Theorem 21. quotient rule for derivatives
Let f and g be real valued functions of a real variable x.
Let c be an accumulation point of domf ∩ domg.
If f is differentiable at c and g is differentiable at c and g(c) 6= 0, then the

function f
g is differentiable at c and

( f
g )′(c) = g(c)f ′(c)−f(c)g′(c)

(g(c))2 .

Let f and g be real valued differentiable functions of a real variable x such
that g(x) 6= 0 for all x ∈ domf ∩ domg.

Then the quotient f
g is differentiable and ( f

g )′ = gf ′−fg′

g2 .

Equivalently, D( f
g ) = gDf−fDg

g2 .

Corollary 22. power rule for derivatives
Let n ∈ Z be fixed.
Let f : R∗ → R be the function defined by f(x) = xn.
Then f ′(x) = nxn−1.

Let n ∈ Z be fixed.
Let f : R∗ → R be the function defined by f(x) = xn.
Then f ′(x) = nxn−1 for all x ∈ R∗.
Therefore, f ′(x) = d

dx (xn) = nxn−1.

Proposition 23. derivatives of trig functions
1. d

dx (tanx) = sec2 x.

2. d
dx (cotx) = − csc2 x.

3. d
dx (secx) = secx tanx.

4. d
dx (cscx) = − cscx cotx.
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Theorem 24. chain rule for derivatives
Let f and g be real valued functions such that rngf ⊂ domg.
If f is differentiable at c and g is differentiable at f(c), then the function

g ◦ f is differentiable at c and
(g ◦ f)′(c) = g′(f(c)) · f ′(c).

Let f and g be real valued functions such that rngf ⊂ domg.
If f is differentiable at x and g is differentiable at f(x), then the function

g ◦ f is differentiable at x and
(g ◦ f)′(x) = g′(f(x)) · f ′(x).

Let y = g(u) be a differentiable function of u and let u = f(x) be a differen-
tiable function of x such that rngf ⊂ domg.

Then y = g(u) = g(f(x)) = (g ◦ f)(x) is a differentiable function of x.
Since y = g(u) is a differentiable function of u, then dy

du = g′(u).

Since u = f(x) is a differentiable function of x, then du
dx = f ′(x).

Hence, dy
dx = d

dx (g ◦ f)(x) = (g ◦ f)′(x) = g′(f(x)) · f ′(x) = g′(u) · f ′(x) =
dy
du ·

du
dx .

Therefore, dy
dx = dy

du ·
du
dx .

Mean Value Theorem

Lemma 25. Let E ⊂ R.
Let f : E → R be a function.
Let c ∈ E.
1. If f(c) is a relative maximum and f is differentiable at c, then f ′(c) = 0.
2. If f(c) is a relative minimum and f is differentiable at c, then f ′(c) = 0.

Let E ⊂ R.
Let f : E → R be a function.
Suppose f(c) is a relative maximum.
Either f is not differentiable at c or f is differentiable at c.
If f is differentiable at c, then f ′(c) = 0.
Thus, either f is not differentiable at c or f ′(c) = 0.
Therefore, if f(c) is a relative maximum, then either f is not differentiable

at c or f ′(c) = 0.

Suppose f(c) is a relative minimum.
Either f is not differentiable at c or f is differentiable at c.
If f is differentiable at c, then f ′(c) = 0.
Thus, either f is not differentiable at c or f ′(c) = 0.
Therefore, if f(c) is a relative minimum, then either f is not differentiable

at c or f ′(c) = 0.
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Therefore, if f(c) is a relative extremum, then either f is not differentiable at
c or f ′(c) = 0.

Let a, b ∈ R with a < b.
Let f be a real valued function continuous on [a, b].
Then by EVT, f has a maximum on [a, b].
Let f(c) be a maximum of f on [a, b].
Then there exists c ∈ [a, b] such that f(c) ≥ f(x) for all x ∈ [a, b].
Either c is an endpoint of [a, b] or not.
If c is an endpoint of [a, b], then either c = a or c = b, so either f(a) or f(b)

is a maximum of f .
If c is not an endpoint of [a, b], then c 6= a and c 6= b.
Since c ∈ [a, b] and c 6= a and c 6= b, then c ∈ (a, b).
Since the open interval (a, b) is an open set, then c is an interior point of

(a, b).
Hence, there exists δ > 0 such that N(c; δ) ⊂ (a, b).
Let x ∈ N(c; δ).
Since N(c; δ) ⊂ (a, b) and (a, b) ⊂ [a, b], then x ∈ [a, b] and N(c; δ) ⊂ [a, b].
Since x ∈ [a, b], then f(c) ≥ f(x), so f(c) ≥ f(x) for all x ∈ N(c; δ).
Since there exists δ > 0 such that N(c; δ) ⊂ [a, b] and f(c) ≥ f(x) for all

x ∈ N(c; δ), then f(c) is a relative maximum.
Thus, either f is not differentiable at c or f ′(c) = 0.

Let f be a real valued function continuous on the interval [a, b].
If f(c) is a maximum of f on [a, b], then
1. either f(a) or f(b) is a maximum or
2. c ∈ (a, b) and f is not differentiable at c or
3. c ∈ (a, b) and f ′(c) = 0.

Let a, b ∈ R with a < b.
Let f be a real valued function continuous on [a, b].
Then by EVT, f has a minimum on [a, b].
Let f(c) be a minimum of f on [a, b].
Then there exists c ∈ [a, b] such that f(c) ≤ f(x) for all x ∈ [a, b].
Either c is an endpoint of [a, b] or not.
If c is an endpoint of [a, b], then either c = a or c = b, so either f(a) or f(b)

is a minimum of f .
If c is not an endpoint of [a, b], then c 6= a and c 6= b.
Since c ∈ [a, b] and c 6= a and c 6= b, then c ∈ (a, b).
Since the open interval (a, b) is an open set, then c is an interior point of

(a, b).
Hence, there exists δ > 0 such that N(c; δ) ⊂ (a, b).
Let x ∈ N(c; δ).
Since N(c; δ) ⊂ (a, b) and (a, b) ⊂ [a, b], then x ∈ [a, b] and N(c; δ) ⊂ [a, b].
Since x ∈ [a, b], then f(c) ≤ f(x), so f(c) ≤ f(x) for all x ∈ N(c; δ).
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Since there exists δ > 0 such that N(c; δ) ⊂ [a, b] and f(c) ≤ f(x) for all
x ∈ N(c; δ), then f(c) is a relative minimum.

Thus, either f is not differentiable at c or f ′(c) = 0.

Let f be a real valued function continuous on the interval [a, b].
If f(c) is a minimum of f on [a, b], then
1. either f(a) or f(b) is a minimum or
2. c ∈ (a, b) and f is not differentiable at c or
3. c ∈ (a, b) and f ′(c) = 0.

Let f be a real valued function continuous on the interval [a, b].
If f(c) is an extreme value of f on [a, b], then
1. either f(a) or f(b) is an extreme value or
2. c ∈ (a, b) and f is not differentiable at c or
3. c ∈ (a, b) and f ′(c) = 0

Theorem 26. Rolle’s Theorem
Let a, b ∈ R with a < b.
Let f be a real valued function continuous on the closed interval [a, b] and

differentiable on the open interval (a, b).
If f(a) = f(b), then there exists c ∈ (a, b) such that f ′(c) = 0.

Theorem 27. Mean Value Theorem
Let a, b ∈ R with a < b.
Let f be a real valued function continuous on the closed interval [a, b] and

differentiable on the open interval (a, b).

Then there exists c ∈ (a, b) such that f ′(c) = f(b)−f(a)
b−a .

Let a, b ∈ R with a < b.
Let f be a real valued function continuous on the closed interval [a, b] and

differentiable on the open interval (a, b).

Then by MVT, there exists c ∈ (a, b) such that f ′(c) = f(b)−f(a)
b−a .

Therefore, MVT implies that there exists a point c ∈ (a, b) at which the
instantaneous rate of change equals the average rate of change of f over the
interval [a, b].

Corollary 28. Let f be a real valued function differentiable on an interval I.
Then

1. If f ′(x) = 0 for all x ∈ I, then f is constant on I.
2. If f ′(x) > 0 for all x ∈ I, then f is strictly increasing on I.
3. If f ′(x) < 0 for all x ∈ I, then f is strictly decreasing on I.

Corollary 29. functions with the same derivative on an interval differ
by a constant

Let f and g be real valued functions differentiable on an interval I.
If f ′(x) = g′(x) for all x ∈ I, then there exists C ∈ R such that f − g = C.

8



Theorem 30. First Derivative Test for relative extrema of a function
continuous on an open interval

Let E ⊂ R.
Let f : E → R be a function.
Let c ∈ E.
Let there exist δ > 0 such that (c− δ, c+ δ) ⊂ E.
Suppose f is continuous on (c− δ, c+ δ) and differentiable on (c− δ, c) and

(c, c+ δ).
1. If f ′(x) < 0 for all x ∈ (c− δ, c) and f ′(x) > 0 for all x ∈ (c, c+ δ), then

f(c) is a relative minimum.
2. If f ′(x) > 0 for all x ∈ (c− δ, c) and f ′(x) < 0 for all x ∈ (c, c+ δ), then

f(c) is a relative maximum.

Lemma 31. Let E ⊂ R.
Let f : E → R be a function.
Let c be a point.
1. If the limit of f at c exists and is positive, then there exists δ > 0 such

that f(x) > 0 for all x ∈ N ′(c; δ) ∩ E.
2. If the limit of f at c exists and is negative, then there exists δ > 0 such

that f(x) < 0 for all x ∈ N ′(c; δ) ∩ E.

Lemma 32. Let E ⊂ R.
Let f : E → R be a function.
Let f be differentiable at c ∈ E.
1. If f ′(c) > 0, then there exists δ > 0 such that f(c) > f(x) for all

x ∈ (c− δ, c) ∩ E.
2. If f ′(c) < 0, then there exists δ > 0 such that f(c) > f(x) for all

x ∈ (c, c+ δ) ∩ E.

Theorem 33. Intermediate Value property of Derivatives
Let a, b ∈ R with a < b.
Let f be a real valued function differentiable on the closed interval [a, b].
For every real number k such that f ′(a) < k < f ′(b), there exists c ∈ (a, b)

such that f ′(c) = k.

Therefore, the derivative of a function differentiable on a closed bounded
interval has the intermediate value property.

L’Hopital’s Rule

Theorem 34. Cauchy Mean Value Theorem
Let a, b ∈ R with a < b.
Let f be a real valued function continuous on the closed interval [a, b] and

differentiable on the open interval (a, b).
Let g be a real valued function continuous on the closed interval [a, b] and

differentiable on the open interval (a, b).
Then there exists c ∈ (a, b) such that f ′(c)(g(b)− g(a)) = g′(c)(f(b)− f(a)).
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