Integration Theory of real valued functions

Jason Sass

June 29, 2021

Integral of a real valued function

Theorem 1. representation of antiderivatives
Let F be an antiderivative of a function f defined on an interval I.
Then G is an antiderivative of f on I iff there exists a constant C such that $G(x)=F(x)+C$ for all $x \in I$.

Proof. Suppose there exists a constant C such that $G(x)=F(x)+C$ for all $x \in I$.

Let $x \in I$.
Then $G(x)=F(x)+C$, so $G^{\prime}(x)=F^{\prime}(x)$.
Since F is an antiderivative of f, then $F^{\prime}(x)=f(x)$.
Hence, $G^{\prime}(x)=F^{\prime}(x)=f(x)$, so $G^{\prime}(x)=f(x)$.
Therefore, G is an antiderivative of f.

Conversely, suppose G is an antiderivative of f.
Then $G^{\prime}(x)=f(x)$ for all $x \in I$.
Since F is an antiderivative of f, then $F^{\prime}(x)=f(x)$ for all $x \in I$.
Let $x \in I$.
Then $G^{\prime}(x)=f(x)=F^{\prime}(x)$, so $G^{\prime}(x)=F^{\prime}(x)$ for all $x \in I$.
Since functions with the same derivative on an interval differ by a constant by MVT, then there exists a real constant C such that $G-F=C$.

Thus, there exists a constant C such that $G(x)-F(x)=C$, so there exists a constant C such that $G(x)=F(x)+C$.

Therefore, there exists a constant C such that $G(x)=F(x)+C$ for all $x \in I$, as desired.

Definite Integral of a real valued function

Lemma 2. If $f \in \mathcal{R}[a, b]$, then $\int_{a}^{a} f=0=\int_{b}^{b} f$.
Proof. Let $f \in \mathcal{R}[a, b]$.
Then $f:[a, b] \rightarrow \mathbb{R}$ is integrable on $[a, b]$, so $\int_{a}^{b} f$ exists.
Since $a \leq a \leq b$, then $\int_{a}^{b} f=\int_{a}^{a} f+\int_{a}^{b} f$, so $0=\int_{a}^{a} f$.

Since $a \leq b \leq b$, then $\int_{a}^{b} f=\int_{a}^{b} f+\int_{b}^{b} f$, so $0=\int_{b}^{b} f$.
Therefore, $\int_{a}^{a} f=0=\int_{b}^{b} f$.
Proposition 3. Let $f \in \mathcal{R}[a, b]$.
For every $c \in[a, b], \int_{c}^{c} f=0$.
Proof. Let $c \in[a, b]$ be arbitrary.
Then either $c=a$ or $c=b$ or $a<c<b$.
We consider these cases separately.
Case 1: Suppose $c=a$.
Then $\int_{c}^{c} f=\int_{a}^{a} f=0$.
Case 2: Suppose $c=b$.
Then $\int_{c}^{c} f=\int_{b}^{b} f=0$.
Case 3: Suppose $a<c<b$.
Then $c \in(a, b)$.
Since $f \in \mathcal{R}[a, b]$, then $f \in \mathcal{R}[a, c]$ and $f \in \mathcal{R}[c, b]$, so $f \in \mathcal{R}[a, c]$.
Hence, by the previous lemma, $\int_{c}^{c} f=0$.
Therefore, in all cases, $\int_{c}^{c} f=0$.

Fundamental Theorem of Calculus

Theorem 4. Let $f:[a, b] \rightarrow \mathbb{R}$ be an integrable function.
Let $F:[a, b] \rightarrow \mathbb{R}$ be defined by $F(x)=\int_{a}^{x} f$ for $x \in[a, b]$.
The function F is continuous.
Proof. Since $f:[a, b] \rightarrow \mathbb{R}$ is integrable, then $f \in \mathcal{R}[a, b]$.
We first prove F is a function.
Let $x \in[a, b]$.
Then either $x=a$ or $x \in(a, b)$ or $x=b$.
If $x=a$, then $F(x)=F(a)=\int_{a}^{a} f=0$.
If $x=b$, then $F(x)=F(b)=\int_{a}^{b} f$.
If $x \in(a, b)$, then $f \in \mathcal{R}[a, b]$ iff $f \in \mathcal{R}[a, x]$ and $f \in \mathcal{R}[x, b]$.
Since $f \in \mathcal{R}[a, b]$, then $f \in \mathcal{R}[a, x]$ and $f \in \mathcal{R}[x, b]$, so $f \in \mathcal{R}[a, x]$.
Thus, $\int_{a}^{x} f$ exists as a unique real number and $F(x)=\int_{a}^{x} f$.
Therefore, $F:[a, b] \rightarrow \mathbb{R}$ is a function.

We prove F is continuous.
Since $f \in \mathcal{R}[a, b]$, then f is bounded, so there exists $M \in \mathbb{R}$ such that $|f(x)| \leq M$ for all $x \in[a, b]$.

Let $x \in[a, b]$.
Then $|f(x)| \leq M$.
Since $M \geq|f(x)| \geq 0$, then $M \geq 0$, so either $M>0$ or $M=0$.
We consider these cases separately.
Case 1: Suppose $M>0$.
Let $c \in[a, b]$.

To prove F is continuous, we must prove F is continuous at c.
Let $\epsilon>0$ be given.
Let $\delta=\frac{\epsilon}{M}$.
Since $\epsilon>0$ and $M>0$, then $\delta>0$.
Let $x \in[a, b]$ such that $|x-c|<\delta$.
Then $|x-c|<\frac{\epsilon}{M}$.
Let $A, B \in \mathbb{R}$ such that $[A, B] \subset[a, b]$.
Since $|f(x)| \leq M$ for all $x \in[a, b]$, then $-M \leq f(x) \leq M$ for all $x \in[a, b]$.
Since $[A, B] \subset[a, b]$, then $-M \leq f(x) \leq M$ for all $x \in[A, B]$.
Thus, $\int_{A}^{B}(-M) \leq \int_{A}^{B} f \leq \int_{A}^{B} M$, so $(-M)(B-A) \leq \int_{A}^{B} f \leq M(B-A)$.
Hence, $\left|\int_{A}^{B} f\right| \leq M(B-A)$, so $\left|\int_{A}^{B} f\right| \leq M(B-A)$ for all $A, B \in \mathbb{R}$ such that $[A, B] \subset[a, b]$.

We prove $[c, x] \subset[a, b]$.
Let $t \in[c, x]$.
Then $c \leq t \leq x$, so $c \leq t$ and $t \leq x$.
Since $c \in[a, b]$, then $a \leq c \leq b$, so $a \leq c$.
Since $x \in[a, b]$, then $a \leq x \leq b$, so $x \leq b$.
Thus, $a \leq c \leq t \leq x \leq b$, so $a \leq t \leq b$.
Hence, $t \in[a, b]$, so $[c, x] \subset[a, b]$.

Since $[c, x] \subset[a, b]$, then $\left|\int_{c}^{x} f\right| \leq M(x-c)$.
Since $|F(x)-F(c)|=\left|\int_{a}^{x} f-\int_{a}^{c} f\right|=\left|\int_{c}^{x} f\right| \leq M(x-c) \leq M|x-c|<$ $M\left(\frac{\epsilon}{M}\right)=\epsilon$, then $|F(x)-F(c)|<\epsilon$, so F is continuous at c, as desired.

Case 2: Suppose $M=0$.
Then $|f(x)| \leq 0$ for all $x \in[a, b]$.
Let $x \in[a, b]$.
Then $|f(x)| \leq 0$.
Since $|f(x)| \geq 0$ and $|f(x)| \leq 0$, then $|f(x)|=0$, so $f(x)=0$.
Thus, $f(x)=0$ for all $x \in[a, b]$, so f is the constant zero function.
Observe that $F(x)=\int_{a}^{x} f=\int_{a}^{x} 0=0(x-a)=0$, so $F(x)=0$.
Since x is arbitrary, then $F(x)=0$ for all $x \in[a, b]$, so F is a constant function.

Since every constant function is continuous, then F is continuous.

Theorem 5. Fundamental Theorem of Calculus (derivative of an integral

Let $f:[a, b] \rightarrow \mathbb{R}$ be an integrable function.
Let $F:[a, b] \rightarrow \mathbb{R}$ be defined by $F(x)=\int_{a}^{x} f$ for all $x \in[a, b]$.
If f is continuous at x, then F is differentiable at x and $F^{\prime}(x)=f(x)$.
Proof. Let $c \in[a, b]$.
Suppose f is continuous at c.
We must prove F is differentiable at c and $F^{\prime}(c)=f(c)$.

Let $\epsilon>0$ be given.
Then $\frac{\epsilon}{2}>0$.
Since f is continuous at c, then there exists $\delta>0$ such that for all $x \in[a, b]$, if $|x-c|<\delta$, then $|f(x)-f(c)|<\frac{\epsilon}{2}$.

Let $x \in[a, b]$ such that $0<|x-c|<\delta$.
Then $0<|x-c|$ and $|x-c|<\delta$.
Since $x \in[a, b]$ and $|x-c|<\delta$, then $|f(x)-f(c)|<\frac{\epsilon}{2}$.
Thus, $-\frac{\epsilon}{2}<f(x)-f(c)<\frac{\epsilon}{2}$, so $f(c)-\frac{\epsilon}{2}<f(x)<f(c)+\frac{\epsilon}{2}$.
Hence, $f(c)-\frac{\epsilon}{2} \leq f(x) \leq f(c)+\frac{\epsilon}{2}$.
Since $f:[a, b] \rightarrow \mathbb{R}$ is integrable, then $f \in \mathcal{R}[a, b]$, so $\int_{c}^{x}\left[f(c)-\frac{\epsilon}{2}\right] \leq \int_{c}^{x} f \leq$ $\int_{c}^{x}\left[f(c)+\frac{\epsilon}{2}\right]$.

Thus, $\left[f(c)-\frac{\epsilon}{2}\right](x-c) \leq \int_{c}^{x} f \leq\left[f(c)+\frac{\epsilon}{2}\right](x-c)$.
Since $|x-c|>0$, then $x-c \neq 0$, so $f(c)-\frac{\epsilon}{2} \leq \frac{\int_{c}^{x} f}{x-c} \leq f(c)+\frac{\epsilon}{2}$.
Hence, $-\frac{\epsilon}{2} \leq \frac{\int_{c}^{x} f}{x-c}-f(c) \leq \frac{\epsilon}{2}$, so $\left|\frac{\int_{c}^{x} f}{x-c}-f(c)\right| \leq \frac{\epsilon}{2}<\epsilon$.
Therefore, $\left|\frac{\int_{c}^{x} f}{x-c}-f(c)\right|<\epsilon$, so $\lim _{x \rightarrow c} \frac{\int_{c}^{x} f}{x-c}=f(c)$.
Observe that

$$
\begin{aligned}
f(c) & =\lim _{x \rightarrow c} \frac{\int_{c}^{x} f}{x-c} \\
& =\lim _{x \rightarrow c} \frac{\int_{a}^{x} f-\int_{a}^{c} f}{x-c} \\
& =\lim _{x \rightarrow c} \frac{F(x)-F(c)}{x-c} \\
& =F^{\prime}(c)
\end{aligned}
$$

Therefore, $F^{\prime}(c)=f(c)$, so F is differentiable at c.
Theorem 6. Fundamental Theorem of Calculus (integral of a derivative)

Let $F:[a, b] \rightarrow \mathbb{R}$ be a differentiable function.
If F^{\prime} is continuous, then F^{\prime} is integrable and $\int_{a}^{b} F^{\prime}=F(b)-F(a)$.
Proof. Suppose F^{\prime} is continuous.
Then $F^{\prime}:[a, b] \rightarrow \mathbb{R}$ is continuous, so $F^{\prime} \in \mathcal{R}[a, b]$.
Hence, F^{\prime} is integrable and $\int_{a}^{b} F^{\prime}$ exists.
We must prove $\int_{a}^{b} F^{\prime}=F(b)-F(a)$.
Since F^{\prime} is the derivative of F, then F is an antiderivative of F^{\prime}.
Since $F^{\prime}:[a, b] \rightarrow \mathbb{R}$ is integrable, let $\mathcal{F}:[a, b] \rightarrow \mathbb{R}$ be the function defined by $\mathcal{F}(x)=\int_{a}^{x} F^{\prime}$ for all $x \in[a, b]$.

Since F^{\prime} is continuous, then by FTC(derivative of an integral), \mathcal{F} is an antiderivative of F^{\prime}.

Since \mathcal{F} is an antiderivative of F^{\prime} and F is an antiderivative of F^{\prime}, then there exists a constant C such that $F(x)=\mathcal{F}(x)+C$ for all $x \in[a, b]$.

Observe that

$$
\begin{aligned}
F(b)-F(a) & =(\mathcal{F}(b)+C)-(\mathcal{F}(a)+C) \\
& =\mathcal{F}(b)-\mathcal{F}(a) \\
& =\int_{a}^{b} F^{\prime}-\int_{a}^{a} F^{\prime} \\
& =\int_{a}^{b} F^{\prime}-0 \\
& =\int_{a}^{b} F^{\prime} .
\end{aligned}
$$

Therefore, $\int_{a}^{b} F^{\prime}=F(b)-F(a)$, as desired.

Darboux Integral of a real valued function

Lemma 7. The existence of the supremum and infimum of the direct image of each subinterval of a partition for a bounded function.

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
Let n be a fixed positive integer.
Let $P=\left\{a, x_{1}, \ldots, x_{n-1}, b\right\}$ be a partition of $[a, b]$.
For each $k=1,2, \ldots, n$ the supremum and infimum of the set $\{f(x): x \in$ $\left.\left[x_{k-1}, x_{k}\right]\right\}$ exist.

Proof. Let $k \in\{1,2, \ldots, n\}$.
Let $I_{k}=\left[x_{k-1}, x_{k}\right]$.
The direct image of the subinterval I_{k} under f is the set $f\left(I_{k}\right)=\{f(x): x \in$ $\left.I_{k}\right\}$.

The direct image of f is the set $f([a, b])=\{f(x): x \in[a, b]\}$.
Since P is a partition of $[a, b]$, then $x_{k-1}<x_{k}$ and $I_{k} \subset[a, b]$.
Since $x_{k-1}<x_{k}$, then the interval I_{k} is not empty.
Let $x \in I_{k}$.
Then $f(x)$ exists, so $f(x) \in f\left(I_{k}\right)$.
Hence, the set $f\left(I_{k}\right)$ is not empty.
Let $y \in f\left(I_{k}\right)$.
Then there exists $x \in I_{k}$ such that $y=f(x)$.
Since $x \in I_{k}$ and $I_{k} \subset[a, b]$, then $x \in[a, b]$.
Thus, $f(x)=y \in f([a, b])$, so $f\left(I_{k}\right) \subset f([a, b])$.
Since f is a bounded function, then the set $f([a, b])$ is bounded.
Since $f([a, b])$ is bounded and $f\left(I_{k}\right) \subset f([a, b])$, then $f\left(I_{k}\right)$ is bounded, so $f\left(I_{k}\right)$ is bounded above and below in \mathbb{R}.

Since $f\left(I_{k}\right)$ is not empty and bounded above in \mathbb{R}, then by completeness of $\mathbb{R}, \sup f\left(I_{k}\right)$ exists.

Since $f\left(I_{k}\right)$ is not empty and bounded below in \mathbb{R}, then by completeness of $\mathbb{R}, \inf f\left(I_{k}\right)$ exists.

Since k is arbitrary, then the supremum and infimum of $f\left(I_{k}\right)$ exist for each $k=1,2, \ldots, n$.

Lemma 8. A lower Riemann sum is smaller than an upper Riemann sum for a given partition.

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
Let P be a partition of $[a, b]$.
Let $U(f, P)$ be an upper Riemann sum.
Let $L(f, P)$ be a lower Riemann sum.
Then $L(f, P) \leq U(f, P)$.
Proof. Since P is a partition of $[a, b]$, then $P=\left\{a, x_{1}, \ldots, x_{n-1}, b\right\}$ for a fixed positive integer n.

Let $I_{k}=\left[x_{k-1}, x_{k}\right]$ and $\Delta_{k}=x_{k}-x_{k-1}$ for each $k=1,2, \ldots, n$.
Let $k \in\{1,2, \ldots, n\}$.
Since f is a bounded function and P is a partition of $[a, b]$, then by the previous lemma, the supremum and infimum of the set $\left\{f(x): x \in I_{k}\right\}$ exist, so $\sup f\left(I_{k}\right)$ and $\inf f\left(I_{k}\right)$ exist.

Thus, $\inf f\left(I_{k}\right) \leq \sup f\left(I_{k}\right)$.
Since P is a partition of $[a, b]$, then $x_{k-1}<x_{k}$, so $\Delta_{k}=x_{k}-x_{k-1}>0$.
Thus, $\inf f\left(I_{k}\right) \Delta_{k} \leq \sup f\left(I_{k}\right) \Delta_{k}$.
Since k is arbitrary, then $\inf f\left(I_{k}\right) \Delta_{k} \leq \sup f\left(I_{k}\right) \Delta_{k}$ for each $k=1,2, \ldots, n$.
Therefore,

$$
\begin{aligned}
L(f, P) & =\sum_{k=1}^{n} \inf f\left(I_{k}\right) \Delta_{k} \\
& \leq \sum_{k=1}^{n} \sup f\left(I_{k}\right) \Delta_{k} \\
& =U(f, P)
\end{aligned}
$$

Lemma 9. Refining a partition increases lower Riemann sums and decreases upper Riemann sums.

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
If P is a partition of $[a, b]$ and Q is a refinement of P, then $L(f, P) \leq L(f, Q)$ and $U(f, P) \geq U(f, Q)$.

Proof. Suppose P is a partition of $[a, b]$ and Q is a refinement of P.
Since Q is a refinement of P, then $P \subset Q$.

We first prove $L(f, P) \leq L(f, Q)$.
For simplicity, assume $P=\left(a, x_{1}, b\right)$ and $Q=\left(a, x_{1}, x_{2}, b\right)$.
We need to re-work this proof. We will do this later.
Then Q is a refinement of P.

We have $\Delta_{p 1}=x_{1}-a=\Delta_{q 1}$ and $\Delta_{q 1}=x_{1}-a$ and $\Delta_{q 2}=x_{2}-x_{1}$ and $\Delta_{q 3}=b-x_{2}$.

Since $\Delta_{p 1}=x_{1}-a=\Delta_{q 1}$, then $\Delta_{p 1}=\Delta_{q 1}$.
Since $\Delta_{q 2}+\Delta_{q 3}=\left(x_{2}-x_{1}\right)+\left(b-x_{2}\right)=b-x_{1}=\Delta_{p 2}$, then $\Delta_{q 2}+\Delta_{q 3}=\Delta_{p 2}$.
Since $\left[x_{1}, x_{2}\right] \subset\left[x_{1}, b\right]$, then $f\left(\left[x_{1}, x_{2}\right]\right) \subset f\left(\left[x_{1}, b\right]\right)$.
Since f is bounded in \mathbb{R}, then $\inf f\left(\left[x_{1}, x_{2}\right]\right)$ exists and $\inf f\left(\left[x_{1}, b\right]\right)$ exists, so by the comparison property of infima, $\inf f\left(\left[x_{1}, b\right]\right) \leq \inf f\left(\left[x_{1}, x_{2}\right]\right)$.

Since $\Delta_{q 2}>0$, then this implies $\inf f\left(\left[x_{1}, b\right]\right) \Delta_{q 2} \leq \inf f\left(\left[x_{1}, x_{2}\right]\right) \Delta_{q 2}$.
Similarly, since $\left[x_{2}, b\right] \subset\left[x_{1}, b\right]$, then $f\left(\left[x_{2}, b\right]\right) \subset f\left(\left[x_{1}, b\right]\right)$.
Since f is bounded in \mathbb{R}, then $\inf f\left(\left[x_{2}, b\right]\right)$ exists and $\inf f\left(\left[x_{1}, b\right]\right)$ exists, so by the comparison property of infima, $\inf f\left(\left[x_{1}, b\right]\right) \leq \inf f\left(\left[x_{2}, b\right]\right)$.

Since $\Delta_{q 3}>0$, then this implies inf $f\left(\left[x_{1}, b\right]\right) \Delta_{q 3} \leq \inf f\left(\left[x_{2}, b\right]\right) \Delta_{q 3}$.
Observe that

$$
\begin{aligned}
L(f, P) & =\sum_{k=1}^{n} \inf f\left(I_{k}\right) \Delta_{p k} \\
& =\inf f\left(\left[a, x_{1}\right]\right) \Delta_{p 1}+\inf f\left(\left[x_{1}, b\right]\right) \Delta_{p 2} \\
& =\inf f\left(\left[a, x_{1}\right]\right) \Delta_{p 1}+\inf f\left(\left[x_{1}, b\right]\right)\left(\Delta_{q 2}+\Delta_{q 3}\right) \\
& =\inf f\left(\left[a, x_{1}\right]\right) \Delta_{p 1}+\inf f\left(\left[x_{1}, b\right]\right) \Delta_{q 2}+\inf f\left(\left[x_{1}, b\right]\right) \Delta_{q 3} \\
& =\inf f\left(\left[a, x_{1}\right]\right) \Delta_{q 1}+\inf f\left(\left[x_{1}, b\right]\right) \Delta_{q 2}+\inf f\left(\left[x_{1}, b\right]\right) \Delta_{q 3} \\
& \leq \inf f\left(\left[a, x_{1}\right]\right) \Delta_{q 1}+\inf f\left(\left[x_{1}, x_{2}\right]\right) \Delta_{q 2}+\inf f\left(\left[x_{2}, b\right]\right) \Delta_{q 3} \\
& =\sum_{k=1}^{n} \inf f\left(I_{k}\right) \Delta_{q k} \\
& =L(f, Q) .
\end{aligned}
$$

Therefore, $L(f, P) \leq L(f, Q)$.
Proof. We next prove $U(f, P) \geq U(f, Q)$.
For simplicity, assume $P=\left(a, x_{1}, b\right)$ and $Q=\left(a, x_{1}, x_{2}, b\right)$.
Then Q is a refinement of P.
We have $\Delta_{p 1}=x_{1}-a=\Delta_{q 1}$ and $\Delta_{q 1}=x_{1}-a$ and $\Delta_{q 2}=x_{2}-x_{1}$ and $\Delta_{q 3}=b-x_{2}$.

Since $\Delta_{p 1}=x_{1}-a=\Delta_{q 1}$, then $\Delta_{p 1}=\Delta_{q 1}$.
Since $\Delta_{q 2}+\Delta_{q 3}=\left(x_{2}-x_{1}\right)+\left(b-x_{2}\right)=b-x_{1}=\Delta_{p 2}$, then $\Delta_{q 2}+\Delta_{q 3}=\Delta_{p 2}$.
Since $\left[x_{1}, x_{2}\right] \subset\left[x_{1}, b\right]$, then $f\left(\left[x_{1}, x_{2}\right]\right) \subset f\left(\left[x_{1}, b\right]\right)$.
Since f is bounded in \mathbb{R}, then $\sup f\left(\left[x_{1}, x_{2}\right]\right)$ exists and $\sup f\left(\left[x_{1}, b\right]\right)$ exists, so by the comparison property of suprema, $\sup f\left(\left[x_{1}, x_{2}\right]\right) \leq \sup f\left(\left[x_{1}, b\right]\right)$.

Since $\Delta_{q 2}>0$, then this implies $\sup f\left(\left[x_{1}, x_{2}\right]\right) \Delta_{q 2} \leq \sup f\left(\left[x_{1}, b\right]\right) \Delta_{q 2}$.

Similarly, since $\left[x_{2}, b\right] \subset\left[x_{1}, b\right]$, then $f\left(\left[x_{2}, b\right]\right) \subset f\left(\left[x_{1}, b\right]\right)$.
Since f is bounded in \mathbb{R}, then $\sup f\left(\left[x_{2}, b\right]\right)$ exists and $\sup f\left(\left[x_{1}, b\right]\right)$ exists, so by the comparison property of suprema, $\sup f\left(\left[x_{2}, b\right]\right) \leq \sup f\left(\left[x_{1}, b\right]\right)$.

Since $\Delta_{q 3}>0$, then this implies sup $f\left(\left[x_{2}, b\right]\right) \Delta_{q 3} \leq \sup f\left(\left[x_{1}, b\right]\right) \Delta_{q 3}$.

Observe that

$$
\begin{aligned}
U(f, P) & =\sum_{k=1}^{n} \sup f\left(I_{k}\right) \Delta_{p k} \\
& =\sup f\left(\left[a, x_{1}\right]\right) \Delta_{p 1}+\sup f\left(\left[x_{1}, b\right]\right) \Delta_{p 2} \\
& =\sup f\left(\left[a, x_{1}\right]\right) \Delta_{p 1}+\sup f\left(\left[x_{1}, b\right]\right)\left(\Delta_{q 2}+\Delta_{q 3}\right) \\
& =\sup f\left(\left[a, x_{1}\right]\right) \Delta_{p 1}+\sup f\left(\left[x_{1}, b\right]\right) \Delta_{q 2}+\sup f\left(\left[x_{1}, b\right]\right) \Delta_{q 3} \\
& =\sup f\left(\left[a, x_{1}\right]\right) \Delta_{q 1}+\sup f\left(\left[x_{1}, b\right]\right) \Delta_{q 2}+\sup f\left(\left[x_{1}, b\right]\right) \Delta_{q 3} \\
& \geq \sup f\left(\left[a, x_{1}\right]\right) \Delta_{q 1}+\sup f\left(\left[x_{1}, x_{2}\right]\right) \Delta_{q 2}+\sup f\left(\left[x_{2}, b\right]\right) \Delta_{q 3} \\
& =\sum_{k=1}^{n} \sup f\left(I_{k}\right) \Delta_{q k} \\
& =U(f, Q)
\end{aligned}
$$

Therefore, $U(f, P) \geq U(f, Q)$.

Proposition 10. Any lower Riemann sum is smaller than any upper

 Riemann sum.Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
If P and Q are partitions of $[a, b]$, then $L(f, P) \leq U(f, Q)$.
Proof. Suppose P and Q are partitions of $[a, b]$.
Since $P \subset P \cup Q$, then $P \cup Q$ is a refinement of P.
Since refining a partition increases lower sums, then $L(f, P) \leq L(f, P \cup Q)$.
Since a lower sum is smaller than an upper sum and $P \cup Q$ is a partition, then $L(f, P \cup Q) \leq U(f, P \cup Q)$.

Since $Q \subset P \cup Q$, then $P \cup Q$ is a refinement of Q.
Since refining a partition decreases upper sums, then $U(f, Q) \geq U(f, P \cup Q)$.
Therefore, $L(f, P) \leq L(f, P \cup Q) \leq U(f, P \cup Q) \leq U(f, Q)$, so $L(f, P) \leq$ $U(f, Q)$.

Lemma 11. For every $n \in \mathbb{Z}^{+}, \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)=x_{n}-x_{0}$.
Proof. We prove by induction on n.
Let $S=\left\{n \in \mathbb{Z}^{+}: \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)=x_{n}-x_{0}\right\}$.
Since $1 \in \mathbb{Z}^{+}$and $\sum_{i=1}^{1}\left(x_{i}-x_{i-1}\right)=x_{1}-x_{0}$, then $1 \in S$.

Suppose $k \in S$.
Then $k \in \mathbb{Z}^{+}$and $\sum_{i=1}^{k}\left(x_{i}-x_{i-1}\right)=x_{k}-x_{0}$.
Observe that

$$
\begin{aligned}
\sum_{i=1}^{k+1}\left(x_{i}-x_{i-1}\right) & =\sum_{i=1}^{k}\left(x_{i}-x_{i-1}\right)+\left(x_{k+1}-x_{k}\right) \\
& =\left(x_{k}-x_{0}\right)+\left(x_{k+1}-x_{k}\right) \\
& =x_{k+1}-x_{0}
\end{aligned}
$$

Since $k \in \mathbb{Z}^{+}$, then $k+1 \in \mathbb{Z}^{+}$.
Since $k+1 \in \mathbb{Z}^{+}$and $\sum_{i=1}^{k+1}\left(x_{i}-x_{i-1}\right)=x_{k+1}-x_{0}$, then $k+1 \in S$.
Thus, $k \in S$ implies $k+1 \in S$.
By the principle of mathematical induction, $S=\mathbb{Z}^{+}$, so $\sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)=$ $x_{n}-x_{0}$ for all $n \in \mathbb{Z}^{+}$, as desired.

Proposition 12. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
Let $M=\sup f([a, b])$.
Let $m=\inf f([a, b])$.
If P is a partition of $[a, b]$, then $m(b-a) \leq L(f, P) \leq U(f, P) \leq M(b-a)$.
Proof. Since f is a bounded function and the set $\{a, b\}$ is a partition of the interval $[a, b]$, then the suprema and infima of the set $f([a, b])$ exist.

Let $M=\sup f([a, b])$.
Let $m=\inf f([a, b])$.
Suppose P is a partition of $[a, b]$.
Then there exists a positive integer n such that $P=\left\{a, x_{1}, \ldots, x_{n-1}, b\right\}$ is a finite set of points and $x_{k-1}<x_{k}$ for each $k=1,2, \ldots, n$ and $x_{0}=a$ and $x_{n}=b$.

Since f is a bounded function and P is a partition of $[a, b]$, then the lower Riemann sum $L(f, P)$ and the upper Riemann sum $U(f, P)$ exist.

Let $k \in\{1,2, \ldots, n\}$ be arbitrary.
Since P is a partition of $[a, b]$, then $I_{k}=\left[x_{k-1}, x_{k}\right]$ is a subset of the interval $[a, b]$.

Since $f:[a, b] \rightarrow \mathbb{R}$ is a map and $I_{k} \subset[a, b]$, then $f\left(I_{k}\right) \subset f([a, b])$.
Since f is a bounded function and P is a partition of $[a, b]$, then $\sup f\left(I_{k}\right)$ and $\inf f\left(I_{k}\right)$ exist.

Since $f\left(I_{k}\right) \subset f([a, b])$ and $\inf f\left(I_{k}\right)$ and $\inf f([a, b])$ exist, then by the comparison property of infima, $\inf f([a, b]) \leq \inf f\left(I_{k}\right)$, so $m \leq \inf f\left(I_{k}\right)$.

Since $f\left(I_{k}\right) \subset f([a, b])$ and $\sup f\left(I_{k}\right)$ and $\sup f([a, b])$ exist, then by the comparison property of suprema, sup $f\left(I_{k}\right) \leq \sup f([a, b])$, so $\sup f\left(I_{k}\right) \leq M$.

Since $x_{k-1}<x_{k}$, then $\Delta_{k}=x_{k}-x_{k-1}>0$.
Since $m \leq \inf f\left(I_{k}\right)$ and $\Delta_{k}>0$, then $m \Delta_{k} \leq \inf f\left(I_{k}\right) \Delta_{k}$.
Since $\sup f\left(I_{k}\right) \leq M$ and $\Delta_{k}>0$, then $\sup f\left(I_{k}\right) \Delta_{k} \leq M \Delta_{k}$.
Since k is arbitrary, then $m \Delta_{k} \leq \inf f\left(I_{k}\right) \Delta_{k}$ and $\sup f\left(I_{k}\right) \Delta_{k} \leq M \Delta_{k}$ for each $k \in\{1,2, \ldots, n\}$.

Observe that

$$
\begin{aligned}
m(b-a) & =m\left(x_{n}-x_{0}\right) \\
& =m \sum_{k=1}^{n}\left(x_{k}-x_{k-1}\right) \\
& =m \sum_{k=1}^{n} \Delta_{k} \\
& =\sum_{k=1}^{n} m \Delta_{k} \\
& \leq \sum_{k=1}^{n} \inf f\left(I_{k}\right) \Delta_{k} \\
& =L(f, P)
\end{aligned}
$$

Thus, $m(b-a) \leq L(f, P)$.
Observe that

$$
\begin{aligned}
U(f, P) & =\sum_{k=1}^{n} \sup f\left(I_{k}\right) \Delta_{k} \\
& \leq \sum_{k=1}^{n} M \Delta_{k} \\
& =M \sum_{k=1}^{n} \Delta_{k} \\
& =M \sum_{k=1}^{n}\left(x_{k}-x_{k-1}\right) \\
& =M\left(x_{n}-x_{0}\right) \\
& =M(b-a)
\end{aligned}
$$

Thus, $U(f, P) \leq M(b-a)$.
Since a lower Riemann sum is smaller than an upper Riemann sum and P is a partition, then $L(f, P) \leq U(f, P)$.

Therefore, $m(b-a) \leq L(f, P) \leq U(f, P) \leq M(b-a)$.
Theorem 13. The upper and lower Darboux integrals exist for a bounded function.

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
Then the lower integral $\underline{\int_{a}^{b} f}$ and upper integral $\overline{\int_{a}^{b}} f$ exist and $\underline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} f$.
Proof. Let S be the set of all lower Riemann sums of all the partitions of $[a, b]$.
Then $S=\{L(f, P): P$ is a partition of $[a, b]\}$.
Let T be the set of all upper Riemann sums of all the partitions of $[a, b]$.

Then $T=\{U(f, P): P$ is a partition of $[a, b]\}$.
Let $P_{0}=\{a, b\}$ be a partition of the interval $[a, b]$.
Since f is bounded, then the upper Riemann sum $U\left(f, P_{0}\right)$ exists and the lower Riemann sum $L\left(f, P_{0}\right)$ exists, so $U\left(f, P_{0}\right) \in T$ and $L\left(f, P_{0}\right) \in S$.

Hence, $T \neq \emptyset$ and $S \neq \emptyset$.

Let $x \in S$.
Then there exists a partition P_{1} of $[a, b]$ such that $x=L\left(f, P_{1}\right)$.
Since any lower Riemann sum is smaller than any upper Riemann sum, then $x=L\left(f, P_{1}\right) \leq U\left(f, P_{0}\right)$.

Since x is arbitrary, then $x \leq U\left(f, P_{0}\right)$ for every $x \in S$.
Hence, $U\left(f, P_{0}\right)$ is an upper bound of S, so S is bounded above in \mathbb{R}.
Since $S \neq \emptyset$ and bounded above in \mathbb{R}, then by completeness of \mathbb{R}, $\sup S$ exists.

Therefore, $\underline{\int_{a}^{b}} f=\sup \{L(f, P): P$ is a partition of $[a, b]\}=\sup S$ exists.
Let $y \in T$.
Then there exists a partition P_{2} of $[a, b]$ such that $y=U\left(f, P_{2}\right)$.
Since any lower Riemann sum is smaller than any upper Riemann sum, then $L\left(f, P_{0}\right) \leq U\left(f, P_{2}\right)=y$.

Since y is arbitrary, then $L\left(f, P_{0}\right) \leq y$ for every $y \in T$.
Hence, $L\left(f, P_{0}\right)$ is a lower bound of T, so T is bounded below in \mathbb{R}.
Since $T \neq \emptyset$ and bounded below in \mathbb{R}, then by completeness of $\mathbb{R}, \inf T$ exists.

Therefore, $\overline{\int_{a}^{b}} f=\inf \{U(f, P): P$ is a partition of $[a, b]\}=\inf T$ exists.
We next prove $\sup S \leq \inf T$.
Let $t \in T$.
Then $t=U(f, P)$ for some partition P of $[a, b]$.
Let $s \in S$.
Then $s=L(f, Q)$ for some partition Q of $[a, b]$.
Since any lower Riemann sum is smaller than any upper Riemann sum, then $s \leq t$.

Since s is arbitrary, then $s \leq t$ for all $s \in S$, so t is an upper bound of S.
Since $\sup S$ is the least upper bound of S, then $\sup S \leq t$.
Since t is arbitrary, then $\sup S \leq t$ for all $t \in T$.
Hence, $\sup S$ is a lower bound of T.
Since $\inf T$ is the greatest lower bound of T, then $\sup S \leq \inf T$.

Proposition 14. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
Let $M=\sup f([a, b])$.
Let $m=\inf f([a, b])$.
Then $m(b-a) \leq \underline{\int_{a}^{b}} f$ and $\overline{\int_{a}^{b}} f \leq M(b-a)$.

Proof. Since f is a bounded function and the set $\{a, b\}$ is a partition of the interval $[a, b]$, then the suprema and infima of the set $f([a, b])$ exist.

Let $M=\sup f([a, b])$.
Let $m=\inf f([a, b])$.
Since f is a bounded function, then the upper integral $\overline{\int_{a}^{b}} f$ and the lower integral $\int_{a}^{b} f$ exist.

Let $\overline{S=}\{L(f, P): P$ is a partition of $[a, b]\}$.
Let $T=\{U(f, P): P$ is a partition of $[a, b]\}$.
Then $\underline{\int_{a}^{b}} f=\sup S$ and $\overline{\int_{a}^{b}} f=\inf T$.
Let P be a partition of $[a, b]$.
Then $L(f, P) \in S$ and $U(f, P) \in T$.
Since $\sup S$ is an upper bound of S and $L(f, P) \in S$, then $L(f, P) \leq \sup S$.
Since f is a bounded function and $m=\inf f([a, b])$ and P is a partition of $[a, b]$, then $m(b-a) \leq L(f, P)$.

Since $\inf T$ is a lower bound of T and $U(f, P) \in T$, then $\inf T \leq U(f, P)$.
Since f is a bounded function and $M=\sup f([a, b])$ and P is a partition of $[a, b]$, then $U(f, P) \leq M(b-a)$.

Since $m(b-a) \leq L(f, P)$ and $L(f, P) \leq \sup S$, then $m(b-a) \leq \sup S$, so $m(b-a) \leq \underline{\int_{a}^{b}} f$.

Since $\inf \bar{T} \leq U(f, P)$ and $U(f, P) \leq M(b-a)$, then $\inf T \leq M(b-a)$, so $\overline{\int_{a}^{b}} f \leq M(b-a)$.

Theorem 15. Darboux integrability criterion
Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
Then f is Darboux integrable on $[a, b]$ iff for every $\epsilon>0$ there exists a partition P of $[a, b]$ such that $U(f, P)-L(f, P)<\epsilon$.

Proof.

Riemann Integral of a real valued function

Theorem 16. Integral of a Riemann integrable function is unique.
If $f:[a, b] \rightarrow \mathbb{R}$ is a Riemann integrable function, then the value of the integral is unique.

Proof. Let $f:[a, b] \rightarrow \mathbb{R}$ be a Riemann integrable function.
Then there exists $L \in \mathbb{R}$ such that for every $\epsilon>0$, there exists $\delta>0$ such that if \dot{P} is any tagged partition of $[a, b]$ with $\|\dot{P}\|<\delta$, then $|S(f ; \dot{P})-L|<\epsilon$.

To prove L is unique, let $L_{1}, L_{2} \in \mathbb{R}$ such that L_{1} and L_{2} satisfy the definition of a Riemann integrable function.

We must prove $L_{1}=L_{2}$.
Let $\epsilon>0$ be given.
Then $\frac{\epsilon}{2}>0$.

Since L_{1} satisfies the definition, then there exists $\delta_{1}>0$ such that if \dot{P} is any tagged partition of $[a, b]$ with $\|\dot{P}\|<\delta_{1}$, then $\left|S(f ; \dot{P})-L_{1}\right|<\frac{\epsilon}{2}$.

Since L_{2} satisfies the definition, then there exists $\delta_{2}>0$ such that if \dot{P} is any tagged partition of $[a, b]$ with $\|\dot{P}\|<\delta_{2}$, then $\left|S(f ; \dot{P})-L_{2}\right|<\frac{\epsilon}{2}$.

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$.
Then $\delta \leq \delta_{1}$ and $\delta \leq \delta_{2}$.
Since $\delta_{1}>0$ and $\delta_{2}>0$, then $\delta>0$.
Let \dot{P} be an arbitrary tagged partition of $[a, b]$ with $\|\dot{P}\|<\delta$.
Since $\|\dot{P}\|<\delta$ and $\delta \leq \delta_{1}$, then $\|\dot{P}\|<\delta_{1}$, so $\left|S(f ; \dot{P})-L_{1}\right|<\frac{\epsilon}{2}$.
Since $\|\dot{P}\|<\delta$ and $\delta \leq \delta_{2}$, then $\|\dot{P}\|<\delta_{2}$, so $\left|S(f ; \dot{P})-L_{2}\right|<\frac{\epsilon}{2}$.
Observe that

$$
\begin{aligned}
\left|L_{1}-L_{2}\right| & =\left|L_{1}-S(f ; \dot{P})+S(f ; \dot{P})-L_{2}\right| \\
& \leq\left|L_{1}-S(f ; \dot{P})\right|+\left|S(f ; \dot{P})-L_{2}\right| \\
& =\left|S(f ; \dot{P})-L_{1}\right|+\left|S(f ; \dot{P})-L_{2}\right| \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon .
\end{aligned}
$$

Thus, $\left|L_{1}-L_{2}\right|<\epsilon$.
Since ϵ is arbitrary, then $\left|L_{1}-L_{2}\right|<\epsilon$ for every $\epsilon>0$.
Therefore, by a previous lemma, $L_{1}-L_{2}=0$, so $L_{1}=L_{2}$, as desired.

