Integration Theory of real valued functions

Jason Sass

June 29, 2021

Integral of a real valued function

Theorem 1. representation of antiderivatives

Let F be an antiderivative of a function f defined on an interval I.

Then G is an antiderivative of f on I iff there exists a constant C such that G(x) = F(x) + C for all $x \in I$.

Proof. Suppose there exists a constant C such that G(x) = F(x) + C for all $x \in I$.

Let $x \in I$. Then G(x) = F(x) + C, so G'(x) = F'(x). Since F is an antiderivative of f, then F'(x) = f(x). Hence, G'(x) = F'(x) = f(x), so G'(x) = f(x). Therefore, G is an antiderivative of f.

Conversely, suppose G is an antiderivative of f. Then G'(x) = f(x) for all $x \in I$. Since F is an antiderivative of f, then F'(x) = f(x) for all $x \in I$. Let $x \in I$. Then G'(x) = f(x) = F'(x), so G'(x) = F'(x) for all $x \in I$.

Since functions with the same derivative on an interval differ by a constant by MVT, then there exists a real constant C such that G - F = C.

Thus, there exists a constant C such that G(x) - F(x) = C, so there exists a constant C such that G(x) = F(x) + C.

Therefore, there exists a constant C such that G(x) = F(x) + C for all $x \in I$, as desired.

Definite Integral of a real valued function

Lemma 2. If $f \in \mathcal{R}[a, b]$, then $\int_a^a f = 0 = \int_b^b f$.

Proof. Let $f \in \mathcal{R}[a, b]$.

Then $f:[a,b] \to \mathbb{R}$ is integrable on [a,b], so $\int_a^b f$ exists. Since $a \le a \le b$, then $\int_a^b f = \int_a^a f + \int_a^b f$, so $0 = \int_a^a f$. Since $a \leq b \leq b$, then $\int_a^b f = \int_a^b f + \int_b^b f$, so $0 = \int_b^b f$. Therefore, $\int_a^a f = 0 = \int_b^b f$. **Proposition 3.** Let $f \in \mathcal{R}[a, b]$. For every $c \in [a, b]$, $\int_c^c f = 0$. Proof. Let $c \in [a, b]$ be arbitrary. Then either c = a or c = b or a < c < b. We consider these cases separately. **Case 1:** Suppose c = a. Then $\int_c^c f = \int_a^a f = 0$. **Case 2:** Suppose c = b. Then $\int_c^c f = \int_b^b f = 0$. **Case 3:** Suppose a < c < b. Then $c \in (a, b)$. Since $f \in \mathcal{R}[a, b]$, then $f \in \mathcal{R}[a, c]$ and $f \in \mathcal{R}[c, b]$, so $f \in \mathcal{R}[a, c]$. Hence, by the previous lemma, $\int_c^c f = 0$.

Fundamental Theorem of Calculus

Theorem 4. Let $f : [a, b] \to \mathbb{R}$ be an integrable function. Let $F : [a, b] \to \mathbb{R}$ be defined by $F(x) = \int_a^x f$ for $x \in [a, b]$. The function F is continuous.

Proof. Since $f:[a,b] \to \mathbb{R}$ is integrable, then $f \in \mathcal{R}[a,b]$. We first prove F is a function. Let $x \in [a,b]$. Then either x = a or $x \in (a,b)$ or x = b. If x = a, then $F(x) = F(a) = \int_a^a f = 0$. If x = b, then $F(x) = F(b) = \int_a^b f$. If $x \in (a,b)$, then $f \in \mathcal{R}[a,b]$ iff $f \in \mathcal{R}[a,x]$ and $f \in \mathcal{R}[x,b]$. Since $f \in \mathcal{R}[a,b]$, then $f \in \mathcal{R}[a,x]$ and $f \in \mathcal{R}[x,b]$, so $f \in \mathcal{R}[a,x]$. Thus, $\int_a^x f$ exists as a unique real number and $F(x) = \int_a^x f$. Therefore, $F: [a,b] \to \mathbb{R}$ is a function.

We prove F is continuous. Since $f \in \mathcal{R}[a, b]$, then f is bounded, so there exists $M \in \mathbb{R}$ such that $|f(x)| \leq M$ for all $x \in [a, b]$. Let $x \in [a, b]$. Then $|f(x)| \leq M$. Since $M \geq |f(x)| \geq 0$, then $M \geq 0$, so either M > 0 or M = 0. We consider these cases separately. **Case 1:** Suppose M > 0. Let $c \in [a, b]$.

To prove F is continuous, we must prove F is continuous at c. Let $\epsilon > 0$ be given. Let $\delta = \frac{\epsilon}{M}$. Since $\epsilon > 0$ and M > 0, then $\delta > 0$. Let $x \in [a, b]$ such that $|x - c| < \delta$. Then $|x-c| < \frac{\epsilon}{M}$.

Let $A, B \in \mathbb{R}$ such that $[A, B] \subset [a, b]$. Since $|f(x)| \le M$ for all $x \in [a, b]$, then $-M \le f(x) \le M$ for all $x \in [a, b]$. Since $[A, B] \subset [a, b]$, then $-M \leq f(x) \leq M$ for all $x \in [A, B]$. Thus, $\int_A^B (-M) \leq \int_A^B f \leq \int_A^B M$, so $(-M)(B-A) \leq \int_A^B f \leq M(B-A)$. Hence, $|\int_A^B f| \leq M(B-A)$, so $|\int_A^B f| \leq M(B-A)$ for all $A, B \in \mathbb{R}$ such that $[A, B] \subset [a, b]$.

We prove $[c, x] \subset [a, b]$. Let $t \in [c, x]$. Then $c \leq t \leq x$, so $c \leq t$ and $t \leq x$. Since $c \in [a, b]$, then $a \leq c \leq b$, so $a \leq c$. Since $x \in [a, b]$, then $a \le x \le b$, so $x \le b$. Thus, $a \leq c \leq t \leq x \leq b$, so $a \leq t \leq b$. Hence, $t \in [a, b]$, so $[c, x] \subset [a, b]$.

Since $[c, x] \subset [a, b]$, then $|\int_c^x f| \le M(x - c)$. Since $|F(x) - F(c)| = |\int_a^x f - \int_a^c f| = |\int_c^x f| \le M(x - c) \le M|x - c| < M(\frac{\epsilon}{M}) = \epsilon$, then $|F(x) - F(c)| < \epsilon$, so F is continuous at c, as desired. Case 2: Suppose M = 0. Then $|f(x)| \leq 0$ for all $x \in [a, b]$. Let $x \in [a, b]$. Then $|f(x)| \leq 0$. Since $|f(x)| \ge 0$ and $|f(x)| \le 0$, then |f(x)| = 0, so f(x) = 0. Thus, f(x) = 0 for all $x \in [a, b]$, so f is the constant zero function. Observe that $F(x) = \int_a^x f = \int_a^x 0 = 0(x - a) = 0$, so F(x) = 0. Since x is arbitrary, then F(x) = 0 for all $x \in [a, b]$, so F is a constant function.

Since every constant function is continuous, then F is continuous.

Theorem 5. Fundamental Theorem of Calculus (derivative of an integral

Let $f : [a, b] \to \mathbb{R}$ be an integrable function. Let $F : [a, b] \to \mathbb{R}$ be defined by $F(x) = \int_a^x f$ for all $x \in [a, b]$. If f is continuous at x, then F is differentiable at x and F'(x) = f(x).

Proof. Let $c \in [a, b]$.

Suppose f is continuous at c.

We must prove F is differentiable at c and F'(c) = f(c).

Let $\epsilon > 0$ be given. Then $\frac{\epsilon}{2} > 0$. Since f is continuous at c, then there exists $\delta > 0$ such that for all $x \in [a, b]$, if $|x-c| < \delta$, then $|f(x) - f(c)| < \frac{\epsilon}{2}$. Let $x \in [a, b]$ such that $0 < |x - c| < \delta$. Then 0 < |x - c| and $|x - c| < \delta$. Since $x \in [a, b]$ and $|x - c| < \delta$, then $|f(x) - f(c)| < \frac{\epsilon}{2}$. Thus, $-\frac{\epsilon}{2} < f(x) - f(c) < \frac{\epsilon}{2}$, so $f(c) - \frac{\epsilon}{2} < f(x) < f(c) + \frac{\epsilon}{2}$. Hence, $f(c) - \frac{\epsilon}{2} \le f(x) \le f(c) + \frac{\epsilon}{2}$. Since $f:[a,b] \xrightarrow{\sim} \mathbb{R}$ is integrable, then $f \in \mathcal{R}[a,b]$, so $\int_c^x [f(c) - \frac{\epsilon}{2}] \leq \int_c^x f \leq \frac{1}{2} \int_c^x f dc$ $\int_{c}^{x} [f(c) + \frac{\epsilon}{2}].$ Thus, $[\tilde{f}(c) - \frac{\epsilon}{2}](x - c) \le \int_c^x f \le [f(c) + \frac{\epsilon}{2}](x - c).$ Since |x-c| > 0, then $x-c \neq 0$, so $f(c) - \frac{\epsilon}{2} \leq \frac{\int_c^x f}{\pi a} \leq f(c) + \frac{\epsilon}{2}$. Hence, $-\frac{\epsilon}{2} \leq \frac{\int_c^x f}{x-c} - f(c) \leq \frac{\epsilon}{2}$, so $|\frac{\int_c^x f}{x-c} - f(c)| \leq \frac{\epsilon}{2} < \epsilon$. Therefore, $|\frac{\int_c^x f}{x-c} - f(c)| < \epsilon$, so $\lim_{x \to c} \frac{\int_c^x f}{x-c} = f(c)$. Observe that

$$f(c) = \lim_{x \to c} \frac{\int_c^x f}{x - c}$$

=
$$\lim_{x \to c} \frac{\int_a^x f - \int_a^c f}{x - c}$$

=
$$\lim_{x \to c} \frac{F(x) - F(c)}{x - c}$$

=
$$F'(c).$$

Therefore, F'(c) = f(c), so F is differentiable at c.

Theorem 6. Fundamental Theorem of Calculus (integral of a derivative)

Let $F : [a, b] \to \mathbb{R}$ be a differentiable function.

If F' is continuous, then F' is integrable and $\int_a^b F' = F(b) - F(a)$.

Proof. Suppose F' is continuous.

Then $F': [a, b] \to \mathbb{R}$ is continuous, so $F' \in \mathcal{R}[a, b]$. Hence, F' is integrable and $\int_a^b F'$ exists.

We must prove $\int_a^b F' = F(b) - F(a)$. Since F' is the derivative of F, then F is an antiderivative of F'.

Since $F': [a, b] \to \mathbb{R}$ is integrable, let $\mathcal{F}: [a, b] \to \mathbb{R}$ be the function defined by $\mathcal{F}(x) = \int_{a}^{x} F'$ for all $x \in [a, b]$. Since F' is continuous, then by FTC(derivative of an integral), \mathcal{F} is an

antiderivative of F'.

Since \mathcal{F} is an antiderivative of F' and F is an antiderivative of F', then there exists a constant C such that $F(x) = \mathcal{F}(x) + C$ for all $x \in [a, b]$.

Observe that

$$F(b) - F(a) = (\mathcal{F}(b) + C) - (\mathcal{F}(a) + C)$$

$$= \mathcal{F}(b) - \mathcal{F}(a)$$

$$= \int_{a}^{b} F' - \int_{a}^{a} F'$$

$$= \int_{a}^{b} F' - 0$$

$$= \int_{a}^{b} F'.$$

Therefore, $\int_{a}^{b} F' = F(b) - F(a)$, as desired.

Darboux Integral of a real valued function

Lemma 7. The existence of the supremum and infimum of the direct image of each subinterval of a partition for a bounded function. Let $f : [a, b] \to \mathbb{R}$ be a bounded function.

Let n be a fixed positive integer. Let $P = \{a, x_1, ..., x_{n-1}, b\}$ be a partition of [a, b]. For each k = 1, 2, ..., n the supremum and infimum of the set $\{f(x) : x \in$ $[x_{k-1}, x_k]$ exist. *Proof.* Let $k \in \{1, 2, ..., n\}$. Let $I_k = [x_{k-1}, x_k].$ The direct image of the subinterval I_k under f is the set $f(I_k) = \{f(x) : x \in I_k\}$ I_k . The direct image of f is the set $f([a, b]) = \{f(x) : x \in [a, b]\}.$ Since P is a partition of [a, b], then $x_{k-1} < x_k$ and $I_k \subset [a, b]$. Since $x_{k-1} < x_k$, then the interval I_k is not empty. Let $x \in I_k$. Then f(x) exists, so $f(x) \in f(I_k)$. Hence, the set $f(I_k)$ is not empty. Let $y \in f(I_k)$. Then there exists $x \in I_k$ such that y = f(x). Since $x \in I_k$ and $I_k \subset [a, b]$, then $x \in [a, b]$. Thus, $f(x) = y \in f([a, b])$, so $f(I_k) \subset f([a, b])$. Since f is a bounded function, then the set f([a, b]) is bounded. Since f([a, b]) is bounded and $f(I_k) \subset f([a, b])$, then $f(I_k)$ is bounded, so $f(I_k)$ is bounded above and below in \mathbb{R} . Since $f(I_k)$ is not empty and bounded above in \mathbb{R} , then by completeness of \mathbb{R} , sup $f(I_k)$ exists.

Since $f(I_k)$ is not empty and bounded below in \mathbb{R} , then by completeness of \mathbb{R} , inf $f(I_k)$ exists.

Since k is arbitrary, then the supremum and infimum of $f(I_k)$ exist for each k = 1, 2, ..., n.

Lemma 8. A lower Riemann sum is smaller than an upper Riemann sum for a given partition.

Let $f : [a,b] \to \mathbb{R}$ be a bounded function. Let P be a partition of [a,b]. Let U(f,P) be an upper Riemann sum. Let L(f,P) be a lower Riemann sum. Then $L(f,P) \leq U(f,P)$.

Proof. Since P is a partition of [a, b], then $P = \{a, x_1, ..., x_{n-1}, b\}$ for a fixed positive integer n.

Let $I_k = [x_{k-1}, x_k]$ and $\Delta_k = x_k - x_{k-1}$ for each k = 1, 2, ..., n. Let $k \in \{1, 2, ..., n\}$.

Since f is a bounded function and P is a partition of [a, b], then by the previous lemma, the supremum and infimum of the set $\{f(x) : x \in I_k\}$ exist, so $\sup f(I_k)$ and $\inf f(I_k)$ exist.

Thus, $\inf f(I_k) \leq \sup f(I_k)$.

Since P is a partition of [a, b], then $x_{k-1} < x_k$, so $\Delta_k = x_k - x_{k-1} > 0$. Thus, $\inf f(I_k)\Delta_k \leq \sup f(I_k)\Delta_k$.

Since k is arbitrary, then $\inf f(I_k)\Delta_k \leq \sup f(I_k)\Delta_k$ for each k = 1, 2, ..., n. Therefore,

$$L(f, P) = \sum_{k=1}^{n} \inf f(I_k) \Delta_k$$

$$\leq \sum_{k=1}^{n} \sup f(I_k) \Delta_k$$

$$= U(f, P).$$

Lemma 9. Refining a partition increases lower Riemann sums and decreases upper Riemann sums.

Let $f : [a, b] \to \mathbb{R}$ be a bounded function.

If P is a partition of [a, b] and Q is a refinement of P, then $L(f, P) \leq L(f, Q)$ and $U(f, P) \geq U(f, Q)$.

Proof. Suppose P is a partition of [a, b] and Q is a refinement of P. Since Q is a refinement of P, then $P \subset Q$.

We first prove $L(f, P) \leq L(f, Q)$. For simplicity, assume $P = (a, x_1, b)$ and $Q = (a, x_1, x_2, b)$. We need to re-work this proof. We will do this later. Then Q is a refinement of P.

We have $\Delta_{p1} = x_1 - a = \Delta_{q1}$ and $\Delta_{q1} = x_1 - a$ and $\Delta_{q2} = x_2 - x_1$ and $\Delta_{q3} = b - x_2.$

Since $\Delta_{p1} = x_1 - a = \Delta_{q1}$, then $\Delta_{p1} = \Delta_{q1}$. Since $\Delta_{q2} + \Delta_{q3} = (x_2 - x_1) + (b - x_2) = b - x_1 = \Delta_{p2}$, then $\Delta_{q2} + \Delta_{q3} = \Delta_{p2}$.

Since $[x_1, x_2] \subset [x_1, b]$, then $f([x_1, x_2]) \subset f([x_1, b])$.

Since f is bounded in \mathbb{R} , then $\inf f([x_1, x_2])$ exists and $\inf f([x_1, b])$ exists, so by the comparison property of infima, $\inf f([x_1, b]) \leq \inf f([x_1, x_2])$.

Since $\Delta_{q2} > 0$, then this implies $\inf f([x_1, b]) \Delta_{q2} \leq \inf f([x_1, x_2]) \Delta_{q2}$.

Similarly, since $[x_2, b] \subset [x_1, b]$, then $f([x_2, b]) \subset f([x_1, b])$.

Since f is bounded in \mathbb{R} , then $\inf f([x_2, b])$ exists and $\inf f([x_1, b])$ exists, so by the comparison property of infima, $\inf f([x_1, b]) \leq \inf f([x_2, b])$.

Since $\Delta_{q3} > 0$, then this implies $\inf f([x_1, b]) \Delta_{q3} \leq \inf f([x_2, b]) \Delta_{q3}$.

Observe that

$$\begin{split} L(f,P) &= \sum_{k=1}^{n} \inf f(I_{k}) \Delta_{pk} \\ &= \inf f([a,x_{1}]) \Delta_{p1} + \inf f([x_{1},b]) \Delta_{p2} \\ &= \inf f([a,x_{1}]) \Delta_{p1} + \inf f([x_{1},b]) (\Delta_{q2} + \Delta_{q3}) \\ &= \inf f([a,x_{1}]) \Delta_{p1} + \inf f([x_{1},b]) \Delta_{q2} + \inf f([x_{1},b]) \Delta_{q3} \\ &= \inf f([a,x_{1}]) \Delta_{q1} + \inf f([x_{1},b]) \Delta_{q2} + \inf f([x_{1},b]) \Delta_{q3} \\ &\leq \inf f([a,x_{1}]) \Delta_{q1} + \inf f([x_{1},x_{2}]) \Delta_{q2} + \inf f([x_{2},b]) \Delta_{q3} \\ &= \sum_{k=1}^{n} \inf f(I_{k}) \Delta_{qk} \\ &= L(f,Q). \end{split}$$

Therefore, $L(f, P) \leq L(f, Q)$.

Proof. We next prove $U(f, P) \ge U(f, Q)$. For simplicity, assume $P = (a, x_1, b)$ and $Q = (a, x_1, x_2, b)$. Then Q is a refinement of P. We have $\Delta_{p1} = x_1 - a = \Delta_{q1}$ and $\Delta_{q1} = x_1 - a$ and $\Delta_{q2} = x_2 - x_1$ and $\Delta_{q3} = b - x_2.$ Since $\Delta_{p1} = x_1 - a = \Delta_{q1}$, then $\Delta_{p1} = \Delta_{q1}$. Since $\Delta_{q2} + \Delta_{q3} = (x_2 - x_1) + (b - x_2) = b - x_1 = \Delta_{p2}$, then $\Delta_{q2} + \Delta_{q3} = \Delta_{p2}$.

Since $[x_1, x_2] \subset [x_1, b]$, then $f([x_1, x_2]) \subset f([x_1, b])$.

Since f is bounded in \mathbb{R} , then sup $f([x_1, x_2])$ exists and sup $f([x_1, b])$ exists, so by the comparison property of suprema, $\sup f([x_1, x_2]) \leq \sup f([x_1, b])$.

Since $\Delta_{q2} > 0$, then this implies $\sup f([x_1, x_2])\Delta_{q2} \le \sup f([x_1, b])\Delta_{q2}$.

Similarly, since $[x_2, b] \subset [x_1, b]$, then $f([x_2, b]) \subset f([x_1, b])$.

Since f is bounded in \mathbb{R} , then sup $f([x_2, b])$ exists and sup $f([x_1, b])$ exists, so by the comparison property of suprema, $\sup f([x_2, b]) \leq \sup f([x_1, b])$.

Since $\Delta_{q3} > 0$, then this implies $\sup f([x_2, b]) \Delta_{q3} \leq \sup f([x_1, b]) \Delta_{q3}$.

Observe that

$$\begin{split} U(f,P) &= \sum_{k=1}^{n} \sup f(I_k) \Delta_{pk} \\ &= \sup f([a,x_1]) \Delta_{p1} + \sup f([x_1,b]) \Delta_{p2} \\ &= \sup f([a,x_1]) \Delta_{p1} + \sup f([x_1,b]) (\Delta_{q2} + \Delta_{q3}) \\ &= \sup f([a,x_1]) \Delta_{p1} + \sup f([x_1,b]) \Delta_{q2} + \sup f([x_1,b]) \Delta_{q3} \\ &= \sup f([a,x_1]) \Delta_{q1} + \sup f([x_1,b]) \Delta_{q2} + \sup f([x_1,b]) \Delta_{q3} \\ &\geq \sup f([a,x_1]) \Delta_{q1} + \sup f([x_1,x_2]) \Delta_{q2} + \sup f([x_2,b]) \Delta_{q3} \\ &= \sum_{k=1}^{n} \sup f(I_k) \Delta_{qk} \\ &= U(f,Q). \end{split}$$

Therefore, $U(f, P) \ge U(f, Q)$.

Proposition 10. Any lower Riemann sum is smaller than any upper Riemann sum.

Let $f : [a, b] \to \mathbb{R}$ be a bounded function. If P and Q are partitions of [a, b], then $L(f, P) \leq U(f, Q)$.

Proof. Suppose P and Q are partitions of [a, b].

Since $P \subset P \cup Q$, then $P \cup Q$ is a refinement of P.

Since refining a partition increases lower sums, then $L(f, P) \leq L(f, P \cup Q)$. Since a lower sum is smaller than an upper sum and $P \cup Q$ is a partition, then $L(f, P \cup Q) \leq U(f, P \cup Q)$.

Since $Q \subset P \cup Q$, then $P \cup Q$ is a refinement of Q.

Since refining a partition decreases upper sums, then $U(f, Q) \ge U(f, P \cup Q)$. Therefore, $L(f, P) \leq L(f, P \cup Q) \leq U(f, P \cup Q) \leq U(f, Q)$, so $L(f, P) \leq U(f, Q)$ U(f,Q).

Lemma 11. For every $n \in \mathbb{Z}^+$, $\sum_{i=1}^n (x_i - x_{i-1}) = x_n - x_0$.

Proof. We prove by induction on n. Let $S = \{n \in \mathbb{Z}^+ : \sum_{i=1}^n (x_i - x_{i-1}) = x_n - x_0\}$. Since $1 \in \mathbb{Z}^+$ and $\sum_{i=1}^1 (x_i - x_{i-1}) = x_1 - x_0$, then $1 \in S$.

Suppose $k \in S$. Then $k \in \mathbb{Z}^+$ and $\sum_{i=1}^{k} (x_i - x_{i-1}) = x_k - x_0$.

Observe that

$$\sum_{i=1}^{k+1} (x_i - x_{i-1}) = \sum_{i=1}^{k} (x_i - x_{i-1}) + (x_{k+1} - x_k)$$
$$= (x_k - x_0) + (x_{k+1} - x_k)$$
$$= x_{k+1} - x_0.$$

Since $k \in \mathbb{Z}^+$, then $k + 1 \in \mathbb{Z}^+$. Since $k + 1 \in \mathbb{Z}^+$ and $\sum_{i=1}^{k+1} (x_i - x_{i-1}) = x_{k+1} - x_0$, then $k + 1 \in S$. Thus, $k \in S$ implies $k + 1 \in S$.

By the principle of mathematical induction, $S = \mathbb{Z}^+$, so $\sum_{i=1}^n (x_i - x_{i-1}) =$ $x_n - x_0$ for all $n \in \mathbb{Z}^+$, as desired.

Proposition 12. Let $f : [a, b] \to \mathbb{R}$ be a bounded function. Let $M = \sup f([a, b])$. Let $m = \inf f([a, b])$. If P is a partition of [a, b], then $m(b - a) \leq L(f, P) \leq U(f, P) \leq M(b - a)$.

Proof. Since f is a bounded function and the set $\{a, b\}$ is a partition of the interval [a, b], then the suprema and infima of the set f([a, b]) exist.

Let $M = \sup f([a, b])$.

Let $m = \inf f([a, b])$.

Suppose P is a partition of [a, b].

Then there exists a positive integer n such that $P = \{a, x_1, ..., x_{n-1}, b\}$ is a finite set of points and $x_{k-1} < x_k$ for each k = 1, 2, ..., n and $x_0 = a$ and $x_n = b$.

Since f is a bounded function and P is a partition of [a, b], then the lower Riemann sum L(f, P) and the upper Riemann sum U(f, P) exist.

Let $k \in \{1, 2, ..., n\}$ be arbitrary.

Since P is a partition of [a, b], then $I_k = [x_{k-1}, x_k]$ is a subset of the interval [a,b].

Since $f : [a, b] \to \mathbb{R}$ is a map and $I_k \subset [a, b]$, then $f(I_k) \subset f([a, b])$.

Since f is a bounded function and P is a partition of [a, b], then sup $f(I_k)$ and $\inf f(I_k)$ exist.

Since $f(I_k) \subset f([a, b])$ and $\inf f(I_k)$ and $\inf f([a, b])$ exist, then by the comparison property of infima, $\inf f([a, b]) \leq \inf f(I_k)$, so $m \leq \inf f(I_k)$.

Since $f(I_k) \subset f([a,b])$ and $\sup f(I_k)$ and $\sup f([a,b])$ exist, then by the comparison property of suprema, $\sup f(I_k) \leq \sup f([a, b])$, so $\sup f(I_k) \leq M$.

Since $x_{k-1} < x_k$, then $\Delta_k = x_k - x_{k-1} > 0$.

Since $m \leq \inf f(I_k)$ and $\Delta_k > 0$, then $m\Delta_k \leq \inf f(I_k)\Delta_k$.

Since $\sup f(I_k) \leq M$ and $\Delta_k > 0$, then $\sup f(I_k)\Delta_k \leq M\Delta_k$.

Since k is arbitrary, then $m\Delta_k \leq \inf f(I_k)\Delta_k$ and $\sup f(I_k)\Delta_k \leq M\Delta_k$ for each $k \in \{1, 2, ..., n\}$.

Observe that

$$m(b-a) = m(x_n - x_0)$$

= $m \sum_{k=1}^n (x_k - x_{k-1})$
= $m \sum_{k=1}^n \Delta_k$
= $\sum_{k=1}^n m \Delta_k$
 $\leq \sum_{k=1}^n \inf f(I_k) \Delta_k$
= $L(f, P).$

Thus, $m(b-a) \leq L(f, P)$. Observe that

$$U(f, P) = \sum_{k=1}^{n} \sup f(I_k) \Delta_k$$

$$\leq \sum_{k=1}^{n} M \Delta_k$$

$$= M \sum_{k=1}^{n} \Delta_k$$

$$= M \sum_{k=1}^{n} (x_k - x_{k-1})$$

$$= M(x_n - x_0)$$

$$= M(b - a).$$

Thus, $U(f, P) \leq M(b-a)$.

Since a lower Riemann sum is smaller than an upper Riemann sum and P is a partition, then $L(f, P) \leq U(f, P)$.

Therefore, $m(b-a) \le L(f, P) \le U(f, P) \le M(b-a)$.

Theorem 13. The upper and lower Darboux integrals exist for a bounded function.

Let $f:[a,b] \to \mathbb{R}$ be a bounded function.

Then the lower integral $\underline{\int_a^b} f$ and upper integral $\overline{\int_a^b} f$ exist and $\underline{\int_a^b} f \leq \overline{\int_a^b} f$.

Proof. Let S be the set of all lower Riemann sums of all the partitions of [a, b]. Then $S = \{L(f, P) : P \text{ is a partition of } [a, b]\}.$

Let T be the set of all upper Riemann sums of all the partitions of [a, b].

Then $T = \{U(f, P) : P \text{ is a partition of } [a, b]\}.$

Let $P_0 = \{a, b\}$ be a partition of the interval [a, b].

Since f is bounded, then the upper Riemann sum $U(f, P_0)$ exists and the lower Riemann sum $L(f, P_0)$ exists, so $U(f, P_0) \in T$ and $L(f, P_0) \in S$.

Hence, $T \neq \emptyset$ and $S \neq \emptyset$.

Let $x \in S$.

Then there exists a partition P_1 of [a, b] such that $x = L(f, P_1)$.

Since any lower Riemann sum is smaller than any upper Riemann sum, then $x = L(f, P_1) \leq U(f, P_0)$.

Since x is arbitrary, then $x \leq U(f, P_0)$ for every $x \in S$.

Hence, $U(f, P_0)$ is an upper bound of S, so S is bounded above in \mathbb{R} .

Since $S \neq \emptyset$ and bounded above in \mathbb{R} , then by completeness of \mathbb{R} , sup S exists.

Therefore, $\int_{a}^{b} f = \sup\{L(f, P) : P \text{ is a partition of } [a, b]\} = \sup S$ exists.

Let $y \in T$.

Then there exists a partition P_2 of [a, b] such that $y = U(f, P_2)$.

Since any lower Riemann sum is smaller than any upper Riemann sum, then $L(f, P_0) \leq U(f, P_2) = y$.

Since y is arbitrary, then $L(f, P_0) \leq y$ for every $y \in T$.

Hence, $L(f, P_0)$ is a lower bound of T, so T is bounded below in \mathbb{R} .

Since $T \neq \emptyset$ and bounded below in \mathbb{R} , then by completeness of \mathbb{R} , inf T exists.

Therefore, $\overline{\int_a^b} f = \inf\{U(f, P) : P \text{ is a partition of } [a, b]\} = \inf T \text{ exists.}$

We next prove $\sup S \leq \inf T$.

Let $t \in T$. Then t = U(f, P) for some partition P of [a, b]. Let $s \in S$. Then s = L(f, Q) for some partition Q of [a, b]. Since any lower Riemann sum is smaller than any upper Riemann sum, then $\leq t$.

 $s \leq t.$

Since s is arbitrary, then $s \leq t$ for all $s \in S$, so t is an upper bound of S. Since $\sup S$ is the least upper bound of S, then $\sup S \leq t$. Since t is arbitrary, then $\sup S \leq t$ for all $t \in T$. Hence, $\sup S$ is a lower bound of T.

Since $\inf T$ is the greatest lower bound of T, then $\sup S \leq \inf T$. Therefore, $\int_a^b f \leq \int_a^b f$.

Proposition 14. Let $f : [a, b] \to \mathbb{R}$ be a bounded function.

Let $M = \sup f([a, b])$. Let $m = \inf f([a, b])$. Then $m(b - a) \le \int_a^b f$ and $\overline{\int_a^b} f \le M(b - a)$. *Proof.* Since f is a bounded function and the set $\{a, b\}$ is a partition of the interval [a, b], then the suprema and infima of the set f([a, b]) exist.

Let $M = \sup f([a, b])$.

Let $m = \inf f([a, b])$.

Since f is a bounded function, then the upper integral $\overline{\int_a^b} f$ and the lower integral $\int_a^b f$ exist.

Let $S = \{L(f, P) : P \text{ is a partition of } [a, b]\}$. Let $T = \{U(f, P) : P \text{ is a partition of } [a, b]\}$. Then $\int_a^b f = \sup S$ and $\overline{\int_a^b} f = \inf T$. Let P be a partition of [a, b]. Then $L(f, P) \in S$ and $U(f, P) \in T$. Since $\sup S$ is an upper bound of S and $L(f, P) \in S$, then $L(f, P) \leq \sup S$. Since f is a bounded function and $m = \inf f([a, b])$ and P is a partition of [a, b], then $m(b - a) \leq L(f, P)$.

Since inf T is a lower bound of T and $U(f, P) \in T$, then $\inf T \leq U(f, P)$. Since f is a bounded function and $M = \sup f([a, b])$ and P is a partition of

[a,b], then $U(f,P) \le M(b-a)$.

Since $m(b-a) \leq L(f, P)$ and $L(f, P) \leq \sup S$, then $m(b-a) \leq \sup S$, so $m(b-a) \leq \int_a^b f$.

Since $\inf_{a} \overline{T} \leq U(f, P)$ and $U(f, P) \leq M(b-a)$, then $\inf_{a} T \leq M(b-a)$, so $\overline{\int_{a}^{b} f} \leq M(b-a)$.

Theorem 15. Darboux integrability criterion

Let $f : [a, b] \to \mathbb{R}$ be a bounded function.

Then f is Darboux integrable on [a,b] iff for every $\epsilon > 0$ there exists a partition P of [a,b] such that $U(f,P) - L(f,P) < \epsilon$.

Proof.

Riemann Integral of a real valued function

Theorem 16. Integral of a Riemann integrable function is unique.

If $f : [a,b] \to \mathbb{R}$ is a Riemann integrable function, then the value of the integral is unique.

Proof. Let $f : [a, b] \to \mathbb{R}$ be a Riemann integrable function.

Then there exists $L \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that if \dot{P} is any tagged partition of [a, b] with $||\dot{P}|| < \delta$, then $|S(f; \dot{P}) - L| < \epsilon$.

To prove L is unique, let $L_1, L_2 \in \mathbb{R}$ such that L_1 and L_2 satisfy the definition of a Riemann integrable function.

We must prove $L_1 = L_2$. Let $\epsilon > 0$ be given. Then $\frac{\epsilon}{2} > 0$. Since L_1 satisfies the definition, then there exists $\delta_1 > 0$ such that if \dot{P} is any tagged partition of [a, b] with $||\dot{P}|| < \delta_1$, then $|S(f; \dot{P}) - L_1| < \frac{\epsilon}{2}$.

Since L_2 satisfies the definition, then there exists $\delta_2 > 0$ such that if \dot{P} is any tagged partition of [a, b] with $||\dot{P}|| < \delta_2$, then $|S(f; \dot{P}) - L_2| < \frac{\epsilon}{2}$.

Let $\delta = \min\{\delta_1, \delta_2\}.$

Then $\delta \leq \delta_1$ and $\delta \leq \delta_2$.

Since $\delta_1 > 0$ and $\delta_2 > 0$, then $\delta > 0$.

Let \dot{P} be an arbitrary tagged partition of [a, b] with $||\dot{P}|| < \delta$. Since $||\dot{P}|| < \delta$ and $\delta \le \delta_1$, then $||\dot{P}|| < \delta_1$, so $|S(f; \dot{P}) - L_1| < \frac{\epsilon}{2}$. Since $||\dot{P}|| < \delta$ and $\delta \le \delta_2$, then $||\dot{P}|| < \delta_2$, so $|S(f; \dot{P}) - L_2| < \frac{\epsilon}{2}$. Observe that

$$\begin{aligned} |L_1 - L_2| &= |L_1 - S(f; \dot{P}) + S(f; \dot{P}) - L_2| \\ &\leq |L_1 - S(f; \dot{P})| + |S(f; \dot{P}) - L_2| \\ &= |S(f; \dot{P}) - L_1| + |S(f; \dot{P}) - L_2| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ &= \epsilon. \end{aligned}$$

Thus, $|L_1 - L_2| < \epsilon$. Since ϵ is arbitrary, then $|L_1 - L_2| < \epsilon$ for every $\epsilon > 0$. Therefore, by a previous lemma, $L_1 - L_2 = 0$, so $L_1 = L_2$, as desired. \Box