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Integral of a real valued function

Theorem 1. representation of antiderivatives
Let F be an antiderivative of a function f defined on an interval I.
Then G is an antiderivative of f on I iff there exists a constant C such that

G(x) = F (x) + C for all x ∈ I.

Proof. Suppose there exists a constant C such that G(x) = F (x) + C for all
x ∈ I.

Let x ∈ I.
Then G(x) = F (x) + C, so G′(x) = F ′(x).
Since F is an antiderivative of f , then F ′(x) = f(x).
Hence, G′(x) = F ′(x) = f(x), so G′(x) = f(x).
Therefore, G is an antiderivative of f .

Conversely, suppose G is an antiderivative of f .
Then G′(x) = f(x) for all x ∈ I.
Since F is an antiderivative of f , then F ′(x) = f(x) for all x ∈ I.
Let x ∈ I.
Then G′(x) = f(x) = F ′(x), so G′(x) = F ′(x) for all x ∈ I.
Since functions with the same derivative on an interval differ by a constant

by MVT, then there exists a real constant C such that G− F = C.
Thus, there exists a constant C such that G(x)− F (x) = C, so there exists

a constant C such that G(x) = F (x) + C.
Therefore, there exists a constant C such that G(x) = F (x)+C for all x ∈ I,

as desired.

Definite Integral of a real valued function

Lemma 2. If f ∈ R[a, b], then
∫ a
a
f = 0 =

∫ b
b
f .

Proof. Let f ∈ R[a, b].

Then f : [a, b]→ R is integrable on [a, b], so
∫ b
a
f exists.

Since a ≤ a ≤ b, then
∫ b
a
f =

∫ a
a
f +

∫ b
a
f , so 0 =

∫ a
a
f .



Since a ≤ b ≤ b, then
∫ b
a
f =

∫ b
a
f +

∫ b
b
f , so 0 =

∫ b
b
f .

Therefore,
∫ a
a
f = 0 =

∫ b
b
f .

Proposition 3. Let f ∈ R[a, b].
For every c ∈ [a, b],

∫ c
c
f = 0.

Proof. Let c ∈ [a, b] be arbitrary.
Then either c = a or c = b or a < c < b.
We consider these cases separately.
Case 1: Suppose c = a.
Then

∫ c
c
f =

∫ a
a
f = 0.

Case 2: Suppose c = b.

Then
∫ c
c
f =

∫ b
b
f = 0.

Case 3: Suppose a < c < b.
Then c ∈ (a, b).
Since f ∈ R[a, b], then f ∈ R[a, c] and f ∈ R[c, b], so f ∈ R[a, c].
Hence, by the previous lemma,

∫ c
c
f = 0.

Therefore, in all cases,
∫ c
c
f = 0.

Fundamental Theorem of Calculus

Theorem 4. Let f : [a, b]→ R be an integrable function.
Let F : [a, b]→ R be defined by F (x) =

∫ x
a
f for x ∈ [a, b].

The function F is continuous.

Proof. Since f : [a, b]→ R is integrable, then f ∈ R[a, b].
We first prove F is a function.
Let x ∈ [a, b].
Then either x = a or x ∈ (a, b) or x = b.
If x = a, then F (x) = F (a) =

∫ a
a
f = 0.

If x = b, then F (x) = F (b) =
∫ b
a
f .

If x ∈ (a, b), then f ∈ R[a, b] iff f ∈ R[a, x] and f ∈ R[x, b].
Since f ∈ R[a, b], then f ∈ R[a, x] and f ∈ R[x, b], so f ∈ R[a, x].
Thus,

∫ x
a
f exists as a unique real number and F (x) =

∫ x
a
f .

Therefore, F : [a, b]→ R is a function.

We prove F is continuous.
Since f ∈ R[a, b], then f is bounded, so there exists M ∈ R such that

|f(x)| ≤M for all x ∈ [a, b].
Let x ∈ [a, b].
Then |f(x)| ≤M .
Since M ≥ |f(x)| ≥ 0, then M ≥ 0, so either M > 0 or M = 0.
We consider these cases separately.
Case 1: Suppose M > 0.
Let c ∈ [a, b].
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To prove F is continuous, we must prove F is continuous at c.
Let ε > 0 be given.
Let δ = ε

M .
Since ε > 0 and M > 0, then δ > 0.
Let x ∈ [a, b] such that |x− c| < δ.
Then |x− c| < ε

M .

Let A,B ∈ R such that [A,B] ⊂ [a, b].
Since |f(x)| ≤M for all x ∈ [a, b], then −M ≤ f(x) ≤M for all x ∈ [a, b].
Since [A,B] ⊂ [a, b], then −M ≤ f(x) ≤M for all x ∈ [A,B].

Thus,
∫ B
A

(−M) ≤
∫ B
A
f ≤

∫ B
A
M , so (−M)(B −A) ≤

∫ B
A
f ≤M(B −A).

Hence, |
∫ B
A
f | ≤ M(B − A), so |

∫ B
A
f | ≤ M(B − A) for all A,B ∈ R such

that [A,B] ⊂ [a, b].

We prove [c, x] ⊂ [a, b].
Let t ∈ [c, x].
Then c ≤ t ≤ x, so c ≤ t and t ≤ x.
Since c ∈ [a, b], then a ≤ c ≤ b, so a ≤ c.
Since x ∈ [a, b], then a ≤ x ≤ b, so x ≤ b.
Thus, a ≤ c ≤ t ≤ x ≤ b, so a ≤ t ≤ b.
Hence, t ∈ [a, b], so [c, x] ⊂ [a, b].

Since [c, x] ⊂ [a, b], then |
∫ x
c
f | ≤M(x− c).

Since |F (x) − F (c)| = |
∫ x
a
f −

∫ c
a
f | = |

∫ x
c
f | ≤ M(x − c) ≤ M |x − c| <

M( ε
M ) = ε, then |F (x)− F (c)| < ε, so F is continuous at c, as desired.
Case 2: Suppose M = 0.
Then |f(x)| ≤ 0 for all x ∈ [a, b].
Let x ∈ [a, b].
Then |f(x)| ≤ 0.
Since |f(x)| ≥ 0 and |f(x)| ≤ 0, then |f(x)| = 0, so f(x) = 0.
Thus, f(x) = 0 for all x ∈ [a, b], so f is the constant zero function.
Observe that F (x) =

∫ x
a
f =

∫ x
a

0 = 0(x− a) = 0, so F (x) = 0.
Since x is arbitrary, then F (x) = 0 for all x ∈ [a, b], so F is a constant

function.
Since every constant function is continuous, then F is continuous.

Theorem 5. Fundamental Theorem of Calculus (derivative of an in-
tegral

Let f : [a, b]→ R be an integrable function.
Let F : [a, b]→ R be defined by F (x) =

∫ x
a
f for all x ∈ [a, b].

If f is continuous at x, then F is differentiable at x and F ′(x) = f(x).

Proof. Let c ∈ [a, b].
Suppose f is continuous at c.
We must prove F is differentiable at c and F ′(c) = f(c).
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Let ε > 0 be given.
Then ε

2 > 0.
Since f is continuous at c, then there exists δ > 0 such that for all x ∈ [a, b],

if |x− c| < δ, then |f(x)− f(c)| < ε
2 .

Let x ∈ [a, b] such that 0 < |x− c| < δ.
Then 0 < |x− c| and |x− c| < δ.
Since x ∈ [a, b] and |x− c| < δ, then |f(x)− f(c)| < ε

2 .
Thus, − ε

2 < f(x)− f(c) < ε
2 , so f(c)− ε

2 < f(x) < f(c) + ε
2 .

Hence, f(c)− ε
2 ≤ f(x) ≤ f(c) + ε

2 .

Since f : [a, b]→ R is integrable, then f ∈ R[a, b], so
∫ x
c

[f(c)− ε
2 ] ≤

∫ x
c
f ≤∫ x

c
[f(c) + ε

2 ].

Thus, [f(c)− ε
2 ](x− c) ≤

∫ x
c
f ≤ [f(c) + ε

2 ](x− c).
Since |x− c| > 0, then x− c 6= 0, so f(c)− ε

2 ≤
∫ x
c
f

x−c ≤ f(c) + ε
2 .

Hence, − ε
2 ≤

∫ x
c
f

x−c − f(c) ≤ ε
2 , so |

∫ x
c
f

x−c − f(c)| ≤ ε
2 < ε.

Therefore, |
∫ x
c
f

x−c − f(c)| < ε, so limx→c

∫ x
c
f

x−c = f(c).
Observe that

f(c) = lim
x→c

∫ x
c
f

x− c

= lim
x→c

∫ x
a
f −

∫ c
a
f

x− c

= lim
x→c

F (x)− F (c)

x− c
= F ′(c).

Therefore, F ′(c) = f(c), so F is differentiable at c.

Theorem 6. Fundamental Theorem of Calculus (integral of a deriva-
tive)

Let F : [a, b]→ R be a differentiable function.

If F ′ is continuous, then F ′ is integrable and
∫ b
a
F ′ = F (b)− F (a).

Proof. Suppose F ′ is continuous.
Then F ′ : [a, b]→ R is continuous, so F ′ ∈ R[a, b].

Hence, F ′ is integrable and
∫ b
a
F ′ exists.

We must prove
∫ b
a
F ′ = F (b)− F (a).

Since F ′ is the derivative of F , then F is an antiderivative of F ′.
Since F ′ : [a, b]→ R is integrable, let F : [a, b]→ R be the function defined

by F(x) =
∫ x
a
F ′ for all x ∈ [a, b].

Since F ′ is continuous, then by FTC(derivative of an integral), F is an
antiderivative of F ′.

Since F is an antiderivative of F ′ and F is an antiderivative of F ′, then there
exists a constant C such that F (x) = F(x) + C for all x ∈ [a, b].
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Observe that

F (b)− F (a) = (F(b) + C)− (F(a) + C)

= F(b)−F(a)

=

∫ b

a

F ′ −
∫ a

a

F ′

=

∫ b

a

F ′ − 0

=

∫ b

a

F ′.

Therefore,
∫ b
a
F ′ = F (b)− F (a), as desired.

Darboux Integral of a real valued function

Lemma 7. The existence of the supremum and infimum of the direct
image of each subinterval of a partition for a bounded function.

Let f : [a, b]→ R be a bounded function.
Let n be a fixed positive integer.
Let P = {a, x1, ..., xn−1, b} be a partition of [a, b].
For each k = 1, 2, ..., n the supremum and infimum of the set {f(x) : x ∈

[xk−1, xk]} exist.

Proof. Let k ∈ {1, 2, ..., n}.
Let Ik = [xk−1, xk].
The direct image of the subinterval Ik under f is the set f(Ik) = {f(x) : x ∈

Ik}.
The direct image of f is the set f([a, b]) = {f(x) : x ∈ [a, b]}.
Since P is a partition of [a, b], then xk−1 < xk and Ik ⊂ [a, b].
Since xk−1 < xk, then the interval Ik is not empty.
Let x ∈ Ik.
Then f(x) exists, so f(x) ∈ f(Ik).
Hence, the set f(Ik) is not empty.
Let y ∈ f(Ik).
Then there exists x ∈ Ik such that y = f(x).
Since x ∈ Ik and Ik ⊂ [a, b], then x ∈ [a, b].
Thus, f(x) = y ∈ f([a, b]), so f(Ik) ⊂ f([a, b]).
Since f is a bounded function, then the set f([a, b]) is bounded.
Since f([a, b]) is bounded and f(Ik) ⊂ f([a, b]), then f(Ik) is bounded, so

f(Ik) is bounded above and below in R.
Since f(Ik) is not empty and bounded above in R, then by completeness of

R, sup f(Ik) exists.
Since f(Ik) is not empty and bounded below in R, then by completeness of

R, inf f(Ik) exists.
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Since k is arbitrary, then the supremum and infimum of f(Ik) exist for each
k = 1, 2, ..., n.

Lemma 8. A lower Riemann sum is smaller than an upper Riemann
sum for a given partition.

Let f : [a, b]→ R be a bounded function.
Let P be a partition of [a, b].
Let U(f, P ) be an upper Riemann sum.
Let L(f, P ) be a lower Riemann sum.
Then L(f, P ) ≤ U(f, P ).

Proof. Since P is a partition of [a, b], then P = {a, x1, ..., xn−1, b} for a fixed
positive integer n.

Let Ik = [xk−1, xk] and ∆k = xk − xk−1 for each k = 1, 2, ..., n.
Let k ∈ {1, 2, ..., n}.
Since f is a bounded function and P is a partition of [a, b], then by the

previous lemma, the supremum and infimum of the set {f(x) : x ∈ Ik} exist, so
sup f(Ik) and inf f(Ik) exist.

Thus, inf f(Ik) ≤ sup f(Ik).
Since P is a partition of [a, b], then xk−1 < xk, so ∆k = xk − xk−1 > 0.
Thus, inf f(Ik)∆k ≤ sup f(Ik)∆k.
Since k is arbitrary, then inf f(Ik)∆k ≤ sup f(Ik)∆k for each k = 1, 2, ..., n.
Therefore,

L(f, P ) =

n∑
k=1

inf f(Ik)∆k

≤
n∑
k=1

sup f(Ik)∆k

= U(f, P ).

Lemma 9. Refining a partition increases lower Riemann sums and
decreases upper Riemann sums.

Let f : [a, b]→ R be a bounded function.
If P is a partition of [a, b] and Q is a refinement of P , then L(f, P ) ≤ L(f,Q)

and U(f, P ) ≥ U(f,Q).

Proof. Suppose P is a partition of [a, b] and Q is a refinement of P .
Since Q is a refinement of P , then P ⊂ Q.

We first prove L(f, P ) ≤ L(f,Q).
For simplicity, assume P = (a, x1, b) and Q = (a, x1, x2, b).
We need to re-work this proof. We will do this later.
Then Q is a refinement of P .
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We have ∆p1 = x1 − a = ∆q1 and ∆q1 = x1 − a and ∆q2 = x2 − x1 and
∆q3 = b− x2.

Since ∆p1 = x1 − a = ∆q1, then ∆p1 = ∆q1.
Since ∆q2+∆q3 = (x2−x1)+(b−x2) = b−x1 = ∆p2, then ∆q2+∆q3 = ∆p2.

Since [x1, x2] ⊂ [x1, b], then f([x1, x2]) ⊂ f([x1, b]).
Since f is bounded in R, then inf f([x1, x2]) exists and inf f([x1, b]) exists,

so by the comparison property of infima, inf f([x1, b]) ≤ inf f([x1, x2]).
Since ∆q2 > 0, then this implies inf f([x1, b])∆q2 ≤ inf f([x1, x2])∆q2.

Similarly, since [x2, b] ⊂ [x1, b], then f([x2, b]) ⊂ f([x1, b]).
Since f is bounded in R, then inf f([x2, b]) exists and inf f([x1, b]) exists, so

by the comparison property of infima, inf f([x1, b]) ≤ inf f([x2, b]).
Since ∆q3 > 0, then this implies inf f([x1, b])∆q3 ≤ inf f([x2, b])∆q3.

Observe that

L(f, P ) =

n∑
k=1

inf f(Ik)∆pk

= inf f([a, x1])∆p1 + inf f([x1, b])∆p2

= inf f([a, x1])∆p1 + inf f([x1, b])(∆q2 + ∆q3)

= inf f([a, x1])∆p1 + inf f([x1, b])∆q2 + inf f([x1, b])∆q3

= inf f([a, x1])∆q1 + inf f([x1, b])∆q2 + inf f([x1, b])∆q3

≤ inf f([a, x1])∆q1 + inf f([x1, x2])∆q2 + inf f([x2, b])∆q3

=

n∑
k=1

inf f(Ik)∆qk

= L(f,Q).

Therefore, L(f, P ) ≤ L(f,Q).

Proof. We next prove U(f, P ) ≥ U(f,Q).
For simplicity, assume P = (a, x1, b) and Q = (a, x1, x2, b).
Then Q is a refinement of P .
We have ∆p1 = x1 − a = ∆q1 and ∆q1 = x1 − a and ∆q2 = x2 − x1 and

∆q3 = b− x2.
Since ∆p1 = x1 − a = ∆q1, then ∆p1 = ∆q1.
Since ∆q2+∆q3 = (x2−x1)+(b−x2) = b−x1 = ∆p2, then ∆q2+∆q3 = ∆p2.

Since [x1, x2] ⊂ [x1, b], then f([x1, x2]) ⊂ f([x1, b]).
Since f is bounded in R, then sup f([x1, x2]) exists and sup f([x1, b]) exists,

so by the comparison property of suprema, sup f([x1, x2]) ≤ sup f([x1, b]).
Since ∆q2 > 0, then this implies sup f([x1, x2])∆q2 ≤ sup f([x1, b])∆q2.

7



Similarly, since [x2, b] ⊂ [x1, b], then f([x2, b]) ⊂ f([x1, b]).
Since f is bounded in R, then sup f([x2, b]) exists and sup f([x1, b]) exists,

so by the comparison property of suprema, sup f([x2, b]) ≤ sup f([x1, b]).
Since ∆q3 > 0, then this implies sup f([x2, b])∆q3 ≤ sup f([x1, b])∆q3.

Observe that

U(f, P ) =

n∑
k=1

sup f(Ik)∆pk

= sup f([a, x1])∆p1 + sup f([x1, b])∆p2

= sup f([a, x1])∆p1 + sup f([x1, b])(∆q2 + ∆q3)

= sup f([a, x1])∆p1 + sup f([x1, b])∆q2 + sup f([x1, b])∆q3

= sup f([a, x1])∆q1 + sup f([x1, b])∆q2 + sup f([x1, b])∆q3

≥ sup f([a, x1])∆q1 + sup f([x1, x2])∆q2 + sup f([x2, b])∆q3

=

n∑
k=1

sup f(Ik)∆qk

= U(f,Q).

Therefore, U(f, P ) ≥ U(f,Q).

Proposition 10. Any lower Riemann sum is smaller than any upper
Riemann sum.

Let f : [a, b]→ R be a bounded function.
If P and Q are partitions of [a, b], then L(f, P ) ≤ U(f,Q).

Proof. Suppose P and Q are partitions of [a, b].
Since P ⊂ P ∪Q, then P ∪Q is a refinement of P .
Since refining a partition increases lower sums, then L(f, P ) ≤ L(f, P ∪Q).
Since a lower sum is smaller than an upper sum and P ∪ Q is a partition,

then L(f, P ∪Q) ≤ U(f, P ∪Q).
Since Q ⊂ P ∪Q, then P ∪Q is a refinement of Q.
Since refining a partition decreases upper sums, then U(f,Q) ≥ U(f, P ∪Q).
Therefore, L(f, P ) ≤ L(f, P ∪ Q) ≤ U(f, P ∪ Q) ≤ U(f,Q), so L(f, P ) ≤

U(f,Q).

Lemma 11. For every n ∈ Z+,
∑n
i=1(xi − xi−1) = xn − x0.

Proof. We prove by induction on n.
Let S = {n ∈ Z+ :

∑n
i=1(xi − xi−1) = xn − x0}.

Since 1 ∈ Z+ and
∑1
i=1(xi − xi−1) = x1 − x0, then 1 ∈ S.
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Suppose k ∈ S.
Then k ∈ Z+ and

∑k
i=1(xi − xi−1) = xk − x0.

Observe that

k+1∑
i=1

(xi − xi−1) =

k∑
i=1

(xi − xi−1) + (xk+1 − xk)

= (xk − x0) + (xk+1 − xk)

= xk+1 − x0.

Since k ∈ Z+, then k + 1 ∈ Z+.
Since k + 1 ∈ Z+ and

∑k+1
i=1 (xi − xi−1) = xk+1 − x0, then k + 1 ∈ S.

Thus, k ∈ S implies k + 1 ∈ S.
By the principle of mathematical induction, S = Z+, so

∑n
i=1(xi − xi−1) =

xn − x0 for all n ∈ Z+, as desired.

Proposition 12. Let f : [a, b]→ R be a bounded function.
Let M = sup f([a, b]).
Let m = inf f([a, b]).
If P is a partition of [a, b], then m(b− a) ≤ L(f, P ) ≤ U(f, P ) ≤M(b− a).

Proof. Since f is a bounded function and the set {a, b} is a partition of the
interval [a, b], then the suprema and infima of the set f([a, b]) exist.

Let M = sup f([a, b]).
Let m = inf f([a, b]).
Suppose P is a partition of [a, b].
Then there exists a positive integer n such that P = {a, x1, ..., xn−1, b} is a

finite set of points and xk−1 < xk for each k = 1, 2, ..., n and x0 = a and xn = b.
Since f is a bounded function and P is a partition of [a, b], then the lower

Riemann sum L(f, P ) and the upper Riemann sum U(f, P ) exist.
Let k ∈ {1, 2, ..., n} be arbitrary.
Since P is a partition of [a, b], then Ik = [xk−1, xk] is a subset of the interval

[a, b].
Since f : [a, b]→ R is a map and Ik ⊂ [a, b], then f(Ik) ⊂ f([a, b]).
Since f is a bounded function and P is a partition of [a, b], then sup f(Ik)

and inf f(Ik) exist.
Since f(Ik) ⊂ f([a, b]) and inf f(Ik) and inf f([a, b]) exist, then by the com-

parison property of infima, inf f([a, b]) ≤ inf f(Ik), so m ≤ inf f(Ik).
Since f(Ik) ⊂ f([a, b]) and sup f(Ik) and sup f([a, b]) exist, then by the

comparison property of suprema, sup f(Ik) ≤ sup f([a, b]), so sup f(Ik) ≤M .
Since xk−1 < xk, then ∆k = xk − xk−1 > 0.
Since m ≤ inf f(Ik) and ∆k > 0, then m∆k ≤ inf f(Ik)∆k.
Since sup f(Ik) ≤M and ∆k > 0, then sup f(Ik)∆k ≤M∆k.
Since k is arbitrary, then m∆k ≤ inf f(Ik)∆k and sup f(Ik)∆k ≤ M∆k for

each k ∈ {1, 2, ..., n}.
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Observe that

m(b− a) = m(xn − x0)

= m

n∑
k=1

(xk − xk−1)

= m

n∑
k=1

∆k

=

n∑
k=1

m∆k

≤
n∑
k=1

inf f(Ik)∆k

= L(f, P ).

Thus, m(b− a) ≤ L(f, P ).
Observe that

U(f, P ) =

n∑
k=1

sup f(Ik)∆k

≤
n∑
k=1

M∆k

= M

n∑
k=1

∆k

= M

n∑
k=1

(xk − xk−1)

= M(xn − x0)

= M(b− a).

Thus, U(f, P ) ≤M(b− a).
Since a lower Riemann sum is smaller than an upper Riemann sum and P

is a partition, then L(f, P ) ≤ U(f, P ).
Therefore, m(b− a) ≤ L(f, P ) ≤ U(f, P ) ≤M(b− a).

Theorem 13. The upper and lower Darboux integrals exist for a bounded
function.

Let f : [a, b]→ R be a bounded function.

Then the lower integral
∫ b
a
f and upper integral

∫ b
a
f exist and

∫ b
a
f ≤

∫ b
a
f .

Proof. Let S be the set of all lower Riemann sums of all the partitions of [a, b].
Then S = {L(f, P ) : P is a partition of [a, b]}.
Let T be the set of all upper Riemann sums of all the partitions of [a, b].
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Then T = {U(f, P ) : P is a partition of [a, b]}.
Let P0 = {a, b} be a partition of the interval [a, b].
Since f is bounded, then the upper Riemann sum U(f, P0) exists and the

lower Riemann sum L(f, P0) exists, so U(f, P0) ∈ T and L(f, P0) ∈ S.
Hence, T 6= ∅ and S 6= ∅.

Let x ∈ S.
Then there exists a partition P1 of [a, b] such that x = L(f, P1).
Since any lower Riemann sum is smaller than any upper Riemann sum, then

x = L(f, P1) ≤ U(f, P0).
Since x is arbitrary, then x ≤ U(f, P0) for every x ∈ S.
Hence, U(f, P0) is an upper bound of S, so S is bounded above in R.
Since S 6= ∅ and bounded above in R, then by completeness of R, supS

exists.
Therefore,

∫ b
a
f = sup{L(f, P ) : P is a partition of [a, b]} = supS exists.

Let y ∈ T .
Then there exists a partition P2 of [a, b] such that y = U(f, P2).
Since any lower Riemann sum is smaller than any upper Riemann sum, then

L(f, P0) ≤ U(f, P2) = y.
Since y is arbitrary, then L(f, P0) ≤ y for every y ∈ T .
Hence, L(f, P0) is a lower bound of T , so T is bounded below in R.
Since T 6= ∅ and bounded below in R, then by completeness of R, inf T

exists.

Therefore,
∫ b
a
f = inf{U(f, P ) : P is a partition of [a, b]} = inf T exists.

We next prove supS ≤ inf T .
Let t ∈ T .
Then t = U(f, P ) for some partition P of [a, b].
Let s ∈ S.
Then s = L(f,Q) for some partition Q of [a, b].
Since any lower Riemann sum is smaller than any upper Riemann sum, then

s ≤ t.
Since s is arbitrary, then s ≤ t for all s ∈ S, so t is an upper bound of S.
Since supS is the least upper bound of S, then supS ≤ t.
Since t is arbitrary, then supS ≤ t for all t ∈ T .
Hence, supS is a lower bound of T .
Since inf T is the greatest lower bound of T , then supS ≤ inf T .

Therefore,
∫ b
a
f ≤

∫ b
a
f .

Proposition 14. Let f : [a, b]→ R be a bounded function.
Let M = sup f([a, b]).
Let m = inf f([a, b]).

Then m(b− a) ≤
∫ b
a
f and

∫ b
a
f ≤M(b− a).
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Proof. Since f is a bounded function and the set {a, b} is a partition of the
interval [a, b], then the suprema and infima of the set f([a, b]) exist.

Let M = sup f([a, b]).
Let m = inf f([a, b]).

Since f is a bounded function, then the upper integral
∫ b
a
f and the lower

integral
∫ b
a
f exist.

Let S = {L(f, P ) : P is a partition of [a, b]}.
Let T = {U(f, P ) : P is a partition of [a, b]}.
Then

∫ b
a
f = supS and

∫ b
a
f = inf T .

Let P be a partition of [a, b].
Then L(f, P ) ∈ S and U(f, P ) ∈ T .
Since supS is an upper bound of S and L(f, P ) ∈ S , then L(f, P ) ≤ supS.
Since f is a bounded function and m = inf f([a, b]) and P is a partition of

[a, b], then m(b− a) ≤ L(f, P ).
Since inf T is a lower bound of T and U(f, P ) ∈ T , then inf T ≤ U(f, P ).
Since f is a bounded function and M = sup f([a, b]) and P is a partition of

[a, b], then U(f, P ) ≤M(b− a).
Since m(b − a) ≤ L(f, P ) and L(f, P ) ≤ supS, then m(b − a) ≤ supS, so

m(b− a) ≤
∫ b
a
f .

Since inf T ≤ U(f, P ) and U(f, P ) ≤ M(b − a), then inf T ≤ M(b − a), so∫ b
a
f ≤M(b− a).

Theorem 15. Darboux integrability criterion
Let f : [a, b]→ R be a bounded function.
Then f is Darboux integrable on [a, b] iff for every ε > 0 there exists a

partition P of [a, b] such that U(f, P )− L(f, P ) < ε.

Proof.

Riemann Integral of a real valued function

Theorem 16. Integral of a Riemann integrable function is unique.
If f : [a, b] → R is a Riemann integrable function, then the value of the

integral is unique.

Proof. Let f : [a, b]→ R be a Riemann integrable function.
Then there exists L ∈ R such that for every ε > 0, there exists δ > 0 such

that if Ṗ is any tagged partition of [a, b] with ||Ṗ || < δ, then |S(f ; Ṗ )− L| < ε.
To prove L is unique, let L1, L2 ∈ R such that L1 and L2 satisfy the definition

of a Riemann integrable function.
We must prove L1 = L2.
Let ε > 0 be given.
Then ε

2 > 0.
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Since L1 satisfies the definition, then there exists δ1 > 0 such that if Ṗ is
any tagged partition of [a, b] with ||Ṗ || < δ1, then |S(f ; Ṗ )− L1| < ε

2 .

Since L2 satisfies the definition, then there exists δ2 > 0 such that if Ṗ is
any tagged partition of [a, b] with ||Ṗ || < δ2, then |S(f ; Ṗ )− L2| < ε

2 .
Let δ = min{δ1, δ2}.
Then δ ≤ δ1 and δ ≤ δ2.
Since δ1 > 0 and δ2 > 0, then δ > 0.
Let Ṗ be an arbitrary tagged partition of [a, b] with ||Ṗ || < δ.
Since ||Ṗ || < δ and δ ≤ δ1, then ||Ṗ || < δ1, so |S(f ; Ṗ )− L1| < ε

2 .

Since ||Ṗ || < δ and δ ≤ δ2, then ||Ṗ || < δ2, so |S(f ; Ṗ )− L2| < ε
2 .

Observe that

|L1 − L2| = |L1 − S(f ; Ṗ ) + S(f ; Ṗ )− L2|
≤ |L1 − S(f ; Ṗ )|+ |S(f ; Ṗ )− L2|
= |S(f ; Ṗ )− L1|+ |S(f ; Ṗ )− L2|

<
ε

2
+
ε

2
= ε.

Thus, |L1 − L2| < ε.
Since ε is arbitrary, then |L1 − L2| < ε for every ε > 0.
Therefore, by a previous lemma, L1 − L2 = 0, so L1 = L2, as desired.
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