Integration of real valued functions Examples

Jason Sass

June 29, 2021

Darboux Integral of a real valued function

Example 1. The constant function is Darboux integrable.

Let $k \in \mathbb{R}$ be fixed. Then $\int_a^b k = k(b-a)$.

Proof. Let $f : [a, b] \to \mathbb{R}$ be the function defined by f(x) = k. Let $x \in [a, b]$.

Then |f(x)| = |k|, so |f(x)| = |k| for all $x \in [a, b]$.

Hence, f is a bounded function, so the upper and lower Darboux integrals exist.

Let $P = \{a, x_1, ..., x_{n-1}, b\}$ be a partition of [a, b].

Since f is a bounded function, then the upper Riemann sum is $U(f, P) = \sum_{i=1}^{n} \sup f(I_i)\Delta_i$ and the lower Riemann sum is $L(f, P) = \sum_{i=1}^{n} \inf f(I_i)\Delta_i$ where $I_i = [x_{i-1}, x_i]$ and $\Delta_i = x_i - x_{i-1}$ for each i = 1, 2, ..., n. Let $i \in \{1, 2, ..., n\}$.

Then $f(I_i) = f([x_{i-1}, x_i]) = \{k\}$, so $\sup f(I_i) = \sup\{k\} = k$ and $\inf f(I_i) = \inf\{k\} = k$.

Thus, $\sup f(I_i) = k$ and $\inf f(I_i) = k$ for each i = 1, 2, ..., n. Observe that

$$U(f, P) = \sum_{i=1}^{n} \sup f(I_i)\Delta_i$$

=
$$\sum_{i=1}^{n} k\Delta_i$$

=
$$k \sum_{i=1}^{n} \Delta_i$$

=
$$k \sum_{i=1}^{n} (x_i - x_{i-1})$$

=
$$k(x_n - x_0)$$

=
$$k(b - a).$$

Therefore, U(f, P) = k(b - a).

Since P is an arbitrary partition, then U(f, P) = k(b-a) for every partition of [a, b].

Let $S = \{U(f, P) : P \text{ is a partition of } [a, b]\}.$ Then $S = \{k(b - a)\}.$ The upper Darboux integral is

> $\overline{\int_{a}^{b}} f = \inf\{U(f, P) : P \text{ is a partition of } [a, b]\}$ = $\inf S$ = $\inf\{k(b-a)\}$ = k(b-a).

Observe that

$$L(f, P) = \sum_{i=1}^{n} \inf f(I_i) \Delta_i$$
$$= \sum_{i=1}^{n} k \Delta_i$$
$$= k \sum_{i=1}^{n} \Delta_i$$
$$= k \sum_{i=1}^{n} (x_i - x_{i-1})$$
$$= k(x_n - x_0)$$
$$= k(b - a).$$

Therefore, L(f, P) = k(b - a).

Since P is an arbitrary partition, then L(f, P) = k(b-a) for every partition of [a, b].

Let $T = \{L(f, P) : P \text{ is a partition of } [a, b]\}$. Then $T = \{k(b - a)\}$. The lower Darboux integral is

 $\underbrace{\int_{\underline{a}}^{b} f}_{a} = \sup\{L(f, P) : P \text{ is a partition of } [a, b]\}$ $= \sup T$ $= \sup\{k(b - a)\}$ = k(b - a).

Since $\underline{\int_a^b} f = k(b-a) = \overline{\int_a^b} f$, then f is Darboux integrable on [a, b], so the Darboux integral of f over [a, b] is $\int_a^b k = k(b-a)$.

Example 2. Dirichlet function is not Darboux integrable

Let $f:[0,1] \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

Then f is not integrable on [0, 1].

Proof. Since the range of f is the finite set $f([0,1]) = \{0,1\}$, then f is a bounded function, so the upper integral $\overline{\int_0^1} f$ and lower integral $\int_0^1 f$ exist.

Let P be an arbitrary partition of [0, 1].

Then there exists a positive integer n such that $P = \{0, x_1, ..., x_{n-1}, 1\}$ and $x_0 = 0$ and $x_n = 1$ and $x_{k-1} < x_k$ for k = 1, 2, ..., n.

Let $I_k = [x_{k-1}, x_k]$ and $\Delta_k = x_k - x_{k-1}$ for each k = 1, 2, ..., n.

Since I_k is a subinterval of the partition P, then $I_k \subset [0,1]$ for each k = 1, 2, ..., n.

Let $k \in \{1, 2, ..., n\}$.

Then $I_k = [x_{k-1}, x_k]$ and $x_{k-1} < x_k$ and $I_k \subset [0, 1]$ and $\Delta_k = x_k - x_{k-1}$.

Since \mathbb{Q} is dense in \mathbb{R} and $x_{k-1} < x_k$, then there exists a rational s such that $x_{k-1} < s < x_k$.

Hence, $s \in [x_{k-1}, x_k]$, so $s \in I_k$.

Since $I_k \subset [0, 1]$, then $s \in [0, 1]$.

Since s is rational, then f(s) = 1.

Since $\mathbb{R} - \mathbb{Q}$ is dense in \mathbb{R} and $x_{k-1} < x_k$, then there exists an irrational t such that $x_{k-1} < t < x_k$.

Hence, $t \in [x_{k-1}, x_k]$, so $t \in I_k$.

Since $I_k \subset [0, 1]$, then $t \in [0, 1]$.

Since t is irrational, then f(t) = 0.

Since f(s) = 1 and f(t) = 0, then $0 \in f(I_k)$ and $1 \in f(I_k)$, so $\{0, 1\} \subset f(I_k)$. Since $I_k \subset [0, 1]$, then $f(I_k) \subset f([0, 1])$.

Since $f(I_k) \subset f([0,1])$ and $f([0,1]) = \{0,1\}$, then $f(I_k) \subset \{0,1\}$.

Since $f(I_k) \subset \{0, 1\}$ and $\{0, 1\} \subset f(I_k)$, then $f(I_k) = \{0, 1\}$, so $\sup f(I_k) = 1$ and $\inf f(I_k) = 0$.

Hence, $\inf f(I_k)\Delta_k = 0\Delta_k = 0$ and $\sup f(I_k)\Delta_k = 1 \cdot \Delta_k = \Delta_k$.

Since k is arbitrary, then $\inf f(I_k)\Delta_k = 0$ and $\sup f(I_k)\Delta_k = \Delta_k$ for each k = 1, 2, ..., n.

The upper Riemann sum is

$$U(f,P) = \sum_{k=1}^{n} \sup f(I_k) \Delta_k$$
$$= \sum_{k=1}^{n} \Delta_k$$
$$= \sum_{k=1}^{n} (x_k - x_{k-1})$$
$$= x_n - x_0$$
$$= 1 - 0$$
$$= 1.$$

The lower Riemann sum is

$$L(f, P) = \sum_{k=1}^{n} \inf f(I_k) \Delta_k$$
$$= \sum_{k=1}^{n} 0$$
$$= 0.$$

Therefore, U(f, P) = 1 and L(f, P) = 0 for any partition P of [0, 1]. The upper Darboux integral is

$$\overline{\int_0^1} f = \inf\{U(f, P) : P \text{ is a partition of } [a, b]\}$$
$$= \inf\{1\}$$
$$= 1.$$

The lower Darboux integral is

$$\underbrace{\int_{0}^{1} f}_{0} = \sup\{L(f, P) : P \text{ is a partition of } [a, b]\}$$

$$= \inf\{0\}$$

$$= 0.$$

Since $\underline{\int_0^1} f = 0 < 1 = \overline{\int_0^1} f$, then f is not Darboux integrable on [0, 1].

Riemann Integral of a real valued function

Example 3. Let $k \in \mathbb{R}$ be fixed. Then $\int_a^b k dx = k(b-a)$. *Proof.* Let $f:[a,b] \to \mathbb{R}$ be the function defined by f(x) = k. Let $\epsilon > 0$ be given.

Let $\delta = 1$.

Let $\dot{P} = \{([x_{i-1}, x_i], t_i) : i \in \mathbb{Z}^+, 1 \le i \le n\}$ be an arbitrary tagged partition of [a, b] with $||\dot{P}|| < 1$.

Since \dot{P} is a partition, then $x_0 = a$ and $x_n = b$. Observe that

$$\begin{aligned} |S(f; \dot{P}) - k(b-a)| &= |\sum_{i=1}^{n} f(t_i)(x_i - x_{i-1}) - k(b-a)| \\ &= |\sum_{i=1}^{n} k(x_i - x_{i-1}) - k(b-a)| \\ &= |k\sum_{i=1}^{n} (x_i - x_{i-1}) - k(b-a)| \\ &= |k(x_n - x_0) - k(b-a)| \\ &= |k(b-a) - k(b-a)| \\ &= 0 \\ &< \epsilon. \end{aligned}$$

Therefore, $\int_{a}^{b} k dx = k(b-a)$.