Integration of real valued functions Examples

Jason Sass

June 29, 2021

Darboux Integral of a real valued function

Example 1. The constant function is Darboux integrable.
Let $k \in \mathbb{R}$ be fixed.
Then $\int_{a}^{b} k=k(b-a)$.
Proof. Let $f:[a, b] \rightarrow \mathbb{R}$ be the function defined by $f(x)=k$.
Let $x \in[a, b]$.
Then $|f(x)|=|k|$, so $|f(x)|=|k|$ for all $x \in[a, b]$.
Hence, f is a bounded function, so the upper and lower Darboux integrals exist.

Let $P=\left\{a, x_{1}, \ldots, x_{n-1}, b\right\}$ be a partition of $[a, b]$.
Since f is a bounded function, then the upper Riemann sum is $U(f, P)=$ $\sum_{i=1}^{n} \sup f\left(I_{i}\right) \Delta_{i}$ and the lower Riemann sum is $L(f, P)=\sum_{i=1}^{n} \inf f\left(I_{i}\right) \Delta_{i}$ where $I_{i}=\left[x_{i-1}, x_{i}\right]$ and $\Delta_{i}=x_{i}-x_{i-1}$ for each $i=1,2, \ldots, n$.

Let $i \in\{1,2, \ldots, n\}$.
Then $f\left(I_{i}\right)=f\left(\left[x_{i-1}, x_{i}\right]\right)=\{k\}$, so $\sup f\left(I_{i}\right)=\sup \{k\}=k$ and $\inf f\left(I_{i}\right)=$ $\inf \{k\}=k$.

Thus, $\sup f\left(I_{i}\right)=k$ and $\inf f\left(I_{i}\right)=k$ for each $i=1,2, \ldots, n$.
Observe that

$$
\begin{aligned}
U(f, P) & =\sum_{i=1}^{n} \sup f\left(I_{i}\right) \Delta_{i} \\
& =\sum_{i=1}^{n} k \Delta_{i} \\
& =k \sum_{i=1}^{n} \Delta_{i} \\
& =k \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right) \\
& =k\left(x_{n}-x_{0}\right) \\
& =k(b-a) .
\end{aligned}
$$

Therefore, $U(f, P)=k(b-a)$.

Since P is an arbitrary partition, then $U(f, P)=k(b-a)$ for every partition of $[a, b]$.

Let $S=\{U(f, P): P$ is a partition of $[a, b]\}$.
Then $S=\{k(b-a)\}$.
The upper Darboux integral is

$$
\begin{aligned}
\overline{\int_{a}^{b}} f & =\inf \{U(f, P): P \text { is a partition of }[a, b]\} \\
& =\inf S \\
& =\inf \{k(b-a)\} \\
& =k(b-a)
\end{aligned}
$$

Observe that

$$
\begin{aligned}
L(f, P) & =\sum_{i=1}^{n} \inf f\left(I_{i}\right) \Delta_{i} \\
& =\sum_{i=1}^{n} k \Delta_{i} \\
& =k \sum_{i=1}^{n} \Delta_{i} \\
& =k \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right) \\
& =k\left(x_{n}-x_{0}\right) \\
& =k(b-a)
\end{aligned}
$$

Therefore, $L(f, P)=k(b-a)$.
Since P is an arbitrary partition, then $L(f, P)=k(b-a)$ for every partition of $[a, b]$.

Let $T=\{L(f, P): P$ is a partition of $[a, b]\}$.
Then $T=\{k(b-a)\}$.
The lower Darboux integral is

$$
\begin{aligned}
\int_{a}^{b} f & =\sup \{L(f, P): P \text { is a partition of }[a, b]\} \\
& =\sup T \\
& =\sup \{k(b-a)\} \\
& =k(b-a)
\end{aligned}
$$

 Darboux integral of f over $[a, b]$ is $\int_{a}^{b} k=k(b-a)$.

Example 2. Dirichlet function is not Darboux integrable
Let $f:[0,1] \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)= \begin{cases}1 & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

Then f is not integrable on $[0,1]$.
Proof. Since the range of f is the finite set $f([0,1])=\{0,1\}$, then f is a bounded function, so the upper integral $\overline{\int_{0}^{1}} f$ and lower integral $\underline{\int_{0}^{1} f}$ exist.

Let P be an arbitrary partition of $[0,1]$.
Then there exists a positive integer n such that $P=\left\{0, x_{1}, \ldots, x_{n-1}, 1\right\}$ and $x_{0}=0$ and $x_{n}=1$ and $x_{k-1}<x_{k}$ for $k=1,2, \ldots, n$.

Let $I_{k}=\left[x_{k-1}, x_{k}\right]$ and $\Delta_{k}=x_{k}-x_{k-1}$ for each $k=1,2, \ldots, n$.
Since I_{k} is a subinterval of the partition P, then $I_{k} \subset[0,1]$ for each $k=$ $1,2, \ldots, n$.

Let $k \in\{1,2, \ldots, n\}$.
Then $I_{k}=\left[x_{k-1}, x_{k}\right]$ and $x_{k-1}<x_{k}$ and $I_{k} \subset[0,1]$ and $\Delta_{k}=x_{k}-x_{k-1}$.
Since \mathbb{Q} is dense in \mathbb{R} and $x_{k-1}<x_{k}$, then there exists a rational s such that $x_{k-1}<s<x_{k}$.

Hence, $s \in\left[x_{k-1}, x_{k}\right]$, so $s \in I_{k}$.
Since $I_{k} \subset[0,1]$, then $s \in[0,1]$.
Since s is rational, then $f(s)=1$.
Since $\mathbb{R}-\mathbb{Q}$ is dense in \mathbb{R} and $x_{k-1}<x_{k}$, then there exists an irrational t such that $x_{k-1}<t<x_{k}$.

Hence, $t \in\left[x_{k-1}, x_{k}\right]$, so $t \in I_{k}$.
Since $I_{k} \subset[0,1]$, then $t \in[0,1]$.
Since t is irrational, then $f(t)=0$.
Since $f(s)=1$ and $f(t)=0$, then $0 \in f\left(I_{k}\right)$ and $1 \in f\left(I_{k}\right)$, so $\{0,1\} \subset f\left(I_{k}\right)$.
Since $I_{k} \subset[0,1]$, then $f\left(I_{k}\right) \subset f([0,1])$.
Since $f\left(I_{k}\right) \subset f([0,1])$ and $f([0,1])=\{0,1\}$, then $f\left(I_{k}\right) \subset\{0,1\}$.
Since $f\left(I_{k}\right) \subset\{0,1\}$ and $\{0,1\} \subset f\left(I_{k}\right)$, then $f\left(I_{k}\right)=\{0,1\}$, so $\sup f\left(I_{k}\right)=1$ and $\inf f\left(I_{k}\right)=0$.

Hence, $\inf f\left(I_{k}\right) \Delta_{k}=0 \Delta_{k}=0$ and $\sup f\left(I_{k}\right) \Delta_{k}=1 \cdot \Delta_{k}=\Delta_{k}$.
Since k is arbitrary, then $\inf f\left(I_{k}\right) \Delta_{k}=0$ and $\sup f\left(I_{k}\right) \Delta_{k}=\Delta_{k}$ for each $k=1,2, \ldots, n$.

The upper Riemann sum is

$$
\begin{aligned}
U(f, P) & =\sum_{k=1}^{n} \sup f\left(I_{k}\right) \Delta_{k} \\
& =\sum_{k=1}^{n} \Delta_{k} \\
& =\sum_{k=1}^{n}\left(x_{k}-x_{k-1}\right) \\
& =x_{n}-x_{0} \\
& =1-0 \\
& =1
\end{aligned}
$$

The lower Riemann sum is

$$
\begin{aligned}
L(f, P) & =\sum_{k=1}^{n} \inf f\left(I_{k}\right) \Delta_{k} \\
& =\sum_{k=1}^{n} 0 \\
& =0
\end{aligned}
$$

Therefore, $U(f, P)=1$ and $L(f, P)=0$ for any partition P of $[0,1]$. The upper Darboux integral is

$$
\begin{aligned}
\overline{\int_{0}^{1}} f & =\inf \{U(f, P): P \text { is a partition of }[a, b]\} \\
& =\inf \{1\} \\
& =1
\end{aligned}
$$

The lower Darboux integral is

$$
\begin{aligned}
\underline{\int_{0}^{1} f} & =\sup \{L(f, P): P \text { is a partition of }[a, b]\} \\
& =\inf \{0\} \\
& =0
\end{aligned}
$$

Since $\underline{\int_{0}^{1}} f=0<1=\overline{\int_{0}^{1}} f$, then f is not Darboux integrable on $[0,1]$.

Riemann Integral of a real valued function

Example 3. Let $k \in \mathbb{R}$ be fixed.
Then $\int_{a}^{b} k d x=k(b-a)$.

Proof. Let $f:[a, b] \rightarrow \mathbb{R}$ be the function defined by $f(x)=k$.
Let $\epsilon>0$ be given.
Let $\delta=1$.
Let $\dot{P}=\left\{\left(\left[x_{i-1}, x_{i}\right], t_{i}\right): i \in \mathbb{Z}^{+}, 1 \leq i \leq n\right\}$ be an arbitrary tagged partition of $[a, b]$ with $\|\dot{P}\|<1$.

Since \dot{P} is a partition, then $x_{0}=a$ and $x_{n}=b$.
Observe that

$$
\begin{aligned}
|S(f ; \dot{P})-k(b-a)| & =\left|\sum_{i=1}^{n} f\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)-k(b-a)\right| \\
& =\left|\sum_{i=1}^{n} k\left(x_{i}-x_{i-1}\right)-k(b-a)\right| \\
& =\left|k \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)-k(b-a)\right| \\
& =\left|k\left(x_{n}-x_{0}\right)-k(b-a)\right| \\
& =|k(b-a)-k(b-a)| \\
& =0 \\
& <\epsilon
\end{aligned}
$$

Therefore, $\int_{a}^{b} k d x=k(b-a)$.

