Integration of real valued functions Exercises

Jason Sass

June 29, 2021

Darboux Integral of a real valued function

Exercise 1. Let $f:[0,3] \rightarrow \mathbb{R}$ be the function defined by

$$
f(x)= \begin{cases}2 & \text { if } 0 \leq x \leq 1 \\ 3 & \text { if } 1<x \leq 3\end{cases}
$$

Then $\underline{\int_{0}^{3}} f=\overline{\int_{0}^{3}} f=\int_{0}^{3} f=8$.
Proof. We prove f is a bounded function.
Let $x \in \operatorname{domf}$.
Then either $0 \leq x \leq 1$ or $1<x \leq 3$.
We consider these cases separately.
Case 1: Suppose $0 \leq x \leq 1$.
Then $|f(x)|=|2|=2<3$.
Case 2: Suppose $1<x \leq 3$.
Then $|f(x)|=|3|=3$.
Thus, in all cases, $|f(x)| \leq 3$.
Hence, $|f(x)| \leq 3$ for all $x \in \operatorname{dom} f$, so f is bounded.
Therefore, the upper Darboux integral $\overline{\int_{0}^{3}} f$ and the lower Darboux integral
$\underline{\int_{0}^{3}} f$ exist and the upper Riemann sum $U(f, P)$ and lower Riemann sum $L(f, P)$
exist for every partition P of the interval $[0,3]$.
Let $S=\{L(f, P): P$ is a partition of $[0,3]\}$.
Let $T=\{U(f, P): P$ is a partition of $[0,3]\}$.
Then $\underline{\int_{0}^{3}} f=\sup S$ and $\overline{\int_{0}^{3}} f=\inf T$ and $\underline{\int_{0}^{3}} f \leq \overline{\int_{0}^{3}} f$.

Proof. Let $P_{2}=\{0,1,3\}$ be a partition of $[0,3]$.
The upper Riemann sum is

$$
\begin{aligned}
U\left(f, P_{2}\right) & =\sum_{k=1}^{2} \sup f\left(I_{k}\right) \Delta_{k} \\
& =\sup f\left(I_{1}\right) \Delta_{1}+\sup f\left(I_{2}\right) \Delta_{2} \\
& =\sup f([0,1])(1-0)+\sup f([1,3])(3-1) \\
& =\sup \{2\}(1)+\sup \{2,3\}(2) \\
& =2(1)+3(2) \\
& =8 .
\end{aligned}
$$

Since P_{2} is a partition of $[0,3]$ and $U\left(f, P_{2}\right)=8$, then $8 \in T$.
Since $\overline{\int_{0}^{3}} f$ is a lower bound of T and $8 \in T$, then $\overline{\int_{0}^{3}} f \leq 8$.
Proof. We prove for every ϵ if $0<\epsilon<2$, then $8-\epsilon \in S$.
Let ϵ be an arbitrary real number such that $0<\epsilon<2$.
Since $0<\epsilon<2$, then $1<1+\epsilon<3$.
Since $0<1<1+\epsilon<3$, let $P_{\epsilon}=\{0,1,1+\epsilon, 3\}$ be a partition of the interval [0, 3].

The lower Riemann sum is

$$
\begin{aligned}
L\left(f, P_{\epsilon}\right) & =\sum_{k=1}^{3} \inf f\left(I_{k}\right) \Delta_{k} \\
& =\inf f\left(I_{1}\right) \Delta_{1}+\inf f\left(I_{2}\right) \Delta_{2}+\inf f\left(I_{3}\right) \Delta_{3} \\
& =\inf f([0,1])(1-0)+\inf f([1,1+\epsilon])[(1+\epsilon)-1]+\inf f([1+\epsilon, 3])[3-(1+\epsilon)] \\
& =\inf \{2\}(1)+\inf \{2,3\} \epsilon+\inf \{3\}(2-\epsilon) \\
& =2 * 1+2 \epsilon+3(2-\epsilon) \\
& =8-\epsilon
\end{aligned}
$$

Since P_{ϵ} is a partition of $[0,3]$ and $L\left(f, P_{\epsilon}\right)=8-\epsilon$, then $8-\epsilon \in S$.
Therefore, $8-\epsilon \in S$ for every ϵ such that $0<\epsilon<2$.
Proof. We prove sup $S \geq 8$.
Suppose $\sup S<8$.
Then $8-\sup S>0$, so $\frac{8-\sup S}{2}>0$.
Let $\epsilon=\frac{8-\sup S}{2}$.
Then $\epsilon>0$.
Since $\sup S \geq \inf f *(3-0)=2 *(3-0)=6>4$, then $\sup S>4$, so $\sup S>8-4$.

Hence, $4>8-\sup S$, so $2>\frac{8-\sup S}{2}$.
Thus, $2>\epsilon$.
Since $0<\epsilon$ and $\epsilon<2$, then $0<\epsilon<2$.
Hence, $8-\epsilon=8-\frac{8-\sup S}{2}=\frac{\sup S+8}{2} \in S$.

Therefore, $\frac{\sup S+8}{2} \in S$.
Since $\sup S<8$, then $2 \sup S<\sup S+8$, so $\sup S<\frac{\sup S+8}{2}$.
Thus, $\frac{\sup S+8}{2}$ is an element of S that is greater than the least upper bound of S.

This contradicts the fact that $\sup S$ is an upper bound of S.
Hence, $\sup S \geq 8$, so $\underline{\int_{0}^{3}} f \geq 8$.
Proof. Since $8 \leq \underline{\int_{0}^{3}} f \leq \overline{\int_{0}^{3}} f \leq 8$, then $8 \leq \underline{\int_{0}^{3}} f$ and $\underline{\int_{0}^{3}} f \leq 8$ and $8 \leq \overline{\int_{0}^{3}} f$ and $\overline{\int_{0}^{3}} f \leq 8$.

Since $\int_{0}^{3} f \leq 8$ and $8 \leq \int_{0}^{3} f$, then $\int_{0}^{3} f=8$.
Since $\overline{\overline{\int_{0}^{3}}} f \leq 8$ and $8 \leq \overline{\overline{\int_{0}^{3}}} f$, then $\overline{\overline{\int_{0}^{3}}} f=8$.
Therefore, f is Darboux integrable and the integral of f over $[0,3]$ is $\int_{0}^{3} f=$ $\underline{\int_{0}^{3}} f=8=\overline{\int_{0}^{3}} f$.

Exercise 2. Let $f:[0,1] \rightarrow \mathbb{R}$ be the function defined by $f(x)=x$.
Then $\int_{0}^{1} x d x=\underline{\int_{0}^{1} x=\frac{1}{2}=\overline{\int_{0}^{1}} x .}$
Proof. Let $x \in[0,1]$.
Then $0 \leq x \leq 1$, so $0 \leq x=f(x) \leq 1$.
Hence, $0 \leq \bar{f}(x) \leq 1$, so f is bounded.
Therefore, the upper Darboux integral $\overline{\int_{0}^{1}} x$ and the lower Darboux integral $\underline{\int_{0}^{1} x}$ exist and the upper Riemann sum $U(f, P)$ and lower Riemann sum $L(f, P)$ exist for every partition P of the interval $[0,1]$.

Let $S=\{L(f, P): P$ is a partition of $[0,1]\}$.
Let $T=\{U(f, P): P$ is a partition of $[0,1]\}$.
Then $\underline{\int_{0}^{1} x}=\sup S$ and $\overline{\int_{0}^{1}} x=\inf T$ and $\underline{\int_{0}^{1}} x \leq \overline{\int_{0}^{1}} x$.
Proof. Let $P_{n}=\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, 1\right\}$ be a partition of $[0,1]$ for each $n \in \mathbb{Z}^{+}$.
For each $k=1,2, \ldots, n$ the $k^{t h}$ subinterval is $I_{k}=\left[\frac{k-1}{n}, \frac{k}{n}\right]$ and its length is $\Delta_{k}=\frac{1}{n}$.

Hence, for each $k=1,2, \ldots, n$ the direct image of I_{k} is $f\left(I_{k}\right)=f\left(\left[\frac{k-1}{n}, \frac{k}{n}\right]\right)=$ $\left[\frac{k-1}{n}, \frac{k}{n}\right]$.

Since f is an increasing function, then $\sup f\left(I_{k}\right)=\frac{k}{n}$ and $\inf f\left(I_{k}\right)=\frac{k-1}{n}$ and $\Delta_{k}=\frac{1}{n}$ for each $k=1,2, \ldots, n$.

For every positive integer n the lower Riemann sum is

$$
\begin{aligned}
L\left(f, P_{n}\right) & =\sum_{k=1}^{n} \inf f\left(I_{k}\right) \Delta_{k} \\
& =\sum_{k=1}^{n} \frac{k-1}{n} \frac{1}{n} \\
& =\sum_{k=1}^{n} \frac{k-1}{n^{2}} \\
& =\frac{1}{n^{2}} \sum_{k=1}^{n}(k-1) \\
& =\frac{1}{n^{2}}\left[\sum_{k=1}^{n} k-\sum_{k=1}^{n} 1\right] \\
& =\frac{1}{n^{2}}\left[\frac{n(n+1)}{2}-n\right] \\
& =\frac{n-1}{2 n} .
\end{aligned}
$$

Therefore, $L\left(f, P_{n}\right)=\frac{n-1}{2 n}$ for all $n \in \mathbb{Z}^{+}$.
Let $A=\left\{L\left(f, P_{n}\right): n \in \mathbb{Z}^{+}\right\}$.
Then $A=\left\{\frac{n-1}{2 n}: n \in \mathbb{Z}^{+}\right\}$, so A is the range of the sequence $\left(a_{n}\right)$ defined by $a_{n}=\frac{n-1}{2 n}$.

Let $x \in A$.
Then $x=L\left(f, P_{n}\right)$ for some positive integer n.
Since P_{n} is a partition of $[0,1]$, then $x \in S$.
Hence, $A \subset S$.
Let $n \in \mathbb{Z}^{+}$be given.
Then $a_{n}=\frac{n-1}{2 n} \in A$.
Since $A \subset S$, then $a_{n} \in S$.
Since $\sup S$ is an upper bound of S, then $a_{n} \leq \sup S$.
Since n is arbitrary, then $a_{n} \leq \sup S$ for all $n \in \mathbb{Z}^{+}$, so $\sup S$ is an upper bound of A.

Since $\lim _{n \rightarrow \infty} \frac{n-1}{2 n}=\frac{1}{2}$, then $\left(a_{n}\right)$ is a convergent sequence, so $\frac{1}{2}=\lim _{n \rightarrow \infty} \frac{n-1}{2 n} \leq$ $\sup S$.

Hence, $\frac{1}{2} \leq \underline{\int_{0}^{1}} x$.

Proof. For every positive integer n the upper Riemann sum is

$$
\begin{aligned}
U\left(f, P_{n}\right) & =\sum_{k=1}^{n} \sup f\left(I_{k}\right) \Delta_{k} \\
& =\sum_{k=1}^{n} \frac{k}{n} \frac{1}{n} \\
& =\sum_{k=1}^{n} \frac{k}{n^{2}} \\
& =\frac{1}{n^{2}} \sum_{k=1}^{n} k \\
& =\frac{1}{n^{2}}\left[\frac{n(n+1)}{2}\right] \\
& =\frac{n+1}{2 n}
\end{aligned}
$$

Therefore, $U\left(f, P_{n}\right)=\frac{n+1}{2 n}$ for all $n \in \mathbb{Z}^{+}$.
Let $B=\left\{U\left(f, P_{n}\right): n \in \mathbb{Z}^{+}\right\}$.
Then $B=\left\{\frac{n+1}{2 n}: n \in \mathbb{Z}^{+}\right\}$, so B is the range of the sequence $\left(b_{n}\right)$ defined by $b_{n}=\frac{n+1}{2 n}$.

Let $y \in B$.
Then $y=U\left(f, P_{n}\right)$ for some positive integer n.
Since P_{n} is a partition of $[0,1]$, then $y \in T$.
Hence, $B \subset T$.
Let $n \in \mathbb{Z}^{+}$be given.
Then $b_{n}=\frac{n+1}{2 n} \in B$.
Since $B \subset T$, then $b_{n} \in T$.
Since $\inf T$ is a lower bound of T, then $\inf T \leq b_{n}$.
Since n is arbitrary, then $\inf T \leq b_{n}$ for all $n \in \mathbb{Z}^{+}$, so $\inf T$ is a lower bound of B.

Since $\lim _{n \rightarrow \infty} \frac{n+1}{2 n}=\frac{1}{2}$, then $\left(b_{n}\right)$ is a convergent sequence, so $\inf T \leq$ $\lim _{n \rightarrow \infty} \frac{n+1}{2 n}=\frac{1}{2}$.

Since $\inf T \leq \frac{1}{2}$, then $\overline{\int_{0}^{1}} x \leq \frac{1}{2}$.
Proof. Since $\frac{1}{2} \leq \underline{\int_{0}^{1}} x$ and $\underline{\int_{0}^{1}} x \leq \overline{\int_{0}^{1}} x$ and $\overline{\int_{0}^{1}} x \leq \frac{1}{2}$, then $\frac{1}{2} \leq \underline{\int_{0}^{1}} x \leq \overline{\int_{0}^{1}} x \leq \frac{1}{2}$,

Since $\underline{\int_{0}^{1} x} x=\frac{1}{2}$ and $\frac{1}{2} \leq \underline{\int_{0}^{1}} x$, then $\underline{\int_{0}^{1} x=\frac{1}{2}}$.
Since $\overline{\overline{\int_{0}^{1}}} x \leq \frac{1}{2}$ and $\frac{1}{2} \leq \overline{\overline{\int_{0}^{1}}} x$, then $\overline{\overline{\int_{0}^{1}}} x=\frac{1}{2}$.
Therefore, f is Darboux integrable and the integral of x over $[0,1]$ is $\int_{0}^{1} x=$

Exercise 3. Let $f:[0,1] \rightarrow \mathbb{R}$ be the function defined by $f(x)=x^{2}$.
Then $\int_{0}^{1} x^{2} d x=\underline{\int_{0}^{1}} x^{2}=\frac{1}{3}=\overline{\int_{0}^{1}} x^{2}$.
Proof. Let $x \in[0,1]$.
Then $0 \leq x \leq 1$, so $0 \leq x^{2}=f(x) \leq 1$.
Hence, $0 \leq f(x) \leq 1$, so f is bounded.
Therefore, the upper Darboux integral $\overline{\int_{0}^{1}} x^{2}$ and the lower Darboux integral $\underline{\int_{0}^{1}} x^{2}$ exist and the upper Riemann sum $U(f, P)$ and lower Riemann sum $L(f, P)$ exist for every partition P of the interval $[0,1]$.

Let $S=\{L(f, P): P$ is a partition of $[0,1]\}$.
Let $T=\{U(f, P): P$ is a partition of $[0,1]\}$.
Then $\underline{\int_{0}^{1}} x^{2}=\sup S$ and $\overline{\int_{0}^{1}} x^{2}=\inf T$ and $\underline{\int_{0}^{1}} x^{2} \leq \overline{\int_{0}^{1}} x^{2}$.
Proof. Let $P_{n}=\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, 1\right\}$ be a partition of $[0,1]$ for each $n \in \mathbb{Z}^{+}$.
For each $k=1,2, \ldots, n$ the $k^{t h}$ subinterval is $I_{k}=\left[\frac{k-1}{n}, \frac{k}{n}\right]$ and its length is $\Delta_{k}=\frac{1}{n}$.

Hence, for each $k=1,2, \ldots, n$ the direct image of I_{k} is $f\left(I_{k}\right)=f\left(\left[\frac{k-1}{n}, \frac{k}{n}\right]\right)=$ $\left[\left(\frac{k-1}{n}\right)^{2},\left(\frac{k}{n}\right)^{2}\right]$, so $\sup f\left(I_{k}\right)=\left(\frac{k}{n}\right)^{2}$ and $\inf f\left(I_{k}\right)=\left(\frac{k-1}{n}\right)^{2}$ and $\Delta_{k}=\frac{1}{n}$ for each $k=1,2, \ldots, n$.

For every positive integer n the lower Riemann sum is

$$
\begin{aligned}
L\left(f, P_{n}\right) & =\sum_{k=1}^{n} \inf f\left(I_{k}\right) \Delta_{k} \\
& =\sum_{k=1}^{n}\left(\frac{k-1}{n}\right)^{2} \frac{1}{n} \\
& =\sum_{k=1}^{n}(k-1)^{2} \frac{1}{n^{3}} \\
& =\frac{1}{n^{3}} \sum_{k=1}^{n}(k-1)^{2} \\
& =\frac{1}{n^{3}}\left[\sum_{k=1}^{n} k^{2}-n^{2}\right] \\
& =\frac{1}{n^{3}}\left[\frac{n(n+1)(2 n+1)}{6}-n^{2}\right] \\
& =\frac{2 n^{2}-3 n+1}{6 n^{2}}
\end{aligned}
$$

Therefore, $L\left(f, P_{n}\right)=\frac{2 n^{2}-3 n+1}{6 n^{2}}$ for all $n \in \mathbb{Z}^{+}$.
Let $A=\left\{L\left(f, P_{n}\right): n \in \mathbb{Z}^{+n^{2}}\right\}$.
Then $A=\left\{\frac{2 n^{2}-3 n+1}{6 n^{2}}: n \in \mathbb{Z}^{+}\right\}$, so A is the range of the sequence $\left(a_{n}\right)$ defined by $a_{n}=\frac{2 n^{2}-3 n+1}{6 n^{2}}$.

Let $x \in A$.
Then $x=L\left(f, P_{n}\right)$ for some positive integer n.
Since P_{n} is a partition of $[0,1]$, then $x \in S$.
Hence, $A \subset S$.
Let $n \in \mathbb{Z}^{+}$be given.
Then $a_{n}=\frac{2 n^{2}-3 n+1}{6 n^{2}} \in A$.
Since $A \subset S$, then $a_{n} \in S$.
Since $\sup S$ is an upper bound of S, then $a_{n} \leq \sup S$.
Since n is arbitrary, then $a_{n} \leq \sup S$ for all $n \in \mathbb{Z}^{+}$, so $\sup S$ is an upper bound of A.

Since $\lim _{n \rightarrow \infty} \frac{2 n^{2}-3 n+1}{6 n^{2}}=\frac{1}{3}$, then $\left(a_{n}\right)$ is a convergent sequence, so $\frac{1}{3}=$ $\lim _{n \rightarrow \infty} \frac{2 n^{2}-3 n+1}{6 n^{2}} \leq \sup S$.

Hence, $\frac{1}{3} \leq \underline{\int_{0}^{1}} x^{2}$.
Proof. For every positive integer n the upper Riemann sum is

$$
\begin{aligned}
U\left(f, P_{n}\right) & =\sum_{k=1}^{n} \sup f\left(I_{k}\right) \Delta_{k} \\
& =\sum_{k=1}^{n}\left(\frac{k}{n}\right)^{2} \frac{1}{n} \\
& =\sum_{k=1}^{n} k^{2} \frac{1}{n^{3}} \\
& =\frac{1}{n^{3}} \sum_{k=1}^{n} k^{2} \\
& =\frac{1}{n^{3}}\left[\frac{n(n+1)(2 n+1)}{6}\right] \\
& =\frac{(n+1)(2 n+1)}{6 n^{2}} \\
& =\frac{2 n^{2}+3 n+1}{6 n^{2}}
\end{aligned}
$$

Therefore, $U\left(f, P_{n}\right)=\frac{2 n^{2}+3 n+1}{6 n^{2}}$ for all $n \in \mathbb{Z}^{+}$.
Let $B=\left\{U\left(f, P_{n}\right): n \in \mathbb{Z}^{6 n^{2}}\right\}$.
Then $B=\left\{\frac{2 n^{2}+3 n+1}{6 n^{2}}: n \in \mathbb{Z}^{+}\right\}$, so B is the range of the sequence $\left(b_{n}\right)$ defined by $b_{n}=\frac{2 n^{2}+3 n+1}{6 n^{2}}$.

Let $y \in B$.
Then $y=U\left(f, P_{n}\right)$ for some positive integer n.
Since P_{n} is a partition of $[0,1]$, then $y \in T$.
Hence, $B \subset T$.
Let $n \in \mathbb{Z}^{+}$be given.
Then $b_{n}=\frac{2 n^{2}+3 n+1}{6 n^{2}} \in B$.
Since $B \subset T$, then $b_{n} \in T$.

Since $\inf T$ is a lower bound of T, then $\inf T \leq b_{n}$.
Since n is arbitrary, then $\inf T \leq b_{n}$ for all $n \in \mathbb{Z}^{+}$, so $\inf T$ is a lower bound of B.

Since $\lim _{n \rightarrow \infty} \frac{2 n^{2}+3 n+1}{6 n^{2}}=\frac{1}{3}$, then $\left(b_{n}\right)$ is a convergent sequence, so $\inf T \leq$ $\lim _{n \rightarrow \infty} \frac{2 n^{2}+3 n+1}{6 n^{2}}=\frac{1}{3}$.

Since $\inf T \leq \frac{1}{3}$, then $\overline{\int_{0}^{1}} x^{2} \leq \frac{1}{3}$.
Proof. Since $\frac{1}{3} \leq \underline{\int_{0}^{1}} x^{2}$ and $\underline{\int_{0}^{1}} x^{2} \leq \overline{\int_{0}^{1}} x^{2}$ and $\overline{\int_{0}^{1}} x^{2} \leq \frac{1}{3}$, then $\frac{1}{3} \leq \underline{\int_{0}^{1}} x^{2} \leq$ $\overline{\int_{0}^{1}} x^{2} \leq \frac{1}{3}$, so $\int_{0}^{1} x^{2} \leq \frac{1}{3}$ and $\frac{1}{3} \leq \overline{\int_{0}^{1}} x^{2}$.

Since $\underline{\underline{\int_{0}^{1}} x^{2}} \leq \frac{1}{3}$ and $\frac{1}{3} \leq \underline{\underline{\int_{0}^{1}}} x^{2}$, then $\underline{\underline{\int_{0}^{1}}} x^{2}=\frac{1}{3}$.
Since $\overline{\overline{\int_{0}^{1}}} x^{2} \leq \frac{1}{3}$ and $\frac{1}{3} \leq \overline{\overline{\int_{0}^{1}}} x^{2}$, then $\overline{\overline{\int_{0}^{1}}} x^{2}=\frac{1}{3}$.
Therefore, f is Darboux integrable and the integral of x^{2} over $[0,1]$ is $\int_{0}^{1} x^{2}=$ $\underline{\int_{0}^{1}} x^{2}=\frac{1}{3}=\overline{\int_{0}^{1}} x^{2}$.

Exercise 4. Let $f:[0,2] \rightarrow \mathbb{R}$ be the function defined by $f(x)=1$ if $x \neq 1$ and $f(1)=0$.

Then $\int_{0}^{2} f=2$.
Proof. Let $x \in[0,2]$.
Then $0 \leq x \leq 2$, so either $x=1$ or $x \neq 1$.
We consider these cases separately.
Case 1: Suppose $x=1$.
Then $f(x)=f(1)=0$.
Case 2: Suppose $x \neq 1$.
Then $f(x)=1$.
Hence, either $f(x)=0$ or $f(x)=1$, so the range of f is the set $\{0,1\}$.
Since $\{0,1\}$ is finite, then f is bounded.
Therefore, the upper Darboux integral $\overline{\int_{0}^{2}} f$ and the lower Darboux integral
 exist for every partition P of the interval $[0,2]$.

Let $S=\{L(f, P): P$ is a partition of $[0,2]\}$.
Let $T=\{U(f, P): P$ is a partition of $[0,2]\}$.
Then $\underline{\int_{0}^{2}} f=\sup S$ and $\overline{\int_{0}^{2}} f=\inf T$.
Proof. Let $P_{1}=\{0,2\}$ be a partition of the interval $[0,2]$.
The upper Riemann sum is $U\left(f, P_{1}\right)=\sup f([0,2])(2-0)=\sup \{0,1\}(2)=$ $1(2)=2$, so $2 \in T$.

Since $\inf T$ is a lower bound of T, then $\inf T \leq 2$, so $\overline{\int_{0}^{2}} f \leq 2$.
Proof. We prove for every ϵ, if $0<\epsilon<2$, then $2-\epsilon \in S$.
Let ϵ be an arbitrary real number such that $0<\epsilon<2$
Then $0<\epsilon$ and $\epsilon<2$.

Since $\epsilon<2$, then $\frac{\epsilon}{2}<1$, so $0<1-\frac{\epsilon}{2}$ and $1+\frac{\epsilon}{2}<2$.
Since $0<\epsilon$, then $1-1<\frac{\epsilon}{2}+\frac{\epsilon}{2}$, so $1-\frac{\epsilon}{2}<1+\frac{\epsilon}{2}$.
Since $0<1-\frac{\epsilon}{2}$ and $1-\frac{\epsilon}{2}<1+\frac{\epsilon}{2}$ and $1+\frac{\epsilon}{2}<2$, then $0<1-\frac{\epsilon}{2}<1+\frac{\epsilon}{2}<2$.
Let $P_{\epsilon}=\left\{0,1-\frac{\epsilon}{2}, 1+\frac{\epsilon}{2}, 2\right\}$ be a partition of $[0,2]$.
The lower Riemann sum is

$$
\begin{aligned}
L\left(f, P_{\epsilon}\right) & =\sum_{k=1}^{3} \inf f\left(I_{k}\right) \Delta_{k} \\
& =\inf f\left(I_{1}\right) \Delta_{1}+\inf f\left(I_{2}\right) \Delta_{2}+\inf f\left(I_{3}\right) \Delta_{3} \\
& =\inf f\left(\left[0,1-\frac{\epsilon}{2}\right]\right)\left(1-\frac{\epsilon}{2}\right)+\inf f\left(\left[1-\frac{\epsilon}{2}, 1+\frac{\epsilon}{2}\right]\right) \epsilon+\inf f\left(\left[1+\frac{\epsilon}{2}, 2\right]\right)\left(1-\frac{\epsilon}{2}\right) \\
& =\inf \{1\}\left(1-\frac{\epsilon}{2}\right)+\inf \{0,1\} \epsilon+\inf \{1\}\left(1-\frac{\epsilon}{2}\right) \\
& =1\left(1-\frac{\epsilon}{2}\right)+0(\epsilon)+1\left(1-\frac{\epsilon}{2}\right) \\
& =2-\epsilon
\end{aligned}
$$

Since P_{ϵ} is a partition of $[0,2]$ and $L\left(f, P_{\epsilon}\right)=2-\epsilon$, then $2-\epsilon \in S$.
Therefore, if $0<\epsilon<2$, then $2-\epsilon \in S$.
Proof. We prove sup $S \geq 2$.
Suppose $\sup S<2$.
Then $2-\sup S>0$, so $\frac{2-\sup S}{2}>0$.
Let $\epsilon=\frac{2-\sup S}{2}$.
Then $\epsilon>0$.
Since $\sup S \geq \inf f *(2-0)=\inf \{0,1\} *(2)=0 * 2=0>-2$, then $\sup S>-2$, so $\sup S>2-4$.

Hence, $4>2-\sup S$, so $2>\frac{2-\sup S}{2}$.
Thus, $2>\epsilon$.
Since $0<\epsilon$ and $\epsilon<2$, then $0<\epsilon<2$.
Hence, $2-\epsilon=2-\frac{2-\sup S}{2}=\frac{2+\sup S}{2}=\frac{\sup S+2}{2} \in S$.
Therefore, $\frac{\sup S+2}{2} \in S$.
Since $\sup S<2$, then $2 \sup S<\sup S+2$, so $\sup S<\frac{\sup S+2}{2}$.
Thus, $\frac{\sup S+2}{2}$ is an element of S that is greater than the least upper bound of S.

This contradicts the fact that $\sup S$ is an upper bound of S.
Hence, $\sup S \geq 2$, so $\underline{\int_{0}^{2}} f \geq 2$.
Proof. Since $2 \leq \underline{\int_{0}^{2}} f \leq \overline{\int_{0}^{2}} f \leq 2$, then $2 \leq \underline{\int_{0}^{2}} f$ and $\underline{\int_{0}^{2}} f \leq 2$ and $2 \leq \overline{\int_{0}^{2}} f$ and $\overline{\int_{0}^{2}} f \leq 2$.

Therefore, f is Darboux integrable and the integral of f over $[0,2]$ is $\int_{0}^{2} f=$ $\underline{\int_{0}^{2}} f=2=\overline{\int_{0}^{2}} f$.

Exercise 5. Let $f:[0,1] \rightarrow \mathbb{R}$ be the function defined by

$$
f(x)= \begin{cases}0 & \text { if } 0 \leq x \leq \frac{1}{2} \\ 1 & \text { if } \frac{1}{2}<x \leq 1\end{cases}
$$

Then $\underline{\int_{0}^{1}} f=\overline{\int_{0}^{1}} f=\int_{0}^{1} f=\frac{1}{2}$.
Proof. We prove f is a bounded function.
Let $x \in[0,1]$.
Then either $0 \leq x \leq \frac{1}{2}$ or $\frac{1}{2}<x \leq 1$.
We consider these cases separately.
Case 1: Suppose $0 \leq x \leq \frac{1}{2}$.
Then $|f(x)|=|0|=0<1$.
Case 2: Suppose $\frac{1}{2}<x \leq 1$.
Then $|f(x)|=|1|=1$.
Thus, in all cases, $|f(x)| \leq 1$.
Hence, $|f(x)| \leq 1$ for all $x \in[0,1]$, so f is bounded.
Therefore, the upper Darboux integral $\overline{\int_{0}^{1}} f$ and the lower Darboux integral $\int_{0}^{1} f$ exist and the upper Riemann sum $U(f, P)$ and lower Riemann sum $L(f, P)$ exist for every partition P of the interval $[0,1]$.

Let $S=\{L(f, P): P$ is a partition of $[0,1]\}$.
Let $T=\{U(f, P): P$ is a partition of $[0,1]\}$.
Then $\underline{\int_{0}^{1}} f=\sup S$ and $\overline{\int_{0}^{1}} f=\inf T$ and $\underline{\int_{0}^{1}} f \leq \overline{\int_{0}^{1}} f$.

Proof. Let $P_{2}=\left\{0, \frac{1}{2}, 1\right\}$ be a partition of $[0,1]$.
The upper Riemann sum is

$$
\begin{aligned}
U\left(f, P_{2}\right) & =\sum_{k=1}^{2} \sup f\left(I_{k}\right) \Delta_{k} \\
& =\sup f\left(I_{1}\right) \Delta_{1}+\sup f\left(I_{2}\right) \Delta_{2} \\
& =\sup f\left(\left[0, \frac{1}{2}\right]\right)\left(\frac{1}{2}-0\right)+\sup f\left(\left[\frac{1}{2}, 1\right]\right)\left(1-\frac{1}{2}\right) \\
& =\sup \{0\}\left(\frac{1}{2}\right)+\sup \{0,1\}\left(\frac{1}{2}\right) \\
& =0\left(\frac{1}{2}\right)+1\left(\frac{1}{2}\right) \\
& =\frac{1}{2} .
\end{aligned}
$$

Since P_{2} is a partition of $[0,1]$ and $U\left(f, P_{2}\right)=\frac{1}{2}$, then $\frac{1}{2} \in T$.
Since $\overline{\int_{0}^{1}} f$ is a lower bound of T and $\frac{1}{2} \in T$, then $\overline{\int_{0}^{1}} f \leq \frac{1}{2}$.

Proof. We prove for every ϵ if $0<\epsilon<\frac{1}{2}$, then $\frac{1}{2}-\epsilon \in S$.
Let ϵ be an arbitrary real number such that $0<\epsilon<\frac{1}{2}$.
Since $0<\epsilon<\frac{1}{2}$, then $\frac{1}{2}<\frac{1}{2}+\epsilon<1$.
Since $0<\frac{1}{2}<\frac{1}{2}+\epsilon<1$, then $0<\frac{1}{2}+\epsilon<1$, so let $P_{\epsilon}=\left\{0, \frac{1}{2}+\epsilon, 1\right\}$ be a partition of the interval $[0,1]$.

The lower Riemann sum is

$$
\begin{aligned}
L\left(f, P_{\epsilon}\right) & =\sum_{k=1}^{2} \inf f\left(I_{k}\right) \Delta_{k} \\
& =\inf f\left(I_{1}\right) \Delta_{1}+\inf f\left(I_{2}\right) \Delta_{2} \\
& =\inf f\left(\left[0, \frac{1}{2}+\epsilon\right]\right)\left(\frac{1}{2}+\epsilon\right)+\inf f\left(\left[\frac{1}{2}+\epsilon, 1\right]\right)\left[1-\left(\frac{1}{2}+\epsilon\right)\right] \\
& =\inf \{0,1\}\left(\frac{1}{2}+\epsilon\right)+\inf \{1\}\left(\frac{1}{2}-\epsilon\right) \\
& =0\left(\frac{1}{2}+\epsilon\right)+1\left(\frac{1}{2}-\epsilon\right) \\
& =\frac{1}{2}-\epsilon
\end{aligned}
$$

Since P_{ϵ} is a partition of $[0,1]$ and $L\left(f, P_{\epsilon}\right)=\frac{1}{2}-\epsilon$, then $\frac{1}{2}-\epsilon \in S$.
Therefore, $\frac{1}{2}-\epsilon \in S$ for every ϵ such that $0<\epsilon<\frac{1}{2}$.
Proof. We prove $\sup S \geq \frac{1}{2}$.
Suppose $\sup S<\frac{1}{2}$.
Then $\frac{1}{2}-\sup S>0$, so $\frac{\frac{1}{2}-\sup S}{2}>0$.
Let $\epsilon=\frac{\frac{1}{2}-\sup S}{2}$.
Then $\epsilon>0$.
Since $\sup S \geq \inf f *(1-0)=0 *(1-0)=0>\frac{-1}{2}$, then $\sup S>\frac{-1}{2}$, so $\sup S>\frac{1}{2}-1$.

Hence, $1>\frac{1}{2}-\sup S$, so $\frac{1}{2}>\frac{\frac{1}{2}-\sup S}{2}$.
Thus, $\frac{1}{2}>\epsilon$.
Since $0<\epsilon$ and $\epsilon<\frac{1}{2}$, then $0<\epsilon<\frac{1}{2}$.
Hence, $\frac{1}{2}-\epsilon=\frac{1}{2}-\frac{\frac{1}{2}-\sup S}{2}=\frac{\sup S+\frac{1}{2}}{2} \in S$.
Therefore, $\frac{\sup S+\frac{1}{2}}{2} \in S$.
Since $\sup S<\frac{1}{2}$, then $2 \sup S<\sup S+\frac{1}{2}$, so $\sup S<\frac{\sup S+\frac{1}{2}}{2}$.
Thus, $\frac{\sup S+\frac{1}{2}}{2}$ is an element of S that is greater than the least upper bound of S.

This contradicts the fact that $\sup S$ is an upper bound of S.
Hence, $\sup S \geq \frac{1}{2}$, so $\underline{\int_{0}^{1}} f \geq \frac{1}{2}$.
Proof. Since $\frac{1}{2} \leq \underline{\int_{0}^{1}} f \leq \overline{\int_{0}^{1}} f \leq \frac{1}{2}$, then $\frac{1}{2} \leq \underline{\int_{0}^{1}} f$ and $\underline{\int_{0}^{1} f} \leq \frac{1}{2}$ and $\frac{1}{2} \leq \overline{\int_{0}^{1}} f$ and $\overline{\int_{0}^{1}} f \leq \frac{1}{2}$.

Since $\underline{\underline{\int_{0}^{1}}} f \leq \frac{1}{2}$ and $\frac{1}{2} \leq \underline{\underline{\int_{0}^{1}} f} f$, then $\underline{\underline{\int_{0}^{1}}} f=\frac{1}{2}$.
Since $\overline{\overline{\int_{0}^{1}}} f \leq \frac{1}{2}$ and $\frac{1}{2} \leq \overline{\overline{\int_{0}^{1}}} f$, then $\overline{\overline{\int_{0}^{1}}} f=\frac{1}{2}$.
Therefore, f is Darboux integrable and the integral of f over $[0,1]$ is $\int_{0}^{1} f=$ $\underline{\int_{0}^{1}} f=\frac{1}{2}=\overline{\int_{0}^{1}} f$.

Riemann Integral of a real valued function

Exercise 6. Let $k \in \mathbb{R}$ be a fixed.
Then $\int_{a}^{b} k d x=k(b-a)$.
Proof. Let $f:[a, b] \rightarrow \mathbb{R}$ be a function defined by $f(x)=k$.
Let $\epsilon>0$ be given.
Let $\delta=1$.
Let $\dot{P}=\left\{\left(\left[x_{i-1}, x_{i}\right], t_{i}\right): i \in \mathbb{Z}^{+}, 1 \leq i \leq n\right\}$ be an arbitrary tagged partition of $[a, b]$ with $\|\dot{P}\|<1$.

Since \dot{P} is a partition, then $x_{0}=a$ and $x_{n}=b$.
Observe that

$$
\begin{aligned}
|S(f, \dot{P})-k(b-a)| & =\left|\sum_{i=1}^{n} f\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)-k(b-a)\right| \\
& =\left|\sum_{i=1}^{n} k\left(x_{i}-x_{i-1}\right)-k(b-a)\right| \\
& =\left|k \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)-k(b-a)\right| \\
& =\left|k\left(x_{n}-x_{0}\right)-k(b-a)\right| \\
& =|k(b-a)-k(b-a)| \\
& =0 \\
& <\epsilon .
\end{aligned}
$$

Therefore, $\int_{a}^{b} k d x=k(b-a)$.

