Integration of real valued functions Exercises

Jason Sass

June 29, 2021

Darboux Integral of a real valued function

Exercise 1. Let $f : [0,3] \to \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} 2 & \text{if } 0 \le x \le 1\\ 3 & \text{if } 1 < x \le 3 \end{cases}$$

Then $\underline{\int_0^3} f = \overline{\int_0^3} f = \int_0^3 f = 8.$

Proof. We prove f is a bounded function. Let $x \in dom f$. Then either $0 \le x \le 1$ or $1 < x \le 3$. We consider these cases separately. **Case 1:** Suppose $0 \le x \le 1$. Then |f(x)| = |2| = 2 < 3. **Case 2:** Suppose $1 < x \le 3$. Then |f(x)| = |3| = 3. Thus, in all cases, $|f(x)| \le 3$. Hence, $|f(x)| \le 3$ for all $x \in dom f$, so f is bounded. Therefore, the upper Darboux integral $\overline{\int_0^3} f$ and the lower Darboux integral $\underline{\int_0^3} f$ exist and the upper Riemann sum U(f, P) and lower Riemann sum L(f, P)exist for every partition P of the interval [0,3]. Let $S = \{L(f, P) : P$ is a partition of [0,3]. Let $T = \{U(f, P) : P$ is a partition of [0,3]. Then $\underline{\int_0^3} f = \sup S$ and $\overline{\int_0^3} f = \inf T$ and $\underline{\int_0^3} f \le \overline{\int_0^3} f$.

Proof. Let $P_2 = \{0, 1, 3\}$ be a partition of [0, 3]. The upper Riemann sum is

$$U(f, P_2) = \sum_{k=1}^{2} \sup f(I_k) \Delta_k$$

= $\sup f(I_1) \Delta_1 + \sup f(I_2) \Delta_2$
= $\sup f([0, 1])(1 - 0) + \sup f([1, 3])(3 - 1)$
= $\sup\{2\}(1) + \sup\{2, 3\}(2)$
= $2(1) + 3(2)$
= $8.$

Since \underline{P}_2 is a partition of [0,3] and $U(f,P_2) = 8$, then $8 \in T$. Since $\overline{\int_0^3} f$ is a lower bound of T and $8 \in T$, then $\overline{\int_0^3} f \leq 8$.

Proof. We prove for every ϵ if $0 < \epsilon < 2$, then $8 - \epsilon \in S$. Let ϵ be an arbitrary real number such that $0 < \epsilon < 2$. Since $0 < \epsilon < 2$, then $1 < 1 + \epsilon < 3$. Since $0 < 1 < 1 + \epsilon < 3$, let $P_{\epsilon} = \{0, 1, 1 + \epsilon, 3\}$ be a partition of the interval [0, 3].

The lower Riemann sum is

$$\begin{split} L(f, P_{\epsilon}) &= \sum_{k=1}^{3} \inf f(I_{k}) \Delta_{k} \\ &= \inf f(I_{1}) \Delta_{1} + \inf f(I_{2}) \Delta_{2} + \inf f(I_{3}) \Delta_{3} \\ &= \inf f([0, 1])(1 - 0) + \inf f([1, 1 + \epsilon])[(1 + \epsilon) - 1] + \inf f([1 + \epsilon, 3])[3 - (1 + \epsilon)] \\ &= \inf \{2\}(1) + \inf \{2, 3\}\epsilon + \inf \{3\}(2 - \epsilon) \\ &= 2 * 1 + 2\epsilon + 3(2 - \epsilon) \\ &= 8 - \epsilon. \end{split}$$

Since P_{ϵ} is a partition of [0,3] and $L(f, P_{\epsilon}) = 8 - \epsilon$, then $8 - \epsilon \in S$. Therefore, $8 - \epsilon \in S$ for every ϵ such that $0 < \epsilon < 2$.

 $\begin{array}{l} \textit{Proof. We prove } \sup S \geq 8.\\ & \text{Suppose } \sup S < 8.\\ & \text{Then } 8 - \sup S > 0, \text{ so } \frac{8 - \sup S}{2} > 0.\\ & \text{Let } \epsilon = \frac{8 - \sup S}{2}.\\ & \text{Then } \epsilon > 0.\\ & \text{Since } \sup S \geq \inf f \ * (3 - 0) = 2 \ast (3 - 0) = 6 > 4, \text{ then } \sup S > 4, \text{ so } \sup S > 8 - 4.\\ & \text{Hence, } 4 > 8 - \sup S, \text{ so } 2 > \frac{8 - \sup S}{2}.\\ & \text{Thus, } 2 > \epsilon.\\ & \text{Since } 0 < \epsilon \text{ and } \epsilon < 2, \text{ then } 0 < \epsilon < 2.\\ & \text{Hence, } 8 - \epsilon = 8 - \frac{8 - \sup S}{2} = \frac{\sup S + 8}{2} \in S. \end{array}$

Therefore, $\frac{\sup S+8}{2} \in S$. Since $\sup S < 8$, then $2 \sup S < \sup S + 8$, so $\sup S < \frac{\sup S+8}{2}$.

Thus, $\frac{\sup S+8}{2}$ is an element of S that is greater than the least upper bound of S.

This contradicts the fact that $\sup S$ is an upper bound of S.

Hence, $\sup S \ge 8$, so $\int_0^3 f \ge 8$.

Proof. Since $8 \leq \int_0^3 f \leq \overline{\int_0^3} f \leq 8$, then $8 \leq \int_0^3 f$ and $\int_0^3 f \leq 8$ and $8 \leq \overline{\int_0^3} f$ and $\overline{\int_0^3} f \le 8.$ Since $\underline{\int_{0}^{3} f} \le 8$ and $8 \le \underline{\int_{0}^{3} f}$, then $\underline{\int_{0}^{3} f} = 8$. Since $\overline{\overline{\int_{0}^{3} f}} \le 8$ and $8 \le \overline{\overline{\int_{0}^{3} f}} f$, then $\overline{\overline{\int_{0}^{3} f}} = 8$. Therefore, f is Darboux integrable and the integral of f over [0,3] is $\int_0^3 f =$ $\int_0^3 f = 8 = \overline{\int_0^3} f.$

Exercise 2. Let $f:[0,1] \to \mathbb{R}$ be the function defined by f(x) = x. Then $\int_0^1 x dx = \int_0^1 x = \frac{1}{2} = \overline{\int_0^1} x.$

Proof. Let $x \in [0, 1]$.

Then $0 \le x \le 1$, so $0 \le x = f(x) \le 1$. Hence, $0 \le f(x) \le 1$, so f is bounded.

Therefore, the upper Darboux integral $\overline{\int_0^1} x$ and the lower Darboux integral $\int_0^1 x$ exist and the upper Riemann sum U(f,P) and lower Riemann sum L(f,P)exist for every partition P of the interval [0, 1].

Let $S = \{L(f, P) : P \text{ is a partition of } [0, 1]\}.$ Let $T = \{U(f, P) : P \text{ is a partition of } [0, 1]\}.$ Then $\int_0^1 x = \sup S$ and $\overline{\int_0^1} x = \inf T$ and $\int_0^1 x \le \overline{\int_0^1} x$.

Proof. Let $P_n = \{0, \frac{1}{n}, \frac{2}{n}, ..., \frac{n-1}{n}, 1\}$ be a partition of [0, 1] for each $n \in \mathbb{Z}^+$. For each k = 1, 2, ..., n the k^{th} subinterval is $I_k = [\frac{k-1}{n}, \frac{k}{n}]$ and its length is

 $\Delta_k = \frac{1}{n}.$

Hence, for each k = 1, 2, ..., n the direct image of I_k is $f(I_k) = f([\frac{k-1}{n}, \frac{k}{n}]) =$ $\left[\frac{k-1}{n}, \frac{k}{n}\right]$

Since f is an increasing function, then $\sup f(I_k) = \frac{k}{n}$ and $\inf f(I_k) = \frac{k-1}{n}$ and $\Delta_k = \frac{1}{n}$ for each k = 1, 2, ..., n.

For every positive integer n the lower Riemann sum is

$$L(f, P_n) = \sum_{k=1}^{n} \inf f(I_k) \Delta_k$$

= $\sum_{k=1}^{n} \frac{k-1}{n} \frac{1}{n}$
= $\sum_{k=1}^{n} \frac{k-1}{n^2}$
= $\frac{1}{n^2} \sum_{k=1}^{n} (k-1)$
= $\frac{1}{n^2} [\sum_{k=1}^{n} k - \sum_{k=1}^{n} 1]$
= $\frac{1}{n^2} [\frac{n(n+1)}{2} - n]$
= $\frac{n-1}{2n}$.

Therefore, $L(f, P_n) = \frac{n-1}{2n}$ for all $n \in \mathbb{Z}^+$. Let $A = \{L(f, P_n) : n \in \mathbb{Z}^+\}$. Then $A = \{\frac{n-1}{2n} : n \in \mathbb{Z}^+\}$, so A is the range of the sequence (a_n) defined by $a_n = \frac{n-1}{2n}$. Let $x \in A$.

Then $x = L(f, P_n)$ for some positive integer n. Since P_n is a partition of [0, 1], then $x \in S$. Hence, $A \subset S$. Let $n \in \mathbb{Z}^+$ be given. Then $a_n = \frac{n-1}{2n} \in A$. Since $A \subset S$, then $a_n \in S$. Since $\sup S$ is an upper bound of S, then $a_n \leq \sup S$.

Since n is arbitrary, then $a_n \leq \sup S$ for all $n \in \mathbb{Z}^+$, so $\sup S$ is an upper bound of A.

Since $\lim_{n\to\infty} \frac{n-1}{2n} = \frac{1}{2}$, then (a_n) is a convergent sequence, so $\frac{1}{2} = \lim_{n\to\infty} \frac{n-1}{2n} \leq \frac{1}{2}$ $\sup S.$

Hence,
$$\frac{1}{2} \leq \int_0^1 x$$
.

Proof. For every positive integer n the upper Riemann sum is

$$U(f, P_n) = \sum_{k=1}^n \sup f(I_k) \Delta_k$$
$$= \sum_{k=1}^n \frac{k}{n} \frac{1}{n}$$
$$= \sum_{k=1}^n \frac{k}{n^2}$$
$$= \frac{1}{n^2} \sum_{k=1}^n k$$
$$= \frac{1}{n^2} [\frac{n(n+1)}{2}]$$
$$= \frac{n+1}{2n}.$$

Therefore, $U(f, P_n) = \frac{n+1}{2n}$ for all $n \in \mathbb{Z}^+$. Let $B = \{U(f, P_n) : n \in \mathbb{Z}^+\}$. Then $B = \{\frac{n+1}{2n} : n \in \mathbb{Z}^+\}$, so B is the range of the sequence (b_n) defined by $b_n = \frac{n+1}{2n}$. Let $y \in B$.

Then $y = U(f, P_n)$ for some positive integer n. Since P_n is a partition of [0, 1], then $y \in T$. Hence, $B \subset T$. Let $n \in \mathbb{Z}^+$ be given. Then $b_n = \frac{n+1}{2n} \in B$. Since $B \subset T$, then $b_n \in T$. Since $\inf T$ is a lower bound of T, then $\inf T \leq b_n$.

Since n is arbitrary, then $\inf T \leq b_n$ for all $n \in \mathbb{Z}^+$, so $\inf T$ is a lower bound of B.

Since $\lim_{n\to\infty} \frac{n+1}{2n} = \frac{1}{2}$, then (b_n) is a convergent sequence, so $\inf T \leq \lim_{n\to\infty} \frac{n+1}{2n} = \frac{1}{2}$.

Since $\inf T \leq \frac{1}{2}$, then $\overline{\int_0^1} x \leq \frac{1}{2}$.

Proof. Since $\frac{1}{2} \leq \underline{\int_0^1} x$ and $\underline{\int_0^1} x \leq \overline{\int_0^1} x$ and $\overline{\int_0^1} x \leq \frac{1}{2}$, then $\frac{1}{2} \leq \underline{\int_0^1} x \leq \overline{\int_0^1} x \leq \frac{1}{2}$, so $\int_0^1 x \leq \frac{1}{2}$ and $\frac{1}{2} \leq \overline{\int_0^1} x$. $\frac{J_0}{\text{Since }} = \frac{1}{2} \quad 2 = 30$ Since $\frac{J_0}{1}x \le \frac{1}{2}$ and $\frac{1}{2} \le \frac{J_0}{1}x$, then $\frac{J_0}{1}x = \frac{1}{2}$. Since $\overline{J_0}x \le \frac{1}{2}$ and $\frac{1}{2} \le \overline{J_0}x$, then $\overline{J_0}x = \frac{1}{2}$. Therefore, f is Darboux integrable and the integral of x over [0, 1] is $\int_0^1 x =$ $\int_0^1 x = \frac{1}{2} = \overline{\int_0^1} x.$ **Exercise 3.** Let $f:[0,1] \to \mathbb{R}$ be the function defined by $f(x) = x^2$. Then $\int_0^1 x^2 dx = \int_0^1 x^2 = \frac{1}{3} = \overline{\int_0^1} x^2$.

Proof. Let $x \in [0, 1]$.

Then $0 \le x \le 1$, so $0 \le x^2 = f(x) \le 1$. Hence, $0 \le f(x) \le 1$, so f is bounded.

Therefore, the upper Darboux integral $\overline{\int_0^1} x^2$ and the lower Darboux integral $\int_0^1 x^2$ exist and the upper Riemann sum U(f, P) and lower Riemann sum L(f, P)exist for every partition P of the interval [0, 1].

Let $S = \{L(f, P) : P \text{ is a partition of } [0, 1]\}.$ Let $T = \{U(f, P) : P \text{ is a partition of } [0, 1]\}.$ Then $\underline{\int_0^1} x^2 = \sup S$ and $\overline{\int_0^1} x^2 = \inf T$ and $\underline{\int_0^1} x^2 \leq \overline{\int_0^1} x^2$.

Proof. Let $P_n = \{0, \frac{1}{n}, \frac{2}{n}, ..., \frac{n-1}{n}, 1\}$ be a partition of [0, 1] for each $n \in \mathbb{Z}^+$. For each k = 1, 2, ..., n the k^{th} subinterval is $I_k = [\frac{k-1}{n}, \frac{k}{n}]$ and its length is $\Delta_k = \frac{1}{n}.$

Hence, for each k = 1, 2, ..., n the direct image of I_k is $f(I_k) = f([\frac{k-1}{n}, \frac{k}{n}]) = [(\frac{k-1}{n})^2, (\frac{k}{n})^2]$, so sup $f(I_k) = (\frac{k}{n})^2$ and $\inf f(I_k) = (\frac{k-1}{n})^2$ and $\Delta_k = \frac{1}{n}$ for each k = 1, 2, ..., n.

For every positive integer n the lower Riemann sum is

$$L(f, P_n) = \sum_{k=1}^{n} \inf f(I_k) \Delta_k$$

= $\sum_{k=1}^{n} (\frac{k-1}{n})^2 \frac{1}{n}$
= $\sum_{k=1}^{n} (k-1)^2 \frac{1}{n^3}$
= $\frac{1}{n^3} \sum_{k=1}^{n} (k-1)^2$
= $\frac{1}{n^3} [\sum_{k=1}^{n} k^2 - n^2]$
= $\frac{1}{n^3} [\frac{n(n+1)(2n+1)}{6} - n^2]$
= $\frac{2n^2 - 3n + 1}{6n^2}.$

Therefore, $L(f, P_n) = \frac{2n^2 - 3n + 1}{6n^2}$ for all $n \in \mathbb{Z}^+$. Let $A = \{L(f, P_n) : n \in \mathbb{Z}^+\}$. Then $A = \{\frac{2n^2 - 3n + 1}{6n^2} : n \in \mathbb{Z}^+\}$, so A is the range of the sequence (a_n) defined by $a_n = \frac{2n^2 - 3n + 1}{6n^2}$.

Let $x \in A$. Then $x = L(f, P_n)$ for some positive integer n. Since P_n is a partition of [0, 1], then $x \in S$. Hence, $A \subset S$. Let $n \in \mathbb{Z}^+$ be given. Then $a_n = \frac{2n^2 - 3n + 1}{6n^2} \in A$. Since $A \subset S$, then $a_n \in S$. Since $\sup S$ is an upper bound of S, then $a_n \leq \sup S$. Since n is arbitrary, then $a_n \leq \sup S$ for all $n \in \mathbb{Z}^+$, so $\sup S$ is an upper Since $\lim_{n\to\infty} \frac{2n^2-3n+1}{6n^2} = \frac{1}{3}$, then (a_n) is a convergent sequence, so $\frac{1}{3} = \lim_{n\to\infty} \frac{2n^2-3n+1}{6n^2} \leq \sup S$. Hence, $\frac{1}{3} \leq \underbrace{\int_0^1 x^2}$.

Proof. For every positive integer n the upper Riemann sum is

$$U(f, P_n) = \sum_{k=1}^{n} \sup f(I_k) \Delta_k$$

= $\sum_{k=1}^{n} (\frac{k}{n})^2 \frac{1}{n}$
= $\sum_{k=1}^{n} k^2 \frac{1}{n^3}$
= $\frac{1}{n^3} \sum_{k=1}^{n} k^2$
= $\frac{1}{n^3} [\frac{n(n+1)(2n+1)}{6}]$
= $\frac{(n+1)(2n+1)}{6n^2}$
= $\frac{2n^2 + 3n + 1}{6n^2}$.

Therefore, $U(f, P_n) = \frac{2n^2 + 3n + 1}{6n^2}$ for all $n \in \mathbb{Z}^+$. Let $B = \{U(f, P_n) : n \in \mathbb{Z}^+\}$. Then $B = \{\frac{2n^2 + 3n + 1}{6n^2} : n \in \mathbb{Z}^+\}$, so B is the range of the sequence (b_n) defined by $b_n = \frac{2n^2 + 3n + 1}{6n^2}$.

Let $y \in B$. Then $y = U(f, P_n)$ for some positive integer n. Since P_n is a partition of [0, 1], then $y \in T$. Hence, $B \subset T$. Let $n \in \mathbb{Z}^+$ be given. Then $b_n = \frac{2n^2 + 3n + 1}{6n^2} \in B$. Since $B \subset T$, then $b_n \in T$.

Since $\inf T$ is a lower bound of T, then $\inf T \leq b_n$.

Since n is arbitrary, then $\inf T \leq b_n$ for all $n \in \mathbb{Z}^+$, so $\inf T$ is a lower bound of B.

Since $\lim_{n\to\infty} \frac{2n^2+3n+1}{6n^2} = \frac{1}{3}$, then (b_n) is a convergent sequence, so $\inf T \leq \lim_{n\to\infty} \frac{2n^2+3n+1}{6n^2} = \frac{1}{3}$.

Since
$$\inf T \le \frac{1}{3}$$
, then $\int_0^1 x^2 \le \frac{1}{3}$.

 $\begin{array}{l} \textit{Proof. Since } \frac{1}{3} \leq \underline{\int_{0}^{1}}x^{2} \text{ and } \underline{\int_{0}^{1}}x^{2} \leq \overline{\int_{0}^{1}}x^{2} \text{ and } \overline{\int_{0}^{1}}x^{2} \leq \frac{1}{3}, \text{ then } \frac{1}{3} \leq \underline{\int_{0}^{1}}x^{2} \leq \overline{\int_{0}^{1}}x^{2} = \overline{\int_{0}^{1}}x^{2}.\\\\ \textit{Since } \underline{\int_{0}^{1}}x^{2} \leq \frac{1}{3} \text{ and } \frac{1}{3} \leq \underline{\int_{0}^{1}}x^{2}, \text{ then } \underline{\int_{0}^{1}}x^{2} = \frac{1}{3}.\\\\ \textit{Since } \overline{\int_{0}^{1}}x^{2} \leq \frac{1}{3} \text{ and } \frac{1}{3} \leq \overline{\int_{0}^{1}}x^{2}, \text{ then } \overline{\int_{0}^{1}}x^{2} = \frac{1}{3}.\\\\\\ \textit{Therefore, } f \text{ is Darboux integrable and the integral of } x^{2} \text{ over } [0,1] \text{ is } \int_{0}^{1}x^{2} = \underline{\int_{0}^{1}}x^{2} = \frac{1}{3} = \overline{\int_{0}^{1}}x^{2}. \end{array}$

Exercise 4. Let $f : [0,2] \to \mathbb{R}$ be the function defined by f(x) = 1 if $x \neq 1$ and f(1) = 0.

Then
$$\int_0^2 f = 2$$
.

Proof. Let $x \in [0, 2]$. Then $0 \le x \le 2$, so either x = 1 or $x \ne 1$. We consider these cases separately. **Case 1:** Suppose x = 1. Then f(x) = f(1) = 0. **Case 2:** Suppose $x \ne 1$. Then f(x) = 1. Hence, either f(x) = 0 or f(x) = 1, so the range of f is the set $\{0, 1\}$. Since $\{0, 1\}$ is finite, then f is bounded. Therefore, the upper Dark currictered $\overline{f^2} f$ and the lower Dark currictered

Therefore, the upper Darboux integral $\overline{\int_0^2} f$ and the lower Darboux integral $\underline{\int_0^2} f$ exist and the upper Riemann sum U(f, P) and lower Riemann sum L(f, P) exist for every partition P of the interval [0, 2].

Let
$$S = \{L(f, P) : P \text{ is a partition of } [0, 2]\}.$$

Let $T = \{U(f, P) : P \text{ is a partition of } [0, 2]\}.$
Then $\underline{\int_0^2} f = \sup S$ and $\overline{\int_0^2} f = \inf T.$

Proof. Let $P_1 = \{0, 2\}$ be a partition of the interval [0, 2].

The upper Riemann sum is $U(f, P_1) = \sup f([0, 2])(2 - 0) = \sup \{0, 1\}(2) = 1(2) = 2$, so $2 \in T$.

Since
$$\inf T$$
 is a lower bound of T, then $\inf T \leq 2$, so $\int_0^2 f \leq 2$.

Proof. We prove for every ϵ , if $0 < \epsilon < 2$, then $2 - \epsilon \in S$. Let ϵ be an arbitrary real number such that $0 < \epsilon < 2$ Then $0 < \epsilon$ and $\epsilon < 2$.

Since $\epsilon < 2$, then $\frac{\epsilon}{2} < 1$, so $0 < 1 - \frac{\epsilon}{2}$ and $1 + \frac{\epsilon}{2} < 2$. Since $0 < \epsilon$, then $1 - 1 < \frac{\epsilon}{2} + \frac{\epsilon}{2}$, so $1 - \frac{\epsilon}{2} < 1 + \frac{\epsilon}{2}$. Since $0 < 1 - \frac{\epsilon}{2}$ and $1 - \frac{\epsilon}{2} < 1 + \frac{\epsilon}{2}$ and $1 + \frac{\epsilon}{2} < 2$, then $0 < 1 - \frac{\epsilon}{2} < 1 + \frac{\epsilon}{2} < 2$. Let $P_{\epsilon} = \{0, 1 - \frac{\epsilon}{2}, 1 + \frac{\epsilon}{2}, 2\}$ be a partition of [0, 2]. The lower Riemann sum is

$$\begin{split} L(f, P_{\epsilon}) &= \sum_{k=1}^{5} \inf f(I_{k}) \Delta_{k} \\ &= \inf f(I_{1}) \Delta_{1} + \inf f(I_{2}) \Delta_{2} + \inf f(I_{3}) \Delta_{3} \\ &= \inf f([0, 1 - \frac{\epsilon}{2}]) (1 - \frac{\epsilon}{2}) + \inf f([1 - \frac{\epsilon}{2}, 1 + \frac{\epsilon}{2}]) \epsilon + \inf f([1 + \frac{\epsilon}{2}, 2]) (1 - \frac{\epsilon}{2}) \\ &= \inf \{1\} (1 - \frac{\epsilon}{2}) + \inf \{0, 1\} \epsilon + \inf \{1\} (1 - \frac{\epsilon}{2}) \\ &= 1 (1 - \frac{\epsilon}{2}) + 0(\epsilon) + 1 (1 - \frac{\epsilon}{2}) \\ &= 2 - \epsilon. \end{split}$$

Since P_{ϵ} is a partition of [0, 2] and $L(f, P_{\epsilon}) = 2 - \epsilon$, then $2 - \epsilon \in S$. Therefore, if $0 < \epsilon < 2$, then $2 - \epsilon \in S$.

Proof. We prove $\sup S \ge 2$. Suppose $\sup S < 2$. Then $2 - \sup S > 0$, so $\frac{2 - \sup S}{2} > 0$. Let $\epsilon = \frac{2 - \sup S}{2}$. Then $\epsilon > 0$. Since $\sup S \ge \inf f * (2 - 0) = \inf \{0, 1\} * (2) = 0 * 2 = 0 > -2$, then $\sup S > -2$, so $\sup S > 2 - 4$. Hence, $4 > 2 - \sup S$, so $2 > \frac{2 - \sup S}{2}$. Thus, $2 > \epsilon$. Since $0 < \epsilon$ and $\epsilon < 2$, then $0 < \epsilon < 2$. Hence, $2 - \epsilon = 2 - \frac{2 - \sup S}{2} = \frac{2 + \sup S}{2} = \frac{\sup S + 2}{2} \in S$. Therefore, $\frac{\sup S + 2}{2} \in S$. Since $\sup S < 2$, then $2 \sup S < \sup S + 2$, so $\sup S < \frac{\sup S + 2}{2}$. Thus, $\frac{\sup S+2}{2}$ is an element of S that is greater than the least upper bound of S. This contradicts the fact that $\sup S$ is an upper bound of S. Hence, $\sup S \ge 2$, so $\int_0^2 f \ge 2$. *Proof.* Since $2 \leq \int_0^2 f \leq \overline{\int_0^2} f \leq 2$, then $2 \leq \int_0^2 f$ and $\int_0^2 f \leq 2$ and $2 \leq \overline{\int_0^2} f$ and $\overline{\int_0^2} f \le 2.$ Since $\underline{\int_{0}^{2} f} \leq 2$ and $2 \leq \underline{\int_{0}^{2} f}$, then $\underline{\int_{0}^{2} f} = 2$. Since $\overline{\overline{\int_{0}^{2} f}} \leq 2$ and $2 \leq \overline{\overline{\int_{0}^{2} f}} f$, then $\overline{\overline{\int_{0}^{2} f}} = 2$.

Therefore, f is Darboux integrable and the integral of f over [0,2] is $\int_0^2 f =$ $\int_0^2 f = 2 = \overline{\int_0^2} f.$ **Exercise 5.** Let $f : [0,1] \to \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} 0 & \text{if } 0 \le x \le \frac{1}{2} \\ 1 & \text{if } \frac{1}{2} < x \le 1 \end{cases}$$

Then $\underline{\int_0^1} f = \overline{\int_0^1} f = \int_0^1 f = \frac{1}{2}$.

Proof. We prove f is a bounded function. Let $x \in [0, 1]$. Then either $0 \le x \le \frac{1}{2}$ or $\frac{1}{2} < x \le 1$. We consider these cases separately. **Case 1:** Suppose $0 \le x \le \frac{1}{2}$. Then |f(x)| = |0| = 0 < 1. **Case 2:** Suppose $\frac{1}{2} < x \le 1$. Then |f(x)| = |1| = 1. Thus, in all cases, $|f(x)| \le 1$. Hence, $|f(x)| \le 1$ for all $x \in [0, 1]$, so f is bounded. Therefore, the upper Darboux integral $\int_0^1 f$ and the lower Darboux integral $\int_0^1 f$ arist and the upper Piercene gum U(f, R)

 $\int_{0}^{1} f$ exist and the upper Riemann sum U(f, P) and lower Riemann sum L(f, P) exist for every partition P of the interval [0, 1].

Let
$$S = \{L(f, P) : P \text{ is a partition of } [0, 1]\}.$$

Let $T = \{U(f, P) : P \text{ is a partition of } [0, 1]\}.$
Then $\underline{\int_0^1} f = \sup S$ and $\overline{\int_0^1} f = \inf T$ and $\underline{\int_0^1} f \leq \overline{\int_0^1} f.$

Proof. Let $P_2 = \{0, \frac{1}{2}, 1\}$ be a partition of [0, 1]. The upper Riemann sum is

$$U(f, P_2) = \sum_{k=1}^{2} \sup f(I_k) \Delta_k$$

= $\sup f(I_1) \Delta_1 + \sup f(I_2) \Delta_2$
= $\sup f([0, \frac{1}{2}])(\frac{1}{2} - 0) + \sup f([\frac{1}{2}, 1])(1 - \frac{1}{2})$
= $\sup\{0\}(\frac{1}{2}) + \sup\{0, 1\}(\frac{1}{2})$
= $0(\frac{1}{2}) + 1(\frac{1}{2})$
= $\frac{1}{2}.$

Since P_2 is a partition of [0, 1] and $U(f, P_2) = \frac{1}{2}$, then $\frac{1}{2} \in T$. Since $\overline{\int_0^1} f$ is a lower bound of T and $\frac{1}{2} \in T$, then $\overline{\int_0^1} f \leq \frac{1}{2}$.

Proof. We prove for every ϵ if $0 < \epsilon < \frac{1}{2}$, then $\frac{1}{2} - \epsilon \in S$. Let ϵ be an arbitrary real number such that $0 < \epsilon < \frac{1}{2}$. Since $0 < \epsilon < \frac{1}{2}$, then $\frac{1}{2} < \frac{1}{2} + \epsilon < 1$. Since $0 < \frac{1}{2} < \frac{1}{2} + \epsilon < 1$, then $0 < \frac{1}{2} + \epsilon < 1$, so let $P_{\epsilon} = \{0, \frac{1}{2} + \epsilon, 1\}$ be a partition of the interval [0, 1].

The lower Riemann sum is

$$\begin{split} L(f, P_{\epsilon}) &= \sum_{k=1}^{2} \inf f(I_{k}) \Delta_{k} \\ &= \inf f(I_{1}) \Delta_{1} + \inf f(I_{2}) \Delta_{2} \\ &= \inf f([0, \frac{1}{2} + \epsilon]) (\frac{1}{2} + \epsilon) + \inf f([\frac{1}{2} + \epsilon, 1]) [1 - (\frac{1}{2} + \epsilon)] \\ &= \inf \{0, 1\} (\frac{1}{2} + \epsilon) + \inf \{1\} (\frac{1}{2} - \epsilon) \\ &= 0 (\frac{1}{2} + \epsilon) + 1 (\frac{1}{2} - \epsilon) \\ &= \frac{1}{2} - \epsilon. \end{split}$$

Since P_{ϵ} is a partition of [0, 1] and $L(f, P_{\epsilon}) = \frac{1}{2} - \epsilon$, then $\frac{1}{2} - \epsilon \in S$. Therefore, $\frac{1}{2} - \epsilon \in S$ for every ϵ such that $0 < \epsilon < \frac{1}{2}$.

 $\begin{array}{l} \textit{Proof. We prove } \sup S \geq \frac{1}{2}.\\ & \text{Suppose } \sup S < \frac{1}{2}.\\ & \text{Then } \frac{1}{2} - \sup S > 0, \text{ so } \frac{\frac{1}{2} - \sup S}{2} > 0.\\ & \text{Let } \epsilon = \frac{\frac{1}{2} - \sup S}{2}.\\ & \text{Then } \epsilon > 0.\\ & \text{Since } \sup S \geq \inf f \, \ast \, (1 - 0) = 0 \, \ast \, (1 - 0) = 0 > \frac{-1}{2}, \text{ then } \sup S > \frac{-1}{2}, \text{ so } \sup S > \frac{1}{2} - 1.\\ & \text{Hence, } 1 > \frac{1}{2} - \sup S, \text{ so } \frac{1}{2} > \frac{\frac{1}{2} - \sup S}{2}.\\ & \text{Thus, } \frac{1}{2} > \epsilon.\\ & \text{Since } 0 < \epsilon \text{ and } \epsilon < \frac{1}{2}, \text{ then } 0 < \epsilon < \frac{1}{2}.\\ & \text{Hence, } \frac{1}{2} - \epsilon = \frac{1}{2} - \frac{\frac{1}{2} - \sup S}{2} = \frac{\sup S + \frac{1}{2}}{2} \in S.\\ & \text{Therefore, } \frac{\sup S + \frac{1}{2}}{2} \in S.\\ & \text{Since } \sup S < \frac{1}{2}, \text{ then } 2 \sup S < \sup S + \frac{1}{2}, \text{ so } \sup S < \frac{\sup S + \frac{1}{2}}{2}.\\ & \text{Thus, } \frac{\sup S + \frac{1}{2}}{2} \text{ is an element of } S \text{ that is greater than the least upper bound of } S.\\ & \text{This contradicts the fact that } \sup S \text{ is an upper bound of } S.\\ & \text{This contradicts the fact that } \sup S \text{ is an upper bound of } S.\\ & \end{array}$

Hence, $\sup S \ge \frac{1}{2}$, so $\underline{\int_0^1} f \ge \frac{1}{2}$.

Proof. Since $\frac{1}{2} \leq \underline{\int_0^1} f \leq \overline{\int_0^1} f \leq \frac{1}{2}$, then $\frac{1}{2} \leq \underline{\int_0^1} f$ and $\underline{\int_0^1} f \leq \frac{1}{2}$ and $\frac{1}{2} \leq \overline{\int_0^1} f$ and $\overline{\int_0^1} f \leq \frac{1}{2}$.

Since
$$\underline{\int_{0}^{1} f \leq \frac{1}{2}}$$
 and $\frac{1}{2} \leq \underline{\int_{0}^{1} f}$, then $\underline{\int_{0}^{1} f = \frac{1}{2}}$.
Since $\overline{\int_{0}^{1} f \leq \frac{1}{2}}$ and $\frac{1}{2} \leq \overline{\int_{0}^{1} f}$, then $\overline{\int_{0}^{1} f} = \frac{1}{2}$.
Therefore, f is Darboux integrable and the integral of f over $[0, 1]$ is $\int_{0}^{1} f = \underline{\int_{0}^{1} f} = \frac{1}{2} = \overline{\int_{0}^{1} f}$.

Riemann Integral of a real valued function

Exercise 6. Let $k \in \mathbb{R}$ be a fixed. Then $\int_a^b k dx = k(b-a)$.

Proof. Let $f : [a, b] \to \mathbb{R}$ be a function defined by f(x) = k. Let $\epsilon > 0$ be given. Let $\delta = 1$. Let $\dot{P} = \{([x_{i-1}, x_i], t_i) : i \in \mathbb{Z}^+, 1 \le i \le n\}$ be an arbitrary tagged partition of [a, b] with $||\dot{P}|| < 1$.

Since \dot{P} is a partition, then $x_0 = a$ and $x_n = b$. Observe that

$$\begin{aligned} |S(f, \dot{P}) - k(b-a)| &= |\sum_{i=1}^{n} f(t_i)(x_i - x_{i-1}) - k(b-a)| \\ &= |\sum_{i=1}^{n} k(x_i - x_{i-1}) - k(b-a)| \\ &= |k\sum_{i=1}^{n} (x_i - x_{i-1}) - k(b-a)| \\ &= |k(x_n - x_0) - k(b-a)| \\ &= |k(b-a) - k(b-a)| \\ &= 0 \\ &< \epsilon. \end{aligned}$$

Therefore, $\int_{a}^{b} k dx = k(b-a)$.