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Darboux Integral of a real valued function

Exercise 1. Let f : [0, 3]→ R be the function defined by

f(x) =

{
2 if 0 ≤ x ≤ 1

3 if 1 < x ≤ 3

Then
∫ 3

0
f =

∫ 3

0
f =

∫ 3

0
f = 8.

Proof. We prove f is a bounded function.
Let x ∈ domf .
Then either 0 ≤ x ≤ 1 or 1 < x ≤ 3.
We consider these cases separately.
Case 1: Suppose 0 ≤ x ≤ 1.
Then |f(x)| = |2| = 2 < 3.
Case 2: Suppose 1 < x ≤ 3.
Then |f(x)| = |3| = 3.
Thus, in all cases, |f(x)| ≤ 3.
Hence, |f(x)| ≤ 3 for all x ∈ domf , so f is bounded.

Therefore, the upper Darboux integral
∫ 3

0
f and the lower Darboux integral∫ 3

0
f exist and the upper Riemann sum U(f, P ) and lower Riemann sum L(f, P )

exist for every partition P of the interval [0, 3].
Let S = {L(f, P ) : P is a partition of [0, 3]}.
Let T = {U(f, P ) : P is a partition of [0, 3]}.
Then

∫ 3

0
f = supS and

∫ 3

0
f = inf T and

∫ 3

0
f ≤

∫ 3

0
f .

Proof. Let P2 = {0, 1, 3} be a partition of [0, 3].
The upper Riemann sum is



U(f, P2) =

2∑
k=1

sup f(Ik)∆k

= sup f(I1)∆1 + sup f(I2)∆2

= sup f([0, 1])(1− 0) + sup f([1, 3])(3− 1)

= sup{2}(1) + sup{2, 3}(2)

= 2(1) + 3(2)

= 8.

Since P2 is a partition of [0, 3] and U(f, P2) = 8, then 8 ∈ T .

Since
∫ 3

0
f is a lower bound of T and 8 ∈ T , then

∫ 3

0
f ≤ 8.

Proof. We prove for every ε if 0 < ε < 2, then 8− ε ∈ S.
Let ε be an arbitrary real number such that 0 < ε < 2.
Since 0 < ε < 2, then 1 < 1 + ε < 3.
Since 0 < 1 < 1 + ε < 3, let Pε = {0, 1, 1 + ε, 3} be a partition of the interval

[0, 3].
The lower Riemann sum is

L(f, Pε) =

3∑
k=1

inf f(Ik)∆k

= inf f(I1)∆1 + inf f(I2)∆2 + inf f(I3)∆3

= inf f([0, 1])(1− 0) + inf f([1, 1 + ε])[(1 + ε)− 1] + inf f([1 + ε, 3])[3− (1 + ε)]

= inf{2}(1) + inf{2, 3}ε+ inf{3}(2− ε)
= 2 ∗ 1 + 2ε+ 3(2− ε)
= 8− ε.

Since Pε is a partition of [0, 3] and L(f, Pε) = 8− ε, then 8− ε ∈ S.
Therefore, 8− ε ∈ S for every ε such that 0 < ε < 2.

Proof. We prove supS ≥ 8.
Suppose supS < 8.
Then 8− supS > 0, so 8−supS

2 > 0.

Let ε = 8−supS
2 .

Then ε > 0.
Since supS ≥ inf f ∗ (3 − 0) = 2 ∗ (3 − 0) = 6 > 4, then supS > 4, so

supS > 8− 4.
Hence, 4 > 8− supS, so 2 > 8−supS

2 .
Thus, 2 > ε.
Since 0 < ε and ε < 2, then 0 < ε < 2.
Hence, 8− ε = 8− 8−supS

2 = supS+8
2 ∈ S.
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Therefore, supS+8
2 ∈ S.

Since supS < 8, then 2 supS < supS + 8, so supS < supS+8
2 .

Thus, supS+8
2 is an element of S that is greater than the least upper bound

of S.
This contradicts the fact that supS is an upper bound of S.

Hence, supS ≥ 8, so
∫ 3

0
f ≥ 8.

Proof. Since 8 ≤
∫ 3

0
f ≤

∫ 3

0
f ≤ 8, then 8 ≤

∫ 3

0
f and

∫ 3

0
f ≤ 8 and 8 ≤

∫ 3

0
f and∫ 3

0
f ≤ 8.

Since
∫ 3

0
f ≤ 8 and 8 ≤

∫ 3

0
f , then

∫ 3

0
f = 8.

Since
∫ 3

0
f ≤ 8 and 8 ≤

∫ 3

0
f , then

∫ 3

0
f = 8.

Therefore, f is Darboux integrable and the integral of f over [0, 3] is
∫ 3

0
f =∫ 3

0
f = 8 =

∫ 3

0
f .

Exercise 2. Let f : [0, 1]→ R be the function defined by f(x) = x.

Then
∫ 1

0
xdx =

∫ 1

0
x = 1

2 =
∫ 1

0
x.

Proof. Let x ∈ [0, 1].
Then 0 ≤ x ≤ 1, so 0 ≤ x = f(x) ≤ 1.
Hence, 0 ≤ f(x) ≤ 1, so f is bounded.

Therefore, the upper Darboux integral
∫ 1

0
x and the lower Darboux integral∫ 1

0
x exist and the upper Riemann sum U(f, P ) and lower Riemann sum L(f, P )

exist for every partition P of the interval [0, 1].
Let S = {L(f, P ) : P is a partition of [0, 1]}.
Let T = {U(f, P ) : P is a partition of [0, 1]}.
Then

∫ 1

0
x = supS and

∫ 1

0
x = inf T and

∫ 1

0
x ≤

∫ 1

0
x.

Proof. Let Pn = {0, 1
n ,

2
n , ...,

n−1
n , 1} be a partition of [0, 1] for each n ∈ Z+.

For each k = 1, 2, ..., n the kth subinterval is Ik = [k−1n , kn ] and its length is
∆k = 1

n .

Hence, for each k = 1, 2, ..., n the direct image of Ik is f(Ik) = f([k−1n , kn ]) =

[k−1n , kn ].

Since f is an increasing function, then sup f(Ik) = k
n and inf f(Ik) = k−1

n
and ∆k = 1

n for each k = 1, 2, ..., n.
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For every positive integer n the lower Riemann sum is

L(f, Pn) =

n∑
k=1

inf f(Ik)∆k

=

n∑
k=1

k − 1

n

1

n

=

n∑
k=1

k − 1

n2

=
1

n2

n∑
k=1

(k − 1)

=
1

n2
[

n∑
k=1

k −
n∑
k=1

1]

=
1

n2
[
n(n+ 1)

2
− n]

=
n− 1

2n
.

Therefore, L(f, Pn) = n−1
2n for all n ∈ Z+.

Let A = {L(f, Pn) : n ∈ Z+}.
Then A = {n−12n : n ∈ Z+}, so A is the range of the sequence (an) defined

by an = n−1
2n .

Let x ∈ A.
Then x = L(f, Pn) for some positive integer n.
Since Pn is a partition of [0, 1], then x ∈ S.
Hence, A ⊂ S.
Let n ∈ Z+ be given.
Then an = n−1

2n ∈ A.
Since A ⊂ S, then an ∈ S.
Since supS is an upper bound of S, then an ≤ supS.
Since n is arbitrary, then an ≤ supS for all n ∈ Z+, so supS is an upper

bound of A.
Since limn→∞

n−1
2n = 1

2 , then (an) is a convergent sequence, so 1
2 = limn→∞

n−1
2n ≤

supS.

Hence, 1
2 ≤

∫ 1

0
x.
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Proof. For every positive integer n the upper Riemann sum is

U(f, Pn) =

n∑
k=1

sup f(Ik)∆k

=

n∑
k=1

k

n

1

n

=

n∑
k=1

k

n2

=
1

n2

n∑
k=1

k

=
1

n2
[
n(n+ 1)

2
]

=
n+ 1

2n
.

Therefore, U(f, Pn) = n+1
2n for all n ∈ Z+.

Let B = {U(f, Pn) : n ∈ Z+}.
Then B = {n+1

2n : n ∈ Z+}, so B is the range of the sequence (bn) defined
by bn = n+1

2n .
Let y ∈ B.
Then y = U(f, Pn) for some positive integer n.
Since Pn is a partition of [0, 1], then y ∈ T .
Hence, B ⊂ T .
Let n ∈ Z+ be given.
Then bn = n+1

2n ∈ B.
Since B ⊂ T , then bn ∈ T .
Since inf T is a lower bound of T , then inf T ≤ bn.
Since n is arbitrary, then inf T ≤ bn for all n ∈ Z+, so inf T is a lower bound

of B.
Since limn→∞

n+1
2n = 1

2 , then (bn) is a convergent sequence, so inf T ≤
limn→∞

n+1
2n = 1

2 .

Since inf T ≤ 1
2 , then

∫ 1

0
x ≤ 1

2 .

Proof. Since 1
2 ≤

∫ 1

0
x and

∫ 1

0
x ≤

∫ 1

0
x and

∫ 1

0
x ≤ 1

2 , then 1
2 ≤

∫ 1

0
x ≤

∫ 1

0
x ≤ 1

2 ,

so
∫ 1

0
x ≤ 1

2 and 1
2 ≤

∫ 1

0
x.

Since
∫ 1

0
x ≤ 1

2 and 1
2 ≤

∫ 1

0
x, then

∫ 1

0
x = 1

2 .

Since
∫ 1

0
x ≤ 1

2 and 1
2 ≤

∫ 1

0
x, then

∫ 1

0
x = 1

2 .

Therefore, f is Darboux integrable and the integral of x over [0, 1] is
∫ 1

0
x =∫ 1

0
x = 1

2 =
∫ 1

0
x.
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Exercise 3. Let f : [0, 1]→ R be the function defined by f(x) = x2.

Then
∫ 1

0
x2dx =

∫ 1

0
x2 = 1

3 =
∫ 1

0
x2.

Proof. Let x ∈ [0, 1].
Then 0 ≤ x ≤ 1, so 0 ≤ x2 = f(x) ≤ 1.
Hence, 0 ≤ f(x) ≤ 1, so f is bounded.

Therefore, the upper Darboux integral
∫ 1

0
x2 and the lower Darboux integral∫ 1

0
x2 exist and the upper Riemann sum U(f, P ) and lower Riemann sum L(f, P )

exist for every partition P of the interval [0, 1].
Let S = {L(f, P ) : P is a partition of [0, 1]}.
Let T = {U(f, P ) : P is a partition of [0, 1]}.
Then

∫ 1

0
x2 = supS and

∫ 1

0
x2 = inf T and

∫ 1

0
x2 ≤

∫ 1

0
x2.

Proof. Let Pn = {0, 1
n ,

2
n , ...,

n−1
n , 1} be a partition of [0, 1] for each n ∈ Z+.

For each k = 1, 2, ..., n the kth subinterval is Ik = [k−1n , kn ] and its length is
∆k = 1

n .

Hence, for each k = 1, 2, ..., n the direct image of Ik is f(Ik) = f([k−1n , kn ]) =

[(k−1n )2, ( kn )2], so sup f(Ik) = ( kn )2 and inf f(Ik) = (k−1n )2 and ∆k = 1
n for each

k = 1, 2, ..., n.
For every positive integer n the lower Riemann sum is

L(f, Pn) =

n∑
k=1

inf f(Ik)∆k

=

n∑
k=1

(
k − 1

n
)2

1

n

=

n∑
k=1

(k − 1)2
1

n3

=
1

n3

n∑
k=1

(k − 1)2

=
1

n3
[

n∑
k=1

k2 − n2]

=
1

n3
[
n(n+ 1)(2n+ 1)

6
− n2]

=
2n2 − 3n+ 1

6n2
.

Therefore, L(f, Pn) = 2n2−3n+1
6n2 for all n ∈ Z+.

Let A = {L(f, Pn) : n ∈ Z+}.
Then A = { 2n

2−3n+1
6n2 : n ∈ Z+}, so A is the range of the sequence (an)

defined by an = 2n2−3n+1
6n2 .
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Let x ∈ A.
Then x = L(f, Pn) for some positive integer n.
Since Pn is a partition of [0, 1], then x ∈ S.
Hence, A ⊂ S.
Let n ∈ Z+ be given.

Then an = 2n2−3n+1
6n2 ∈ A.

Since A ⊂ S, then an ∈ S.
Since supS is an upper bound of S, then an ≤ supS.
Since n is arbitrary, then an ≤ supS for all n ∈ Z+, so supS is an upper

bound of A.
Since limn→∞

2n2−3n+1
6n2 = 1

3 , then (an) is a convergent sequence, so 1
3 =

limn→∞
2n2−3n+1

6n2 ≤ supS.

Hence, 1
3 ≤

∫ 1

0
x2.

Proof. For every positive integer n the upper Riemann sum is

U(f, Pn) =

n∑
k=1

sup f(Ik)∆k

=

n∑
k=1

(
k

n
)2

1

n

=

n∑
k=1

k2
1

n3

=
1

n3

n∑
k=1

k2

=
1

n3
[
n(n+ 1)(2n+ 1)

6
]

=
(n+ 1)(2n+ 1)

6n2

=
2n2 + 3n+ 1

6n2
.

Therefore, U(f, Pn) = 2n2+3n+1
6n2 for all n ∈ Z+.

Let B = {U(f, Pn) : n ∈ Z+}.
Then B = { 2n

2+3n+1
6n2 : n ∈ Z+}, so B is the range of the sequence (bn)

defined by bn = 2n2+3n+1
6n2 .

Let y ∈ B.
Then y = U(f, Pn) for some positive integer n.
Since Pn is a partition of [0, 1], then y ∈ T .
Hence, B ⊂ T .
Let n ∈ Z+ be given.

Then bn = 2n2+3n+1
6n2 ∈ B.

Since B ⊂ T , then bn ∈ T .
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Since inf T is a lower bound of T , then inf T ≤ bn.
Since n is arbitrary, then inf T ≤ bn for all n ∈ Z+, so inf T is a lower bound

of B.
Since limn→∞

2n2+3n+1
6n2 = 1

3 , then (bn) is a convergent sequence, so inf T ≤
limn→∞

2n2+3n+1
6n2 = 1

3 .

Since inf T ≤ 1
3 , then

∫ 1

0
x2 ≤ 1

3 .

Proof. Since 1
3 ≤

∫ 1

0
x2 and

∫ 1

0
x2 ≤

∫ 1

0
x2 and

∫ 1

0
x2 ≤ 1

3 , then 1
3 ≤

∫ 1

0
x2 ≤∫ 1

0
x2 ≤ 1

3 , so
∫ 1

0
x2 ≤ 1

3 and 1
3 ≤

∫ 1

0
x2.

Since
∫ 1

0
x2 ≤ 1

3 and 1
3 ≤

∫ 1

0
x2, then

∫ 1

0
x2 = 1

3 .

Since
∫ 1

0
x2 ≤ 1

3 and 1
3 ≤

∫ 1

0
x2, then

∫ 1

0
x2 = 1

3 .

Therefore, f is Darboux integrable and the integral of x2 over [0, 1] is
∫ 1

0
x2 =∫ 1

0
x2 = 1

3 =
∫ 1

0
x2.

Exercise 4. Let f : [0, 2]→ R be the function defined by f(x) = 1 if x 6= 1 and
f(1) = 0.

Then
∫ 2

0
f = 2.

Proof. Let x ∈ [0, 2].
Then 0 ≤ x ≤ 2, so either x = 1 or x 6= 1.
We consider these cases separately.
Case 1: Suppose x = 1.
Then f(x) = f(1) = 0.
Case 2: Suppose x 6= 1.
Then f(x) = 1.
Hence, either f(x) = 0 or f(x) = 1, so the range of f is the set {0, 1}.
Since {0, 1} is finite, then f is bounded.

Therefore, the upper Darboux integral
∫ 2

0
f and the lower Darboux integral∫ 2

0
f exist and the upper Riemann sum U(f, P ) and lower Riemann sum L(f, P )

exist for every partition P of the interval [0, 2].
Let S = {L(f, P ) : P is a partition of [0, 2]}.
Let T = {U(f, P ) : P is a partition of [0, 2]}.
Then

∫ 2

0
f = supS and

∫ 2

0
f = inf T .

Proof. Let P1 = {0, 2} be a partition of the interval [0, 2].
The upper Riemann sum is U(f, P1) = sup f([0, 2])(2− 0) = sup{0, 1}(2) =

1(2) = 2, so 2 ∈ T .

Since inf T is a lower bound of T , then inf T ≤ 2, so
∫ 2

0
f ≤ 2.

Proof. We prove for every ε, if 0 < ε < 2, then 2− ε ∈ S.
Let ε be an arbitrary real number such that 0 < ε < 2
Then 0 < ε and ε < 2.
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Since ε < 2, then ε
2 < 1, so 0 < 1− ε

2 and 1 + ε
2 < 2.

Since 0 < ε, then 1− 1 < ε
2 + ε

2 , so 1− ε
2 < 1 + ε

2 .
Since 0 < 1− ε

2 and 1− ε
2 < 1+ ε

2 and 1+ ε
2 < 2, then 0 < 1− ε

2 < 1+ ε
2 < 2.

Let Pε = {0, 1− ε
2 , 1 + ε

2 , 2} be a partition of [0, 2].
The lower Riemann sum is

L(f, Pε) =

3∑
k=1

inf f(Ik)∆k

= inf f(I1)∆1 + inf f(I2)∆2 + inf f(I3)∆3

= inf f([0, 1− ε

2
])(1− ε

2
) + inf f([1− ε

2
, 1 +

ε

2
])ε+ inf f([1 +

ε

2
, 2])(1− ε

2
)

= inf{1}(1− ε

2
) + inf{0, 1}ε+ inf{1}(1− ε

2
)

= 1(1− ε

2
) + 0(ε) + 1(1− ε

2
)

= 2− ε.

Since Pε is a partition of [0, 2] and L(f, Pε) = 2− ε, then 2− ε ∈ S.
Therefore, if 0 < ε < 2, then 2− ε ∈ S.

Proof. We prove supS ≥ 2.
Suppose supS < 2.
Then 2− supS > 0, so 2−supS

2 > 0.

Let ε = 2−supS
2 .

Then ε > 0.
Since supS ≥ inf f ∗ (2 − 0) = inf{0, 1} ∗ (2) = 0 ∗ 2 = 0 > −2, then

supS > −2, so supS > 2− 4.
Hence, 4 > 2− supS, so 2 > 2−supS

2 .
Thus, 2 > ε.
Since 0 < ε and ε < 2, then 0 < ε < 2.
Hence, 2− ε = 2− 2−supS

2 = 2+supS
2 = supS+2

2 ∈ S.

Therefore, supS+2
2 ∈ S.

Since supS < 2, then 2 supS < supS + 2, so supS < supS+2
2 .

Thus, supS+2
2 is an element of S that is greater than the least upper bound

of S.
This contradicts the fact that supS is an upper bound of S.

Hence, supS ≥ 2, so
∫ 2

0
f ≥ 2.

Proof. Since 2 ≤
∫ 2

0
f ≤

∫ 2

0
f ≤ 2, then 2 ≤

∫ 2

0
f and

∫ 2

0
f ≤ 2 and 2 ≤

∫ 2

0
f and∫ 2

0
f ≤ 2.

Since
∫ 2

0
f ≤ 2 and 2 ≤

∫ 2

0
f , then

∫ 2

0
f = 2.

Since
∫ 2

0
f ≤ 2 and 2 ≤

∫ 2

0
f , then

∫ 2

0
f = 2.

Therefore, f is Darboux integrable and the integral of f over [0, 2] is
∫ 2

0
f =∫ 2

0
f = 2 =

∫ 2

0
f .
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Exercise 5. Let f : [0, 1]→ R be the function defined by

f(x) =

{
0 if 0 ≤ x ≤ 1

2

1 if 1
2 < x ≤ 1

Then
∫ 1

0
f =

∫ 1

0
f =

∫ 1

0
f = 1

2 .

Proof. We prove f is a bounded function.
Let x ∈ [0, 1].
Then either 0 ≤ x ≤ 1

2 or 1
2 < x ≤ 1.

We consider these cases separately.
Case 1: Suppose 0 ≤ x ≤ 1

2 .
Then |f(x)| = |0| = 0 < 1.
Case 2: Suppose 1

2 < x ≤ 1.
Then |f(x)| = |1| = 1.
Thus, in all cases, |f(x)| ≤ 1.
Hence, |f(x)| ≤ 1 for all x ∈ [0, 1], so f is bounded.

Therefore, the upper Darboux integral
∫ 1

0
f and the lower Darboux integral∫ 1

0
f exist and the upper Riemann sum U(f, P ) and lower Riemann sum L(f, P )

exist for every partition P of the interval [0, 1].
Let S = {L(f, P ) : P is a partition of [0, 1]}.
Let T = {U(f, P ) : P is a partition of [0, 1]}.
Then

∫ 1

0
f = supS and

∫ 1

0
f = inf T and

∫ 1

0
f ≤

∫ 1

0
f .

Proof. Let P2 = {0, 12 , 1} be a partition of [0, 1].
The upper Riemann sum is

U(f, P2) =

2∑
k=1

sup f(Ik)∆k

= sup f(I1)∆1 + sup f(I2)∆2

= sup f([0,
1

2
])(

1

2
− 0) + sup f([

1

2
, 1])(1− 1

2
)

= sup{0}(1

2
) + sup{0, 1}(1

2
)

= 0(
1

2
) + 1(

1

2
)

=
1

2
.

Since P2 is a partition of [0, 1] and U(f, P2) = 1
2 , then 1

2 ∈ T .

Since
∫ 1

0
f is a lower bound of T and 1

2 ∈ T , then
∫ 1

0
f ≤ 1

2 .
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Proof. We prove for every ε if 0 < ε < 1
2 , then 1

2 − ε ∈ S.
Let ε be an arbitrary real number such that 0 < ε < 1

2 .
Since 0 < ε < 1

2 , then 1
2 <

1
2 + ε < 1.

Since 0 < 1
2 <

1
2 + ε < 1, then 0 < 1

2 + ε < 1, so let Pε = {0, 12 + ε, 1} be a
partition of the interval [0, 1].

The lower Riemann sum is

L(f, Pε) =

2∑
k=1

inf f(Ik)∆k

= inf f(I1)∆1 + inf f(I2)∆2

= inf f([0,
1

2
+ ε])(

1

2
+ ε) + inf f([

1

2
+ ε, 1])[1− (

1

2
+ ε)]

= inf{0, 1}(1

2
+ ε) + inf{1}(1

2
− ε)

= 0(
1

2
+ ε) + 1(

1

2
− ε)

=
1

2
− ε.

Since Pε is a partition of [0, 1] and L(f, Pε) = 1
2 − ε, then 1

2 − ε ∈ S.
Therefore, 1

2 − ε ∈ S for every ε such that 0 < ε < 1
2 .

Proof. We prove supS ≥ 1
2 .

Suppose supS < 1
2 .

Then 1
2 − supS > 0, so

1
2−supS

2 > 0.

Let ε =
1
2−supS

2 .
Then ε > 0.
Since supS ≥ inf f ∗ (1 − 0) = 0 ∗ (1 − 0) = 0 > −1

2 , then supS > −1
2 , so

supS > 1
2 − 1.

Hence, 1 > 1
2 − supS, so 1

2 >
1
2−supS

2 .
Thus, 1

2 > ε.
Since 0 < ε and ε < 1

2 , then 0 < ε < 1
2 .

Hence, 1
2 − ε = 1

2 −
1
2−supS

2 =
supS+ 1

2

2 ∈ S.

Therefore,
supS+ 1

2

2 ∈ S.

Since supS < 1
2 , then 2 supS < supS + 1

2 , so supS <
supS+ 1

2

2 .

Thus,
supS+ 1

2

2 is an element of S that is greater than the least upper bound
of S.

This contradicts the fact that supS is an upper bound of S.

Hence, supS ≥ 1
2 , so

∫ 1

0
f ≥ 1

2 .

Proof. Since 1
2 ≤

∫ 1

0
f ≤

∫ 1

0
f ≤ 1

2 , then 1
2 ≤

∫ 1

0
f and

∫ 1

0
f ≤ 1

2 and 1
2 ≤

∫ 1

0
f

and
∫ 1

0
f ≤ 1

2 .

11



Since
∫ 1

0
f ≤ 1

2 and 1
2 ≤

∫ 1

0
f , then

∫ 1

0
f = 1

2 .

Since
∫ 1

0
f ≤ 1

2 and 1
2 ≤

∫ 1

0
f , then

∫ 1

0
f = 1

2 .

Therefore, f is Darboux integrable and the integral of f over [0, 1] is
∫ 1

0
f =∫ 1

0
f = 1

2 =
∫ 1

0
f .

Riemann Integral of a real valued function

Exercise 6. Let k ∈ R be a fixed.
Then

∫ b
a
kdx = k(b− a).

Proof. Let f : [a, b]→ R be a function defined by f(x) = k.
Let ε > 0 be given.
Let δ = 1.
Let Ṗ = {([xi−1, xi], ti) : i ∈ Z+, 1 ≤ i ≤ n} be an arbitrary tagged partition

of [a, b] with ||Ṗ || < 1.
Since Ṗ is a partition, then x0 = a and xn = b.
Observe that

|S(f, Ṗ )− k(b− a)| = |
n∑
i=1

f(ti)(xi − xi−1)− k(b− a)|

= |
n∑
i=1

k(xi − xi−1)− k(b− a)|

= |k
n∑
i=1

(xi − xi−1)− k(b− a)|

= |k(xn − x0)− k(b− a)|
= |k(b− a)− k(b− a)|
= 0

< ε.

Therefore,
∫ b
a
kdx = k(b− a).
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