Integration of real valued functions Notes

Jason Sass

June 29, 2021

Sets of Numbers

$\mathbb{R}=$ set of all real numbers
$\mathbb{R}^{+}=\{x \in \mathbb{R}: x>0\}=(0, \infty)=$ set of all positive real numbers $\mathbb{R}^{*}=\{x \in \mathbb{R}: x \neq 0\}=(-\infty, 0) \cup(0, \infty)=$ set of all nonzero real numbers

Indefinite Integral of a real valued function

Definition 1. antiderivative of a function

A function F is called an antiderivative of the function f if $F^{\prime}(x)=f(x)$ for all $x \in \operatorname{dom} f$.

If F is an antiderivative of f, then $F^{\prime}(x)=f(x)$ for all $x \in \operatorname{dom} f$. We may write $F^{\prime}=f$ to denote that F is an antiderivative of f.

Theorem 2. representation of antiderivatives

Let F be an antiderivative of a function f defined on an interval I.
Then G is an antiderivative of f on I iff there exists a constant C such that $G(x)=F(x)+C$ for all $x \in I$.

Let f be a function defined on an interval I.
Suppose F and G are antiderivatives of f.
Then $F^{\prime}(x)=f(x)=G^{\prime}(x)$ for all $x \in I$ and there exists a constant C such that $G(x)=F(x)+C$ for all $x \in I$.

The antiderivative of a function f is denoted $\int f$ or $\int f(x) d x$.
Suppose F is an antiderivative of a function f.
Then $F^{\prime}(x)=f(x)$ for all $x \in \operatorname{dom} f$ and there exists a constant C such that $\int f(x) d x=F(x)+C$.

Definite Integral of a real valued function

Definition 3. integrable function

Let $a, b \in \mathbb{R}$ with $a \leq b$.
A function $f:[a, b] \rightarrow \mathbb{R}$ is said to be integrable on $[a, b]$ iff there exists a unique real number $\int_{a}^{b} f$ such that the following axioms hold:

I1. If C is a constant function, then $\int_{a}^{b} C=C(b-a)$.
I2. Let $g:[a, b] \rightarrow \mathbb{R}$ be a function.
If $f(x) \leq g(x)$ for all $x \in[a, b]$, then $\int_{a}^{b} f \leq \int_{a}^{b} g$.
I3. Let $c \in \mathbb{R}$.
If $a \leq c \leq b$, then $\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f$.
Let $f:[a, b] \rightarrow \mathbb{R}$ be an integrable function.
Then the real number $\int_{a}^{b} f$ exists.
We say that $\int_{a}^{b} f$ is the definite integral of f from a to b.
Definition 4. set of integrable functions $\mathcal{R}[a, b]$
Let $a, b \in \mathbb{R}$ with $a \leq b$.
The set of all integrable functions over the closed interval $[a, b]$, denoted $\mathcal{R}[a, b]$, is the set of all functions defined on $[a, b]$ such that $\int_{a}^{b} f$ exists.

Let $f \in \mathcal{R}[a, b]$.
Then $f:[a, b] \rightarrow \mathbb{R}$ is an integrable function and the integral of f is the real number $\int_{a}^{b} f$.

Therefore, integration is a mapping that assigns a real number, the definite integral, to each function $f \in \mathcal{R}[a, b]$.

Let $\mathcal{C}[a, b]$ be the set of all continuous functions on $[a, b]$.
Let $\mathcal{B}[a, b]$ be the set of all bounded functions on $[a, b]$.
By EVT, every continuous function $f:[a, b] \rightarrow \mathbb{R}$ is bounded.
Therefore, $\mathcal{C}[a, b] \subset \mathcal{R}[a, b] \subset \mathcal{B}[a, b]$.
Axiom 5. Asumptions for theory of definite integral
I0. Let $a, b \in \mathbb{R}$ with $a<b$.
a. Every continuous function $f:[a, b] \rightarrow \mathbb{R}$ lies in $\mathcal{R}[a, b]$.
b. Every function $f \in \mathcal{R}[a, b]$ is bounded.

Let $a, b \in \mathbb{R}$ with $a \leq b$.
Let $\mathcal{R}[a, b]$ be the set of all integrable functions over $[a, b]$.
I1. If C is a constant function, then $C \in \mathcal{R}[a, b]$ and $\int_{a}^{b} C=C(b-a)$.
I2. Let $f, g \in \mathcal{R}[a, b]$.
If $f(x) \leq g(x)$ for all $x \in[a, b]$, then $\int_{a}^{b} f \leq \int_{a}^{b} g$.
I3. Let $f:[a, b] \rightarrow \mathbb{R}$ be a function and let $c \in(a, b)$.
Then $f \in \mathcal{R}[a, b]$ iff $f \in \mathcal{R}[a, c]$ and $f \in \mathcal{R}[c, b]$.
If $f \in \mathcal{R}[a, b]$, then $\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f$.

Lemma 6. If $f \in \mathcal{R}[a, b]$, then $\int_{a}^{a} f=0=\int_{b}^{b} f$.
Proposition 7. Let $f \in \mathcal{R}[a, b]$.
For every $c \in[a, b], \int_{c}^{c} f=0$.

Fundamental Theorem of Calculus

Theorem 8. Let $f:[a, b] \rightarrow \mathbb{R}$ be an integrable function.
Let $F:[a, b] \rightarrow \mathbb{R}$ be defined by $F(x)=\int_{a}^{x} f$ for $x \in[a, b]$.
The function F is continuous.
Theorem 9. Fundamental Theorem of Calculus (derivative of an integral

Let $f:[a, b] \rightarrow \mathbb{R}$ be an integrable function.
Let $F:[a, b] \rightarrow \mathbb{R}$ be defined by $F(x)=\int_{a}^{x} f$ for all $x \in[a, b]$.
If f is continuous at x, then F is differentiable at x and $F^{\prime}(x)=f(x)$.
Let $f:[a, b] \rightarrow \mathbb{R}$ be an integrable function.
Let $F:[a, b] \rightarrow \mathbb{R}$ be defined by $F(x)=\int_{a}^{x} f$ for all $x \in[a, b]$.
Suppose f is continuous.
Let $x \in[a, b]$.
Then f is continuous at x, so F is differentiable and $F^{\prime}(x)=f(x)$.
Hence, $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$, so F is an antiderivative of f.
Thus, $F^{\prime}=f$.
Therefore, $\frac{d}{d x} \int_{a}^{x} f=\frac{d}{d x} F=F^{\prime}=f$.
Hence, if f is continuous, then F is an antiderivative of f.
Theorem 10. Fundamental Theorem of Calculus (integral of a derivative)

Let $F:[a, b] \rightarrow \mathbb{R}$ be a differentiable function.
If F^{\prime} is continuous, then F^{\prime} is integrable and $\int_{a}^{b} F^{\prime}=F(b)-F(a)$.
Let $f:[a, b] \rightarrow \mathbb{R}$ be a function.
Suppose f is continuous and F is an antiderivative of f.
Since F is an antiderivative of f, then $F:[a, b] \rightarrow \mathbb{R}$ is a function such that $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$.

Since $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$, then $F^{\prime}=f$ and F is differentiable.
Since f is continuous and $f=F^{\prime}$, then F^{\prime} is continuous.
Hence, $F^{\prime}=f$ is integrable and $\int_{a}^{b} f=\int_{a}^{b} F^{\prime}=F(b)-F(a)$.

Darboux Integral of a real valued function

A partition of an interval is a finite collection of non-overlapping intervals whose union is the interval.

Definition 11. partition of an interval
Let $a, b \in \mathbb{R}$ with $a<b$.
Let $[a, b]$ be a closed bounded interval.
Let n be a fixed positive integer.
A partition of $[\mathbf{a}, \mathbf{b}]$ is a finite set of points $\left\{x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}\right\}$ such that $a=x_{0}<x_{1}<\ldots<x_{n-1}<x_{n}=b$.

Let P be a partition of an interval $[a, b]$.
Then P is a finite set of points $\left\{x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}\right\}$ and $a=x_{0}<x_{1}<\ldots<$ $x_{n-1}<x_{n}=b$.

Therefore $P=\left\{a, x_{1}, \ldots, x_{n-1}, b\right\}$ and $x_{k-1}<x_{k}$ for each $k=1,2, \ldots, n$.
Let $I_{k}=\left[x_{k-1}, x_{k}\right]$ for each $k=1,2, \ldots, n$.
Then each $\left[x_{k-1}, x_{k}\right]$ is a subinterval of the partition.
Therefore, P consists of n subintervals and $[a, b]=\left[a, x_{1}\right] \cup\left[x_{1}, x_{2}\right] \cup \ldots \cup$ $\left[x_{n-1}, b\right]$.

Since each subinterval is a subset of $[a, b]$, then $I_{k} \subset[a, b]$ for each $k=$ $1,2, . ., n$.

Lemma 12. The existence of the supremum and infimum of the direct image of each subinterval of a partition for a bounded function.

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
Let n be a fixed positive integer.
Let $P=\left\{a, x_{1}, \ldots, x_{n-1}, b\right\}$ be a partition of $[a, b]$.
For each $k=1,2, \ldots, n$ the supremum and infimum of the set $\{f(x): x \in$ $\left.\left[x_{k-1}, x_{k}\right]\right\}$ exist.

Definition 13. upper and lower Riemann sums

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
Let n be a fixed positive integer.
Let $P=\left\{a, x_{1}, \ldots, x_{n-1}, b\right\}$ be a partition of $[a, b]$.
For each $k=1,2, \ldots, n$ let
$M_{k}=\sup \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\}$ and
$m_{k}=\inf \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\}$ and
$\Delta_{k}=x_{k}-x_{k-1}$.
The upper Riemann sum of f with respect to P is $U(f, P)=\sum_{k=1}^{n} M_{k} \Delta_{k}$.
The lower Riemann sum of f with respect to P is $L(f, P)=\sum_{k=1}^{n} m_{k} \Delta_{k}$.
Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
Let n be a fixed positive integer.
Let $P=\left\{a, x_{1}, \ldots, x_{n-1}, b\right\}$ be a partition of $[a, b]$.
For each $k=1,2, \ldots, n$ let $I_{k}=\left[x_{k-1}, x_{k}\right]$ be the $k^{t h}$ subinterval.
Then the supremum and infimum of the set $\left\{f(x): x \in I_{k}\right\}$ exist, so $\sup \left\{f(x): x \in I_{k}\right\}$ and $\inf \left\{f(x): x \in I_{k}\right\}$ exist.

For each $k=1,2, \ldots, n$ let
$M_{k}=\sup \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\}$ and
$m_{k}=\inf \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\}$ and
$\Delta_{k}=x_{k}-x_{k-1}$.

Then
$M_{k}=\sup \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\}=\sup \left\{f(x): x \in I_{k}\right\}=\sup f\left(I_{k}\right)$.
$m_{k}=\inf \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\}=\inf \left\{f(x): x \in I_{k}\right\}=\inf f\left(I_{k}\right)$.
$U(f, P)=\sum_{k=1}^{n} M_{k} \Delta_{k}=\sum_{k=1}^{n} \sup f\left(I_{k}\right) \Delta_{k}$.
$L(f, P)=\sum_{k=1}^{n=1} M_{k} \Delta_{k}=\sum_{k=1}^{n} \inf f\left(I_{k}\right) \Delta_{k}$.

Intuitively, we observe the following:
The largest value of f on the $k^{t h}$ subinterval $\left[x_{k-1}, x_{k}\right]$ is $M_{k}=\sup f\left(I_{k}\right)$.
The smallest value of f on the $k^{t h}$ subinterval $\left[x_{k-1}, x_{k}\right]$ is $m_{k}=\inf f\left(I_{k}\right)$.
The length of the $k^{t h}$ subinterval $\left[x_{k-1}, x_{k}\right]$ is $\Delta_{k}=x_{k}-x_{k-1}$.
The upper Riemann sum is $U(f, P)=\sum_{k=1}^{n} \sup f\left(I_{k}\right) \Delta_{k}$.
The lower Riemann sum is $L(f, P)=\sum_{k=1}^{n} \inf f\left(I_{k}\right) \Delta_{k}$.
Lemma 14. A lower Riemann sum is smaller than an upper Riemann sum for a given partition.

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
Let P be a partition of $[a, b]$.
Let $U(f, P)$ be an upper Riemann sum.
Let $L(f, P)$ be a lower Riemann sum.
Then $L(f, P) \leq U(f, P)$.
Definition 15. refinement of a partition of an interval
Let P and Q be partitions of an interval I.
Then Q is a refinement of P iff $P \subset Q$.
Equivalently, we say that Q refines P.
Lemma 16. Refining a partition increases lower Riemann sums and decreases upper Riemann sums.

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
If P is a partition of $[a, b]$ and Q is a refinement of P, then $L(f, P) \leq L(f, Q)$ and $U(f, P) \geq U(f, Q)$.

Proposition 17. Any lower Riemann sum is smaller than any upper Riemann sum.

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
If P and Q are partitions of $[a, b]$, then $L(f, P) \leq U(f, Q)$.
Lemma 18. For every $n \in \mathbb{Z}^{+}, \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)=x_{n}-x_{0}$.
Proposition 19. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
Let $M=\sup f([a, b])$.
Let $m=\inf f([a, b])$.
If P is a partition of $[a, b]$, then $m(b-a) \leq L(f, P) \leq U(f, P) \leq M(b-a)$.
Definition 20. upper and lower integrals
Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
The upper Darboux integral of f, denoted $\overline{\int_{a}^{b}} f$, is $U_{f}=\inf \{U(f, P)$: P is a partition of $[a, b]\}$.
 P is a partition of $[a, b]\}$.
Theorem 21. The upper and lower Darboux integrals exist for a bounded function.

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
Then the lower integral $\underline{\int_{a}^{b} f}$ and upper integral $\overline{\int_{a}^{b}} f$ exist and $\underline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} f$.
Proposition 22. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
Let $M=\sup f([a, b])$.
Let $m=\inf f([a, b])$.
Then $m(b-a) \leq \underline{\int_{a}^{b}} f$ and $\overline{\int_{a}^{b}} f \leq M(b-a)$.
Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
Let $M=\sup f([a, b])$.
Let $m=\inf f([a, b])$.
Then $m(b-a) \leq \underline{\int_{a}^{b}} f$ and $\overline{\int_{a}^{b}} f \leq M(b-a)$ and $\underline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} f$.
Therefore, $m(b-a) \leq \underline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} f \leq M(b-a)$.

Definition 23. Darboux integral

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
Let $\overline{\int_{a}^{b}} f$ be the upper Darboux integral of f.

The Darboux integral of f over $[a, b]$ is denoted by $\int_{a}^{b} f$.
When f is Darboux integrable we say that the Darboux integral of f exists and we write $\int_{a}^{b} f=\underline{\int_{a}^{b}} f=\overline{\int_{a}^{b}} f$.
Example 24. The constant function is Darboux integrable.
Let $k \in \mathbb{R}$ be fixed.
Then $\int_{a}^{b} k=k(b-a)$.
Example 25. Dirichlet function is not Darboux integrable
Let $f:[0,1] \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)= \begin{cases}1 & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

Then f is not integrable on $[0,1]$.
Theorem 26. Darboux integrability criterion
Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
Then f is Darboux integrable on $[a, b]$ iff for every $\epsilon>0$ there exists a partition P of $[a, b]$ such that $U(f, P)-L(f, P)<\epsilon$.

Definition 27. calculus integral of a function

Let $f:[a, b] \rightarrow \mathbb{R}$ be a function.
Let $F:[a, b] \rightarrow \mathbb{R}$ be any continuous function such that $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$.

The calculus integral is defined to be $\int_{a}^{b} f(x) d x=F(b)-F(a)$.

Definition 28. gauge integral of a function

Let $f:[a, b] \rightarrow \mathbb{R}$ be a function.
Let V be some number.
We say that V is the gauge integral of f, written $V=\int_{a}^{b} f(t) d t$, iff for every $\epsilon>0$ there exists a corresponding function $\delta:[a, b] \rightarrow(0,+\infty)$ such that whenever n is a positive integer, and $t_{0}, t_{1}, t_{2}, \ldots, t_{n}$ and $s_{1}, s_{2}, \ldots, s_{n}$ are some numbers satisfying $a=t_{0} \leq s_{1} \leq t_{1} \leq s_{2} \leq t_{2} \leq \ldots \leq t_{n-1} \leq s_{n} \leq t_{n}=b$ and $t_{i}-t_{i-1}<\delta\left(s_{i}\right)$ for all i, then $\left|V-\sum_{i=1}^{n} f\left(s_{i}\right)\left(t_{i}-t_{i-1}\right)\right|<\epsilon$.

The function δ is called a gauge.
The collection of numbers n, s_{i}, t_{i} is called a tagged division(partition) and the numbers s_{i} are called the tags.

A tagged division is called δ-fine if $t_{i}-t_{i-1}<\delta\left(s_{i}\right)$ for all i.

Theorem 29. FTC(derivatives of integrals)

Let f be a real-valued, gauge integrable function on $[a, b]$.
Let $F(x)=\int_{a}^{x} f$.
Then F is differentiable and $F^{\prime}(x)=f(x)$, at each x where f is continuous.
Theorem 30. FTC(integrals of derivatives)
Let F be a real-valued, differentiable function on $[a, b]$.
Then F^{\prime} is gauge integrable and $\int_{a}^{b} F^{\prime}=F(b)-F(a)$.

Riemann Integral of a real valued function

The definite integral of a function can be interpreted as the area under the curve.

The norm of a partition is the length of the largest subinterval.

Definition 31. norm of a partition

Let P be a partition of size n with partition points $x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}$.
The norm of \mathbf{P}, denoted $\|P\|$, is the maximum of the set $\left\{x_{i}-x_{i-1}: i \in\right.$ $\left.\mathbb{Z}^{+}, 1 \leq i \leq n\right\}$.

Let P be a partition of size n with partition points $x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}$.
The norm of P is $\|P\|=\max \left\{x_{i}-x_{i-1}: i \in \mathbb{Z}^{+}, 1 \leq i \leq n\right\}$.
Since the set is finite, then the maximum of the set exists.

A tagged partition is a partition together with a distinguished point in each of its subintervals.

Definition 32. tagged partition

Let P be a partition of size n with subintervals $I_{i}=\left[x_{i-1}, x_{i}\right]$.
Let $t_{i} \in I_{i}$ for some $i \in \mathbb{Z}^{+}$.
A tagged partition of P, denoted \dot{P}, is the set $\left\{\left(I_{i}, t_{i}\right): i \in \mathbb{Z}^{+}, 1 \leq i \leq n\right\}$.
The points t_{i} are called tags.
Let P be a partition of size n with subintervals $I_{i}=\left[x_{i-1}, x_{i}\right]$.
A tagged partition of P is $\dot{P}=\left\{\left(I_{i}, t_{i}\right): 1 \leq i \leq n\right\}$, where $t_{i} \in I_{i}$.

Definition 33. Riemann sum

Let $f:[a, b] \rightarrow \mathbb{R}$ be a function.
Let \dot{P} be a tagged partition of $[a, b]$.
The Riemann sum of f with respect to \dot{P} is $S(f ; \dot{P})=\sum_{i=1}^{n} f\left(t_{i}\right)\left(x_{i}-\right.$ x_{i-1}).

A function is Riemann integrable if the limit of the Riemann sums exists as the norm of the partitions approaches zero.

Definition 34. Riemann integrable function

Let $a, b \in \mathbb{R}$ with $a<b$.
Let $f:[a, b] \rightarrow \mathbb{R}$ be a function.
Then f is said to be Riemann integrable on $[a, b]$ iff there exists $L \in \mathbb{R}$ such that for every $\epsilon>0$, there exists $\delta>0$ such that if \dot{P} is any tagged partition of $[a, b]$ with $\|\dot{P}\|<\delta$, then $|S(f ; \dot{P})-L|<\epsilon$.

We call L the Riemann integral of f over $[a, b]$ and we write $\int_{a}^{b} f(x) d x=$ L.

Theorem 35. Integral of a Riemann integrable function is unique.
If $f:[a, b] \rightarrow \mathbb{R}$ is a Riemann integrable function, then the value of the integral is unique.

Let $f:[a, b] \rightarrow \mathbb{R}$ be a Riemann integrable function.
Then there exists a unique $L \in \mathbb{R}$ such that for every $\epsilon>0$, there exists $\delta>0$ such that if \dot{P} is any tagged partition of $[a, b]$ with $\|\dot{P}\|<\delta$, then $|S(f ; \dot{P})-L|<\epsilon$.

Thus, L is the Riemann integral of f over $[a, b]$.
Therefore, $\int_{a}^{b} f(x) d x=L$.
Equivalently, $\int_{a}^{b} f=L$.
The set of all Riemann integrable functions on an interval $[a, b]$ is denoted $\mathcal{R}[a, b]$.

Lemma 36. For every $n \in \mathbb{Z}^{+}, \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)=x_{n}-x_{0}$.
Example 37. Let $k \in \mathbb{R}$ be fixed.
Then $\int_{a}^{b} k d x=k(b-a)$.

