Integration of real valued functions Notes

Jason Sass

June 29, 2021

Sets of Numbers

 \mathbb{R} = set of all real numbers $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\} = (0, \infty) =$ set of all positive real numbers $\mathbb{R}^* = \{x \in \mathbb{R} : x \neq 0\} = (-\infty, 0) \cup (0, \infty) =$ set of all nonzero real numbers

Indefinite Integral of a real valued function

Definition 1. antiderivative of a function

A function F is called an **antiderivative** of the function f if F'(x) = f(x) for all $x \in dom f$.

If F is an antiderivative of f, then F'(x) = f(x) for all $x \in dom f$. We may write F' = f to denote that F is an antiderivative of f.

Theorem 2. representation of antiderivatives

Let F be an antiderivative of a function f defined on an interval I. Then G is an antiderivative of f on I iff there exists a constant C such that G(x) = F(x) + C for all $x \in I$.

Let f be a function defined on an interval I.

Suppose F and G are antiderivatives of f.

Then F'(x) = f(x) = G'(x) for all $x \in I$ and there exists a constant C such that G(x) = F(x) + C for all $x \in I$.

The antiderivative of a function f is denoted $\int f$ or $\int f(x)dx$.

Suppose F is an antiderivative of a function f.

Then F'(x) = f(x) for all $x \in domf$ and there exists a constant C such that $\int f(x)dx = F(x) + C$.

Definite Integral of a real valued function

Definition 3. integrable function

Let $a, b \in \mathbb{R}$ with $a \leq b$.

A function $f : [a, b] \to \mathbb{R}$ is said to be **integrable on** [a, b] iff there exists a unique real number $\int_a^b f$ such that the following axioms hold:

I1. If C is a constant function, then $\int_a^b C = C(b-a)$.

I2. Let $g:[a,b] \to \mathbb{R}$ be a function.

If $f(x) \leq g(x)$ for all $x \in [a, b]$, then $\int_a^b f \leq \int_a^b g$. 13. Let $c \in \mathbb{R}$.

If $a \le c \le b$, then $\int_a^b f = \int_a^c f + \int_c^b f$.

Let $f:[a,b] \to \mathbb{R}$ be an integrable function.

Then the real number $\int_a^b f$ exists.

We say that $\int_a^b f$ is the **definite integral of** f from a to b.

Definition 4. set of integrable functions $\mathcal{R}[a, b]$

Let $a, b \in \mathbb{R}$ with $a \leq b$.

The set of all integrable functions over the closed interval [a, b], denoted $\mathcal{R}[a, b]$, is the set of all functions defined on [a, b] such that $\int_a^b f$ exists.

Let $f \in \mathcal{R}[a, b]$.

Then $f:[a,b] \to \mathbb{R}$ is an integrable function and the integral of f is the real number $\int_a^b f$.

Therefore, integration is a mapping that assigns a real number, the definite integral, to each function $f \in \mathcal{R}[a, b]$.

Let C[a, b] be the set of all continuous functions on [a, b]. Let $\mathcal{B}[a, b]$ be the set of all bounded functions on [a, b]. By EVT, every continuous function $f : [a, b] \to \mathbb{R}$ is bounded. Therefore, $C[a, b] \subset \mathcal{R}[a, b] \subset \mathcal{B}[a, b]$.

Axiom 5. Asumptions for theory of definite integral

I0. Let $a, b \in \mathbb{R}$ with a < b.

a. Every continuous function $f : [a, b] \to \mathbb{R}$ lies in $\mathcal{R}[a, b]$.

b. Every function $f \in \mathcal{R}[a, b]$ is bounded.

Let $a, b \in \mathbb{R}$ with $a \leq b$. Let $\mathcal{R}[a, b]$ be the set of all integrable functions over [a, b]. I1. If C is a constant function, then $C \in \mathcal{R}[a, b]$ and $\int_a^b C = C(b-a)$. I2. Let $f, g \in \mathcal{R}[a, b]$. If $f(x) \leq g(x)$ for all $x \in [a, b]$, then $\int_a^b f \leq \int_a^b g$. I3. Let $f : [a, b] \to \mathbb{R}$ be a function and let $c \in (a, b)$. Then $f \in \mathcal{R}[a, b]$ iff $f \in \mathcal{R}[a, c]$ and $f \in \mathcal{R}[c, b]$. If $f \in \mathcal{R}[a, b]$, then $\int_a^b f = \int_a^c f + \int_c^b f$. **Lemma 6.** If $f \in \mathcal{R}[a,b]$, then $\int_a^a f = 0 = \int_b^b f$.

Proposition 7. Let $f \in \mathcal{R}[a, b]$. For every $c \in [a, b]$, $\int_{c}^{c} f = 0$.

Fundamental Theorem of Calculus

Theorem 8. Let $f : [a, b] \to \mathbb{R}$ be an integrable function. Let $F : [a,b] \to \mathbb{R}$ be defined by $F(x) = \int_a^x f$ for $x \in [a,b]$. The function F is continuous.

Theorem 9. Fundamental Theorem of Calculus (derivative of an integral

Let $f : [a, b] \to \mathbb{R}$ be an integrable function. Let $F: [a, b] \to \mathbb{R}$ be defined by $F(x) = \int_a^x f$ for all $x \in [a, b]$. If f is continuous at x, then F is differentiable at x and F'(x) = f(x).

Let $f : [a, b] \to \mathbb{R}$ be an integrable function. Let $F: [a,b] \to \mathbb{R}$ be defined by $F(x) = \int_a^x f$ for all $x \in [a,b]$. Suppose f is continuous. Let $x \in [a, b]$. Then f is continuous at x, so F is differentiable and F'(x) = f(x). Hence, F'(x) = f(x) for all $x \in [a, b]$, so F is an antiderivative of f. Thus, F' = f. Therefore, $\frac{d}{dx} \int_a^x f = \frac{d}{dx}F = F' = f$. Hence, if f is continuous, then F is an antiderivative of f.

Theorem 10. Fundamental Theorem of Calculus (integral of a derivative)

Let $F : [a, b] \to \mathbb{R}$ be a differentiable function. If F' is continuous, then F' is integrable and $\int_a^b F' = F(b) - F(a)$.

Let $f : [a, b] \to \mathbb{R}$ be a function. Suppose f is continuous and F is an antiderivative of f. Since F is an antiderivative of f, then $F: [a, b] \to \mathbb{R}$ is a function such that F'(x) = f(x) for all $x \in [a, b]$. Since F'(x) = f(x) for all $x \in [a, b]$, then F' = f and F is differentiable. Since f is continuous and f = F', then F' is continuous. Hence, F' = f is integrable and $\int_a^b f = \int_a^b F' = F(b) - F(a)$.

Darboux Integral of a real valued function

A partition of an interval is a finite collection of non-overlapping intervals whose union is the interval.

Definition 11. partition of an interval

Let $a, b \in \mathbb{R}$ with a < b.

Let [a, b] be a closed bounded interval.

Let n be a fixed positive integer.

A partition of [a,b] is a finite set of points $\{x_0, x_1, ..., x_{n-1}, x_n\}$ such that $a = x_0 < x_1 < ... < x_{n-1} < x_n = b$.

Let P be a partition of an interval [a, b].

Then P is a finite set of points $\{x_0, x_1, ..., x_{n-1}, x_n\}$ and $a = x_0 < x_1 < ... < x_{n-1} < x_n = b$.

Therefore $P = \{a, x_1, ..., x_{n-1}, b\}$ and $x_{k-1} < x_k$ for each k = 1, 2, ..., n. Let $I_k = [x_{k-1}, x_k]$ for each k = 1, 2, ..., n.

Then each $[x_{k-1}, x_k]$ is a subinterval of the partition.

Therefore, P consists of n subintervals and $[a,b] = [a,x_1] \cup [x_1,x_2] \cup ... \cup [x_{n-1},b].$

Since each subinterval is a subset of [a, b], then $I_k \subset [a, b]$ for each k = 1, 2, ..., n.

Lemma 12. The existence of the supremum and infimum of the direct image of each subinterval of a partition for a bounded function.

Let $f : [a, b] \to \mathbb{R}$ be a bounded function.

Let n be a fixed positive integer.

Let $P = \{a, x_1, ..., x_{n-1}, b\}$ be a partition of [a, b].

For each k = 1, 2, ..., n the supremum and infimum of the set $\{f(x) : x \in [x_{k-1}, x_k]\}$ exist.

Definition 13. upper and lower Riemann sums

Let $f : [a, b] \to \mathbb{R}$ be a bounded function. Let n be a fixed positive integer. Let $P = \{a, x_1, ..., x_{n-1}, b\}$ be a partition of [a, b]. For each k = 1, 2, ..., n let $M_k = \sup\{f(x) : x \in [x_{k-1}, x_k]\}$ and $m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\}$ and $\Delta_k = x_k - x_{k-1}$. The **upper Riemann sum of** f with respect to P is $U(f, P) = \sum_{k=1}^n M_k \Delta_k$. The **lower Riemann sum of** f with respect to P is $L(f, P) = \sum_{k=1}^n m_k \Delta_k$.

Let $f:[a,b] \to \mathbb{R}$ be a bounded function. Let n be a fixed positive integer. Let $P = \{a, x_1, ..., x_{n-1}, b\}$ be a partition of [a, b]. For each k = 1, 2, ..., n let $I_k = [x_{k-1}, x_k]$ be the k^{th} subinterval. Then the supremum and infimum of the set $\{f(x) : x \in I_k\}$ exist, so $\sup\{f(x) : x \in I_k\}$ and $\inf\{f(x) : x \in I_k\}$ exist. For each k = 1, 2, ..., n let $M_k = \sup\{f(x) : x \in [x_{k-1}, x_k]\}$ and $m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\}$ and

 $\Delta_k = x_k - x_{k-1}.$

Then $M_{k} = \sup\{f(x) : x \in [x_{k-1}, x_{k}]\} = \sup\{f(x) : x \in I_{k}\} = \sup f(I_{k}).$ $m_{k} = \inf\{f(x) : x \in [x_{k-1}, x_{k}]\} = \inf\{f(x) : x \in I_{k}\} = \inf f(I_{k}).$ $U(f, P) = \sum_{k=1}^{n} M_{k} \Delta_{k} = \sum_{k=1}^{n} \sup f(I_{k}) \Delta_{k}.$ $L(f, P) = \sum_{k=1}^{n} M_{k} \Delta_{k} = \sum_{k=1}^{n} \inf f(I_{k}) \Delta_{k}.$

Intuitively, we observe the following:

The largest value of f on the k^{th} subinterval $[x_{k-1}, x_k]$ is $M_k = \sup f(I_k)$. The smallest value of f on the k^{th} subinterval $[x_{k-1}, x_k]$ is $m_k = \inf f(I_k)$. The length of the k^{th} subinterval $[x_{k-1}, x_k]$ is $\Delta_k = x_k - x_{k-1}$. The upper Riemann sum is $U(f, P) = \sum_{k=1}^n \sup f(I_k)\Delta_k$. The lower Riemann sum is $L(f, P) = \sum_{k=1}^n \inf f(I_k)\Delta_k$.

Lemma 14. A lower Riemann sum is smaller than an upper Riemann sum for a given partition.

Let $f : [a,b] \to \mathbb{R}$ be a bounded function. Let P be a partition of [a,b]. Let U(f,P) be an upper Riemann sum. Let L(f,P) be a lower Riemann sum. Then $L(f,P) \le U(f,P)$.

Definition 15. refinement of a partition of an interval

Let P and Q be partitions of an interval I. Then Q is a refinement of P iff $P \subset Q$. Equivalently, we say that Q refines P.

Lemma 16. Refining a partition increases lower Riemann sums and decreases upper Riemann sums.

Let $f : [a,b] \to \mathbb{R}$ be a bounded function. If P is a partition of [a,b] and Q is a refinement of P, then $L(f,P) \leq L(f,Q)$ and $U(f,P) \geq U(f,Q)$.

Proposition 17. Any lower Riemann sum is smaller than any upper Riemann sum.

Let $f : [a,b] \to \mathbb{R}$ be a bounded function. If P and Q are partitions of [a,b], then $L(f,P) \leq U(f,Q)$.

Lemma 18. For every $n \in \mathbb{Z}^+$, $\sum_{i=1}^n (x_i - x_{i-1}) = x_n - x_0$.

Proposition 19. Let $f : [a,b] \to \mathbb{R}$ be a bounded function. Let $M = \sup f([a,b])$. Let $m = \inf f([a,b])$. If P is a partition of [a,b], then $m(b-a) \le L(f,P) \le U(f,P) \le M(b-a)$.

Definition 20. upper and lower integrals

Let $f : [a, b] \to \mathbb{R}$ be a bounded function.

The **upper Darboux integral of** f, denoted $\overline{\int_a^b} f$, is $U_f = \inf\{U(f, P) : P \text{ is a partition of } [a, b]\}.$

The lower Darboux integral of f, denoted $\int_a^b f$, is $L_f = \sup\{L(f, P) :$ P is a partition of [a, b].

Theorem 21. The upper and lower Darboux integrals exist for a bounded function.

Let $f : [a, b] \to \mathbb{R}$ be a bounded function. Then the lower integral $\int_a^b f$ and upper integral $\overline{\int_a^b} f$ exist and $\int_a^b f \leq \overline{\int_a^b} f$.

Proposition 22. Let $f : [a, b] \to \mathbb{R}$ be a bounded function.

Let $M = \sup f([a, b])$. Let $m = \inf f([a, b])$. Then $m(b-a) \leq \int_a^b f$ and $\overline{\int_a^b} f \leq M(b-a)$.

Let $f : [a, b] \to \mathbb{R}$ be a bounded function. Let $M = \sup f([a, b])$. Let $m = \inf f([a, b])$. Then $m(b-a) \leq \int_a^b f$ and $\overline{\int_a^b} f \leq M(b-a)$ and $\int_a^b f \leq \overline{\int_a^b} f$. Therefore, $m(b-a) \leq \int_{a}^{b} f \leq \overline{\int_{a}^{b}} f \leq M(b-a).$

Definition 23. Darboux integral

Let $f : [a, b] \to \mathbb{R}$ be a bounded function. Let $\int_a^b f$ be the upper Darboux integral of f. Let $\int_{a}^{b} f$ be the lower Darboux integral of f.

Then f is **Darboux integrable on** [a, b] iff $\int_a^b f = \overline{\int_a^b} f$.

The **Darboux integral of** f over [a, b] is denoted by $\int_a^b f$. When f is Darboux integrable we say that the Darboux integral of f exists

and we write $\int_{a}^{b} f = \int_{a}^{b} f = \overline{\int_{a}^{b}} f$.

Example 24. The constant function is Darboux integrable.

Let $k \in \mathbb{R}$ be fixed. Then $\int_a^b k = k(b-a)$.

Example 25. Dirichlet function is not Darboux integrable

Let $f:[0,1] \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

Then f is not integrable on [0, 1].

Theorem 26. Darboux integrability criterion

Let $f : [a, b] \to \mathbb{R}$ be a bounded function.

Then f is Darboux integrable on [a,b] iff for every $\epsilon > 0$ there exists a partition P of [a, b] such that $U(f, P) - L(f, P) < \epsilon$.

Definition 27. calculus integral of a function

Let $f : [a, b] \to \mathbb{R}$ be a function.

Let $F : [a, b] \to \mathbb{R}$ be any continuous function such that F'(x) = f(x) for all $x \in [a, b]$.

The calculus integral is defined to be $\int_a^b f(x)dx = F(b) - F(a)$.

Definition 28. gauge integral of a function

Let $f : [a, b] \to \mathbb{R}$ be a function.

Let V be some number.

We say that V is the **gauge integral** of f, written $V = \int_a^b f(t)dt$, iff for every $\epsilon > 0$ there exists a corresponding function $\delta : [a, b] \to (0, +\infty)$ such that whenever n is a positive integer, and $t_0, t_1, t_2, ..., t_n$ and $s_1, s_2, ..., s_n$ are some numbers satisfying $a = t_0 \leq s_1 \leq t_1 \leq s_2 \leq t_2 \leq ... \leq t_{n-1} \leq s_n \leq t_n = b$ and $t_i - t_{i-1} < \delta(s_i)$ for all i, then $|V - \sum_{i=1}^n f(s_i)(t_i - t_{i-1})| < \epsilon$.

The function δ is called a gauge.

The collection of numbers n, s_i, t_i is called a tagged division(partition) and the numbers s_i are called the tags.

A tagged division is called δ -fine if $t_i - t_{i-1} < \delta(s_i)$ for all i.

Theorem 29. FTC(derivatives of integrals)

Let f be a real-valued, gauge integrable function on [a, b]. Let $F(x) = \int_a^x f$.

Then F is differentiable and F'(x) = f(x), at each x where f is continuous.

Theorem 30. FTC(integrals of derivatives)

Let F be a real-valued, differentiable function on [a, b]. Then F' is gauge integrable and $\int_a^b F' = F(b) - F(a)$.

Riemann Integral of a real valued function

The definite integral of a function can be interpreted as the area under the curve.

The norm of a partition is the length of the largest subinterval.

Definition 31. norm of a partition

Let P be a partition of size n with partition points $x_0, x_1, ..., x_{n-1}, x_n$. The **norm of P**, denoted ||P||, is the maximum of the set $\{x_i - x_{i-1} : i \in \mathbb{Z}^+, 1 \leq i \leq n\}$.

Let P be a partition of size n with partition points $x_0, x_1, ..., x_{n-1}, x_n$. The norm of P is $||P|| = \max\{x_i - x_{i-1} : i \in \mathbb{Z}^+, 1 \le i \le n\}$. Since the set is finite, then the maximum of the set exists. A tagged partition is a partition together with a distinguished point in each of its subintervals.

Definition 32. tagged partition

Let P be a partition of size n with subintervals $I_i = [x_{i-1}, x_i]$. Let $t_i \in I_i$ for some $i \in \mathbb{Z}^+$. A tagged partition of P, denoted \dot{P} , is the set $\{(I_i, t_i) : i \in \mathbb{Z}^+, 1 \le i \le n\}$.

The points t_i are called tags.

Let P be a partition of size n with subintervals $I_i = [x_{i-1}, x_i]$. A tagged partition of P is $\dot{P} = \{(I_i, t_i) : 1 \le i \le n\}$, where $t_i \in I_i$.

Definition 33. Riemann sum

Let $f : [a, b] \to \mathbb{R}$ be a function.

Let \dot{P} be a tagged partition of [a, b].

The **Riemann sum of** f with respect to \dot{P} is $S(f; \dot{P}) = \sum_{i=1}^{n} f(t_i)(x_i - x_{i-1})$.

A function is Riemann integrable if the limit of the Riemann sums exists as the norm of the partitions approaches zero.

Definition 34. Riemann integrable function

Let $a, b \in \mathbb{R}$ with a < b.

Let $f : [a, b] \to \mathbb{R}$ be a function.

Then f is said to be **Riemann integrable on** [a, b] iff there exists $L \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that if \dot{P} is any tagged partition of [a, b] with $||\dot{P}|| < \delta$, then $|S(f; \dot{P}) - L| < \epsilon$.

We call L the **Riemann integral of** f over [a, b] and we write $\int_a^b f(x) dx = L$.

Theorem 35. Integral of a Riemann integrable function is unique.

If $f : [a,b] \to \mathbb{R}$ is a Riemann integrable function, then the value of the integral is unique.

Let $f : [a, b] \to \mathbb{R}$ be a Riemann integrable function.

Then there exists a unique $L \in \mathbb{R}$ such that for every $\epsilon > 0$, there exists $\delta > 0$ such that if \dot{P} is any tagged partition of [a, b] with $||\dot{P}|| < \delta$, then $|S(f; \dot{P}) - L| < \epsilon$.

Thus, L is the **Riemann integral of** f over [a, b].

Therefore, $\int_{a}^{b} f(x) dx = L.$

Equivalently, $\int_{a}^{b} f = L$.

The set of all Riemann integrable functions on an interval [a, b] is denoted $\mathcal{R}[a, b]$.

Lemma 36. For every $n \in \mathbb{Z}^+$, $\sum_{i=1}^n (x_i - x_{i-1}) = x_n - x_0$.

Example 37. Let $k \in \mathbb{R}$ be fixed.

Then $\int_{a}^{b} k dx = k(b-a).$