Real Analysis Exercises 2

Jason Sass

June 29, 2021

Vector space \mathbb{R}^n

Exercise 1. Let $x, y \in \mathbb{R}^n$. Then $|||x|| - ||y||| \le ||x - y||$, where $|| \cdot ||$ is the Euclidean norm of a vector.

Proof. Observe that

$$\begin{aligned} ||x|| &= ||x + (y - y)|| \\ &= ||(x - y) + y|| \\ &\leq ||x - y|| + ||y||. \end{aligned}$$

Hence, $||x|| \le ||x - y|| + ||y||$, so $||x|| - ||y|| \le ||x - y||$ for any $x, y \in \mathbb{R}^n$. Let $x, y \in \mathbb{R}^n$. Then $||x||, ||y|| \in \mathbb{R}$, so either $||x|| \ge ||y||$ or ||x|| < ||y||. We consider these cases separately. Case 1: Suppose $||x|| \ge ||y||$. Then $||x|| - ||y|| \ge 0$. Thus,

$$\begin{aligned} |||x|| - ||y||| &= ||x|| - ||y|| \\ &\leq ||x - y||. \end{aligned}$$

Therefore, $|||x|| - ||y||| \le ||x - y||$. **Case 2:** Suppose ||x|| < ||y||.

Then ||x|| - ||y|| < 0. Since $||x|| - ||y|| \le ||x - y||$ for any $x, y \in \mathbb{R}^n$, if we substitute x for y and y for x we have $||y|| - ||x|| \le ||y - x||$. Thus,

$$\begin{aligned} |||x|| - ||y||| &= -(||x|| - ||y||) \\ &= ||y|| - ||x|| \\ &\leq ||y - x|| \\ &= ||x - y||. \end{aligned}$$

Therefore, $|||x|| - ||y||| \le ||x - y||$. Hence, in all cases, $|||x|| - ||y||| \le ||x - y||$.

Exercise 2. Let $x, y \in \mathbb{R}^n$. Then $||x|| + ||y|| \le ||x + y|| + ||x - y||$, where $|| \cdot ||$ is the Euclidean norm of a vector.

Proof. Observe that

$$\begin{aligned} ||x|| &= ||\frac{x+y}{2} + \frac{x-y}{2}|| \\ &\leq ||\frac{x+y}{2}|| + ||\frac{x-y}{2}|| \\ &= \frac{1}{2}||x+y|| + \frac{1}{2}||x-y||. \end{aligned}$$

and

$$\begin{aligned} ||y|| &= ||\frac{x+y}{2} + \frac{y-x}{2}|| \\ &\leq ||\frac{x+y}{2}|| + ||\frac{y-x}{2}|| \\ &= \frac{1}{2}||x+y|| + \frac{1}{2}||y-x|| \\ &= \frac{1}{2}||x+y|| + \frac{1}{2}||x-y||. \end{aligned}$$

Adding the inequalities $||x|| \leq \frac{1}{2}||x+y|| + \frac{1}{2}||x-y||$ and $||y|| \leq \frac{1}{2}||x+y|| + \frac{1}{2}||x-y||$, we obtain $||x|| + ||y|| \leq ||x+y|| + ||x-y||$, as desired. \Box

Exercise 3. Let $x, y \in \mathbb{R}^n$. Then $||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$, where $|| \cdot ||$ is the Euclidean norm of a vector.

Proof. Observe that

$$\begin{aligned} ||x+y||^2 + ||x-y||^2 &= (x+y) \cdot (x+y) + (x-y) \cdot (x-y) \\ &= (x+y) \cdot x + (x+y) \cdot y + (x-y) \cdot x - (x-y) \cdot y \\ &= x \cdot (x+y) + y \cdot (x+y) + x \cdot (x-y) - y \cdot (x-y) \\ &= x \cdot x + x \cdot y + y \cdot x + y \cdot y + x \cdot x - x \cdot y - y \cdot x + y \cdot y \\ &= 2x \cdot x + 2y \cdot y \\ &= 2||x||^2 + 2||y||^2. \end{aligned}$$

Boundedness of subsets of \mathbb{R}^n

Exercise 4. Let $B = \{(x, y) \in \mathbb{R}^2 : x > 0\}$. Then B is unbounded in \mathbb{R}^2 .

Solution. Note that *B* is the right half plane excluding the y axis and $B = (0, \infty) \times (-\infty, \infty) =]0, \infty[\times] - \infty, \infty[=]0, \infty \times \mathbb{R}$, an open 2 cell. It is obvious that *B* is unbounded.

Proof. To prove B is unbounded, we must prove $(\forall R > 0)(\exists x \in B)(||x|| > R)$. Let R > 0. Let x = (R + 1, 0).

Since 0 < R < R + 1, then R + 1 > 0, so $(R + 1, 0) \in B$.

Observe that ||(R+1,0)|| = R+1 > R, so $(R+1,0) \notin \overline{B_R}(0)$. Therefore, *B* is unbounded.

Exercise 5. Let $C = \{(x, y) \in \mathbb{R}^2 : 0 < x < y < 3\}$. Then C is bounded in \mathbb{R}^2 .

Solution. Note that C is the upper left triangle formed by the square of 3 units, excluding the line y = x and excluding the line y = 3 and excluding the y axis.

It is obvious that C is bounded. We can pick any $R \ge 3\sqrt{2}$.

Proof. To prove C is bounded, we must prove $(\exists R > 0)(\forall x \in C)(||x|| \le R)$. Let $R = 3\sqrt{2}$. We must prove $||(x, y)|| \le 3\sqrt{2}$ for all $(x, y) \in C$.

Let $(x, y) \in C$. Then 0 < x < y < 3. Since 0 < x < y, then $0 < x^2 < y^2$. Since 0 < y < 3, then $y^2 < 9$. Thus, $x^2 < y^2 < 9$, so $x^2 < 9$. Adding inequalities we obtain $x^2 + y^2 < 18$.

Since $x^2 > 0$ and $y^2 > 0$, then $x^2 + y^2 > 0$.

Thus, $0 < x^2 + y^2 < 18$, so $\sqrt{x^2 + y^2} < \sqrt{18}$. Hence, $\sqrt{x^2 + y^2} \le \sqrt{18}$. Thus,

$$\begin{aligned} ||(x,y)|| &= \sqrt{x^2 + y^2} \\ &\leq \sqrt{18} \\ &= 3\sqrt{2}. \end{aligned}$$

Hence, $||(x, y)|| \le 3\sqrt{2}$, so C is bounded.

Exercise 6. Let $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + 2y^2 + 4z^2 < 4\}$. Then S is bounded in \mathbb{R}^3 .

Solution. Consider the equation $x^2 + 2y^2 + 4z^2 = 4$. In standard form we have $\frac{1}{4}x^2 + \frac{1}{2}y^2 + z^2 = 1$, which is the equation of an ellipsoid, a quadric surface. Hence, *S* consists of the solid ellipsoid excluding its surface. Clearly, a graph of *S*, as plotted by Maple or other software such as Apple Grapher, shows that *S* is bounded. It has axes at $2, \sqrt{2}, 1$.

 $\begin{array}{l} Proof. \text{ To prove } S \text{ is bounded, we must prove } (\exists R > 0)(\forall x \in S)(||x|| \leq R).\\ \text{Let } R = \sqrt{5}. \text{ We must prove } ||(x,y,z)|| \leq \sqrt{5} \text{ for all } (x,y,z) \in S.\\ \text{Let } (x,y,z) \in S. \text{ Then } x^2 + 2y^2 + 4z^2 < 4.\\ \text{Since } x^2 \geq 0, y^2 \geq 0, z^2 \geq 0, \text{ then } x^2 + y^2 + z^2 \geq 0 \text{ and } y^2 + 3z^2 \geq 0. \text{ Since } x^2 + 2y^2 + 4z^2 < 4, \text{ then } x^2 + 2y^2 + 4z^2 \leq 4. \text{ Since } y^2 + 3z^2 \geq 0 > -1, \text{ then } y^2 + 3z^2 > -1, \text{ so } y^2 + 3z^2 \geq -1. \text{ Hence, } -y^2 - 3z^2 \leq 1. \text{ We add the inequalities } x^2 + 2y^2 + 4z^2 \leq 4 \text{ and } -y^2 - 3z^2 \leq 1 \text{ to get } x^2 + y^2 + z^2 \leq 5.\\ \text{Since } 0 \leq x^2 + y^2 + z^2 \leq 5, \text{ then } \sqrt{x^2 + y^2 + z^2} \leq \sqrt{5}. \text{ Therefore, } ||(x,y,z)|| = \sqrt{x^2 + y^2 + z^2} \leq \sqrt{5}.\\ \text{Hence, } ||(x,y,z)|| \leq \sqrt{5}, \text{ so } S \text{ is bounded.} \end{array}$

Exercise 7. If A and B are bounded subsets of \mathbb{R}^n , then $A \cap B$ is bounded.

Proof. Suppose A and B are bounded subsets of \mathbb{R}^n . Since $A \cap B \subset A$ and $A \subset \mathbb{R}^n$, then $A \cap B \subset \mathbb{R}^n$.

To prove $A \cap B$ is bounded, we must find a positive real r for which $A \cap B \subset \overline{B_r}(0)$.

Let $x \in A \cap B$. Then $x \in A$ and $x \in B$. Since A is bounded, then there is a positive real a such that $A \subset \overline{B_a}(0)$. Since $x \in A$ and $A \subset \overline{B_a}(0)$, then $x \in \overline{B_a}(0)$, so $||x|| \leq a$. Since B is bounded, then there is a positive real b such that $B \subset \overline{B_b}(0)$. Since $x \in B$ and $B \subset \overline{B_b}(0)$, then $x \in \overline{B_b}(0)$, so $||x|| \leq b$.

Let r = a + b. The sum of any two positive real numbers is positive. Since a > 0 and b > 0, then r = a + b > 0.

To prove $x \in \overline{B_r}(0)$, we must prove $||x|| \le r$. Observe that

$$\begin{array}{rrr} 0 < b & \Rightarrow & a < a + b \\ & \Rightarrow & a < r \\ & \Rightarrow & a \leq r. \end{array}$$

Since $||x|| \leq a$ and $a \leq r$, then $||x|| \leq r$. Hence, $x \in \overline{B_r}(0)$, so $A \cap B \subset \overline{B_r}(0)$. \Box

Exercise 8. If A and B are bounded subsets of \mathbb{R}^n , then $A \cup B$ is bounded.

Proof. Suppose A and B are bounded subsets of \mathbb{R}^n . Since $A \subset \mathbb{R}^n$ and $B \subset \mathbb{R}^n$, then $A \cup B \subset \mathbb{R}^n$.

To prove $A \cup B$ is bounded, we must find a positive real r for which $A \cup B \subset \overline{B_r}(0)$.

Since A is bounded, then there is a positive real a such that $A \subset \overline{B_a}(0)$. Since B is bounded, then there is a positive real b such that $B \subset \overline{B_b}(0)$.

Let $r = \max{a, b}$. Since a > 0 and b > 0, then r > 0.

Let $x \in A \cup B$. Then either $x \in A$ or $x \in B$.

We consider these cases separately.

Case 1: Suppose $x \in A$.

Since $A \subset \overline{B_a}(0)$, then $x \in \overline{B_a}(0)$. Hence, $||x|| \leq a$. Since $r = \max\{a, b\}$, then $a \leq r$. Thus, $||x|| \leq a$ and $a \leq r$, so $||x|| \leq r$.

Case 2: Suppose $x \in B$.

Since $B \subset \overline{B_b}(0)$, then $x \in \overline{B_b}(0)$. Hence, $||x|| \le b$. Since $r = \max\{a, b\}$, then $b \le r$. Thus, $||x|| \le b$ and $b \le r$, so $||x|| \le r$.

Hence, in all cases, $||x|| \leq r$. Therefore, $x \in \overline{B_r}(0)$, so $A \cup B \subset \overline{B_r}(0)$.

Exercise 9. Any finite subset of \mathbb{R}^n is bounded.

Proof. Let S be a finite subset of \mathbb{R}^n . Either S is empty or not. We consider these cases separately. **Case 1:** Suppose $S = \emptyset$. The empty set is bounded, so S is bounded.

Case 2: Suppose $S \neq \emptyset$.

Then there is at least one point of \mathbb{R}^n in S. Hence, there is a positive integer n such that $S = \{p_1, ..., p_n\}$ and each $p_i \in \mathbb{R}^n$.

To prove S is bounded, we must prove there exists R > 0 such that $||x|| \le R$ for all $x \in S$.

Let $p_i \in S$ for some integer *i* such that $1 \leq i \leq n$.

We must prove there exists R > 0 such that $||p_i|| \le R$.

Let $m = \max\{||p_i|| : p_i \in S\}$. Then $m \ge ||p_i||$ for all $p_i \in S$. In particular, $m \ge ||p_i||$.

Let R = m + 1. We prove $||p_i|| \le R$. Clearly,

$$\begin{aligned} ||p_i|| &\leq m \\ &\leq m+1 \\ &= R. \end{aligned}$$

Hence, $||p_i|| \leq R$.

We prove R > 0.

Since the norm of any vector is nonnegative, then in particular, $||p_i|| \ge 0$. Thus, $m \ge ||p_i||$ and $||p_i|| \ge 0$, so $m \ge 0$. Hence,

$$\begin{array}{rcl} 0 & \leq & m \\ & < & m+1 \\ & = & R. \end{array}$$

Hence, 0 < R, so R > 0.

Therefore, S is bounded.

Hence, in all cases, S is bounded.

Exercise 10. Let $S \subset \mathbb{R}^d$. Then the statement S is unbounded is equivalent to the statement there exists a sequence p_1, p_2, p_3, \ldots of points in S such that $||p_n|| \geq n$ for all $n \in \mathbb{N}$.

Proof. We first prove if S is unbounded, then there exists a sequence $p_1, p_2, p_3, ...$ of points in S such that $||p_n|| \ge n$ for all $n \in \mathbb{N}$.

Suppose S is unbounded. Then for all real r > 0 there exists $x \in S$ such that ||x|| > r.

Let $n \in \mathbb{N}$. Then n > 0 and $n \in \mathbb{R}$. Hence, there exists $x \in S$ such that ||x|| > n. Let $x = p_n$. Then there exists $p_n \in S$ such that $||p_n|| > n$, so there exists $p_n \in S$ such that $||p_n|| \ge n$. Since n is arbitrary, then there exists $p_n \in S$ such that $||p_n|| \ge n$ for all $n \in \mathbb{N}$.

Define $f : \mathbb{N} \to S$ by $f(n) = p_n$ such that $||p_n|| \ge n$ for all $n \in \mathbb{N}$. Then f is a function with domain \mathbb{N} , so f is a sequence of points p_n of S such that $||p_n|| \ge n$ for all $n \in \mathbb{N}$. Therefore there exists a sequence p_1, p_2, p_3, \ldots of points of S such that $||p_n|| \ge n$ for all $n \in \mathbb{N}$.

Conversely, we prove if there exists a sequence $p_1, p_2, p_3, ...$ of points in S such that $||p_n|| \ge n$ for all $n \in \mathbb{N}$, then S is unbounded.

Let (p_n) be a sequence of points in S such that $||p_n|| \ge n$ for all $n \in \mathbb{N}$.

To prove S is unbounded, we must prove for each R > 0 there is at least one point of S whose norm exceeds R. Let R > 0. By the Archimedean property of \mathbb{R} , to each real number R there corresponds a natural number n greater than R. Hence, choose $n \in \mathbb{N}$ such that n > R. Then there exists a point $p_n \in S$ such that $||p_n|| \ge n$. Thus, $||p_n|| \ge n$ and n > R, so $||p_n|| > R$.

Therefore, there exists $p_n \in S$ such that $||p_n|| > R$. Hence, S is unbounded.

Exercise 11. Show that a subset S of \mathbb{R} is bounded iff S is bounded below and bounded above in \mathbb{R} .

Proof. Let S be a subset of \mathbb{R} .

We prove if S is bounded, then S is bounded below and bounded above in \mathbb{R} .

Suppose S is bounded. Then there exists R > 0 such that $|x| \le R$ for each $x \in S$.

Let $x \in S$. Then $|x| \leq R$, so $-R \leq x \leq R$. Thus, $-R \leq x$ and $x \leq R$.

Since x is arbitrary, then $x \leq R$ for all $x \in S$. Hence, R is an upper bound of S in \mathbb{R} . Therefore, S is bounded above in \mathbb{R} .

Since $R \in \mathbb{R}$, then $-R \in \mathbb{R}$. Since $-R \leq x$, then $-R \leq x$ for all $x \in S$. Hence, -R is a lower bound of S in \mathbb{R} . Therefore, S is bounded below in \mathbb{R} .

We prove if S is bounded below and bounded above in \mathbb{R} , then S is bounded. Suppose S is bounded below and bounded above in \mathbb{R} . To prove S is bounded, let $x \in S$.

We must prove there exists R > 0 such that $|x| \leq R$.

Since S is bounded above, then there exists $b \in \mathbb{R}$ such that $x \leq b$ for each $x \in S$. Hence, $x \leq b$. Since S is bounded below, then there exists $a \in \mathbb{R}$ such that $a \leq x$ for each $x \in S$. Hence, $a \leq x$.

Let $M = \max \{ |a|, |b| \}$. Choose R = M + 1. We prove R > 0.

Since M is the max of |a| and |b|, then $M \ge |a|$ and $M \ge |b|$. By definition of absolute value, $|a| \ge 0$ and $|b| \ge 0$. Hence, $M \ge |a| \ge 0$ and $M \ge |b| \ge 0$, so $M \ge 0$. Thus, $0 \le M < M + 1 = R$, so 0 < R. Therefore, R > 0.

We prove $|x| \leq R$.

Since $|a| \leq M$, then $-|a| \geq -M$.

Observe that

$$-R = -(M+1)$$
$$= -M - 1$$
$$\leq -M$$
$$\leq -|a|$$
$$\leq a$$
$$\leq x$$
$$\leq b$$
$$\leq |b|$$
$$\leq M$$
$$\leq M + 1$$
$$= R.$$

Therefore, $-R \leq x$ and $x \leq R$, so $|x| \leq R$.

Exercise 12. If S_1 and S_2 are bounded subsets of \mathbb{R} , then $S_1 \times S_2$ is bounded in \mathbb{R}^2 .

Proof. Suppose S_1 and S_2 are each bounded subsets of \mathbb{R} .

Since S_1 is bounded in \mathbb{R} , then there exists $M_1 > 0$ such that $|x| \leq M_1$ for all $x \in S_1$. Since S_2 is bounded in \mathbb{R} , then there exists $M_2 > 0$ such that $|x| \leq M_2$ for all $x \in S_2$.

To prove $S_1 \times S_2$ is bounded in \mathbb{R}^2 , we must prove there exists R > 0 such that $|(x,y)| \leq R$ for all $(x,y) \in S_1 \times S_2$.

Let $R = \sqrt{M_1^2 + M_2^2}$.

We prove R > 0.

Since $M_1 > 0$, then $M_1^2 > 0$. Since $M_2 > 0$, then $M_2^2 > 0$. Hence, $M_1^2 + M_2^2 > 0$. Therefore, $R = \sqrt{M_1^2 + M_2^2} > 0$. Let $(x, y) \in S_1 \times S_2$. Then $x \in S_1$ and $y \in S_2$. Since $x \in S_1$, then $|x| \le M_1$.

Let $(x, y) \in S_1 \times S_2$. Then $x \in S_1$ and $y \in S_2$. Since $x \in S_1$, then $|x| \le M_1$. Thus, $0 \le |x| \le M_1$, so $0 \le |x|^2 \le M_1^2$. Since $y \in S_2$, then $|y| \le M_2$. Thus, $0 \le |y| \le M_2$, so $0 \le |y|^2 \le M_2^2$.

Adding the inequalities $0 \le |x|^2 \le M_1^2$ and $0 \le |y|^2 \le M_2^2$, we obtain $0 \le |x|^2 + |y|^2 \le M_1^2 + M_2^2$. Hence, $0 \le \sqrt{|x|^2 + |y|^2} \le \sqrt{M_1^2 + M_2^2}$.

Therefore,

$$\begin{array}{rcl} (x,y)| & = & \sqrt{|x|^2 + |y|^2} \\ & \leq & \sqrt{M_1^2 + M_2^2} \\ & = & R. \end{array}$$

Thus, $|(x, y)| \leq R$. Hence, there exists R > 0 such that $|(x, y)| \leq R$. Therefore, $S_1 \times S_2$ is bounded in \mathbb{R}^2 .

Open subsets of \mathbb{R}^n

Exercise 13. The number 1 is not an interior point of the closed interval [0, 1].

Proof. To prove 1 is not an interior point of [0, 1] in \mathbb{R} , we prove $(\forall r > 0)(\exists y)(|y-1| < r \land y \notin [0, 1])$. Let r > 0. We must find a real number y such that |y-1| < r and $y \notin [0, 1]$. Let y be the real number $1 + \frac{r}{2}$.

Then

$$|y-1| = |(1+\frac{r}{2})-1|$$
$$= |\frac{r}{2}|$$
$$= \frac{r}{2}$$
$$\leq r.$$

Observe that

$$\begin{array}{rcl} r>0 & \Rightarrow & \displaystyle\frac{r}{2}>0 \\ & \Leftrightarrow & \displaystyle1+\frac{r}{2}>1 \\ & \Leftrightarrow & y>1. \end{array}$$

Hence, $y \notin [0,1]$.

Exercise 14. Every point of \mathbb{R} is an interior point of \mathbb{R} .

Proof. Let p be an arbitrary point of \mathbb{R} . To prove p is an interior point, we must prove there exists r > 0 such that $B_r(p) \subset \mathbb{R}$.

Let r = 1. Then $B_1(p) = \{y \in \mathbb{R} : |y - p| < 1\} \subset \mathbb{R}$. Therefore, p is an interior point of \mathbb{R} .

Exercise 15. For every pair of real numbers x and y with $x \neq y$, there are open intervals U and V such that $x \in U$ and $y \in V$ and $U \cap V = \emptyset$.

Proof. Let $x, y \in \mathbb{R}$ such that $x \neq y$. Then either x < y or x > y.

x

We must prove there exist open intervals U and V such that $x \in U$ and $y \in V$ and $U \cap V = \emptyset$.

Without loss of generality, we may assume x < y. Let $U = \left(\frac{3x-y}{2}, \frac{x+y}{2}\right)$. Let $V = \left(\frac{x+y}{2}, \frac{3y-x}{2}\right)$. To prove $x \in U$, we must prove $\frac{3x-y}{2} < x$ and $x < \frac{x+y}{2}$. Observe that

$$\begin{array}{rcl} < y & \Rightarrow & 3x < 2x + y \\ \Leftrightarrow & 3x - y < 2x \\ \Leftrightarrow & \frac{3x - y}{2} < x. \end{array}$$

$$\begin{array}{rcl} x < y & \Rightarrow & 2x < x + y \\ \Leftrightarrow & x < \frac{x + y}{2}. \end{array}$$

Therefore, $\frac{3x-y}{2} < x$ and $x < \frac{x+y}{2}$, as desired. To prove $y \in V$, we must prove $\frac{x+y}{2} < y$ and $y < \frac{3y-x}{2}$. Observe that

$$\begin{array}{rcl} x < y & \Rightarrow & x + y < 2y \\ \Leftrightarrow & \frac{x + y}{2} < y. \end{array}$$

and

$$\begin{array}{rcl} x < y & \Rightarrow & x + 2y < 3y \\ \Leftrightarrow & 2y < 3y - x \\ \Leftrightarrow & y < \frac{3y - x}{2}. \end{array}$$

Therefore, $\frac{x+y}{2} < y$ and $y < \frac{3y-x}{2}$, as desired. To prove $U \cap V = \emptyset$, suppose $U \cap V \neq \emptyset$. Then there is at least one element in $U \cap V$. Let r be an element of $U \cap V$. Then $r \in U$ and $r \in V$. Since $r \in U$, then $\frac{3x-y}{2} < r$ and $r < \frac{x+y}{2}$. Since $r \in V$, then $\frac{x+y}{2} < r$ and $r < \frac{3y-x}{2}$. Thus, we have $r < \frac{x+y}{2}$ and $r > \frac{x+y}{2}$, a violation of trichotomy of \mathbb{R} . Hence,

 $U \cap V = \emptyset.$

Exercise 16. Suppose p and q are prime numbers with $p \neq q$. Prove that $\sqrt[3]{pq}$ is irrational.

Solution. To get a contradiction, suppose that $\sqrt[3]{pq}$ is rational. Then we may write $\sqrt[3]{pq} = a/b$ with $a, b \in \mathbb{Z}$ and b > 0. Cubing both sides results in $pq = a^3/b^3$ and so

$$a^3 = pqb^3. (1)$$

Now think about the number of times that p appears in the prime factorization of each side of (??). On the left hand side, the number of times that p appears in the prime factorization of a^3 is three times the number of times p appears in the prime factorization of a. In particular the number of times that p appears in the prime factorization of (??) is a multiple of 3. Similar reasoning shows that the number of times that p appears in the prime factorization of b^3 is a multiple of 3, and so the number of times that p appears in the prime factorization of pqb^3 is one more than a multiple of 3. This shows that the number of times that p appears in the prime factorization of (??) is both a multiple of 3 and one more than a multiple of 3, a contradiction.

Exercise 17. Prove that for every $n \in \mathbb{Z}^+$

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \le 2 - \frac{1}{n}.$$

Limits and Continuity

Exercise 18. Show that $\lim_{x\to 0^+} \sin \frac{1}{x} \neq 0$.

Solution. To prove this, we use the epsilon delta definition of right hand limit. We know $L = \lim_{x \to a^+} f(x)$ iff $(\forall \epsilon > 0) (\exists \delta > 0) (\forall x) (a < x < a + \delta \rightarrow a) (\forall x) (a < x < a + \delta)$ $|f(x) - L| < \epsilon).$

Thus, $L \neq \lim_{x \to a^+} f(x)$ iff $(\exists \epsilon > 0) (\forall \delta > 0) (\exists x) (a < x < a + \delta \land |f(x) - L| \geq a > 0)$ ϵ).

Hence, we must prove $(\exists \epsilon > 0)(\forall \delta > 0)(\exists x)(0 < x < \delta \land |\sin \frac{1}{x}| \ge \epsilon).$

We know that max $|\sin \frac{1}{x}|$ is 1, so, if we want $|\sin \frac{1}{x}|$ to be greater than ϵ , then ϵ needs to be no larger than 1. Hence, $0 < \epsilon \leq 1$. To find 1/x such that $|\sin \frac{1}{x}| \ge 1/2$, we work backwards. We ask what values for 1/x will cause $|\sin \frac{1}{x}|$ to be greater than 1/2? We can try values such that $|\sin \frac{1}{x}| = 1$, which certainly satisfies being greater than one-half. We know $|\sin \theta| = 1$ iff θ is an odd multiple of $\frac{\pi}{2}$, so $\theta = \frac{\pi}{2} + 2\pi k = \frac{4\pi k + \pi}{2} = \frac{\pi(4k+1)}{2}$. We know $\sin \theta = -1$ iff $\theta = \frac{3\pi}{2} + 2\pi k.$

Proof. Let ϵ be a positive real number less than or equal to 1, say $\epsilon = \frac{1}{2}$. Let $\delta > 0$ be arbitrary. We must prove there exists $x \in \mathbb{R}$ such that $0 < x < \delta$ and $|\sin \frac{1}{x}| \geq \frac{1}{2}$. To each δ there corresponds $k \in \mathbb{Z}$ such that $\frac{2}{(4k+1)\pi} < \delta$ and $\frac{2}{(4k+3)\pi} < \delta$. We consider these cases separately.

Let $x \in \mathbb{R}$ such that $0 < x < \delta$. **Case 1:** Suppose $x = \frac{2}{(4k+1)\pi}$. Then $|\sin \frac{1}{x}| = |\sin \frac{(4k+1)\pi}{2}| = |\sin 2\pi k + \pi/2| = 1 > 1/2$. **Case 2:** Suppose $x = \frac{2}{(4k+3)\pi}$. Then $|\sin \frac{1}{x}| = |\sin \frac{(4k+3)\pi}{2}| = |\sin 2\pi k + 3\pi/2| = 1 > 1/2.$

Exercise 19. Prove $\lim_{x\to 0^+} x \sin \frac{1}{x} = 0$.

Solution.

To prove $\lim_{x\to 0^+} x \sin \frac{1}{x} = 0$, we must show that $(\forall \epsilon > 0) (\exists \delta > 0) (\forall x) [a < x < a + \delta \to |f(x) - L| < \epsilon].$ So, we let $\epsilon > 0$ be arbitrary. In this case, a = 0, L = 0 and $f(x) = x \sin \frac{1}{x}$. We must find some $\delta > 0$ in terms of ϵ such that, for every x, if $a < x < a + \delta$,

then $|f(x) - L| < \epsilon$. Thus, we must find $\delta > 0$ in terms of ϵ such that, for every x, if $0 < x < \delta$, then $|x \sin \frac{1}{x}| < \epsilon$.

We want $|x - a| = |x - 0| = |x| < \delta$ and $|x \sin \frac{1}{x} - 0| = |x \sin \frac{1}{x}| < \epsilon$. We work backwards. Suppose $0 < x < \delta$ and $|x \sin \frac{1}{x}| < \epsilon$. Then $|x| |\sin \frac{1}{x}| < \epsilon$

 ϵ . Since $0 < x < \delta$, then x = |x|, so $0 < |x| < \delta$. Hence, $|x| < \delta$.

If we solve for |x|, then $|x| < \epsilon / |\sin \frac{1}{x}|$.

Thus, we let $\delta = \epsilon / |\sin \frac{1}{r}|$.

Unfortunately, δ depends on ϵ , not on x. To eliminate this dependency on x we find some $\delta_1 > 0$ such that $x \in (a, a + \delta_1)$ and find some M > 0 such that $|\sin\frac{1}{x}| \le M.$

Note that $(a, a + \delta_1) = (0, 0 + \delta_1) = (0, \delta_1)$. Hence, $x \in (0, \delta_1)$ implies $0 < x < \delta_1$. Hence, we must find some $\delta_1 > 0$ such that $0 < x < \delta_1$ and some M > 0 such that $|\sin \frac{1}{x}| \le M$.

If we can find δ_1 and M, then we could argue:

If $|\sin \frac{1}{x}| < M$, then since x > 0, then |x| = x > 0, so we could multiply to get $|x||\sin\frac{1}{x}| < |x|M$. Thus, $|x\sin\frac{1}{x}| < |x|M$. To prove $|x\sin\frac{1}{x}| < \epsilon$, we must establish that $|x|M < \epsilon$. This means we

need $|x| < \epsilon/M$, so we need $x < \epsilon/M$.

In order to satisfy both $x < \delta_1$ and $x < \epsilon/M$, we choose δ to be the smaller of δ_1 and ϵ/M . Therefore, we let $\delta = \min(\delta_1, \epsilon/M)$.

We first must find δ_1 and determine M.

We know that $|\sin \theta| \leq 1$ for all $\theta \in \mathbb{R}$. Since x > 0, then $1/x \neq 0$, so $|\sin 1/x| \leq 1$ for all x > 0. Thus, the choice of δ_1 does not matter. We can let δ_1 be any positive value we like. For convenience, let's choose $\delta_1 = \epsilon$. Then M = 1.

We now let
$$\delta = \min(\delta_1, \epsilon/M)$$
, so $\delta = \min(\epsilon, \epsilon/1) = \min(\epsilon, \epsilon) = \epsilon$. \Box

Proof. Let $\epsilon > 0$ be given. We must find $\delta > 0$ such that for every x, if $0 < x < \delta$, then $|x \sin \frac{1}{x}| < \epsilon$.

Let $\delta = \epsilon$. Since $\epsilon > 0$, then $\delta > 0$.

Suppose x is an arbitrary real number such that $0 < x < \delta$. We must prove $|x\sin\frac{1}{x}| < \epsilon.$

Since x > 0, then $x \neq 0$. Therefore, $|\sin 1/x| \le 1$ for all x > 0.

Observe that

$$\begin{aligned} |x\sin\frac{1}{x}| &= |x||\sin\frac{1}{x}| \\ &\leq |x| \\ &= x \\ &< \delta \\ &= \epsilon \text{ , as desired.} \end{aligned}$$

Exercise 20. Let $f_1(x), f_2(x), ..., f_n(x)$ be real valued functions such that $\lim_{x\to a} f_i(x)$ exists for each i = 1, 2, ..., n.

Then $\lim_{x \to a} \sum_{i=1}^{n} f_i(x)$ exists and $\lim_{x \to a} \sum_{i=1}^{n} f_i(x) = \sum_{i=1}^{n} \lim_{x \to a} f_i(x)$.

Solution.

There are two statements to prove: 1. $\lim_{x\to a} \sum_{i=1}^{n} f_i(x)$ exists 2. $\lim_{x\to a} \sum_{i=1}^{n} f_i(x) = \sum_{i=1}^{n} \lim_{x\to a} f_i(x).$ To prove 1: Define predicate $p(n) : \lim_{x \to a} \sum_{i=1}^{n} f_i(x)$ exists. Let S be the truth set of p(n). To prove $(\forall n \in \mathbb{N})[p(n)]$, we must prove $S = \mathbb{N}$. We prove by induction.

Thus, we must prove: 1a. $1 \in S$, so we must prove p(1) is true. 1b. $(\forall m \in \mathbb{N})(m \in S \to m + 1 \in S)$. Let S be the truth set of p(n). To prove $(\forall n \in \mathbb{N})[p(n)]$, we must prove $S = \mathbb{N}$. We prove by induction. Thus, we must prove: 1. $1 \in S$. Thus, we must prove p(1) is true.

2. $(\forall m \in \mathbb{N})(m \in S \to m + 1 \in S)$. To prove, we assume $m \in \mathbb{N}$ is arbitrary such that $m \in S$. To prove $m + 1 \in S$, we must prove p(m + 1) is true. Thus, we must prove $\lim_{x\to a} \sum_{i=1}^m f_i(x)$ exists.

We note that this is the familiar calculus rule that the limit of a sum equals the sum of the limits, but in a generalized form. \Box

Proof. Existence:

We first prove $\lim_{x\to a} \sum_{i=1}^{n} f_i(x)$ exists for every natural number n. Let S be the truth set of $p(n) : \lim_{x\to a} \sum_{i=1}^{n} f_i(x)$ exists. We prove $S = \mathbb{N}$ by induction. **Basis:**

Clearly, $1 \in S$, since $\lim_{x \to a} \sum_{i=1}^{1} f_i(x) = \lim_{x \to a} f_1(x)$ and $\lim_{x \to a} f_1(x)$ exists.

Induction:

Suppose $m \in S$.

To prove $m + 1 \in S$, we must prove $\lim_{x \to a} \sum_{i=1}^{m+1} f_x(x)$ exists. Since $m \in S$, then $\lim_{x \to a} \sum_{i=1}^m f_i(x)$ exists. Observe that

$$\lim_{x \to a} \sum_{i=1}^{m+1} f_i(x) = \lim_{x \to a} \left[\sum_{i=1}^m f_i(x) + f_{m+1}(x) \right]$$
$$= \lim_{x \to a} \sum_{i=1}^m f_i(x) + \lim_{x \to a} f_{m+1}(x)$$

By hypothesis, $\lim_{x\to a} f_{m+1}(x)$ exists. By the inductive hypothesis, $\lim_{x\to a} \sum_{i=1}^{m} f_i(x)$ exists. Therefore, $\lim_{x\to a} \sum_{i=1}^{m+1} f_i(x)$ exists, as desired.

We now prove $\lim_{x\to a} \sum_{i=1}^{n} f_i(x) = \sum_{i=1}^{n} \lim_{x\to a} f_i(x)$ for every $n \in \mathbb{N}$. Let T be the truth set of $q(n) : \lim_{x\to a} \sum_{i=1}^{n} f_i(x) = \sum_{i=1}^{n} \lim_{x\to a} f_i(x)$. To prove $T = \mathbb{N}$, we use induction. **Basis:** Clearly, $1 \in T$, since $\lim_{x\to a} \sum_{i=1}^{1} f_i(x) = \lim_{x\to a} f_1(x) = \sum_{i=1}^{1} \lim_{x\to a} f_i(x)$. **Induction:** Suppose $m \in T$.

To prove $m+1 \in T$, we must prove $\lim_{x\to a} \sum_{i=1}^{m+1} f_i(x) = \sum_{i=1}^{m+1} \lim_{x\to a} f_i(x)$. Since $m \in T$, then $\lim_{x\to a} \sum_{i=1}^m f_i(x) = \sum_{i=1}^m \lim_{x\to a} f_i(x)$. Observe that

$$\lim_{x \to a} \sum_{i=1}^{m+1} f_i(x) = \lim_{x \to a} \sum_{i=1}^m f_i(x) + f_{m+1}(x) = \lim_{x \to a} \sum_{i=1}^m f_i(x) + \lim_{x \to a} f_{m+1}(x) = \sum_{i=1}^m \lim_{x \to a} f_i(x) + \lim_{x \to a} f_{m+1}(x) = \sum_{i=1}^{m+1} \lim_{x \to a} f_i(x) , \text{ as desired.}$$

Exercise 21. Prove $\lim_{x\to 3}(4x+7) = 19$.

Solution. The conclusion is $\lim_{x\to 3}(4x+7) = 19$.

To prove $\lim_{x\to 3} (4x+7) = 19$, we must show that $(\forall \epsilon > 0)(\exists \delta > 0)(\forall x)[0 < |x-a| < \delta \rightarrow |f(x) - L| < \epsilon]$. So, we let $\epsilon > 0$ be arbitrary.

We must find some $\delta > 0$ in terms of ϵ such that, for every x, if $0 < |x-a| < \delta$, then $|f(x) - L| < \epsilon$.

The key is to find a relationship between |x-a| and |f(x)-L|. In this, case |x-3| and |(4x+7)-19|. Observe that |(4x+7)-19| = |4x-12| = |4(x-3)| = 4|x-3|.

Since we want $|f(x) - L| < \epsilon$ and |f(x) - L| = 4|x - a|, then $4|x - a| < \epsilon$, so $|x - a| < \epsilon/4$.

Since we're assuming $|x - a| < \delta$, then we simply let $\delta = \epsilon/4$.

Proof. Let f(x) = 4x + 7. Let $\epsilon > 0$ be given. Let $\delta = \epsilon/4$.

Suppose $x \in \mathbb{R}$ such that $0 < |x-3| < \delta$. We must show that $|f(x) - 19| < \epsilon$. Observe that

$$f(x) - 19| = |4x - 12|$$

= 4|x - 3|
< 4\delta
= 4(\epsilon/4)
= \epsilon, as desired.

Exercise 22. Prove $\lim_{x\to 9} (x^2 + 5) = 86$.

Solution.

To prove $\lim_{x\to 9} (x^2 + 5) = 86$, we must show that $(\forall \epsilon > 0)(\exists \delta > 0)(\forall x)[0 < |x - a| < \delta \rightarrow |f(x) - L| < \epsilon].$

So, we let $\epsilon > 0$ be arbitrary.

We must find some $\delta > 0$ in terms of ϵ such that, for every x, if $0 < |x-a| < \delta$, then $|f(x) - L| < \epsilon$.

In this case, a = 9, L = 86 and $f(x) = x^2 + 5$.

We want $|x-a| = |x-9| < \delta$

and $|f(x) - L| = |x^2 + 5 - 86| = |x^2 - 81| = |x + 9||x - 9| < \epsilon$.

We work backwards. Suppose $|x + 9||x - 9| < \epsilon$. Then $|x - 9| < \epsilon/|x + 9|$. Thus, $\delta = \epsilon/|x + 9|$.

Unfortunately, δ depends on ϵ , not on x. To eliminate this dependency on x we find some deleted δ_1 neighborhood of a = 9 and M > 0 such that $|x+9| \leq M$.

We do this because if |x+9| < M and $x \neq 9$, then |x+9||x-9| < M|x-9|. To prove $|x+9||x-9| < \epsilon$, we would need to prove $M|x-9| < \epsilon$. Thus, we would need to establish that $|x-9| < \epsilon/M$.

If we can find such an M for some δ_1 , then we have $|x - 9| < \delta_1$ and $|x - 9| < \epsilon/M$.

Thus, we choose δ such that both $|x - 9| < \delta_1$ and $|x - 9| < \epsilon/M$.

Hence, we may choose δ to be the smaller of δ_1 and ϵ/M , so let $\delta = \min(\delta_1, \epsilon/M)$.

We first must find a δ_1 neighborhood of a = 9 and determine M.

Let's try say $\delta_1 = 1$ (because 1 is a nice number to work with, actually any number would work). We will assume $0 < |x - 9| \le \delta_1 = 1$. We want to find M such that $|x + 9| \le M$. Let g(x) = |x + 9|. We want M to be an upper bound for g(x) for all x such that $0 < |x - 9| \le 1$. Since $0 < |x - 9| \le 1$, then 0 < |x - 9| and $|x - 9| \le 1$. Hence, $x \ne 9$ and $-1 \le x - 9 \le 1$, so $x \ne 9$ and $8 \le x \le 10$. Thus, $x \in [8, 10]$ and $x \ne 9$. On the interval [8, 10], g is increasing, so the absolute maximum of g occurs when x = 10. Thus, if x = 10, then g(x) = g(10) = 10 + 9 = 19. Therefore, let M = 19.

We now let $\delta = \min(\delta_1, \epsilon/M)$, so $\delta = \min(1, \epsilon/19)$.

Proof. Let $\epsilon > 0$. We must find $\delta > 0$ such that if $0 < |x - 9| < \delta$, then $|f(x) - 86| < \epsilon$.

If $0 < |x-9| \le 1$, then $x \ne 9$ and $8 \le x \le 10$, so $|x+9| \le 19$. Thus, if 0 < |x-9| < 1, then |x+9| < 19. Let $\delta = \min(1, \epsilon/19)$.

Suppose $0 < |x - 9| < \delta$. Since $\delta = \min(1, \epsilon/19)$, then $\delta \le 1$ and $\delta \le \epsilon/19$. Therefore, 0 < |x - 9| < 1 and $0 < |x - 9| < \epsilon/19$. Since 0 < |x - 9| < 1, then |x + 9| < 19. Since $0 < |x - 9| < \epsilon/19$, then $|x - 9| < \epsilon/19$. Observe that

$$\begin{aligned} |f(x) - 86| &= |(x^2 + 5) - 86| \\ &= |x^2 - 81| \\ &= |x + 9||x - 9| \\ &< 19|x - 9| \\ &< 19(\epsilon/19) \\ &= \epsilon \text{, as desired.} \end{aligned}$$

Exercise 23. Prove $\lim_{x\to 0} g(x) = 0$ where g(x) = x if x is rational and g(x) = 0 if x is irrational.

Solution.

To prove $\lim_{x\to 0} g(x) = 0$, we must prove

 $(\forall \epsilon > 0)(\exists \delta > 0)(\forall x)[0 < |x - a| < \delta \rightarrow |g(x) - L| < \epsilon].$

In this case, a = 0, L = 0.

Let $\epsilon > 0$ be arbitrary.

We must find some $\delta > 0$ in terms of ϵ such that, for every x, if $0 < |x| < \delta$, then $|g(x)| < \epsilon$.

We want $|x - a| = |x - 0| = |x| < \delta$ and $|g(x) - L| = |g(x)| < \epsilon$.

We work backwards. Suppose $|g(x)| < \epsilon$. Either $x \in \mathbb{Q}$ or $x \notin \mathbb{Q}$.

If $x \in \mathbb{Q}$, then |g(x)| = |x|. Since we want $|x| < \delta$ and $|g(x)| < \epsilon$, then let $\delta = \epsilon$.

If $x \notin \mathbb{Q}$, then |g(x)| = |0| = 0. Since we want $|x| < \delta$ and $|g(x)| < \epsilon$, then we can still let $\delta = \epsilon$.

Therefore, we let $\delta = \epsilon$.

Proof. Let $\epsilon > 0$ be given. We must exhibit $\delta > 0$ such that, if $0 < |x| < \delta$, then $|g(x)| < \epsilon$. Let $\delta = \epsilon$. Suppose x is an arbitrary real number such that $0 < |x| < \delta$. If x is rational, then $|g(x)| = |x| < \delta = \epsilon$, so $|g(x)| < \epsilon$. If x is irrational, then $|g(x)| = 0 < \epsilon$, so $|g(x)| < \epsilon$. In either case we have the desired conclusion.

Exercise 24. If f(x) = K is a constant function defined on \mathbb{R} , then $\lim_{x\to a} f(x) = K$, for any $a \in \mathbb{R}$.

Solution. Hypothesis: f(x) = K is a function defined on \mathbb{R} .

Conclusion: $(\forall a \in \mathbb{R})(\lim_{x \to a} f(x) = K).$

Let $a \in \mathbb{R}$ be arbitrary. To prove $\lim_{x\to a} f(x) = K$, we must prove $(\forall \epsilon > 0)(\exists \delta > 0)(\forall x)(0 < |x - a| < \delta \rightarrow |f(x) - L| < \epsilon)$.

Here, L = K.

Let $\epsilon > 0$ be given. We must find $\delta > 0$ such that for every x, if $0 < |x-a| < \delta$, then $|f(x) - K| < \epsilon$.

We work backwards. Suppose there exists $\delta > 0$ such that $0 < |x - a| < \delta$ and $|f(x) - L| < \epsilon$. Since f(x) = K, then $|f(x) - L| < \epsilon \Rightarrow |K - K| < \epsilon \Rightarrow$ $0 < \epsilon$, which is a true statement. So what should δ be? Well, in this case, δ is independent of ϵ , so any positive value for δ will work. For convenience, let's choose $\delta = \epsilon$.

Proof. Let a be an arbitrary real number. To prove $\lim_{x\to a} f(x) = K$, let $\epsilon > 0$ be given. Let $\delta = \epsilon$.

Suppose x is an arbitrary real number such that $0 < |x - a| < \delta$. We must prove $|f(x) - K| < \epsilon$. Observe that

$$|f(x) - K| = |K - K|$$

= 0
< ϵ , as desired.

Exercise 25. If $\lim_{x\to a} f(x) = L$ and k is any real number, then $\lim_{x\to a} kf(x) = kL$.

Solution.

Hypothesis is: $\lim_{x \to a} f(x) = L$.

Conclusion is: $(\forall k \in \mathbb{R})(\lim_{x \to a} kf(x) = kL).$

To prove $\lim_{x\to a} kf(x) = kL$, we must prove that for every positive ϵ , there corresponds a positive δ such that, for every $x \in \mathbb{R}$, if $0 < |x - a| < \delta$, then $|kf(x) - kL| < \epsilon$.

Consider the expression $|kf(x) - kL| < \epsilon$. We have $|k||f(x) - L| < \epsilon$, so $|f(x) - L| < \epsilon/|k|$, assuming $k \neq 0$.

By hypothesis, $\lim_{x\to a} f(x) = L$, so let ϵ_1 be an arbitrary positive real number. Then there is some positive δ_1 such that for every $x \in \mathbb{R}$, if $0 < |x-a| < \delta_1$, then $|f(x) - L| < \epsilon_1$.

Since we want $0 < |x - a| < \delta$ and we have $0 < |x - a| < \delta_1$, we let $\delta = \delta_1$. Since we want $|f(x) - L| < \epsilon/|k|$ and we have $|f(x) - L| < \epsilon_1$, we let $\epsilon_1 = \epsilon/|k|$.

Now, we must consider the case when k = 0 separately. Suppose k = 0. We must prove $\lim_{x\to a} kf(x) = kL$. We know kL = 0L = 0 and $\lim_{x\to a} kf(x) = \lim_{x\to a} 0f(x) = \lim_{x\to a} 0 = 0$. Thus, we have $\lim_{x\to a} kf(x) = \lim_{x\to a} 0f(x) = \lim_{x\to a} 0 = 0 = 0L = kL$, as desired.

Proof. Let k be an arbitrary real number.

Either k = 0 or $k \neq 0$.

We consider these cases separately.

Case 1: Suppose k = 0.

We must prove $\lim_{x\to a} kf(x) = kL$.

Observe that $\lim_{x\to a} kf(x) = \lim_{x\to a} 0f(x) = \lim_{x\to a} 0 = 0 = 0L = kL$, as desired.

Case 2: Suppose $k \neq 0$.

To prove $\lim_{x\to a} kf(x) = kL$, we must prove that for every positive ϵ , there corresponds a positive δ such that, for every $x \in \mathbb{R}$, if $0 < |x - a| < \delta$, then $|kf(x) - kL| < \epsilon$.

By hypothesis, $\lim_{x\to a} f(x) = L$, so let ϵ_1 be an arbitrary positive real number. Then there is some positive δ_1 such that for every $x \in \mathbb{R}$, if $0 < |x-a| < \delta_1$, then $|f(x) - L| < \epsilon_1$.

Let $\delta = \delta_1$.

Then $\delta > 0$ and for every $x \in \mathbb{R}$, if $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon_1$.

Let $\epsilon = |k|\epsilon_1$. Since $k \neq 0$ and $|k| \ge 0$, then |k| > 0. Since |k| > 0 and $\epsilon_1 > 0$, then $\epsilon > 0$.

Observe that $|f(x) - L| < \epsilon_1$ implies that $|f(x) - L| < \epsilon/|k|$. Since |k| > 0, then $|k||f(x) - L| < \epsilon$, so $|kf(x) - kL| < \epsilon$.

Therefore, there is some positive δ such that, for every $x \in \mathbb{R}$, if $0 < |x-a| < \delta$, then $|kf(x) - kL| < \epsilon$.

Since ϵ_1 is arbitrary and $\epsilon = |k|\epsilon_1$, then ϵ is arbitrary.

Hence, for every ϵ there is some positive δ such that, for every $x \in \mathbb{R}$, if $0 < |x - a| < \delta$, then $|kf(x) - kL| < \epsilon$.

Therefore, $\lim_{x\to a} kf(x) = kL$, as desired.

Exercise 26. Prove that 1/2 is an interior point of [0, 1].

Solution.

We sketch out a picture of this situation. Intuitively, it appears 1/2 is an interior point of the closed interval [0, 1]. Why? Because one can place a δ disk around 1/2 and the resulting δ neighborhood stays inside [0, 1].

To prove 1/2 is an interior point of [0, 1], we must prove $(\exists \delta > 0)(N(p; \delta) \subset S)$.

Thus, we must find some positive δ such that the δ neighborhood of 1/2 is entirely contained in the closed interval [0, 1]. Hence, we must find a $\delta > 0$ such that $N(1/2; \delta) \subset [0, 1]$; that is, we must find some $\delta > 0$ such that $(1/2 - \delta, 1/2 + \delta) \subset [0, 1]$.

If $1/2 - \delta = 0$, then $\delta = 1/2$. If $1/2 + \delta = 1$, then $\delta = 1/2$.

Thus, the maximum δ we could choose is $\delta = 1/2$. So, any δ such that $0 < \delta \le 1/2$ would work.

So, let $\delta = 1/2$.

This problem suggests some questions: Is every point of a closed interval an interior point? Is every closed interval an open set? $\hfill \Box$

Proof. We show there is some positive real number δ such that the δ neighborhood of 1/2 is contained in the interval [0, 1].

Let δ be the positive real number 1/2.

The δ neighborhood of 1/2 is $N(1/2; \delta) = (1/2 - \delta, 1/2 + \delta) = (1/2 - 1/2, 1/2 + 1/2) = (0, 1) \subset [0, 1].$

Exercise 27. Prove that 1 is not an interior point of [0, 1].

Solution.

Is 1 an interior point of S?

We can draw 1 on a number line to get a visual picture of the situation to help us understand the problem.

Let $\delta > 0$.

Consider the δ neighborhood of 1.

Let $N(1; \delta)$ be the δ neighborhood of 1. Then $N(1; \delta) = (1 - \delta, 1 + \delta)$.

Observe that a portion of $(1 - \delta, 1 + \delta)$ lies outside the interval [0, 1], namely, the interval $(1, 1 + \delta)$. Hence, any $x \in (1, 1 + \delta)$ will be in the δ neighborhood

of 1, but not in [0, 1]. Since δ is completely arbitrary, then this means 1 cannot be an interior point.

To prove 1 is not an interior point of the interval [0,1], we must prove $\neg(\exists \delta > 0)(N(1;\delta) \subset [0,1]) \Leftrightarrow (\forall \delta > 0)(N(1;\delta \not\subset [0,1]) \Leftrightarrow (\forall \delta > 0)(\exists x \in N(1;\delta))(x \notin [0,1]).$

Let $\delta > 0$ be an arbitrary.

Let the δ neighborhood of 1, $N(1; \delta)$, be the open interval $(1 - \delta, 1 + \delta)$.

Since we observed that any x in the interval $(1, 1 + \delta)$ works, we may choose the midpoint of $(1, 1 + \delta)$.

Thus, $x = (2 + \delta)/2 = 1 + \delta/2$.

We prove $x \in N(1; \delta)$.

How do we prove $x \in N(1; \delta)$?

We work backwards. Suppose $x \in N(1; \delta)$. Then $x \in N(1; \delta) = (1 - \delta, 1 + \delta)$, so $1 - \delta < x < 1 + \delta$. Hence, $1 - \delta < 1 + \delta/2 < 1 + \delta$. Subtracting 1 we obtain $-\delta < \delta/2 < \delta$. Since $\delta > 0$, then -1 < 1/2 < 1, which is true.

Thus, we reverse these steps in the proof. Observe that

$$\begin{array}{rrrr} -1 & < & 1/2 < 1 \\ -\delta & < & \delta/2 < \delta \\ 1-\delta & < & 1+\delta/2 < 1+\delta \\ 1-\delta & < & x < 1+\delta. \end{array}$$

Therefore, $x \in (1 - \delta, 1 + \delta) = N(1; \delta)$, as desired.

We now prove $x \notin [0, 1]$.

How do we prove $x \notin [0, 1]$?

We work backwards. Suppose $x \notin [0,1]$. Then $\neg(x \in [0,1]) \Leftrightarrow \neg(0 \le x \land x \le 1) \Leftrightarrow (0 > x \lor x > 1)$. Since x is positive, we prove x > 1.

How do we prove x > 1 We work backwards.

Suppose x > 1. Then $1 + \delta/2 > 1$, so $\delta/2 > 0$. Hence, $\delta > 0$, which is true by assumption.

Thus we reverse these steps in the proof. Observe that

$$\begin{split} \delta &> 0\\ \delta/2 &> 0\\ 1+\delta/2 &> 1\\ x &> 1. \end{split}$$

Proof. To prove 1 is not an interior point of the interval [0, 1], we must prove the δ neighborhood of 1 is not contained in [0, 1] for every positive real number δ .

Let δ be an arbitrary positive real number.

Let the δ neighborhood of 1, $N(1; \delta)$, be the open interval $(1 - \delta, 1 + \delta)$.

To prove $N(1; \delta)$ is not contained in [0, 1], we must show there is some real number x that is in $N(1; \delta)$ and not in [0, 1].

Let x be the real number $1 + \delta/2$. Observe that

$$\begin{array}{rrrr} -1 & < & 1/2 < 1 \\ -\delta & < & \delta/2 < \delta \\ 1-\delta & < & 1+\delta/2 < 1+\delta \\ 1-\delta & < & x < 1+\delta. \end{array}$$

Therefore, $x \in (1 - \delta, 1 + \delta) = N(1; \delta)$, as desired. Observe that

$$\delta > 0$$

 $\delta/2 > 0$
 $1 + \delta/2 > 1$
 $x > 1$.

Since x > 1, then $x \notin [0, 1]$, as desired.

Exercise 28. Does \mathbb{N} have any interior points? Is \mathbb{N} an open set?

Solution.

Since $\mathbb{N} = \{1, 2, 3, ...\} = \{n : n \in \mathbb{N}\}$, choose an arbitrary natural number, say $n \in \mathbb{N}$.

Is n an interior point of \mathbb{N} ?

We can draw n on a number line to get a visual picture of the situation to help us understand the problem.

Consider the δ neighborhood of n with various values for $\delta > 0$, say, in decreasing order. For example, let's choose δ from the set $\{5, 3, 1, 1/2, 1/4, 1/8, 2/19\}$.

Let the δ neighborhood of n be $N(n; \delta) = (n - \delta, n + \delta)$.

We can devise a table with columns for δ , $N(n; \delta)$, and decide whether $N(n; \delta) \subset \mathbb{N}$ and state a reason why.

Set $\delta = 5$. Then $N(n; \delta) = (n - 5, n + 5)$. We observe that (n - 5, n + 5) can be decomposed into 10 open intervals (n + k, n + k + 1), where k = -5 to 4. We arbitrarily choose one of these open intervals (n + k, n + k + 1) for some $k \in \mathbb{Z}$ such that $-5 \leq k < 5$. We can choose any number in this chosen interval, say $x \in (n + k, n + k + 1)$, and know that x is not a natural number. Therefore, $N(n; 5) \notin \mathbb{N}$.

Set $\delta = 3$. Then $N(n; \delta) = (n - 3, n + 3)$. We observe that (n - 3, n + 3) can be decomposed into 6 open intervals (n + k, n + k + 1), where k = -3 to 2. We arbitrarily choose one of these open intervals (n + k, n + k + 1) for some $k \in \mathbb{Z}$ such that $-3 \le k < 3$. We can choose any number in this chosen interval, say $x \in (n + k, n + k + 1)$, and know that x is not a natural number. Therefore, $N(n; 3) \notin \mathbb{N}$.

Set $\delta = 1$. Then $N(n; \delta) = (n - 1, n + 1)$. We observe that (n - 1, n + 1) can be decomposed into 2 open intervals (n + k, n + k + 1), where k = -1 to 0. We arbitrarily choose one of these open intervals (n + k, n + k + 1) for some $k \in \mathbb{Z}$ such that $-1 \leq k < 1$. We can choose any number in this chosen interval, say $x \in (n + k, n + k + 1)$, and know that x is not a natural number. Therefore, $N(n; 1) \not\subset \mathbb{N}$.

Set $\delta = 1/2$. Then $N(n; \delta) = (n-1/2, n+1/2)$. We observe that (n-1/2, n+1/2) is an open interval. Observe that $(n-1/2, n+1/2) - \{n\}$ contains no natural numbers. We can choose any number in this set, say $x \in (n-1/2, n+1/2) - \{n\}$, and know that x is not a natural number. Therefore, $N(n; 1/2) \notin \mathbb{N}$.

Set $\delta = 1/4$. Then $N(n; \delta) = (n-1/4, n+1/4)$. We observe that (n-1/4, n+1/4) is an open interval. Observe that $(n-1/4, n+1/4) - \{n\}$ contains no natural numbers. We can choose any number in this set, say $x \in (n-1/4, n+1/4) - \{n\}$, and know that x is not a natural number. Therefore, $N(n; 1/4) \not\subset \mathbb{N}$.

Set $\delta = 1/8$. Then $N(n; \delta) = (n-1/8, n+1/8)$. We observe that (n-1/8, n+1/8) is an open interval. Observe that $(n-1/8, n+1/8) - \{n\}$ contains no natural numbers. We can choose any number in this set, say $x \in (n-1/8, n+1/8) - \{n\}$, and know that x is not a natural number. Therefore, $N(n; 1/8) \notin \mathbb{N}$.

Set $\delta = 2/19$. Then $N(n; \delta) = (n - 2/19, n + 2/19)$. We observe that (n - 2/19, n + 2/19) is an open interval. Observe that $(n - 2/19, n + 2/19) - \{n\}$ contains no natural numbers. We can choose any number in this set, say $x \in (n - 2/19, n + 2/19) - \{n\}$, and know that x is not a natural number. Therefore, $N(n; 2/19) \not\subset \mathbb{N}$. We notice some patterns and state some observations.

1. It appears that for every $\delta > 0$, no matter how small, $N(n; \delta) \notin \mathbb{N}$.

2. Furthermore, for any $\delta > 1$, there exists an interval $(n - 1, n + 1) - \{n\}$ that is contained in $N(n; \delta)$, but which contains no natural numbers.

3. Moreover, for any $\delta \leq 1$, there exists an interval $(n - \delta, n + \delta) - \{n\}$ that is contained in $N(n; \delta)$, but contains no natural numbers.

Hence, there do not appear to be any interior points in \mathbb{N} .

We prove these observations and results.

We prove: There are no interior points in \mathbb{N} .

Define predicate over $\mathbb N$ by

p(n): n is an interior point of \mathbb{N} .

Thus, the statement to prove is: There does not exist a natural number which is an interior point of \mathbb{N} .

In logic symbols we prove: $\neg(\exists n \in \mathbb{N})(q(n)) \Leftrightarrow (\forall n \in \mathbb{N})(\neg q(n)).$

Hence, we must prove:

Every natural number is not an interior point of \mathbb{N} .

So, let $n \in \mathbb{N}$ be arbitrary.

To prove n is not an interior point of \mathbb{N} , we must prove:

 $(\forall \delta > 0) (\exists x \in N(n; \delta)) (x \notin \mathbb{N}).$

So, let $\delta > 0$ be arbitrary.

To prove $(\exists x \in N(n; \delta))(x \notin \mathbb{N})$, we must find a real number x (in terms of δ) in the δ neighborhood of n such that x is not a natural number.

Let $N(n; \delta)$ be the δ neighborhood of n.

How shall we find x? We incorporate our observations/results from above.

Whenever $\delta > 1$, then we observed that any x in $(n - 1, n + 1) - \{n\}$ will work. Hence, since $(n - 1, n) \cup (n, n + 1) \subset (n - 1, n + 1) - \{n\}$, we may choose any x in either the interval (n - 1, n) or (n, n + 1).

Hence, in particular, let's choose x to be say, the midpoint of (n, n + 1). Then x = (n + n + 1)/2 = (2n + 1)/2 = n + 1/2.

Thus, we must prove $x \in N(n; \delta)$ and $x \notin \mathbb{N}$.

Whenever $\delta \leq 1$, then we observed that any x in $(n - \delta, n + \delta) - \{n\}$ will work. Hence, since $(n - \delta, n) \cup (n, n + \delta) \subset (n - \delta, n + \delta) - \{n\}$, then we may choose any x in either the interval $(n - \delta, n)$ or $(n, n + \delta)$.

Hence, in particular, let's choose x to be the midpoint of $(n, n + \delta)$. Then $x = (n + n + \delta)/2 = (2n + \delta)/2 = n + \delta/2$.

Thus, we must prove $x \in N(n; \delta)$ and $x \notin \mathbb{N}$.

We consider these cases separately: $\delta > 1$ or $\delta \leq 1$.

Proof. To prove the set of natural numbers \mathbb{N} has no interior points, we prove every natural number is not an interior point.

Let n be an arbitrary natural number.

To prove n is not an interior point of \mathbb{N} , let δ be an arbitrary positive real number.

We must prove there is some real number x in the δ neighborhood of $n, N(n; \delta)$ such that x is not a natural number; that is, we will show there exists a real number x such that $x \in N(n; \delta)$ and $x \notin \mathbb{N}$.

Either $\delta \leq 1$ or $\delta > 1$.

We consider these cases separately.

Case 1: Suppose $\delta > 1$.

Let x be the real number n + 1/2.

We prove $x \in N(n; \delta)$.

Since $\delta > 1$ and 1 > -1/2, then $\delta > -1/2$, so $-\delta < 1/2$. Hence, $n - \delta < n + 1/2$, so $n - \delta < x$.

Since 1/2 < 1 and $1 < \delta$, then $1/2 < \delta$. Hence, $n + 1/2 < n + \delta$, so $x < n + \delta$. Since $n - \delta < x$ and $x < n + \delta$, then $x \in (n - \delta, n + \delta) = N(n; \delta)$, as desired. We now prove $x \notin \mathbb{N}$.

Since 0 < 1/2 < 1, then n < n + 1/2 < n + 1. Hence, n < x < n + 1.

Since n and n + 1 are natural numbers and there are no natural numbers greater than n and less than n + 1, then x cannot be a natural number. Hence, $x \notin \mathbb{N}$, as desired.

Case 2: Suppose $\delta \leq 1$. Let x be the real number $n + \delta/2$.

We prove $x \in N(n; \delta)$.

Observe that

$$\begin{array}{rcl} -1 & < & 1/2 < 1 \\ -\delta & < & \delta/2 < \delta \\ n-\delta & < & n+\delta/2 < n+\delta \\ n-\delta & < & x < n+\delta. \end{array}$$

Therefore, $x \in (n - \delta, n + \delta) = N(n; \delta)$, as desired.

We now prove $x \notin \mathbb{N}$.

Since $\delta > 0$, then $0 < \delta$, so $0 < \delta/2$. Hence, $n < n + \delta/2$, so n < x.

Since $\delta \leq 1$, then $\delta < 2$, so $\delta/2 < 1$. Hence, $n + \delta/2 < n + 1$, so x < n + 1.

Therefore, n < x < n + 1. Since n and n + 1 are natural numbers and there are no natural numbers greater than n and less than n + 1, then x cannot be a natural number. Hence, $x \notin \mathbb{N}$, as desired.

Thus, in all cases, there is some real number x in the δ neighborhood of n such that x is not a natural number. Therefore, n is not an interior point of \mathbb{N} , so \mathbb{N} has no interior points.

Solution. We consider whether \mathbb{N} is an open set or not.

The statement \mathbb{N} is an open set means every point in \mathbb{N} is an interior point of \mathbb{N} .

This means \mathbb{N} is an open set iff every natural number is an interior point of \mathbb{N} .

Define predicate p(n) : n is an interior point of \mathbb{N} .

Then \mathbb{N} is open iff $(\forall n \in \mathbb{N})(p(n))$.

Hence \mathbb{N} is not open iff $\neg(\forall n \in \mathbb{N})(p(n)) \Leftrightarrow (\exists n \in \mathbb{N})(\neg p(n)).$

Let P be the truth set of p. Then $P = \{n \in \mathbb{N} : p(n)\}$ and $\overline{P} = \mathbb{N} - P$. Then \mathbb{N} is open iff $P = \mathbb{N}$ and \mathbb{N} is not open iff $\overline{P} \neq \emptyset$.

Since we just proved \mathbb{N} has no interior points, then there does not exist a natural number that is an interior point. Hence, $\neg(\exists n \in \mathbb{N})(p(n)) \Leftrightarrow (\forall n \in \mathbb{N})(\neg p(n))$.

Since $\mathbb{N} \neq \emptyset$, then $(\forall n)(\neg p(n)) \Rightarrow (\exists n)(\neg p(n))$. Hence, we can conclude \mathbb{N} is not open.

Proof. We prove the set of natural numbers \mathbb{N} is not an open subset of \mathbb{R} .

Since \mathbb{N} does not have any interior points, then every natural number is not an interior point of \mathbb{N} . Hence, there is some natural number that is not an interior point of \mathbb{N} . Therefore, not every natural number is an interior point, so \mathbb{N} is not open.

Exercise 29. Prove that 0 is a point of accumulation of the set $\{1, 1/2, 1/3, ...\}$.

Solution. Let $S = \{1, 1/2, 1/3, ...\} = \{1/n : n \in \mathbb{N}\}$. Let a = 0.

We can draw a picture of this on a number line and intuitively see that no matter how small $\delta > 0$ is, we can always find a point 1/n contained in $(-\delta, \delta)$.

To prove 0 is a point of accumulation of S, we must prove $(\forall \delta > 0)(N'(0; \delta) \cap S \neq \emptyset)$.

Proof. Let $S = \{1, 1/2, 1/3, ...\} = \{1/n : n \in \mathbb{N}\}$. To prove 0 is a point of accumulation of S, we must prove every deleted δ neighborhood of 0 contains some point of S. Thus, we must prove $(\forall \delta > 0)(N'(0; \delta) \cap S \neq \emptyset)$.

Let δ be an arbitrary positive real number. Suppose for the sake of contradiction that $N'(0;\delta) \cap S = \emptyset$. Then there is no real number x such that $x \in N'(0;\delta)$ and $x \in S$. Hence, there is no x such that $x \in (-\delta, \delta)$ and $x \neq 0$ and x = 1/n for some natural number n. Therefore, there is no nonzero real x such that $|x| < \delta$ and x = 1/n. Hence, there is no nonzero real x such that $|1/n| < \delta$, so no nonzero real x exists such that $1/n < \delta$. Thus, there is no nonzero real number x such that $1/\delta < n$ for some natural number n. But, according to the Archimedean property of \mathbb{R} , we know every real number is less than some natural number. Hence, in particular, the real number $1/\delta$ is less than the natural number n. Therefore, it cannot be true that $N'(0; \delta) \cap S = \emptyset$. Thus, it must be that $N'(0; \delta) \cap S \neq \emptyset$, as desired.

Therefore, 0 is a point of accumulation of S. Further, since 0 is a point of accumulation of S, but $0 \notin S$, then S is not a closed set.

Exercise 30. Prove the set of natural numbers has no accumulation points.

Solution. This means we must prove there is no natural number which is an accumulation point of \mathbb{N} .

Define predicate p(n): n is an accumulation point of \mathbb{N}

We must prove $\neg \exists (n) (n \in \mathbb{N} \land p(n)) \Leftrightarrow \neg (\exists n \in \mathbb{N})(p(n)).$

We use proof by contradiction.

Thus, we assume n is an arbitrary natural number that is a point of accumulation of \mathbb{N} . Hence, it is true that $(\forall \delta > 0)(N'(n; \delta) \cap S \neq \emptyset)$.

We show that this is false. Let $\delta = 1/2$. Then $N'(n; \delta \cap \mathbb{N} = ((n-1/2, n+1/2) - \{n\}) \cap \mathbb{N} = (((2n-1)/2, (2n+1)/2) - \{n\}) \cap \mathbb{N} = \emptyset$, since there are no natural numbers between ((2n-1)/2, (2n+1)/2), excluding *n* itself. \Box

Proof. Suppose for the sake of contradiction that there is some natural number that is a point of accumulation of \mathbb{N} , the set of all natural numbers. Let n be an arbitrary natural number that is a point of accumulation of \mathbb{N} . Then every deleted δ neighborhood of n contains some natural number. Let $\delta = 1/2$. Since there are no natural numbers between ((2n-1)/2, (2n+1)/2), excluding n itself, then $N'(n; \delta \cap \mathbb{N} = ((n-1/2, n+1/2) - \{n\}) \cap \mathbb{N} = (((2n-1)/2, (2n+1)/2) - \{n\}) \cap \mathbb{N} = \emptyset$. Thus, there is some deleted δ neighborhood of n that contains no natural numbers, which contradicts the assumption that every deleted δ neighborhood of n contains some natural number. Therefore, n cannot be a point of accumulation of \mathbb{N} . Hence, no natural number is a point of accumulation of \mathbb{N} .

A set S is not closed in \mathbb{R} iff there is a point of accumulation of S that is not in S. Since \mathbb{N} contains no points of accumulation, then there is no point of accumulation of \mathbb{N} that is not in \mathbb{N} . Hence, \mathbb{N} cannot be not closed in \mathbb{R} .

Exercise 31. Let f be a real valued function. Prove if a is not a point of accumulation of the domain of f, then $\lim_{x\to a} f(x) = L$ is true for any value of L.

Solution.

We must prove :

if a is not a point of accumulation of dom(f), then $(\forall L)(\lim_{x\to a} f(x) = L)$. Hypothesis is: a is not a point of accumulation of dom(f).

Conclusion: $(\forall L)(\lim_{x \to a} f(x) = L).$

To prove $(\forall L)(\lim_{x \to a} f(x) = L)$, let L be an arbitrary real number.

We must prove $(\forall \epsilon > 0)(\exists \delta > 0)(\forall x)(0 < |x - a| < \delta \rightarrow |f(x) - L| < \epsilon)$. Let $\epsilon > 0$ be arbitrary.

We must prove $(\exists \delta > 0)(\forall x)(0 < |x - a| < \delta \rightarrow |f(x) - L| < \epsilon)$.

How can we find $\delta > 0$? We need to use the hypothesis somehow.

Since a is not a point of accumulation of the domain of f, then $\neg(\forall \delta > 0)(N'(a; \delta) \cap S \neq \emptyset)$, so $(\exists \delta > 0)(N'(a; \delta) \cap S = \emptyset)$, where S is the domain of f. By existential elimination, let δ_1 be some positive real number such that

 $N'(a; \delta_1) \cap S = \emptyset.$

We must find $\delta > 0$ such that for every x, if $0 < |x-a| < \delta$, then $|f(x)-L| < \epsilon$.

Since $N'(a; \delta_1) \cap S = \emptyset$, then there is no element in both $N'(a; \delta_1)$ and S.

We know $N'(a; \delta_1) = \{x \in \mathbb{R} : |x - a| < \delta_1\} - \{a\}$. Thus, if $x \in N'(a; \delta_1,$ then $|x - a| < \delta_1$ and $x \neq a$. Since $|x - a| \geq 0$, then either |x - a| > 0 or |x - a| = 0. Since |x - a| = 0 iff x = a, and $x \neq a$, then $|x - a| \neq 0$. Hence, |x - a| > 0.

Thus, let $\delta = \delta_1$.

Then we must prove $(\forall x)(0 < |x - a| < \delta \rightarrow |f(x) - L| < \epsilon$.

Thus, we assume arbitrary $x \in \mathbb{R}$ such that $0 < |x - a| < \delta$. We must prove $|f(x) - L| < \epsilon$.

Since $0 < |x - a| < \delta$ and $\delta = \delta_1$, then $0 < |x - a| < \delta_1$. Since 0 < |x - a|, then $x \neq a$. Since $x \in \mathbb{R}$ and $|x - a| < \delta_1$ and $x \neq a$, then $x \in N'(a; \delta_1)$. Since $N'(a; \delta_1) \cap S$ is empty, then $x \notin S$. Hence, x is not in the domain of f, so f(x) does not exist.

Let $x \in \mathbb{R}$ be arbitrary. Then either $x \in N'(a; \delta_1)$ or $x \notin N'(a; \delta_1)$.

We consider these cases separately.

Suppose $x \in N'(a; \delta_1)$. Then $x \in \mathbb{R}$ and $|x - a| < \delta_1$ and $x \neq a$. Since $|x - a| \ge 0$, then either |x - a| > 0 or |x - a| = 0. We know |x - a| = 0 iff x = a. Since $x \neq a$, then $|x - a| \neq 0$. Hence, |x - a| > 0. Thus, $0 < |x - a| < \delta_1$.

Since $x \in N'(a; \delta_1 \text{ and } N'(a; \delta_1) \cap S$ is empty, then $x \notin S$. Hence, f(x) does not exist. What does this imply?

Suppose $x \notin N'(a; \delta_1)$. Then since $N'(a; \delta_1) \cap S$ is empty

then there exists some deleted δ_1 neighborhood of a that contains no points of the domain of f. Thus, there exists $\delta_1 > 0$ such that $N'(a; \delta_1) \cap S = \emptyset$, where S is the domain of f. Let $\delta = \delta_1$. Then $\delta > 0$.

Suppose x is an arbitrary real number such that $0 < |x - a| < \delta$. Then $0 < |x - a| < \delta_1$, so $x \in N'(a; \delta_1)$. Since $N'(a; \delta_1) \cap S = \emptyset$, then every element of $N'(a; \delta_1)$ is not in the domain of f. Hence, in particular, x is not in the domain of f. Therefore, f(x) does not exist.

To prove $|f(x) - L| < \epsilon$, we must prove $f(x) \in N(L; \epsilon)$. How can we do this? We're stuck.