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Analysis is the theory of real numbers.
We develop a theory of functions of a real variable.
What are the analytic properties of real-valued functions?
Topics: real functions, convergence and limits of sequences of real numbers,
calculus of real numbers, continuity/uniform continuity, smoothness, se-

quences of functions
Real analysis studies completeness of real number system,
limits of sequences,
infinite series, derivatives of functions, integrals, uniform convergence, Tay-

lor’s theorem,
fundamental theorem of calculus, topology of Euclidean space, metric spaces,

compactness, uniform continuity,
mean value theorem, Riemann-Stieltjes integrals, functions of bounded vari-

ation,
function algebras, Weierstrass theorem.

Sets of Numbers

Q = {mn : m,n ∈ Z ∧ n 6= 0} = set of all rational numbers
R = set of all real numbers
R+ = {x ∈ R : x > 0} = set of all positive real numbers
R+ = {x ∈ R : x ≥ 0} = [0,∞) = [0,∞[= set of all nonnegative real numbers

Limits

Definition 1. Left and Right hand limits
Let a, r ∈ R.
Let a be fixed.
Let f be a real valued function defined on [a, a+ r) for some r > 0.
A real number L+ is a right-hand limit of f(x) as x approaches a, denoted

L+ = limx→a+ f(x), iff (∀ε > 0)(∃δ > 0)(∀x)(a < x < a+ δ → |f(x)−L+| < ε).



Let f : R 7→ R be a function defined on (a− r, a] for some r > 0.
A real number L− is a left-hand limit of f(x) as x approaches a, denoted

L− = limx→a− f(x), iff (∀ε > 0)(∃δ > 0)(∀x)(a− δ < x < a→ |f(x)−L−| < ε).

limx→a f(x) = L iff
1. limx→a+ f(x) = L
2. limx→a− f(x) = L

Vector space Rn

Let n ∈ N.
R = R1.
Elements of Rn may be viewed as either a point(geometric) or as a vector

(algebraic).
x = (x1, x2, ..., xn)
y = (y1, y2, ..., yn)

Definition 2. inner product or dot product of vectors
Let x, y ∈ Rn.
Then 〈x, y〉 = x · y = [x1, ..., xn] · [y1, ..., yn] = x1y1 + x2y2 + ... + xnyn =∑n

i=1 xiyi.

Definition 3. Euclidean norm, length of vector
Let x ∈ Rn.
The Euclidean norm of x is ||x|| =

√
〈x, x〉 =

√∑n
i=1 |xi|2. (Pythagorean

rule)
It represents the length of the vector x.

Theorem 4. Cauchy-Schwarz inequality
Let x, y ∈ Rn.
Then |〈x, y〉| ≤ ||x|| ||y||.

Definition 5. normed vector space
A norm on the vector space Rn is a function f : Rn → R+ such that the

following axioms hold:
N1. f(x+ y) ≤ f(x) + f(y)
N2. f(λx) = λf(x)
N3. f(x) = 0 iff x = 0 for all x, y ∈ Rn and λ ∈ R.

Theorem 6. The function || · || : Rn → R+ has the following properties:
1. ||x+ y|| ≤ ||x||+ ||y|| (Triangle inequality)
2. ||λx|| = |λ| ∗ ||x||. (homogeneity)
3. ||x|| = 0 iff x = 0.
for x, y ∈ Rn and λ ∈ R.

If x = (x1, ..., xn) and y = (y1, ..., yn), then x− y = (x1 − y1, ..., xn − yn).
Thus, ||x − y|| =

√
|x1 − y1|2 + ...+ |xn − yn|2 = distance from x to y =

||y − x||.
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Definition 7. Euclidean distance
Let x, y ∈ Rn.
We define the distance between points x and y by d(x, y) = ||x − y|| =

||y − x|| = d(y, x).

Thus, d(x, y) = ||x− y|| =
√

(x1 − y1)2 + ...+ (xn − yn)2.

Proposition 8. triangle inequality for Euclidean distance
Let x, y ∈ Rn.
Then d(x, y) ≤ d(x, z) + d(z, y) for every z ∈ Rn.

Proof. Let x, y ∈ Rn.
Then for every z ∈ Rn,

d(x, y) = ||x− y||
= ||(x− z) + (z − y)||
≤ ||x− z||+ ||z − y||
= d(x, z) + d(z, y).

Boundedness of subsets of Rn

Definition 9. open ball
Let r > 0 (means r is a positive real number).
Let x ∈ Rn.
The open ball with radius r and center x is Br(x) = {y ∈ Rn : ||y−x|| <

r}.
excludes boundary

Definition 10. closed ball
Let r > 0 and x ∈ Rn.
The closed ball with radius r and center x is Br(x) = {y ∈ Rn :

||y − x|| ≤ r}.
includes boundary

Definition 11. open unit ball
Let r > 0.
The open unit ball is the set B1(0) = {x ∈ Rn : ||x|| < 1}.

Definition 12. closed unit ball
Let r > 0.
The closed unit ball is the set B1(0) = {x ∈ Rn : ||x|| ≤ 1}.
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Example 13. For n = 1,

Br(x) = {y ∈ R : ||y − x|| < r}
= {y ∈ R : |y − x| < r}
= {y ∈ R : −r < y − x < r}
= {y ∈ R : x− r < y < x+ r}
= (x− r, x+ r)

= ]x− r, x+ r[.

Therefore, Br(x) is the open interval (x− r, x+ r).

Br(x) = {y ∈ R : ||y − x|| ≤ r}
= {y ∈ R : |y − x| ≤ r}
= {y ∈ R : −r ≤ y − x ≤ r}
= {y ∈ R : x− r ≤ y ≤ x+ r}
= [x− r, x+ r].

Therefore, Br(x) is the closed interval [x− r, x+ r].

Example 14. For n = 2,

Br(x) = {y ∈ R2 : ||y − x|| < r}
= {y ∈ R2 :

√
(y − x) · (y − x) < r}

= {(y1, y2) ∈ R2 :
√

(y1 − x1)2 + (y2 − x2)2 < r}
= {(y1, y2) ∈ R2 : (y1 − x1)2 + (y2 − x2)2 < r2}

Therefore, Br(x) is the disc with radius r about x = (x1, x2) without its bound-
ary.

Br(x) = {y ∈ R2 : ||y − x|| ≤ r}
= {y ∈ R2 :

√
(y − x) · (y − x) ≤ r}

= {(y1, y2) ∈ R2 :
√

(y1 − x1)2 + (y2 − x2)2 ≤ r}
= {(y1, y2) ∈ R2 : (y1 − x1)2 + (y2 − x2)2 ≤ r2}

Therefore, Br(x) is the disc with radius r about x = (x1, x2) including its
boundary.

Definition 15. bounded subset of Rn

A subset S ⊂ Rn is bounded iff there exists a real number R > 0 such that
S ⊂ BR(0).

A set which is not bounded is unbounded.
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S ⊂ Rn is bounded iff

(∃R > 0)(S ⊂ BR(0) ⇔ (∃R > 0)(∀x)(x ∈ S → x ∈ BR(0))

⇔ (∃R > 0)(∀x ∈ S)(x ∈ BR(0))

⇔ (∃R > 0)(∀x ∈ S)(||x|| ≤ R).

Therefore, S is not bounded iff

¬(∃R > 0)(∀x ∈ S)(||x|| ≤ R) ⇔ (∀R > 0)(∃x ∈ S)(||x|| > R).

Example 16. Any open or closed ball centered on the origin is bounded.

Proof. Let r > 0. We show Br(0) and Br(0) are bounded. Take R = r (or any
value greater than r). Then Br(0) ⊂ Br(0) ⊂ BR(0). Hence, Br(0) ⊂ BR(0)
and Br(0) ⊂ BR(0). Therefore, Br(0) and Br(0) are bounded.

Example 17. All open/closed balls in Rn are bounded, whether or not they
are centered on the origin.

Proof. Let r > 0 and x ∈ Rn.
We show Br(x) and Br(x) are bounded.
To prove Br(x) is bounded, we must find R > 0 such that Br(x) ⊂ BR(0).

Take R = ||x|| + r ( or any value larger than ||x|| + r). Let y ∈ Br(x). Then
||y − x|| ≤ r. Thus,

||y|| = ||y − x+ x||
≤ ||y − x||+ ||x||
≤ r + ||x||
= R

Hence, ||y|| ≤ R, so y ∈ BR(0). Therefore, Br(x) ⊂ BR(0).
The proof of the open ball case is similar.

Example 18. The empty set ∅ is bounded but Rn is unbounded.

Proof. We prove ∅ is bounded.
For all sets S, we have ∅ ⊂ S. In particular, ∅ ⊂ B1(0), so ∅ is bounded.
We prove Rn is unbounded. Suppose that Rn is bounded. Then ∃R > 0 such

that Rn ⊂ BR(0). Thus, for any x ∈ Rn, ||x|| ≤ R. In particular, ||2R|| ≤ R for
the vector 2R ∈ Rn. Thus, |2|||R|| ≤ R, so 2R ≤ R. Hence, R ≤ 0. Therefore,
we have R ≤ 0 and R > 0, a violation of trichotomy of R. Therefore, Rn is
unbounded.

Example 19. Every subset of a bounded set is bounded.
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Proof. Let A be a subset of a bounded set B. To prove A is bounded, we must
prove ∃R > 0 such that A ⊂ BR(0).

Since B is bounded, then ∃R > 0 such that B ⊂ BR(0). Since A ⊂ B and
B ⊂ BR(0), then A ⊂ BR(0). Therefore, A is bounded.

Note that for n = 1,R1 = R. For S ⊂ R, S 6= ∅, S is bounded iff S is
bounded above and bounded below.

There is no connection at all between the terms ‘bounded’ and ‘boundary’.
In particular, a bounded set need not include its boundary.

Example 20. The open unit ball B1(0) is bounded, but its boundary is ex-
cluded.

Many equivalent definitions of the term ‘bounded’.
A set S is bounded iff the set of all possible distances between pairs of points

of S is bounded above in R.
Thus non empty bounded sets can be described as sets which have finite

diameter.

Intervals and d cells

Let a, b ∈ R with a < b.
There are 4 types of bounded intervals:
1. closed interval [a, b] = {x ∈ R : a ≤ x ≤ b} ⊂ R.
2. open interval ]a, b[= (a, b) = {x ∈ R : a < x < b} ⊂ R.
3. half-open intervals
]a, b] = (a, b] = {x ∈ R : a < x ≤ b}
[a, b[= [a, b) = {x ∈ R : a ≤ x < b}
For a = b the interval [a, b] = [a, a] = {a}, a singleton set. (degenerate

interval)
For a > b the interval from a to b is the empty set ∅. (degenerate interval)
Most subsets of R are not intervals!

Example 21. Q is not an interval and neither is the set of irrational numbers
Q = R−Q.

Example 22. [0, 1] ∪ (3, 5) is not an interval.

Analogs of intervals in Rn can be obtained by taking cartesian products of
n intervals to form n-cells.

This gives us rectangles in R2, cuboids in R3 and hyper-cuboids in higher
dimensions.

Definition 23. n-cells in Rn

Let a1 ≤ b1, a2 ≤ b2, ..., an ≤ bn be real numbers.
Corresponding to these we have closed intervals [ai, bi] and open intervals

]ai, bi[ for 1 ≤ i ≤ n.
Let x = (x1, ..., xn) ∈ Rn.
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The closed n-cell in Rn is defined to be
[a1, b1]× [a2, b2]× ...× [an, bn] = {x ∈ Rn : a1 ≤ x1 ≤ b1, ..., an ≤ xn ≤ bn}.
The open n-cell in Rn is defined to be
]a1, b1[×]a2, b2[×...×]an, bn[= {x ∈ Rn : a1 < x1 < b1, ..., an < xn < bn}.

If n > 1 then there are many more half-open combinations possible than
just 2.

Example 24. For n = 2 and a1 = a2 = 1, b1 = b2 = 2 the closed 2-cell is the
closed square [1, 2]× [1, 2] (boundary included) and the open 2-cell is ]1, 2[×]1, 2[
(boundary excluded).

There exist 14 other 2 cells.
Ex. [1, 2]×]1, 2[= {(x, y) ∈ R2 : 1 ≤ x ≤ 2, 1 < y < 2} is a square including

vertical edges, excluding horizontal edges.
The bounded types of intervals for a1, b1 is either closed, open, or half-open

(2), for a total of 4 bounded types. Similarly, there are 4 bounded types of
intervals for a2, b2. Hence, there are 4 ∗ 4 = 16 types of bounded 2 cell. Since
there are exactly 2 closed or open 2 cell, then there are 16− 2 = 14 other types
of bounded 2 cell.

In the same way, there are 43 = 64 types of bounded 3− cell in R3. There
are 4n = (22)n = 22n types of bounded n− cell in Rn.

Ex. Prove that the above n cells are bounded.
We may also form unbounded n cells by replacing some of the ak by −∞

and/or some of the bk by ∞ = +∞.
Note that ±∞ are not real numbers, so that these must be excluded from

the intervals.
The set of real numbers is R = (−∞,∞) = (−∞,+∞) =]−∞,+∞[.
The nonnegative real numbers is R+ = [0,∞) = [0,∞[.

Example 25. The right hand half plane, including the y axis is the unbounded
2 cell [0,∞)× (−∞,∞) = [0, [∞×]−∞,∞[= R+ × R.

Open subsets of Rn

Definition 26. interior point of a set
Let S be a subset of Rd.
We classify the points of S as either interior points of S or non-interior

points in S as follows.
Let x ∈ S. Then x is an interior point of S iff there is r > 0 such that

Br(x) ⊂ S.
Otherwise x is a non-interior point in S.
The set of all interior points of S is called the interior of S, and is denoted

by int S or S̊.
The set of non-interior points in S is denoted by nint S, so that nint S =

S − intS.
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Let a 6∈ S.
Then a 6∈ int(S) and therefore a 6∈ nint(S).
Let x be an interior point of S. Then x ∈ S and x ∈ int(S).
Let y be an element of S that is on the edge of S. Then y ∈ S. Since we can

choose any open ball with r > 0, then there will always be at least one point of
the open ball that is not in S. Hence, y 6∈ int(S), so y ∈ nint(S).

The terms interior point of S and interior are standard.
The term non-interior point in S and the notation nint S are not standard,

but they are helpful in understanding this material.
Note that a non-interior point in S must be an element of S.
Although points of S = Rd − S are certainly not interior points of S, such

points do not qualify as non-interior points in S and therefore they are not in
nint (S).

Example 27. Let x ∈ S. Then x is a non-interior point in S iff x is not an
interior point of S iff

¬(∃r > 0)(Br(x) ⊂ S) ⇔ (∀r > 0)¬(Br(x) ⊂ S)

⇔ (∀r > 0)¬(∀y)(y ∈ Br(x)→ y ∈ S)

⇔ (∀r > 0)(∃y)¬(y ∈ Br(x)→ y ∈ S)

⇔ (∀r > 0)(∃y)(y ∈ Br(x) ∧ y 6∈ S)

⇔ (∀r > 0)(∃y)(||y − x|| < r ∧ y 6∈ S).

Definition 28. open set
Let S ⊂ Rn.
Then S is an open set( or S is open in Rn, or S is an open subset of

Rn) iff every point of S is an interior point of S.

Therefore, S ⊂ Rn is open iff for each x ∈ S, there is r > 0 such that
Br(x) ⊂ S.

Since intS ⊂ S then S is open if S ⊂ intS. Hence, S is open iff intS ⊂ S
and S ⊂ intS. Therefore, S is open iff intS = S.

S is not open iff S has at least one non-interior point.

Definition 29. limit of a sequence in Rn

Let (sn) be a sequence of points in Rn.
A sequence (sn) of points in Rn converges to a point L ∈ Rn, denoted

sn → L or limn→∞ sn = L, iff the sequence of real numbers ||sn−L|| converges
to 0 in the usual sense in R.

Equivalently, for every ε > 0 there corresponds a natural number N such
that ||sn − L|| < ε whenever n > N .

In symbols, limn→∞ sn = L iff (∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n > N →
||sn − L|| < ε).
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