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Analysis is the theory of real numbers.

We develop a theory of functions of a real variable.

What are the analytic properties of real-valued functions?

Topics: real functions, convergence and limits of sequences of real numbers,

calculus of real numbers, continuity/uniform continuity, smoothness, se-
quences of functions

Real analysis studies completeness of real number system,

limits of sequences,

infinite series, derivatives of functions, integrals, uniform convergence, Tay-
lor’s theorem,

fundamental theorem of calculus, topology of Euclidean space, metric spaces,
compactness, uniform continuity,

mean value theorem, Riemann-Stieltjes integrals, functions of bounded vari-
ation,

function algebras, Weierstrass theorem.

Sets of Numbers

Q={":m,ne€ZAn#0}= set of all rational numbers

R = set of all real numbers

Rt ={z € R:2 >0} = set of all positive real numbers

Ry ={xeR:xz>0}=1[0,00) =[0,00[= set of all nonnegative real numbers

Limits

Definition 1. Left and Right hand limits
Let a,r € R.
Let a be fixed.
Let f be a real valued function defined on [a,a + r) for some r > 0.
A real number L7 is a right-hand limit of f(z) as z approaches a, denoted

Lt =1lim, ,q+ f(z), if (Ve >0)(30 > 0)(Vz)(a <z <a+d = |f(x)— LT| <e).



Let f : R+ R be a function defined on (a — r, a] for some r > 0.
A real number L~ is a left-hand limit of f(x) as x approaches a, denoted
L™ =lim, o f(x),iff (Ve >0)(F0 >0)(Vr)(a—d <z <a—|f(x)—L7| <e).

lim, . f(z) = L iff
1. limg o+ f(z) =1L
2. lim,_,,- f(z) =1L

Vector space R"”

Let n € N.

R =R!.

Elements of R” may be viewed as either a point(geometric) or as a vector
(algebraic).

x = (1,22, ..., Tn)

y= (1,92, Yn)

Definition 2. inner product or dot product of vectors

Let z,y € R™.

Then (z,y) = z -y = [21,..,Tn] - [Y1, -, Yn] = T1y1 + T2Y2 + . + TnYn =
i1 Tili-
Definition 3. Euclidean norm, length of vector

Let z € R™.

The Euclidean norm of z is ||z|| = \/{z,z) = />, |#:]?. (Pythagorean
rule)

It represents the length of the vector x.

Theorem 4. Cauchy-Schwarz inequality
Let z,y € R™.
Then [z, y)| < ||| Iyl]-

Definition 5. normed vector space

A norm on the vector space R" is a function f : R®™ — R, such that the
following axioms hold:

NL f(z +9) < f(2) + F(3)

N2. f(Ax) = Af(z)

N3. f(z) =0iff x =0 for all z,y € R™ and A € R.

Theorem 6. The function || || : R™ — Ry has the following properties:
L |z +yl| < |lz|| + [|yl| (Triangle inequality)
2. |[Mal| = ]\ * ll2ll. (homogeneity)
3. ||lz||=0 iff z =0.
for x,y € R™ and X € R.

If o = (21, ...,2,) and y = (Y1, ..., Yn ), then £ —y = (X1 — Y1, .ery Tr, — Yn)-
Thus, ||z —y|| = ]z1 — 12 + ... + |2, — yn|? = distance from x to y =

Iy — =].




Definition 7. Euclidean distance
Let z,y € R™.
We define the distance between points x and y by d(z,y) = ||z — y|| =

lly — || = d(y, z).
Thus, d(z,y) = ||z — yl| = /(x1 — 11)? + - + (@0 — yn)>.

Proposition 8. triangle inequality for Euclidean distance
Let x,y € R™.
Then d(z,y) < d(z, z) + d(z,y) for every z € R™.

Proof. Let x,y € R™.
Then for every z € R™,

dlz,y) = |z -yl

= [llz=2)+ (-9l
|z — z[] + ||z — yl|
d(z, z) + d(z,y).

N

Boundedness of subsets of R"

Definition 9. open ball

Let 7 > 0 (means r is a positive real number).

Let z € R™.

The open ball with radius r and center z is B,.(z) = {y € R" : ||[y—z|| <
T}.

excludes boundary

Definition 10. closed ball

Let » > 0 and « € R"™. o

The closed ball with radius r and center z is B.(z) = {y € R" :
lly - al| <1}

includes boundary

Definition 11. open unit ball
Let » > 0.
The open unit ball is the set B1(0) = {z € R" : ||z]| < 1}.

Definition 12. closed unit ball
Let r > 0. o
The closed unit ball is the set B1(0) = {z € R" : ||z|| < 1}.



Example 13. For n =1,

Bi(z) = {yeR:|ly—z|l<r}

= {yeR:|ly—=z|<r}
{yeR:—r<y—z<r}
{yeRiz—r<y<z+r}
(x—rz+7)

= Jx—rz+r]

Therefore, B,.(x) is the open interval (z — r,x + 7).

By (z) = {yeR:|ly—zll <r}
{fyeR:ly—z[<r}
= {yeR:—r<y—-z<r}
{yeRiz—r<y<axz+r}

= [z—r,z+7]

Therefore, B,.(x) is the closed interval [z — 7,2 + 7].

Example 14. For n = 2,

By (x) {yeR?:|ly -zl <r}

= {yeR*:\/(y—a) (y—x) <r}

= {(12) €R? 1 /(g1 — 21)2 + (y2 — 22)% <7}
= {(W1,12) €R?: (y1 —21)* + (y2 — 32)* <77}

Therefore, B,.(z) is the disc with radius r about « = (21, 22) without its bound-
ary.

By(z) = {yeR*:|ly—=zl <7}
= {yeR:/(y—2) - (y—2) <7}
= {() €R?: /(g1 — 21)% + (2 — 22)? <7}
= {y,52) €R?: (1 —21)” + (y2 — 22)” < 7%}
Therefore, B, () is the disc with radius 7 about @ = (z1,72) including its
boundary.

Definition 15. bounded subset of R"

A subset S C R” is bounded iff there exists a real number R > 0 such that
S c Bg(0).

A set which is not bounded is unbounded.



S C R™ is bounded iff

(3R > 0)(S C Br(0) (3R > 0)(Vx)(x € S — = € Bgr(0))

&
< (3R > 0)(Vz € S)(z € Br(0))
& (3R> 0)(Vz € S)(||z|]| < R).

Therefore, S is not bounded iff

~(@R>0)(vz € S)(|]z]| < R) & (YR >0)(3z € S)(||z]| > R).

Example 16. Any open or closed ball centered on the origin is bounded.

Proof. Let r > 0. We show B,(0) and B (0) are bounded. Take R = r (or any
value greater than r). Then B,(0) C B,.(0) C Bgr(0). Hence, B,(0) C Bg(0)
and B,.(0) C Br(0). Therefore, B,.(0) and B,.(0) are bounded. O

Example 17. All open/closed balls in R are bounded, whether or not they
are centered on the origin.

Proof. Let r > 0 and = € R"™.

We show B,.(z) and B,(x) are bounded.

To prove B,.(z) is bounded, we must find R > 0 such that B,(z) C Bg(0).
Take R = ||z|| +r ( or any value larger than ||z|| + r). Let y € B,(x). Then
[ly — z|| < r. Thus,

ol = lly— =+
< ly =l + [l
< el
= R

Hence, ||y|| < R, so y € Br(0). Therefore, B,.(z) C Br(0).
The proof of the open ball case is similar. O

Example 18. The empty set () is bounded but R" is unbounded.

Proof. We prove () is bounded.
For all sets S, we have () C S. In particular, ) C B1(0), so §) is bounded.
We prove R™ is unbounded. Suppose that R™ is bounded. Then 3R > 0 such
that R™ C Bg(0). Thus, for any z € R", ||z|| < R. In particular, ||2R|| < R for
the vector 2R € R™. Thus, |2|||R|| < R, so 2R < R. Hence, R < 0. Therefore,
we have R < 0 and R > 0, a violation of trichotomy of R. Therefore, R" is
unbounded. O

Example 19. Every subset of a bounded set is bounded.



Proof. Let A be a subset of a bounded set B. To prove A is bounded, we must
prove 3R > 0 such that A C Bg(0).

Since B is bounded, then 3R > 0 such that B C Br(0). Since A C B and
B C Bg(0), then A C Bg(0). Therefore, A is bounded. O

Note that for n = 1,R! = R. For S C R, S # ), S is bounded iff S is
bounded above and bounded below.

There is no connection at all between the terms ‘bounded’ and ‘boundary’.

In particular, a bounded set need not include its boundary.

Example 20. The open unit ball B;(0) is bounded, but its boundary is ex-
cluded.

Many equivalent definitions of the term ‘bounded’.

A set S is bounded iff the set of all possible distances between pairs of points
of S is bounded above in R.

Thus non empty bounded sets can be described as sets which have finite
diameter.

Intervals and d cells

Let a,b € R with a < b.
There are 4 types of bounded intervals:
1. closed interval [a,b] = {x e R:a <z <b} CR.
2. open interval |a,b[= (a,b) ={zr € R:a <z <b} CR.
3. half-open intervals
la,b] = (a, b)) ={z €eR:a <z <b}

[a,b[=[a,b) ={x € R:a <z <b}
For a = b the interval [a,b] = [a,a] = {a}, a singleton set. (degenerate
interval)

For a > b the interval from a to b is the empty set (). (degenerate interval)
Most subsets of R are not intervals!

Example 21. Q is not an interval and neither is the set of irrational numbers

Q-R-Q.
Example 22. [0,1] U (3,5) is not an interval.

Analogs of intervals in R™ can be obtained by taking cartesian products of
n intervals to form n-cells.

This gives us rectangles in R?, cuboids in R? and hyper-cuboids in higher
dimensions.

Definition 23. n-cells in R”

Let a1 < b1,a9 < by,...,a, <b, be real numbers.

Corresponding to these we have closed intervals [a;,b;] and open intervals
Jai, b;[ for 1 < i <n.

Let z = (z1, ..., x,) € R™.



The closed n-cell in R" is defined to be

[al,bl] X [ag,bg] X ..o X [an,bn] = {.Z' ER": a1 <21 <by,..,a, <z, < bn}
The open n-cell in R" is defined to be

a1, b1[X]ag, ba[X...X]an, bp[= {x € R™ 1 a1 < 21 < by, ..cyan < Tp < by}

If n > 1 then there are many more half-open combinations possible than
just 2.

Example 24. For n = 2 and a1 = as = 1,b; = by = 2 the closed 2-cell is the
closed square [1,2] x [1, 2] (boundary included) and the open 2-cell is |1, 2[x]1, 2[
(boundary excluded).

There exist 14 other 2 cells.

Ex. [1,2]x]1,2[= {(x,y) e R? : 1 <2 < 2,1 <y < 2} is a square including
vertical edges, excluding horizontal edges.

The bounded types of intervals for aq, by is either closed, open, or half-open
(2), for a total of 4 bounded types. Similarly, there are 4 bounded types of
intervals for as,bs. Hence, there are 4 x 4 = 16 types of bounded 2 cell. Since
there are exactly 2 closed or open 2 cell, then there are 16 — 2 = 14 other types
of bounded 2 cell.

In the same way, there are 43 = 64 types of bounded 3— cell in R3. There
are 4" = (22)" = 22" types of bounded n— cell in R".

Ex. Prove that the above n cells are bounded.

We may also form unbounded n cells by replacing some of the a; by —oo
and/or some of the by by oo = +o0.

Note that +o0o are not real numbers, so that these must be excluded from
the intervals.

The set of real numbers is R = (—o00, 00) = (—00, +00) =] — 00, +00[.

The nonnegative real numbers is Ry = [0, 00) = [0, co].

Example 25. The right hand half plane, including the y axis is the unbounded
2 cell [0, 00) x (—00,00) = [0, [oox] — 00, 00[= Ry x R.

Open subsets of R”

Definition 26. interior point of a set

Let S be a subset of R?.

We classify the points of S as either interior points of S or non-interior
points in S as follows.

Let z € S. Then «x is an interior point of S iff there is » > 0 such that
B.(z) CS.

Otherwise x is a non-interior point in S.

The set of all interior points of S is called the interior of S, and is denoted
by int S or S.

The set of non-interior points in S is denoted by nint S, so that nint S =

S —intS.



Let a & S.

Then a ¢ int(S) and therefore a & nint(S).

Let x be an interior point of S. Then z € S and z € int(S).

Let y be an element of S that is on the edge of S. Then y € S. Since we can
choose any open ball with r > 0, then there will always be at least one point of
the open ball that is not in S. Hence, y & int(S), so y € nint(S).

The terms interior point of S and interior are standard.

The term non-interior point in S and the notation nint S are not standard,
but they are helpful in understanding this material.

Note that a non-interior point in S must be an element of S.

Although points of S = R? — S are certainly not interior points of S, such
points do not qualify as non-interior points in S and therefore they are not in
nint (.5).

Example 27. Let x € S. Then z is a non-interior point in S iff = is not an
interior point of S iff

=(Fr > 0)(B-(z) C 5) x) CS)

(y € By(z) >y €S
~(y € Br(z) >y €5)
y € Br(x) Ny &9)
ly —zl[ <rAy&S).
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Definition 28. open set

Let S C R™.

Then S is an open set( or S is open in R", or S is an open subset of
R™) iff every point of S is an interior point of S.

Therefore, S C R™ is open iff for each = € S, there is » > 0 such that
B,.(z) C S.

Since intS C S then S is open if S C intS. Hence, S is open iff intS C S
and S C intS. Therefore, S is open iff intS = S.

S is not open iff S has at least one non-interior point.

Definition 29. limit of a sequence in R"

Let (sy,) be a sequence of points in R™.

A sequence (s,) of points in R” converges to a point L € R", denoted
$n — L or lim,_, s, = L, iff the sequence of real numbers ||s,, — L|| converges
to 0 in the usual sense in R.

Equivalently, for every ¢ > 0 there corresponds a natural number N such
that ||s, — L|| < € whenever n > N.

In symbols, lim,_, s, = L iff (Ve > 0)(IN € N)(Vn € N)(n > N —
|lsn — L] <e).



