Real Analysis Propositions OLD hodgepodge need to merge into correct notes and theory files

Jason Sass

June 29, 2021

Topology of Real Numbers

Proposition 1. Every interval in \mathbb{R}^1 is convex.

Solution.

Proof. Let I be an arbitrary interval in \mathbb{R}^1 . To prove I is convex, let v and w be arbitrary elements of I and let t be an arbitrary real number such that $0 \le t \le 1$. We must prove $tv + (1-t)w \in I$. Since $0 \le t \le 1$, then either t = 0 or t = 1 or $0 \le t \le 1$. We consider these cases separately. Case 1: Suppose t = 0. Then tv + (1-t)w = 0v + (1-0)w = w. Since $w \in I$ and w = tv + (1-t)w, then $tv + (1-t)w \in I$. Case 2: Suppose t = 1. Then tv + (1-t)w = 1v + (1-1)w = v. Since $v \in I$ and v = tv + (1-t)w, then $tv + (1-t)w \in I$. **Case 3:** Suppose 0 < t < 1. Then 0 < t and t < 1. By trichotomy, either v = w or v < w or w < v. We consider these cases separately. Case 3a: Suppose v = w. Then tv + (1-t)w = tv + w - tw = tv + w - tv = w. Since $w \in I$, then $tv + (1-t)w \in I.$ Case 3b: Suppose v < w. Since t < 1, then 0 < 1 - t, so 1 - t > 0. Let c = tv + (1 - t)w. Then c = tv + w - tw. Observe that (1-t)v < (1-t)wv - tv < w - twv < tv + w - tw

v < c

Since t > 0, then tv < tw. Observe that

$$\begin{array}{rrrrr} tv-tw &< & 0\\ tv-tw+w &< & w\\ & c &< & w \end{array}$$

Thus, v < c and c < w, so v < c < w. Since $v \in I$ and $w \in I$ and v < c < w, then by definition of interval, $c \in I$. Hence, $tv + (1-t)w \in I$.

Case 3c: Suppose w < v. Let c = tv + (1 - t)w. Then c = tv + w - tw. Since t > 0, then tw < tv. Observe that

$$\begin{array}{rcl}
0 & < & tv - tw \\
w & < & tv - tw + w \\
w & < & c
\end{array}$$

Since t < 1, then 0 < 1 - t, so 1 - t > 0. Thus, (1 - t)w < (1 - t)v. Observe that

$$egin{array}{rcl} w - tw & < & v - tv \ tv + w - tw & < & v \ c & < & v \end{array}$$

Thus, w < c and c < v, so w < c < v. Since $w \in I$ and $v \in I$ and w < c < v, then by definition of interval, $c \in I$. Hence, $tv + (1 - t)w \in I$.

Proposition 2. Let S be a convex subset of \mathbb{R} . Then S is an interval.

Solution. Our hypothesis is:

1. $S \subset \mathbb{R}$.

2. S is convex.

The conclusion is: S is an interval.

To prove S is an interval, let $a, b, c \in \mathbb{R}$ be arbitrary such that $a, b \in S$ and a < c < b. We must prove $c \in I$.

Since S is convex, then for every $v, w \in S$ and for every $t \in [0, 1], tv + (1 - t)w \in S$.

Thus, we'd like c = ta + (1 - t)b for some $t \in [0, 1]$.

Hence, we must find some $t \in [0, 1]$ such that c = ta + (1 - t)b.

Work backwards. Suppose c = ta + (1 - t)b. We want t in terms of a, b, c. Thus, if we solve for t, then $t = \frac{b-c}{b-a}$. We must now show that $t \in [0, 1]$; that is, prove $0 \le t \le 1$. We use the hypotheses to show 0 < t < 1.

Proof. Let S be a convex subset of \mathbb{R} . To prove S is an interval, let a, b, and c be arbitrary real numbers such that a < c < b.

We must prove $c \in S$. Let $t = \frac{b-c}{b-a}$. Since a < c < b, then a < c and c < b. Thus, a < b. Since 0 < b - c and 0 < b - a, then $\frac{b-c}{b-a} > 0$. Hence, t > 0. Since a < c, then -a > -c, so b - a > b - c. Since b - a > 0, we divide to obtain $1 > \frac{b-c}{b-a}$. Thus, 1 > t. Since 0 < t and t < 1, then 0 < t < 1, so $t \in [0, 1]$.

Observe that

$$t = \frac{b-c}{b-a}$$
$$tb-ta = b-c$$
$$c = b+ta-tb$$
$$c = ta + (1-t)b$$

Since S is convex, then for every $v, w \in S$ and for every $t \in [0, 1]$, $tv + (1 - t)w \in S$. Hence, in particular, since $t \in [0, 1]$, then $ta + (1 - t)b \in S$. Thus, $c \in S$, as desired.

Proposition 3. The empty set is open.

Solution.

The conclusion is: \emptyset is open.

A set S is open iff $(\forall p \in S)(p \text{ is an interior point of } S)$. A set is not open iff $\neg(\forall p \in S)(p \text{ is not an interior point of } S) \Leftrightarrow (\exists p \in S)(p \text{ is not an interior point}).$

We use proof by contradiction. Thus, we assume the negation of the conclusion: Hence, we assume \emptyset is not open; that is, we assume $(\exists p \in S)(p \text{ is not an interior point})$.

Suppose \emptyset is not open. Then there is some point $p \in \emptyset$ such that p is not an interior point. But, \emptyset has no elements, so there can be no point $p \in \emptyset$ such that p is not an interior point. Therefore, \emptyset is open.

Proof. Suppose for the sake of contradiction that the empty set \emptyset is not open. Then there is some point p in \emptyset such that p is not an interior point. But, the empty set has no elements, so there can be no point point p in \emptyset such that p is not an interior point. Therefore, \emptyset cannot be not open, so \emptyset must be open. \Box

Proposition 4. \mathbb{R} is an open subset of itself.

Solution. Intuitively, this seems obvious because no matter how large $\delta > 0$ is, the δ neighborhood of a point $p \in \mathbb{R}$ is always a subset of \mathbb{R} .

To prove \mathbb{R} is open, we must prove every point in \mathbb{R} is an interior point of \mathbb{R} . Let $p \in \mathbb{R}$ be arbitrary. To prove p is an interior point, we must prove $(\exists \delta > 0)(N(p; \delta) \subset \mathbb{R}).$

To prove $N(p; \delta) \subset \mathbb{R}$, let $x \in N(p; \delta)$ be arbitrary. We must prove $x \in \mathbb{R}$.

Since $x \in N(p; \delta)$, then $x \in \mathbb{R}$ and $|p - x| < \delta$. Therefore, $x \in \mathbb{R}$. This is true regardless of the value of δ chosen. Hence, we may choose any positive δ .

Proof. To prove \mathbb{R} is an open set, we must prove every point in \mathbb{R} is an interior point of \mathbb{R} .

Let p be an arbitrary real number.

To prove p is an interior point of \mathbb{R} , we will show there is some positive δ such that the δ neighborhood of p is contained in \mathbb{R} .

By definition, the δ neighborhood of p is a subset of \mathbb{R} for every positive δ . Thus, if we let $\delta = 1$, then $N(p; 1) \subset \mathbb{R}$, as desired.

Proposition 5. Any interval of the form (a, b), where $a \neq b$, is an open subset of \mathbb{R} .

Solution. The statement to prove is:

Every interval of the form (a, b) with $a \neq b$ is an open subset of \mathbb{R} . This statement has the form $\forall x.p(x)$.

Thus, let (a, b) be an arbitrary interval such that $a \neq b$.

To prove (a, b) is an open subset of \mathbb{R} , we must prove every point in (a, b) is an interior point of (a, b).

Hence, we must prove $(\forall x \in (a, b))(\exists \delta > 0)(N(x; \delta) \subset (a, b)).$

Therefore, let $p \in (a, b)$ be arbitrary.

We must prove $(\exists \delta > 0)(N(p; \delta) \subset (a, b)).$

Since $a \neq b$, then either a < b or a > b.

We consider these cases separately.

To prove $N(p; \delta) \subset (a, b)$, assume $x \in N(p; \delta)$. We must prove $x \in (a, b)$; that is, prove a < x and x < b.

Case 1: Suppose a < b.

Since we want $N(p; \delta) \subset (a, b)$ for some $\delta > 0$, we must find a suitable value for δ that will guarantee this condition. How do we find δ ?

We can draw a picture of this scenario (ie, a number line with interval (a, b) with point p between a and b and with some δ such that $p - \delta$ is between a and p and $p + \delta$ is between p and b.

Thus, we must find $\delta > 0$ such that $a and <math>p . Any such <math>\delta > 0$ that satisfies these conditions will work. Thus, we can choose δ such that $p - \delta$ is the midpoint of $(a, p \text{ and such that } p + \delta$ is the midpoint of (p, b). Thus, $p - \delta = (a + p)/2$ and $p + \delta = (p + b)/2$.

We know from predicate logic that δ must be a function of p, a, b.

Since we want x such that a < x < b, let's solve for a and b.

Solving for a in the first equation we have $2p - 2\delta = a + p$, so $a = p - 2\delta$.

Solving for b in the second equation we have $2p + 2\delta = p + b$, so $b = p + 2\delta$. Now, we can eliminate p in these equations to find a relationship between a, b, δ .

Thus, solving for p in equation $a = p - 2\delta$, we obtain $p = a + 2\delta$. Now, substituting into equation $b = p+2\delta$, we obtain $b = (a+2\delta)+2\delta$, so $\delta = (b-a)/4$. Therefore, we let $\delta = (b-a)/4$.

We note that this proposition asserts an open interval (a, b) is an open set whenever a and b are distinct.

We should note that if a = b, then $(a, b) = \{x \in \mathbb{R} : a < x < a\} = \emptyset$. We know \emptyset is an open set. Hence, in general, every open interval is an open set. \Box

Proof. To prove every interval of the form (a, b) with $a \neq b$ is an open subset of \mathbb{R} , let (a, b) be an arbitrary interval such that $a \neq b$ for real numbers a and b.

We must prove (a, b) is an open subset of \mathbb{R} .

Since $a \neq b$, then either a < b or a > b.

We consider these cases separately.

Case 1: Suppose a < b.

To prove (a, b) is an open subset of \mathbb{R} , we must prove every point in (a, b) is an interior point of (a, b).

Let p be an arbitrary point in (a, b).

To prove p is an interior point of (a, b), we must prove there is some positive δ such that the δ neighborhood is contained in (a, b).

Let $p - \delta$ be the midpoint of a and p.

Let $p + \delta$ be the midpoint of p and b.

Then $p-\delta = \frac{a+p}{2}$ and $p+\delta = \frac{p+b}{2}$. Since $p-\delta = \frac{a+p}{2}$, then $2p-2\delta = a+p$, so $p - 2\delta = a$. Hence, $p = a + 2\delta$.

Since $p + \delta = \frac{p+b}{2}$, then $2p + 2\delta = p + b$, so $p + 2\delta = b$. Hence, $p = b - 2\delta$. Thus, $a + 2\delta = \tilde{b} - 2\delta$, so $\delta = (b - a)/4$.

Therefore, we let $\delta = (b - a)/4$.

We prove $\delta > 0$. Since a < b, then b > a, so b - a > 0. Hence, $\frac{b-a}{4} > 0$, so $\delta > 0.$

To prove the δ neighborhood is contained in (a, b), we must prove $N(p; \delta) \subset$ (a,b).

To prove $N(p; \delta) \subset (a, b)$, assume $y \in N(p; \delta)$. To prove $y \in (a, b)$, we must prove a < y and y < b.

Since $y \in N(p; \delta) = (p - \delta, p + \delta)$, then $p - \delta < y$ and y .

Since $p - \delta < y$ and $p = a + 2\delta$, then $a + \delta < y$. Since $\delta = \frac{b-a}{4}$ and $a + \delta < y$, then a + (b - a)/4 < y, so 4a + b - a < 4y. Hence, b < 4y - 3a.

Since a < b and b < 4y - 3a, then a < 4y - 3a. Therefore, 4a < 4y, so a < y, as desired.

Since $y and <math>p = b - 2\delta$, then $y < (b - 2\delta) + \delta$, so $y < b - \delta$. Since $y < b - \delta$ and $\delta = \frac{b-a}{4}$, then $y < b + \frac{a-b}{4}$. Hence, 4y < 4b + a - b, so 4y - 3b < a.

Since 4y - 3b < a and a < b, then 4y - 3b < b. Therefore, 4y < 4b, so y < b, as desired.

Case 2: Suppose a > b.

Suppose the interval (a, b) is not empty. Then there exists some element in (a, b). Let x be an arbitrary real number in (a, b). Then a < x and x < b. Therefore, a < b.

By trichotomy, it is impossible that a < b and a > b. Therefore (a, b) must be empty, so $(a, b) = \emptyset$.

Since the empty set is an open set of \mathbb{R} , then (a, b) is also an open set of $\mathbb{R}.$

Proposition 6. Let S and T be open subsets of \mathbb{R} . Then $S \cap T$ is open.

Solution. Our hypothesis is:

S is an open subset of \mathbb{R} . T is an open subset of \mathbb{R} . Our conclusion is: $S \cap T$ is an open set. To prove $S \cap T$ is open, we must prove each point in $S \cap T$ is an interior point of $S \cap T$. Thus, we must prove: $(\forall p \in S \cap T)(\exists \delta > 0)(N(p; \delta) \subset S \cap T)$. Let $p \in S \cap T$ be arbitrary. Then $p \in S$ and $p \in T$. To prove $(\exists \delta > 0)(N(p; \delta) \subset S \cap T)$, we let $y \in N(p; \delta)$. We must find some $\delta > 0$ such that $y \in S$ and $y \in T$. By hypothesis, S is open, so every point in S is an interior point of S. Hence, in particular, since $p \in S$, then p is an interior point of S. Therefore, $(\exists \delta_1 > 0)(N(p; \delta_1) \subset S)$. How can we prove $y \in S$? We know $N(p; \delta_1) \subset S$ for some $\delta_1 > 0$. So, if we could show $y \in N(p; \delta_1)$, then we could argue that $y \in N(p; \delta_1)$ and $N(p; \delta_1) \subset S$ implies $y \in S$. Thus, we must show that $y \in N(p; \delta_1)$. We can show this if we let $\delta = \delta_1$. Therefore, choose $\delta = \delta_1$. Since $\delta_1 > 0$, then $\delta > 0$. Since $y \in N(p; \delta)$, then $y \in N(p; \delta_1)$. Since $y \in N(p; \delta_1)$ and $N(p; \delta_1) \subset S$, then $y \in S$, as desired. By hypothesis, T is open, so every point in T is an interior point of T. Hence, in particular, since $p \in T$, then p is an interior point of T. Therefore, $(\exists \delta_2 > 0)(N(p; \delta_2) \subset T)$. How can we prove $y \in T$? We know $N(p; \delta_2) \subset T$ for some $\delta_2 > 0$. So, if we could show $y \in N(p; \delta_2)$, then we could argue that $y \in N(p; \delta_2)$ and $N(p; \delta_2) \subset T$ implies $y \in T$. Thus, we must show that $y \in N(p; \delta_2)$. Now, we already have $\delta = \delta_1$, so we need to re-evaluate what δ value we should choose. We must choose δ such that $y \in N(p; \delta_1)$ in S and $y \in N(p; \delta_2)$ in T. Since y must be in $N(p; \delta_1)$ in set S, we need to find some δ neighborhood of p in S that is contained inside of $N(p; \delta_1)$ in S. How do we find such a neighborhood in S? We draw a picture of the situation: sets S, T with point p in $N(p; \delta_1)$ in set S and p in $N(p; \delta_2)$ in set T. We see that every δ neighborhood of p in S is contained entirely in $N(p; \delta_1)$ if only if $0 < \delta \leq \delta_1$. Therefore, $y \in N(p; \delta_1)$ in S iff $0 < \delta \leq \delta_1$. Since y must be in $N(p; \delta_2)$ in set T, then we need to find some δ neighborhood of p in T that is contained inside of $N(p; \delta_2)$ in T. How do we find such a neighborhood in T?

We see that every δ neighborhood of p in T is contained entirely in $N(p; \delta_2)$ if only if $0 < \delta \leq \delta_2$.

Therefore, $y \in N(p; \delta_2)$ in T iff $0 < \delta \leq \delta_2$. Thus, we want δ such that $0 < \delta \leq \delta_1$ and $0 < \delta \leq \delta_2$. Hence, we can choose δ to be the smaller of δ_1 and δ_2 . Therefore, let $\delta = \min(\delta_1, \delta_2)$.

Proof. To prove $S \cap T$ is open, we must prove each point in $S \cap T$ is an interior point of $S \cap T$.

Let p be an arbitrary point in $S \cap T$.

Then $p \in S$ and $p \in T$.

To prove p is an interior point of $S \cap T$, we must find a positive δ such that the δ neighborhood of p, $N(p; \delta)$, is entirely contained in $S \cap T$.

Since S is open, then every point in S is an interior point of S. Therefore, since $p \in S$, then p is an interior point of S. Hence, there is some positive δ_1 such that $N(p; \delta_1) \subset S$.

Since T is open, then every point in T is an interior point of T. Therefore, since $p \in T$, then p is an interior point of T. Hence, there is some positive δ_2 such that $N(p; \delta_2) \subset T$.

Let $\delta = \min(\delta_1, \delta_2)$.

Since δ_1 and δ_2 are positive, then δ is positive.

To prove $N(p; \delta) \subset S \cap T$, let y be an arbitrary element of $N(p; \delta)$. We must show $y \in S$ and $y \in T$.

Since $y \in N(p; \delta)$, then $|p - y| < \delta$.

By trichotomy, either $\delta_1 \leq \delta_2$ or $\delta_1 > \delta_2$.

We consider these cases separately.

Case 1: Suppose $\delta_1 \leq \delta_2$.

Then $\min(\delta_1, \delta_2) = \delta_1$, so $\delta = \delta_1$. Thus, $|p - y| < \delta_1$. Hence, $y \in N(p; \delta_1) \subset S$, so $y \in S$. Since $|p - y| < \delta_1$ and $\delta_1 \leq \delta_2$, then $|p - y| < \delta_2$. Thus, $y \in N(p; \delta_2) \subset T$, so $y \in T$. Hence, $y \in S$ and $y \in T$.

Case 2: Suppose $\delta_1 > \delta_2$.

Then $\min(\delta_1, \delta_2) = \delta_2$, so $\delta = \delta_2$. Thus, $|p - y| < \delta_2$. Hence, $y \in N(p; \delta_2) \subset T$, so $y \in T$. Since $|p - y| < \delta_2$ and $\delta_2 < \delta_1$, then $|p - y| < \delta_1$. Thus, $y \in N(p; \delta_1) \subset S$, so $y \in S$. Hence, $y \in S$ and $y \in T$.

Therefore, in all cases, $y \in S$ and $y \in T$, so that $y \in S \cap T$. Hence, $N(p; \delta) \subset S \cap T$, as desired.

Exercise 7. If S_1, S_2 and S_3 are open subsets of \mathbb{R} , then $S_1 \cap S_2 \cap S_3$ is an open subset of \mathbb{R} .

Solution. Let S_1, S_2, S_3 be arbitrary open subsets of \mathbb{R} .

To prove $S_1 \cap S_2 \cap S_3$ is open, we must prove every point in $S_1 \cap S_2 \cap S_3$ is an interior point of $S_1 \cap S_2 \cap S_3$. Let p be an arbitrary point of $S_1 \cap S_2 \cap S_3$.

To prove p is an interior point of $S_1 \cap S_2 \cap S_3$, we must prove $(\exists \delta > 0)(N(p; \delta) \subset S_1 \cap S_2 \cap S_3)$.

To prove $(N(p; \delta) \subset S_1 \cap S_2 \cap S_3$, let $y \in N(p; \delta)$. To prove $y \in S_1 \cap S_2 \cap S_3$, we must prove $y \in S_1$ and $y \in S_2$ and $y \in S_3$.

Since each of the sets S_1, S_2, S_3 is open, then every point in S_1, S_2, S_3 is an interior point of S_1, S_2, S_3 , respectively. Since $p \in S_1 \cap S_2 \cap S_3$, then $p \in S_1$ and $p \in S_2$ and $p \in S_3$. Therefore, p is an interior point of S_1 and p is an interior point of S_2 and p is an interior point of S_3 . Hence, $(\exists \delta_1 > 0)(N(p; \delta_1) \subset S_1)$ and $(\exists \delta_2 > 0)(N(p; \delta_2) \subset S_2)$ and $(\exists \delta_3 > 0)(N(p; \delta_3) \subset S_3)$.

How can we show $y \in S_1$? Well, since we have $N(p; \delta_1) \subset S_1$), if we could show $y \in N(p; \delta_1)$, then we could argue $y \in N(p; \delta_1) \subset S_1 \Rightarrow y \in S_1$. Thus, we must prove $y \in N(p; \delta_1)$. How can we show $y \in N(p; \delta_1)$? Well, since we want $\delta > 0$ such that $y \in N(p; \delta)$, then we can choose $\delta = \delta_1$. Thus, let $\delta = \delta_1$. Then $y \in N(p; \delta) = N(p; \delta_1) \subset S_1$, so $y \in N(p; \delta_1)$.

How can we show $y \in S_2$? Well, since we have $N(p; \delta_2) \subset S_2$), if we could show $y \in N(p; \delta_2)$, then we could argue $y \in N(p; \delta_2) \subset S_2 \Rightarrow y \in S_2$. Thus, we must prove $y \in N(p; \delta_2)$. How can we show $y \in N(p; \delta_2)$?

Since each of S_1, S_2, S_3 is open, then there exist $\delta_1, \delta_2, \delta_3 > 0$ such that p is in the $\delta_1, \delta_2, \delta_3$ neighborhoods of S_1, S_2, S_3 sets, respectively. Hence $N(p, \delta_1) \subset S_1$ and $N(p, \delta_2) \subset S_2$ and $N(p, \delta_3) \subset S_3$. To prove y is in S_1 , if we can show that y is in $N(p, \delta_1)$, then since $N(p, \delta_1) \subset S_1$, then we could conclude $y \in S_1$. Since we want y to be in all 3 sets, then we can take the smallest of all 3 δ_i . This will guarantee that δ would be in each of the δ_i neighborhoods of p for each set S_i . So, we should let δ the smallest of $\delta_1, \delta_2, \delta_3$.

Proof. To prove the set $S_1 \cap S_2 \cap S_3$ is an open subset of the set of all real numbers \mathbb{R} , we must prove every point in $S_1 \cap S_2 \cap S_3$ is an interior point of $S_1 \cap S_2 \cap S_3$.

Let p be an arbitrary point in $S_1 \cap S_2 \cap S_3$.

To prove p is an interior point of $S_1 \cap S_2 \cap S_3$, we must find some positive δ such that the δ neighborhood of p is contained entirely in $S_1 \cap S_2 \cap S_3$; that is, we will show there is some positive real number δ such that $N(p; \delta) \subset S_1 \cap S_3 \cap S_3$.

Since each of the sets S_1, S_2 , and S_3 is open, then there exist positive real numbers δ_1, δ_2 , and δ_3 such that p is in the δ_1, δ_2 , and δ_3 neighborhoods of S_1, S_2 , and S_3 , respectively.

Therefore, $N(p; \delta_1) \subset S_1$ and $N(p; \delta_2) \subset S_2$ and $N(p; \delta_3) \subset S_3$.

Let δ be the smallest of δ_1, δ_2 , and δ_3 .

Since each of δ_1, δ_2 , and δ_3 is a positive real number, then δ is a positive real number.

To prove $N(p; \delta) \subset S_1 \cap S_2 \cap S_3$, let y be an arbitrary element of $N(p; \delta)$.

Then $y \in \mathbb{R}$ and $|p - y| < \delta$.

We must show y is in S_1 and S_2 and S_3 .

Since δ is the smallest of δ_1, δ_2 , and δ_3 , then $\delta \leq \delta_1$ and $\delta \leq \delta_2$ and $\delta \leq \delta_3$. Since $|p-y| < \delta$ and $\delta \leq \delta_1$, then $|p-y| < \delta_1$. Since $|p-y| < \delta$ and $\delta \leq \delta_2$, then $|p-y| < \delta_2$. Since $|p-y| < \delta$ and $\delta \leq \delta_3$, then $|p-y| < \delta_3$.

Since $y \in \mathbb{R}$ and $|p-y| < \delta_1$, then $y \in N(p; \delta_1)$. Since $y \in \mathbb{R}$ and $|p-y| < \delta_2$, then $y \in N(p; \delta_2)$. Since $y \in \mathbb{R}$ and $|p-y| < \delta_3$, then $y \in N(p; \delta_3)$.

Since $y \in N(p; \delta_1)$ and $N(p; \delta_1) \subset S_1$, then $y \in S_1$. Since $y \in N(p; \delta_2)$ and $N(p; \delta_2) \subset S_2$, then $y \in S_2$. Since $y \in N(p; \delta_3)$ and $N(p; \delta_3) \subset S_3$, then $y \in S_3$. Therefore, $y \in S_1$ and $y \in S_2$ and $y \in S_3$, so $y \in S_1 \cap S_2 \cap S_3$, as desired. \Box

Proposition 8. The intersection of any finite collection of open subsets of \mathbb{R} is open.

Solution.

The statement means:

Let $n \in \mathbb{Z}, n \geq 0$.

Let $\{S_1, S_2, S_3, ..., S_n\}$ be a finite collection of n open subsets of \mathbb{R} .

Then $\{S_i : i \in \mathbb{N}\}\$ and each S_i is an open subset of \mathbb{R} , for i = 1, 2, 3, ..., n. We must prove $\cap_{i=1}^{n} S_i$ is an open subset of \mathbb{R} .

Define predicate $p(n) : \bigcap_{i=1}^{n} S_i$ is an open subset of \mathbb{R} over \mathbb{N} .

To prove $\cap_{i=1}^{n} S_i$ is an open subset of \mathbb{R} , we must prove $(\forall n \in \mathbb{N})(p(n))$. Let T be the truth set of p(n).

Then $T = \{n \in \mathbb{N} : p(n)\}, \text{ so } T \subset \mathbb{N}.$

To prove $(\forall n \in \mathbb{N})(p(n))$, we must prove $T = \mathbb{N}$.

To prove $T = \mathbb{N}$, we use induction.

Basis:

To prove $1 \in T$, we must prove p(1) is true. Thus, we must prove $\bigcap_{i=1}^{1} S_i$ is an open subset of \mathbb{R} .

Since $\bigcap_{i=1}^{1} S_i = S_1$ and S_1 is an open subset of \mathbb{R} , then $\bigcap_{i=1}^{1} S_i$ is an open subset of \mathbb{R} , as desired.

Induction:

To prove T is inductive, we must prove $(\forall n \in \mathbb{N}) (n \in T \to n + 1 \in T)$.

To prove $(\forall n \in \mathbb{N}) (n \in T \to n + 1 \in T)$, we let $k \in \mathbb{N}$ be arbitrary such that $k \in T$. To prove $k + 1 \in T$, we must prove p(k + 1) is true; that is, we must prove $\cap_{i=1}^{k+1} S_i$ is an open subset of \mathbb{R} .

Since $k \in T$, then p(k) is true, so $\bigcap_{i=1}^{k} S_i$ is an open subset of \mathbb{R} . Hence, the intersection of a collection of k open subsets of \mathbb{R} is open. Observe that $\bigcap_{i=1}^{k+1} S_i = S_1 \cap (\bigcap_{i=2}^{k+1} S_i)$.

We know S_1 is an open subset of \mathbb{R} . The set $\bigcap_{i=2}^{k+1} S_i$ is a collection of k+1-2+1=k open subsets of \mathbb{R} . Hence, $\bigcap_{i=2}^{k+1} S_i$ is open.

Since the intersection of two open subsets of \mathbb{R} is open, then $S_1 \cap (\bigcap_{i=2}^{k+1} S_i)$ is open. Hence, the set $\bigcap_{i=1}^{k+1} S_i$ is open, as desired.

Proof. Let $n \in \mathbb{Z}, n \geq 0$.

Let $\{S_1, S_2, S_3, ..., S_n\}$ be a finite collection of n open subsets of \mathbb{R} .

Then $\{S_1, S_2, S_3, ..., S_n\}$ is a collection of either zero open subsets of \mathbb{R} or of 1 or more open subsets of \mathbb{R} .

Since a collection of zero open subsets of \mathbb{R} is empty, then we must prove two statements:

1. The empty set is an open subset of \mathbb{R} .

2. The set $\bigcap_{i=1}^{n} S_i$ is an open subset of \mathbb{R} , where each S_i is an open subset of \mathbb{R} , for i = 1, 2, 3, ..., n.

We prove the empty set is open.

Since the empty set is open, then we are done.

To prove the set $\bigcap_{i=1}^{n} S_i$ is an open subset of \mathbb{R} , we define predicate p(n): $\bigcap_{i=1}^{n} S_i$ is an open subset of \mathbb{R} .

To prove $\cap_{i=1}^{n} S_i$ is an open subset of \mathbb{R} , we must prove $(\forall n \in \mathbb{N})(p(n))$.

Let T be the truth set of p(n).

Then $T = \{n \in \mathbb{N} : p(n)\}$, so $T \subset \mathbb{N}$.

To prove $(\forall n \in \mathbb{N})(p(n))$, we must prove $T = \mathbb{N}$.

To prove $T = \mathbb{N}$, we use induction.

Basis:

To prove $1 \in T$, we must prove p(1) is true. Thus, we must prove $\bigcap_{i=1}^{1} S_i$ is an open subset of \mathbb{R} .

Since $\bigcap_{i=1}^{1} S_i = S_1$ and S_1 is an open subset of \mathbb{R} , then $\bigcap_{i=1}^{1} S_i$ is an open subset of \mathbb{R} , as desired.

Induction:

To prove T is inductive, we must prove $(\forall n \in \mathbb{N})(n \in T \to n + 1 \in T)$.

To prove $(\forall n \in \mathbb{N})(n \in T \to n + 1 \in T)$, we let k be an arbitrary natural number such that $k \in T$. To prove $k + 1 \in T$, we must prove p(k + 1) is true, so we must prove $\bigcap_{i=1}^{k+1} S_i$ is an open subset of \mathbb{R} .

Since $k \in T$, then p(k) is true, so the set $\bigcap_{i=1}^{k} S_i$ is an open subset of \mathbb{R} . Hence, the intersection of a collection of k open subsets of \mathbb{R} is open.

Observe that the intersection of a collection of k + 1 open subsets of \mathbb{R} is $\bigcap_{i=1}^{k+1} S_i = S_1 \cap (\bigcap_{i=2}^{k+1} S_i)$.

We know the set S_1 is an open subset of \mathbb{R} . The set $\bigcap_{i=2}^{k+1} S_i$ is a collection of k+1-2+1=k open subsets of \mathbb{R} . Hence, the set $\bigcap_{i=2}^{k+1} S_i$ is open.

Since the intersection of two open subsets of \mathbb{R} is open, then $S_1 \cap (\bigcap_{i=2}^{k+1} S_i)$ is open. Hence, the set $\bigcap_{i=1}^{k+1} S_i$ is open, as desired. \Box

Proposition 9. Let $\{S_i : i \in \mathbb{N}\}$ be a family of open subsets of \mathbb{R} indexed by \mathbb{N} . Then is $\bigcap_{i=1}^{\infty} S_i$ is open?

Solution.

Let $\{S_i : i \in \mathbb{N}\} = \{S_1, S_2, S_3, ...\}$ be a family of open subsets of \mathbb{R} .

Then each S_i is an open subset of \mathbb{R} , for $i \in \mathbb{N}$.

We must prove the set $\bigcap_{i=1}^{\infty} S_i$ is an open subset of \mathbb{R} .

We can't use an induction argument because we can't define a predicate in terms of a natural number.

We need to use a different approach, such as the one used to prove $S \cap T$ is open.

To prove $\bigcap_{i=1}^{\infty} S_i$ is an open set, we must prove every point in $\bigcap_{i=1}^{\infty} S_i$ is an interior point of $\bigcap_{i=1}^{\infty} S_i$. Thus, let $p \in \bigcap_{i=1}^{\infty} S_i$ be arbitrary. Then $(\forall i \in \mathbb{N})(p \in S_i)$. Hence, let $i \in \mathbb{N}$ be particular such that $p \in S_i$ for some particular set S_i .

Then set S_i is a particular open subset of \mathbb{R} such that $p \in S_i$ for some particular $i \in \mathbb{N}$.

To prove p is an interior point of $\bigcap_{i=1}^{\infty} S_i$, we must prove $(\exists \delta > 0)(N(p; \delta) \subset \bigcap_{i=1}^{\infty} S_i)$.

How do we prove $N(p; \delta) \subset \bigcap_{i=1}^{\infty} S_i$?

We assume $x \in N(p; \delta)$. To prove $x \in \bigcap_{i=1}^{\infty} S_i$, we must prove $(\forall i \in \mathbb{N})(x \in S_i)$.

Since S_i is an open subset of \mathbb{R} , then every point in S_i is an interior point of S_i .

Hence, in particular, since $p \in S_i$, then p must be an interior point of S_i . Therefore, $(\exists \delta_1 > 0)(N(p; \delta_1) \subset S_i)$.

If we could show $x \in N(p; \delta_1)$, then we could argue $x \in N(p; \delta_1) \subset S_i \Rightarrow x \in S_i$. Since $x \in N(p; \delta)$ and we want $x \in N(p; \delta_1)$, we choose $\delta = \delta_1$.

Thus, let $\delta = \delta_1$.

Then $\delta = \delta_1 > 0$, so $\delta > 0$, as desired.

To prove $N(p; \delta) \subset \bigcap_{i=1}^{\infty} S_i$, we assume $x \in N(p; \delta)$. To prove $x \in \bigcap_{i=1}^{\infty} S_i$, we must prove $(\forall i \in \mathbb{N})(x \in S_i)$.

Since $x \in N(p; \delta) = N(p; \delta_1) \subset S_i$, then $x \in S_i$.

But, this only proves x is in a particular open subset S_i . It does not prove x is in every open subset S_i . Therefore, we cannot conclude $\bigcap_{i=1}^{\infty} S_i$ is necessarily open. It's possible it might, but not solely based on the given information. \Box

Proposition 10. Let S and T be open subsets of \mathbb{R} . Then $S \cup T$ is open.

Solution. To prove $S \cup T$ is open, we must prove every point in $S \cup T$ is an interior point.

Thus, let $p \in S \cup T$ be arbitrary.

To prove p is an interior point of $S \cup T$, we must find $\delta > 0$ such that $N(p; \delta) \subset S \cup T$.

Since $p \in S \cup T$, then either $p \in S$ or $p \in T$.

We consider these cases separately.

Case 1: Suppose $p \in S$.

Since S is open, then every point in S is an interior point of S. Hence, in particular, p is an interior point of S. Therefore, $N(p; \delta_1) \subset S$ for some $\delta_1 > 0$. Let $\delta = \delta_1$. Then $\delta > 0$.

We must prove $N(p; \delta) \subset S \cup T$.

Since $\delta = \delta_1$, then $N(p; \delta) = N(p; \delta_1)$.

Since $N(p; \delta_1) \subset S$, then $N(p; \delta) \subset S$.

Since $N(p; \delta) \subset S$ and $S \subset S \cup T$, then by transitivity of \subset , $N(p; \delta) \subset S \cup T$.

Therefore, $N(p; \delta) \subset S \cup T$ for $\delta = \delta_1$.

Case 2: Suppose $p \in T$.

Since T is open, then every point in T is an interior point of T. Hence, in particular, p is an interior point of T. Therefore, $N(p; \delta_2) \subset T$ for some $\delta_2 > 0$. Let $\delta = \delta_2$. Then $\delta > 0$. We must prove $N(p; \delta) \subset S \cup T$. Since $\delta = \delta_2$, then $N(p; \delta) = N(p; \delta_2)$. Since $N(p; \delta_2) \subset T$, then $N(p; \delta) \subset T$. Since $N(p; \delta) \subset T$ and $T \subset S \cup T$, then by transitivity of \subset , $N(p; \delta) \subset S \cup T$. Therefore, $N(p; \delta) \subset S \cup T$ for $\delta = \delta_2$.

Therefore, in all cases, for some $\delta > 0$, $N(p; \delta) \subset S \cup T$, as desired.

Proof. To prove set $S \cup T$ is open, we must prove every point in $S \cup T$ is an interior point of $S \cup T$.

Let p be an arbitrary point in $S \cup T$.

To prove p is an interior point of $S \cup T$, we must find a positive δ such that the δ neighborhood of p, $N(p; \delta)$, is contained in $S \cup T$; that is, we will show there is some positive δ such that $N(p; \delta) \subset S \cup T$.

Since $p \in S \cup T$, then either $p \in S$ or $p \in T$.

We consider these cases separately.

Case 1: Suppose $p \in S$.

Since S is open, then every point in S is an interior point of S. Hence, in particular, p is an interior point of S. Therefore, $N(p; \delta_1) \subset S$ for some $\delta_1 > 0$.

Let $\delta = \delta_1$. Then $\delta > 0$.

Observe that $N(p; \delta) = N(p; \delta_1) \subset S \subset S \cup T$. Hence, $N(p; \delta) \subset S \cup T$.

Therefore, $N(p; \delta) \subset S \cup T$ for some positive δ .

Case 2: Suppose $p \in T$.

Since T is open, then every point in T is an interior point of T. Hence, in particular, p is an interior point of T. Therefore, $N(p; \delta_2) \subset T$ for some $\delta_2 > 0$.

Let $\delta = \delta_2$. Then $\delta > 0$.

Observe that $N(p; \delta) = N(p; \delta_2) \subset T \subset S \cup T$. Hence, $N(p; \delta) \subset S \cup T$. Therefore, $N(p; \delta) \subset S \cup T$ for some positive δ .

Thus, in all cases, there is some positive δ such that the δ neighborhood of p is contained in $S \cup T$, as desired.

Exercise 11. If S_1, S_2 and S_3 are open subsets of \mathbb{R} , then $S_1 \cup S_2 \cup S_3$ is an open subset of \mathbb{R} .

Solution.

To prove $S_1 \cup S_2 \cup S_3$ is an open subset of \mathbb{R} , we must prove every point in $S_1 \cup S_2 \cup S_3$ is an interior point of $S_1 \cup S_2 \cup S_3$. Thus, let p be an arbitrary point in $S_1 \cup S_2 \cup S_3$. To prove p is an interior point of $S_1 \cup S_2 \cup S_3$, we must show there exists some $\delta > 0$ such that the δ neighborhood of p is contained entirely in $S_1 \cup S_2 \cup S_3$; that is, we must show $N(p; \delta) \subset S_1 \cup S_2 \cup S_3$ for some $\delta > 0$.

Since $p \in S_1 \cup S_2 \cup S_3$, then either $p \in S_1$ or $p \in S_2$ or $p \in S_3$.

We consider these cases separately.

Case 1: Suppose $p \in S_1$.

Since S_1 is an open set, then every point in S_1 is an interior point of S_1 . Hence, in particular, p is an interior point of S_1 . Thus, there exists a positive δ_1 such that the δ_1 neighborhood of p is contained entirely in S_1 ; that is, $N(p; \delta_1) \subset S_1$ for some $\delta_1 > 0$.

Let $\delta = \delta_1$. Then $\delta > 0$.

We must prove $N(p; \delta) \subset S_1 \cup S_2 \cup S_3$.

Since $\delta = \delta_1$, then $N(p; \delta) = N(p; \delta_1)$. Since $N(p; \delta_1) \subset S_1$, then $N(p; \delta) \subset S_1$. We want to prove $N(p; \delta) \subset S_1 \cup S_2 \cup S_3$, so if we could prove $S_1 \subset S_1 \cup S_2 \cup S_3$, then we'd be done because of transitivity of \subset relation.

We know that for any set X, X is a subset of a finite union of X and any number of sets, so in particular, S is a subset of a finite union of 3 sets, S_1, S_2 , and S_3 . Therefore, $S_1 \subset S_1 \cup S_2 \cup S_3$.

Since $N(p; \delta) \subset S_1$ and $S_1 \subset S_1 \cup S_2 \cup S_3$, then $N(p; \delta) \subset S_1 \cup S_2 \cup S_3$. Hence, $N(p; \delta) \subset S_1 \cup S_2 \cup S_3$ for some positive δ .

Case 2: Suppose $p \in S_2$.

Since S_2 is an open set, then every point in S_2 is an interior point of S_2 . Hence, in particular, p is an interior point of S_2 . Thus, there exists a positive δ_2 such that the δ_2 neighborhood of p is contained entirely in S_2 ; that is, $N(p; \delta_2) \subset S_2$ for some $\delta_2 > 0$.

Let $\delta = \delta_2$. Then $\delta > 0$.

We must prove $N(p; \delta) \subset S_1 \cup S_2 \cup S_3$.

Since $\delta = \delta_2$, then $N(p; \delta) = N(p; \delta_2)$. Since $N(p; \delta_2) \subset S_2$, then $N(p; \delta) \subset S_2$.

Since $N(p; \delta) \subset S_2$ and $S_2 \subset S_1 \cup S_2 \cup S_3$, then $N(p; \delta) \subset S_1 \cup S_2 \cup S_3$. Hence, $N(p; \delta) \subset S_1 \cup S_2 \cup S_3$ for some positive δ .

Case 3: Suppose $p \in S_3$.

Since S_3 is an open set, then every point in S_3 is an interior point of S_3 . Hence, in particular, p is an interior point of S_3 . Thus, there exists a positive δ_3 such that the δ_3 neighborhood of p is contained entirely in S_3 ; that is, $N(p; \delta_3) \subset S_3$ for some $\delta_3 > 0$.

Let $\delta = \delta_3$. Then $\delta > 0$.

We must prove $N(p; \delta) \subset S_1 \cup S_2 \cup S_3$.

Since $\delta = \delta_3$, then $N(p; \delta) = N(p; \delta_3)$. Since $N(p; \delta_3) \subset S_3$, then $N(p; \delta) \subset S_3$. Since $N(p; \delta) \subset S_3$ and $S_3 \subset S_1 \cup S_2 \cup S_3$, then $N(p; \delta) \subset S_1 \cup S_2 \cup S_3$.

Hence, $N(p; \delta) \subset S_1 \cup S_2 \cup S_3$ for some positive δ .

Therefore, in all cases, there is some positive δ such that the δ neighborhood of p is contained in $S_1 \cup S_2 \cup S_3$.

Proof. To prove $S_1 \cup S_2 \cup S_3$ is an open subset of \mathbb{R} , we must prove every point in $S_1 \cup S_2 \cup S_3$ is an interior point of $S_1 \cup S_2 \cup S_3$.

Let p be an arbitrary point in $S_1 \cup S_2 \cup S_3$.

To prove p is an interior point of $S_1 \cup S_2 \cup S_3$, we must find some positive δ such that the δ neighborhood of p is contained entirely in $S_1 \cup S_2 \cup S_3$; that is, we must show $N(p; \delta) \subset S_1 \cup S_2 \cup S_3$ for some $\delta > 0$.

Since $p \in S_1 \cup S_2 \cup S_3$, then either $p \in S_1$ or $p \in S_2$ or $p \in S_3$.

We consider these cases separately.

Case 1: Suppose $p \in S_1$.

Since S_1 is an open set, then every point in S_1 is an interior point of S_1 . Hence, in particular, p is an interior point of S_1 . Thus, there is some positive δ_1 such that the δ_1 neighborhood of p is contained entirely in S_1 ; that is, $N(p; \delta_1) \subset S_1$ for some $\delta_1 > 0$.

Let $\delta = \delta_1$. Then $\delta > 0$.

Since $\delta = \delta_1$ and $N(p; \delta_1) \subset S_1$, then $N(p; \delta) \subset S_1$.

Since $N(p; \delta) \subset S_1$ and $S_1 \subset S_1 \cup S_2 \cup S_3$, then $N(p; \delta) \subset S_1 \cup S_2 \cup S_3$.

Hence, $N(p; \delta) \subset S_1 \cup S_2 \cup S_3$ for some positive δ .

Case 2: Suppose $p \in S_2$.

Since S_2 is an open set, then every point in S_2 is an interior point of S_2 . Hence, in particular, p is an interior point of S_2 . Thus, there is some positive δ_2 such that the δ_2 neighborhood of p is contained entirely in S_2 ; that is, $N(p; \delta_2) \subset$ S_2 for some $\delta_2 > 0$.

Let $\delta = \delta_2$. Then $\delta > 0$. Since $\delta = \delta_2$ and $N(p; \delta_2) \subset S_2$, then $N(p; \delta) \subset S_2$. Since $N(p; \delta) \subset S_2$ and $S_2 \subset S_1 \cup S_2 \cup S_3$, then $N(p; \delta) \subset S_1 \cup S_2 \cup S_3$.

Hence, $N(p; \delta) \subset S_1 \cup S_2 \cup S_3$ for some positive δ .

Case 3: Suppose $p \in S_3$.

Since S_3 is an open set, then every point in S_3 is an interior point of S_3 . Hence, in particular, p is an interior point of S_3 . Thus, there is some positive δ_3 such that the δ_3 neighborhood of p is contained entirely in S_3 ; that is, $N(p; \delta_3) \subset$ S_3 for some $\delta_3 > 0$.

Let $\delta = \delta_3$. Then $\delta > 0$.

Since $\delta = \delta_3$ and $N(p; \delta_3) \subset S_3$, then $N(p; \delta) \subset S_3$.

Since $N(p; \delta) \subset S_3$ and $S_3 \subset S_1 \cup S_2 \cup S_3$, then $N(p; \delta) \subset S_1 \cup S_2 \cup S_3$. Hence, $N(p; \delta) \subset S_1 \cup S_2 \cup S_3$ for some positive δ .

Therefore, in all cases, there is some positive δ such that the δ neighborhood of p is contained in $S_1 \cup S_2 \cup S_3$.

Proposition 12. The union of any finite collection of open subsets of \mathbb{R} is open.

Solution.

The statement means: Let $n \in \mathbb{Z}, n \geq 0$. Let $\{S_1, S_2, S_3, ..., S_n\}$ be a finite collection of n open subsets of \mathbb{R} . Then each S_i is an open subset of \mathbb{R} , for i = 1, 2, 3, ..., n. We must prove $\cup_{i=1}^{n} S_i$ is an open subset of \mathbb{R} . Let $\mathbb{N}_n = \{1, 2, 3, ..., n\}$ be the domain of discourse. Define predicate $p(n) : \bigcup_{i=1}^{n} S_i$ is an open subset of \mathbb{R} over \mathbb{N}_n . To prove $\bigcup_{i=1}^{n} S_i$ is an open subset of \mathbb{R} , we must prove $(\forall n \in \mathbb{N}_n)(p(n))$. Let T be the truth set of p(n). Then $T = \{n \in \mathbb{N}_n : p(n)\}$, so $T \subset \mathbb{N}_n$. To prove $(\forall n \in \mathbb{N}_n)(p(n))$, we must prove $T = \mathbb{N}_n$. To prove $T = \mathbb{N}$, we use an induction argument. **Basis**:

To prove $1 \in T$, we must prove p(1) is true. Thus, we must prove $\bigcup_{i=1}^{1} S_i$ is an open subset of \mathbb{R} .

Since $\bigcup_{i=1}^{1} S_i = S_1$ and S_1 is an open subset of \mathbb{R} , then $\bigcup_{i=1}^{1} S_i$ is an open subset of \mathbb{R} , as desired.

Induction:

To prove T is inductive, we must prove $(\forall n \in \mathbb{N}_n)(n \in T \to n+1 \in T)$. Thus, we let $k \in \mathbb{N}_n$ be arbitrary such that $k \in T$. To prove $k + 1 \in T$, we must prove p(k+1) is true; that is, we must prove $\bigcup_{i=1}^{k+1} S_i$ is an open subset of \mathbb{R} . Since $k \in T$, then p(k) is true; that is, $\bigcup_{i=1}^{k} S_i$ is an open subset of \mathbb{R} . Hence,

the union of a collection of k open subsets of \mathbb{R} is open. Observe that $\bigcup_{i=1}^{k+1} S_i = S_1 \cup (\bigcup_{i=2}^{k+1} S_i)$.

We know S_1 is an open subset of \mathbb{R} . The set $\bigcup_{i=2}^{k+1} S_i$ is a collection of k+1-2+1=k open subsets of \mathbb{R} . Hence, $\bigcup_{i=2}^{k+1} S_i$ is open.

Since the union of two open subsets of \mathbb{R} is open, then $S_1 \cup (\bigcup_{i=2}^{k+1} S_i)$ is open. Hence, the set $\bigcup_{i=1}^{k+1} S_i$ is open, as desired.

Proof. Let $n \in \mathbb{Z}, n \geq 0$.

Let $\{S_1, S_2, S_3, ..., S_n\}$ be a finite collection of n open subsets of \mathbb{R} .

Then $\{S_1, S_2, S_3, ..., S_n\}$ is a collection of either zero open subsets of \mathbb{R} or of 1 or more open subsets of \mathbb{R} .

Since a collection of zero open subsets of $\mathbb R$ is empty, then we must prove two statements:

1. The empty set is an open subset of \mathbb{R} .

2. The set $\bigcup_{i=1}^{n} S_i$ is an open subset of \mathbb{R} , where each S_i is an open subset of \mathbb{R} , for i = 1, 2, 3, ..., n.

We prove the empty set is an open subset of \mathbb{R} .

Since the empty set is an open subset of \mathbb{R} , then we are done.

To prove the set $\bigcup_{i=1}^{n} S_i$ is an open subset of \mathbb{R} , we define the predicate $p(n) : \bigcup_{i=1}^{n} S_i$ is an open subset of \mathbb{R} .

To prove $\bigcup_{i=1}^{n} S_i$ is an open subset of \mathbb{R} , we must prove $(\forall n \in \mathbb{N}_n)(p(n))$. Let T be the truth set of p(n).

Then $T = \{n \in \mathbb{N}_n : p(n)\}$, so $T \subset \mathbb{N}_n$.

To prove $(\forall n \in \mathbb{N}_n)(p(n))$, we must prove $T = \mathbb{N}_n$.

To prove $T = \mathbb{N}_n$, we use an induction argument.

Basis:

To prove $1 \in T$, we must prove p(1) is true. Thus, we must prove $\bigcup_{i=1}^{1} S_i$ is an open subset of \mathbb{R} .

Since $\bigcup_{i=1}^{1} S_i = S_1$ and S_1 is an open subset of \mathbb{R} , then $\bigcup_{i=1}^{1} S_i$ is an open subset of \mathbb{R} , as desired.

Induction:

To prove T is inductive, we must prove $(\forall n \in \mathbb{N}_n)(n \in T \to n+1 \in T)$. Thus, we let k be an arbitrary natural number such that $k \in T$. To prove $k+1 \in T$, we must prove p(k+1) is true, so we must prove the set $\bigcup_{i=1}^{k+1} S_i$ is an open subset of \mathbb{R} .

Since $k \in T$, then p(k) is true, so the set $\bigcup_{i=1}^{k} S_i$ is an open subset of \mathbb{R} . Hence, the union of a collection of k open subsets of \mathbb{R} is open.

Observe that the union of a collection of k+1 open subsets of \mathbb{R} is $\bigcup_{i=1}^{k+1} S_i = S_1 \cup (\bigcup_{i=2}^{k+1} S_i)$.

We know the set S_1 is an open subset of \mathbb{R} . The set $\bigcup_{i=2}^{k+1} S_i$ is a collection of k+1-2+1=k open subsets of \mathbb{R} . Hence, the set $\bigcup_{i=2}^{k+1} S_i$ is open.

Since the union of two open subsets of \mathbb{R} is open, then $S_1 \cup (\bigcup_{i=2}^{k+1} S_i)$ is open. Hence, the set $\bigcup_{i=1}^{k+1} S_i$ is open, as desired.

Proposition 13. Let $\{S_i : i \in \mathbb{N}\}$ be a family of open subsets of \mathbb{R} indexed by \mathbb{N} . Then $\bigcup_{i=1}^{\infty} S_i$ is open.

Solution.

Let $\{S_i : i \in \mathbb{N}\} = \{S_1, S_2, S_3, ...\}$ be a family of open subsets of \mathbb{R} .

Then each S_i is an open subset of \mathbb{R} , for $i \in \mathbb{N}$.

We must prove the set $\bigcup_{i=1}^{\infty} S_i$ is an open subset of \mathbb{R} .

We can't use an induction argument because we can't define a predicate in terms of a natural number.

We need to use a different approach, such as the one used to prove $S \cup T$ is open.

To prove $\bigcup_{i=1}^{\infty} S_i$ is an open set, we must prove every point in $\bigcup_{i=1}^{\infty} S_i$ is an interior point of $\bigcup_{i=1}^{\infty} S_i$. Thus, let $p \in \bigcup_{i=1}^{\infty} S_i$ be arbitrary. Then $(\exists i \in \mathbb{N}) (p \in S_i)$.

Hence, let S_i be an arbitrary open subset of \mathbb{R} such that $p \in S_i$ for some $i \in \mathbb{N}$.

To prove p is an interior point of $\bigcup_{i=1}^{\infty} S_i$, we must prove $(\exists \delta > 0)(N(p; \delta) \subset \bigcup_{i=1}^{\infty} S_i)$.

How do we prove $N(p; \delta) \subset \bigcup_{i=1}^{\infty} S_i$?

We assume $x \in N(p; \delta)$. To prove $x \in \bigcup_{i=1}^{\infty} S_i$, we must prove $(\exists i \in \mathbb{N})(x \in S_i)$.

Since S_i is an arbitrary open subset of \mathbb{R} , then every point in S_i is an interior point of S_i .

Hence, in particular, since $p \in S_i$, then p must be an interior point of S_i . Therefore, $(\exists \delta_1 > 0)(N(p; \delta_1) \subset S_i)$.

If we could show $x \in N(p; \delta_1)$, then we could argue $x \in N(p; \delta_1) \subset S_i \Rightarrow x \in S_i$. Since $x \in N(p; \delta)$ and we want $x \in N(p; \delta_1)$, we choose $\delta = \delta_1$.

We know δ will be a function of p (indirectly it is, because δ is in terms of δ_1 which is in terms of p).

Thus, let $\delta = \delta_1$.

Proof. Let $\{S_i : i \in \mathbb{N}\}$ be a family of open subsets of \mathbb{R} .

Then each set S_i is an open subset of \mathbb{R} , for $i \in \mathbb{N}$.

To prove the set $\bigcup_{i=1}^{\infty} S_i$ is an open subset of \mathbb{R} , we must prove every point in $\bigcup_{i=1}^{\infty} S_i$ is an interior point of $\bigcup_{i=1}^{\infty} S_i$.

Let $p \in \bigcup_{i=1}^{\infty} S_i$ be arbitrary.

To prove p is an interior point of $\bigcup_{i=1}^{\infty} S_i$, we must prove $(\exists \delta > 0)(N(p; \delta) \subset \bigcup_{i=1}^{\infty} S_i)$.

Since $p \in \bigcup_{i=1}^{\infty} S_i$, then $(\exists i \in \mathbb{N}) (p \in S_i)$.

Hence, let S_i be an arbitrary open subset of \mathbb{R} such that $p \in S_i$ for some $i \in \mathbb{N}$.

Since S_i is open, then every point in S_i is an interior point of S_i .

Hence, in particular, since $p \in S_i$, then p must be an interior point of S_i . Therefore, $(\exists \delta_1 > 0)(N(p; \delta_1) \subset S_i)$.

Let $\delta = \delta_1$.

Then $\delta = \delta_1 > 0$, so $\delta > 0$, as desired.

To prove $N(p; \delta) \subset \bigcup_{i=1}^{\infty} S_i$, we assume $x \in N(p; \delta)$. To prove $x \in \bigcup_{i=1}^{\infty} S_i$, we must prove $(\exists i \in \mathbb{N}) (x \in S_i)$.

Since $x \in N(p; \delta) = N(p; \delta_1) \subset S_i$, then $x \in S_i$, as desired.

Proposition 14. The empty set is closed.

Solution.

The conclusion is: \emptyset is closed.

A set S is closed iff every point of accumulation of S is in S. A set S is not closed iff some point of accumulation of S is not in S.

To prove \emptyset is closed or not, we must know whether \emptyset has any points of accumulation.

Let's suppose \emptyset has some point of accumulation.

Let a be an arbitrary point of accumulation of \emptyset . Then every deleted δ neighborhood of a intersects \emptyset . Hence, for every $\delta > 0$, $N'(a; \delta) \cap \emptyset \neq \emptyset$.

But, we know $A \cap \emptyset = \emptyset$ for every set A. Thus, the set $N'(a; \delta) \cap \emptyset$ must equal \emptyset . Hence, it cannot be the case that \emptyset has some point of accumulation. Therefore, \emptyset has no points of accumulation.

We use proof by contradiction. Suppose \emptyset is not closed. Then there exists some point of accumulation that is not in \emptyset . But, \emptyset has no points of accumulation, so \emptyset cannot be not closed. Therefore, \emptyset must be closed.

Proof. Suppose the empty set has a point of accumulation. Let a be an arbitrary point of accumulation of \emptyset . Then every deleted δ neighborhood of a intersects \emptyset . Hence, for every $\delta > 0$, $N'(a; \delta) \cap \emptyset \neq \emptyset$. Let δ be an arbitrary positive real number. Then $N'(a; \delta) \cap \emptyset \neq \emptyset$.

Since $A \cap \emptyset = \emptyset$ for every set A, then in particular, the set $N'(a; \delta) \cap \emptyset$ must equal \emptyset . Hence, it cannot be the case that \emptyset has some point of accumulation. Therefore, \emptyset has no points of accumulation.

We use proof by contradiction. Suppose \emptyset is not closed. Then there exists some point of accumulation of \emptyset that is not in \emptyset . But, \emptyset has no points of accumulation, so there cannot exist some point of accumulation of \emptyset that is not in \emptyset . Hence, \emptyset cannot be not closed. Therefore, \emptyset must be closed.

Proposition 15. \mathbb{R} is a closed subset of itself.

Solution.

To prove \mathbb{R} is closed, we must prove every point of accumulation of \mathbb{R} is in \mathbb{R} .

Let p be an arbitrary point of accumulation of \mathbb{R} .

We must prove $p \in \mathbb{R}$.

By definition of point of accumulation, p is a real number.

Proof. To prove \mathbb{R} is closed, we must prove every point of accumulation of \mathbb{R} is in \mathbb{R} .

Let p be an arbitrary point of accumulation of \mathbb{R} .

We must prove $p \in \mathbb{R}$.

By definition of point of accumulation, p is a real number, so $p \in \mathbb{R}$, as desired.

Proposition 16. Any interval of the form [a, b], where $a \neq b$, is a closed subset of \mathbb{R} .

Solution. The statement to prove is:

Every interval of the form [a, b] with $a \neq b$ is a closed subset of \mathbb{R} .

This statement has the form $\forall x.p(x)$.

Thus, let [a, b] be an arbitrary interval such that $a \neq b$.

To prove [a, b] is a closed subset of \mathbb{R} , we must prove every point of accumulation of [a, b] is in [a, b].

Hence, we must prove $(\forall p)(p \in [a, b])$, where p is a point of accumulation of [a, b].

Therefore, let p be an arbitrary point of accumulation of [a, b].

We must prove $p \in [a, b]$.

Since $a \neq b$, then either a < b or a > b.

We consider these cases separately.

Case 1: Suppose a < b.

Either p < a or $p \in [a, b]$ or p > b.

We can draw a picture of this scenario.

Suppose p < a.

Since p is a point of accumulation of [a, b], then every deleted δ neighborhood of p intersects [a, b].

Hence, for every $\delta > 0$, $N'(p; \delta) \cap [a, b] \neq \emptyset$.

Let $\delta = a - p$.

Since p < a, then a > p, so a - p > 0, so $\delta > 0$, as desired.

Since the set $N'(p; \delta) \cap [a, b]$ is not empty, then there exists some element x in both $N'(p; \delta)$ and [a, b].

Let x be an arbitrary element of both $N'(p; \delta)$ and [a, b].

Since $x \in N'(p; \delta)$, then $p - \delta < x < p + \delta$, so p - (a - p) < x < p + (a - p). Thus, 2p - a < x < a, so x < a.

Since $x \in [a, b]$, then $a \le x \le b$, so $a \le x$.

Hence, we have x < a and $x \ge a$, which violates the trichotomy law of \mathbb{R} . Therefore, p cannot be less than a.

Suppose p > b. Let $\delta = p - b$. Since p > b, then p - b > 0, so $\delta > 0$, as desired. Since the set $N'(p; \delta) \cap [a, b]$ is not empty, then there exists some element x in both $N'(p; \delta)$ and [a, b].

Let x be an arbitrary element of both $N'(p; \delta)$ and [a, b].

Since $x \in N'(p; \delta)$, then $p - \delta < x < p + \delta$, so p - (p - b) < x < p + (p - b). Thus, b < x < 2p - b, so b < x.

Since $x \in [a, b]$, then $a \le x \le b$, so $x \le b$.

Hence, we have x > b and $x \leq b$, which violates the trichotomy law of \mathbb{R} . Therefore, p cannot be greater than b.

Thus, since neither p can be less than a nor greater than b, then the only possibility is that p must be in [a, b]. Therefore, $p \in [a, b]$, as desired.

Proof. To prove every interval of the form [a, b] with $a \neq b$ is a closed subset of \mathbb{R} , let [a, b] be an arbitrary interval such that $a \neq b$ for real numbers a and b.

To prove [a, b] is a closed subset of \mathbb{R} , we must prove every point of accumulation of [a, b] is in [a, b].

Let p be an arbitrary point of accumulation of [a, b]. We must prove $p \in [a, b]$. Since $a \neq b$, then either a < b or a > b. We consider these cases separately. Case 1: Suppose a < b. Either p < a or $p \in [a, b]$ or p > b. Since p is a point of accumulation of [a, b], then every deleted δ neighborhood of p intersects [a, b]. Hence, for every $\delta > 0$, $N'(p; \delta) \cap [a, b] \neq \emptyset$. Suppose p < a. Let $\delta = a - p$. Since p < a, then a > p, so a - p > 0, so $\delta > 0$, as desired. Since the set $N'(p; \delta) \cap [a, b]$ is not empty, then there exists some element x in both $N'(p; \delta)$ and [a, b]. Let x be an arbitrary element of both $N'(p; \delta)$ and [a, b]. Since $x \in N'(p; \delta)$, then $p - \delta < x < p + \delta$, so p - (a - p) < x < p + (a - p). Thus, 2p - a < x < a, so x < a. Since $x \in [a, b]$, then $a \leq x \leq b$, so $a \leq x$. Hence, we have x < a and $x \ge a$, which violates the trichotomy law of \mathbb{R} . Therefore, p cannot be less than a. Suppose p > b. Let $\delta = p - b$. Since p > b, then p - b > 0, so $\delta > 0$, as desired. Since the set $N'(p; \delta) \cap [a, b]$ is not empty, then there exists some element x in both $N'(p; \delta)$ and [a, b]. Let x be an arbitrary element of both $N'(p; \delta)$ and [a, b]. Since $x \in N'(p; \delta)$, then $p - \delta < x < p + \delta$, so p - (p - b) < x < p + (p - b). Thus, b < x < 2p - b, so b < x. Since $x \in [a, b]$, then $a \le x \le b$, so $x \le b$. Hence, we have x > b and $x \leq b$, which violates the trichotomy law of \mathbb{R} . Therefore, p cannot be greater than b. Thus, since p can be neither less than a nor greater than b, then the only possibility is that p must be in [a, b]. Therefore, $p \in [a, b]$, as desired. Case 2: Suppose a > b. Suppose the interval [a, b] is not empty. Then there exists some element in [a,b]. Let x be an arbitrary real number in [a,b]. Then $a \leq x$ and $x \leq b$. Therefore, $a \leq b$. By trichotomy, it is impossible that $a \leq b$ and a > b. Therefore [a, b] must be empty, so $[a, b] = \emptyset$.

Since the empty set is a closed set of \mathbb{R} , then [a, b] is also a closed set of \mathbb{R} , as desired.

Proposition 17. If S is a closed subset of \mathbb{R} , then its complement is an open subset of \mathbb{R} .

Solution. Hypothesis is: $S \subset \mathbb{R}$ and S is a closed set.

Conclusion is: \overline{S} is an open set.

Using a direct approach does not lead anywhere, especially because it is difficult to use the hypothesis.

We must try a different approach. We'll try an indirect proof using contradiction.

Thus, we'll assume the complement is not open.

Suppose for the sake of contradiction that \overline{S} is not open. Then there is some point of \overline{S} that is not an interior point of \overline{S} .

Let p be an arbitrary point of \overline{S} that is not an interior point of \overline{S} . Then no δ neighborhood of p is contained in \overline{S} . Hence, every δ neighborhood of p is not contained in \overline{S} . Thus, every δ neighborhood of p contains at least some point not in \overline{S} , so every δ neighborhood of p contains some point in S. Since $p \notin S$, then every deleted δ neighborhood of p contains some point in S. Hence, p is a point of accumulation of S. Since S is closed, then every point of accumulation of S must be contained in S. Hence, p must be contained in S. Thus, $p \in S$ and $p \in \overline{S}$, so $p \in S \cap \overline{S}$. Hence, $p \in \emptyset$, a contradiction. Therefore, \overline{S} must be open.

Proof. Suppose for the sake of contradiction that the complement of S,\overline{S} , is not open. Then there is some point in \overline{S} that is not an interior point of \overline{S} .

Let p be an arbitrary point in \overline{S} that is not an interior point of \overline{S} . Then no δ neighborhood of p is contained in \overline{S} , so every δ neighborhood of p is not contained in \overline{S} . Thus, every δ neighborhood of p contains at least some point not in \overline{S} , so every δ neighborhood of p contains some point in S. Since p is not in S, then every deleted δ neighborhood of p contains some point in S. Hence, p is a point of accumulation of S. Since S is closed, then every point of accumulation of S must be contained in S. Hence, p must be contained in S, so $p \in S$. Since $p \in S$ and $p \in \overline{S}$, then $p \in S \cap \overline{S}$. Hence, $p \in \emptyset$, a contradiction. Therefore, \overline{S} must be open.

Theorem 18. Fermat's Theorem

Let f be a real valued function defined on open interval (a,b). If $f(x_0)$ is a relative maximum on (a,b) and $f'(x_0)$ exists, then $f'(x_0) = 0$.

Solution.

Let us define propositions: Let $H_1 : f(x_0)$ is a relative maximum on (a, b). Let $H_2 : f'(x_0)$ exists. Let $C : f'(x_0) = 0$. We must prove: $(H_1 \wedge H_2) \rightarrow C$. There does not seem to be a way to deduce C directly. So, let's try an indirect approach. Let's use proof by contradiction.

Suppose $f'(x_0) \neq 0$. Then either $f'(x_0) > 0$ or $f'(x_0) < 0$.

We consider these cases separately.

Case 1: Suppose $f'(x_0) > 0$.

How can we derive a contradiction given that $f(x_0)$ is a relative maximum on (a, b)?

We have $f'(x_0) > 0$ and if we draw picture, then we intuitively see there is some $x < x_0$ such that $f(x) < f(x_0)$. Further, there if $x > x_0$ then $f(x) > f(x_0)$. So, we should prove this and use this result.

Proof. Suppose for the sake of contradiction that $f'(x_0) \neq 0$. Then either $f'(x_0) > 0$ or $f'(x_0) < 0$.

We consider these cases separately. Case 1: Suppose $f'(x_0) > 0$.

Proof. How do we know we can even choose $\delta > 0$?

Let \triangle be a positive real number less than δ .

We consider the limit from the right.

Let x be an arbitrary real number such that $x = x_0 + \Delta x$. Since $f(x_0)$ is a relative maximum, then $f(x_0) \ge f(x)$ for every x in $N(x_0; \delta)$. Thus, $f(x_0) - f(x) \ge 0$, so $f(x) - f(x_0) \le 0$. Since $\triangle x > 0$, then $x - x_0 > 0$ 0. Hence, $\frac{f(x)-f(x_0)}{x-x_0} \leq 0$. Thus, we need to fill in details to show that $\lim_{x\to x_0^+} \frac{f(x)-f(x_0)}{x-x_0} \leq 0$. Let $L_1 = \lim_{x\to x_0^+} \frac{f(x)-f(x_0)}{x-x_0} \leq 0$. We consider the limit from the left. Let x be an arbitrary real number such

that $x = x_0 - \Delta x$. Since $f(x_0)$ is a relative maximum, then $f(x_0) \ge f(x)$ for every x in $N(x_0; \delta)$. Thus, $f(x_0) - f(x) \ge 0$, so $f(x) - f(x_0) \le 0$. Since $\Delta x > 0$, then $x_0 - x > 0$, so $x - x_0 < 0$. Hence, $\frac{f(x) - f(x_0)}{x - x_0} \ge 0$. Since $\Delta x > 0$, then $x_0 - x > 0$, so $x - x_0 < 0$. Hence, $\frac{f(x) - f(x_0)}{x - x_0} \ge 0$. Thus, we need to fill in details to show that $\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$. Let $L_2 = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$. Since the $f'(x_0)$ exists and $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$,

let $L = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$. Since the left and right limits must exist and equal L, then $L_1 = L_2 = L$. Since $L_1 \leq 0$ and $L_1 = L$, then $L \leq 0$. Since $L_2 \geq 0$ and $L_2 = L$, then $L \geq 0$. Since $L \leq 0$ and $0 \leq L$, then by the antisymmetric property of $\leq L = 0$. Therefore, $f'(x_0) = 0$, as desired.