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Proposition 1. Every interval in R1 is convex.

Solution.

Proof. Let I be an arbitrary interval in R1. To prove I is convex, let v and
w be arbitrary elements of I and let t be an arbitrary real number such that
0 ≤ t ≤ 1. We must prove tv + (1− t)w ∈ I.

Since 0 ≤ t ≤ 1, then either t = 0 or t = 1 or 0 < t < 1.
We consider these cases separately.
Case 1: Suppose t = 0.
Then tv+ (1− t)w = 0v+ (1− 0)w = w. Since w ∈ I and w = tv+ (1− t)w,

then tv + (1− t)w ∈ I.
Case 2: Suppose t = 1.
Then tv + (1− t)w = 1v + (1− 1)w = v. Since v ∈ I and v = tv + (1− t)w,

then tv + (1− t)w ∈ I.
Case 3: Suppose 0 < t < 1.
Then 0 < t and t < 1.
By trichotomy, either v = w or v < w or w < v.
We consider these cases separately.
Case 3a: Suppose v = w.
Then tv + (1 − t)w = tv + w − tw = tv + w − tv = w. Since w ∈ I, then

tv + (1− t)w ∈ I.
Case 3b: Suppose v < w.
Since t < 1, then 0 < 1− t, so 1− t > 0.
Let c = tv + (1− t)w. Then c = tv + w − tw.
Observe that

(1− t)v < (1− t)w
v − tv < w − tw

v < tv + w − tw
v < c



Since t > 0, then tv < tw.
Observe that

tv − tw < 0

tv − tw + w < w

c < w

Thus, v < c and c < w, so v < c < w. Since v ∈ I and w ∈ I and v < c < w,
then by definition of interval, c ∈ I. Hence, tv + (1− t)w ∈ I.

Case 3c: Suppose w < v.
Let c = tv + (1− t)w. Then c = tv + w − tw.
Since t > 0, then tw < tv.
Observe that

0 < tv − tw
w < tv − tw + w

w < c

Since t < 1, then 0 < 1− t, so 1− t > 0. Thus, (1− t)w < (1− t)v.
Observe that

w − tw < v − tv
tv + w − tw < v

c < v

Thus, w < c and c < v, so w < c < v. Since w ∈ I and v ∈ I and w < c < v,
then by definition of interval, c ∈ I. Hence, tv + (1− t)w ∈ I.

Proposition 2. Let S be a convex subset of R. Then S is an interval.

Solution. Our hypothesis is:
1. S ⊂ R.
2. S is convex.
The conclusion is: S is an interval.
To prove S is an interval, let a, b, c ∈ R be arbitrary such that a, b ∈ S and

a < c < b. We must prove c ∈ I.
Since S is convex, then for every v, w ∈ S and for every t ∈ [0, 1], tv + (1−

t)w ∈ S.
Thus, we’d like c = ta+ (1− t)b for some t ∈ [0, 1].
Hence, we must find some t ∈ [0, 1] such that c = ta+ (1− t)b.
Work backwards. Suppose c = ta + (1 − t)b. We want t in terms of a, b, c.

Thus, if we solve for t, then t = b−c
b−a . We must now show that t ∈ [0, 1]; that is,

prove 0 ≤ t ≤ 1. We use the hypotheses to show 0 < t < 1.

Proof. Let S be a convex subset of R. To prove S is an interval, let a, b, and c
be arbitrary real numbers such that a < c < b.
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We must prove c ∈ S. Let t = b−c
b−a . Since a < c < b, then a < c and c < b.

Thus, a < b. Since 0 < b− c and 0 < b− a, then b−c
b−a > 0. Hence, t > 0. Since

a < c, then −a > −c, so b − a > b − c. Since b − a > 0, we divide to obtain
1 > b−c

b−a . Thus, 1 > t. Since 0 < t and t < 1, then 0 < t < 1, so t ∈ [0, 1].
Observe that

t =
b− c
b− a

tb− ta = b− c
c = b+ ta− tb
c = ta+ (1− t)b

Since S is convex, then for every v, w ∈ S and for every t ∈ [0, 1], tv + (1−
t)w ∈ S. Hence, in particular, since t ∈ [0, 1], then ta + (1 − t)b ∈ S. Thus,
c ∈ S, as desired.

Proposition 3. The empty set is open.

Solution.
The conclusion is: ∅ is open.
A set S is open iff (∀p ∈ S)(p is an interior point of S). A set is not open

iff ¬(∀p ∈ S)(p is not an interior point of S) ⇔ (∃p ∈ S)(p is not an interior
point).

We use proof by contradiction. Thus,we assume the negation of the conclu-
sion: Hence, we assume ∅ is not open; that is, we assume (∃p ∈ S)(p is not an
interior point).

Suppose ∅ is not open. Then there is some point p ∈ ∅ such that p is not an
interior point. But, ∅ has no elements, so there can be no point p ∈ ∅ such that
p is not an interior point. Therefore, ∅ is open.

Proof. Suppose for the sake of contradiction that the empty set ∅ is not open.
Then there is some point p in ∅ such that p is not an interior point. But, the
empty set has no elements, so there can be no point point p in ∅ such that p is
not an interior point. Therefore, ∅ cannot be not open, so ∅ must be open.

Proposition 4. R is an open subset of itself.

Solution. Intuitively, this seems obvious because no matter how large δ > 0 is,
the δ neighborhood of a point p ∈ R is always a subset of R.

To prove R is open, we must prove every point in R is an interior point of
R. Let p ∈ R be arbitrary. To prove p is an interior point, we must prove
(∃δ > 0)(N(p; δ) ⊂ R).

To prove N(p; δ) ⊂ R, let x ∈ N(p; δ) be arbitrary. We must prove x ∈ R.
Since x ∈ N(p; δ), then x ∈ R and |p − x| < δ. Therefore, x ∈ R. This is

true regardless of the value of δ chosen. Hence, we may choose any positive δ.
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Proof. To prove R is an open set, we must prove every point in R is an interior
point of R.

Let p be an arbitrary real number.
To prove p is an interior point of R, we will show there is some positive δ

such that the δ neighborhood of p is contained in R.
By definition, the δ neighborhood of p is a subset of R for every positive δ.

Thus, if we let δ = 1, then N(p; 1) ⊂ R, as desired.

Proposition 5. Any interval of the form (a, b), where a 6= b, is an open subset
of R.

Solution. The statement to prove is:
Every interval of the form (a, b) with a 6= b is an open subset of R.
This statement has the form ∀x.p(x).
Thus, let (a, b) be an arbitrary interval such that a 6= b.
To prove (a, b) is an open subset of R, we must prove every point in (a, b) is

an interior point of (a, b).
Hence, we must prove (∀x ∈ (a, b))(∃δ > 0)(N(x; δ) ⊂ (a, b)).
Therefore, let p ∈ (a, b) be arbitrary.
We must prove (∃δ > 0)(N(p; δ) ⊂ (a, b)).
Since a 6= b, then either a < b or a > b.
We consider these cases separately.
To prove N(p; δ) ⊂ (a, b), assume x ∈ N(p; δ). We must prove x ∈ (a, b);

that is, prove a < x and x < b.
Case 1: Suppose a < b.
Since we want N(p; δ) ⊂ (a, b) for some δ > 0, we must find a suitable value

for δ that will guarantee this condition. How do we find δ?
We can draw a picture of this scenario(ie, a number line with interval (a, b)

with point p between a and b and with some δ such that p− δ is between a and
p and p+ δ is between p and b.

Thus, we must find δ > 0 such that a < p − δ < p and p < p + δ < b. Any
such δ > 0 that satisfies these conditions will work. Thus, we can choose δ such
that p− δ is the midpoint of (a, p and such that p+ δ is the midpoint of (p, b).
Thus, p− δ = (a+ p)/2 and p+ δ = (p+ b)/2.

We know from predicate logic that δ must be a function of p, a, b.
Since we want x such that a < x < b, let’s solve for a and b.
Solving for a in the first equation we have 2p− 2δ = a+ p, so a = p− 2δ.
Solving for b in the second equation we have 2p+ 2δ = p+ b, so b = p+ 2δ.
Now, we can eliminate p in these equations to find a relationship between

a, b, δ.
Thus, solving for p in equation a = p − 2δ, we obtain p = a + 2δ. Now,

substituting into equation b = p+2δ, we obtain b = (a+2δ)+2δ), so δ = (b−a)/4.
Therefore, we let δ = (b− a)/4.
We note that this proposition asserts an open interval (a, b) is an open set

whenever a and b are distinct.
We should note that if a = b, then (a, b) = {x ∈ R : a < x < a} = ∅. We

know ∅ is an open set. Hence, in general, every open interval is an open set.
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Proof. To prove every interval of the form (a, b) with a 6= b is an open subset of
R, let (a, b) be an arbitrary interval such that a 6= b for real numbers a and b.

We must prove (a, b) is an open subset of R.
Since a 6= b, then either a < b or a > b.
We consider these cases separately.
Case 1: Suppose a < b.
To prove (a, b) is an open subset of R, we must prove every point in (a, b) is

an interior point of (a, b).
Let p be an arbitrary point in (a, b).
To prove p is an interior point of (a, b), we must prove there is some positive

δ such that the δ neighborhood is contained in (a, b).
Let p− δ be the midpoint of a and p.
Let p+ δ be the midpoint of p and b.
Then p− δ = a+p

2 and p+ δ = p+b
2 . Since p− δ = a+p

2 , then 2p− 2δ = a+ p,
so p− 2δ = a. Hence, p = a+ 2δ.

Since p+ δ = p+b
2 , then 2p+ 2δ = p+ b, so p+ 2δ = b. Hence, p = b− 2δ.

Thus, a+ 2δ = b− 2δ, so δ = (b− a)/4.
Therefore, we let δ = (b− a)/4.
We prove δ > 0. Since a < b, then b > a, so b − a > 0. Hence, b−a

4 > 0, so
δ > 0.

To prove the δ neighborhood is contained in (a, b), we must prove N(p; δ) ⊂
(a, b).

To prove N(p; δ) ⊂ (a, b), assume y ∈ N(p; δ). To prove y ∈ (a, b), we must
prove a < y and y < b.

Since y ∈ N(p; δ) = (p− δ, p+ δ), then p− δ < y and y < p+ δ.
Since p− δ < y and p = a+ 2δ, then a+ δ < y. Since δ = b−a

4 and a+ δ < y,
then a+ (b− a)/4 < y, so 4a+ b− a < 4y. Hence, b < 4y − 3a.

Since a < b and b < 4y−3a, then a < 4y−3a. Therefore, 4a < 4y, so a < y,
as desired.

Since y < p+ δ and p = b− 2δ, then y < (b− 2δ) + δ, so y < b− δ.
Since y < b− δ and δ = b−a

4 , then y < b+ a−b
4 . Hence, 4y < 4b+ a− b, so

4y − 3b < a.
Since 4y− 3b < a and a < b, then 4y− 3b < b. Therefore, 4y < 4b, so y < b,

as desired.
Case 2: Suppose a > b.
Suppose the interval (a, b) is not empty. Then there exists some element in

(a, b). Let x be an arbitrary real number in (a, b). Then a < x and x < b.
Therefore, a < b.

By trichotomy, it is impossible that a < b and a > b. Therefore (a, b) must
be empty, so (a, b) = ∅.

Since the empty set is an open set of R, then (a, b) is also an open set of
R.

Proposition 6. Let S and T be open subsets of R. Then S ∩ T is open.

Solution. Our hypothesis is:
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S is an open subset of R.
T is an open subset of R.
Our conclusion is:
S ∩ T is an open set.
To prove S ∩ T is open, we must prove each point in S ∩ T is an interior

point of S ∩ T .
Thus, we must prove:
(∀p ∈ S ∩ T )(∃δ > 0)(N(p; δ) ⊂ S ∩ T ) .
Let p ∈ S ∩ T be arbitrary.
Then p ∈ S and p ∈ T .
To prove (∃δ > 0)(N(p; δ) ⊂ S ∩ T ), we let y ∈ N(p; δ). We must find some

δ > 0 such that y ∈ S and y ∈ T .
By hypothesis, S is open, so every point in S is an interior point of S.
Hence, in particular, since p ∈ S, then p is an interior point of S.
Therefore, (∃δ1 > 0)(N(p; δ1) ⊂ S).
How can we prove y ∈ S?
We know N(p; δ1) ⊂ S for some δ1 > 0. So, if we could show y ∈ N(p; δ1),

then we could argue that y ∈ N(p; δ1) and N(p; δ1) ⊂ S implies y ∈ S.
Thus, we must show that y ∈ N(p; δ1).
We can show this if we let δ = δ1.
Therefore, choose δ = δ1.
Since δ1 > 0, then δ > 0.
Since y ∈ N(p; δ), then y ∈ N(p; δ1).
Since y ∈ N(p; δ1) and N(p; δ1) ⊂ S, then y ∈ S, as desired.
By hypothesis, T is open, so every point in T is an interior point of T .
Hence, in particular, since p ∈ T , then p is an interior point of T .
Therefore, (∃δ2 > 0)(N(p; δ2) ⊂ T ).
How can we prove y ∈ T?
We know N(p; δ2) ⊂ T for some δ2 > 0. So, if we could show y ∈ N(p; δ2),

then we could argue that y ∈ N(p; δ2) and N(p; δ2) ⊂ T implies y ∈ T .
Thus, we must show that y ∈ N(p; δ2).
Now, we already have δ = δ1, so we need to re-evaluate what δ value we

should choose.
We must choose δ such that y ∈ N(p; δ1) in S and y ∈ N(p; δ2) in T .
Since y must be in N(p; δ1) in set S, we need to find some δ neighborhood

of p in S that is contained inside of N(p; δ1) in S.
How do we find such a neighborhood in S?
We draw a picture of the situation: sets S, T with point p in N(p; δ1) in set

S and p in N(p; δ2) in set T .
We see that every δ neighborhood of p in S is contained entirely in N(p; δ1)

if only if 0 < δ ≤ δ1.
Therefore, y ∈ N(p; δ1) in S iff 0 < δ ≤ δ1.
Since y must be in N(p; δ2) in set T , then we need to find some δ neighbor-

hood of p in T that is contained inside of N(p; δ2) in T .
How do we find such a neighborhood in T?
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We see that every δ neighborhood of p in T is contained entirely in N(p; δ2)
if only if 0 < δ ≤ δ2.

Therefore, y ∈ N(p; δ2) in T iff 0 < δ ≤ δ2.
Thus, we want δ such that 0 < δ ≤ δ1 and 0 < δ ≤ δ2.
Hence, we can choose δ to be the smaller of δ1 and δ2.
Therefore, let δ = min(δ1, δ2).

Proof. To prove S ∩ T is open, we must prove each point in S ∩ T is an interior
point of S ∩ T .

Let p be an arbitrary point in S ∩ T .
Then p ∈ S and p ∈ T .
To prove p is an interior point of S ∩ T , we must find a positive δ such that

the δ neighborhood of p, N(p; δ), is entirely contained in S ∩ T .
Since S is open, then every point in S is an interior point of S. Therefore,

since p ∈ S, then p is an interior point of S. Hence, there is some positive δ1
such that N(p; δ1) ⊂ S.

Since T is open, then every point in T is an interior point of T . Therefore,
since p ∈ T , then p is an interior point of T . Hence, there is some positive δ2
such that N(p; δ2) ⊂ T .

Let δ = min(δ1, δ2).
Since δ1 and δ2 are positive, then δ is positive.
To prove N(p; δ) ⊂ S ∩T , let y be an arbitrary element of N(p; δ). We must

show y ∈ S and y ∈ T .
Since y ∈ N(p; δ), then |p− y| < δ.
By trichotomy, either δ1 ≤ δ2 or δ1 > δ2.
We consider these cases separately.
Case 1: Suppose δ1 ≤ δ2.
Then min(δ1, δ2) = δ1, so δ = δ1. Thus, |p− y| < δ1. Hence, y ∈ N(p; δ1) ⊂

S, so y ∈ S. Since |p − y| < δ1 and δ1 ≤ δ2, then |p − y| < δ2. Thus,
y ∈ N(p; δ2) ⊂ T , so y ∈ T . Hence, y ∈ S and y ∈ T .

Case 2: Suppose δ1 > δ2.
Then min(δ1, δ2) = δ2, so δ = δ2. Thus, |p− y| < δ2. Hence, y ∈ N(p; δ2) ⊂

T , so y ∈ T . Since |p − y| < δ2 and δ2 < δ1, then |p − y| < δ1. Thus,
y ∈ N(p; δ1) ⊂ S, so y ∈ S. Hence, y ∈ S and y ∈ T .

Therefore, in all cases, y ∈ S and y ∈ T , so that y ∈ S ∩ T . Hence,
N(p; δ) ⊂ S ∩ T , as desired.

Exercise 7. If S1, S2 and S3 are open subsets of R, then S1 ∩ S2 ∩ S3 is an
open subset of R.

Solution. Let S1, S2, S3 be arbitrary open subsets of R.
To prove S1 ∩ S2 ∩ S3 is open, we must prove every point in S1 ∩ S2 ∩ S3 is

an interior point of S1 ∩ S2 ∩ S3. Let p be an arbitrary point of S1 ∩ S2 ∩ S3.
To prove p is an interior point of S1 ∩ S2 ∩ S3, we must prove (∃δ >

0)(N(p; δ) ⊂ S1 ∩ S2 ∩ S3.
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To prove (N(p; δ) ⊂ S1 ∩S2 ∩S3, let y ∈ N(p; δ). To prove y ∈ S1 ∩S2 ∩S3,
we must prove y ∈ S1 and y ∈ S2 and y ∈ S3.

Since each of the sets S1, S,2, S3 is open, then every point in S1, S,2, S3 is an
interior point of S1, S2, S3, respectively. Since p ∈ S1∩S2∩S3, then p ∈ S1 and
p ∈ S2 and p ∈ S3. Therefore, p is an interior point of S1 and p is an interior
point of S2 and p is an interior point of S3. Hence, (∃δ1 > 0)(N(p; δ1) ⊂ S1)
and (∃δ2 > 0)(N(p; δ2) ⊂ S2) and (∃δ3 > 0)(N(p; δ3) ⊂ S3).

How can we show y ∈ S1? Well, since we have N(p; δ1) ⊂ S1), if we could
show y ∈ N(p; δ1), then we could argue y ∈ N(p; δ1) ⊂ S1 ⇒ y ∈ S1. Thus, we
must prove y ∈ N(p; δ1). How can we show y ∈ N(p; δ1)? Well, since we want
δ > 0 such that y ∈ N(p; δ), then we can choose δ = δ1. Thus, let δ = δ1. Then
y ∈ N(p; δ) = N(p; δ1) ⊂ S1, so y ∈ N(p; δ1).

How can we show y ∈ S2? Well, since we have N(p; δ2) ⊂ S2), if we could
show y ∈ N(p; δ2), then we could argue y ∈ N(p; δ2) ⊂ S2 ⇒ y ∈ S2. Thus, we
must prove y ∈ N(p; δ2). How can we show y ∈ N(p; δ2)?

Since each of S1, S2, S3 is open, then there exist δ1, δ2, δ3 > 0 such that p is in
the δ1, δ2, δ3 neighborhoods of S1, S2, S3 sets, respectively. Hence N(p, δ1) ⊂ S1

and N(p, δ2) ⊂ S2 and N(p, δ3) ⊂ S3. To prove y is in S1, if we can show that
y is in N(p, δ1), then since N(p, δ1) ⊂ S1, then we could conclude y ∈ S1. Since
we want y to be in all 3 sets, then we can take the smallest of all 3 δi. This will
guarantee that δ would be in each of the δi neighborhoods of p for each set Si.
So, we should let δ the smallest of δ1, δ2, δ3.

Proof. To prove the set S1 ∩ S2 ∩ S3 is an open subset of the set of all real
numbers R, we must prove every point in S1 ∩ S2 ∩ S3 is an interior point of
S1 ∩ S2 ∩ S3.

Let p be an arbitrary point in S1 ∩ S2 ∩ S3.
To prove p is an interior point of S1 ∩ S2 ∩ S3, we must find some positive δ

such that the δ neighborhood of p is contained entirely in S1∩S2∩S3; that is, we
will show there is some positive real number δ such that N(p; δ) ⊂ S1 ∩S3 ∩S3.

Since each of the sets S1, S2, and S3 is open, then there exist positive real
numbers δ1, δ2, and δ3 such that p is in the δ1, δ2, and δ3 neighborhoods of
S1, S2, and S3, respectively.

Therefore, N(p; δ1) ⊂ S1 and N(p; δ2) ⊂ S2 and N(p; δ3) ⊂ S3.
Let δ be the smallest of δ1, δ2, and δ3.
Since each of δ1, δ2, and δ3 is a positive real number, then δ is a positive real

number.
To prove N(p; δ) ⊂ S1 ∩ S2 ∩ S3, let y be an arbitrary element of N(p; δ).
Then y ∈ R and |p− y| < δ.
We must show y is in S1 and S2 and S3.
Since δ is the smallest of δ1, δ2, and δ3, then δ ≤ δ1 and δ ≤ δ2 and δ ≤ δ3.
Since |p− y| < δ and δ ≤ δ1, then |p− y| < δ1. Since |p− y| < δ and δ ≤ δ2,

then |p− y| < δ2. Since |p− y| < δ and δ ≤ δ3, then |p− y| < δ3.
Since y ∈ R and |p−y| < δ1, then y ∈ N(p; δ1). Since y ∈ R and |p−y| < δ2,

then y ∈ N(p; δ2). Since y ∈ R and |p− y| < δ3, then y ∈ N(p; δ3).
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Since y ∈ N(p; δ1) and N(p; δ1) ⊂ S1, then y ∈ S1. Since y ∈ N(p; δ2) and
N(p; δ2) ⊂ S2, then y ∈ S2. Since y ∈ N(p; δ3) and N(p; δ3) ⊂ S3, then y ∈ S3.

Therefore, y ∈ S1 and y ∈ S2 and y ∈ S3, so y ∈ S1∩S2∩S3, as desired.

Proposition 8. The intersection of any finite collection of open subsets of R
is open.

Solution.
The statement means:
Let n ∈ Z, n ≥ 0.
Let {S1, S2, S3, ..., Sn} be a finite collection of n open subsets of R.
Then {Si : i ∈ N} and each Si is an open subset of R, for i = 1, 2, 3, ..., n.
We must prove ∩ni=1Si is an open subset of R.
Define predicate p(n) : ∩ni=1Si is an open subset of R over N.
To prove ∩ni=1Si is an open subset of R, we must prove (∀n ∈ N)(p(n)).
Let T be the truth set of p(n).
Then T = {n ∈ N : p(n)}, so T ⊂ N.
To prove (∀n ∈ N)(p(n)), we must prove T = N.
To prove T = N, we use induction.
Basis:
To prove 1 ∈ T , we must prove p(1) is true. Thus, we must prove ∩1i=1Si is

an open subset of R.
Since ∩1i=1Si = S1 and S1 is an open subset of R, then ∩1i=1Si is an open

subset of R, as desired.
Induction:
To prove T is inductive, we must prove (∀n ∈ N)(n ∈ T → n+ 1 ∈ T ).
To prove (∀n ∈ N)(n ∈ T → n+ 1 ∈ T ), we let k ∈ N be arbitrary such that

k ∈ T . To prove k + 1 ∈ T , we must prove p(k + 1) is true; that is, we must
prove ∩k+1

i=1 Si is an open subset of R.
Since k ∈ T , then p(k) is true, so ∩ki=1Si is an open subset of R. Hence, the

intersection of a collection of k open subsets of R is open.
Observe that ∩k+1

i=1 Si = S1 ∩ (∩k+1
i=2 Si).

We know S1 is an open subset of R. The set ∩k+1
i=2 Si is a collection of

k + 1− 2 + 1 = k open subsets of R. Hence, ∩k+1
i=2 Si is open.

Since the intersection of two open subsets of R is open, then S1 ∩ (∩k+1
i=2 Si)

is open. Hence, the set ∩k+1
i=1 Si is open, as desired.

Proof. Let n ∈ Z, n ≥ 0.
Let {S1, S2, S3, ..., Sn} be a finite collection of n open subsets of R.
Then {S1, S2, S3, ..., Sn} is a collection of either zero open subsets of R or of

1 or more open subsets of R.
Since a collection of zero open subsets of R is empty, then we must prove

two statements:
1. The empty set is an open subset of R.
2. The set ∩ni=1Si is an open subset of R, where each Si is an open subset

of R, for i = 1, 2, 3, ..., n.
We prove the empty set is open.
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Since the empty set is open, then we are done.
To prove the set ∩ni=1Si is an open subset of R, we define predicate p(n) :

∩ni=1Si is an open subset of R.
To prove ∩ni=1Si is an open subset of R, we must prove (∀n ∈ N)(p(n)).
Let T be the truth set of p(n).
Then T = {n ∈ N : p(n)}, so T ⊂ N.
To prove (∀n ∈ N)(p(n)), we must prove T = N.
To prove T = N, we use induction.
Basis:
To prove 1 ∈ T , we must prove p(1) is true. Thus, we must prove ∩1i=1Si is

an open subset of R.
Since ∩1i=1Si = S1 and S1 is an open subset of R, then ∩1i=1Si is an open

subset of R, as desired.
Induction:
To prove T is inductive, we must prove (∀n ∈ N)(n ∈ T → n+ 1 ∈ T ).
To prove (∀n ∈ N)(n ∈ T → n + 1 ∈ T ), we let k be an arbitrary natural

number such that k ∈ T . To prove k + 1 ∈ T , we must prove p(k + 1) is true,
so we must prove ∩k+1

i=1 Si is an open subset of R.
Since k ∈ T , then p(k) is true, so the set ∩ki=1Si is an open subset of R.

Hence, the intersection of a collection of k open subsets of R is open.
Observe that the intersection of a collection of k + 1 open subsets of R is

∩k+1
i=1 Si = S1 ∩ (∩k+1

i=2 Si).
We know the set S1 is an open subset of R. The set ∩k+1

i=2 Si is a collection
of k + 1− 2 + 1 = k open subsets of R. Hence, the set ∩k+1

i=2 Si is open.
Since the intersection of two open subsets of R is open, then S1 ∩ (∩k+1

i=2 Si)
is open. Hence, the set ∩k+1

i=1 Si is open, as desired.

Proposition 9. Let {Si : i ∈ N} be a family of open subsets of R indexed by N.
Then is ∩∞i=1Si is open?

Solution.
Let {Si : i ∈ N} = {S1, S2, S3, ...} be a family of open subsets of R.
Then each Si is an open subset of R, for i ∈ N.
We must prove the set ∩∞i=1Si is an open subset of R.
We can’t use an induction argument because we can’t define a predicate in

terms of a natural number.
We need to use a different approach, such as the one used to prove S ∩ T is

open.
To prove ∩∞i=1Si is an open set, we must prove every point in ∩∞i=1Si is an

interior point of ∩∞i=1Si. Thus, let p ∈ ∩∞i=1Si be arbitrary. Then (∀i ∈ N)(p ∈
Si). Hence, let i ∈ N be particular such that p ∈ Si for some particular set Si.

Then set Si is a particular open subset of R such that p ∈ Si for some
particular i ∈ N.

To prove p is an interior point of ∩∞i=1Si, we must prove (∃δ > 0)(N(p; δ) ⊂
∩∞i=1Si).

How do we prove N(p; δ) ⊂ ∩∞i=1Si?
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We assume x ∈ N(p; δ). To prove x ∈ ∩∞i=1Si, we must prove (∀i ∈ N)(x ∈
Si).

Since Si is an open subset of R, then every point in Si is an interior point
of Si.

Hence, in particular, since p ∈ Si, then p must be an interior point of Si.
Therefore, (∃δ1 > 0)(N(p; δ1) ⊂ Si).

If we could show x ∈ N(p; δ1), then we could argue x ∈ N(p; δ1) ⊂ Si ⇒ x ∈
Si. Since x ∈ N(p; δ) and we want x ∈ N(p; δ1), we choose δ = δ1.

Thus, let δ = δ1.
Then δ = δ1 > 0, so δ > 0, as desired.
To prove N(p; δ) ⊂ ∩∞i=1Si, we assume x ∈ N(p; δ). To prove x ∈ ∩∞i=1Si,

we must prove (∀i ∈ N)(x ∈ Si).
Since x ∈ N(p; δ) = N(p; δ1) ⊂ Si, then x ∈ Si.
But, this only proves x is in a particular open subset Si. It does not prove x

is in every open subset Si. Therefore, we cannot conclude ∩∞i=1Si is necessarily
open. It’s possible it might, but not solely based on the given information.

Proposition 10. Let S and T be open subsets of R. Then S ∪ T is open.

Solution. To prove S ∪ T is open, we must prove every point in S ∪ T is an
interior point.

Thus, let p ∈ S ∪ T be arbitrary.
To prove p is an interior point of S ∪ T , we must find δ > 0 such that

N(p; δ) ⊂ S ∪ T .
Since p ∈ S ∪ T , then either p ∈ S or p ∈ T .
We consider these cases separately.
Case 1: Suppose p ∈ S.
Since S is open, then every point in S is an interior point of S. Hence, in

particular, p is an interior point of S. Therefore, N(p; δ1) ⊂ S for some δ1 > 0.
Let δ = δ1. Then δ > 0.
We must prove N(p; δ) ⊂ S ∪ T .
Since δ = δ1, then N(p; δ) = N(p; δ1).
Since N(p; δ1) ⊂ S, then N(p; δ) ⊂ S.
Since N(p; δ) ⊂ S and S ⊂ S∪T , then by transitivity of ⊂, N(p; δ) ⊂ S∪T .
Therefore, N(p; δ) ⊂ S ∪ T for δ = δ1.
Case 2: Suppose p ∈ T .
Since T is open, then every point in T is an interior point of T . Hence, in

particular, p is an interior point of T . Therefore, N(p; δ2) ⊂ T for some δ2 > 0.
Let δ = δ2. Then δ > 0.
We must prove N(p; δ) ⊂ S ∪ T .
Since δ = δ2, then N(p; δ) = N(p; δ2).
Since N(p; δ2) ⊂ T , then N(p; δ) ⊂ T .
Since N(p; δ) ⊂ T and T ⊂ S∪T , then by transitivity of ⊂, N(p; δ) ⊂ S∪T .
Therefore, N(p; δ) ⊂ S ∪ T for δ = δ2.
Therefore, in all cases, for some δ > 0, N(p; δ) ⊂ S ∪ T , as desired.
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Proof. To prove set S ∪ T is open, we must prove every point in S ∪ T is an
interior point of S ∪ T .

Let p be an arbitrary point in S ∪ T .
To prove p is an interior point of S ∪ T , we must find a positive δ such that

the δ neighborhood of p, N(p; δ), is contained in S ∪ T ; that is, we will show
there is some positive δ such that N(p; δ) ⊂ S ∪ T .

Since p ∈ S ∪ T , then either p ∈ S or p ∈ T .
We consider these cases separately.
Case 1: Suppose p ∈ S.
Since S is open, then every point in S is an interior point of S. Hence, in

particular, p is an interior point of S. Therefore, N(p; δ1) ⊂ S for some δ1 > 0.
Let δ = δ1. Then δ > 0.
Observe that N(p; δ) = N(p; δ1) ⊂ S ⊂ S ∪ T . Hence, N(p; δ) ⊂ S ∪ T .
Therefore, N(p; δ) ⊂ S ∪ T for some positive δ.
Case 2: Suppose p ∈ T .
Since T is open, then every point in T is an interior point of T . Hence, in

particular, p is an interior point of T . Therefore, N(p; δ2) ⊂ T for some δ2 > 0.
Let δ = δ2. Then δ > 0.
Observe that N(p; δ) = N(p; δ2) ⊂ T ⊂ S ∪ T . Hence, N(p; δ) ⊂ S ∪ T .
Therefore, N(p; δ) ⊂ S ∪ T for some positive δ.
Thus, in all cases, there is some positive δ such that the δ neighborhood of

p is contained in S ∪ T , as desired.

Exercise 11. If S1, S2 and S3 are open subsets of R, then S1 ∪ S2 ∪ S3 is an
open subset of R.

Solution.
To prove S1 ∪ S2 ∪ S3 is an open subset of R, we must prove every point in

S1∪S2∪S3 is an interior point of S1∪S2∪S3. Thus, let p be an arbitrary point
in S1 ∪ S2 ∪ S3. To prove p is an interior point of S1 ∪ S2 ∪ S3, we must show
there exists some δ > 0 such that the δ neighborhood of p is contained entirely
in S1 ∪ S2 ∪ S3; that is, we must show N(p; δ) ⊂ S1 ∪ S2 ∪ S3 for some δ > 0.

Since p ∈ S1 ∪ S2 ∪ S3, then either p ∈ S1 or p ∈ S2 or p ∈ S3.
We consider these cases separately.
Case 1: Suppose p ∈ S1.
Since S1 is an open set, then every point in S1 is an interior point of S1.

Hence, in particular, p is an interior point of S1. Thus, there exists a positive δ1
such that the δ1 neighborhood of p is contained entirely in S1; that is, N(p; δ1) ⊂
S1 for some δ1 > 0.

Let δ = δ1. Then δ > 0.
We must prove N(p; δ) ⊂ S1 ∪ S2 ∪ S3.
Since δ = δ1, then N(p; δ) = N(p; δ1). Since N(p; δ1) ⊂ S1, then N(p; δ) ⊂

S1. We want to proveN(p; δ) ⊂ S1∪S2∪S3, so if we could prove S1 ⊂ S1∪S2∪S3,
then we’d be done because of transitivity of ⊂ relation.

We know that for any set X, X is a subset of a finite union of X and any
number of sets, so in particular, S is a subset of a finite union of 3 sets, S1, S2,
and S3. Therefore, S1 ⊂ S1 ∪ S2 ∪ S3.
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Since N(p; δ) ⊂ S1 and S1 ⊂ S1 ∪ S2 ∪ S3, then N(p; δ) ⊂ S1 ∪ S2 ∪ S3.
Hence, N(p; δ) ⊂ S1 ∪ S2 ∪ S3 for some positive δ.
Case 2: Suppose p ∈ S2.
Since S2 is an open set, then every point in S2 is an interior point of S2.

Hence, in particular, p is an interior point of S2. Thus, there exists a positive δ2
such that the δ2 neighborhood of p is contained entirely in S2; that is, N(p; δ2) ⊂
S2 for some δ2 > 0.

Let δ = δ2. Then δ > 0.
We must prove N(p; δ) ⊂ S1 ∪ S2 ∪ S3.
Since δ = δ2, then N(p; δ) = N(p; δ2). Since N(p; δ2) ⊂ S2, then N(p; δ) ⊂

S2.
Since N(p; δ) ⊂ S2 and S2 ⊂ S1 ∪ S2 ∪ S3, then N(p; δ) ⊂ S1 ∪ S2 ∪ S3.
Hence, N(p; δ) ⊂ S1 ∪ S2 ∪ S3 for some positive δ.
Case 3: Suppose p ∈ S3.
Since S3 is an open set, then every point in S3 is an interior point of S3.

Hence, in particular, p is an interior point of S3. Thus, there exists a positive δ3
such that the δ3 neighborhood of p is contained entirely in S3; that is, N(p; δ3) ⊂
S3 for some δ3 > 0.

Let δ = δ3. Then δ > 0.
We must prove N(p; δ) ⊂ S1 ∪ S2 ∪ S3.
Since δ = δ3, then N(p; δ) = N(p; δ3). Since N(p; δ3) ⊂ S3, then N(p; δ) ⊂

S3. Since N(p; δ) ⊂ S3 and S3 ⊂ S1 ∪ S2 ∪ S3, then N(p; δ) ⊂ S1 ∪ S2 ∪ S3.
Hence, N(p; δ) ⊂ S1 ∪ S2 ∪ S3 for some positive δ.
Therefore, in all cases, there is some positive δ such that the δ neighborhood

of p is contained in S1 ∪ S2 ∪ S3.

Proof. To prove S1 ∪S2 ∪S3 is an open subset of R, we must prove every point
in S1 ∪ S2 ∪ S3 is an interior point of S1 ∪ S2 ∪ S3.

Let p be an arbitrary point in S1 ∪ S2 ∪ S3.
To prove p is an interior point of S1 ∪ S2 ∪ S3, we must find some positive δ

such that the δ neighborhood of p is contained entirely in S1 ∪ S2 ∪ S3; that is,
we must show N(p; δ) ⊂ S1 ∪ S2 ∪ S3 for some δ > 0.

Since p ∈ S1 ∪ S2 ∪ S3, then either p ∈ S1 or p ∈ S2 or p ∈ S3.
We consider these cases separately.
Case 1: Suppose p ∈ S1.
Since S1 is an open set, then every point in S1 is an interior point of S1.

Hence, in particular, p is an interior point of S1. Thus, there is some positive δ1
such that the δ1 neighborhood of p is contained entirely in S1; that is, N(p; δ1) ⊂
S1 for some δ1 > 0.

Let δ = δ1. Then δ > 0.
Since δ = δ1 and N(p; δ1) ⊂ S1, then N(p; δ) ⊂ S1.
Since N(p; δ) ⊂ S1 and S1 ⊂ S1 ∪ S2 ∪ S3, then N(p; δ) ⊂ S1 ∪ S2 ∪ S3.
Hence, N(p; δ) ⊂ S1 ∪ S2 ∪ S3 for some positive δ.
Case 2: Suppose p ∈ S2.
Since S2 is an open set, then every point in S2 is an interior point of S2.

Hence, in particular, p is an interior point of S2. Thus, there is some positive δ2
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such that the δ2 neighborhood of p is contained entirely in S2; that is, N(p; δ2) ⊂
S2 for some δ2 > 0.

Let δ = δ2. Then δ > 0.
Since δ = δ2 and N(p; δ2) ⊂ S2, then N(p; δ) ⊂ S2.
Since N(p; δ) ⊂ S2 and S2 ⊂ S1 ∪ S2 ∪ S3, then N(p; δ) ⊂ S1 ∪ S2 ∪ S3.
Hence, N(p; δ) ⊂ S1 ∪ S2 ∪ S3 for some positive δ.
Case 3: Suppose p ∈ S3.
Since S3 is an open set, then every point in S3 is an interior point of S3.

Hence, in particular, p is an interior point of S3. Thus, there is some positive δ3
such that the δ3 neighborhood of p is contained entirely in S3; that is, N(p; δ3) ⊂
S3 for some δ3 > 0.

Let δ = δ3. Then δ > 0.
Since δ = δ3 and N(p; δ3) ⊂ S3, then N(p; δ) ⊂ S3.
Since N(p; δ) ⊂ S3 and S3 ⊂ S1 ∪ S2 ∪ S3, then N(p; δ) ⊂ S1 ∪ S2 ∪ S3.
Hence, N(p; δ) ⊂ S1 ∪ S2 ∪ S3 for some positive δ.
Therefore, in all cases, there is some positive δ such that the δ neighborhood

of p is contained in S1 ∪ S2 ∪ S3.

Proposition 12. The union of any finite collection of open subsets of R is
open.

Solution.
The statement means:
Let n ∈ Z, n ≥ 0.
Let {S1, S2, S3, ..., Sn} be a finite collection of n open subsets of R.
Then each Si is an open subset of R, for i = 1, 2, 3, ..., n.
We must prove ∪ni=1Si is an open subset of R.
Let Nn = {1, 2, 3, ..., n} be the domain of discourse.
Define predicate p(n) : ∪ni=1Si is an open subset of R over Nn.
To prove ∪ni=1Si is an open subset of R, we must prove (∀n ∈ Nn)(p(n)).
Let T be the truth set of p(n).
Then T = {n ∈ Nn : p(n)}, so T ⊂ Nn.
To prove (∀n ∈ Nn)(p(n)), we must prove T = Nn.
To prove T = N, we use an induction argument.
Basis:
To prove 1 ∈ T , we must prove p(1) is true. Thus, we must prove ∪1i=1Si is

an open subset of R.
Since ∪1i=1Si = S1 and S1 is an open subset of R, then ∪1i=1Si is an open

subset of R, as desired.
Induction:
To prove T is inductive, we must prove (∀n ∈ Nn)(n ∈ T → n + 1 ∈ T ).

Thus, we let k ∈ Nn be arbitrary such that k ∈ T . To prove k+ 1 ∈ T , we must
prove p(k + 1) is true; that is, we must prove ∪k+1

i=1 Si is an open subset of R.
Since k ∈ T , then p(k) is true; that is, ∪ki=1Si is an open subset of R. Hence,

the union of a collection of k open subsets of R is open.
Observe that ∪k+1

i=1 Si = S1 ∪ (∪k+1
i=2 Si).
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We know S1 is an open subset of R. The set ∪k+1
i=2 Si is a collection of

k + 1− 2 + 1 = k open subsets of R. Hence, ∪k+1
i=2 Si is open.

Since the union of two open subsets of R is open, then S1∪(∪k+1
i=2 Si) is open.

Hence, the set ∪k+1
i=1 Si is open, as desired.

Proof. Let n ∈ Z, n ≥ 0.
Let {S1, S2, S3, ..., Sn} be a finite collection of n open subsets of R.
Then {S1, S2, S3, ..., Sn} is a collection of either zero open subsets of R or of

1 or more open subsets of R.
Since a collection of zero open subsets of R is empty, then we must prove

two statements:
1. The empty set is an open subset of R.
2. The set ∪ni=1Si is an open subset of R, where each Si is an open subset

of R, for i = 1, 2, 3, ..., n.
We prove the empty set is an open subset of R.
Since the empty set is an open subset of R, then we are done.
To prove the set ∪ni=1Si is an open subset of R, we define the predicate

p(n) : ∪ni=1Si is an open subset of R.
To prove ∪ni=1Si is an open subset of R, we must prove (∀n ∈ Nn)(p(n)).
Let T be the truth set of p(n).
Then T = {n ∈ Nn : p(n)}, so T ⊂ Nn.
To prove (∀n ∈ Nn)(p(n)), we must prove T = Nn.
To prove T = Nn, we use an induction argument.
Basis:
To prove 1 ∈ T , we must prove p(1) is true. Thus, we must prove ∪1i=1Si is

an open subset of R.
Since ∪1i=1Si = S1 and S1 is an open subset of R, then ∪1i=1Si is an open

subset of R, as desired.
Induction:
To prove T is inductive, we must prove (∀n ∈ Nn)(n ∈ T → n + 1 ∈ T ).

Thus, we let k be an arbitrary natural number such that k ∈ T . To prove
k + 1 ∈ T , we must prove p(k + 1) is true, so we must prove the set ∪k+1

i=1 Si is
an open subset of R.

Since k ∈ T , then p(k) is true, so the set ∪ki=1Si is an open subset of R.
Hence, the union of a collection of k open subsets of R is open.

Observe that the union of a collection of k+1 open subsets of R is ∪k+1
i=1 Si =

S1 ∪ (∪k+1
i=2 Si).

We know the set S1 is an open subset of R. The set ∪k+1
i=2 Si is a collection

of k + 1− 2 + 1 = k open subsets of R. Hence, the set ∪k+1
i=2 Si is open.

Since the union of two open subsets of R is open, then S1∪(∪k+1
i=2 Si) is open.

Hence, the set ∪k+1
i=1 Si is open, as desired.

Proposition 13. Let {Si : i ∈ N} be a family of open subsets of R indexed by
N. Then ∪∞i=1Si is open.

Solution.
Let {Si : i ∈ N} = {S1, S2, S3, ...} be a family of open subsets of R.
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Then each Si is an open subset of R, for i ∈ N.
We must prove the set ∪∞i=1Si is an open subset of R.
We can’t use an induction argument because we can’t define a predicate in

terms of a natural number.
We need to use a different approach, such as the one used to prove S ∪ T is

open.
To prove ∪∞i=1Si is an open set, we must prove every point in ∪∞i=1Si is an

interior point of ∪∞i=1Si. Thus, let p ∈ ∪∞i=1Si be arbitrary. Then (∃i ∈ N)(p ∈
Si).

Hence, let Si be an arbitrary open subset of R such that p ∈ Si for some
i ∈ N.

To prove p is an interior point of ∪∞i=1Si, we must prove (∃δ > 0)(N(p; δ) ⊂
∪∞i=1Si).

How do we prove N(p; δ) ⊂ ∪∞i=1Si?
We assume x ∈ N(p; δ). To prove x ∈ ∪∞i=1Si, we must prove (∃i ∈ N)(x ∈

Si).
Since Si is an arbitrary open subset of R, then every point in Si is an interior

point of Si.
Hence, in particular, since p ∈ Si, then p must be an interior point of Si.

Therefore, (∃δ1 > 0)(N(p; δ1) ⊂ Si).
If we could show x ∈ N(p; δ1), then we could argue x ∈ N(p; δ1) ⊂ Si ⇒ x ∈

Si. Since x ∈ N(p; δ) and we want x ∈ N(p; δ1), we choose δ = δ1.
We know δ will be a function of p (indirectly it is, because δ is in terms of

δ1 which is in terms of p).
Thus, let δ = δ1.

Proof. Let {Si : i ∈ N} be a family of open subsets of R.
Then each set Si is an open subset of R, for i ∈ N.
To prove the set ∪∞i=1Si is an open subset of R, we must prove every point

in ∪∞i=1Si is an interior point of ∪∞i=1Si.
Let p ∈ ∪∞i=1Si be arbitrary.
To prove p is an interior point of ∪∞i=1Si, we must prove (∃δ > 0)(N(p; δ) ⊂

∪∞i=1Si).
Since p ∈ ∪∞i=1Si, then (∃i ∈ N)(p ∈ Si).
Hence, let Si be an arbitrary open subset of R such that p ∈ Si for some

i ∈ N.
Since Si is open, then every point in Si is an interior point of Si.
Hence, in particular, since p ∈ Si, then p must be an interior point of Si.
Therefore, (∃δ1 > 0)(N(p; δ1) ⊂ Si).
Let δ = δ1.
Then δ = δ1 > 0, so δ > 0, as desired.
To prove N(p; δ) ⊂ ∪∞i=1Si, we assume x ∈ N(p; δ). To prove x ∈ ∪∞i=1Si,

we must prove (∃i ∈ N)(x ∈ Si).
Since x ∈ N(p; δ) = N(p; δ1) ⊂ Si, then x ∈ Si, as desired.

Proposition 14. The empty set is closed.
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Solution.
The conclusion is: ∅ is closed.
A set S is closed iff every point of accumulation of S is in S. A set S is not

closed iff some point of accumulation of S is not in S.
To prove ∅ is closed or not, we must know whether ∅ has any points of

accumulation.
Let’s suppose ∅ has some point of accumulation.
Let a be an arbitrary point of accumulation of ∅. Then every deleted δ

neighborhood of a intersects ∅. Hence, for every δ > 0, N ′(a; δ) ∩ ∅ 6= ∅.
But, we know A ∩ ∅ = ∅ for every set A. Thus, the set N ′(a; δ) ∩ ∅ must

equal ∅. Hence, it cannot be the case that ∅ has some point of accumulation.
Therefore, ∅ has no points of accumulation.

We use proof by contradiction. Suppose ∅ is not closed. Then there exists
some point of accumulation that is not in ∅. But, ∅ has no points of accumula-
tion, so ∅ cannot be not closed. Therefore, ∅ must be closed.

Proof. Suppose the empty set has a point of accumulation. Let a be an arbitrary
point of accumulation of ∅. Then every deleted δ neighborhood of a intersects
∅. Hence, for every δ > 0, N ′(a; δ) ∩ ∅ 6= ∅. Let δ be an arbitrary positive real
number. Then N ′(a; δ) ∩ ∅ 6= ∅.

Since A∩ ∅ = ∅ for every set A, then in particular, the set N ′(a; δ)∩ ∅ must
equal ∅. Hence, it cannot be the case that ∅ has some point of accumulation.
Therefore, ∅ has no points of accumulation.

We use proof by contradiction. Suppose ∅ is not closed. Then there exists
some point of accumulation of ∅ that is not in ∅. But, ∅ has no points of
accumulation, so there cannot exist some point of accumulation of ∅ that is not
in ∅. Hence, ∅ cannot be not closed. Therefore, ∅ must be closed.

Proposition 15. R is a closed subset of itself.

Solution.
To prove R is closed, we must prove every point of accumulation of R is in

R.
Let p be an arbitrary point of accumulation of R.
We must prove p ∈ R.
By definition of point of accumulation, p is a real number.

Proof. To prove R is closed, we must prove every point of accumulation of R is
in R.

Let p be an arbitrary point of accumulation of R.
We must prove p ∈ R.
By definition of point of accumulation, p is a real number, so p ∈ R, as

desired.

Proposition 16. Any interval of the form [a, b], where a 6= b, is a closed subset
of R.
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Solution. The statement to prove is:
Every interval of the form [a, b] with a 6= b is a closed subset of R.
This statement has the form ∀x.p(x).
Thus, let [a, b] be an arbitrary interval such that a 6= b.
To prove [a, b] is a closed subset of R, we must prove every point of accumu-

lation of [a, b] is in [a, b].
Hence, we must prove (∀p)(p ∈ [a, b]), where p is a point of accumulation of

[a, b].
Therefore, let p be an arbitrary point of accumulation of [a, b].
We must prove p ∈ [a, b].
Since a 6= b, then either a < b or a > b.
We consider these cases separately.
Case 1: Suppose a < b.
Either p < a or p ∈ [a, b] or p > b.
We can draw a picture of this scenario.
Suppose p < a.
Since p is a point of accumulation of [a, b], then every deleted δ neighborhood

of p intersects [a, b].
Hence, for every δ > 0, N ′(p; δ) ∩ [a, b] 6= ∅.
Let δ = a− p.
Since p < a, then a > p, so a− p > 0, so δ > 0, as desired.
Since the set N ′(p; δ) ∩ [a, b] is not empty, then there exists some element x

in both N ′(p; δ) and [a, b].
Let x be an arbitrary element of both N ′(p; δ) and [a, b].
Since x ∈ N ′(p; δ), then p− δ < x < p+ δ, so p− (a− p) < x < p+ (a− p).

Thus, 2p− a < x < a, so x < a.
Since x ∈ [a, b], then a ≤ x ≤ b, so a ≤ x.
Hence, we have x < a and x ≥ a, which violates the trichotomy law of R.

Therefore, p cannot be less than a.
Suppose p > b. Let δ = p − b. Since p > b, then p − b > 0, so δ > 0,

as desired. Since the set N ′(p; δ) ∩ [a, b] is not empty, then there exists some
element x in both N ′(p; δ) and [a, b].

Let x be an arbitrary element of both N ′(p; δ) and [a, b].
Since x ∈ N ′(p; δ), then p− δ < x < p+ δ, so p− (p− b) < x < p+ (p− b).

Thus, b < x < 2p− b, so b < x.
Since x ∈ [a, b], then a ≤ x ≤ b, so x ≤ b.
Hence, we have x > b and x ≤ b, which violates the trichotomy law of R.

Therefore, p cannot be greater than b.
Thus, since neither p can be less than a nor greater than b, then the only

possibility is that p must be in [a, b]. Therefore, p ∈ [a, b], as desired.

Proof. To prove every interval of the form [a, b] with a 6= b is a closed subset of
R, let [a, b] be an arbitrary interval such that a 6= b for real numbers a and b.

To prove [a, b] is a closed subset of R, we must prove every point of accumu-
lation of [a, b] is in [a, b].
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Let p be an arbitrary point of accumulation of [a, b].
We must prove p ∈ [a, b].
Since a 6= b, then either a < b or a > b.
We consider these cases separately.
Case 1: Suppose a < b.
Either p < a or p ∈ [a, b] or p > b.
Since p is a point of accumulation of [a, b], then every deleted δ neighborhood

of p intersects [a, b].
Hence, for every δ > 0, N ′(p; δ) ∩ [a, b] 6= ∅.
Suppose p < a.
Let δ = a− p.
Since p < a, then a > p, so a− p > 0, so δ > 0, as desired.
Since the set N ′(p; δ) ∩ [a, b] is not empty, then there exists some element x

in both N ′(p; δ) and [a, b].
Let x be an arbitrary element of both N ′(p; δ) and [a, b].
Since x ∈ N ′(p; δ), then p− δ < x < p+ δ, so p− (a− p) < x < p+ (a− p).

Thus, 2p− a < x < a, so x < a.
Since x ∈ [a, b], then a ≤ x ≤ b, so a ≤ x.
Hence, we have x < a and x ≥ a, which violates the trichotomy law of R.

Therefore, p cannot be less than a.
Suppose p > b.
Let δ = p− b.
Since p > b, then p− b > 0, so δ > 0, as desired.
Since the set N ′(p; δ) ∩ [a, b] is not empty, then there exists some element x

in both N ′(p; δ) and [a, b].
Let x be an arbitrary element of both N ′(p; δ) and [a, b].
Since x ∈ N ′(p; δ), then p− δ < x < p+ δ, so p− (p− b) < x < p+ (p− b).

Thus, b < x < 2p− b, so b < x.
Since x ∈ [a, b], then a ≤ x ≤ b, so x ≤ b.
Hence, we have x > b and x ≤ b, which violates the trichotomy law of R.

Therefore, p cannot be greater than b.
Thus, since p can be neither less than a nor greater than b, then the only

possibility is that p must be in [a, b]. Therefore, p ∈ [a, b], as desired.
Case 2: Suppose a > b.
Suppose the interval [a, b] is not empty. Then there exists some element in

[a, b]. Let x be an arbitrary real number in [a, b]. Then a ≤ x and x ≤ b.
Therefore, a ≤ b.

By trichotomy, it is impossible that a ≤ b and a > b. Therefore [a, b] must
be empty, so [a, b] = ∅.

Since the empty set is a closed set of R, then [a, b] is also a closed set of R,
as desired.

Proposition 17. If S is a closed subset of R, then its complement is an open
subset of R.
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Solution. Hypothesis is: S ⊂ R and S is a closed set.
Conclusion is: S is an open set.
Using a direct approach does not lead anywhere, especially because it is

difficult to use the hypothesis.
We must try a different approach. We’ll try an indirect proof using contra-

diction.
Thus, we’ll assume the complement is not open.
Suppose for the sake of contradiction that S is not open. Then there is some

point of S that is not an interior point of S.
Let p be an arbitrary point of S that is not an interior point of S. Then no

δ neighborhood of p is contained in S. Hence, every δ neighborhood of p is not
contained in S. Thus, every δ neighborhood of p contains at least some point
not in S, so every δ neighborhood of p contains some point in S. Since p 6∈ S,
then every deleted δ neighborhood of p contains some point in S. Hence, p is a
point of accumulation of S. Since S is closed, then every point of accumulation
of S must be contained in S. Hence, p must be contained in S. Thus, p ∈ S
and p ∈ S, so p ∈ S ∩ S. Hence, p ∈ ∅, a contradiction. Therefore, S must be
open.

Proof. Suppose for the sake of contradiction that the complement of S,S, is not
open. Then there is some point in S that is not an interior point of S.

Let p be an arbitrary point in S that is not an interior point of S. Then
no δ neighborhood of p is contained in S, so every δ neighborhood of p is not
contained in S. Thus, every δ neighborhood of p contains at least some point
not in S, so every δ neighborhood of p contains some point in S. Since p is
not in S, then every deleted δ neighborhood of p contains some point in S.
Hence, p is a point of accumulation of S. Since S is closed, then every point of
accumulation of S must be contained in S. Hence, p must be contained in S,
so p ∈ S. Since p ∈ S and p ∈ S, then p ∈ S ∩S. Hence, p ∈ ∅, a contradiction.
Therefore, S must be open.

Theorem 18. Fermat’s Theorem
Let f be a real valued function defined on open interval (a, b). If f(x0) is a
relative maximum on (a, b) and f ′(x0) exists, then f ′(x0) = 0.

Solution.
Let us define propositions:
Let H1 : f(x0) is a relative maximum on (a, b).
Let H2 : f ′(x0) exists.
Let C : f ′(x0) = 0.
We must prove: (H1 ∧H2)→ C.
There does not seem to be a way to deduce C directly. So, let’s try an

indirect approach. Let’s use proof by contradiction.
Suppose f ′(x0) 6= 0. Then either f ′(x0) > 0 or f ′(x0) < 0.
We consider these cases separately.
Case 1: Suppose f ′(x0) > 0.
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How can we derive a contradiction given that f(x0) is a relative maximum
on (a, b)?

We have f ′(x0) > 0 and if we draw picture, then we intuitively see there is
some x < x0 such that f(x) < f(x0). Further, there if x > x0 then f(x) > f(x0).
So, we should prove this and use this result.

Proof. Suppose for the sake of contradiction that f ′(x0) 6= 0. Then either
f ′(x0) > 0 or f ′(x0) < 0.

We consider these cases separately.
Case 1: Suppose f ′(x0) > 0.

Proof. How do we know we can even choose δ > 0?
Let M be a positive real number less than δ.
We consider the limit from the right.
Let x be an arbitrary real number such that x = x0+ M x. Since f(x0)

is a relative maximum, then f(x0) ≥ f(x) for every x in N(x0; δ). Thus,
f(x0) − f(x) ≥ 0, so f(x) − f(x0) ≤ 0. Since M x > 0, then x − x0 >

0. Hence, f(x)−f(x0)
x−x0

≤ 0. Thus, we need to fill in details to show that

limx→x+
0

f(x)−f(x0)
x−x0

≤ 0. Let L1 = limx→x+
0

f(x)−f(x0)
x−x0

≤ 0.

We consider the limit from the left. Let x be an arbitrary real number such
that x = x0− M x. Since f(x0) is a relative maximum, then f(x0) ≥ f(x) for
every x in N(x0; δ). Thus, f(x0)−f(x) ≥ 0, so f(x)−f(x0) ≤ 0. Since M x > 0,

then x0 − x > 0, so x− x0 < 0. Hence, f(x)−f(x0)
x−x0

≥ 0. Thus, we need to fill in

details to show that limx→x+
0

f(x)−f(x0)
x−x0

≥ 0. Let L2 = limx→x−
0

f(x)−f(x0)
x−x0

≥ 0.

Since the f ′(x0) exists and f ′(x0) = limx→x0

f(x)−f(x0)
x−x0

,

let L = limx→x0

f(x)−f(x0)
x−x0

.
Since the left and right limits must exist and equal L, then L1 = L2 = L.

Since L1 ≤ 0 and L1 = L, then L ≤ 0. Since L2 ≥ 0 and L2 = L, then L ≥ 0.
Since L ≤ 0 and 0 ≤ L, then by the antisymmetric property of ≤, L = 0.
Therefore, f ′(x0) = 0, as desired.
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