Real valued functions Theory

Jason Sass

June 29, 2021

Real valued functions of a real variable

Theorem 1. Strictly monotonic functions are injective. Let f be a real valued function of a real variable. Let S be a subset of the domain of f. 1. If f is strictly increasing on S, then f is one to one on S. 2. If f is strictly decreasing on S, then f is one to one on S. Proof. We prove 1. Suppose f is strictly increasing on S. Let $a, b \in S$ such that $a \neq b$. Then either a < b or a > b. Without loss of generality, we may assume a < b. Since f is strictly increasing on S, then f(a) < f(b), so $f(a) \neq f(b)$. Therefore, $a \neq b$ implies $f(a) \neq f(b)$, so f is one to one. Proof. We prove 2. Suppose f is strictly decreasing on S. Let $a, b \in S$ such that $a \neq b$. Then either a < b or a > b.

Without loss of generality, we may assume a < b. Since f is strictly decreasing on S, then f(a) > f(b), so $f(a) \neq f(b)$. Therefore, $a \neq b$ implies $f(a) \neq f(b)$, so f is one to one.

 \square

Propositions involving algebra of functions

Proposition 2. Let f and g each be real valued functions of a real variable.
1. If f and g are even, then f + g, f − g, fg, and g ∘ f are even.
2. If f and g are odd, then f + g, f − g, and g ∘ f are odd and fg is even.
Proof. We prove 1.

Suppose f and g are even. Since f is even, then f(-x) = f(x) for all $x \in dom f$. Since g is even, then g(-x) = g(x) for all $x \in dom g$. We prove f + g is even. Let $x \in dom(f + g)$. Then $x \in domf$ and $x \in domg$. Since $x \in domf$, then f(-x) = f(x). Since $x \in domg$, then g(-x) = g(x). Observe that

$$(f+g)(-x) = f(-x) + g(-x)$$

= $f(x) + g(x)$
= $(f+g)(x)$.

Therefore, (f+g)(-x) = (f+g)(x), so the function f+g is even.

We prove f - g is even. Let $x \in dom(f - g)$. Then $x \in domf$ and $x \in domg$. Since $x \in domf$, then f(-x) = f(x). Since $x \in domg$, then g(-x) = g(x). Observe that

$$(f-g)(-x) = f(-x) - g(-x)$$

= $f(x) - g(x)$
= $(f-g)(x)$.

Therefore, (f - g)(-x) = (f - g)(x), so the function f - g is even.

We prove fg is even. Let $x \in dom(fg)$. Then $x \in domf$ and $x \in domg$. Since $x \in domf$, then f(-x) = f(x). Since $x \in domg$, then g(-x) = g(x). Observe that

$$(fg)(-x) = f(-x)g(-x)$$

= $f(x)g(x)$
= $(fg)(x)$.

Therefore, (fg)(-x) = (fg)(x), so the function fg is even.

We prove $g \circ f$ is even. Let $x \in dom(g \circ f)$. Then $x \in domf$ and $f(x) \in domg$. Since $x \in domf$, then f(-x) = f(x). Observe that

$$(g \circ f)(-x) = g(f(-x))$$

= $g(f(x))$
= $(g \circ f)(x).$

Therefore, $(g \circ f)(-x) = (g \circ f)(x)$, so the function $g \circ f$ is even.

Proof. We prove 2.

Suppose f and g are odd. Since f is odd, then f(-x) = -f(x) for all $x \in dom f$. Since g is odd, then g(-x) = -g(x) for all $x \in dom g$.

We prove f + g is odd. Let $x \in dom(f + g)$. Then $x \in domf$ and $x \in domg$. Since $x \in domf$, then f(-x) = -f(x). Since $x \in domg$, then g(-x) = -g(x). Observe that

$$(f+g)(-x) = f(-x) + g(-x) = -f(x) - g(x) = -[f(x) + g(x)] = -(f+g)(x).$$

Therefore, (f+g)(-x) = -(f+g)(x), so the function f+g is odd.

We prove f - g is odd. Let $x \in dom(f - g)$. Then $x \in domf$ and $x \in domg$. Since $x \in domf$, then f(-x) = -f(x). Since $x \in domg$, then g(-x) = -g(x). Observe that

$$(f-g)(-x) = f(-x) - g(-x) = -f(x) - (-g(x)) = -f(x) + g(x) = -[f(x) - g(x)] = -(f - g)(x).$$

Therefore, (f - g)(-x) = -(f - g)(x), so the function f - g is odd.

We prove fg is even. Let $x \in dom(fg)$. Then $x \in domf$ and $x \in domg$. Since $x \in domf$, then f(-x) = -f(x). Since $x \in domg$, then g(-x) = -g(x). Observe that

$$(fg)(-x) = f(-x)g(-x)$$

= $[-f(x)][-g(x)]$
= $f(x)g(x)$
= $(fg)(x)$.

Therefore, (fg)(-x) = (fg)(x), so the function fg is even.

We prove $g \circ f$ is odd. Let $x \in dom(g \circ f)$. Then $x \in domf$ and $f(x) \in domg$. Since $x \in domf$, then f(-x) = -f(x). Since $f(x) \in domg$, then g(-f(x)) = -g(f(x)). Observe that

$$\begin{array}{rcl} (g \circ f)(-x) & = & g(f(-x)) \\ & = & g(-f(x)) \\ & = & -g(f(x)) \\ & = & -(g \circ f)(x). \end{array}$$

Therefore, $(g \circ f)(-x) = -(g \circ f)(x)$, so the function $g \circ f$ is odd.

4