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Real valued functions of a real variable

Theorem 1. Strictly monotonic functions are injective.
Let f be a real valued function of a real variable.
Let S be a subset of the domain of f.
1. If f is strictly increasing on S, then f is one to one on S.
2. If f is strictly decreasing on S, then f is one to one on S.

Proof. We prove 1.
Suppose f is strictly increasing on S.
Let a,b € S such that a # b.
Then either a < b or a > b.
Without loss of generality, we may assume a < b.
Since f is strictly increasing on S, then f(a) < f(b), so f(a) # f(b).
Therefore, a # b implies f(a) # f(b), so f is one to one. O

Proof. We prove 2.
Suppose f is strictly decreasing on S.
Let a,b € S such that a # b.
Then either a < b or a > b.
Without loss of generality, we may assume a < b.
Since f is strictly decreasing on S, then f(a) > f(b), so f(a) # f(b).
Therefore, a # b implies f(a) # f(b), so f is one to one. O

Propositions involving algebra of functions

Proposition 2. Let f and g each be real valued functions of a real variable.
1. If f and g are even, then f +g, f —g, fg, and go f are even.
2. If f and g are odd, then f+ g, f —g, and go f are odd and fg is even.

Proof. We prove 1.

Suppose f and g are even.

Since f is even, then f(—z) = f(z) for all z € domf.
Since g is even, then g(—xz) = g(x) for all x € domyg.



We prove f + g is even.
Let z € dom(f + g).
Then z € domf and = € domg.
Since x € domf, then f(—z) = f(z).
Since x € domyg, then g(—x) = g(x).
Observe that

(f+9)(-2) = f(-2)+g(-2)
= flx)+g(x)
= (f+9)(x).

Therefore, (f + g)(—z) = (f + ¢)(x), so the function f + g is even.

We prove f — g is even.
Let z € dom(f — g).
Then = € domf and = € domg.
Since = € domf, then f(—x) = f(z).
Since x € domyg, then g(—z) = g(x).
Observe that

(f=9)(-2) = f(-x)—g(-2)
f(x) —g(x)
= (f—9)(=).

Therefore, (f — g)(—z) = (f — g)(x), so the function f — g is even.

We prove fg is even.
Let z € dom(fg).
Then z € domf and z € domg.
Since x € domf, then f(—z) = f(z).
Since = € domg, then g(—z) = g(x).
Observe that

(f9)(—x)

f(=z)g(—z)
= f(z)g(z)
(fg)(z).

Therefore, (fg)(—x) = (fg)(z), so the function fg is even.

We prove g o f is even.
Let z € dom(g o f).
Then = € domf and f(x) € domyg.
Since x € domf, then f(—z) = f(z).



Observe that

(gof)(=z) = g(f(-x))
= 9(f(2))
= (gof)(x).

Therefore, (go f)(—z) = (g o f)(x), so the function g o f is even.

Proof. We prove 2.

Suppose f and g are odd.

Since f is odd, then f(—z) = —f(x) for all x € domf.
Since g is odd, then g(—z) = —g(z) for all z € domyg.

We prove f + ¢ is odd.
Let z € dom(f + g).
Then x € domf and = € domg.
Since z € domf, then f(—z) = —f(x).
Since x € domyg, then g(—x) = —g(z).
Observe that

(f+9)(=2) = f(-2)+g
= —f(z) -
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Therefore, (f + g)(—z) = —(f + g)(x), so the function f + ¢ is odd.

We prove f — g is odd.
Let z € dom(f — g).
Then z € domf and = € domg.
Since x € domf, then f(—z) = —f(x).
Since x € domyg, then g(—x) = —g(z).
Observe that

(f=9)(=2) = [f(-=
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Therefore, (f — g)(—z) = —(f — g)(x), so the function f — g is odd.



We prove fg is even.
Let z € dom(fg).
Then z € domf and = € domg.
Since = € domf, then f(—x)

Since = € domg, then g(—z) = —g(z).

Observe that

(fg)(—z) =

Therefore, (fg)(—x) = (fg)(z),

We prove g o f is odd.
Let z € dom(g o f).

so the function fg is even.

Then « € domf and f(x) € domg.

Since z € domf, then f(—x)

Observe that

(gof)(-z) =

—f().
Since f(z) € domg, then g(—f(z))

—9(f(2)).
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Therefore, (go f)(—x) = —(g o f)(z), so the function g o f is odd.



