Real valued functions Examples

Jason Sass

June 29, 2021

Real valued functions of a real variable

Example 1. greatest integer function

Let $x \in \mathbb{R}$. Let $\lfloor x \rfloor$ denote the greatest integer n such that $n \leq x$. Then $\lfloor x \rfloor = \max\{n \in \mathbb{Z} : n \leq x\}$. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = \lfloor x \rfloor$ for all $x \in \mathbb{R}$. Then f is called the **greatest integer function**.

Proof. Let $x \in \mathbb{R}$.

Let $S = \{n \in \mathbb{Z} : n \le x\}.$

We prove max S exists, thereby justifying the existence of the greatest integer function.

Since each real number lies between two consecutive integers, then there exists an integer m such that $m \le x < m + 1$.

We prove $m = \max S$. Since $m \le x < m + 1$, then $m \le x$ and x < m + 1. Since $m \in \mathbb{Z}$ and $m \le x$, then $m \in S$. Let $s \in S$. Then $s \in \mathbb{Z}$ and $s \le x$. Suppose for the sake of contradiction s > m. Since m < s and $s \le x$ and x < m + 1, then $m < s \le x < m + 1$, so m < s < m + 1. Since $m, s \in \mathbb{Z}$ and m < s < m + 1, then s is an integer between the two consecutive integers m and m + 1.

This contradicts the fact that there is no integer between two consecutive integers.

Hence, $s \leq m$, so $s \leq m$ for all $s \in S$.

Therefore, m is an upper bound of S.

Since $m \in S$ and m is an upper bound of S, then $m = \max S$, as desired. \Box

Classes of real valued functions

Example 2. Let p be a polynomial function of a real variable.

Then there exist a nonnegative integer n and real numbers $a_0, a_1, ..., a_n$ such

that $p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$. The domain of p is \mathbb{R} .

Therefore, $domp = \mathbb{R}$, so the domain of any polynomial function is \mathbb{R} .

Proof. Let domp be the domain of p.

Then $domp = \{x \in \mathbb{R} : (\exists y \in \mathbb{R})(y = p(x))\}$. Hence, $domp \subset \mathbb{R}$. Let $x \in \mathbb{R}$. Let $y = a_0 + a_1 + a_2x^2 + ... + a_nx^n$. Then y = p(x). Since \mathbb{R} is closed under addition and multiplication, then $y \in \mathbb{R}$. Hence, there exists $y \in \mathbb{R}$ such that y = p(x), so $x \in domp$. Thus, $\mathbb{R} \subset domp$. Since $domp \subset \mathbb{R}$ and $\mathbb{R} \subset domp$, then $domp = \mathbb{R}$. Therefore, the domain of a polynomial function is \mathbb{R} .