Real valued functions Exercises

Jason Sass

July 30, 2021

Real valued functions of a real variable

Exercise 1. Let $f:[0,\infty) \to \mathbb{R}$ be the function defined by $f(x) = \sqrt{x}$. Then f is increasing.	
Proof. Let $a, b \in [0, \infty)$ such that $a < b$. Since $a \in [0, \infty)$, then $a \ge 0$. Since $0 \le a$ and $a < b$, then $0 \le a < b$, so $\sqrt{a} < \sqrt{b}$. Hence, $f(a) < f(b)$, so f is increasing.	
Exercise 2. Let $f : \mathbb{N} \to \mathbb{Z}$ be the function defined by $f(n) = n^2 + n$. Then f is increasing.	
Proof. Let $a, b \in \mathbb{N}$ such that $a < b$. Since $a \in \mathbb{N}$, then $a > 0$, so $0 < a < b$. Hence, $a^2 < b^2$.	
Since $a^2 < b^2$ and $a < b$, then $a^2 + a < b^2 + b$, so $f(a) < f(b)$. Therefore, f is increasing.	
Exercise 3. Let $g: \mathbb{Z} \to \mathbb{R}$ be the function defined by $g(n) = n^3 - n$. Then g is not increasing.	
<i>Proof.</i> Since $0 < 1$ and $g(0) = 0 = g(1)$, then g is not increasing.	
Exercise 4. Let $h : \mathbb{R} \to \mathbb{R}$ be the function defined by $h(x) = x $. Then h is not increasing and h is not decreasing.	
<i>Proof.</i> Since $-1 < 1$, but $h(-1) = 1 = h(1)$, then h is not increasing and h not decreasing.	is □
Exercise 5. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = x^2 - 2x$. Then f is not one to one(injective).	
<i>Proof.</i> Since $0 \neq 2$ and $f(0) = 0 = f(2)$, then f is not one to one.	

Exercise 6. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = x^3$. Then f is increasing.

Proof. Let $a, b \in \mathbb{R}$ such that a < b. Since $a \in \mathbb{R}$, then either a > 0 or a = 0 or a < 0. We consider these cases separately. Case 1: Suppose a > 0. Since 0 < a and a < b, then 0 < a < b, so $0 < a^2 < b^2$. Since 0 < a < b and $0 < a^2 < b^2$, then $0 < a^3 < b^3$, so $a^3 < b^3$. Therefore, $f(a) = a^3 < b^3 = f(b)$, so f(a) < f(b). Case 2: Suppose a = 0. Since a = 0 and a < b, then 0 < b. Since b > 0, then $b^2 > 0$, so $b^3 > 0$. Thus, $f(a) = f(0) = 0^3 = 0 < b^3 = f(b)$, so f(a) < f(b). Case 3: Suppose a < 0. Since $b \in \mathbb{R}$, then either b > 0 or b = 0 or b < 0. We consider these cases separately. Case 3a: Suppose b > 0. Since a < 0, then $a^2 > 0$, so $a^3 < 0$. Since b > 0, then $b^2 > 0$, so $b^3 > 0$. Thus, $f(a) = a^3 < 0 < b^3 = f(b)$, so f(a) < f(b). Case 3b: Suppose b = 0. Since a < 0, then $a^2 > 0$, so $a^3 < 0$. Thus, $f(a) = a^3 < 0 = 0^3 = b^3 = f(b)$, so f(a) < f(b). Case 3c: Suppose b < 0. Since a < 0, then $a^2 > 0$. Since b < 0, then $b^2 > 0$. Thus, $a^2 + b^2 > 0$. Since a < 0 and b < 0, then ab > 0. Since $a^2 + b^2 > 0$ and ab > 0, then $a^2 + b^2 + ab > 0$. Since a < b, then 0 < b - a. Since b - a > 0 and $a^2 + b^2 + ab > 0$, then $(b - a)(a^2 + b^2 + ab) > 0$, so $(b-a)(a^2 + ab + b^2) > 0.$ Hence, $b^3 - a^3 > 0$, so $b^3 > a^3$. Thus, f(b) > f(a), so f(a) < f(b).

In all cases, we conclude f(a) < f(b), so f is increasing.

Exercise 7. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = \sin x$. Then f is not increasing.

Proof. Observe that $0 < \pi$, but $\sin 0 = 0 = \sin \pi$, so f is not decreasing.

Exercise 8. The product of an even function and an odd function is odd.

Proof. Let f be an even function and g be an odd function. We must prove the product function fg is odd. Let $x \in dom(fg)$. Then $x \in domf$ and $x \in domg$. Since $x \in domf$ and f is even, then f(-x) = f(x). Since $x \in domg$ and g is odd, then g(-x) = -g(x). Observe that

$$\begin{aligned} (fg)(-x) &= f(-x)g(-x) \\ &= f(x)[-g(x)] \\ &= -[f(x)][g(x)] \\ &= -(fg)(x). \end{aligned}$$

Therefore, (fg)(-x) = -(fg)(x), so the function fg is odd.

Exercise 9. Let n be a fixed positive integer.

The function given by $f(x) = a_{2n}x^{2n} + a_{2n-2}x^{2n-2} + \dots + a_2x^2 + a_0$ is even.

Proof. Let $x \in dom f$. Then

$$\begin{aligned} f(-x) &= a_{2n}(-x)^{2n} + a_{2n-2}(-x)^{2n-2} + \dots + a_2(-x)^2 + a_0 \\ &= a_{2n}(-x)^{2n} + a_{2n-2}(-x)^{2(n-1)} + \dots + a_2(-x)^{2*1} + a_0 \\ &= a_{2n}[(-x)^2]^n + a_{2n-2}[(-x)^2]^{n-1} + \dots + a_2[(-x)^2]^1 + a_0 \\ &= a_{2n}(x^2)^n + a_{2n-2}(x^2)^{n-1} + \dots + a_2(x^2)^1 + a_0 \\ &= a_{2n}x^{2n} + a_{2n-2}x^{2n-2} + \dots + a_2x^2 + a_0 \\ &= f(x). \end{aligned}$$

Therefore, f(-x) = f(x), so f is even.

Exercise 10. Let $f: [2,\infty) \to \mathbb{R}$ be the function defined by $f(x) = x^2 + 5$. Then the image of $[2,\infty)$ under f is the interval $[9,\infty)$.

Proof. Let S be the image of the interval $[2, \infty)$ under f. Let T be the interval $[9, \infty)$. Then $S = f([2, \infty)) = \{f(x) : x \in [2, \infty)\}$ and $T = [9, \infty)$. We must prove S = T.

We first prove $S \subset T$. Let $y \in S$. Then y = f(x) for some $x \in [2, \infty)$. Thus, $y = x^2 + 5$ for some $x \ge 2$. Since $x \ge 2$, then $x^2 \ge 4$, so $y = x^2 + 5 \ge 4 + 5 = 9$. Hence, $y \ge 9$, so $y \in T$. Therefore, $S \subset T$. We next prove $T \subset S$. Let $y \in T$. Then $y \ge 9$. Let $x = \sqrt{y-5}$. Since $y \ge 9$, then $y - 5 \ge 4$, so $\sqrt{y-5} \ge 2$. Hence, $x \ge 2$, so $x \in [2, \infty)$. Thus, $f(x) = x^2 + 5 = (\sqrt{y-5})^2 + 5 = (y-5) + 5 = y$. Thus, there exists $x \in [2, \infty)$ such that y = f(x), so $y \in S$. Since $y \in T$ implies $y \in S$, then $T \subset S$.

Since $S \subset T$ and $T \subset S$, then S = T, as desired.

Exercise 11. Let $f : [1,4] \to \mathbb{R}$ be the function defined by $f(x) = 2x^2 + \sqrt{x}$. Then f is increasing and the pre-image of 0 is the empty set.

Proof. We prove f is increasing.

Let $a, b \in [1, 4]$ such that a < b. Since $a \in [1, 4]$, then $1 \le a \le 4$, so $1 \le a$. Hence, $a \ge 1 > 0$, so a > 0. Since 0 < a and a < b, then 0 < a < b, so $0 < a^2 < b^2$ and $0 < \sqrt{a} < \sqrt{b}$. Since $0 < \sqrt{a} < \sqrt{b}$, then $\sqrt{a} < \sqrt{b}$. Since $0 < a^2 < b^2$, then $a^2 < b^2$, so $2a^2 < 2b^2$. Since $2a^2 < 2b^2$ and $\sqrt{a} < \sqrt{b}$, then $2a^2 + \sqrt{a} < 2b^2 + \sqrt{b}$, so f(a) < f(b). Therefore, f is increasing.

Proof. We prove the pre-image of 0 is the empty set. Let A be the pre-image of 0. Then $A = f^{-1}(0) = \{x \in [1, 4] : f(x) = 0\}$. We must prove $A = \emptyset$. We prove by contradiction. Suppose $A \neq \emptyset$. Then there exists $x \in A$. Thus, $x \in [1, 4]$ and f(x) = 0. Since $x \in [1, 4]$, then $1 \le x \le 4$, so $1 \le x$. Since $x \ge 1$, then $\sqrt{x} \ge 1$. Since $x \ge 1$, then $\sqrt{x} \ge 1$. Since $2x^2 \ge 2$ and $\sqrt{x} \ge 1$, then $2x^2 + \sqrt{x} \ge 3 > 0$, so f(x) > 0. Thus, we have f(x) > 0 and f(x) = 0, a violation of trichotomy of \mathbb{R} . Therefore, $A = \emptyset$.

Exercise 12. Let $f: [1,3] \to \mathbb{R}$ be the function defined by $f(x) = x + \frac{6}{x}$. Then f is not decreasing and determine if f is not one to one.

Proof. Since 2 < 3, but $f(2) = 2 + \frac{6}{2} = 5 = 3 + \frac{6}{3} = f(3)$, then f is not decreasing and f is not one to one.

Exercise 13. Let $f:[0,\infty) \to \mathbb{R}$ be the function defined by $f(x) = \frac{1}{1+x}$. Then f is bounded.

Proof. Let $x \in [0, \infty)$. Then $x \ge 0$. Since $1 + x \ge 1 + 0 = 1 > 0$, then $1 + x \ge 1$ and 1 + x > 0. Observe that

$$\begin{split} 0 \leq 1 \leq 1 + x & \Rightarrow & 0 \leq \frac{1}{1 + x} \leq 1 \\ \Leftrightarrow & 0 \leq f(x) \leq 1. \end{split}$$

Thus, $0 \le f(x) \le 1$ for every $x \in [0, \infty)$.

Since 0 and 1 are real numbers such that $0 \le f(x) \le 1$ for every $x \in [0, \infty)$, then f is bounded.

 $\begin{array}{l} \textit{Proof. Let } x \in [0,\infty). \\ \text{Then } x \geq 0, \text{ so } 1+x \geq 1 > 0. \\ \text{Hence, } 1+x > 0. \\ \text{Observe that} \end{array}$

$$\begin{array}{rcl} 0 \leq x & \Leftrightarrow & 1 \leq 1+x \\ & \Rightarrow & \displaystyle\frac{1}{1+x} \leq 1 \\ & \Rightarrow & \displaystyle\frac{|1|}{|1+x|} \leq 1 \\ & \Leftrightarrow & |\displaystyle\frac{1}{1+x}| \leq 1 \\ & \Leftrightarrow & |f(x)| \leq 1. \end{array}$$

Thus, $|f(x)| \leq 1$ for every $x \in [0, \infty)$.

Since 1 is a real number such that $|f(x)| \le 1$ for every $x \in [0, \infty)$, then f is bounded.

Proof. We prove by contradiction.

Suppose f is not bounded. Then for every $b \in \mathbb{R}$ there exists $x \in [0, \infty)$ such that |f(x)| > b. Let b = 1. Then there exists $x \in [0, \infty)$ such that |f(x)| > 1. Thus, $x \ge 0$ and $|\frac{1}{1+x}| > 1$. Since $x \ge 0$, then $1 + x \ge 1 > 0$, so 1 + x > 0. Observe that

$$\begin{split} |\frac{1}{1+x}| > 1 & \Leftrightarrow \quad \frac{|1|}{|1+x|} > 1 \\ & \Rightarrow \quad \frac{1}{1+x} > 1 \\ & \Rightarrow \quad 1 > 1+x \\ & \Leftrightarrow \quad 0 > x. \end{split}$$

Since $|\frac{1}{1+x}| > 1$ and $|\frac{1}{1+x}| > 1$ implies 0 > x, then we conclude 0 > x. Hence, $x \ge 0$ and x < 0, a violation of trichotomy in \mathbb{R} . Therefore, f must be bounded.

Exercise 14. Let $f : \mathbb{Z}^+ \to \mathbb{R}$ be the function defined by $f(n) = \frac{n}{n+1}$. Then f is bounded.

Proof. Let $n \in \mathbb{Z}^+$. Then $n \ge 1$. Thus, $n+1 \ge 2 > 0$, so n+1 > 0. Observe that

$$\begin{split} 1 \leq n \text{ and } 0 < 1 & \Leftrightarrow \quad n+1 \leq 2n \text{ and } n < n+1 \\ & \Rightarrow \quad \frac{1}{2} \leq \frac{n}{n+1} \text{ and } \frac{n}{n+1} < 1 \\ & \Rightarrow \quad \frac{1}{2} \leq \frac{n}{n+1} < 1 \\ & \Rightarrow \quad \frac{1}{2} \leq f(n) < 1. \end{split}$$

Thus, $1 \leq n$ and 0 < 1 implies $\frac{1}{2} \leq f(n) < 1$. Since $1 \leq n$ and 0 < 1, then we conclude $\frac{1}{2} \leq f(n) < 1$. Since $\frac{1}{2} \leq f(n) < 1 \leq 1$, then $\frac{1}{2} \leq f(n) \leq 1$. Hence, $\frac{1}{2} \leq f(n) \leq 1$ for every $n \in \mathbb{Z}^+$. Since $\frac{1}{2}$ and 1 are real numbers such that $\frac{1}{2} \leq f(n) \leq 1$ for every $n \in \mathbb{Z}^+$, then f is bounded.

Proof. Let $n \in \mathbb{Z}^+$. Then $n \ge 1$. Since $n \ge 1 > 0$, then n > 0. Since $n \ge 1$, then $n + 1 \ge 2 > 0$, so n + 1 > 0. Observe that

$$\begin{array}{rcl} 0 < 1 & \Leftrightarrow & n < n+1 \\ & \Rightarrow & \displaystyle \frac{n}{n+1} < 1 \\ & \Rightarrow & \displaystyle \frac{|n|}{|n+1|} < 1 \\ & \Leftrightarrow & \displaystyle |\frac{n}{n+1}| < 1 \\ & \Leftrightarrow & \displaystyle |f(n)| < 1. \end{array}$$

Thus, 0 < 1 implies |f(n)| < 1.

Since 0 < 1, then |f(n)| < 1.

Since $|f(n)| < 1 \le 1$, then $|f(n)| \le 1$, so $|f(n)| \le 1$ for all $n \in \mathbb{Z}^+$.

Since 1 is a real number such that $|f(n)| \leq 1$ for all $n \in \mathbb{Z}^+$ then f is bounded.

Proof. We prove by contradiction. Suppose f is unbounded. Then for every $b \in \mathbb{R}$, there exists $n \in \mathbb{Z}^+$ such that |f(n)| > b. Let b = 1. Then there exists $n \in \mathbb{Z}^+$ such that |f(n)| > 1. Since $n \in \mathbb{Z}^+$, then $n \ge 1$. Since $n \ge 1 > 0$, then n > 0. Since $n \ge 1$, then $n + 1 \ge 2 > 0$, so n + 1 > 0. Thus, $1 < |f(n)| = |\frac{n}{n+1}| = \frac{|n|}{|n+1|} = \frac{n}{n+1}$, so $1 < \frac{n}{n+1}$. Since n + 1 > 0, then we multiply by n + 1 to obtain n + 1 < n. We subtract n to obtain 1 < 0, a contradiction. Therefore, f is bounded. **Exercise 15.** Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by f(x) = 1 + 2|x|. A. The image of f is the interval $[1, \infty)$. B. The pre-image of 5 is the set $\{-2, 2\}$. C. The inverse image of the interval (0,5) is the interval (-2,2). *Proof.* We first prove the statement : The image of f is the interval $[1, \infty)$. Let S be the image of f and let T be the interval $[1, \infty)$. Then $S = f(\mathbb{R}) = \{f(x) : x \in \mathbb{R}\}$ and $T = [1, \infty)$. We must prove S = T. We first prove $S \subset T$. Let $y \in S$. Then y = f(x) for some $x \in \mathbb{R}$. Since $x \in \mathbb{R}$, then $|x| \ge 0$, so $2|x| \ge 0$. Thus, $y = 1 + 2|x| \ge 1$, so $y \ge 1$. Hence, $y \in [1, \infty)$, so $S \subset [1, \infty)$. Therefore, $S \subset T$. We next prove $T \subset S$. Let $y \in T$. Then $y \ge 1$. Let $x = \frac{y-1}{2}$. Then 2x = y - 1, so 2x + 1 = y. Since $y \ge 1$, then $y - 1 \ge 0$, so $\frac{y-1}{2} \ge 0$. Hence, $x \ge 0$, so |x| = x. Thus, y = 2x + 1 = 2|x| + 1 = 1 + 2|x| = f(x). Therefore, there is a real number x such that y = f(x), so $y \in S$. Since $y \in T$ implies $y \in S$, then $T \subset S$.

Since $S \subset T$ and $T \subset S$, then S = T, as desired.

Proof. We prove the statement: The pre-image of 5 is the set $\{-2, 2\}$. Let A be the pre-image of 5 and let B be the set $\{-2, 2\}$. Then $A = f^{-1}(5) = \{x \in \mathbb{R} : f(x) = 5\}$ and $B = \{-2, 2\}$. We must prove A = B.

We first prove $B \subset A$. Since f(2) = 1 + 2|2| = 1 + 2 * 2 = 5, then $2 \in A$. Since f(-2) = 1 + 2|-2| = 1 + 2 * 2 = 5, then $-2 \in A$. Since $2 \in A$ and $-2 \in A$, then every element of set B is contained in set A, so $B \subset A$.

We next prove $A \subset B$. Let $x \in A$. Then $x \in \mathbb{R}$ and f(x) = 5. Observe that

$$f(x) = 5 \quad \Leftrightarrow \quad 1 + 2|x| = 5$$
$$\Leftrightarrow \quad 2|x| = 4$$
$$\Leftrightarrow \quad |x| = 2$$
$$\Leftrightarrow \quad x = 2 \text{ or } x = -2$$
$$\Leftrightarrow \quad x \in \{-2, 2\}.$$

Since f(x) = 5 and f(x) = 5 if and only if $x \in \{-2, 2\}$, then $x \in \{-2, 2\}$, so $x \in B$.

Hence, $x \in A$ implies $x \in B$, so $A \subset B$.

Since $A \subset B$ and $B \subset A$, then A = B, as desired. \Box

Proof. We prove the statement: The inverse image of the interval (0,5) is the interval (-2,2).

Let S be the inverse image of the interval (0,5) and let T be the interval (-2,2).

Then $S = f^{-1}((0,5)) = \{x \in \mathbb{R} : f(x) \in (0,5)\}$ and T = (-2,2). We must prove S = T.

We first prove $S \subset T$. Let $x \in S$. Then $x \in \mathbb{R}$ and $f(x) \in (0,5)$. Observe that

$$\begin{aligned} f(x) \in (0,5) &\Leftrightarrow 1+2|x| \in (0,5) \\ &\Leftrightarrow 0 < 1+2|x| < 5 \\ &\Leftrightarrow -1 < 2|x| < 4 \\ &\Leftrightarrow \frac{-1}{2} < |x| < 2 \\ &\Leftrightarrow \frac{-1}{2} < |x| \text{ and } |x| < 2. \end{aligned}$$

Since $|x| \ge 0 > \frac{-1}{2}$, then $|x| > \frac{-1}{2}$ is always true, so |x| < 2. Hence, -2 < x < 2, so $x \in (-2, 2)$. Thus, $x \in T$. Since $x \in S$ implies $x \in T$, then $S \subset T$.

We next prove $T \subset S$. Let $x \in T$. Then $x \in (-2, 2)$, so -2 < x < 2. Hence, |x| < 2. Since $|x| \ge 0 > \frac{-1}{2}$, then $|x| > \frac{-1}{2}$, so $\frac{-1}{2} < |x| < 2$. Observe that $\frac{-1}{2} < |x| < 2 \quad \Leftrightarrow \quad -1 < 2|x| < 4$ $\Leftrightarrow \quad 0 < 1 + 2|x| < 5$ $\Leftrightarrow \quad 0 < f(x) < 5$ $\Leftrightarrow \quad f(x) \in (0, 5).$

Thus, $f(x) \in (0, 5)$, so $x \in S$. Since $x \in T$ implies $x \in S$, then $T \subset S$. Since $S \subset T$ and $T \subset S$, then S = T, as desired.

- **Exercise 16.** Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = x^2$. A. The pre-image of 4 is the set $\{-2, 2\}$. B. The inverse image of the closed interval [4, 5] is the set $[-\sqrt{5}, -2] \cup [2, \sqrt{5}]$.
- *Proof.* We prove: The pre-image of 4 is the set $\{-2, 2\}$. Let A be the pre-image of 4 and let B be the set $\{-2, 2\}$. Then $A = f^{-1}(4) = \{x \in \mathbb{R} : f(x) = 4\}$ and $B = \{-2, 2\}$. We must prove A = B.

We first prove $B \subset A$. Since $2 \in \mathbb{R}$ and $f(2) = 2^2 = 4$, then $2 \in A$. Since $-2 \in \mathbb{R}$ and $f(-2) = (-2)^2 = 4$, then $-2 \in A$. Since $2 \in A$ and $-2 \in A$, then every element of B is contained in A, so $B \subset A$. We next prove $A \subset B$. Let $x \in A$. Then $x \in \mathbb{R}$ and f(x) = 4. Observe that

$$f(x) = 4 \quad \Leftrightarrow \quad x^2 = 4$$

$$\Leftrightarrow \quad (x^2 - 4) = 0$$

$$\Leftrightarrow \quad (x + 2)(x - 2) = 0$$

$$\Leftrightarrow \quad x + 2 = 0 \text{ or } x - 2 = 0$$

$$\Leftrightarrow \quad x = -2 \text{ or } x = 2$$

$$\Leftrightarrow \quad x \in \{-2, 2\}.$$

Since f(x) = 4 and f(x) = 4 if and only if $x \in \{-2, 2\}$, then $x \in \{-2, 2\}$, so $x \in B$.

Thus, $x \in A$ implies $x \in B$, so $A \subset B$. Since $A \subset B$ and $B \subset A$, then A = B, as desired.

Proof. We next prove the statement: The inverse image of the closed interval [4,5] is the set $[-\sqrt{5},-2] \cup [2,\sqrt{5}]$.

Let S be the inverse image of the interval [4, 5] and let T be the set $[-\sqrt{5}, -2] \cup [2, \sqrt{5}]$.

Then $S = f^{-1}[4, 5] = \{x \in \mathbb{R} : f(x) \in [4, 5]\}$ and $T = [-\sqrt{5}, -2] \cup [2, \sqrt{5}]$. We must prove S = T.

We first prove $T \,\subset S$. Let $x \in T$. Then either $x \in [-\sqrt{5}, -2]$ or $x \in [2, \sqrt{5}]$. We consider these cases separately. **Case 1:** Suppose $x \in [2, \sqrt{5}]$. Then $2 \leq x \leq \sqrt{5}$, so $0 < 2 \leq x \leq \sqrt{5}$. Thus, $4 \leq x^2 \leq 5$, so $x^2 \in [4, 5]$. Therefore, $f(x) \in [4, 5]$, so $x \in S$. **Case 2:** Suppose $x \in [-\sqrt{5}, -2]$. Then $-\sqrt{5} \leq x \leq -2$, so $-\sqrt{5} \leq x \leq -2 < 0$. Thus, $(-\sqrt{5})^2 \geq x^2 \geq (-2)^2$, so $5 \geq x^2 \geq 4$. Hence, $4 \leq x^2 \leq 5$, so $x^2 \in [4, 5]$. Thus, $f(x) \in [4, 5]$, so $x \in S$. In either case, $x \in S$, so $x \in T$ implies $x \in S$. Therefore, $T \subset S$. We next prove $S \subset T$. Let $x \in S$. Then $x \in \mathbb{R}$ and $f(x) \in [4, 5]$, so $x^2 \in [4, 5]$.

Then $x \in \mathbb{R}$ and f(Hence, $4 \le x^2 \le 5$.

Since $0 < 4 \le x^2 \le 5$, then $2 \le |x| \le \sqrt{5}$, so $2 \le |x|$ and $|x| \le \sqrt{5}$.

Since $|x| \leq \sqrt{5}$, then $-\sqrt{5} \leq x \leq \sqrt{5}$, so $x \in [-\sqrt{5}, \sqrt{5}]$. Since $|x| \geq 2$, then either $x \geq 2$ or $x \leq -2$. We consider these cases separately. **Case 1:** Suppose $x \geq 2$. Then $x \in [2, \infty)$. Since $x \in [2, \infty)$ and $x \in [-\sqrt{5}, \sqrt{5}]$, then $x \in [2, \infty) \cap [-\sqrt{5}, \sqrt{5}] = [2, \sqrt{5}]$. **Case 2:** Suppose $x \leq -2$. Then $x \in (-\infty, -2]$. Since $x \in (-\infty, -2]$. Since $x \in (-\infty, -2]$ and $x \in [-\sqrt{5}, \sqrt{5}]$, then $x \in (-\infty, -2] \cap [-\sqrt{5}, \sqrt{5}] = [-\sqrt{5}, -2]$.

Hence, either $x \in [2, \sqrt{5}]$ or $x \in [-\sqrt{5}, -2]$, so $x \in [2, \sqrt{5}] \cup [-\sqrt{5}, -2] = [-\sqrt{5}, -2] \cup [2, \sqrt{5}]$. Thus, $x \in T$. Since $x \in S$ implies $x \in T$, then $S \subset T$. Since $S \subset T$ and $T \subset S$, then S = T, as desired.

Exercise 17. Let $f: (0,4) \to \mathbb{R}$ be the function defined by $f(x) = \sqrt{x}$. Then f is increasing and f is bounded.

Proof. We first prove f is increasing. Let $a, b \in (0, 4)$ such that a < b. Since $a \in (0, 4)$, then 0 < a < 4, so 0 < a. Since 0 < a and a < b, then 0 < a < b, so $0 < \sqrt{a} < \sqrt{b}$. Thus, $\sqrt{a} < \sqrt{b}$, so f(a) < f(b). Therefore, f is increasing.

Proof. We prove f is bounded. Let $x \in (0, 4)$. Then 0 < x < 4, so $0 < \sqrt{x} < 2$. Hence, $0 < \sqrt{x}$ and $\sqrt{x} < 2$. Since $\sqrt{x} > 0$, then $|\sqrt{x}| = \sqrt{x}$. Thus, $|f(x)| = |\sqrt{x}| = \sqrt{x} < 2 \le 2$, so $|f(x)| \le 2$. Therefore, $|f(x)| \le 2$ for all $x \in (0, 4)$, so f is bounded. Exercise 18. Any real valued function on a finite set is bounded.

Proof. Let A be a finite set. Let $f : A \to \mathbb{R}$ be a function. To prove f is bounded, we must prove the range of f is a bounded set. Let S be the range of f. Then $S = \{f(x) \in \mathbb{R} : x \in A\}$. We must prove the set S is bounded. Since A is a finite set, then there are n elements in A for some integer $n \ge 0$. Since f is a function, then for every $x \in A$, there is exactly one $f(x) \in \mathbb{R}$, so there are n elements in S.

Hence, S is a finite set of n real numbers.

Since $n \ge 0$, then either n > 0 or n = 0. We consider these cases separately.

Case 1: Suppose n > 0.

Then ${\cal S}$ contains at least one real number.

Since the elements of S are ordered, let $S = \{a_i \in \mathbb{R} : a \in \{1, ..., n\}\}$ and $a_1 \leq ..., \leq a_n$.

Since $a_1 \in S$ and $a_1 \leq a_i$ for every $i \in \{1, ..., n\}$, then a_1 is the least element of S, so $s \geq a_1$ for all $s \in S$.

Since $a_n \in S$ and $a_i \leq a_n$ for every $i \in \{1, ..., n\}$, then a_n is the greatest element of S, so $a_n \geq s$ for all $s \in S$.

Thus, $a_1 \leq s \leq a_n$ for every $s \in S$, so S is bounded.

Case 2: Suppose n = 0.

Then S contains no real numbers, so $S = \emptyset$.

Since every real number is both an upper and lower bound for the empty set, then \emptyset is bounded in \mathbb{R} , so S is bounded.

In all cases, we conclude the set S is bounded, so the function f must be bounded.