Real valued functions Exercises

Jason Sass

July 30, 2021

Real valued functions of a real variable

Exercise 1. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be the function defined by $f(x)=\sqrt{x}$. Then f is increasing.

Proof. Let $a, b \in[0, \infty)$ such that $a<b$.
Since $a \in[0, \infty)$, then $a \geq 0$.
Since $0 \leq a$ and $a<b$, then $0 \leq a<b$, so $\sqrt{a}<\sqrt{b}$.
Hence, $f(a)<f(b)$, so f is increasing.
Exercise 2. Let $f: \mathbb{N} \rightarrow \mathbb{Z}$ be the function defined by $f(n)=n^{2}+n$.
Then f is increasing.
Proof. Let $a, b \in \mathbb{N}$ such that $a<b$.
Since $a \in \mathbb{N}$, then $a>0$, so $0<a<b$.
Hence, $a^{2}<b^{2}$.
Since $a^{2}<b^{2}$ and $a<b$, then $a^{2}+a<b^{2}+b$, so $f(a)<f(b)$.
Therefore, f is increasing.
Exercise 3. Let $g: \mathbb{Z} \rightarrow \mathbb{R}$ be the function defined by $g(n)=n^{3}-n$.
Then g is not increasing.
Proof. Since $0<1$ and $g(0)=0=g(1)$, then g is not increasing.
Exercise 4. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $h(x)=|x|$.
Then h is not increasing and h is not decreasing.
Proof. Since $-1<1$, but $h(-1)=1=h(1)$, then h is not increasing and h is not decreasing.

Exercise 5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x^{2}-2 x$.
Then f is not one to one(injective).
Proof. Since $0 \neq 2$ and $f(0)=0=f(2)$, then f is not one to one.
Exercise 6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x^{3}$.
Then f is increasing.

Proof. Let $a, b \in \mathbb{R}$ such that $a<b$.
Since $a \in \mathbb{R}$, then either $a>0$ or $a=0$ or $a<0$.
We consider these cases separately.
Case 1: Suppose $a>0$.
Since $0<a$ and $a<b$, then $0<a<b$, so $0<a^{2}<b^{2}$.
Since $0<a<b$ and $0<a^{2}<b^{2}$, then $0<a^{3}<b^{3}$, so $a^{3}<b^{3}$.
Therefore, $f(a)=a^{3}<b^{3}=f(b)$, so $f(a)<f(b)$.
Case 2: Suppose $a=0$.
Since $a=0$ and $a<b$, then $0<b$.
Since $b>0$, then $b^{2}>0$, so $b^{3}>0$.
Thus, $f(a)=f(0)=0^{3}=0<b^{3}=f(b)$, so $f(a)<f(b)$.
Case 3: Suppose $a<0$.
Since $b \in \mathbb{R}$, then either $b>0$ or $b=0$ or $b<0$.
We consider these cases separately.
Case 3a: Suppose $b>0$.
Since $a<0$, then $a^{2}>0$, so $a^{3}<0$.
Since $b>0$, then $b^{2}>0$, so $b^{3}>0$.
Thus, $f(a)=a^{3}<0<b^{3}=f(b)$, so $f(a)<f(b)$.
Case 3b: Suppose $b=0$.
Since $a<0$, then $a^{2}>0$, so $a^{3}<0$.
Thus, $f(a)=a^{3}<0=0^{3}=b^{3}=f(b)$, so $f(a)<f(b)$.
Case 3c: Suppose $b<0$.
Since $a<0$, then $a^{2}>0$.
Since $b<0$, then $b^{2}>0$.
Thus, $a^{2}+b^{2}>0$.
Since $a<0$ and $b<0$, then $a b>0$.
Since $a^{2}+b^{2}>0$ and $a b>0$, then $a^{2}+b^{2}+a b>0$.
Since $a<b$, then $0<b-a$.
Since $b-a>0$ and $a^{2}+b^{2}+a b>0$, then $(b-a)\left(a^{2}+b^{2}+a b\right)>0$, so $(b-a)\left(a^{2}+a b+b^{2}\right)>0$.

Hence, $b^{3}-a^{3}>0$, so $b^{3}>a^{3}$.
Thus, $f(b)>f(a)$, so $f(a)<f(b)$.
In all cases, we conclude $f(a)<f(b)$, so f is increasing.
Exercise 7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=\sin x$.
Then f is not increasing.
Proof. Observe that $0<\pi$, but $\sin 0=0=\sin \pi$, so f is not decreasing.
Exercise 8. The product of an even function and an odd function is odd.
Proof. Let f be an even function and g be an odd function.
We must prove the product function $f g$ is odd.
Let $x \in \operatorname{dom}(f g)$.
Then $x \in \operatorname{dom} f$ and $x \in \operatorname{domg}$.
Since $x \in \operatorname{dom} f$ and f is even, then $f(-x)=f(x)$.

Since $x \in d o m g$ and g is odd, then $g(-x)=-g(x)$.
Observe that

$$
\begin{aligned}
(f g)(-x) & =f(-x) g(-x) \\
& =f(x)[-g(x)] \\
& =-[f(x)][g(x)] \\
& =-(f g)(x) .
\end{aligned}
$$

Therefore, $(f g)(-x)=-(f g)(x)$, so the function $f g$ is odd.
Exercise 9. Let n be a fixed positive integer.
The function given by $f(x)=a_{2 n} x^{2 n}+a_{2 n-2} x^{2 n-2}+\ldots+a_{2} x^{2}+a_{0}$ is even.
Proof. Let $x \in \operatorname{dom} f$.
Then

$$
\begin{aligned}
f(-x) & =a_{2 n}(-x)^{2 n}+a_{2 n-2}(-x)^{2 n-2}+\ldots+a_{2}(-x)^{2}+a_{0} \\
& =a_{2 n}(-x)^{2 n}+a_{2 n-2}(-x)^{2(n-1)}+\ldots+a_{2}(-x)^{2 * 1}+a_{0} \\
& =a_{2 n}\left[(-x)^{2}\right]^{n}+a_{2 n-2}\left[(-x)^{2}\right]^{n-1}+\ldots+a_{2}\left[(-x)^{2}\right]^{1}+a_{0} \\
& =a_{2 n}\left(x^{2}\right)^{n}+a_{2 n-2}\left(x^{2}\right)^{n-1}+\ldots+a_{2}\left(x^{2}\right)^{1}+a_{0} \\
& =a_{2 n} x^{2 n}+a_{2 n-2} x^{2 n-2}+\ldots+a_{2} x^{2}+a_{0} \\
& =f(x) .
\end{aligned}
$$

Therefore, $f(-x)=f(x)$, so f is even.
Exercise 10. Let $f:[2, \infty) \rightarrow \mathbb{R}$ be the function defined by $f(x)=x^{2}+5$.
Then the image of $[2, \infty)$ under f is the interval $[9, \infty)$.
Proof. Let S be the image of the interval $[2, \infty)$ under f.
Let T be the interval $[9, \infty)$.
Then $S=f([2, \infty))=\{f(x): x \in[2, \infty)\}$ and $T=[9, \infty)$.
We must prove $S=T$.

We first prove $S \subset T$.
Let $y \in S$.
Then $y=f(x)$ for some $x \in[2, \infty)$.
Thus, $y=x^{2}+5$ for some $x \geq 2$.
Since $x \geq 2$, then $x^{2} \geq 4$, so $y=x^{2}+5 \geq 4+5=9$.
Hence, $y \geq 9$, so $y \in T$.
Therefore, $S \subset T$.

We next prove $T \subset S$.
Let $y \in T$.
Then $y \geq 9$.
Let $x=\sqrt{y-5}$.
Since $y \geq 9$, then $y-5 \geq 4$, so $\sqrt{y-5} \geq 2$.
Hence, $x \geq 2$, so $x \in[2, \infty)$.
Thus, $f(x)=x^{2}+5=(\sqrt{y-5})^{2}+5=(y-5)+5=y$.
Thus, there exists $x \in[2, \infty)$ such that $y=f(x)$, so $y \in S$.
Since $y \in T$ implies $y \in S$, then $T \subset S$.
Since $S \subset T$ and $T \subset S$, then $S=T$, as desired.
Exercise 11. Let $f:[1,4] \rightarrow \mathbb{R}$ be the function defined by $f(x)=2 x^{2}+\sqrt{x}$.
Then f is increasing and the pre-image of 0 is the empty set.
Proof. We prove f is increasing.
Let $a, b \in[1,4]$ such that $a<b$.
Since $a \in[1,4]$, then $1 \leq a \leq 4$, so $1 \leq a$.
Hence, $a \geq 1>0$, so $a>0$.
Since $0<a$ and $a<b$, then $0<a<b$, so $0<a^{2}<b^{2}$ and $0<\sqrt{a}<\sqrt{b}$.
Since $0<\sqrt{a}<\sqrt{b}$, then $\sqrt{a}<\sqrt{b}$.
Since $0<a^{2}<b^{2}$, then $a^{2}<b^{2}$, so $2 a^{2}<2 b^{2}$.
Since $2 a^{2}<2 b^{2}$ and $\sqrt{a}<\sqrt{b}$, then $2 a^{2}+\sqrt{a}<2 b^{2}+\sqrt{b}$, so $f(a)<f(b)$.
Therefore, f is increasing.
Proof. We prove the pre-image of 0 is the empty set.
Let A be the pre-image of 0 .
Then $A=f^{-1}(0)=\{x \in[1,4]: f(x)=0\}$.
We must prove $A=\emptyset$.
We prove by contradiction.
Suppose $A \neq \emptyset$.
Then there exists $x \in A$.
Thus, $x \in[1,4]$ and $f(x)=0$.
Since $x \in[1,4]$, then $1 \leq x \leq 4$, so $1 \leq x$.
Since $x \geq 1$, then $\sqrt{x} \geq 1$.
Since $x \geq 1$, then $x^{2} \geq 1$, so $2 x^{2} \geq 2$.
Since $2 x^{2} \geq 2$ and $\sqrt{x} \geq 1$, then $2 x^{2}+\sqrt{x} \geq 3>0$, so $f(x)>0$.
Thus, we have $f(x)>0$ and $f(x)=0$, a violation of trichotomy of \mathbb{R}.
Therefore, $A=\emptyset$.
Exercise 12. Let $f:[1,3] \rightarrow \mathbb{R}$ be the function defined by $f(x)=x+\frac{6}{x}$.
Then f is not decreasing and determine if f is not one to one.
Proof. Since $2<3$, but $f(2)=2+\frac{6}{2}=5=3+\frac{6}{3}=f(3)$, then f is not decreasing and f is not one to one.

Exercise 13. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be the function defined by $f(x)=\frac{1}{1+x}$. Then f is bounded.

Proof. Let $x \in[0, \infty)$.
Then $x \geq 0$.
Since $1+x \geq 1+0=1>0$, then $1+x \geq 1$ and $1+x>0$.
Observe that

$$
\begin{aligned}
0 \leq 1 \leq 1+x & \Rightarrow 0 \leq \frac{1}{1+x} \leq 1 \\
& \Leftrightarrow 0 \leq f(x) \leq 1
\end{aligned}
$$

Thus, $0 \leq f(x) \leq 1$ for every $x \in[0, \infty)$.
Since 0 and 1 are real numbers such that $0 \leq f(x) \leq 1$ for every $x \in[0, \infty)$, then f is bounded.

Proof. Let $x \in[0, \infty)$.
Then $x \geq 0$, so $1+x \geq 1>0$.
Hence, $1+x>0$.
Observe that

$$
\begin{aligned}
0 \leq x & \Leftrightarrow 1 \leq 1+x \\
& \Rightarrow \frac{1}{1+x} \leq 1 \\
& \Rightarrow \frac{|1|}{|1+x|} \leq 1 \\
& \Leftrightarrow\left|\frac{1}{1+x}\right| \leq 1 \\
& \Leftrightarrow|f(x)| \leq 1
\end{aligned}
$$

Thus, $|f(x)| \leq 1$ for every $x \in[0, \infty)$.
Since 1 is a real number such that $|f(x)| \leq 1$ for every $x \in[0, \infty)$, then f is bounded.

Proof. We prove by contradiction.
Suppose f is not bounded.
Then for every $b \in \mathbb{R}$ there exists $x \in[0, \infty)$ such that $|f(x)|>b$.
Let $b=1$.
Then there exists $x \in[0, \infty)$ such that $|f(x)|>1$.
Thus, $x \geq 0$ and $\left|\frac{1}{1+x}\right|>1$.
Since $x \geq 0$, then $1+x \geq 1>0$, so $1+x>0$.
Observe that

$$
\begin{aligned}
\left|\frac{1}{1+x}\right|>1 & \Leftrightarrow \frac{|1|}{|1+x|}>1 \\
& \Rightarrow \frac{1}{1+x}>1 \\
& \Rightarrow 1>1+x \\
& \Leftrightarrow 0>x
\end{aligned}
$$

Since $\left|\frac{1}{1+x}\right|>1$ and $\left|\frac{1}{1+x}\right|>1$ implies $0>x$, then we conclude $0>x$.
Hence, $x \geq 0$ and $x<0$, a violation of trichotomy in \mathbb{R}.
Therefore, f must be bounded.
Exercise 14. Let $f: \mathbb{Z}^{+} \rightarrow \mathbb{R}$ be the function defined by $f(n)=\frac{n}{n+1}$. Then f is bounded.

Proof. Let $n \in \mathbb{Z}^{+}$.
Then $n \geq 1$.
Thus, $n+1 \geq 2>0$, so $n+1>0$.
Observe that

$$
\begin{aligned}
1 \leq n \text { and } 0<1 & \Leftrightarrow n+1 \leq 2 n \text { and } n<n+1 \\
& \Rightarrow \frac{1}{2} \leq \frac{n}{n+1} \text { and } \frac{n}{n+1}<1 \\
& \Rightarrow \frac{1}{2} \leq \frac{n}{n+1}<1 \\
& \Rightarrow \frac{1}{2} \leq f(n)<1
\end{aligned}
$$

Thus, $1 \leq n$ and $0<1$ implies $\frac{1}{2} \leq f(n)<1$.
Since $1 \leq n$ and $0<1$, then we conclude $\frac{1}{2} \leq f(n)<1$.
Since $\frac{1}{2} \leq f(n)<1 \leq 1$, then $\frac{1}{2} \leq f(n) \leq 1$.
Hence, $\frac{1}{2} \leq f(n) \leq 1$ for every $n \in \mathbb{Z}^{+}$.
Since $\frac{1}{2}$ and 1 are real numbers such that $\frac{1}{2} \leq f(n) \leq 1$ for every $n \in \mathbb{Z}^{+}$, then f is bounded.

Proof. Let $n \in \mathbb{Z}^{+}$.
Then $n \geq 1$.
Since $n \geq 1>0$, then $n>0$.
Since $n \geq 1$, then $n+1 \geq 2>0$, so $n+1>0$.
Observe that

$$
\begin{aligned}
0<1 & \Leftrightarrow n<n+1 \\
& \Leftrightarrow \frac{n}{n+1}<1 \\
& \Rightarrow \frac{|n|}{|n+1|}<1 \\
& \Leftrightarrow\left|\frac{n}{n+1}\right|<1 \\
& \Leftrightarrow|f(n)|<1
\end{aligned}
$$

Thus, $0<1$ implies $|f(n)|<1$.
Since $0<1$, then $|f(n)|<1$.
Since $|f(n)|<1 \leq 1$, then $|f(n)| \leq 1$, so $|f(n)| \leq 1$ for all $n \in \mathbb{Z}^{+}$.
Since 1 is a real number such that $|f(n)| \leq 1$ for all $n \in \mathbb{Z}^{+}$then f is bounded.

Proof. We prove by contradiction.
Suppose f is unbounded.
Then for every $b \in \mathbb{R}$, there exists $n \in \mathbb{Z}^{+}$such that $|f(n)|>b$.
Let $b=1$.
Then there exists $n \in \mathbb{Z}^{+}$such that $|f(n)|>1$.
Since $n \in \mathbb{Z}^{+}$, then $n \geq 1$.
Since $n \geq 1>0$, then $n>0$.
Since $n \geq 1$, then $n+1 \geq 2>0$, so $n+1>0$.
Thus, $1<|f(n)|=\left|\frac{n}{n+1}\right|=\frac{|n|}{|n+1|}=\frac{n}{n+1}$, so $1<\frac{n}{n+1}$.
Since $n+1>0$, then we multiply by $n+1$ to obtain $n+1<n$.
We subtract n to obtain $1<0$, a contradiction.
Therefore, f is bounded.
Exercise 15. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=1+2|x|$.
A. The image of f is the interval $[1, \infty)$.
B. The pre-image of 5 is the set $\{-2,2\}$.
C. The inverse image of the interval $(0,5)$ is the interval $(-2,2)$.

Proof. We first prove the statement : The image of f is the interval $[1, \infty)$.
Let S be the image of f and let T be the interval $[1, \infty)$.
Then $S=f(\mathbb{R})=\{f(x): x \in \mathbb{R}\}$ and $T=[1, \infty)$.
We must prove $S=T$.

We first prove $S \subset T$.
Let $y \in S$.
Then $y=f(x)$ for some $x \in \mathbb{R}$.
Since $x \in \mathbb{R}$, then $|x| \geq 0$, so $2|x| \geq 0$.
Thus, $y=1+2|x| \geq 1$, so $y \geq 1$.
Hence, $y \in[1, \infty)$, so $S \subset[1, \infty)$.
Therefore, $S \subset T$.

We next prove $T \subset S$.
Let $y \in T$.
Then $y \geq 1$.
Let $x=\frac{y-1}{2}$.
Then $2 x=y-1$, so $2 x+1=y$.
Since $y \geq 1$, then $y-1 \geq 0$, so $\frac{y-1}{2} \geq 0$.
Hence, $x \geq 0$, so $|x|=x$.
Thus, $y=2 x+1=2|x|+1=1+2|x|=f(x)$.
Therefore, there is a real number x such that $y=f(x)$, so $y \in S$.
Since $y \in T$ implies $y \in S$, then $T \subset S$.

Since $S \subset T$ and $T \subset S$, then $S=T$, as desired.
Proof. We prove the statement: The pre-image of 5 is the set $\{-2,2\}$.
Let A be the pre-image of 5 and let B be the set $\{-2,2\}$.
Then $A=f^{-1}(5)=\{x \in \mathbb{R}: f(x)=5\}$ and $B=\{-2,2\}$.
We must prove $A=B$.

We first prove $B \subset A$.
Since $f(2)=1+2|2|=1+2 * 2=5$, then $2 \in A$.
Since $f(-2)=1+2|-2|=1+2 * 2=5$, then $-2 \in A$.
Since $2 \in A$ and $-2 \in A$, then every element of set B is contained in set A, so $B \subset A$.

We next prove $A \subset B$.
Let $x \in A$.
Then $x \in \mathbb{R}$ and $f(x)=5$.
Observe that

$$
\begin{aligned}
f(x)=5 & \Leftrightarrow 1+2|x|=5 \\
& \Leftrightarrow 2|x|=4 \\
& \Leftrightarrow|x|=2 \\
& \Leftrightarrow x=2 \text { or } x=-2 \\
& \Leftrightarrow x \in\{-2,2\}
\end{aligned}
$$

Since $f(x)=5$ and $f(x)=5$ if and only if $x \in\{-2,2\}$, then $x \in\{-2,2\}$, so $x \in B$.

Hence, $x \in A$ implies $x \in B$, so $A \subset B$.
Since $A \subset B$ and $B \subset A$, then $A=B$, as desired.
Proof. We prove the statement: The inverse image of the interval $(0,5)$ is the interval $(-2,2)$.

Let S be the inverse image of the interval $(0,5)$ and let T be the interval $(-2,2)$.

Then $S=f^{-1}((0,5))=\{x \in \mathbb{R}: f(x) \in(0,5)\}$ and $T=(-2,2)$.
We must prove $S=T$.

We first prove $S \subset T$.
Let $x \in S$.
Then $x \in \mathbb{R}$ and $f(x) \in(0,5)$.

Observe that

$$
\begin{aligned}
f(x) \in(0,5) & \Leftrightarrow 1+2|x| \in(0,5) \\
& \Leftrightarrow 0<1+2|x|<5 \\
& \Leftrightarrow-1<2|x|<4 \\
& \Leftrightarrow \frac{-1}{2}<|x|<2 \\
& \Leftrightarrow \frac{-1}{2}<|x| \text { and }|x|<2
\end{aligned}
$$

Since $|x| \geq 0>\frac{-1}{2}$, then $|x|>\frac{-1}{2}$ is always true, so $|x|<2$.
Hence, $-2<x<2$, so $x \in(-2,2)$.
Thus, $x \in T$.
Since $x \in S$ implies $x \in T$, then $S \subset T$.

We next prove $T \subset S$.
Let $x \in T$.
Then $x \in(-2,2)$, so $-2<x<2$.
Hence, $|x|<2$.
Since $|x| \geq 0>\frac{-1}{2}$, then $|x|>\frac{-1}{2}$, so $\frac{-1}{2}<|x|<2$.
Observe that

$$
\begin{aligned}
\frac{-1}{2}<|x|<2 & \Leftrightarrow-1<2|x|<4 \\
& \Leftrightarrow 0<1+2|x|<5 \\
& \Leftrightarrow 0<f(x)<5 \\
& \Leftrightarrow f(x) \in(0,5) .
\end{aligned}
$$

Thus, $f(x) \in(0,5)$, so $x \in S$.
Since $x \in T$ implies $x \in S$, then $T \subset S$.
Since $S \subset T$ and $T \subset S$, then $S=T$, as desired.
Exercise 16. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x^{2}$.
A. The pre-image of 4 is the set $\{-2,2\}$.
B. The inverse image of the closed interval $[4,5]$ is the set $[-\sqrt{5},-2] \cup[2, \sqrt{5}]$.

Proof. We prove: The pre-image of 4 is the set $\{-2,2\}$.
Let A be the pre-image of 4 and let B be the set $\{-2,2\}$.
Then $A=f^{-1}(4)=\{x \in \mathbb{R}: f(x)=4\}$ and $B=\{-2,2\}$.
We must prove $A=B$.

We first prove $B \subset A$.
Since $2 \in \mathbb{R}$ and $f(2)=2^{2}=4$, then $2 \in A$.
Since $-2 \in \mathbb{R}$ and $f(-2)=(-2)^{2}=4$, then $-2 \in A$.
Since $2 \in A$ and $-2 \in A$, then every element of B is contained in A, so $B \subset A$.

We next prove $A \subset B$.
Let $x \in A$.
Then $x \in \mathbb{R}$ and $f(x)=4$.
Observe that

$$
\begin{aligned}
f(x)=4 & \Leftrightarrow x^{2}=4 \\
& \Leftrightarrow\left(x^{2}-4\right)=0 \\
& \Leftrightarrow(x+2)(x-2)=0 \\
& \Leftrightarrow x+2=0 \text { or } x-2=0 \\
& \Leftrightarrow x=-2 \text { or } x=2 \\
& \Leftrightarrow x \in\{-2,2\} .
\end{aligned}
$$

Since $f(x)=4$ and $f(x)=4$ if and only if $x \in\{-2,2\}$, then $x \in\{-2,2\}$, so $x \in B$.

Thus, $x \in A$ implies $x \in B$, so $A \subset B$.
Since $A \subset B$ and $B \subset A$, then $A=B$, as desired.
Proof. We next prove the statement: The inverse image of the closed interval $[4,5]$ is the set $[-\sqrt{5},-2] \cup[2, \sqrt{5}]$.

Let S be the inverse image of the interval $[4,5]$ and let T be the set $[-\sqrt{5},-2] \cup$ $[2, \sqrt{5}]$.

Then $S=f^{-1}[4,5]=\{x \in \mathbb{R}: f(x) \in[4,5]\}$ and $T=[-\sqrt{5},-2] \cup[2, \sqrt{5}]$.
We must prove $S=T$.
We first prove $T \subset S$.
Let $x \in T$.
Then either $x \in[-\sqrt{5},-2]$ or $x \in[2, \sqrt{5}]$.
We consider these cases separately.
Case 1: Suppose $x \in[2, \sqrt{5}]$.
Then $2 \leq x \leq \sqrt{5}$, so $0<2 \leq x \leq \sqrt{5}$.
Thus, $4 \leq x^{2} \leq 5$, so $x^{2} \in[4,5]$.
Therefore, $f(x) \in[4,5]$, so $x \in S$.
Case 2: Suppose $x \in[-\sqrt{5},-2]$.
Then $-\sqrt{5} \leq x \leq-2$, so $-\sqrt{5} \leq x \leq-2<0$.
Thus, $(-\sqrt{5})^{2} \geq x^{2} \geq(-2)^{2}$, so $5 \geq x^{2} \geq 4$.
Hence, $4 \leq x^{2} \leq 5$, so $x^{2} \in[4,5]$.
Thus, $f(x) \in[4,5]$, so $x \in S$.
In either case, $x \in S$, so $x \in T$ implies $x \in S$.
Therefore, $T \subset S$.

We next prove $S \subset T$.
Let $x \in S$.
Then $x \in \mathbb{R}$ and $f(x) \in[4,5]$, so $x^{2} \in[4,5]$.
Hence, $4 \leq x^{2} \leq 5$.
Since $0<4 \leq x^{2} \leq 5$, then $2 \leq|x| \leq \sqrt{5}$, so $2 \leq|x|$ and $|x| \leq \sqrt{5}$.

Since $|x| \leq \sqrt{5}$, then $-\sqrt{5} \leq x \leq \sqrt{5}$, so $x \in[-\sqrt{5}, \sqrt{5}]$.
Since $|x| \geq 2$, then either $x \geq 2$ or $x \leq-2$.
We consider these cases separately.
Case 1: Suppose $x \geq 2$.
Then $x \in[2, \infty)$.
Since $x \in[2, \infty)$ and $x \in[-\sqrt{5}, \sqrt{5}]$, then $x \in[2, \infty) \cap[-\sqrt{5}, \sqrt{5}]=[2, \sqrt{5}]$.
Case 2: Suppose $x \leq-2$.
Then $x \in(-\infty,-2]$.
Since $x \in(-\infty,-2]$ and $x \in[-\sqrt{5}, \sqrt{5}]$, then $x \in(-\infty,-2] \cap[-\sqrt{5}, \sqrt{5}]=$ $[-\sqrt{5},-2]$.

Hence, either $x \in[2, \sqrt{5}]$ or $x \in[-\sqrt{5},-2]$, so $x \in[2, \sqrt{5}] \cup[-\sqrt{5},-2]=$ $[-\sqrt{5},-2] \cup[2, \sqrt{5}]$.

Thus, $x \in T$.
Since $x \in S$ implies $x \in T$, then $S \subset T$.
Since $S \subset T$ and $T \subset S$, then $S=T$, as desired.
Exercise 17. Let $f:(0,4) \rightarrow \mathbb{R}$ be the function defined by $f(x)=\sqrt{x}$.
Then f is increasing and f is bounded.
Proof. We first prove f is increasing.
Let $a, b \in(0,4)$ such that $a<b$.
Since $a \in(0,4)$, then $0<a<4$, so $0<a$.
Since $0<a$ and $a<b$, then $0<a<b$, so $0<\sqrt{a}<\sqrt{b}$.
Thus, $\sqrt{a}<\sqrt{b}$, so $f(a)<f(b)$.
Therefore, f is increasing.
Proof. We prove f is bounded.
Let $x \in(0,4)$.
Then $0<x<4$, so $0<\sqrt{x}<2$.
Hence, $0<\sqrt{x}$ and $\sqrt{x}<2$.
Since $\sqrt{x}>0$, then $|\sqrt{x}|=\sqrt{x}$.
Thus, $|f(x)|=|\sqrt{x}|=\sqrt{x}<2 \leq 2$, so $|f(x)| \leq 2$.
Therefore, $|f(x)| \leq 2$ for all $x \in(0,4)$, so f is bounded.
Exercise 18. Any real valued function on a finite set is bounded.
Proof. Let A be a finite set.
Let $f: A \rightarrow \mathbb{R}$ be a function.
To prove f is bounded, we must prove the range of f is a bounded set.
Let S be the range of f.
Then $S=\{f(x) \in \mathbb{R}: x \in A\}$.
We must prove the set S is bounded.
Since A is a finite set, then there are n elements in A for some integer $n \geq 0$.
Since f is a function, then for every $x \in A$, there is exactly one $f(x) \in \mathbb{R}$, so there are n elements in S.

Hence, S is a finite set of n real numbers.

Since $n \geq 0$, then either $n>0$ or $n=0$.
We consider these cases separately.
Case 1: Suppose $n>0$.
Then S contains at least one real number.
Since the elements of S are ordered, let $S=\left\{a_{i} \in \mathbb{R}: a \in\{1, . ., n\}\right\}$ and $a_{1} \leq \ldots, \leq a_{n}$.

Since $a_{1} \in S$ and $a_{1} \leq a_{i}$ for every $i \in\{1, \ldots, n\}$, then a_{1} is the least element of S, so $s \geq a_{1}$ for all $s \in S$.

Since $a_{n} \in S$ and $a_{i} \leq a_{n}$ for every $i \in\{1, \ldots, n\}$, then a_{n} is the greatest element of S, so $a_{n} \geq s$ for all $s \in S$.

Thus, $a_{1} \leq s \leq a_{n}$ for every $s \in S$, so S is bounded.
Case 2: Suppose $n=0$.
Then S contains no real numbers, so $S=\emptyset$.
Since every real number is both an upper and lower bound for the empty set, then \emptyset is bounded in \mathbb{R}, so S is bounded.

In all cases, we conclude the set S is bounded, so the function f must be bounded.

