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Real valued functions of a real variable

Exercise 1. Let f : [0,∞)→ R be the function defined by f(x) =
√
x.

Then f is increasing.

Proof. Let a, b ∈ [0,∞) such that a < b.
Since a ∈ [0,∞), then a ≥ 0.
Since 0 ≤ a and a < b, then 0 ≤ a < b, so

√
a <
√
b.

Hence, f(a) < f(b), so f is increasing.

Exercise 2. Let f : N→ Z be the function defined by f(n) = n2 + n.
Then f is increasing.

Proof. Let a, b ∈ N such that a < b.
Since a ∈ N, then a > 0, so 0 < a < b.
Hence, a2 < b2.
Since a2 < b2 and a < b, then a2 + a < b2 + b, so f(a) < f(b).
Therefore, f is increasing.

Exercise 3. Let g : Z→ R be the function defined by g(n) = n3 − n.
Then g is not increasing.

Proof. Since 0 < 1 and g(0) = 0 = g(1), then g is not increasing.

Exercise 4. Let h : R→ R be the function defined by h(x) = |x|.
Then h is not increasing and h is not decreasing.

Proof. Since −1 < 1, but h(−1) = 1 = h(1), then h is not increasing and h is
not decreasing.

Exercise 5. Let f : R→ R be the function defined by f(x) = x2 − 2x.
Then f is not one to one(injective).

Proof. Since 0 6= 2 and f(0) = 0 = f(2), then f is not one to one.

Exercise 6. Let f : R→ R be the function defined by f(x) = x3.
Then f is increasing.



Proof. Let a, b ∈ R such that a < b.
Since a ∈ R, then either a > 0 or a = 0 or a < 0.
We consider these cases separately.
Case 1: Suppose a > 0.
Since 0 < a and a < b, then 0 < a < b, so 0 < a2 < b2.
Since 0 < a < b and 0 < a2 < b2, then 0 < a3 < b3, so a3 < b3.
Therefore, f(a) = a3 < b3 = f(b), so f(a) < f(b).
Case 2: Suppose a = 0.
Since a = 0 and a < b, then 0 < b.
Since b > 0, then b2 > 0, so b3 > 0.
Thus, f(a) = f(0) = 03 = 0 < b3 = f(b), so f(a) < f(b).
Case 3: Suppose a < 0.
Since b ∈ R, then either b > 0 or b = 0 or b < 0.
We consider these cases separately.
Case 3a: Suppose b > 0.
Since a < 0, then a2 > 0, so a3 < 0.
Since b > 0, then b2 > 0, so b3 > 0.
Thus, f(a) = a3 < 0 < b3 = f(b), so f(a) < f(b).
Case 3b: Suppose b = 0.
Since a < 0, then a2 > 0, so a3 < 0.
Thus, f(a) = a3 < 0 = 03 = b3 = f(b), so f(a) < f(b).
Case 3c: Suppose b < 0.
Since a < 0, then a2 > 0.
Since b < 0, then b2 > 0.
Thus, a2 + b2 > 0.
Since a < 0 and b < 0, then ab > 0.
Since a2 + b2 > 0 and ab > 0, then a2 + b2 + ab > 0.
Since a < b, then 0 < b− a.
Since b − a > 0 and a2 + b2 + ab > 0, then (b − a)(a2 + b2 + ab) > 0, so

(b− a)(a2 + ab+ b2) > 0.
Hence, b3 − a3 > 0, so b3 > a3.
Thus, f(b) > f(a), so f(a) < f(b).

In all cases, we conclude f(a) < f(b), so f is increasing.

Exercise 7. Let f : R→ R be the function defined by f(x) = sinx.
Then f is not increasing.

Proof. Observe that 0 < π, but sin 0 = 0 = sinπ, so f is not decreasing.

Exercise 8. The product of an even function and an odd function is odd.

Proof. Let f be an even function and g be an odd function.
We must prove the product function fg is odd.
Let x ∈ dom(fg).
Then x ∈ domf and x ∈ domg.
Since x ∈ domf and f is even, then f(−x) = f(x).
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Since x ∈ domg and g is odd, then g(−x) = −g(x).
Observe that

(fg)(−x) = f(−x)g(−x)

= f(x)[−g(x)]

= −[f(x)][g(x)]

= −(fg)(x).

Therefore, (fg)(−x) = −(fg)(x), so the function fg is odd.

Exercise 9. Let n be a fixed positive integer.
The function given by f(x) = a2nx

2n + a2n−2x
2n−2 + ...+ a2x

2 + a0 is even.

Proof. Let x ∈ domf .
Then

f(−x) = a2n(−x)2n + a2n−2(−x)2n−2 + ...+ a2(−x)2 + a0

= a2n(−x)2n + a2n−2(−x)2(n−1) + ...+ a2(−x)2∗1 + a0

= a2n[(−x)2]n + a2n−2[(−x)2]n−1 + ...+ a2[(−x)2]1 + a0

= a2n(x2)n + a2n−2(x2)n−1 + ...+ a2(x2)1 + a0

= a2nx
2n + a2n−2x

2n−2 + ...+ a2x
2 + a0

= f(x).

Therefore, f(−x) = f(x), so f is even.

Exercise 10. Let f : [2,∞)→ R be the function defined by f(x) = x2 + 5.
Then the image of [2,∞) under f is the interval [9,∞).

Proof. Let S be the image of the interval [2,∞) under f .
Let T be the interval [9,∞).
Then S = f([2,∞)) = {f(x) : x ∈ [2,∞)} and T = [9,∞).
We must prove S = T .

We first prove S ⊂ T .
Let y ∈ S.
Then y = f(x) for some x ∈ [2,∞).
Thus, y = x2 + 5 for some x ≥ 2.
Since x ≥ 2, then x2 ≥ 4, so y = x2 + 5 ≥ 4 + 5 = 9.
Hence, y ≥ 9, so y ∈ T .
Therefore, S ⊂ T .
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We next prove T ⊂ S.
Let y ∈ T .
Then y ≥ 9.
Let x =

√
y − 5.

Since y ≥ 9, then y − 5 ≥ 4, so
√
y − 5 ≥ 2.

Hence, x ≥ 2, so x ∈ [2,∞).
Thus, f(x) = x2 + 5 = (

√
y − 5)2 + 5 = (y − 5) + 5 = y.

Thus, there exists x ∈ [2,∞) such that y = f(x), so y ∈ S.
Since y ∈ T implies y ∈ S, then T ⊂ S.

Since S ⊂ T and T ⊂ S, then S = T , as desired.

Exercise 11. Let f : [1, 4]→ R be the function defined by f(x) = 2x2 +
√
x.

Then f is increasing and the pre-image of 0 is the empty set.

Proof. We prove f is increasing.
Let a, b ∈ [1, 4] such that a < b.
Since a ∈ [1, 4], then 1 ≤ a ≤ 4, so 1 ≤ a.
Hence, a ≥ 1 > 0, so a > 0.
Since 0 < a and a < b, then 0 < a < b, so 0 < a2 < b2 and 0 <

√
a <
√
b.

Since 0 <
√
a <
√
b, then

√
a <
√
b.

Since 0 < a2 < b2, then a2 < b2, so 2a2 < 2b2.
Since 2a2 < 2b2 and

√
a <
√
b, then 2a2 +

√
a < 2b2 +

√
b, so f(a) < f(b).

Therefore, f is increasing.

Proof. We prove the pre-image of 0 is the empty set.
Let A be the pre-image of 0.
Then A = f−1(0) = {x ∈ [1, 4] : f(x) = 0}.
We must prove A = ∅.
We prove by contradiction.
Suppose A 6= ∅.
Then there exists x ∈ A.
Thus, x ∈ [1, 4] and f(x) = 0.
Since x ∈ [1, 4], then 1 ≤ x ≤ 4, so 1 ≤ x.
Since x ≥ 1, then

√
x ≥ 1.

Since x ≥ 1, then x2 ≥ 1, so 2x2 ≥ 2.
Since 2x2 ≥ 2 and

√
x ≥ 1, then 2x2 +

√
x ≥ 3 > 0, so f(x) > 0.

Thus, we have f(x) > 0 and f(x) = 0, a violation of trichotomy of R.
Therefore, A = ∅.

Exercise 12. Let f : [1, 3]→ R be the function defined by f(x) = x+ 6
x .

Then f is not decreasing and determine if f is not one to one.

Proof. Since 2 < 3, but f(2) = 2 + 6
2 = 5 = 3 + 6

3 = f(3), then f is not
decreasing and f is not one to one.

Exercise 13. Let f : [0,∞)→ R be the function defined by f(x) = 1
1+x .

Then f is bounded.
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Proof. Let x ∈ [0,∞).
Then x ≥ 0.
Since 1 + x ≥ 1 + 0 = 1 > 0, then 1 + x ≥ 1 and 1 + x > 0.
Observe that

0 ≤ 1 ≤ 1 + x ⇒ 0 ≤ 1

1 + x
≤ 1

⇔ 0 ≤ f(x) ≤ 1.

Thus, 0 ≤ f(x) ≤ 1 for every x ∈ [0,∞).
Since 0 and 1 are real numbers such that 0 ≤ f(x) ≤ 1 for every x ∈ [0,∞),

then f is bounded.

Proof. Let x ∈ [0,∞).
Then x ≥ 0, so 1 + x ≥ 1 > 0.
Hence, 1 + x > 0.
Observe that

0 ≤ x ⇔ 1 ≤ 1 + x

⇒ 1

1 + x
≤ 1

⇒ |1|
|1 + x|

≤ 1

⇔ | 1

1 + x
| ≤ 1

⇔ |f(x)| ≤ 1.

Thus, |f(x)| ≤ 1 for every x ∈ [0,∞).
Since 1 is a real number such that |f(x)| ≤ 1 for every x ∈ [0,∞), then f is

bounded.

Proof. We prove by contradiction.
Suppose f is not bounded.
Then for every b ∈ R there exists x ∈ [0,∞) such that |f(x)| > b.
Let b = 1.
Then there exists x ∈ [0,∞) such that |f(x)| > 1.
Thus, x ≥ 0 and | 1

1+x | > 1.
Since x ≥ 0, then 1 + x ≥ 1 > 0, so 1 + x > 0.
Observe that

| 1

1 + x
| > 1 ⇔ |1|

|1 + x|
> 1

⇒ 1

1 + x
> 1

⇒ 1 > 1 + x

⇔ 0 > x.
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Since | 1
1+x | > 1 and | 1

1+x | > 1 implies 0 > x, then we conclude 0 > x.
Hence, x ≥ 0 and x < 0, a violation of trichotomy in R.
Therefore, f must be bounded.

Exercise 14. Let f : Z+ → R be the function defined by f(n) = n
n+1 .

Then f is bounded.

Proof. Let n ∈ Z+.
Then n ≥ 1.
Thus, n+ 1 ≥ 2 > 0, so n+ 1 > 0.
Observe that

1 ≤ n and 0 < 1 ⇔ n+ 1 ≤ 2n and n < n+ 1

⇒ 1

2
≤ n

n+ 1
and

n

n+ 1
< 1

⇒ 1

2
≤ n

n+ 1
< 1

⇒ 1

2
≤ f(n) < 1.

Thus, 1 ≤ n and 0 < 1 implies 1
2 ≤ f(n) < 1.

Since 1 ≤ n and 0 < 1, then we conclude 1
2 ≤ f(n) < 1.

Since 1
2 ≤ f(n) < 1 ≤ 1, then 1

2 ≤ f(n) ≤ 1.
Hence, 1

2 ≤ f(n) ≤ 1 for every n ∈ Z+.
Since 1

2 and 1 are real numbers such that 1
2 ≤ f(n) ≤ 1 for every n ∈ Z+,

then f is bounded.

Proof. Let n ∈ Z+.
Then n ≥ 1.
Since n ≥ 1 > 0, then n > 0.
Since n ≥ 1, then n+ 1 ≥ 2 > 0, so n+ 1 > 0.
Observe that

0 < 1 ⇔ n < n+ 1

⇒ n

n+ 1
< 1

⇒ |n|
|n+ 1|

< 1

⇔ | n

n+ 1
| < 1

⇔ |f(n)| < 1.

Thus, 0 < 1 implies |f(n)| < 1.
Since 0 < 1, then |f(n)| < 1.
Since |f(n)| < 1 ≤ 1, then |f(n)| ≤ 1, so |f(n)| ≤ 1 for all n ∈ Z+.
Since 1 is a real number such that |f(n)| ≤ 1 for all n ∈ Z+ then f is

bounded.
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Proof. We prove by contradiction.
Suppose f is unbounded.
Then for every b ∈ R, there exists n ∈ Z+ such that |f(n)| > b.
Let b = 1.
Then there exists n ∈ Z+ such that |f(n)| > 1.
Since n ∈ Z+, then n ≥ 1.
Since n ≥ 1 > 0, then n > 0.
Since n ≥ 1, then n+ 1 ≥ 2 > 0, so n+ 1 > 0.

Thus, 1 < |f(n)| = | n
n+1 | =

|n|
|n+1| = n

n+1 , so 1 < n
n+1 .

Since n+ 1 > 0, then we multiply by n+ 1 to obtain n+ 1 < n.
We subtract n to obtain 1 < 0, a contradiction.
Therefore, f is bounded.

Exercise 15. Let f : R→ R be the function defined by f(x) = 1 + 2|x|.
A. The image of f is the interval [1,∞).
B. The pre-image of 5 is the set {−2, 2}.
C. The inverse image of the interval (0, 5) is the interval (−2, 2).

Proof. We first prove the statement : The image of f is the interval [1,∞).
Let S be the image of f and let T be the interval [1,∞).
Then S = f(R) = {f(x) : x ∈ R} and T = [1,∞).
We must prove S = T .

We first prove S ⊂ T .
Let y ∈ S.
Then y = f(x) for some x ∈ R.
Since x ∈ R, then |x| ≥ 0, so 2|x| ≥ 0.
Thus, y = 1 + 2|x| ≥ 1, so y ≥ 1.
Hence, y ∈ [1,∞), so S ⊂ [1,∞).
Therefore, S ⊂ T .

We next prove T ⊂ S.
Let y ∈ T .
Then y ≥ 1.
Let x = y−1

2 .
Then 2x = y − 1, so 2x+ 1 = y.
Since y ≥ 1, then y − 1 ≥ 0, so y−1

2 ≥ 0.
Hence, x ≥ 0, so |x| = x.
Thus, y = 2x+ 1 = 2|x|+ 1 = 1 + 2|x| = f(x).
Therefore, there is a real number x such that y = f(x), so y ∈ S.
Since y ∈ T implies y ∈ S, then T ⊂ S.
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Since S ⊂ T and T ⊂ S, then S = T , as desired.

Proof. We prove the statement: The pre-image of 5 is the set {−2, 2}.
Let A be the pre-image of 5 and let B be the set {−2, 2}.
Then A = f−1(5) = {x ∈ R : f(x) = 5} and B = {−2, 2}.
We must prove A = B.

We first prove B ⊂ A.
Since f(2) = 1 + 2|2| = 1 + 2 ∗ 2 = 5, then 2 ∈ A.
Since f(−2) = 1 + 2| − 2| = 1 + 2 ∗ 2 = 5, then −2 ∈ A.
Since 2 ∈ A and −2 ∈ A, then every element of set B is contained in set A,

so B ⊂ A.

We next prove A ⊂ B.
Let x ∈ A.
Then x ∈ R and f(x) = 5.
Observe that

f(x) = 5 ⇔ 1 + 2|x| = 5

⇔ 2|x| = 4

⇔ |x| = 2

⇔ x = 2 or x = −2

⇔ x ∈ {−2, 2}.

Since f(x) = 5 and f(x) = 5 if and only if x ∈ {−2, 2}, then x ∈ {−2, 2}, so
x ∈ B.

Hence, x ∈ A implies x ∈ B, so A ⊂ B.
Since A ⊂ B and B ⊂ A, then A = B, as desired.

Proof. We prove the statement: The inverse image of the interval (0, 5) is the
interval (−2, 2).

Let S be the inverse image of the interval (0, 5) and let T be the interval
(−2, 2).

Then S = f−1((0, 5)) = {x ∈ R : f(x) ∈ (0, 5)} and T = (−2, 2).
We must prove S = T .

We first prove S ⊂ T .
Let x ∈ S.
Then x ∈ R and f(x) ∈ (0, 5).

8



Observe that

f(x) ∈ (0, 5) ⇔ 1 + 2|x| ∈ (0, 5)

⇔ 0 < 1 + 2|x| < 5

⇔ −1 < 2|x| < 4

⇔ −1

2
< |x| < 2

⇔ −1

2
< |x| and |x| < 2.

Since |x| ≥ 0 > −1
2 , then |x| > −1

2 is always true, so |x| < 2.
Hence, −2 < x < 2, so x ∈ (−2, 2).
Thus, x ∈ T .
Since x ∈ S implies x ∈ T , then S ⊂ T .

We next prove T ⊂ S.
Let x ∈ T .
Then x ∈ (−2, 2), so −2 < x < 2.
Hence, |x| < 2.
Since |x| ≥ 0 > −1

2 , then |x| > −1
2 , so −12 < |x| < 2.

Observe that

−1

2
< |x| < 2 ⇔ −1 < 2|x| < 4

⇔ 0 < 1 + 2|x| < 5

⇔ 0 < f(x) < 5

⇔ f(x) ∈ (0, 5).

Thus, f(x) ∈ (0, 5), so x ∈ S.
Since x ∈ T implies x ∈ S, then T ⊂ S.
Since S ⊂ T and T ⊂ S, then S = T , as desired.

Exercise 16. Let f : R→ R be the function defined by f(x) = x2.
A. The pre-image of 4 is the set {−2, 2}.
B. The inverse image of the closed interval [4, 5] is the set [−

√
5,−2]∪[2,

√
5].

Proof. We prove: The pre-image of 4 is the set {−2, 2}.
Let A be the pre-image of 4 and let B be the set {−2, 2}.
Then A = f−1(4) = {x ∈ R : f(x) = 4} and B = {−2, 2}.
We must prove A = B.

We first prove B ⊂ A.
Since 2 ∈ R and f(2) = 22 = 4, then 2 ∈ A.
Since −2 ∈ R and f(−2) = (−2)2 = 4, then −2 ∈ A.
Since 2 ∈ A and −2 ∈ A, then every element of B is contained in A, so

B ⊂ A.
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We next prove A ⊂ B.
Let x ∈ A.
Then x ∈ R and f(x) = 4.
Observe that

f(x) = 4 ⇔ x2 = 4

⇔ (x2 − 4) = 0

⇔ (x+ 2)(x− 2) = 0

⇔ x+ 2 = 0 or x− 2 = 0

⇔ x = −2 or x = 2

⇔ x ∈ {−2, 2}.

Since f(x) = 4 and f(x) = 4 if and only if x ∈ {−2, 2}, then x ∈ {−2, 2}, so
x ∈ B.

Thus, x ∈ A implies x ∈ B, so A ⊂ B.
Since A ⊂ B and B ⊂ A, then A = B, as desired.

Proof. We next prove the statement: The inverse image of the closed interval
[4, 5] is the set [−

√
5,−2] ∪ [2,

√
5].

Let S be the inverse image of the interval [4, 5] and let T be the set [−
√

5,−2]∪
[2,
√

5].
Then S = f−1[4, 5] = {x ∈ R : f(x) ∈ [4, 5]} and T = [−

√
5,−2] ∪ [2,

√
5].

We must prove S = T .

We first prove T ⊂ S.
Let x ∈ T .
Then either x ∈ [−

√
5,−2] or x ∈ [2,

√
5].

We consider these cases separately.
Case 1: Suppose x ∈ [2,

√
5].

Then 2 ≤ x ≤
√

5, so 0 < 2 ≤ x ≤
√

5.
Thus, 4 ≤ x2 ≤ 5, so x2 ∈ [4, 5].
Therefore, f(x) ∈ [4, 5], so x ∈ S.
Case 2: Suppose x ∈ [−

√
5,−2].

Then −
√

5 ≤ x ≤ −2, so −
√

5 ≤ x ≤ −2 < 0.
Thus, (−

√
5)2 ≥ x2 ≥ (−2)2, so 5 ≥ x2 ≥ 4.

Hence, 4 ≤ x2 ≤ 5, so x2 ∈ [4, 5].
Thus, f(x) ∈ [4, 5], so x ∈ S.
In either case, x ∈ S, so x ∈ T implies x ∈ S.
Therefore, T ⊂ S.

We next prove S ⊂ T .
Let x ∈ S.
Then x ∈ R and f(x) ∈ [4, 5], so x2 ∈ [4, 5].
Hence, 4 ≤ x2 ≤ 5.
Since 0 < 4 ≤ x2 ≤ 5, then 2 ≤ |x| ≤

√
5, so 2 ≤ |x| and |x| ≤

√
5.
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Since |x| ≤
√

5, then −
√

5 ≤ x ≤
√

5, so x ∈ [−
√

5,
√

5].
Since |x| ≥ 2, then either x ≥ 2 or x ≤ −2.
We consider these cases separately.
Case 1: Suppose x ≥ 2.
Then x ∈ [2,∞).
Since x ∈ [2,∞) and x ∈ [−

√
5,
√

5], then x ∈ [2,∞) ∩ [−
√

5,
√

5] = [2,
√

5].
Case 2: Suppose x ≤ −2.
Then x ∈ (−∞,−2].
Since x ∈ (−∞,−2] and x ∈ [−

√
5,
√

5], then x ∈ (−∞,−2] ∩ [−
√

5,
√

5] =
[−
√

5,−2].

Hence, either x ∈ [2,
√

5] or x ∈ [−
√

5,−2], so x ∈ [2,
√

5] ∪ [−
√

5,−2] =
[−
√

5,−2] ∪ [2,
√

5].
Thus, x ∈ T .
Since x ∈ S implies x ∈ T , then S ⊂ T .
Since S ⊂ T and T ⊂ S, then S = T , as desired.

Exercise 17. Let f : (0, 4)→ R be the function defined by f(x) =
√
x.

Then f is increasing and f is bounded.

Proof. We first prove f is increasing.
Let a, b ∈ (0, 4) such that a < b.
Since a ∈ (0, 4), then 0 < a < 4, so 0 < a.
Since 0 < a and a < b, then 0 < a < b, so 0 <

√
a <
√
b.

Thus,
√
a <
√
b, so f(a) < f(b).

Therefore, f is increasing.

Proof. We prove f is bounded.
Let x ∈ (0, 4).
Then 0 < x < 4, so 0 <

√
x < 2.

Hence, 0 <
√
x and

√
x < 2.

Since
√
x > 0, then |

√
x| =

√
x.

Thus, |f(x)| = |
√
x| =

√
x < 2 ≤ 2, so |f(x)| ≤ 2.

Therefore, |f(x)| ≤ 2 for all x ∈ (0, 4), so f is bounded.

Exercise 18. Any real valued function on a finite set is bounded.

Proof. Let A be a finite set.
Let f : A→ R be a function.
To prove f is bounded, we must prove the range of f is a bounded set.
Let S be the range of f .
Then S = {f(x) ∈ R : x ∈ A}.
We must prove the set S is bounded.
Since A is a finite set, then there are n elements in A for some integer n ≥ 0.
Since f is a function, then for every x ∈ A, there is exactly one f(x) ∈ R,

so there are n elements in S.
Hence, S is a finite set of n real numbers.
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Since n ≥ 0, then either n > 0 or n = 0.
We consider these cases separately.
Case 1: Suppose n > 0.
Then S contains at least one real number.
Since the elements of S are ordered, let S = {ai ∈ R : a ∈ {1, .., n}} and

a1 ≤ ...,≤ an.
Since a1 ∈ S and a1 ≤ ai for every i ∈ {1, ..., n}, then a1 is the least element

of S, so s ≥ a1 for all s ∈ S.
Since an ∈ S and ai ≤ an for every i ∈ {1, ..., n}, then an is the greatest

element of S, so an ≥ s for all s ∈ S.
Thus, a1 ≤ s ≤ an for every s ∈ S, so S is bounded.
Case 2: Suppose n = 0.
Then S contains no real numbers, so S = ∅.
Since every real number is both an upper and lower bound for the empty

set, then ∅ is bounded in R, so S is bounded.

In all cases, we conclude the set S is bounded, so the function f must be
bounded.
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