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Real valued functions of a real variable

Exercise 1. Let f : [0,00) — R be the function defined by f(z) = /.
Then f is increasing.

Proof. Let a,b € [0, 00) such that a < b.
Since a € [0,00), then a > 0.
Since 0 < a and a < b, then 0 < a < b, so /a < V/b.
Hence, f(a) < f(b), so f is increasing. O

Exercise 2. Let f: N — Z be the function defined by f(n) = n? +n.
Then f is increasing.

Proof. Let a,b € N such that a < b.
Since a € N, then a > 0,s0 0 < a < b.
Hence, a? < b2.
Since a? < b and a < b, then a? +a < b2 + b, so f(a) < f(b).
Therefore, f is increasing. U

Exercise 3. Let g : Z — R be the function defined by g(n) = n® — n.
Then g is not increasing.

Proof. Since 0 < 1 and g(0) = 0 = g(1), then g is not increasing. O

Exercise 4. Let h: R — R be the function defined by h(x) = |z|.
Then h is not increasing and h is not decreasing.

Proof. Since —1 < 1, but h(—1) = 1 = h(1), then h is not increasing and h is
not decreasing. O

Exercise 5. Let f : R — R be the function defined by f(x) = 2% — 22.
Then f is not one to one(injective).

Proof. Since 0 # 2 and f(0) =0 = f(2), then f is not one to one. O

Exercise 6. Let f : R — R be the function defined by f(z) = 23.
Then f is increasing.



Proof. Let a,b € R such that a < b.
Since a € R, then either a > 0 or a =0 or a < 0.
We consider these cases separately.
Case 1: Suppose a > 0.
Since 0 < @ and a < b, then 0 < a < b, s0 0 < a? < b.
Since 0 < a < b and 0 < a? < b2, then 0 < a® < b3, so a® < b3.
Therefore, f(a) = a® < b® = f(b), so f(a) < f(b).
Case 2: Suppose a = 0.
Since a = 0 and a < b, then 0 < b.
Since b > 0, then b? > 0, so b> > 0.
Thus, f(a) = f(0) =02 =0<b® = f(b), so f(a) < f(b).
Case 3: Suppose a < 0.
Since b € R, then either b >0 or b= 0 or b < 0.
We consider these cases separately.
Case 3a: Suppose b > 0.
Since a < 0, then a? > 0, so a® < 0.
Since b > 0, then b > 0, so b> > 0.
Thus, f(a) =a® <0< b= f(b), so f(a) < f(b).
Case 3b: Suppose b = 0.
Since a < 0, then a? > 0, so a® < 0.
Thus, f(a) =a® <0=0%=b3= f(b), so f(a) < f(b).
Case 3c: Suppose b < 0.
Since a < 0, then a2 > 0.
Since b < 0, then b2 > 0.
Thus, a® + b > 0.
Since a < 0 and b < 0, then ab > 0.
Since a2 + % > 0 and ab > 0, then a® + b% + ab > 0.
Since a < b, then 0 < b — a.
Since b — a > 0 and a? + b? + ab > 0, then (b — a)(a® + b> + ab) > 0, so
(b —a)(a® + ab+ b?) > 0.
Hence, b3 — a® > 0, so b3 > a>.

Thus, f(5) > f(a), so f(a) < f(b).

In all cases, we conclude f(a) < f(b), so f is increasing. O

Exercise 7. Let f: R — R be the function defined by f(z) = sinz.
Then f is not increasing.

Proof. Observe that 0 < 7, but sin0 = 0 = sin, so f is not decreasing. O
Exercise 8. The product of an even function and an odd function is odd.

Proof. Let f be an even function and g be an odd function.
We must prove the product function fg is odd.
Let z € dom(fg).
Then x € domf and = € domg.
Since = € domf and f is even, then f(—z) = f(x).



Since z € domg and ¢ is odd, then g(—z) = —g(z).
Observe that

(fg)(=z) = [f(-z)g(—x)
= f(@)|[-g(x)
= —[f(@)][g(=)]
= —(fg)(x).

=

Therefore, (fg)(—x) = —(fg)(z), so the function fg is odd. O

Exercise 9. Let n be a fixed positive integer.
The function given by f(x) = a2,z + a2y, 222" 2 + ... + agx? + ag is even.

Proof. Let x € domf.

Then
f(=z) = agn(fx)% + a2n,2(fx)2”*2 + ...+ (12(*1')2 + ag

= agu(—2)*" + agn_g(—x)Q(”fl) + o Faz(—2)* +ag
= agn[(—2)"" + agn—o[(—2)*]" " + .+ as[(—2)?] + ao
= agn(xQ)" + agn,g(xQ)"_l + ...+ a2($2)1 + ap
= Ao + agp_02®" 2 4 .+ asx® + ag
= f(2).

Therefore, f(—z) = f(x), so f is even. O

Exercise 10.

Let f :[2,00) — R be the function defined by f(z) = 2% + 5.
Then the image of [2,00) under f is the interval [9, 00).

Proof. Let S be the image of the interval [2, 00) under f.
Let T be the interval [9, c0).
Then S = f([2,00)) = {f(z) : z € [2,00)} and T = [9, 00).
We must prove S =1T.

We first prove S C T

Let y € S.

Then y = f(z) for some z € [2,0).

Thus, y = z? + 5 for some x > 2.

Since z > 2, then 22 > 4,soy =22 +5>4+5=09.
Hence, y > 9,s0y e T.

Therefore, S C T.



We next prove T' C S.

Let yeT.
Then y > 9.
Let x = +/y — 5.

Since y > 9, then y — 5 >4, s0 /y — 5 > 2.

Hence, > 2, s0 = € [2,00).

Thus, f(z) =22 +5=(Vy—5)?+5=(y—5)+5=y.
Thus, there exists x € [2,00) such that y = f(z), soy € S.
Since y € T implies y € S, then T'C S.

Since SC T and T C S, then S =T, as desired. O

Exercise 11. Let f : [1,4] — R be the function defined by f(z) = 222 + /.
Then f is increasing and the pre-image of 0 is the empty set.

Proof. We prove f is increasing.
Let a,b € [1,4] such that a < b.
Since a € [1,4], then 1 <a<4,s01 < a.
Hence, a >1 >0, so a > 0.
SinceO<aanda<b,then0<a<b,soO<a2<b2and0<\/5<\/5.
Since 0 < v/a < Vb, then v/a < V/b.
Since 0 < a? < b2, then a? < b?, so 2a% < 2b°.
Since 242 < 2b% and v/a < Vb, then 2a% + v/a < 26> + Vb, so f(a) < f(b).
Therefore, f is increasing. O

Proof. We prove the pre-image of 0 is the empty set.
Let A be the pre-image of 0.
Then A= f~1(0) = {z € [1,4] : f(x) = 0}.
We must prove A = 0.
We prove by contradiction.
Suppose A # ().
Then there exists x € A.
Thus, z € [1,4] and f(z) = 0.
Since z € [1,4], then 1 <z <4,s01 < z.
Since z > 1, then /z > 1.
Since z > 1, then z? > 1, so 222 > 2.
Since 222 > 2 and /z > 1, then 222 + \/z > 3 > 0, so f(z) > 0.
Thus, we have f(x) > 0 and f(z) = 0, a violation of trichotomy of R.
Therefore, A = (). O

Exercise 12. Let f : [1,3] — R be the function defined by f(z) =z + &.
Then f is not decreasing and determine if f is not one to one.

Proof. Since 2 < 3, but f(2) =2+ S =5 =3+ % = f(3), then f is not
decreasing and f is not one to one. O

Exercise 13. Let f : [0,00) — R be the function defined by f(x) = H%
Then f is bounded.



Proof. Let x € [0, 00).
Then = > 0.
Sincel+x>140=1>0,thenl+x>1and 1+ x> 0.
Observe that

<1

1
0<1<1l4+z = 0<
1+

& 0< f(z) <1

Thus, 0 < f(z) < 1 for every x € [0, 0).
Since 0 and 1 are real numbers such that 0 < f(z) <1 for every x € [0, 00),
then f is bounded. U

Proof. Let x € [0, c0).
Then x> 0,s01+x>1>0.
Hence, 1 + 2 > 0.
Observe that

1
= <1
1+
1
|1+ z|
1
& |—| <1
14z
< |f@)| <1

Thus, |f(x)| <1 for every x € [0, c0).
Since 1 is a real number such that |f(z)| < 1 for every x € [0,00), then f is
bounded. O

Proof. We prove by contradiction.
Suppose f is not bounded.
Then for every b € R there exists « € [0, 00) such that |f(z)| > b.
Let b = 1.
Then there exists « € [0, 00) such that |f(x)] > 1.
Thus, z > 0 and \H%z| > 1.
Since x > 0,then 1+ >1>0,s0 1+ 2 > 0.
Observe that

1 1]
\ [>1 & >1
1+ |1+ z|
1
= >1
1+ 2
= 1>1+4=x
& 0>



Since |1J%z| > 1 and |1+%| > 1 implies 0 > z, then we conclude 0 > z.
Hence, z > 0 and x < 0, a violation of trichotomy in R.
Therefore, f must be bounded.

Exercise 14. Let f : ZT — R be the function defined by f(n) = 2=

Then f is bounded.

Proof. Let n € Z+.
Then n > 1.

Thus,n+1>2>0,s0n+1>0.

Observe that

1<nand0<1

=

N = N =N =S

+
<

n+1-

1<2nandn<n+1

n
a

n+1

<1

n

“n+1
f(n) < 1.

<

Thus, 1 <n and 0 < 1 implies % < f(n) < 1.
Since 1 < n and 0 < 1, then we conclude 3 < f(n) < 1.
Since 3 < f(n) <1 <1, then § < f(n) < 1.
Hence, % < f(n) <1 forevery n € Z".

1

ndL<1

n+1

Since 1 and 1 are real numbers such that 3 < f(n) < 1 for every n € Z7,

then f is bounded.

Proof. Let n € Z7T.
Then n > 1.
Since n > 1 > 0, then n > 0.

Sincen >1,thenn+1>2>0,son+1>0.

Observe that

0<1

¢

Thus, 0 < 1 implies |f(n)] < 1.

Since 0 < 1, then |f(n)| < 1.

n

<n-+1

Since |f(n)| <1 <1, then |f(n)| <1,s0|f(n)
Since 1 is a real number such that |f(n)| <

bounded.

<
1

O

1forallneZ™.
for all n € ZT then f is
]



Proof. We prove by contradiction.
Suppose f is unbounded.
Then for every b € R, there exists n € Z* such that |f(n)| > b.
Let b=1.
Then there exists n € Z* such that |f(n)| > 1.
Since n € ZT, then n > 1.
Since n > 1 > 0, then n > 0.
Sincen >1,thenn+1>2>0,son+1>0.
Thus, 1< |f(n)| = |325] = piy = 727, 50 1 < 7245
Since n 4+ 1 > 0, then we multiply by n + 1 to obtain n + 1 < n.
We subtract n to obtain 1 < 0, a contradiction.
Therefore, f is bounded.

Exercise 15. Let f: R — R be the function defined by f(z) =1+ 2|z|.
A. The image of f is the interval [1, 00).
B. The pre-image of 5 is the set {—2,2}.
C. The inverse image of the interval (0,5) is the interval (—2,2).

Proof. We first prove the statement : The image of f is the interval [1, c0).
Let S be the image of f and let T be the interval [1, co).
Then S = f(R) = {f(z) : 2 € R} and T = [1, 00).
We must prove S =1T.

We first prove S C T.
Let y € S.
Then y = f(z) for some z € R.
Since z € R, then |z| > 0, so 2|z| > 0.
Thus, y =1+ 2|z| > 1,50y > 1.
Hence, y € [1,00), so S C [1,0).
Therefore, S C T.

We next prove T C S.
LetyeT.
Then y > 1.
Let z = %
Then 2z =y —1,s02z+1=y.
Since y > 1, then y — 1 > 0, so ny1 > 0.
Hence, x > 0, so |z| = «.
Thus, y =2z +1=2|z|+ 1 =1+4+2|z| = f(x).
Therefore, there is a real number = such that y = f(z), soy € S.
Since y € T implies y € S, then T' C S.



Since S C T and T' C S, then S =T, as desired. O

Proof. We prove the statement: The pre-image of 5 is the set {—2,2}.
Let A be the pre-image of 5 and let B be the set {—2,2}.
Then A= f~1(5) ={x e R: f(z) =5} and B = {-2,2}.
We must prove A = B.

We first prove B C A.
Since f(2) =1+2|2|=1+2%2 =25, then 2 € A.
Since f(—2)=1+42|—2|=1+42%2 =25, then —2 € A.
Since 2 € A and —2 € A, then every element of set B is contained in set A,
so B C A.

We next prove A C B.
Let z € A.
Then x € R and f(z) = 5.
Observe that

flx)=5 142z =5
2lz| =4

|z| =2
r=2o0rx=-2

x € {-2,2}.

S R

Since f(z) =5 and f(z) =5 if and only if x € {—2,2}, then z € {-2,2}, so
x € B.

Hence, x € A implies x € B, so A C B.

Since A C B and B C A, then A = B, as desired. O

Proof. We prove the statement: The inverse image of the interval (0,5) is the
interval (—2,2).

Let S be the inverse image of the interval (0,5) and let T be the interval
(—2,2).

Then S = f71((0,5)) ={z € R: f(z) € (0,5)} and T = (—2,2).

We must prove S =1T.

We first prove S C T
Let x € S.
Then x € R and f(z) € (0,5).



Observe that

f(z) €(0,5) 1+2z| € (0,5)
0<1+4+2z]<5

—1<2z|<4

t o009

_1<| | <2
—_— X
2

-1
-5 < |x| and |z| < 2.

¢

Since |z| > 0 > S, then |z > S is always true, so |z] < 2.
Hence, —2 <z < 2,80 x € (—2,2).

Thus, z € T.

Since z € S implies x € T, then S C T

We next prove T' C S.
Let z €T.
Then x € (—2,2),s0 -2 < x < 2.
Hence, |z| < 2.
Since |z| > 0 > S, then |z > F, so < |z < 2.
Observe that

—1
7<|x|<2 -1<2z|<4

&
< 0<1+4+2z[<5
& 0< f(x) <5
&

f(z) € (0,5).

Thus, f(z) € (0,5),s0 x € S.
Since z € T implies x € S, then T' C S.
Since S C T and T' C S, then S =T, as desired. O

Exercise 16. Let f : R — R be the function defined by f(z) = x2.
A. The pre-image of 4 is the set {—2,2}.
B. The inverse image of the closed interval [4, 5] is the set [—v/5, —2]U[2, v/5].

Proof. We prove: The pre-image of 4 is the set {—2,2}.
Let A be the pre-image of 4 and let B be the set {—2,2}.
Then A= f~1(4) ={x e R: f(z) =4} and B = {-2,2}.
We must prove A = B.

We first prove B C A.
Since 2 € R and f(2) = 2% = 4, then 2 € A.
Since —2 € R and f(—2) = (—2)? =4, then —2 € A.
Since 2 € A and —2 € A, then every element of B is contained in A, so
B CA.



We next prove A C B.
Let x € A.
Then z € R and f(z) = 4.
Observe that

22 =4
(22 —4)=0
(z+2)(z—2)=0
r+2=0o0rxz—2=0
r=—-2o0orx =2

< ze{-22}.

flz) =4

to o

Since f(z) =4 and f(z) =4 if and only if x € {—2,2}, then z € {-2,2}, so
x € B.

Thus, z € A implies ¢ € B, so A C B.

Since A C B and B C A, then A = B, as desired. O

Proof. We next prove the statement: The inverse image of the closed interval
[4,5] is the set [—v/5, —2] U [2,1/5].

Let S be the inverse image of the interval [4, 5] and let T be the set [—v/5, —2]U
2, v/5].

Then S = f~1[4,5] = {z € R: f(z) € [4,5]} and T = [-V/5,-2] U [2,/5].

We must prove S =1T.

We first prove T C S.
Let z €T.
Then either x € [-v/5, —2] or z € [2,V/5].
We consider these cases separately.
Case 1: Suppose = € [2,/5].
Then 2 <z < /5,50 0 <2 <z < V5.
Thus, 4 < 22 <5, 50 22 € [4,5].
Therefore, f(z) € [4,5],s0 z € S.
Case 2: Suppose z € [—/5, —2].
Then—\/5§x§—2,so V<< -2<0.
Thus, (—\/5)2 > 22> (-2)% 505> 2% > 4.
Hence, 4 < 22 < 5, so 22 € [4,5].
Thus, f(z) € [4,5], so z € S.
In either case, z € S, so x € T implies = € S.
Therefore, T C S.

We next prove S C T.
Let x € S.
Then z € R and f(z) € [4,5], so 22 € [4,5].
Hence, 4 < 22 < 5.
Since 0 < 4 < 22 < 5, then 2 < |z| < /5, s0 2 < |z| and |z| < /5.
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Since |z| < V5, then —v/5 <z <5, s0z € [—V/5, \/5]

Since |z| > 2, then either > 2 or z < —2.

We consider these cases separately.

Case 1: Suppose = > 2.

Then x € [2,00).

Since = € [2,00) and x € [—/5, /5], then z € [2,00) N [-V/5, V5] = [2, V5]
Case 2: Suppose ¢ < —2.

Then z € (—o0, —2].

Since = € (—o00, —2] and z € [—v/5,V/5], then 2 € (—o0, —2] N [-V/5,V5] =
[*\/57 *2]'

Hence, either x € [2,/5] or @ € [-v/5,-2], so x € [2,v/5] U [-V5,-2] =
[—v/5, —2] U [2, V5).

Thus, z € T.
Since z € S implies x € T, then S C T'.
Since S C T and T' C S, then S =T, as desired. O

Exercise 17. Let f: (0,4) — R be the function defined by f(z) = /z.
Then f is increasing and f is bounded.

Proof. We first prove f is increasing.

Let a,b € (0,4) such that a < b.

Since a € (0,4), then 0 < a < 4, s0 0 < a.

Since 0 < a and a < b, then 0 < a < b, s0 0 < \/a < Vb.
Thus, v/a < Vb, so f(a) < f(b).

Therefore, f is increasing. O

Proof. We prove f is bounded.

Let z € (0,4).

Then 0 < z < 4,80 0 < /2 < 2.

Hence, 0 < /z and /z < 2.

Since /x > 0, then |\/x| = /.

Thus, [£(2)] = |Vl = V& < 2 < 2, 50 |(z)] < 2.

Therefore, |f(z)| < 2 for all z € (0,4), so f is bounded. O

Exercise 18. Any real valued function on a finite set is bounded.

Proof. Let A be a finite set.

Let f: A — R be a function.

To prove f is bounded, we must prove the range of f is a bounded set.

Let S be the range of f.

Then S = {f(z) e R:z € A}.

We must prove the set .S is bounded.

Since A is a finite set, then there are n elements in A for some integer n > 0.
Since f is a function, then for every xz € A, there is exactly one f(z) € R,

so there are n elements in S.

Hence, S is a finite set of n real numbers.
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Since n > 0, then either n > 0 or n = 0.

We consider these cases separately.

Case 1: Suppose n > 0.

Then S contains at least one real number.

Since the elements of S are ordered, let S = {a; € R:a € {1,..,n}} and
a1 < ..., < ay.

Since a; € S and ay < a; for every i € {1,...,n}, then a; is the least element
of S, 80 s>aq forall seS.

Since a, € S and a; < a,, for every i € {1,...,n}, then a, is the greatest
element of S, so a,, > s for all s € S.

Thus, a1 < s < a, for every s € S, so S is bounded.

Case 2: Suppose n = 0.

Then S contains no real numbers, so S = 0.

Since every real number is both an upper and lower bound for the empty
set, then () is bounded in R, so S is bounded.

In all cases, we conclude the set S is bounded, so the function f must be
bounded. O
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