Real valued functions Notes

Jason Sass

May 25, 2023

Sets of Numbers

 $\mathbb{R} = \text{ set of all real numbers}$

 $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\} = (0, \infty) = \text{ set of all positive real numbers}$ $\mathbb{R}^* = \{x \in \mathbb{R} : x \neq 0\} = (-\infty, 0) \cup (0, \infty) = \text{ set of all nonzero real numbers}$

Real valued functions of a real variable

Definition 1. real valued function

A real valued function is a function f such that $rngf \subset \mathbb{R}$.

Definition 2. real valued function of a real variable

A real valued function of a real variable is a real valued function f such that $dom f \subset \mathbb{R}$.

Example 3. identity function

Let $I : \mathbb{R} \to \mathbb{R}$ be a function defined by I(x) = x for all $x \in \mathbb{R}$. Then I is called the **identity function**.

Example 4. reciprocal function

Let $f : \mathbb{R}^* \to \mathbb{R}$ be a function defined by $f(x) = \frac{1}{x}$ for all $x \neq 0$. Then f is called the **reciprocal function**.

Example 5. square root function

Let $f : \mathbb{R}_+ \to \mathbb{R}$ be a function defined by $f(x) = \sqrt{x}$ for all $x \ge 0$. Then f is called the square root function.

Example 6. absolute value function

Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by f(x) = |x| for all $x \in \mathbb{R}$. Then f is called the **absolute value function**.

Example 7. greatest integer function

Let $x \in \mathbb{R}$.

Let |x| denote the greatest integer n such that $n \leq x$.

Then $|x| = \max\{n \in \mathbb{Z} : n \le x\}.$

Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = \lfloor x \rfloor$ for all $x \in \mathbb{R}$.

Then f is called the greatest integer function.

Example 8. rational test function

Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ -1 & \text{if } x \notin \mathbb{Q} \end{cases}$$

for all $x \in \mathbb{R}$.

Then f is called the **rational test function**.

Definition 9. zero of a function

Let f be a real valued function. An element $x \in dom f$ is a **zero of** f iff f(x) = 0.

Definition 10. even/odd function

Let f be a real valued function of a real variable. Then f is said to be i. even iff f(-x) = f(x) for all $x \in dom f$. ii. odd iff f(-x) = -f(x) for all $x \in dom f$.

An even function has line symmetry about the y axis. An odd function has point symmetry about the origin.

Definition 11. increasing/decreasing function

Let f be a real valued function of a real variable. Let S be a subset of the domain of f. Then f is said to be i. constant on S iff $(\forall a, b \in S)[f(a) = f(b)]$. ii. increasing on S iff $(\forall a, b \in S)[a < b \rightarrow f(a) < f(b)]$. iii. decreasing on S iff $(\forall a, b \in S)[a < b \rightarrow f(a) > f(b)]$.

Definition 12. monotonic function in \mathbb{R}

Let f be a real valued function of a real variable.

Let $S \subset dom f$.

Then f is said to be

i. strictly increasing on S iff a < b implies f(a) < f(b) for all $a, b \in S$.

ii. (monotonic) increasing on S iff a < b implies $f(a) \leq f(b)$ for all $a, b \in S$.

iii. strictly decreasing on S iff a < b implies f(a) > f(b) for all $a, b \in S$. iv. (monotonic) decreasing on S iff a < b implies $f(a) \ge f(b)$ for all $a, b \in S$.

v. monotonic iff f is either monotonic increasing or monotonic decreasing.

Definition 13. monotonic function

Let f be a real valued function of a real variable.

Then f is **monotonic** iff f is either nondecreasing or non increasing on an interval of its domain.

We say that f is strictly monotonic on an interval of its domain iff f is either increasing on the entire interval or decreasing on the entire interval.

Theorem 14. Strictly monotonic functions are injective.

Let f be a real valued function of a real variable.

Let S be a subset of the domain of f.

1. If f is strictly increasing on S, then f is one to one on S.

2. If f is strictly decreasing on S, then f is one to one on S.

Let f be a real valued function of a real variable.

Let dom f be the domain of f.

If f is strictly increasing on dom f, then f is one to one on dom f.

If f is strictly decreasing on dom f, then f is one to one on dom f.

Therefore, a strictly increasing function is one to one and a strictly decreasing function is one to one.

Definition 15. bounded real valued function

A real valued function f is said to be

i. bounded above iff the range of f is bounded above in \mathbb{R} .

ii. **bounded below** iff the range of f is bounded below in \mathbb{R} .

iii. **bounded** iff the range of f is a bounded set in \mathbb{R} .

iv. **unbounded** iff f is not bounded.

Let f be a real valued function.

Let rng(f) be the range of f.

Then $rng(f) = \{f(x) \in \mathbb{R} : x \in dom(f)\}.$

Hence, $rng(f) = \{f(x) : x \in dom(f)\}.$

A set S is bounded above in \mathbb{R} iff there exists $M \in \mathbb{R}$ such that $x \leq M$ for all $x \in S$.

Hence, f is bounded above iff there exists $M \in \mathbb{R}$ such that $f(x) \leq M$ for all $x \in dom(f)$.

Therefore, f is bounded above iff $(\exists M \in \mathbb{R})(\forall x \in dom(f))(f(x) \le M)$.

Similarly, f is bounded below iff $(\exists m \in \mathbb{R}) (\forall x \in dom(f)) (m \leq f(x)).$

A set S is bounded in \mathbb{R} iff S is bounded above and below in \mathbb{R} .

Hence, a set S is bounded in \mathbb{R} iff there exist $m, M \in \mathbb{R}$ such that $m \leq x \leq M$ for all $x \in S$.

Thus, f is bounded in \mathbb{R} iff there exist $m, M \in \mathbb{R}$ such that $m \leq f(x) \leq M$ for all $x \in dom(f)$.

Therefore, f is bounded in \mathbb{R} iff $(\exists m, M \in \mathbb{R})(\forall x \in dom(f))(m \leq f(x) \leq M)$.

Equivalently, a set S is bounded in \mathbb{R} iff $(\exists b \in \mathbb{R})(\forall x \in S)(|x| \leq b)$. Therefore, f is bounded in \mathbb{R} iff $(\exists b \in \mathbb{R})(\forall x \in dom(f))(|f(x)| \leq b)$. Therefore, f is unbounded in \mathbb{R} iff $(\forall b \in \mathbb{R})(\exists x \in dom(f))(|f(x)| > b)$.

Suppose f is a bounded real valued function.

Then there exists $b \in \mathbb{R}$ such that $|f(x)| \leq b$ for all $x \in dom(f)$. Hence, there exists b > 0 such that |f(x)| < b for all $x \in dom(f)$.

Extrema of a real valued function

Definition 16. maxima/minima of a function

Let f be a real valued function.

If there exists $c \in domf$ such that $f(c) \geq f(x)$ for all $x \in domf$, then we say f(c) is a **maximum of** f **on** domf.

Equivalently, we say f(c) is an absolute maximum of f on dom f.

If there exists $c \in domf$ such that $f(c) \leq f(x)$ for all $x \in domf$, then we say f(c) is a **minimum of** f **on** domf.

Equivalently, we say f(c) is an absolute minimum of f on dom f.

A function value is an **extreme value** iff it is either a maximum or minimum value.

Definition 17. relative maxima/minima of a function

Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function.

Let $c \in E$.

Then f(c) is a **relative maximum of** f iff there exists $\delta > 0$ such that $N(c; \delta) \subset E$ and $f(c) \geq f(x)$ for all $x \in N(c; \delta)$.

Then f(c) is a **relative minimum of** f iff there exists $\delta > 0$ such that $N(c; \delta) \subset E$ and $f(c) \leq f(x)$ for all $x \in N(c; \delta)$.

Therefore, f(c) is a relative maximum of f on E iff there is a δ neighborhood of c in E such that $f(c) \ge f(x)$ for every $x \in N(c; \delta)$.

Therefore, f(c) is a relative minimum of f on E iff there is a δ neighborhood of c in E such that $f(c) \leq f(x)$ for every $x \in N(c; \delta)$.

Curves in \mathbb{R}^2

Definition 18. symmetry of curves

Let $C \subset \mathbb{R}^2$.

The curve C is symmetric with respect to the x axis iff $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})[(x, y) \in C \to (x, -y) \in C].$

The curve C is symmetric with respect to the y axis iff $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})[(x, y) \in C \to (-x, y) \in C].$

The curve C is symmetric with respect to the origin iff $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})[(x, y) \in C \to (-x, -y) \in C].$

The curve C is symmetric with respect to the point (h,k) iff $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})[(x+h, y+k) \in C \rightarrow (-x+h, -y+k) \in C].$

Algebra of real valued functions

Definition 19. function addition

Let f and g be real valued functions.

Let f + g be the function defined by (f + g)(x) = f(x) + g(x) for all $x \in dom f \cap dom g$.

We call f + g the sum of f and g.

The domain of f + g is the set $dom f \cap dom g$. Therefore, $dom(f + g) = dom f \cap dom g$.

Definition 20. Let f be a real valued function.

Let -f be the function defined by (-f)(x) = -f(x) for all $x \in dom f$.

The domain of -f is the set dom f. Therefore, dom(-f) = dom f.

Definition 21. function subtraction

Let f and g be real valued functions. Let f - g be the function defined by f - g = f + (-g). We call f - g the **difference of** f **and** g.

Let f and g be real valued functions.

Then (f - g)(x) = (f + (-g))(x) = f(x) + (-g)(x) = f(x) - g(x). The domain of f - g is the set $dom f \cap dom(-g) = dom f \cap dom g$. Therefore, $dom(f - g) = dom f \cap dom g$. Therefore, f - g is the function defined by (f - g)(x) = f(x) - g(x) for all

 $x \in domf \cap domg.$

Definition 22. function multiplication

Let f and g be real valued functions.

Let fg be the function defined by (fg)(x) = f(x)g(x) for all $x \in dom f \cap dom g$.

We call fg the **product of** f and g.

The domain of fg is the set $dom f \cap dom g$. Therefore, $dom(fg) = dom f \cap dom g$.

Definition 23. Let f be a real valued function.

Let $\frac{1}{f}$ be the function defined by $(\frac{1}{f})(x) = \frac{1}{f(x)}$ for all $x \in domf$ such that $f(x) \neq 0$.

The domain of $\frac{1}{f}$ is the set $\{x \in dom f : f(x) \neq 0\}$. Therefore, $dom \frac{1}{f} = \{x \in dom f : f(x) \neq 0\}$.

Definition 24. function division

Let f and g be real valued functions. Let $\frac{f}{g}$ be the function defined by $\frac{f}{g} = f \cdot \frac{1}{g}$. We call $\frac{f}{g}$ the **quotient of** f **and** g. Let f and g be real valued functions.

Then $(\frac{f}{g})(x) = (f\frac{1}{g})(x) = f(x)(\frac{1}{g})(x) = f(x)\frac{1}{g(x)} = \frac{f(x)}{g(x)}$. The domain of $\frac{f}{g}$ is the set $domf \cap dom\frac{1}{g} = domf \cap \{x \in domg : g(x) \neq 0\}$. Therefore, $dom\frac{f}{g} = domf \cap \{x \in domg : g(x) \neq 0\}$.

Therefore, $\frac{f}{g}$ is the function defined by $(\frac{f}{g})(x) = \frac{f(x)}{g(x)}$ for all $x \in domf \cap domg$ such that $g(x) \neq 0$.

Definition 25. function scalar multiplication

Let λ be a constant. Let f be a real valued function. Let λf be the function defined by $(\lambda f)(x) = \lambda f(x)$ for all $x \in dom f$. We call λf the scalar multiple of λ and f.

The domain of λf is the set dom f. Therefore, $dom(\lambda f) = dom f$.

Propositions involving algebra of functions

Proposition 26. Let f and g each be real valued functions of a real variable.

1. If f and g are even, then f + g, f - g, fg, and $g \circ f$ are even.

2. If f and g are odd, then f + g, f - g, and $g \circ f$ are odd and fg is even.

Classes of real valued functions

Definition 27. constant function

A function f is a **constant function** iff there exists a number k such that f(x) = k for all $x \in dom f$.

Let $k \in \mathbb{R}$.

Let $f : \mathbb{R} \to \mathbb{R}$ be the constant function defined by f(x) = k for all $x \in \mathbb{R}$. The graph of f is the constant linear function f(x) = k with slope 0.

The distance between any function values is zero because all of the terms are equal.

Thus, if $x_1, x_2 \in \mathbb{R}$, then $d(f(x_1), f(x_2)) = d(k, k) = |k - k| = 0$.

Definition 28. polynomial function

A function p of a real variable is a **polynomial function** iff there exist a nonnegative integer n and real numbers $a_0, a_1, ..., a_n$ such that $p(x) = \sum_{k=0}^n a_k x^k$ for all $x \in domp$.

If $a_n \neq 0$, we say n is the **degree of the polynomial** p.

The numbers a_i are the **coefficients** and a_n is the **leading coefficient** and a_0 is the **constant term**.

Example 29. Let p be a polynomial function of a real variable.

Then there exist a nonnegative integer n and real numbers $a_0, a_1, ..., a_n$ such that $p(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$.

The domain of p is \mathbb{R} .

Therefore, $domp = \mathbb{R}$, so the domain of any polynomial function is \mathbb{R} .

Let f be a polynomial function with degree n = 0.

Then $f(x) = \sum_{k=0}^{0} a_k x^k = a_0 x^0 = a_0$, so $f(x) = a_0$ and f is a constant function.

Therefore, every constant function is a polynomial function.

Let f be a polynomial function of degree n = 1.

Then $f(x) = \sum_{k=0}^{1} a_k x^k = a_0 x^0 + a_1 x^1 = a_0 + a_1 x$ and $a_1 \neq 0$, so $f(x) = a_0 + a_1 x^2 + a_1 x$ $a_1x + a_0$ and f is a linear function.

Therefore, f is a linear polynomial.

Let f be a polynomial function of degree n = 2. Then $f(x) = \sum_{k=0}^{2} a_k x^k = a_0 x^0 + a_1 x^1 + a_2 x^2 = a_0 + a_1 x + a_2 x^2$ and $a_2 \neq 0$, so $f(x) = a_2 x^2 + a_1 x + a_0$ and f is a quadratic function.

Therefore, f is a quadratic polynomial.

Let f be a polynomial function of degree n = 3. Then $f(x) = \sum_{k=0}^{3} a_k x^k = a_0 x^0 + a_1 x^1 + a_2 x^2 + a_3 x^3 = a_0 + a_1 x + a_2 x^2 + a_3 x^3$ and $a_3 \neq 0$, so $f(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$ and f is a cubic function. Therefore, f is a cubic polynomial.

Let f be a polynomial function of degree n = 4. Then $f(x) = \sum_{k=0}^{4} a_k x^k = a_0 x^0 + a_1 x^1 + a_2 x^2 + a_3 x^3 + a_4 x^4 = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$ and $a_4 \neq 0$, so $f(x) = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$ and f is a quartic function.

Therefore, f is a quartic polynomial.

Let f be a polynomial function of degree n = 5.

Then $f(x) = \sum_{k=0}^{5} a_k x^k = a_0 x^0 + a_1 x^1 + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5$ and $a_5 \neq 0$, so $f(x) = a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$ and f is a quintic function.

Therefore, f is a quintic polynomial.

A rational function is a ratio of two polynomial functions.

Definition 30. rational function

A function r is a **rational function** iff there exist polynomial functions p, qsuch that dom $\mathbf{r} = \mathbb{R} - \{x : q(x) = 0\}$ and $r(x) = \frac{p(x)}{q(x)}$ for all $x \in dom \mathbf{r}$.