Real valued functions Notes

Jason Sass

May 25, 2023

Sets of Numbers

$\mathbb{R}=$ set of all real numbers
$\mathbb{R}^{+}=\{x \in \mathbb{R}: x>0\}=(0, \infty)=$ set of all positive real numbers
$\mathbb{R}^{*}=\{x \in \mathbb{R}: x \neq 0\}=(-\infty, 0) \cup(0, \infty)=$ set of all nonzero real numbers

Real valued functions of a real variable

Definition 1. real valued function

A real valued function is a function f such that $\operatorname{rng} f \subset \mathbb{R}$.
Definition 2. real valued function of a real variable
A real valued function of a real variable is a real valued function f such that $\operatorname{dom} f \subset \mathbb{R}$.

Example 3. identity function

Let $I: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $I(x)=x$ for all $x \in \mathbb{R}$.
Then I is called the identity function.
Example 4. reciprocal function
Let $f: \mathbb{R}^{*} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{1}{x}$ for all $x \neq 0$.
Then f is called the reciprocal function.
Example 5. square root function
Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\sqrt{x}$ for all $x \geq 0$.
Then f is called the square root function.
Example 6. absolute value function
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=|x|$ for all $x \in \mathbb{R}$.
Then f is called the absolute value function.
Example 7. greatest integer function
Let $x \in \mathbb{R}$.
Let $\lfloor x\rfloor$ denote the greatest integer n such that $n \leq x$.
Then $\lfloor x\rfloor=\max \{n \in \mathbb{Z}: n \leq x\}$.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\lfloor x\rfloor$ for all $x \in \mathbb{R}$.
Then f is called the greatest integer function.

Example 8. rational test function

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ -1 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

for all $x \in \mathbb{R}$.
Then f is called the rational test function.

Definition 9. zero of a function

Let f be a real valued function.
An element $x \in \operatorname{dom} f$ is a zero of f iff $f(x)=0$.

Definition 10. even/odd function

Let f be a real valued function of a real variable. Then f is said to be
i. even iff $f(-x)=f(x)$ for all $x \in \operatorname{dom} f$.
ii. odd iff $f(-x)=-f(x)$ for all $x \in \operatorname{dom} f$.

An even function has line symmetry about the y axis.
An odd function has point symmetry about the origin.

Definition 11. increasing/decreasing function

Let f be a real valued function of a real variable.
Let S be a subset of the domain of f.
Then f is said to be
i. constant on S iff $(\forall a, b \in S)[f(a)=f(b)]$.
ii. increasing on S iff $(\forall a, b \in S)[a<b \rightarrow f(a)<f(b)]$.
iii. decreasing on S iff $(\forall a, b \in S)[a<b \rightarrow f(a)>f(b)]$.

Definition 12. monotonic function in \mathbb{R}
Let f be a real valued function of a real variable.
Let $S \subset \operatorname{domf}$.
Then f is said to be
i. strictly increasing on S iff $a<b$ implies $f(a)<f(b)$ for all $a, b \in S$.
ii. (monotonic) increasing on S iff $a<b$ implies $f(a) \leq f(b)$ for all $a, b \in S$.
iii. strictly decreasing on S iff $a<b$ implies $f(a)>f(b)$ for all $a, b \in S$.
iv. (monotonic) decreasing on S iff $a<b$ implies $f(a) \geq f(b)$ for all $a, b \in S$.
v. monotonic iff f is either monotonic increasing or monotonic decreasing.

Definition 13. monotonic function

Let f be a real valued function of a real variable.
Then f is monotonic iff f is either nondecreasing or non increasing on an interval of its domain.

We say that f is strictly monotonic on an interval of its domain iff f is either increasing on the entire interval or decreasing on the entire interval.

Theorem 14. Strictly monotonic functions are injective.
Let f be a real valued function of a real variable.
Let S be a subset of the domain of f.

1. If f is strictly increasing on S, then f is one to one on S.
2. If f is strictly decreasing on S, then f is one to one on S.

Let f be a real valued function of a real variable.
Let $\operatorname{dom} f$ be the domain of f.
If f is strictly increasing on $\operatorname{dom} f$, then f is one to one on $\operatorname{dom} f$.
If f is strictly decreasing on $\operatorname{dom} f$, then f is one to one on $\operatorname{dom} f$.
Therefore, a strictly increasing function is one to one and a strictly decreasing function is one to one.

Definition 15. bounded real valued function

A real valued function f is said to be
i. bounded above iff the range of f is bounded above in \mathbb{R}.
ii. bounded below iff the range of f is bounded below in \mathbb{R}.
iii. bounded iff the range of f is a bounded set in \mathbb{R}.
iv. unbounded iff f is not bounded.

Let f be a real valued function.
Let $r n g(f)$ be the range of f.
Then $\operatorname{rng}(f)=\{f(x) \in \mathbb{R}: x \in \operatorname{dom}(f)\}$.
Hence, $\operatorname{rng}(f)=\{f(x): x \in \operatorname{dom}(f)\}$.
A set S is bounded above in \mathbb{R} iff there exists $M \in \mathbb{R}$ such that $x \leq M$ for all $x \in S$.

Hence, f is bounded above iff there exists $M \in \mathbb{R}$ such that $f(x) \leq M$ for all $x \in \operatorname{dom}(f)$.

Therefore, f is bounded above iff $(\exists M \in \mathbb{R})(\forall x \in \operatorname{dom}(f))(f(x) \leq M)$.
Similarly, f is bounded below iff $(\exists m \in \mathbb{R})(\forall x \in \operatorname{dom}(f))(m \leq f(x))$.
A set S is bounded in \mathbb{R} iff S is bounded above and below in \mathbb{R}.
Hence, a set S is bounded in \mathbb{R} iff there exist $m, M \in \mathbb{R}$ such that $m \leq x \leq M$ for all $x \in S$.

Thus, f is bounded in \mathbb{R} iff there exist $m, M \in \mathbb{R}$ such that $m \leq f(x) \leq M$ for all $x \in \operatorname{dom}(f)$.

Therefore, f is bounded in \mathbb{R} iff $(\exists m, M \in \mathbb{R})(\forall x \in \operatorname{dom}(f))(m \leq f(x) \leq$ M).

Equivalently, a set S is bounded in \mathbb{R} iff $(\exists b \in \mathbb{R})(\forall x \in S)(|x| \leq b)$.
Therefore, f is bounded in \mathbb{R} iff $(\exists b \in \mathbb{R})(\forall x \in \operatorname{dom}(f))(|f(x)| \leq b)$.
Therefore, f is unbounded in \mathbb{R} iff $(\forall b \in \mathbb{R})(\exists x \in \operatorname{dom}(f))(|f(x)|>b)$.
Suppose f is a bounded real valued function.
Then there exists $b \in \mathbb{R}$ such that $|f(x)| \leq b$ for all $x \in \operatorname{dom}(f)$.
Hence, there exists $b>0$ such that $|f(x)|<b$ for all $x \in \operatorname{dom}(f)$.

Extrema of a real valued function

Definition 16. maxima/minima of a function

Let f be a real valued function.
If there exists $c \in \operatorname{dom} f$ such that $f(c) \geq f(x)$ for all $x \in \operatorname{dom} f$, then we say $f(c)$ is a maximum of f on $\operatorname{dom} f$.

Equivalently, we say $f(c)$ is an absolute maximum of f on $\operatorname{dom} f$.
If there exists $c \in \operatorname{dom} f$ such that $f(c) \leq f(x)$ for all $x \in \operatorname{dom} f$, then we say $f(c)$ is a minimum of f on $\operatorname{dom} f$.

Equivalently, we say $f(c)$ is an absolute minimum of f on $\operatorname{dom} f$.
A function value is an extreme value iff it is either a maximum or minimum value.

Definition 17. relative maxima/minima of a function

Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let $c \in E$.
Then $f(c)$ is a relative maximum of f iff there exists $\delta>0$ such that $N(c ; \delta) \subset E$ and $f(c) \geq f(x)$ for all $x \in N(c ; \delta)$.

Then $f(c)$ is a relative minimum of f iff there exists $\delta>0$ such that $N(c ; \delta) \subset E$ and $f(c) \leq f(x)$ for all $x \in N(c ; \delta)$.

Therefore, $f(c)$ is a relative maximum of f on E iff there is a δ neighborhood of c in E such that $f(c) \geq f(x)$ for every $x \in N(c ; \delta)$.

Therefore, $f(c)$ is a relative minimum of f on E iff there is a δ neighborhood of c in E such that $f(c) \leq f(x)$ for every $x \in N(c ; \delta)$.

Curves in \mathbb{R}^{2}

Definition 18. symmetry of curves

Let $C \subset \mathbb{R}^{2}$.
The curve C is symmetric with respect to the \mathbf{x} axis iff $(\forall x \in \mathbb{R})(\forall y \in$ $\mathbb{R})[(x, y) \in C \rightarrow(x,-y) \in C]$.

The curve C is symmetric with respect to the y axis iff $(\forall x \in \mathbb{R})(\forall y \in$ $\mathbb{R})[(x, y) \in C \rightarrow(-x, y) \in C]$.

The curve C is symmetric with respect to the origin iff $(\forall x \in \mathbb{R})(\forall y \in$ $\mathbb{R})[(x, y) \in C \rightarrow(-x,-y) \in C]$.

The curve C is symmetric with respect to the point (h, k) iff $(\forall x \in$ $\mathbb{R})(\forall y \in \mathbb{R})[(x+h, y+k) \in C \rightarrow(-x+h,-y+k) \in C]$.

Algebra of real valued functions

Definition 19. function addition

Let f and g be real valued functions.
Let $f+g$ be the function defined by $(f+g)(x)=f(x)+g(x)$ for all $x \in$ $\operatorname{dom} f \cap \operatorname{domg}$.

We call $f+g$ the sum of f and g.
The domain of $f+g$ is the set $\operatorname{dom} f \cap \operatorname{domg}$.
Therefore, $\operatorname{dom}(f+g)=\operatorname{dom} f \cap \operatorname{domg}$.
Definition 20. Let f be a real valued function.
Let $-f$ be the function defined by $(-f)(x)=-f(x)$ for all $x \in \operatorname{dom} f$.
The domain of $-f$ is the set $\operatorname{dom} f$.
Therefore, $\operatorname{dom}(-f)=\operatorname{dom} f$.

Definition 21. function subtraction

Let f and g be real valued functions.
Let $f-g$ be the function defined by $f-g=f+(-g)$.
We call $f-g$ the difference of f and g.
Let f and g be real valued functions.
Then $(f-g)(x)=(f+(-g))(x)=f(x)+(-g)(x)=f(x)-g(x)$.
The domain of $f-g$ is the set $\operatorname{dom} f \cap \operatorname{dom}(-g)=\operatorname{dom} f \cap \operatorname{domg}$.
Therefore, $\operatorname{dom}(f-g)=\operatorname{dom} f \cap \operatorname{domg}$.
Therefore, $f-g$ is the function defined by $(f-g)(x)=f(x)-g(x)$ for all $x \in \operatorname{dom} f \cap \operatorname{domg}$.

Definition 22. function multiplication

Let f and g be real valued functions.
Let $f g$ be the function defined by $(f g)(x)=f(x) g(x)$ for all $x \in \operatorname{dom} f \cap$ domg.

We call $f g$ the product of f and g.
The domain of $f g$ is the set $\operatorname{dom} f \cap \operatorname{domg}$.
Therefore, $\operatorname{dom}(f g)=\operatorname{dom} f \cap \operatorname{domg}$.
Definition 23. Let f be a real valued function.
Let $\frac{1}{f}$ be the function defined by $\left(\frac{1}{f}\right)(x)=\frac{1}{f(x)}$ for all $x \in \operatorname{dom} f$ such that $f(x) \neq 0$.

The domain of $\frac{1}{f}$ is the set $\{x \in \operatorname{dom} f: f(x) \neq 0\}$.
Therefore, $\operatorname{dom} \frac{1}{f}=\{x \in \operatorname{domf}: f(x) \neq 0\}$.

Definition 24. function division

Let f and g be real valued functions.
Let $\frac{f}{g}$ be the function defined by $\frac{f}{g}=f \cdot \frac{1}{g}$.
We call $\frac{f}{g}$ the quotient of f and g.
Let f and g be real valued functions.
Then $\left(\frac{f}{g}\right)(x)=\left(f \frac{1}{g}\right)(x)=f(x)\left(\frac{1}{g}\right)(x)=f(x) \frac{1}{g(x)}=\frac{f(x)}{g(x)}$.
The domain of $\frac{f}{g}$ is the set $\operatorname{dom} f \cap \operatorname{dom} \frac{1}{g}=\operatorname{dom} f \cap\{x \in \operatorname{domg}: g(x) \neq 0\}$.
Therefore, $\operatorname{dom} \frac{f}{g}=\operatorname{dom} f \cap\{x \in \operatorname{domg}: g(x) \neq 0\}$.
Therefore, $\frac{f}{g}$ is the function defined by $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$ for all $x \in \operatorname{dom} f \cap \operatorname{domg}$ such that $g(x) \neq 0$.

Definition 25. function scalar multiplication
Let λ be a constant.
Let f be a real valued function.
Let λf be the function defined by $(\lambda f)(x)=\lambda f(x)$ for all $x \in \operatorname{dom} f$.
We call λf the scalar multiple of λ and f.
The domain of λf is the set $\operatorname{dom} f$.
Therefore, $\operatorname{dom}(\lambda f)=\operatorname{dom} f$.

Propositions involving algebra of functions

Proposition 26. Let f and g each be real valued functions of a real variable.

1. If f and g are even, then $f+g, f-g, f g$, and $g \circ f$ are even.
2. If f and g are odd, then $f+g, f-g$, and $g \circ f$ are odd and $f g$ is even.

Classes of real valued functions

Definition 27. constant function

A function f is a constant function iff there exists a number k such that $f(x)=k$ for all $x \in \operatorname{dom} f$.

Let $k \in \mathbb{R}$.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the constant function defined by $f(x)=k$ for all $x \in \mathbb{R}$.
The graph of f is the constant linear function $f(x)=k$ with slope 0 .
The distance between any function values is zero because all of the terms are equal.

Thus, if $x_{1}, x_{2} \in \mathbb{R}$, then $d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)=d(k, k)=|k-k|=0$.

Definition 28. polynomial function

A function p of a real variable is a polynomial function iff there exist a nonnegative integer n and real numbers $a_{0}, a_{1}, \ldots, a_{n}$ such that $p(x)=\sum_{k=0}^{n} a_{k} x^{k}$ for all $x \in$ domp.

If $a_{n} \neq 0$, we say n is the degree of the polynomial p.
The numbers a_{i} are the coefficients and a_{n} is the leading coefficient and a_{0} is the constant term.

Example 29. Let p be a polynomial function of a real variable.
Then there exist a nonnegative integer n and real numbers $a_{0}, a_{1}, \ldots, a_{n}$ such that $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$.

The domain of p is \mathbb{R}.
Therefore, domp $=\mathbb{R}$, so the domain of any polynomial function is \mathbb{R}.
Let f be a polynomial function with degree $n=0$.
Then $f(x)=\sum_{k=0}^{0} a_{k} x^{k}=a_{0} x^{0}=a_{0}$, so $f(x)=a_{0}$ and f is a constant function.

Therefore, every constant function is a polynomial function.

Let f be a polynomial function of degree $n=1$.
Then $f(x)=\sum_{k=0}^{1} a_{k} x^{k}=a_{0} x^{0}+a_{1} x^{1}=a_{0}+a_{1} x$ and $a_{1} \neq 0$, so $f(x)=$ $a_{1} x+a_{0}$ and f is a linear function.

Therefore, f is a linear polynomial.

Let f be a polynomial function of degree $n=2$.
Then $f(x)=\sum_{k=0}^{2} a_{k} x^{k}=a_{0} x^{0}+a_{1} x^{1}+a_{2} x^{2}=a_{0}+a_{1} x+a_{2} x^{2}$ and $a_{2} \neq 0$, so $f(x)=a_{2} x^{2}+a_{1} x+a_{0}$ and f is a quadratic function.

Therefore, f is a quadratic polynomial.

Let f be a polynomial function of degree $n=3$.
Then $f(x)=\sum_{k=0}^{3} a_{k} x^{k}=a_{0} x^{0}+a_{1} x^{1}+a_{2} x^{2}+a_{3} x^{3}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ and $a_{3} \neq 0$, so $f(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ and f is a cubic function.

Therefore, f is a cubic polynomial.

Let f be a polynomial function of degree $n=4$.
Then $f(x)=\sum_{k=0}^{4} a_{k} x^{k}=a_{0} x^{0}+a_{1} x^{1}+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}=a_{0}+a_{1} x+$ $a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}$ and $a_{4} \neq 0$, so $f(x)=a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ and f is a quartic function.

Therefore, f is a quartic polynomial.

Let f be a polynomial function of degree $n=5$.
Then $f(x)=\sum_{k=0}^{5} a_{k} x^{k}=a_{0} x^{0}+a_{1} x^{1}+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}=$ $a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}$ and $a_{5} \neq 0$, so $f(x)=a_{5} x^{5}+a_{4} x^{4}+$ $a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ and f is a quintic function.

Therefore, f is a quintic polynomial.

A rational function is a ratio of two polynomial functions.

Definition 30. rational function

A function r is a rational function iff there exist polynomial functions p, q such that dom $\mathrm{r}=\mathbb{R}-\{x: q(x)=0\}$ and $r(x)=\frac{p(x)}{q(x)}$ for all $x \in$ dom r .

