Limits of real valued functions Theory

Jason Sass

June 29, 2021

Limit of a real valued function

Proposition 1. Let f be a real valued function.
Let a be an accumulation point of domf.
If L is a real number, then $\lim _{x \rightarrow a} f(x)=L$ iff $\lim _{x \rightarrow a}|f(x)-L|=0$.
Proof. Suppose L is a real number.
Then

$$
\begin{array}{rc}
\lim _{x \rightarrow a} f(x)=L & \Leftrightarrow \\
(\forall \epsilon>0)(\exists \delta>0)(\forall x \in \operatorname{dom} f)(0<|x-a|<\delta \rightarrow|f(x)-L|<\epsilon) & \Leftrightarrow \\
(\forall \epsilon>0)(\exists \delta>0)(\forall x \in \operatorname{dom} f)(0<|x-a|<\delta \rightarrow| | f(x)-L| |<\epsilon) & \Leftrightarrow \\
(\forall \epsilon>0)(\exists \delta>0)(\forall x \in \operatorname{dom} f)(0<|x-a|<\delta \rightarrow| | f(x)-L|-0|<\epsilon) & \Leftrightarrow \\
\lim _{x \rightarrow a}|f(x)-L|=0 . &
\end{array}
$$

Proposition 2. Let $E \subset \mathbb{R}$.
If a is an accumulation point of E, then a is an accumulation point of $E-$ $\{a\}$.

Proof. Suppose a is an accumulation point of E.
Let $\epsilon>0$ be given.
Since a is an accumulation point of E, then there exists $x \in E$ such that $x \in N(a ; \epsilon)$ and $x \neq a$.

Since $x \in E$ and $x \neq a$, then $x \in E-\{a\}$.
Thus, there exists $x \in E-\{a\}$ such that $x \in N(a ; \epsilon)$ and $x \neq a$.
Therefore, a is an accumulation point of the set $E-\{a\}$.
Proposition 3. Let $E \subset \mathbb{R}$.
A point a is an accumulation point of E iff there is a sequence $\left(x_{n}\right)$ of points in $E-\{a\}$ such that $\lim _{n \rightarrow \infty} x_{n}=a$.

Proof. We first prove if a is an accumulation point of E, then there is a sequence $\left(x_{n}\right)$ of points in $E-\{a\}$ such that $\lim _{n \rightarrow \infty} x_{n}=a$.

Suppose a is an accumulation point of E.
Then for every $\delta>0$ there exists $x \in E$ such that $x \in N^{\prime}(a ; \delta)$.
Let $\delta=\frac{1}{n}$ for each $n \in \mathbb{N}$.
Then for each $n \in \mathbb{N}$, there exists $x \in E$ such that $x \in N^{\prime}\left(a ; \frac{1}{n}\right)$.
Thus, there exists a function $f: \mathbb{N} \rightarrow E$ such that $f(n) \in N^{\prime}\left(a ; \frac{1}{n}\right)$ for each $n \in \mathbb{N}$.

Hence, there exists a sequence $\left(x_{n}\right)$ in E such that $x_{n} \in N^{\prime}\left(a ; \frac{1}{n}\right)$ for each $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$ be given.
Then $x_{n} \in E$ and $x_{n} \in N^{\prime}\left(a ; \frac{1}{n}\right)$.
Since $x_{n} \in N^{\prime}\left(a ; \frac{1}{n}\right)$, then $x_{n} \in N\left(a ; \frac{1}{n}\right)$ and $x_{n} \neq a$.
Since $x_{n} \in E$ and $x_{n} \neq a$, then $x_{n} \in E-\{a\}$.
Since $x_{n} \in N\left(a ; \frac{1}{n}\right)$, then $\left|x_{n}-a\right|<\frac{1}{n}$.
Thus, $x_{n} \in E-\{a\}$ and $\left|x_{n}-a\right|<\frac{1}{n}$ for each $n \in \mathbb{N}$.
Since $x_{n} \in E-\{a\}$ for each $n \in \mathbb{N}$, then $\left\{x_{n}: n \in \mathbb{N}\right\} \subset E-\{a\}$, so there is a sequence $\left(x_{n}\right)$ of points in the set $E-\{a\}$.

We prove the sequence $\left(x_{n}\right)$ converges to a.
Let $\epsilon>0$ be given.
Then $\frac{1}{\epsilon}>0$.
Since $\frac{1}{\epsilon} \in \mathbb{R}$, then by the Archimedean property of \mathbb{R}, there exists $N \in \mathbb{N}$ such that $N>\frac{1}{\epsilon}$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $n>N>\frac{1}{\epsilon}$, so $n>\frac{1}{\epsilon}$.
Hence, $\epsilon>\frac{1}{n}$, so $\frac{1}{n}<\epsilon$.
Since $\left|x_{n}-a\right|<\frac{1}{n}$ for each $n \in \mathbb{N}$, then $\left|x_{n}-a\right|<\frac{1}{n}<\epsilon$.
Hence, $\left|x_{n}-a\right|<\epsilon$, so $\lim _{n \rightarrow \infty} x_{n}=a$, as desired.
Proof. Conversely, we prove if a is a point and there is a sequence $\left(x_{n}\right)$ of points in $E-\{a\}$ such that $\lim _{n \rightarrow \infty} x_{n}=a$, then a is an accumulation point of E.

Suppose a is a point and there is a sequence $\left(x_{n}\right)$ of points in $E-\{a\}$ such that $\lim _{n \rightarrow \infty} x_{n}=a$.

We must prove a is an accumulation point of E.
Let $\delta>0$ be given.
Since $\left(x_{n}\right)$ is a sequence of points in $E-\{a\}$, then $\left\{x_{n}: n \in \mathbb{N}\right\} \subset E-\{a\}$, so $x_{n} \in E-\{a\}$ for all $n \in \mathbb{N}$.

Hence, $x_{n} \in E$ and $x_{n} \neq a$ for all $n \in \mathbb{N}$.
Since $\lim _{n \rightarrow \infty} x_{n}=a$ and $\delta>0$, then there exists $N \in \mathbb{N}$ such that if $n>N$, then $\left|x_{n}-a\right|<\delta$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $\left|x_{n}-a\right|<\delta$, so $x_{n} \in N(a ; \delta)$.
Since $n \in \mathbb{N}$, then $x_{n} \in E$ and $x_{n} \neq a$.
Since $x_{n} \in N(a ; \delta)$ and $x_{n} \neq a$, then $x_{n} \in N^{\prime}(a ; \delta)$.

Thus, there exists $x_{n} \in E$ such that $x_{n} \in N^{\prime}(a ; \delta)$, so a is an accumulation point of E.

Theorem 4. sequential characterization of a function limit
Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let a be an accumulation point of E.
Let $L \in \mathbb{R}$.
Then $\lim _{x \rightarrow a} f(x)=L$ iff for every sequence $\left(x_{n}\right)$ of points in $E-\{a\}$ such that $\lim _{n \rightarrow \infty} x_{n}=a, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.

Proof. We prove if $\lim _{x \rightarrow a} f(x)=L$, then for every sequence $\left(x_{n}\right)$ of points in $E-\{a\}$ such that $\lim _{n \rightarrow \infty} x_{n}=a, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.

Suppose $\lim _{x \rightarrow a} f(x)=L$.
Since a is an accumulation point of E, then there is a sequence $\left(x_{n}\right)$ of points in $E-\{a\}$ such that $\lim _{n \rightarrow \infty} x_{n}=a$.

Let $\left(x_{n}\right)$ be an arbitrary sequence of points in $E-\{a\}$ such that $\lim _{n \rightarrow \infty} x_{n}=$ a.

We must prove $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.
Let $\epsilon>0$ be given.
Since $\lim _{x \rightarrow a} f(x)=L$, then there exists $\delta>0$ such that for all $x \in E$, if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.

Since $\lim _{n \rightarrow \infty} x_{n}=a$ and $\delta>0$, then there exists $N \in \mathbb{N}$ such that if $n>N$, then $\left|x_{n}-a\right|<\delta$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $\left|x_{n}-a\right|<\delta$.
Since $\left(x_{n}\right)$ is a sequence of points in $E-\{a\}$, then $x_{n} \in E-\{a\}$ for all $n \in \mathbb{N}$, so $x_{n} \in E$ and $x_{n} \neq a$ for all $n \in \mathbb{N}$.

Since $n \in \mathbb{N}$, then $x_{n} \in E$ and $x_{n} \neq a$.
Since $x_{n} \neq a$, then $\left|x_{n}-a\right|>0$.
Thus, $0<\left|x_{n}-a\right|<\delta$.
Since $x_{n} \in E$ and $0<\left|x_{n}-a\right|<\delta$, then we conclude $\left|f\left(x_{n}\right)-L\right|<\epsilon$.
Therefore, $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$, as desired.
Proof. Conversely, we prove if for every sequence $\left(x_{n}\right)$ of points in $E-\{a\}$ such that $\lim _{n \rightarrow \infty} x_{n}=a$ implies $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$, then $\lim _{x \rightarrow a} f(x)=L$.

We prove by contrapositive.
Suppose $\lim _{x \rightarrow a} f(x) \neq L$.
Then there exists $\epsilon_{0}>0$ such that for each $\delta>0$ there corresponds $x \in E$ such that $0<|x-a|<\delta$ and $|f(x)-L| \geq \epsilon_{0}$.

Thus, there exists $\epsilon_{0}>0$ such that for each $\delta>0$ there corresponds $x \in E$ such that $x \neq a$ and $|x-a|<\delta$ and $|f(x)-L| \geq \epsilon_{0}$, so there exists $\epsilon_{0}>0$ such that for each $\delta>0$ there corresponds $x \in E-\{a\}$ such that $|x-a|<\delta$ and $|f(x)-L| \geq \epsilon_{0}$.

Let $\delta=\frac{1}{n}$ for each $n \in \mathbb{N}$.
Then for each $n \in \mathbb{N}$, there corresponds $x \in E-\{a\}$ such that $|x-a|<\frac{1}{n}$ and $|f(x)-L| \geq \epsilon_{0}$.

Thus, there exists a function $g: \mathbb{N} \rightarrow \mathbb{R}$ such that $g(n) \in E-\{a\}$ and $|g(n)-a|<\frac{1}{n}$ and $|f(g(n))-L| \geq \epsilon_{0}$ for each $n \in \mathbb{N}$, so there exists a sequence $\left(x_{n}\right)$ in \mathbb{R} such that $x_{n} \in E-\{a\}$ and $\left|x_{n}-a\right|<\frac{1}{n}$ and $\left|f\left(x_{n}\right)-L\right| \geq \epsilon_{0}$ for each $n \in \mathbb{N}$.

Since $x_{n} \in E-\{a\}$ for each $n \in \mathbb{N}$, then $\left(x_{n}\right)$ is a sequence of points in $E-\{a\}$.

We prove $\lim _{n \rightarrow \infty} x_{n}=a$.
Let $\epsilon>0$ be given.
Then $\epsilon \neq 0$, so $\frac{1}{\epsilon} \in \mathbb{R}$.
Hence, by the Archimedean property of \mathbb{R}, there exists $N \in \mathbb{N}$ such that $N>\frac{1}{\epsilon}$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $n>N>\frac{1}{\epsilon}$, so $n>\frac{1}{\epsilon}$.
Hence, $\epsilon>\frac{1}{n}$, so $\frac{1}{n}<\epsilon$.
Since $n \in \mathbb{N}$ and $\left|x_{n}-a\right|<\frac{1}{n}$ for each $n \in \mathbb{N}$, then $\left|x_{n}-a\right|<\frac{1}{n}$.
Thus, $\left|x_{n}-a\right|<\frac{1}{n}<\epsilon$, so $\left|x_{n}-a\right|<\epsilon$.
Therefore, $\lim _{n \rightarrow \infty} x_{n}=a$, as desired.

We prove $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq L$.
Let $N \in \mathbb{N}$ be given.
Let $n=N+1$.
Then $n \in \mathbb{N}$ and $n>N$.
Since $n \in \mathbb{N}$ and $\left|f\left(x_{n}\right)-L\right| \geq \epsilon_{0}$ for each $n \in \mathbb{N}$, then $\left|f\left(x_{n}\right)-L\right| \geq \epsilon_{0}$.
Thus, there exists $\epsilon_{0}>0$ such that for each $N \in \mathbb{N}$, there exists $n \in \mathbb{N}$ for which $n>N$ and $\left|f\left(x_{n}\right)-L\right| \geq \epsilon_{0}$.

Therefore, $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq L$.
Hence, we have shown there exists a sequence $\left(x_{n}\right)$ of points in $E-\{a\}$ such that $\lim _{n \rightarrow \infty} x_{n}=a$ and $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq L$, as desired.

Proposition 5. limit of an absolute value equals absolute value of a limit

Let f be a real valued function.
Let a be an accumulation point of $\operatorname{dom} f$.
If the limit of f at a exists, then $\lim _{x \rightarrow a}|f(x)|=\left|\lim _{x \rightarrow a} f(x)\right|$.
Proof. Suppose the limit of f at a exists.
Then there exists a real number L such that $\lim _{x \rightarrow a} f(x)=L$.
We must prove $\lim _{x \rightarrow a}|f(x)|=|L|$.
Let $\epsilon>0$ be given.
Since $\lim _{x \rightarrow a} f(x)=L$, then there exists $\delta>0$ such that for all $x \in \operatorname{domf} f$, if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.

Let $x \in \operatorname{dom} f$ such that $0<|x-a|<\delta$.
Then $|f(x)-L|<\epsilon$.
Hence, $||f(x)|-|L|| \leq|f(x)-L|<\epsilon$, so $||f(x)|-|L||<\epsilon$.

Therefore, $\lim _{x \rightarrow a}|f(x)|=|L|$.
Lemma 6. Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let a be a point.
If the limit of f at a exists and is positive, then there exists $\delta>0$ such that $f(x)>0$ for all $x \in N^{\prime}(a ; \delta) \cap E$.

Proof. Suppose the limit of f at a exists and is positive.
Then there is a real number L such that $\lim _{x \rightarrow a} f(x)=L$ and $L>0$.
Since $\lim _{x \rightarrow a} f(x)=L$ and $L>0$, then there exists $\delta>0$ such that for all $x \in E$, if $0<|x-a|<\delta$, then $|f(x)-L|<L$.

Since $\lim _{x \rightarrow a} f(x)=L$, then a is an accumulation point of E, so there exists $x \in N^{\prime}(a ; \delta) \cap E$.

Let $x \in N^{\prime}(a ; \delta) \cap E$ be arbitrary.
Then $x \in N^{\prime}(a ; \delta)$ and $x \in E$.
Since $x \in N^{\prime}(a ; \delta)$, then $x \in N(a ; \delta)$ and $x \neq a$.
Since $x \in N(a ; \delta)$, then $|x-a|<\delta$.
Since $x \neq a$, then $x-a \neq 0$, so $|x-a|>0$.
Since $0<|x-a|$ and $|x-a|<\delta$, then $0<|x-a|<\delta$.
Since $x \in E$ and $0<|x-a|<\delta$, then $|f(x)-L|<L$.
Thus, $-L<f(x)-L<L$, so $-L<f(x)-L$.
Therefore, $0<f(x)$, so $f(x)>0$, as desired.
Proposition 7. limit of a square root equals square root of a limit
Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
If $\lim _{x \rightarrow a} f(x)$ exists and is positive, then $\lim _{x \rightarrow a} \sqrt{f(x)}=\sqrt{\lim _{x \rightarrow a} f(x)}$.
Proof. Suppose $\lim _{x \rightarrow a} f(x)$ exists and is positive.
Then there exists $L \in \mathbb{R}$ such that $\lim _{x \rightarrow a} f(x)=L$ and $L>0$.
Let $g(x)=\sqrt{f(x)}$.
Then g is a function and $d o m g=\{x \in E: g(x) \in \mathbb{R}\}=\{x \in E: \sqrt{f(x)} \in$ $\mathbb{R}\}=\{x \in E: f(x) \geq 0\}$.

We must prove $\lim _{x \rightarrow a} g(x)=\sqrt{L}$.

We first prove a is an accumulation point of domg.
Let $\delta>0$ be given.
Since $\lim _{x \rightarrow a} f(x)=L$ and $L>0$, then by the previous lemma, there exists $\delta_{1}>0$ such that $f(x)>0$ for all $x \in N^{\prime}\left(a ; \delta_{1}\right) \cap E$.

Since $\lim _{x \rightarrow a} f(x)=L$, then a is an accumulation point of E.
Either $\delta_{1} \geq \delta$ or $\delta_{1}<\delta$.
We consider these cases separately.
Case 1: Suppose $\delta_{1} \geq \delta$.
Since a is an accumulation point of E and $\delta>0$, then there exists $x \in E$ such that $x \in N^{\prime}(a ; \delta)$.

Since $x \in N^{\prime}(a ; \delta)$, then $x \in N(a ; \delta)$ and $x \neq a$.

Since $0<\delta \leq \delta_{1}$, then $N(a ; \delta) \subset N\left(a ; \delta_{1}\right)$.
Since $x \in N(a ; \delta)$ and $N(a ; \delta) \subset N\left(a ; \delta_{1}\right)$, then $x \in N\left(a ; \delta_{1}\right)$.
Since $x \in N\left(a ; \delta_{1}\right)$ and $x \neq a$, then $x \in N^{\prime}\left(a ; \delta_{1}\right)$.
Since $x \in N^{\prime}\left(a ; \delta_{1}\right)$ and $x \in E$, then $x \in N^{\prime}\left(a ; \delta_{1}\right) \cap E$, so $f(x)>0$.
Since $x \in E$ and $f(x)>0$, then $x \in d o m g$.
Therefore, there exists $x \in d o m g$ such that $x \in N^{\prime}(a ; \delta)$.
Case 2: Suppose $\delta_{1}<\delta$.
Since a is an accumulation point of E and $\delta_{1}>0$, then there exists $x \in E$ such that $x \in N^{\prime}\left(a ; \delta_{1}\right)$.

Since $x \in N^{\prime}\left(a ; \delta_{1}\right)$ and $x \in E$, then $x \in N^{\prime}\left(a ; \delta_{1}\right) \cap E$, so $f(x)>0$.
Since $x \in E$ and $f(x)>0$, then $x \in d o m g$.
Since $x \in N^{\prime}\left(a ; \delta_{1}\right)$, then $x \in N\left(a ; \delta_{1}\right)$ and $x \neq a$.
Since $0<\delta_{1}<\delta$, then $N\left(a ; \delta_{1}\right) \subset N(a ; \delta)$.
Since $x \in N\left(a ; \delta_{1}\right)$ and $N\left(a ; \delta_{1}\right) \subset N(a ; \delta)$, then $x \in N(a ; \delta)$.
Since $x \in N(a ; \delta)$ and $x \neq a$, then $x \in N^{\prime}(a ; \delta)$.
Therefore, there exists $x \in d o m g$ such that $x \in N^{\prime}(a ; \delta)$.
In all cases, there exists $x \in d o m g$ such that $x \in N^{\prime}(a ; \delta)$, so a is an accumulation point of domg.

We next prove $\lim _{x \rightarrow a} g(x)=\sqrt{L}$.
Since a is an accumulation point of domg, then there exists a sequence in $d o m g-\{a\}$ that converges to a.

Let $\left(x_{n}\right)$ be an arbitrary sequence in $d o m g-\{a\}$ such that $\lim _{n \rightarrow \infty} x_{n}=a$.

Let $n \in \mathbb{N}$ be given.
Then $x_{n} \in d o m g-\{a\}$, so $x_{n} \in d o m g$ and $x_{n} \neq a$.
Since $x_{n} \in d o m g$ and domg $\subset E$, then $x_{n} \in E$.
Since $x_{n} \in E$ and $x_{n} \neq a$, then $x_{n} \in E-\{a\}$.
Thus, $x_{n} \in E-\{a\}$ for all $n \in \mathbb{N}$, so $\left(x_{n}\right)$ is a sequence of points in $E-\{a\}$.
Since a is an accumulation point of E and $\lim _{x \rightarrow a} f(x)=L$ and $\left(x_{n}\right)$ is an arbitrary sequence of points in $E-\{a\}$ and $\lim _{n \rightarrow \infty} x_{n}=a$, then by the sequential characterization of a function limit, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.

Since $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$ and $L>0$ and the limit of a square root of a convergent sequence equals the square root of the limit, then $\lim _{n \rightarrow \infty} \sqrt{f\left(x_{n}\right)}=$ $\sqrt{\lim _{n \rightarrow \infty} f\left(x_{n}\right)}$.

Hence, $\lim _{n \rightarrow \infty} g\left(x_{n}\right)=\lim _{n \rightarrow \infty} \sqrt{f\left(x_{n}\right)}=\sqrt{\lim _{n \rightarrow \infty} f\left(x_{n}\right)}=\sqrt{L}$.
Since a is an accumulation point of domg and $\left(x_{n}\right)$ is an arbitrary sequence of points in domg $-\{a\}$ such that $\lim _{n \rightarrow \infty} x_{n}=a$ and $\lim _{n \rightarrow \infty} g\left(x_{n}\right)=\sqrt{L}$, then by the sequential characterization of a function limit, we have $\lim _{x \rightarrow a} g(x)=\sqrt{L}$, as desired.

Algebraic properties of function limits

Theorem 8. scalar multiple rule for limits
Let f be a real valued function.
Let a be a point.
If the limit of f at a exists and is a real number, then for every $\lambda \in \mathbb{R}$, the limit of λf exists and $\lim _{x \rightarrow a} \lambda f(x)=\lambda \lim _{x \rightarrow a} f(x)$.

Proof. Suppose the limit of f at a exists and is a real number.
Then a is an accumulation point of $\operatorname{dom} f$ and there exists $L \in \mathbb{R}$ such that $\lim _{x \rightarrow a} f(x)=L$.

Let $\lambda \in \mathbb{R}$ be given.
To prove $\lim _{x \rightarrow a} \lambda f(x)=\lambda \lim _{x \rightarrow a} f(x)$, we must prove $\lim _{x \rightarrow a}(\lambda f)(x)=$ λL.

Since $\operatorname{dom}(\lambda f)=\operatorname{dom} f$ and a is an accumulation point of $\operatorname{dom} f$, then a is an accumulation point of $\operatorname{dom}(\lambda f)$.

Either $\lambda=0$ or $\lambda \neq 0$.
We consider these cases separately.
Case 1: Suppose $\lambda=0$.
Observe that

$$
\begin{aligned}
\lim _{x \rightarrow a}(0 f)(x) & =\lim _{x \rightarrow a}(0 f(x)) \\
& =\lim _{x \rightarrow a} 0 \\
& =0 \\
& =0 L
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow a}(0 f)(x)=0 L$, as desired.
Case 2: Suppose $\lambda \neq 0$.
Let $\epsilon>0$.
Since $|\lambda| \geq 0$ and $\lambda \neq 0$, then $|\lambda|>0$.
Hence, $\frac{\epsilon}{|\lambda|}>0$.
Since $\lim _{x \rightarrow a} f(x)=L$, then there exists $\delta>0$ such that for all $x \in \operatorname{domf} f$, if $0<|x-a|<\delta$, then $|f(x)-L|<\frac{\epsilon}{|\lambda|}$.

Let $x \in \operatorname{dom}(\lambda f)$ such that $0<|x-a|<\delta$.
Then $x \in \operatorname{dom} f$ and $0<|x-a|<\delta$, so $|f(x)-L|<\frac{\epsilon}{|\lambda|}$.
Observe that

$$
\begin{aligned}
|(\lambda f)(x)-\lambda L| & =|\lambda f(x)-\lambda L| \\
& =|\lambda(f(x)-L)| \\
& =|\lambda||f(x)-L| \\
& <|\lambda| \frac{\epsilon}{|\lambda|} \\
& =\epsilon .
\end{aligned}
$$

Therefore, $|(\lambda f)(x)-\lambda L|<\epsilon$, so $\lim _{x \rightarrow a}(\lambda f)(x)=\lambda L$, as desired.

Theorem 9. limit of a sum equals sum of limits

Let f and g be real valued functions.
Let a be an accumulation point of $\operatorname{dom} f \cap \operatorname{domg}$.
If the limit of f at a exists and is a real number and the limit of g at a exists and is a real number, then the limit of $f+g$ exists and
$\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$.
Proof. Suppose the limit of f at a exists and is a real number and the limit of g at a exists and is a real number.

Then there exist real numbers L and M such that $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$.

To prove $\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$, we must prove $\lim _{x \rightarrow a}(f+g)(x)=L+M$.

Since $\operatorname{dom}(f+g)=\operatorname{dom} f \cap \operatorname{domg}$ and a is an accumulation point of $\operatorname{dom} f \cap$ $d o m g$, then a is an accumulation point of $\operatorname{dom}(f+g)$.

Let $\epsilon>0$ be given.
Then $\frac{\epsilon}{2}>0$.
Since $\lim _{x \rightarrow a} f(x)=L$, then there exists $\delta_{1}>0$ such that for all $x \in \operatorname{domf} f$, if $0<|x-a|<\delta_{1}$, then $|f(x)-L|<\frac{\epsilon}{2}$.

Since $\lim _{x \rightarrow a} g(x)=M$, then there exists $\delta_{2}>0$ such that for all $x \in d o m g$, if $0<|x-a|<\delta_{2}$, then $|g(x)-M|<\frac{\epsilon}{2}$.

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$.
Then $\delta \leq \delta_{1}$ and $\delta \leq \delta_{2}$ and $\delta>0$.
Let $x \in \operatorname{dom}(f+g)$ such that $0<|x-a|<\delta$.
Since $x \in \operatorname{dom}(f+g)$, then $x \in \operatorname{dom} f \cap \operatorname{domg}$, so $x \in \operatorname{dom} f$ and $x \in \operatorname{domg}$.
Since $0<|x-a|<\delta \leq \delta_{1}$, then $0<|x-a|<\delta_{1}$.
Since $x \in \operatorname{domf}$ and $0<|x-a|<\delta_{1}$, then $|f(x)-L|<\frac{\epsilon}{2}$.
Since $0<|x-a|<\delta \leq \delta_{2}$, then $0<|x-a|<\delta_{2}$.
Since $x \in d o m g$ and $0<|x-a|<\delta_{2}$, then $|g(x)-M|<\frac{\epsilon}{2}$.
Observe that

$$
\begin{aligned}
|(f+g)(x)-(L+M)| & =|f(x)+g(x)-L-M| \\
& =|(f(x)-L)+(g(x)-M)| \\
& \leq|f(x)-L|+|g(x)-M| \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon .
\end{aligned}
$$

Therefore, $|(f+g)(x)-(L+M)|<\epsilon$, so $\lim _{x \rightarrow a}(f+g)(x)=L+M$, as desired.

Corollary 10. limit of a difference equals difference of limits

Let f and g be real valued functions.
Let a be an accumulation point of $\operatorname{dom} f \cap$ domg.
If the limit of f at a exists and is a real number and the limit of g at a exists and is a real number, then the limit of $f-g$ exists and
$\lim _{x \rightarrow a}(f(x)-g(x))=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$.

Proof. Suppose the limit of f at a exists and is a real number and the limit of g at a exists and is a real number.

Then there exist real numbers L and M such that $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$.

To prove $\lim _{x \rightarrow a}(f(x)-g(x))=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$, we must prove $\lim _{x \rightarrow a}(f-g)(x)=L-M$.

Since a is an accumulation point of $\operatorname{dom} f \cap \operatorname{domg}$ and $\operatorname{dom}(-g)=\operatorname{domg}$, then a is an accumulation point of $\operatorname{dom} f \cap \operatorname{dom}(-g)$.

Observe that

$$
\begin{aligned}
L-M & =\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x) \\
& =\lim _{x \rightarrow a} f(x)+\left(-\lim _{x \rightarrow a} g(x)\right) \\
& =\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a}-g(x) \\
& =\lim _{x \rightarrow a}[f(x)+(-g(x))] \\
& =\lim _{x \rightarrow a}(f(x)-g(x)) \\
& =\lim _{x \rightarrow a}(f-g)(x) .
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow a}(f-g)(x)=L-M$, as desired.

Corollary 11. limit of a finite sum equals finite sum of limits

Let $n \in \mathbb{N}$ with $n \geq 2$.
Let a be an accumulation point of $\bigcap_{i=1}^{n} \operatorname{dom} f_{i}$.
Let $f_{1}, f_{2}, \ldots, f_{n}$ be real valued functions.
Then $\lim _{x \rightarrow a}\left[f_{1}(x)+f_{2}(x)+\ldots+f_{n}(x)\right]=\lim _{x \rightarrow a} f_{1}(x)+\lim _{x \rightarrow a} f_{2}(x)+$ $\ldots+\lim _{x \rightarrow a} f_{n}(x)$.

Proof. We prove by induction.
Let $S=\left\{n \in \mathbb{N}: n \geq 2 \wedge \lim _{x \rightarrow a}\left[f_{1}(x)+f_{2}(x)+\ldots+f_{n}(x)\right]=\lim _{x \rightarrow a} f_{1}(x)+\right.$ $\left.\lim _{x \rightarrow a} f_{2}(x)+\ldots+\lim _{x \rightarrow a} f_{n}(x)\right\}$.

Basis: Let $n=2$.
Since a is an accumulation point of $\bigcap_{i=1}^{2} \operatorname{dom} f_{i}=\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and $\lim _{x \rightarrow a}\left[f_{1}(x)+f_{2}(x)\right]=\lim _{x \rightarrow a} f_{1}(x)+\lim _{x \rightarrow a} f_{2}(x)$, then $2 \in S$.

Induction:

Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $k \geq 2$ and $\lim _{x \rightarrow a}\left[f_{1}(x)+f_{2}(x)+\ldots+f_{k}(x)\right]=\lim _{x \rightarrow a} f_{1}(x)+$ $\lim _{x \rightarrow a} f_{2}(x)+\ldots+\lim _{x \rightarrow a} f_{k}(x)$.

Since a is an accumulation point of $\bigcap_{i=1}^{k} \operatorname{dom} f_{i}$ and $\bigcap_{i=1}^{k} \operatorname{dom} f_{i}$ is a subset of $\operatorname{dom} f_{i}$ for each $i \in\{1,2, \ldots, k\}$, then a is an accumulation point of $d o m f_{i}$ for each $i \in\{1,2, \ldots, k\}$.

Since $k \in \mathbb{N}$, then $k+1 \in \mathbb{N}$ and $k+1 \geq 3>2$, so $k+1>2$.
Observe that

$$
\begin{aligned}
\lim _{x \rightarrow a}\left[f_{1}(x)+f_{2}(x)+\ldots+f_{k+1}(x)\right] & =\lim _{x \rightarrow a}\left[f_{1}(x)+f_{2}(x)+\ldots+f_{k}(x)+f_{k+1}(x)\right] \\
& =\lim _{x \rightarrow a}\left[f_{1}(x)+f_{2}(x)+\ldots+f_{k}(x)\right]+\lim _{x \rightarrow a} f_{k+1}(x) \\
& =\lim _{x \rightarrow a} f_{1}(x)+\lim _{x \rightarrow a} f_{2}(x)+\ldots+\lim _{x \rightarrow a} f_{k}(x)+\lim _{x \rightarrow a} f_{k+1}(x) .
\end{aligned}
$$

Thus, $k+1 \in S$, so $k \in S$ implies $k+1 \in S$ for all natural numbers $k \geq 2$.
Since $2 \in S$ and $k \in S$ implies $k+1 \in S$ for all natural numbers $k \geq 2$, then by PMI, $\lim _{x \rightarrow a}\left[f_{1}(x)+f_{2}(x)+\ldots+f_{n}(x)\right]=\lim _{x \rightarrow a} f_{1}(x)+\lim _{x \rightarrow a} f_{2}(x)+$ $\ldots+\lim _{x \rightarrow a} f_{n}(x)$ for all natural numbers $n \geq 2$.

Lemma 12. local boundedness of a function limit

Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let a be a point.
If the limit of f at a exists, then there exist $\delta>0$ and $M \in \mathbb{R}$ such that $|f(x)| \leq M$ for all $x \in N(a ; \delta) \cap E$.

Proof. Suppose the limit of f at a exists.
Then a is an accumulation point of E and there exists $L \in \mathbb{R}$ such that $\lim _{x \rightarrow a} f(x)=L$.

Let $\epsilon=1$.
Then there exists $\delta>0$ such that $|f(x)-L|<1$ for all $x \in N^{\prime}(a ; \delta) \cap E$.
Since $\delta>0$ and a is an accumulation point of E, then there exists $c \in$ $N^{\prime}(a ; \delta) \cap E$, so $c \in N^{\prime}(a ; \delta)$ and $c \in E$.

Since $c \in N^{\prime}(a ; \delta)$ and $N^{\prime}(a ; \delta) \subset N(a ; \delta)$, then $c \in N(a ; \delta)$.
Hence, $c \in N(a ; \delta) \cap E$, so $N(a ; \delta) \cap E \neq \emptyset$.
Either $a \in E$ or $a \notin E$.
We consider each case separately.
Case 1: Suppose $a \notin E$.
Let $M=1+|L|$.
Let $x \in N(a ; \delta) \cap E$ be arbitrary.
Then $x \in N(a ; \delta)$ and $x \in E$.
Since $x \in E$ and $a \notin E$, then $x \neq a$.
Since $x \in N(a ; \delta)$ and $x \neq a$, then $x \in N^{\prime}(a ; \delta)$.
Since $x \in N^{\prime}(a ; \delta)$ and $x \in E$, then $x \in N^{\prime}(a ; \delta) \cap E$, so $|f(x)-L|<1$.
Observe that

$$
\begin{aligned}
|f(x)| & =|f(x)-L+L| \\
& \leq|f(x)-L|+|L| \\
& <1+|L| \\
& =M
\end{aligned}
$$

Therefore, $|f(x)|<M$.
Case 2: Suppose $a \in E$.

Let $M=\max \{1+|L|,|f(a)|\}$.
Then $1+|L| \leq M$ and $|f(a)| \leq M$.
Let $x \in N(a ; \delta) \cap E$ be arbitrary.
Then $x \in N(a ; \delta)$ and $x \in E$.
Either $x=a$ or $x \neq a$.
We consider each case separately.
Case 2a: Suppose $x=a$.
Then $|f(x)|=|f(a)| \leq M$, so $|f(x)| \leq M$.
Case 2b: Suppose $x \neq a$.
Since $x \in N(a ; \delta)$ and $x \neq a$, then $x \in N^{\prime}(a ; \delta)$.
Since $x \in N^{\prime}(a ; \delta)$ and $x \in E$, then $x \in N\left({ }^{\prime} a ; \delta\right) \cap E$, so $|f(x)-L|<1$.
Observe that

$$
\begin{aligned}
|f(x)| & =|f(x)-L+L| \\
& \leq|f(x)-L|+|L| \\
& <1+|L| \\
& \leq M .
\end{aligned}
$$

Therefore, $|f(x)|<M$.
Hence, in all cases, $|f(x)| \leq M$.
Theorem 13. limit of a product equals product of limits
Let f and g be real valued functions.
Let a be an accumulation point of domf \cap domg.
If the limit of f at a exists and is a real number and the limit of g at a exists
and is a real number, then the limit of $f g$ exists and
$\lim _{x \rightarrow a}(f(x) g(x))=\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} g(x)\right)$.
Proof. Suppose the limit of f at a exists and is a real number and the limit of g at a exists and is a real number.

Then there exist real numbers L and M such that $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$.

To prove $\lim _{x \rightarrow a}(f(x) g(x))=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$, we must prove $\lim _{x \rightarrow a}(f g)(x)=L M$.

Since $\operatorname{dom}(f g)=\operatorname{dom} f \cap \operatorname{domg}$ and a is an accumulation point of $\operatorname{dom} f \cap$ $d o m g$, then a is an accumulation point of $\operatorname{dom}(f g)$.

Let $\epsilon>0$ be given.
Since the limit of g exists at a, then g is locally bounded near a.
Hence, there exist $\delta_{1}>0$ and $b>0$ such that $|g(x)|<b$ for all $x \in N\left(a ; \delta_{1}\right) \cap$ domg.

Let $e^{\prime}=\frac{\epsilon}{b+|L|}$.
Since $b>0$ and $|L| \geq 0$, then $b+|L|>0$, so $e^{\prime}>0$.
Since $\lim _{x \rightarrow a} f(x)=L$ and $e^{\prime}>0$, then there exists $\delta_{2}>0$ such that for all $x \in \operatorname{dom} f$, if $0<|x-a|<\delta_{2}$, then $|f(x)-L|<e^{\prime}$.

Since $\lim _{x \rightarrow a} g(x)=M$ and $e^{\prime}>0$, then there exists $\delta_{3}>0$ such that for all $x \in d o m g$, if $0<|x-a|<\delta_{3}$, then $|g(x)-M|<e^{\prime}$.

Let $\delta=\min \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$.
Then $\delta \leq \delta_{1}$ and $\delta \leq \delta_{2}$ and $\delta \leq \delta_{3}$ and $\delta>0$.
Let $x \in \operatorname{dom}(f g)$ such that $0<|x-a|<\delta$.
Since $x \in \operatorname{dom}(f g)$, then $x \in \operatorname{dom} f \cap \operatorname{domg}$, so $x \in \operatorname{domf}$ and $x \in \operatorname{domg}$.
Since $0<|x-a|<\delta \leq \delta_{1}$, then $0<|x-a|<\delta_{1}$, so $|x-a|<\delta_{1}$.
Thus, $x \in N\left(a ; \delta_{1}\right)$.
Since $x \in N\left(a ; \delta_{1}\right)$ and $x \in \operatorname{domg}$, then $x \in N\left(a ; \delta_{1}\right) \cap \operatorname{domg}$, so $|g(x)| \leq b$.
Since $0<|x-a|<\delta \leq \delta_{2}$, then $0<|x-a|<\delta_{2}$.
Since $x \in \operatorname{domf}$ and $0<|x-a|<\delta_{2}$, then $|f(x)-L|<e^{\prime}$.
Since $0<|x-a|<\delta \leq \delta_{3}$, then $0<|x-a|<\delta_{3}$.
Since $x \in$ domg and $0<|x-a|<\delta_{3}$, then $|g(x)-M|<e^{\prime}$.
Since $0 \leq|f(x)-L|<e^{\prime}$ and $0 \leq|g(x)|<b$, then $|f(x)-L||g(x)|<e^{\prime} b$.
Since $0 \leq|g(x)-M|<e^{\prime}$ and $|L| \geq 0$, then $|L||g(x)-M| \leq|L| e^{\prime}$.
Observe that

$$
\begin{aligned}
|(f g)(x)-L M| & =|f(x) g(x)-L M| \\
& =|f(x) g(x)-L g(x)+L g(x)-L M| \\
& \leq|f(x) g(x)-L g(x)|+|L g(x)-L M| \\
& =|(f(x)-L) g(x)|+|L(g(x)-M)| \\
& =|f(x)-L||g(x)|+|L||g(x)-M| \\
& <e^{\prime} b+|L| e^{\prime} \\
& =e^{\prime}(b+|L|) \\
& =\epsilon .
\end{aligned}
$$

Therefore, $|(f g)(x)-L M|<\epsilon$, so $\lim _{x \rightarrow a}(f g)(x)=L M$, as desired.

Lemma 14. boundedness away from zero

Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let a be a point.
If there is a real number L such that $\lim _{x \rightarrow a} f(x)=L$ and $L \neq 0$, then there exists $\delta>0$ such that $|f(x)|>\frac{|L|}{2}$ for all $x \in N^{\prime}(a ; \delta) \cap E$.

Proof. Suppose there is a real number L such that $\lim _{x \rightarrow a} f(x)=L$ and $L \neq 0$.
Since $L \neq 0$, then $|L|>0$, so $\frac{|L|}{2}>0$.
Since $\lim _{x \rightarrow a} f(x)=L$, then a is an accumulation point of E and there exists $\delta>0$ such that $|f(x)-L|<\frac{|L|}{2}$ for all $x \in N^{\prime}(a ; \delta) \cap E$.

Since a is an accumulation point of E and $\delta>0$, then $N^{\prime}(a ; \delta) \cap E \neq \emptyset$.
Let $x \in N^{\prime}(a ; \delta) \cap E$ be arbitrary.
Then $|f(x)-L|<\frac{|L|}{2}$.
Since $\frac{|L|}{2}>|f(x)-L| \geq|L|-|f(x)|$, then $\frac{|L|}{2}>|L|-|f(x)|$.
Therefore, $|f(x)|>\frac{|L|}{2}$, as desired.

Lemma 15. Let f be a real valued function.
Let a be a point.
If the limit of f at a exists and is a nonzero real number, then the limit of
$\frac{1}{f}$ exists and $\lim _{x \rightarrow a} \frac{1}{f(x)}=\frac{1}{\lim _{x \rightarrow a} f(x)}$.
Proof. Suppose the limit of f at a exists and is a nonzero real number.
Then a is a point of accumulation of $\operatorname{dom} f$ and there exists a real number L such that $\lim _{x \rightarrow a} f(x)=L$ and $L \neq 0$.

To prove $\lim _{x \rightarrow a} \frac{1}{f(x)}=\frac{1}{\lim _{x \rightarrow a} f(x)}$, we must prove $\lim _{x \rightarrow a} \frac{1}{f}(x)=\frac{1}{L}$.
We first prove a is an accumulation point of $\operatorname{dom} \frac{1}{f}$.
Let $\delta>0$ be given.
Since $\lim _{x \rightarrow a} f(x)=L$ and $L \neq 0$, then f is bounded away from zero.
Hence, there exists $\delta_{1}>0$ such that $|f(x)|>\frac{|L|}{2}$ for all $x \in N^{\prime}\left(a ; \delta_{1}\right) \cap \operatorname{dom} f$.
Let $\delta_{2}=\min \left\{\delta, \delta_{1}\right\}$.
Then $\delta_{2} \leq \delta$ and $\delta_{2} \leq \delta_{1}$ and $\delta_{2}>0$.
Since a is an accumulation point of $\operatorname{dom} f$ and $\delta_{2}>0$, then there exists $c \in \operatorname{dom} f$ such that $c \in N^{\prime}\left(a ; \delta_{2}\right)$.

Since $c \in N^{\prime}\left(a ; \delta_{2}\right)$, then $c \in N\left(a ; \delta_{2}\right)$ and $c \neq a$.
Since $0<\delta_{2} \leq \delta_{1}$, then $N\left(a ; \delta_{2}\right) \subset N\left(a ; \delta_{1}\right)$.
Since $c \in N\left(a ; \delta_{2}\right)$ and $N\left(a ; \delta_{2}\right) \subset N\left(a ; \delta_{1}\right)$, then $c \in N\left(a ; \delta_{1}\right)$.
Since $c \in N\left(a ; \delta_{1}\right)$ and $c \neq a$ and $c \in \operatorname{domf}$, then $c \in N^{\prime}\left(a ; \delta_{1}\right) \cap \operatorname{dom} f$, so $|f(c)|>\frac{|L|}{2}$.

Since $L \neq 0$, then $|L|>0$, so $\frac{|L|}{2}>0$.
Thus, $|f(c)|>\frac{|L|}{2}>0$, so $|f(c)|>0$.
Hence $f(c) \neq 0$.
Since $c \in \operatorname{dom} f$ and $f(c) \neq 0$, then $c \in \operatorname{dom} \frac{1}{f}$.
Since $0<\delta_{2} \leq \delta$, then $N\left(a ; \delta_{2}\right) \subset N(a ; \delta)$.
Since $c \in N\left(a ; \delta_{2}\right)$ and $N\left(a ; \delta_{2}\right) \subset N(a ; \delta)$, then $c \in N(a ; \delta)$.
Since $c \neq a$, then $c \in N^{\prime}(a ; \delta)$.
Hence, there exists $c \in \operatorname{dom} \frac{1}{f}$ such that $c \in N^{\prime}(a ; \delta)$.
Therefore, a is an accumulation point of $\operatorname{dom} \frac{1}{f}$.
Proof. To prove $\lim _{x \rightarrow a} \frac{1}{f}(x)=\frac{1}{L}$, let $\epsilon>0$ be given.
Since $L \neq 0$, then $\frac{1}{L} \in \mathbb{R}$ and $|L|>0$.
Since $\epsilon>0$ and $|L|^{2}>0$, then $\frac{\epsilon|L|^{2}}{2}>0$.
Since $\lim _{x \rightarrow a} f(x)=L$, then there exists $\delta_{1}>0$ such that for all $x \in \operatorname{dom} f$, if $0<|x-a|<\delta_{1}$, then $|f(x)-L|<\frac{\epsilon|L|^{2}}{2}$.

Since $\lim _{x \rightarrow a} f(x)=L$ and $L \neq 0$, then f is bounded away from zero.
Hence, there exists $\delta_{2}>0$ such that $|f(x)|>\frac{|L|}{2}$ for all $x \in N^{\prime}\left(a ; \delta_{2}\right) \cap \operatorname{dom} f$.
Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$.
Then $\delta \leq \delta_{1}$ and $\delta \leq \delta_{2}$ and $\delta>0$.
Let $x \in \operatorname{dom} \frac{1}{f}$ such that $0<|x-a|<\delta$.
Since $x \in \operatorname{dom} \frac{1}{f}$, then $x \in \operatorname{dom} f$ and $f(x) \neq 0$.
Since $0<|x-a|<\delta \leq \delta_{1}$, then $0<|x-a|<\delta_{1}$.

Thus, $x \in \operatorname{dom} f$ and $0<|x-a|<\delta_{1}$, so $|f(x)-L|<\frac{\epsilon|L|^{2}}{2}$.
Hence, $0 \leq|f(x)-L|<\frac{\epsilon|L|^{2}}{2}$.
Since $0<|x-a|<\delta \leq \delta_{2}$, then $0<|x-a|<\delta_{2}$, so $x \in N^{\prime}\left(a ; \delta_{2}\right)$.
Since $x \in N^{\prime}\left(a ; \delta_{2}\right)$ and $x \in \operatorname{dom} f$, then $x \in N^{\prime}\left(a ; \delta_{2}\right) \cap \operatorname{dom} f$, so $|f(x)|>\frac{|L|}{2}$. Since $|f(x)|>\frac{|L|}{2}>0$, then $\frac{2}{|L|}>\frac{1}{|f(x)|}>0$, so $0<\frac{1}{|f(x)|}<\frac{2}{|L|}$.
Observe that

$$
\begin{aligned}
\left|\frac{1}{f}(x)-\frac{1}{L}\right| & =\left|\frac{1}{f(x)}-\frac{1}{L}\right| \\
& =\left|\frac{L-f(x)}{f(x) L}\right| \\
& =\left|\frac{f(x)-L}{f(x) L}\right| \\
& =|f(x)-L| \cdot \frac{1}{|f(x)|} \cdot \frac{1}{|L|} \\
& <\frac{\epsilon|L|^{2}}{2} \cdot \frac{2}{|L|} \cdot \frac{1}{|L|} \\
& =\epsilon .
\end{aligned}
$$

Therefore, $\left|\frac{1}{f}(x)-\frac{1}{L}\right|<\epsilon$, so $\lim _{x \rightarrow a} \frac{1}{f}(x)=\frac{1}{L}$, as desired.
Theorem 16. limit of a quotient equals quotient of limits
Let f and g be real valued functions.
Let a be an accumulation point of $\operatorname{dom} f \cap \operatorname{domg}$.
If the limit of f at a exists and is a real number and the limit of g at a exists and is a nonzero real number, then the limit of $\frac{f}{g}$ exists and
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$.
Proof. Suppose the limit of f at a exists and is a real number and the limit of g at a exists and is a nonzero real number.

Then there exist real numbers L and M such that $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$ and $M \neq 0$.

We must prove $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{L}{M}$.

We first prove a is an accumulation point of $\operatorname{dom} f \cap \operatorname{dom} \frac{1}{g}$.
Let $\delta>0$ be given.
Since $\lim _{x \rightarrow a} g(x)=M$ and $M \neq 0$, then g is bounded away from zero, so there exists $\delta_{1}>0$ such that $|g(x)|>\frac{|M|}{2}$ for all $x \in N^{\prime}\left(a ; \delta_{1}\right) \cap$ domg.

Let $\delta_{2}=\min \left\{\delta, \delta_{1}\right\}$.
Then $\delta_{2} \leq \delta$ and $\delta_{2} \leq \delta_{1}$ and $\delta_{2}>0$.
Since a is an accumulation point of $\operatorname{domf} \cap \operatorname{domg}$ and $\delta_{2}>0$, then there exists $c \in \operatorname{dom} f \cap \operatorname{domg}$ such that $c \in N^{\prime}\left(a ; \delta_{2}\right)$.

Since $c \in \operatorname{dom} f \cap \operatorname{domg}$, then $c \in \operatorname{dom} f$ and $c \in \operatorname{domg}$.
Since $c \in N^{\prime}\left(a ; \delta_{2}\right)$, then $c \in N\left(a ; \delta_{2}\right)$ and $c \neq a$.

Since $0<\delta_{2} \leq \delta_{1}$, then $N\left(a ; \delta_{2}\right) \subset N\left(a ; \delta_{1}\right)$.
Since $c \in N\left(a ; \delta_{2}\right)$ and $N\left(a ; \delta_{2}\right) \subset N\left(a ; \delta_{1}\right)$, then $c \in N\left(a ; \delta_{1}\right)$.
Since $c \in N\left(a ; \delta_{1}\right)$ and $c \neq a$ and $c \in \operatorname{domg}$, then $c \in N^{\prime}\left(a ; \delta_{1}\right) \cap d o m g$, so $|g(c)|>\frac{|M|}{2}$.

Since $M \neq 0$, then $|M|>0$, so $\frac{|M|}{2}>0$.
Thus, $|g(c)|>\frac{|M|}{2}>0$, so $|g(c)|>0$.
Hence $g(c) \neq 0$.
Since $c \in \operatorname{domg}$ and $g(c) \neq 0$, then $c \in \operatorname{dom} \frac{1}{g}$.
Since $c \in \operatorname{domf}$ and $c \in \operatorname{dom} \frac{1}{g}$, then $c \in \operatorname{domf} \cap \operatorname{dom} \frac{1}{g}$.
Since $0<\delta_{2} \leq \delta$, then $N\left(a ; \delta_{2}\right) \subset N(a ; \delta)$.
Since $c \in N\left(a ; \delta_{2}\right)$ and $N\left(a ; \delta_{2}\right) \subset N(a ; \delta)$, then $c \in N(a ; \delta)$.
Since $c \neq a$, then $c \in N^{\prime}(a ; \delta)$.
Hence, there exists $c \in \operatorname{dom} f \cap \operatorname{dom} \frac{1}{g}$ such that $c \in N^{\prime}(a ; \delta)$.
Therefore, a is an accumulation point of $\operatorname{dom} f \cap \operatorname{dom} \frac{1}{g}$.
Since $\lim _{x \rightarrow a} g(x)=M$ and $M \neq 0$, then by the previous lemma, $\lim _{x \rightarrow a} \frac{1}{g(x)}=$ $\frac{1}{M}$.

Since a is an accumulation point of $\operatorname{dom} f \cap \operatorname{domg}$, then

$$
\begin{aligned}
\frac{L}{M} & =L \cdot \frac{1}{M} \\
& =\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} \frac{1}{g(x)}\right) \\
& =\lim _{x \rightarrow a}\left(f(x) \cdot \frac{1}{g(x)}\right) \\
& =\lim _{x \rightarrow a} \frac{f(x)}{g(x)}
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{L}{M}$, as desired.
Lemma 17. For all $n \in \mathbb{N}$ and all $a \in \mathbb{R}, \lim _{x \rightarrow a} x^{n}=a^{n}$.
Proof. Let $a \in \mathbb{R}$ be arbitrary.
We prove $\lim _{x \rightarrow a} x^{n}=a^{n}$ for all $n \in \mathbb{N}$ by induction on n.
Let $S=\left\{n \in \mathbb{N}: \lim _{x \rightarrow a} x^{n}=a^{n}\right\}$.
Basis:
Since $\lim _{x \rightarrow a} x=a$, then $1 \in S$.
Induction:
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $\lim _{x \rightarrow a} x^{k}=a^{k}$.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function given by $f(x)=x^{k}$.
Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be the function given by $g(x)=x$.
Then f and g are polynomial functions and $\operatorname{dom} f=\operatorname{domg}=\mathbb{R}$.
Since $\operatorname{dom} f \cap \operatorname{domg}=\mathbb{R} \cap \mathbb{R}=\mathbb{R}$ and a is an accumulation point of \mathbb{R}, then a is an accumulation point of $\operatorname{dom} f \cap \operatorname{domg}$.

Observe that

$$
\begin{aligned}
a^{k+1} & =a^{k} \cdot a \\
& =\left(\lim _{x \rightarrow a} x^{k}\right)\left(\lim _{x \rightarrow a} x\right) \\
& =\lim _{x \rightarrow a}\left(x^{k} \cdot x\right) \\
& =\lim _{x \rightarrow a}\left(x^{k+1}\right)
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow a}\left(x^{k+1}\right)=a^{k+1}$, so $k+1 \in S$.
Hence, $k \in S$ implies $k+1 \in S$ for all $k \in \mathbb{N}$.
Since $1 \in S$ and $k \in S$ implies $k+1 \in S$ for all $k \in \mathbb{N}$, then by induction, $S=\mathbb{N}$.

Therefore, $\lim _{x \rightarrow a} x^{n}=a^{n}$ for all $n \in \mathbb{N}$.

Theorem 18. limit of a polynomial function

If p is a polynomial function and $c \in \mathbb{R}$, then $\lim _{x \rightarrow c} p(x)=p(c)$.
Proof. Suppose p is a polynomial function and $c \in \mathbb{R}$.
Since p is a polynomial function, then there exist a nonnegative integer n and real numbers $a_{0}, a_{1}, \ldots, a_{n}$ such that $p(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$.

Since n is a nonnegative integer, then $n \in \mathbb{Z}$ and $n \geq 0$, so either $n>0$ or $n=0$.

We consider these cases separately.
Case 1: Suppose $n=0$.
Then $p(x)=a_{0}$ for all x, so $\lim _{x \rightarrow c} p(x)=\lim _{x \rightarrow c} a_{0}=a_{0}=p(c)$.
Case 2: Suppose $n>0$.
Then

$$
\begin{aligned}
p(c) & =a_{n} c^{n}+\ldots+a_{2} c^{2}+a_{1} c+a_{0} \\
& =a_{n} \lim _{x \rightarrow c} x^{n}+\ldots+a_{2} \lim _{x \rightarrow c} x^{2}+a_{1} \lim _{x \rightarrow c} x+\lim _{x \rightarrow c} a_{0} \\
& =\lim _{x \rightarrow c} a_{n} x^{n}+\ldots+\lim _{x \rightarrow c} a_{2} x^{2}+\lim _{x \rightarrow c} a_{1} x+\lim _{x \rightarrow c} a_{0} \\
& =\lim _{x \rightarrow c}\left(a_{n} x^{n}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}\right) \\
& =\lim _{x \rightarrow c} p(x) .
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow c} p(x)=p(c)$, as desired.

Theorem 19. limit of a rational function

Let r be a rational function defined by $r(x)=\frac{p(x)}{q(x)}$ such that p and q are polynomial functions.

If $c \in \mathbb{R}$ such that $q(c) \neq 0$, then $\lim _{x \rightarrow c} r(x)=r(c)=\frac{p(c)}{q(c)}$.
Proof. Let $c \in \mathbb{R}$ such that $q(c) \neq 0$.
Observe that c is an accumulation point of $\mathbb{R}=\mathbb{R} \cap \mathbb{R}=\operatorname{domp} \cap$ domq.
Since p is a polynomial function and $c \in \mathbb{R}$, then $\lim _{x \rightarrow c} p(x)=p(c)$.

Since q is a polynomial function and $c \in \mathbb{R}$, then $\lim _{x \rightarrow c} q(x)=q(c)$.
Since $q(c) \neq 0$, then $\lim _{x \rightarrow c} q(x) \neq 0$, so

$$
\begin{aligned}
r(c) & =\frac{p(c)}{q(c)} \\
& =\frac{\lim _{x \rightarrow c} p(x)}{\lim _{x \rightarrow c} q(x)} \\
& =\lim _{x \rightarrow c} \frac{p(x)}{q(x)} \\
& =\lim _{x \rightarrow c} r(x)
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow c} r(x)=r(c)=\frac{p(c)}{q(c)}$.

Theorem 20. a limit preserves a non strict inequality

Let f and g be real valued functions such that the limit of f at a exists and the limit of g at a exists and a is an accumulation point of $\operatorname{dom} f \cap \operatorname{domg}$.

If $f(x) \leq g(x)$ for all $x \in \operatorname{dom} f \cap$ domg, then $\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)$.
Proof. Suppose $f(x) \leq g(x)$ for all $x \in \operatorname{dom} f \cap \operatorname{domg}$.
Since the limit of f at a exists, then there exists $L \in \mathbb{R}$ such that $\lim _{x \rightarrow a} f(x)=$ L.

Since the limit of g at a exists, then there exists $M \in \mathbb{R}$ such that $\lim _{x \rightarrow a} g(x)=$ M.

We must prove $L \leq M$.
Suppose for the sake of contradiction $L>M$.
Then $L-M>0$, so $\frac{L-M}{2}>0$.
Let $\epsilon=\frac{L-M}{2}$.
Then $\epsilon>0$.
Since $\lim _{x \rightarrow a} f(x)=L$, then there exists $\delta_{1}>0$ such that for all $x \in \operatorname{domf} f$, if $0<|x-a|<\delta_{1}$, then $|f(x)-L|<\epsilon$.

Since $\lim _{x \rightarrow a} g(x)=M$, then there exists exists $\delta_{2}>0$ such that for all $x \in d o m g$, if $0<|x-a|<\delta_{2}$, then $|g(x)-M|<\epsilon$.

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$.
Then $\delta \leq \delta_{1}$ and $\delta \leq \delta_{2}$ and $\delta>0$.
Since a is an accumulation point of $\operatorname{dom} f \cap \operatorname{domg}$ and $\delta>0$, then there exists $x \in \operatorname{dom} f \cap \operatorname{domg}$ such that $x \in N^{\prime}(a ; \delta)$.

Since $x \in \operatorname{dom} f \cap \operatorname{domg}$, then $x \in \operatorname{domf}$ and $x \in \operatorname{domg}$.
Since $x \in N^{\prime}(a ; \delta)$, then $x \in N(a ; \delta)$ and $x \neq a$, so $|x-a|<\delta$ and $|x-a|>0$.
Thus, $0<|x-a|<\delta$.
Since $0<|x-a|<\delta \leq \delta_{1}$, then $0<|x-a|<\delta_{1}$.
Since $x \in \operatorname{dom} f$ and $0<|x-a|<\delta_{1}$, then $|f(x)-L|<\epsilon$.
Thus, $-\epsilon<f(x)-L<\epsilon$, so $L-\epsilon<f(x)<L+\epsilon$.
Since $0<|x-a|<\delta \leq \delta_{2}$, then $0<|x-a|<\delta_{2}$.
Since $x \in d o m g$ and $0<|x-a|<\delta_{2}$, then $|g(x)-M|<\epsilon$.

Thus, $-\epsilon<g(x)-M<\epsilon$, so $M-\epsilon<g(x)<M+\epsilon$.
Since $x \in \operatorname{dom} f \cap \operatorname{domg}$, then $f(x) \leq g(x)$.
Since $\epsilon=\frac{L-M}{2}$, then $2 \epsilon=L-M$, so $\epsilon+\epsilon=L-M$.
Thus, $M+\epsilon=L-\epsilon$.
Therefore, $g(x)<M+\epsilon=L-\epsilon<f(x) \leq g(x)$, so $g(x)<g(x)$, a contradiction.

Hence, $L \leq M$, as desired.
Corollary 21. Let f be a real valued function such that $\lim _{x \rightarrow a} f(x)$ exists.

1. If $M \in \mathbb{R}$ is an upper bound of rngf, then $\lim _{x \rightarrow a} f(x) \leq M$.
2. If $m \in \mathbb{R}$ is a lower bound of rngf, then $m \leq \lim _{x \rightarrow a} f(x)$.

Proof. We prove 1.
Since $\lim _{x \rightarrow a} f(x)$ exists, then a is an accumulation point of $\operatorname{dom} f$ and there exists a real number L such that $\lim _{x \rightarrow a} f(x)=L$.

Suppose $M \in \mathbb{R}$ is an upper bound of $r n g f$.
Then $f(x) \leq M$ for all $x \in \operatorname{dom} f$.
We must prove $L \leq M$.
Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be the constant function defined by $g(x)=M$ for all $x \in \mathbb{R}$.
Then $\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} M=M$.
Since $\operatorname{dom} f \subset \mathbb{R}$, then $\operatorname{dom} f \cap \operatorname{domg}=\operatorname{dom} f \cap \mathbb{R}=\operatorname{dom} f$.
Since a is an accumulation point of domf and $\operatorname{dom} f=\operatorname{dom} f \cap \operatorname{domg}$, then a is an accumulation point of $\operatorname{dom} f \cap d o m g$.

Let $x \in \operatorname{dom} f \cap \operatorname{domg}$.
Then $x \in \operatorname{dom} f$, so $f(x) \leq M$.
Hence, $f(x) \leq M$ for all $x \in \operatorname{dom} f \cap \operatorname{domg}$.
Therefore, by the inequality rule for function $\operatorname{limits},^{\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} M,}$ so $L \leq M$, as desired.

Proof. We prove 2.
Since $\lim _{x \rightarrow a} f(x)$ exists, then a is an accumulation point of $\operatorname{dom} f$ and there exists a real number L such that $\lim _{x \rightarrow a} f(x)=L$.

Suppose $m \in \mathbb{R}$ is a lower bound of $r n g f$.
Then $m \leq f(x)$ for all $x \in \operatorname{dom} f$.
We must prove $m \leq L$.
Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be the constant function defined by $g(x)=m$ for all $x \in \mathbb{R}$.
Then $\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} m=m$.
Since $\operatorname{dom} f \subset \mathbb{R}$, then $\operatorname{dom} f \cap \operatorname{domg}=\operatorname{dom} f \cap \mathbb{R}=\operatorname{dom} f$.
Since a is an accumulation point of $\operatorname{dom} f$ and $\operatorname{dom} f=\operatorname{dom} f \cap \operatorname{domg}$, then a is an accumulation point of $\operatorname{dom} f \cap d o m g$.

Let $x \in \operatorname{dom} f \cap \operatorname{domg}$.
Then $x \in \operatorname{dom} f$, so $m \leq f(x)$.
Hence, $m \leq f(x)$ for all $x \in \operatorname{dom} f \cap \operatorname{domg}$.
Therefore, by the inequality rule for function limits, $\lim _{x \rightarrow a} m \leq \lim _{x \rightarrow a} f(x)$, so $m \leq L$, as desired.

Corollary 22. limit of a function is between any upper and lower bound of the range of a function

Let f be a real valued function.
If $\lim _{x \rightarrow a} f(x)$ exists and there exist real numbers m and M such that $m \leq$ $f(x) \leq M$ for all $x \in \operatorname{dom} f$, then $m \leq \lim _{x \rightarrow a} f(x) \leq M$.

Proof. Let f be a real valued function.
Suppose $\lim _{x \rightarrow a} f(x)$ exists and there exist real numbers m and M such that $m \leq f(x) \leq M$ for all $x \in \operatorname{dom} f$.

Then $m \leq f(x)$ for all $x \in \operatorname{dom} f$ and $f(x) \leq M$ for all $x \in \operatorname{dom} f$.
Since $\lim _{x \rightarrow a} f(x)$ exists, then there exists $L \in \mathbb{R}$ such that $\lim _{x \rightarrow a} f(x)=L$.
We must prove $m \leq L \leq M$.
Since $f(x) \leq M$ for all $x \in \operatorname{dom} f$, then M is an upper bound of $r n g f$.
Hence, by the previous corollary, $L \leq M$.
Since $m \leq f(x)$ for all $x \in \operatorname{dom} f$, then m is a lower bound of $r n g f$.
Hence, by the previous corollary, $m \leq L$.
Therefore, $m \leq L \leq M$, as desired.

Theorem 23. squeeze rule for function limits

Let f, g, h be real valued functions with common domain E.
Let a be an accumulation point of E.
If $f(x) \leq h(x) \leq g(x)$ for all $x \in E$ and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$, then $\lim _{x \rightarrow a} h(x)=\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$.

Proof. Suppose $f(x) \leq h(x) \leq g(x)$ for all $x \in E$ and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$.
Since $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$, then there is a real number L such that $L=\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$.

We must prove $\lim _{x \rightarrow a} h(x)=L$.
Let $\epsilon>0$ be given.
Since $\lim _{x \rightarrow a} f(x)=L$, then there exists $\delta_{1}>0$ such that for all $x \in E$, if $0<|x-a|<\delta_{1}$, then $|f(x)-L|<\epsilon$.

Since $\lim _{x \rightarrow a} g(x)=L$, then there exists $\delta_{2}>0$ such that for all $x \in E$, if $0<|x-a|<\delta_{2}$, then $|g(x)-L|<\epsilon$.

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$.
Then $\delta \leq \delta_{1}$ and $\delta \leq \delta_{2}$ and $\delta>0$.
Let $x \in E$ such that $0<|x-a|<\delta$.
Since $x \in E$, then $f(x) \leq h(x) \leq g(x)$.
Therefore, $f(x) \leq h(x)$ and $h(x) \leq g(x)$.
Since $0<|x-a|<\delta \leq \delta_{1}$, then $0<|x-a|<\delta_{1}$.
Since $x \in E$ and $0<|x-a|<\delta_{1}$, then $|f(x)-L|<\epsilon$.
Since $0<|x-a|<\delta \leq \delta_{2}$, then $0<|x-a|<\delta_{2}$.
Since $x \in E$ and $0<|x-a|<\delta_{2}$, then $|g(x)-L|<\epsilon$.
Observe that

$$
\begin{aligned}
|f(x)-L|<\epsilon & \Leftrightarrow-\epsilon<f(x)-L<\epsilon \\
& \Rightarrow-\epsilon<f(x)-L \\
& \Leftrightarrow L-\epsilon<f(x) .
\end{aligned}
$$

Since $L-\epsilon<f(x)$ and $f(x) \leq h(x)$, then $L-\epsilon<h(x)$, so $-\epsilon<h(x)-L$.
Observe that

$$
\begin{aligned}
|g(x)-L|<\epsilon & \Leftrightarrow-\epsilon<g(x)-L<\epsilon \\
& \Rightarrow g(x)-L<\epsilon \\
& \Leftrightarrow g(x)<L+\epsilon .
\end{aligned}
$$

Since $h(x) \leq g(x)$ and $g(x)<L+\epsilon$, then $h(x)<L+\epsilon$, so $h(x)-L<\epsilon$.
Since $-\epsilon<h(x)-L$ and $h(x)-L<\epsilon$, then $-\epsilon<h(x)-L<\epsilon$, so $|h(x)-L|<\epsilon$.

Therefore, $\lim _{x \rightarrow a} h(x)=L$, as desired.
Proof. Suppose $f(x) \leq h(x) \leq g(x)$ for all $x \in E$ and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$.
Since $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$, then there is a real number L such that $L=\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$.

We must prove $\lim _{x \rightarrow a} h(x)=L$.
Since a is an accumulation point of the set E, then there exists a sequence $\left(x_{n}\right)$ of points in $E-\{a\}$ such that $\lim _{n \rightarrow \infty} x_{n}=a$.

Let $\left(x_{n}\right)$ be an arbitrary sequence of points in $E-\{a\}$ such that $\lim _{n \rightarrow \infty} x_{n}=$ a.

Since $\left(x_{n}\right)$ is a sequence of points in $E-\{a\}$, then $x_{n} \in E-\{a\}$ for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$.
Then $x_{n} \in E-\{a\}$, so $x_{n} \in E$ and $x_{n} \neq a$.
Since $x_{n} \in E$, then $f\left(x_{n}\right) \leq h\left(x_{n}\right) \leq g\left(x_{n}\right)$.
Hence, $f\left(x_{n}\right) \leq h\left(x_{n}\right) \leq g\left(x_{n}\right)$ for all $n \in \mathbb{N}$.
Since a is an accumulation point of E and $\lim _{x \rightarrow a} f(x)=L$ and $\left(x_{n}\right)$ is a sequence of points in $E-\{a\}$ and $\lim _{n \rightarrow \infty} x_{n}=a$, then by the sequential characterization, $\left(f\left(x_{n}\right)\right)$ is a sequence and $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.

Since a is an accumulation point of E and $\lim _{x \rightarrow a} g(x)=L$ and $\left(x_{n}\right)$ is a sequence of points in $E-\{a\}$ and $\lim _{n \rightarrow \infty} x_{n}=a$, then by the sequential characterization, $\left(g\left(x_{n}\right)\right)$ is a sequence and $\lim _{n \rightarrow \infty} g\left(x_{n}\right)=L$.

Since $\left(f\left(x_{n}\right)\right)$ and $\left(g\left(x_{n}\right)\right)$ and $\left(h\left(x_{n}\right)\right)$ are sequences and $f\left(x_{n}\right) \leq h\left(x_{n}\right) \leq$ $g\left(x_{n}\right)$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L=\lim _{n \rightarrow \infty} g\left(x_{n}\right)$, then by the squeeze rule for convergent sequences, $\lim _{n \rightarrow \infty} h\left(x_{n}\right)=L$.

Since a is an accumulation point of E and $\left(x_{n}\right)$ is an arbitrary sequence of points in $E-\{a\}$ such that $\lim _{n \rightarrow \infty} x_{n}=a$ and $\lim _{n \rightarrow \infty} h\left(x_{n}\right)=L$, then by the sequential characterization, $\lim _{x \rightarrow a} h(x)=L$, as desired.

