Limits of real valued functions Theory

Jason Sass

June 29, 2021

Limit of a real valued function

Proposition 1. Let f be a real valued function. Let a be an accumulation point of dom f. If L is a real number, then $\lim_{x\to a} f(x) = L$ iff $\lim_{x\to a} |f(x) - L| = 0$.

Proof. Suppose L is a real number. Then

$$\begin{split} \lim_{x \to a} f(x) &= L \quad \Leftrightarrow \\ (\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in domf)(0 < |x - a| < \delta \rightarrow |f(x) - L| < \epsilon) \quad \Leftrightarrow \\ (\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in domf)(0 < |x - a| < \delta \rightarrow ||f(x) - L|| < \epsilon) \quad \Leftrightarrow \\ (\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in domf)(0 < |x - a| < \delta \rightarrow ||f(x) - L| - 0| < \epsilon) \quad \Leftrightarrow \\ \lim_{x \to a} |f(x) - L| = 0. \end{split}$$

Proposition 2. Let $E \subset \mathbb{R}$.

If a is an accumulation point of E, then a is an accumulation point of $E - \{a\}$.

Proof. Suppose a is an accumulation point of E.

Let $\epsilon > 0$ be given.

Since a is an accumulation point of E, then there exists $x \in E$ such that $x \in N(a; \epsilon)$ and $x \neq a$.

Since $x \in E$ and $x \neq a$, then $x \in E - \{a\}$.

Thus, there exists $x \in E - \{a\}$ such that $x \in N(a; \epsilon)$ and $x \neq a$.

Therefore, a is an accumulation point of the set $E - \{a\}$.

Proposition 3. Let $E \subset \mathbb{R}$.

A point *a* is an accumulation point of *E* iff there is a sequence (x_n) of points in $E - \{a\}$ such that $\lim_{n\to\infty} x_n = a$. *Proof.* We first prove if a is an accumulation point of E, then there is a sequence

 (x_n) of points in $E - \{a\}$ such that $\lim_{n \to \infty} x_n = a$.

Suppose a is an accumulation point of E.

Then for every $\delta > 0$ there exists $x \in E$ such that $x \in N'(a; \delta)$.

Let $\delta = \frac{1}{n}$ for each $n \in \mathbb{N}$.

Then for each $n \in \mathbb{N}$, there exists $x \in E$ such that $x \in N'(a; \frac{1}{n})$.

Thus, there exists a function $f: \mathbb{N} \to E$ such that $f(n) \in N'(a; \frac{1}{n})$ for each $n \in \mathbb{N}$.

Hence, there exists a sequence (x_n) in E such that $x_n \in N'(a; \frac{1}{n})$ for each $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$ be given.

Then $x_n \in E$ and $x_n \in N'(a; \frac{1}{n})$. Since $x_n \in N'(a; \frac{1}{n})$, then $x_n \in N(a; \frac{1}{n})$ and $x_n \neq a$.

Since $x_n \in E$ and $x_n \neq a$, then $x_n \in E - \{a\}$.

Since $x_n \in N(a; \frac{1}{n})$, then $|x_n - a| < \frac{1}{n}$. Thus, $x_n \in E - \{a\}$ and $|x_n - a| < \frac{1}{n}$ for each $n \in \mathbb{N}$. Since $x_n \in E - \{a\}$ for each $n \in \mathbb{N}$, then $\{x_n : n \in \mathbb{N}\} \subset E - \{a\}$, so there is a sequence (x_n) of points in the set $E - \{a\}$.

We prove the sequence (x_n) converges to a.

Let $\epsilon > 0$ be given. Then $\frac{1}{\epsilon} > 0$. Since $\frac{1}{\epsilon} \in \mathbb{R}$, then by the Archimedean property of \mathbb{R} , there exists $N \in \mathbb{N}$ such that $N > \frac{1}{\epsilon}$. Let $n \in \mathbb{N}$ such that n > N. Then $n > N > \frac{1}{\epsilon}$, so $n > \frac{1}{\epsilon}$. Hence, $\epsilon > \frac{1}{n}$, so $\frac{1}{n} < \epsilon$. Since $|x_n - a| < \frac{1}{n}$ for each $n \in \mathbb{N}$, then $|x_n - a| < \frac{1}{n} < \epsilon$. Hence, $|x_n - a| < \epsilon$, so $\lim_{n \to \infty} x_n = a$, as desired.

Proof. Conversely, we prove if a is a point and there is a sequence (x_n) of points in $E - \{a\}$ such that $\lim_{n \to \infty} x_n = a$, then a is an accumulation point of E.

Suppose a is a point and there is a sequence (x_n) of points in $E - \{a\}$ such that $\lim_{n\to\infty} x_n = a$.

We must prove a is an accumulation point of E.

Let $\delta > 0$ be given.

Since (x_n) is a sequence of points in $E - \{a\}$, then $\{x_n : n \in \mathbb{N}\} \subset E - \{a\}$, so $x_n \in E - \{a\}$ for all $n \in \mathbb{N}$.

Hence, $x_n \in E$ and $x_n \neq a$ for all $n \in \mathbb{N}$.

Since $\lim_{n\to\infty} x_n = a$ and $\delta > 0$, then there exists $N \in \mathbb{N}$ such that if n > N, then $|x_n - a| < \delta$.

Let $n \in \mathbb{N}$ such that n > N.

Then $|x_n - a| < \delta$, so $x_n \in N(a; \delta)$.

Since $n \in \mathbb{N}$, then $x_n \in E$ and $x_n \neq a$.

Since $x_n \in N(a; \delta)$ and $x_n \neq a$, then $x_n \in N'(a; \delta)$.

Thus, there exists $x_n \in E$ such that $x_n \in N'(a; \delta)$, so a is an accumulation point of E.

Theorem 4. sequential characterization of a function limit Let $E \subset \mathbb{R}$.

Let $f : E \to \mathbb{R}$ be a function. Let a be an accumulation point of E. Let $L \in \mathbb{R}$. Then $\lim_{x\to a} f(x) = L$ iff for every sequence (x_n) of points in $E - \{a\}$ such that $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} f(x_n) = L$.

Proof. We prove if $\lim_{x\to a} f(x) = L$, then for every sequence (x_n) of points in $E - \{a\}$ such that $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} f(x_n) = L$.

Suppose
$$\lim_{x \to a} f(x) = L$$
.

Since a is an accumulation point of E, then there is a sequence (x_n) of points in $E - \{a\}$ such that $\lim_{n\to\infty} x_n = a$.

Let (x_n) be an arbitrary sequence of points in $E - \{a\}$ such that $\lim_{n \to \infty} x_n = a$.

We must prove $\lim_{n\to\infty} f(x_n) = L$.

Let $\epsilon > 0$ be given.

Since $\lim_{x\to a} f(x) = L$, then there exists $\delta > 0$ such that for all $x \in E$, if $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$.

Since $\lim_{n\to\infty} x_n = a$ and $\delta > 0$, then there exists $N \in \mathbb{N}$ such that if n > N, then $|x_n - a| < \delta$.

Let $n \in \mathbb{N}$ such that n > N.

Then $|x_n - a| < \delta$.

Since (x_n) is a sequence of points in $E - \{a\}$, then $x_n \in E - \{a\}$ for all $n \in \mathbb{N}$, so $x_n \in E$ and $x_n \neq a$ for all $n \in \mathbb{N}$.

Since $n \in \mathbb{N}$, then $x_n \in E$ and $x_n \neq a$.

Since $x_n \neq a$, then $|x_n - a| > 0$.

Thus, $0 < |x_n - a| < \delta$.

Since $x_n \in E$ and $0 < |x_n - a| < \delta$, then we conclude $|f(x_n) - L| < \epsilon$. Therefore, $\lim_{n \to \infty} f(x_n) = L$, as desired.

Proof. Conversely, we prove if for every sequence (x_n) of points in $E - \{a\}$ such that $\lim_{n\to\infty} x_n = a$ implies $\lim_{n\to\infty} f(x_n) = L$, then $\lim_{x\to a} f(x) = L$.

We prove by contrapositive.

Suppose $\lim_{x \to a} f(x) \neq L$.

Then there exists $\epsilon_0 > 0$ such that for each $\delta > 0$ there corresponds $x \in E$ such that $0 < |x - a| < \delta$ and $|f(x) - L| \ge \epsilon_0$.

Thus, there exists $\epsilon_0 > 0$ such that for each $\delta > 0$ there corresponds $x \in E$ such that $x \neq a$ and $|x - a| < \delta$ and $|f(x) - L| \ge \epsilon_0$, so there exists $\epsilon_0 > 0$ such that for each $\delta > 0$ there corresponds $x \in E - \{a\}$ such that $|x - a| < \delta$ and $|f(x) - L| \ge \epsilon_0$.

Let $\delta = \frac{1}{n}$ for each $n \in \mathbb{N}$.

Then for each $n \in \mathbb{N}$, there corresponds $x \in E - \{a\}$ such that $|x - a| < \frac{1}{n}$ and $|f(x) - L| \ge \epsilon_0$. Thus, there exists a function $g : \mathbb{N} \to \mathbb{R}$ such that $g(n) \in E - \{a\}$ and $|g(n) - a| < \frac{1}{n}$ and $|f(g(n)) - L| \ge \epsilon_0$ for each $n \in \mathbb{N}$, so there exists a sequence (x_n) in \mathbb{R} such that $x_n \in E - \{a\}$ and $|x_n - a| < \frac{1}{n}$ and $|f(x_n) - L| \ge \epsilon_0$ for each $n \in \mathbb{N}$.

Since $x_n \in E - \{a\}$ for each $n \in \mathbb{N}$, then (x_n) is a sequence of points in $E - \{a\}$.

We prove $\lim_{n\to\infty} x_n = a$. Let $\epsilon > 0$ be given. Then $\epsilon \neq 0$, so $\frac{1}{\epsilon} \in \mathbb{R}$. Hence, by the Archimedean property of \mathbb{R} , there exists $N \in \mathbb{N}$ such that $N > \frac{1}{\epsilon}$. Let $n \in \mathbb{N}$ such that n > N. Then $n > N > \frac{1}{\epsilon}$, so $n > \frac{1}{\epsilon}$. Hence, $\epsilon > \frac{1}{n}$, so $\frac{1}{n} < \epsilon$. Since $n \in \mathbb{N}$ and $|x_n - a| < \frac{1}{n}$ for each $n \in \mathbb{N}$, then $|x_n - a| < \frac{1}{n}$. Thus, $|x_n - a| < \frac{1}{n} < \epsilon$, so $|x_n - a| < \epsilon$. Therefore, $\lim_{n\to\infty} x_n = a$, as desired.

We prove $\lim_{n\to\infty} f(x_n) \neq L$. Let $N \in \mathbb{N}$ be given. Let n = N + 1. Then $n \in \mathbb{N}$ and n > N. Since $n \in \mathbb{N}$ and $|f(x_n) - L| \ge \epsilon_0$ for each $n \in \mathbb{N}$, then $|f(x_n) - L| \ge \epsilon_0$. Thus, there exists $\epsilon_0 > 0$ such that for each $N \in \mathbb{N}$, there exists $n \in \mathbb{N}$ for which n > N and $|f(x_n) - L| \ge \epsilon_0$.

Therefore, $\lim_{n\to\infty} f(x_n) \neq L$.

Hence, we have shown there exists a sequence (x_n) of points in $E - \{a\}$ such that $\lim_{n\to\infty} x_n = a$ and $\lim_{n\to\infty} f(x_n) \neq L$, as desired.

Proposition 5. limit of an absolute value equals absolute value of a limit

Let f be a real valued function. Let a be an accumulation point of domf. If the limit of f at a exists, then $\lim_{x\to a} |f(x)| = |\lim_{x\to a} f(x)|$.

Proof. Suppose the limit of f at a exists.

Then there exists a real number L such that $\lim_{x\to a} f(x) = L$. We must prove $\lim_{x\to a} |f(x)| = |L|$. Let $\epsilon > 0$ be given. Since $\lim_{x\to a} f(x) = L$, then there exists $\delta > 0$ such that for all $x \in domf$, if $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$. Let $x \in domf$ such that $0 < |x - a| < \delta$. Then $|f(x) - L| < \epsilon$.

Hence, $||f(x)| - |L|| \le |f(x) - L| < \epsilon$, so $||f(x)| - |L|| < \epsilon$.

Therefore, $\lim_{x \to a} |f(x)| = |L|$.

Lemma 6. Let $E \subset \mathbb{R}$.

Let $f : E \to \mathbb{R}$ be a function. Let a be a point.

If the limit of f at a exists and is positive, then there exists $\delta > 0$ such that f(x) > 0 for all $x \in N'(a; \delta) \cap E$.

Proof. Suppose the limit of f at a exists and is positive.

Then there is a real number L such that $\lim_{x\to a} f(x) = L$ and L > 0. Since $\lim_{x\to a} f(x) = L$ and L > 0, then there exists $\delta > 0$ such that for all $x \in E$, if $0 < |x - a| < \delta$, then |f(x) - L| < L.

Since $\lim_{x\to a} f(x) = L$, then *a* is an accumulation point of *E*, so there exists $x \in N'(a; \delta) \cap E$.

Let $x \in N'(a; \delta) \cap E$ be arbitrary. Then $x \in N'(a; \delta)$ and $x \in E$. Since $x \in N'(a; \delta)$, then $x \in N(a; \delta)$ and $x \neq a$. Since $x \in N(a; \delta)$, then $|x - a| < \delta$. Since $x \neq a$, then $x - a \neq 0$, so |x - a| > 0. Since 0 < |x - a| and $|x - a| < \delta$, then $0 < |x - a| < \delta$. Since $x \in E$ and $0 < |x - a| < \delta$, then |f(x) - L| < L. Thus, -L < f(x) - L < L, so -L < f(x) - L. Therefore, 0 < f(x), so f(x) > 0, as desired.

Proposition 7. *limit of a square root equals square root of a limit* Let $E \subset \mathbb{R}$.

Let $f : E \to \mathbb{R}$ be a function. If $\lim_{x \to a} f(x)$ exists and is positive, then $\lim_{x \to a} \sqrt{f(x)} = \sqrt{\lim_{x \to a} f(x)}$.

Proof. Suppose $\lim_{x\to a} f(x)$ exists and is positive.

Then there exists $L \in \mathbb{R}$ such that $\lim_{x \to a} f(x) = L$ and L > 0. Let $g(x) = \sqrt{f(x)}$. Then g is a function and $domg = \{x \in E : g(x) \in \mathbb{R}\} = \{x \in E : \sqrt{f(x)} \in \mathbb{R}\}$

 $\mathbb{R} \} = \{ x \in E : f(x) \ge 0 \}.$ We must prove $\lim_{x \to a} g(x) = \sqrt{L}.$

We first prove a is an accumulation point of domg. Let $\delta > 0$ be given.

Since $\lim_{x\to a} f(x) = L$ and L > 0, then by the previous lemma, there exists $\delta_1 > 0$ such that f(x) > 0 for all $x \in N'(a; \delta_1) \cap E$.

Since $\lim_{x\to a} f(x) = L$, then *a* is an accumulation point of *E*. Either $\delta_1 \geq \delta$ or $\delta_1 < \delta$. We consider these cases separately.

We consider these cases separat

Case 1: Suppose $\delta_1 \geq \delta$.

Since a is an accumulation point of E and $\delta > 0$, then there exists $x \in E$ such that $x \in N'(a; \delta)$.

Since $x \in N'(a; \delta)$, then $x \in N(a; \delta)$ and $x \neq a$.

Since $0 < \delta \leq \delta_1$, then $N(a; \delta) \subset N(a; \delta_1)$. Since $x \in N(a; \delta)$ and $N(a; \delta) \subset N(a; \delta_1)$, then $x \in N(a; \delta_1)$. Since $x \in N(a; \delta_1)$ and $x \neq a$, then $x \in N'(a; \delta_1)$. Since $x \in N'(a; \delta_1)$ and $x \in E$, then $x \in N'(a; \delta_1) \cap E$, so f(x) > 0. Since $x \in E$ and f(x) > 0, then $x \in domg$. Therefore, there exists $x \in domg$ such that $x \in N'(a; \delta)$. Case 2: Suppose $\delta_1 < \delta$. Since a is an accumulation point of E and $\delta_1 > 0$, then there exists $x \in E$ such that $x \in N'(a; \delta_1)$. Since $x \in N'(a; \delta_1)$ and $x \in E$, then $x \in N'(a; \delta_1) \cap E$, so f(x) > 0. Since $x \in E$ and f(x) > 0, then $x \in domg$. Since $x \in N'(a; \delta_1)$, then $x \in N(a; \delta_1)$ and $x \neq a$. Since $0 < \delta_1 < \delta$, then $N(a; \delta_1) \subset N(a; \delta)$. Since $x \in N(a; \delta_1)$ and $N(a; \delta_1) \subset N(a; \delta)$, then $x \in N(a; \delta)$. Since $x \in N(a; \delta)$ and $x \neq a$, then $x \in N'(a; \delta)$. Therefore, there exists $x \in domq$ such that $x \in N'(a; \delta)$. In all cases, there exists $x \in domg$ such that $x \in N'(a; \delta)$, so a is an accu-

We next prove $\lim_{x \to a} g(x) = \sqrt{L}$.

Since a is an accumulation point of domg, then there exists a sequence in $domg - \{a\}$ that converges to a.

Let (x_n) be an arbitrary sequence in $domg - \{a\}$ such that $\lim_{n \to \infty} x_n = a$.

Let $n \in \mathbb{N}$ be given.

mulation point of *domg*.

Then $x_n \in domg - \{a\}$, so $x_n \in domg$ and $x_n \neq a$.

Since $x_n \in domg$ and $domg \subset E$, then $x_n \in E$.

Since $x_n \in E$ and $x_n \neq a$, then $x_n \in E - \{a\}$.

Thus, $x_n \in E - \{a\}$ for all $n \in \mathbb{N}$, so (x_n) is a sequence of points in $E - \{a\}$.

Since a is an accumulation point of E and $\lim_{x\to a} f(x) = L$ and (x_n) is an arbitrary sequence of points in $E - \{a\}$ and $\lim_{n\to\infty} x_n = a$, then by the sequential characterization of a function limit, we have $\lim_{n\to\infty} f(x_n) = L$.

Since $\lim_{n\to\infty} f(x_n) = L$ and L > 0 and the limit of a square root of a convergent sequence equals the square root of the limit, then $\lim_{n\to\infty} \sqrt{f(x_n)} = \sqrt{\lim_{n\to\infty} f(x_n)}$.

Hence, $\lim_{n \to \infty} g(x_n) = \lim_{n \to \infty} \sqrt{f(x_n)} = \sqrt{\lim_{n \to \infty} f(x_n)} = \sqrt{L}$.

Since a is an accumulation point of domg and (x_n) is an arbitrary sequence of points in $domg - \{a\}$ such that $\lim_{n\to\infty} x_n = a$ and $\lim_{n\to\infty} g(x_n) = \sqrt{L}$, then by the sequential characterization of a function limit, we have $\lim_{x\to a} g(x) = \sqrt{L}$, as desired.

Algebraic properties of function limits

Theorem 8. scalar multiple rule for limits

Let f be a real valued function. Let a be a point.

If the limit of f at a exists and is a real number, then for every $\lambda \in \mathbb{R}$, the limit of λf exists and $\lim_{x\to a} \lambda f(x) = \lambda \lim_{x\to a} f(x)$.

Proof. Suppose the limit of f at a exists and is a real number.

Then a is an accumulation point of dom f and there exists $L \in \mathbb{R}$ such that $\lim_{x \to a} f(x) = L$.

Let $\lambda \in \mathbb{R}$ be given.

To prove $\lim_{x\to a} \lambda f(x) = \lambda \lim_{x\to a} f(x)$, we must prove $\lim_{x\to a} (\lambda f)(x) = \lambda L$.

Since $dom(\lambda f) = dom f$ and a is an accumulation point of dom f, then a is an accumulation point of $dom(\lambda f)$.

Either $\lambda = 0$ or $\lambda \neq 0$.

We consider these cases separately.

Case 1: Suppose $\lambda = 0$.

Observe that

$$\lim_{x \to a} (0f)(x) = \lim_{x \to a} (0f(x))$$
$$= \lim_{x \to a} 0$$
$$= 0$$
$$= 0L.$$

Therefore, $\lim_{x \to a} (0f)(x) = 0L$, as desired. **Case 2:** Suppose $\lambda \neq 0$. Let $\epsilon > 0$. Since $|\lambda| \ge 0$ and $\lambda \neq 0$, then $|\lambda| > 0$. Hence, $\frac{\epsilon}{|\lambda|} > 0$. Since $\lim_{x \to a} f(x) = L$, then there exists $\delta > 0$ such that for all $x \in dom f$, if $0 < |x - a| < \delta$, then $|f(x) - L| < \frac{\epsilon}{|\lambda|}$. Let $x \in dom(\lambda f)$ such that $0 < |x - a| < \delta$. Then $x \in dom f$ and $0 < |x - a| < \delta$, so $|f(x) - L| < \frac{\epsilon}{|\lambda|}$. Observe that

$$\begin{aligned} |(\lambda f)(x) - \lambda L| &= |\lambda f(x) - \lambda L| \\ &= |\lambda (f(x) - L)| \\ &= |\lambda| |f(x) - L| \\ &< |\lambda| \frac{\epsilon}{|\lambda|} \\ &= \epsilon. \end{aligned}$$

Therefore, $|(\lambda f)(x) - \lambda L| < \epsilon$, so $\lim_{x \to a} (\lambda f)(x) = \lambda L$, as desired.

Theorem 9. limit of a sum equals sum of limits

Let f and g be real valued functions.

Let a be an accumulation point of $dom f \cap dom g$.

If the limit of f at a exists and is a real number and the limit of g at a exists and is a real number, then the limit of f + g exists and

 $\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x).$

Proof. Suppose the limit of f at a exists and is a real number and the limit of g at a exists and is a real number.

Then there exist real numbers L and M such that $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$.

To prove $\lim_{x\to a} (f(x) + g(x)) = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$, we must prove $\lim_{x\to a} (f+g)(x) = L + M$.

Since $dom(f+g) = dom f \cap dom g$ and a is an accumulation point of $dom f \cap dom g$, then a is an accumulation point of dom(f+g).

Let $\epsilon > 0$ be given.

Then $\frac{\epsilon}{2} > 0$.

Since $\lim_{x\to a} f(x) = L$, then there exists $\delta_1 > 0$ such that for all $x \in domf$, if $0 < |x-a| < \delta_1$, then $|f(x) - L| < \frac{\epsilon}{2}$.

Since $\lim_{x\to a} g(x) = M$, then there exists $\delta_2 > 0$ such that for all $x \in domg$, if $0 < |x-a| < \delta_2$, then $|g(x) - M| < \frac{\epsilon}{2}$.

Let $\delta = \min\{\delta_1, \delta_2\}.$

Then $\delta \leq \delta_1$ and $\delta \leq \delta_2$ and $\delta > 0$.

Let $x \in dom(f+g)$ such that $0 < |x-a| < \delta$.

Since $x \in dom(f+g)$, then $x \in domf \cap domg$, so $x \in domf$ and $x \in domg$.

Since $0 < |x-a| < \delta \le \delta_1$, then $0 < |x-a| < \delta_1$.

Since $x \in domf$ and $0 < |x - a| < \delta_1$, then $|f(x) - L| < \frac{\epsilon}{2}$.

Since $0 < |x - a| < \delta \le \delta_2$, then $0 < |x - a| < \delta_2$.

Since $x \in domg$ and $0 < |x - a| < \delta_2$, then $|g(x) - M| < \frac{\epsilon}{2}$. Observe that

$$\begin{split} |(f+g)(x) - (L+M)| &= |f(x) + g(x) - L - M| \\ &= |(f(x) - L) + (g(x) - M)| \\ &\leq |f(x) - L| + |g(x) - M| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ &= \epsilon \end{split}$$

Therefore, $|(f + g)(x) - (L + M)| < \epsilon$, so $\lim_{x \to a} (f + g)(x) = L + M$, as desired.

Corollary 10. limit of a difference equals difference of limits

Let f and g be real valued functions.

Let a be an accumulation point of $dom f \cap dom g$.

If the limit of f at a exists and is a real number and the limit of g at a exists and is a real number, then the limit of f - g exists and

 $\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x).$

Proof. Suppose the limit of f at a exists and is a real number and the limit of g at a exists and is a real number.

Then there exist real numbers L and M such that $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$.

To prove $\lim_{x\to a} (f(x) - g(x)) = \lim_{x\to a} f(x) - \lim_{x\to a} g(x)$, we must prove $\lim_{x\to a} (f-g)(x) = L - M$.

Since a is an accumulation point of $dom f \cap dom g$ and dom(-g) = dom g, then a is an accumulation point of $dom f \cap dom(-g)$.

Observe that

$$L - M = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

$$= \lim_{x \to a} f(x) + (-\lim_{x \to a} g(x))$$

$$= \lim_{x \to a} f(x) + \lim_{x \to a} -g(x)$$

$$= \lim_{x \to a} [f(x) + (-g(x))]$$

$$= \lim_{x \to a} (f(x) - g(x))$$

$$= \lim_{x \to a} (f - g)(x).$$

Therefore, $\lim_{x\to a} (f-g)(x) = L - M$, as desired.

Corollary 11. *limit of a finite sum equals finite sum of limits* Let $n \in \mathbb{N}$ with $n \geq 2$.

Let a be an accumulation point of $\bigcap_{i=1}^{n} dom f_i$. Let $f_1, f_2, ..., f_n$ be real valued functions. Then $\lim_{x \to a} [f_1(x) + f_2(x) + ... + f_n(x)] = \lim_{x \to a} f_1(x) + \lim_{x \to a} f_2(x) + ... + \lim_{x \to a} f_n(x)$.

Proof. We prove by induction.

Let $S = \{n \in \mathbb{N} : n \ge 2 \land \lim_{x \to a} [f_1(x) + f_2(x) + \dots + f_n(x)] = \lim_{x \to a} f_1(x) + \lim_{x \to a} f_2(x) + \dots + \lim_{x \to a} f_n(x) \}.$

Basis: Let n = 2.

Since a is an accumulation point of $\bigcap_{i=1}^{2} dom f_i = dom f_1 \cap dom f_2$ and $\lim_{x \to a} [f_1(x) + f_2(x)] = \lim_{x \to a} f_1(x) + \lim_{x \to a} f_2(x)$, then $2 \in S$.

Induction:

Suppose $k \in S$.

Then $k \in \mathbb{N}$ and $k \ge 2$ and $\lim_{x \to a} [f_1(x) + f_2(x) + \ldots + f_k(x)] = \lim_{x \to a} f_1(x) + \lim_{x \to a} f_2(x) + \ldots + \lim_{x \to a} f_k(x).$

Since a is an accumulation point of $\bigcap_{i=1}^{k} dom f_i$ and $\bigcap_{i=1}^{k} dom f_i$ is a subset of $dom f_i$ for each $i \in \{1, 2, ..., k\}$, then a is an accumulation point of $dom f_i$ for each $i \in \{1, 2, ..., k\}$.

Since $k \in \mathbb{N}$, then $k + 1 \in \mathbb{N}$ and $k + 1 \ge 3 > 2$, so k + 1 > 2. Observe that

$$\begin{split} \lim_{x \to a} [f_1(x) + f_2(x) + \ldots + f_{k+1}(x)] &= \lim_{x \to a} [f_1(x) + f_2(x) + \ldots + f_k(x) + f_{k+1}(x)] \\ &= \lim_{x \to a} [f_1(x) + f_2(x) + \ldots + f_k(x)] + \lim_{x \to a} f_{k+1}(x) \\ &= \lim_{x \to a} f_1(x) + \lim_{x \to a} f_2(x) + \ldots + \lim_{x \to a} f_k(x) + \lim_{x \to a} f_{k+1}(x). \end{split}$$

Thus, $k + 1 \in S$, so $k \in S$ implies $k + 1 \in S$ for all natural numbers $k \ge 2$. Since $2 \in S$ and $k \in S$ implies $k + 1 \in S$ for all natural numbers $k \ge 2$, then by PMI, $\lim_{x\to a} [f_1(x) + f_2(x) + \ldots + f_n(x)] = \lim_{x\to a} f_1(x) + \lim_{x\to a} f_2(x) + \ldots + \lim_{x\to a} f_n(x)$ for all natural numbers $n \ge 2$.

Lemma 12. local boundedness of a function limit

Let $E \subset \mathbb{R}$. Let $f : E \to \mathbb{R}$ be a function. Let a be a point. If the limit of f at a exists, then there exist $\delta > 0$ and $M \in \mathbb{R}$ such that

 $|f(x)| \le M$ for all $x \in N(a; \delta) \cap E$.

Proof. Suppose the limit of f at a exists.

Then a is an accumulation point of E and there exists $L \in \mathbb{R}$ such that $\lim_{x \to a} f(x) = L$.

Let $\epsilon = 1$.

Then there exists $\delta > 0$ such that |f(x) - L| < 1 for all $x \in N'(a; \delta) \cap E$. Since $\delta > 0$ and a is an accumulation point of E, then there exists $c \in$

$$\begin{split} N'(a;\delta) \cap E, &\text{ so } c \in N'(a;\delta) \text{ and } c \in E.\\ &\text{Since } c \in N'(a;\delta) \text{ and } N'(a;\delta) \subset N(a;\delta), \text{ then } c \in N(a;\delta).\\ &\text{Hence, } c \in N(a;\delta) \cap E, \text{ so } N(a;\delta) \cap E \neq \emptyset.\\ &\text{Either } a \in E \text{ or } a \notin E.\\ &\text{We consider each case separately.}\\ &\textbf{Case 1: Suppose } a \notin E.\\ &\text{Let } M = 1 + |L|.\\ &\text{Let } x \in N(a;\delta) \cap E \text{ be arbitrary.}\\ &\text{Then } x \in N(a;\delta) \cap E \text{ be arbitrary.}\\ &\text{Then } x \in N(a;\delta) \text{ and } x \in E.\\ &\text{Since } x \in E \text{ and } a \notin E, \text{ then } x \neq a.\\ &\text{Since } x \in N(a;\delta) \text{ and } x \notin a, \text{ then } x \in N'(a;\delta).\\ &\text{Since } x \in N'(a;\delta) \text{ and } x \in E, \text{ then } x \in N'(a;\delta) \cap E, \text{ so } |f(x) - L| < 1.\\ &\text{Observe that} \end{split}$$

$$|f(x)| = |f(x) - L + L| \\ \leq |f(x) - L| + |L| \\ < 1 + |L| \\ = M.$$

Therefore, |f(x)| < M. Case 2: Suppose $a \in E$. Let $M = \max\{1 + |L|, |f(a)|\}$. Then $1 + |L| \le M$ and $|f(a)| \le M$. Let $x \in N(a; \delta) \cap E$ be arbitrary. Then $x \in N(a; \delta)$ and $x \in E$. Either x = a or $x \ne a$. We consider each case separately. **Case 2a:** Suppose x = a. Then $|f(x)| = |f(a)| \le M$, so $|f(x)| \le M$. **Case 2b:** Suppose $x \ne a$. Since $x \in N(a; \delta)$ and $x \ne a$, then $x \in N'(a; \delta)$. Since $x \in N'(a; \delta)$ and $x \in E$, then $x \in N('a; \delta) \cap E$, so |f(x) - L| < 1. Observe that

$$\begin{aligned} |f(x)| &= |f(x) - L + L| \\ &\leq |f(x) - L| + |L| \\ &< 1 + |L| \\ &< M. \end{aligned}$$

Therefore, |f(x)| < M. Hence, in all cases, $|f(x)| \le M$.

Theorem 13. limit of a product equals product of limits

Let f and g be real valued functions.

Let a be an accumulation point of $dom f \cap dom g$.

If the limit of f at a exists and is a real number and the limit of g at a exists and is a real number, then the limit of fg exists and

 $\lim_{x \to a} (f(x)g(x)) = (\lim_{x \to a} f(x))(\lim_{x \to a} g(x)).$

Proof. Suppose the limit of f at a exists and is a real number and the limit of g at a exists and is a real number.

Then there exist real numbers L and M such that $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$.

To prove $\lim_{x\to a} (f(x)g(x)) = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x)$, we must prove $\lim_{x\to a} (fg)(x) = LM$.

Since $dom(fg) = domf \cap domg$ and a is an accumulation point of $domf \cap domg$, then a is an accumulation point of dom(fg).

Let $\epsilon > 0$ be given.

Since the limit of g exists at a, then g is locally bounded near a.

Hence, there exist $\delta_1 > 0$ and b > 0 such that |g(x)| < b for all $x \in N(a; \delta_1) \cap domg$.

Let $e' = \frac{\epsilon}{b+|L|}$.

Since b > 0 and $|L| \ge 0$, then b + |L| > 0, so e' > 0.

Since $\lim_{x\to a} f(x) = L$ and e' > 0, then there exists $\delta_2 > 0$ such that for all $x \in dom f$, if $0 < |x - a| < \delta_2$, then |f(x) - L| < e'.

Since $\lim_{x\to a} g(x) = M$ and e' > 0, then there exists $\delta_3 > 0$ such that for all $x \in domg$, if $0 < |x - a| < \delta_3$, then |g(x) - M| < e'.

Let $\delta = \min\{\delta_1, \delta_2, \delta_3\}$. Then $\delta \leq \delta_1$ and $\delta \leq \delta_2$ and $\delta \leq \delta_3$ and $\delta > 0$. Let $x \in dom(fg)$ such that $0 < |x - a| < \delta$. Since $x \in dom(fg)$, then $x \in domf \cap domg$, so $x \in domf$ and $x \in domg$. Since $0 < |x - a| < \delta \leq \delta_1$, then $0 < |x - a| < \delta_1$, so $|x - a| < \delta_1$. Thus, $x \in N(a; \delta_1)$. Since $x \in N(a; \delta_1)$ and $x \in domg$, then $x \in N(a; \delta_1) \cap domg$, so $|g(x)| \leq b$. Since $0 < |x - a| < \delta \leq \delta_2$, then $0 < |x - a| < \delta_2$. Since $0 < |x - a| < \delta \leq \delta_2$, then $0 < |x - a| < \delta_2$. Since $0 < |x - a| < \delta \leq \delta_3$, then $0 < |x - a| < \delta_3$. Since $x \in domf$ and $0 < |x - a| < \delta_3$, then |g(x) - M| < e'. Since $0 \leq |f(x) - L| < e'$ and $0 \leq |g(x)| < b$, then |f(x) - L||g(x)| < e'b. Since $0 \leq |g(x) - M| < e'$ and $|L| \geq 0$, then $|L||g(x) - M| \leq |L|e'$. Observe that

$$\begin{aligned} |(fg)(x) - LM| &= |f(x)g(x) - LM| \\ &= |f(x)g(x) - Lg(x) + Lg(x) - LM| \\ &\leq |f(x)g(x) - Lg(x)| + |Lg(x) - LM| \\ &= |(f(x) - L)g(x)| + |L(g(x) - M)| \\ &= |f(x) - L||g(x)| + |L||g(x) - M| \\ &< e'b + |L|e' \\ &= e'(b + |L|) \\ &= \epsilon. \end{aligned}$$

Therefore, $|(fg)(x) - LM| < \epsilon$, so $\lim_{x \to a} (fg)(x) = LM$, as desired.

Lemma 14. boundedness away from zero

Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function.

Let a be a point.

If there is a real number L such that $\lim_{x\to a} f(x) = L$ and $L \neq 0$, then there exists $\delta > 0$ such that $|f(x)| > \frac{|L|}{2}$ for all $x \in N'(a; \delta) \cap E$.

Proof. Suppose there is a real number L such that $\lim_{x\to a} f(x) = L$ and $L \neq 0$. Since $L \neq 0$, then |L| > 0, so $\frac{|L|}{2} > 0$. Since $\lim_{x\to a} f(x) = L$, then a is an accumulation point of E and there exists

Since $\min_{x \to a} f(x) = L$, then *a* is an accumulation point of *L* and there exists $\delta > 0$ such that $|f(x) - L| < \frac{|L|}{2}$ for all $x \in N'(a; \delta) \cap E$. Since *a* is an accumulation point of *E* and $\delta > 0$, then $N'(a; \delta) \cap E \neq \emptyset$. Let $x \in N'(a; \delta) \cap E$ be arbitrary. Then $|f(x) - L| < \frac{|L|}{2}$. Since $\frac{|L|}{2} > |f(x) - L| \ge |L| - |f(x)|$, then $\frac{|L|}{2} > |L| - |f(x)|$. Therefore, $|f(x)| > \frac{|L|}{2}$, as desired. **Lemma 15.** Let f be a real valued function.

Let a be a point. If the limit of f at a exists and is a nonzero real number, then the limit of $\frac{1}{f}$ exists and $\lim_{x\to a} \frac{1}{f(x)} = \frac{1}{\lim_{x\to a} f(x)}$. Proof. Suppose the limit of f at a exists and is a nonzero real number.

Then a is a point of accumulation of dom f and there exists a real number *L* such that $\lim_{x \to a} f(x) = L$ and $L \neq 0$. To prove $\lim_{x \to a} \frac{1}{f(x)} = \frac{1}{\lim_{x \to a} f(x)}$, we must prove $\lim_{x \to a} \frac{1}{f}(x) = \frac{1}{L}$. We first prove a is an accumulation point of $dom\frac{1}{f}$. Let $\delta > 0$ be given. Since $\lim_{x\to a} f(x) = L$ and $L \neq 0$, then f is bounded away from zero. Hence, there exists $\delta_1 > 0$ such that $|f(x)| > \frac{|L|}{2}$ for all $x \in N'(a; \delta_1) \cap domf$. Let $\delta_2 = \min\{\delta, \delta_1\}.$ Then $\delta_2 \leq \delta$ and $\delta_2 \leq \delta_1$ and $\delta_2 > 0$. Since a is an accumulation point of dom f and $\delta_2 > 0$, then there exists $c \in dom f$ such that $c \in N'(a; \delta_2)$. Since $c \in N'(a; \delta_2)$, then $c \in N(a; \delta_2)$ and $c \neq a$. Since $0 < \delta_2 \leq \delta_1$, then $N(a; \delta_2) \subset N(a; \delta_1)$. Since $c \in N(a; \delta_2)$ and $N(a; \delta_2) \subset N(a; \delta_1)$, then $c \in N(a; \delta_1)$. Since $c \in N(a; \delta_1)$ and $c \neq a$ and $c \in domf$, then $c \in N'(a; \delta_1) \cap domf$, so $|f(c)| > \frac{|L|}{2}.$ Since $L \neq 0$, then |L| > 0, so $\frac{|L|}{2} > 0$. Thus, $|f(c)| > \frac{|L|}{2} > 0$, so |f(c)| > 0. Hence $f(c) \neq 0$. Since $c \in dom f$ and $f(c) \neq 0$, then $c \in dom \frac{1}{f}$. Since $0 < \delta_2 \leq \delta$, then $N(a; \delta_2) \subset N(a; \delta)$. Since $c \in N(a; \delta_2)$ and $N(a; \delta_2) \subset N(a; \delta)$, then $c \in N(a; \delta)$. Since $c \neq a$, then $c \in N'(a; \delta)$. Hence, there exists $c \in dom_{\overline{f}}^1$ such that $c \in N'(a; \delta)$. Therefore, a is an accumulation point of $dom \frac{1}{f}$. *Proof.* To prove $\lim_{x\to a} \frac{1}{f}(x) = \frac{1}{L}$, let $\epsilon > 0$ be given. Since $L \neq 0$, then $\frac{1}{L} \in \mathbb{R}$ and |L| > 0. Since $\epsilon > 0$ and $|L|^2 > 0$, then $\frac{\epsilon |L|^2}{2} > 0$. Since $\lim_{x \to a} f(x) = L$, then there exists $\delta_1 > 0$ such that for all $x \in domf$, if $0 < |x - a| < \delta_1$, then $|f(x) - L| < \frac{\epsilon |L|^2}{2}$. Since $\lim_{x \to a} f(x) = L$ and $L \neq 0$, then f is bounded away from zero. Hence, there exists $\delta_2 > 0$ such that $|f(x)| > \frac{|L|}{2}$ for all $x \in N'(a; \delta_2) \cap dom f$. Let $\delta = \min\{\delta_1, \delta_2\}.$

Then $\delta \leq \delta_1$ and $\delta \leq \delta_2$ and $\delta > 0$. Let $x \in dom \frac{1}{f}$ such that $0 < |x - a| < \delta$.

Since $x \in dom \frac{1}{f}$, then $x \in dom f$ and $f(x) \neq 0$.

Since $0 < |x - a| < \delta \le \delta_1$, then $0 < |x - a| < \delta_1$.

Thus, $x \in domf$ and $0 < |x - a| < \delta_1$, so $|f(x) - L| < \frac{\epsilon |L|^2}{2}$. Hence, $0 \le |f(x) - L| < \frac{\epsilon |L|^2}{2}$. Since $0 < |x - a| < \delta \le \delta_2$, then $0 < |x - a| < \delta_2$, so $x \in N'(a; \delta_2)$. Since $x \in N'(a; \delta_2)$ and $x \in domf$, then $x \in N'(a; \delta_2) \cap domf$, so $|f(x)| > \frac{|L|}{2}$. Since $|f(x)| > \frac{|L|}{2} > 0$, then $\frac{2}{|L|} > \frac{1}{|f(x)|} > 0$, so $0 < \frac{1}{|f(x)|} < \frac{2}{|L|}$. Observe that

$$\begin{aligned} \frac{1}{f}(x) - \frac{1}{L}| &= |\frac{1}{f(x)} - \frac{1}{L}| \\ &= |\frac{L - f(x)}{f(x)L}| \\ &= |\frac{f(x) - L}{f(x)L}| \\ &= |f(x) - L| \cdot \frac{1}{|f(x)|} \cdot \frac{1}{|L|} \\ &< \frac{\epsilon |L|^2}{2} \cdot \frac{2}{|L|} \cdot \frac{1}{|L|} \\ &= \epsilon. \end{aligned}$$

Therefore, $\left|\frac{1}{t}(x) - \frac{1}{L}\right| < \epsilon$, so $\lim_{x \to a} \frac{1}{t}(x) = \frac{1}{L}$, as desired.

Theorem 16. limit of a quotient equals quotient of limits

Let f and g be real valued functions.

Let a be an accumulation point of $dom f \cap dom g$.

If the limit of f at a exists and is a real number and the limit of g at a exists and is a nonzero real number, then the limit of $\frac{f}{g}$ exists and

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}.$$

Proof. Suppose the limit of f at a exists and is a real number and the limit of g at a exists and is a nonzero real number.

Then there exist real numbers L and M such that $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$ and $M \neq 0$.

We must prove $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{L}{M}$.

We first prove a is an accumulation point of $dom f \cap dom \frac{1}{g}$.

Let $\delta > 0$ be given.

Since $\lim_{x\to a} g(x) = M$ and $M \neq 0$, then g is bounded away from zero, so there exists $\delta_1 > 0$ such that $|g(x)| > \frac{|M|}{2}$ for all $x \in N'(a; \delta_1) \cap domg$.

Let $\delta_2 = \min\{\delta, \delta_1\}.$

Then $\delta_2 \leq \delta$ and $\delta_2 \leq \delta_1$ and $\delta_2 > 0$.

Since a is an accumulation point of $dom f \cap dom g$ and $\delta_2 > 0$, then there exists $c \in dom f \cap dom g$ such that $c \in N'(a; \delta_2)$.

Since $c \in dom f \cap dom g$, then $c \in dom f$ and $c \in dom g$.

Since $c \in N'(a; \delta_2)$, then $c \in N(a; \delta_2)$ and $c \neq a$.

Since $0 < \delta_2 \leq \delta_1$, then $N(a; \delta_2) \subset N(a; \delta_1)$. Since $c \in N(a; \delta_2)$ and $N(a; \delta_2) \subset N(a; \delta_1)$, then $c \in N(a; \delta_1)$. Since $c \in N(a; \delta_1)$ and $c \neq a$ and $c \in domg$, then $c \in N'(a; \delta_1) \cap domg$, so $|g(c)| > \frac{|M|}{2}$. Since $M \neq 0$, then |M| > 0, so $\frac{|M|}{2} > 0$. Thus, $|g(c)| > \frac{|M|}{2} > 0$, so |g(c)| > 0. Hence $g(c) \neq 0$. Since $c \in domg$ and $g(c) \neq 0$, then $c \in dom\frac{1}{g}$. Since $c \in domf$ and $c \in dom\frac{1}{g}$, then $c \in domf \cap dom\frac{1}{g}$. Since $0 < \delta_2 \leq \delta$, then $N(a; \delta_2) \subset N(a; \delta)$. Since $c \in N(a; \delta_2)$ and $N(a; \delta_2) \subset N(a; \delta)$, then $c \in N(a; \delta)$. Since $c \neq a$, then $c \in N'(a; \delta)$. Hence, there exists $c \in domf \cap dom\frac{1}{g}$ such that $c \in N'(a; \delta)$. Therefore, a is an accumulation point of $domf \cap dom\frac{1}{g}$. Since $\lim_{x \to a} g(x) = M$ and $M \neq 0$, then by the previous lemma, $\lim_{x \to a} \frac{1}{g(x)} = \frac{1}{M}$.

Since a is an accumulation point of $dom f \cap dom g$, then

$$\frac{L}{M} = L \cdot \frac{1}{M}$$

$$= (\lim_{x \to a} f(x))(\lim_{x \to a} \frac{1}{g(x)})$$

$$= \lim_{x \to a} (f(x) \cdot \frac{1}{g(x)})$$

$$= \lim_{x \to a} \frac{f(x)}{g(x)}.$$

Therefore, $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{L}{M}$, as desired.

Lemma 17. For all $n \in \mathbb{N}$ and all $a \in \mathbb{R}$, $\lim_{x \to a} x^n = a^n$.

Proof. Let $a \in \mathbb{R}$ be arbitrary.

We prove $\lim_{x\to a} x^n = a^n$ for all $n \in \mathbb{N}$ by induction on n. Let $S = \{n \in \mathbb{N} : \lim_{x\to a} x^n = a^n\}$. **Basis:** Since $\lim_{x\to a} x = a$, then $1 \in S$. **Induction:** Suppose $k \in S$. Then $k \in \mathbb{N}$ and $\lim_{x\to a} x^k = a^k$. Let $f : \mathbb{R} \to \mathbb{R}$ be the function given by $f(x) = x^k$. Let $g : \mathbb{R} \to \mathbb{R}$ be the function given by g(x) = x. Then f and g are polynomial functions and $dom f = dom g = \mathbb{R}$. Since $dom f \cap dom g = \mathbb{R} \cap \mathbb{R} = \mathbb{R}$ and a is an accumulation point of \mathbb{R} , then a is an accumulation point of $dom f \cap dom g$.

Observe that

$$a^{k+1} = a^k \cdot a$$

= $(\lim_{x \to a} x^k)(\lim_{x \to a} x)$
= $\lim_{x \to a} (x^k \cdot x)$
= $\lim_{x \to a} (x^{k+1}).$

Therefore, $\lim_{x\to a} (x^{k+1}) = a^{k+1}$, so $k+1 \in S$.

Hence, $k \in S$ implies $k + 1 \in S$ for all $k \in \mathbb{N}$.

Since $1 \in S$ and $k \in S$ implies $k + 1 \in S$ for all $k \in \mathbb{N}$, then by induction, $S = \mathbb{N}$.

Therefore, $\lim_{x\to a} x^n = a^n$ for all $n \in \mathbb{N}$.

Theorem 18. limit of a polynomial function

If p is a polynomial function and $c \in \mathbb{R}$, then $\lim_{x\to c} p(x) = p(c)$.

Proof. Suppose p is a polynomial function and $c \in \mathbb{R}$.

Since p is a polynomial function, then there exist a nonnegative integer n and real numbers $a_0, a_1, ..., a_n$ such that $p(x) = a_n x^n + ... + a_1 x + a_0$.

Since n is a nonnegative integer, then $n \in \mathbb{Z}$ and $n \ge 0$, so either n > 0 or n = 0.

We consider these cases separately. **Case 1:** Suppose n = 0. Then $p(x) = a_0$ for all x, so $\lim_{x\to c} p(x) = \lim_{x\to c} a_0 = a_0 = p(c)$. **Case 2:** Suppose n > 0. Then

$$p(c) = a_n c^n + \dots + a_2 c^2 + a_1 c + a_0$$

= $a_n \lim_{x \to c} x^n + \dots + a_2 \lim_{x \to c} x^2 + a_1 \lim_{x \to c} x + \lim_{x \to c} a_0$
= $\lim_{x \to c} a_n x^n + \dots + \lim_{x \to c} a_2 x^2 + \lim_{x \to c} a_1 x + \lim_{x \to c} a_0$
= $\lim_{x \to c} (a_n x^n + \dots + a_2 x^2 + a_1 x + a_0)$
= $\lim_{x \to c} p(x).$

Therefore, $\lim_{x\to c} p(x) = p(c)$, as desired.

Theorem 19. limit of a rational function

Let r be a rational function defined by $r(x) = \frac{p(x)}{q(x)}$ such that p and q are polynomial functions.

If $c \in \mathbb{R}$ such that $q(c) \neq 0$, then $\lim_{x \to c} r(x) = r(c) = \frac{p(c)}{q(c)}$.

Proof. Let $c \in \mathbb{R}$ such that $q(c) \neq 0$.

Observe that c is an accumulation point of $\mathbb{R} = \mathbb{R} \cap \mathbb{R} = domp \cap domq$. Since p is a polynomial function and $c \in \mathbb{R}$, then $\lim_{x \to c} p(x) = p(c)$.

Since q is a polynomial function and $c \in \mathbb{R}$, then $\lim_{x\to c} q(x) = q(c)$. Since $q(c) \neq 0$, then $\lim_{x\to c} q(x) \neq 0$, so

$$r(c) = \frac{p(c)}{q(c)}$$
$$= \frac{\lim_{x \to c} p(x)}{\lim_{x \to c} q(x)}$$
$$= \lim_{x \to c} \frac{p(x)}{q(x)}$$
$$= \lim_{x \to c} r(x).$$

Therefore, $\lim_{x\to c} r(x) = r(c) = \frac{p(c)}{q(c)}$.

Theorem 20. a limit preserves a non strict inequality

Let f and g be real valued functions such that the limit of f at a exists and the limit of g at a exists and a is an accumulation point of dom $f \cap dom g$.

If $f(x) \leq g(x)$ for all $x \in dom f \cap dom g$, then $\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x)$.

Proof. Suppose $f(x) \leq g(x)$ for all $x \in domf \cap domg$.

Since the limit of f at a exists, then there exists $L \in \mathbb{R}$ such that $\lim_{x \to a} f(x) = L$.

Since the limit of g at a exists, then there exists $M \in \mathbb{R}$ such that $\lim_{x \to a} g(x) = M$.

We must prove $L \leq M$. Suppose for the sake of contradiction L > M. Then L - M > 0, so $\frac{L-M}{2} > 0$. Let $\epsilon = \frac{L-M}{2}$. Then $\epsilon > 0$.

Since $\lim_{x\to a} f(x) = L$, then there exists $\delta_1 > 0$ such that for all $x \in dom f$, if $0 < |x - a| < \delta_1$, then $|f(x) - L| < \epsilon$.

Since $\lim_{x\to a} g(x) = M$, then there exists exists $\delta_2 > 0$ such that for all $x \in domg$, if $0 < |x - a| < \delta_2$, then $|g(x) - M| < \epsilon$.

Let $\delta = \min{\{\delta_1, \delta_2\}}$. Then $\delta \leq \delta_1$ and $\delta \leq \delta_2$ and $\delta > 0$.

Since a is an accumulation point of $dom f \cap dom g$ and $\delta > 0$, then there exists $x \in dom f \cap dom g$ such that $x \in N'(a; \delta)$.

Since $x \in dom f \cap domg$, then $x \in dom f$ and $x \in domg$. Since $x \in N'(a; \delta)$, then $x \in N(a; \delta)$ and $x \neq a$, so $|x-a| < \delta$ and |x-a| > 0. Thus, $0 < |x-a| < \delta$. Since $0 < |x-a| < \delta \le \delta_1$, then $0 < |x-a| < \delta_1$. Since $x \in dom f$ and $0 < |x-a| < \delta_1$, then $|f(x) - L| < \epsilon$. Thus, $-\epsilon < f(x) - L < \epsilon$, so $L - \epsilon < f(x) < L + \epsilon$. Since $0 < |x-a| < \delta \le \delta_2$, then $0 < |x-a| < \delta_2$. Since $x \in domg$ and $0 < |x-a| < \delta_2$, then $|g(x) - M| < \epsilon$.

Thus, $-\epsilon < g(x) - M < \epsilon$, so $M - \epsilon < g(x) < M + \epsilon$. Since $x \in dom f \cap domg$, then $f(x) \le g(x)$. Since $\epsilon = \frac{L-M}{2}$, then $2\epsilon = L - M$, so $\epsilon + \epsilon = L - M$. Thus, $M + \epsilon = L - \epsilon$. Therefore, $g(x) < M + \epsilon = L - \epsilon < f(x) \le g(x)$, so g(x) < g(x), a contradiction.

Hence, $L \leq M$, as desired.

Corollary 21. Let f be a real valued function such that $\lim_{x\to a} f(x)$ exists. 1. If $M \in \mathbb{R}$ is an upper bound of rngf, then $\lim_{x\to a} f(x) \leq M$.

2. If $m \in \mathbb{R}$ is a lower bound of rngf, then $m \leq \lim_{x \to a} f(x)$.

Proof. We prove 1.

Since $\lim_{x\to a} f(x)$ exists, then *a* is an accumulation point of *domf* and there exists a real number *L* such that $\lim_{x\to a} f(x) = L$.

Suppose $M \in \mathbb{R}$ is an upper bound of rngf.

Then $f(x) \leq M$ for all $x \in dom f$.

We must prove $L \leq M$.

Let $g : \mathbb{R} \to \mathbb{R}$ be the constant function defined by g(x) = M for all $x \in \mathbb{R}$. Then $\lim_{x \to a} g(x) = \lim_{x \to a} M = M$.

Since $dom f \subset \mathbb{R}$, then $dom f \cap dom g = dom f \cap \mathbb{R} = dom f$.

Since a is an accumulation point of dom f and $dom f = dom f \cap dom g$, then a is an accumulation point of $dom f \cap dom g$.

Let $x \in dom f \cap dom g$.

Then $x \in dom f$, so $f(x) \leq M$.

Hence, $f(x) \leq M$ for all $x \in dom f \cap dom g$.

Therefore, by the inequality rule for function limits, $\lim_{x\to a} f(x) \leq \lim_{x\to a} M$, so $L \leq M$, as desired.

Since $\lim_{x\to a} f(x)$ exists, then *a* is an accumulation point of *domf* and there exists a real number *L* such that $\lim_{x\to a} f(x) = L$.

Suppose $m \in \mathbb{R}$ is a lower bound of rngf.

Then $m \leq f(x)$ for all $x \in dom f$.

We must prove $m \leq L$.

Let $g : \mathbb{R} \to \mathbb{R}$ be the constant function defined by g(x) = m for all $x \in \mathbb{R}$. Then $\lim_{x \to a} g(x) = \lim_{x \to a} m = m$.

Since $dom f \subset \mathbb{R}$, then $dom f \cap dom g = dom f \cap \mathbb{R} = dom f$.

Since a is an accumulation point of dom f and $dom f = dom f \cap dom g$, then a is an accumulation point of $dom f \cap dom g$.

Let $x \in dom f \cap dom g$.

Then $x \in dom f$, so $m \leq f(x)$.

Hence, $m \leq f(x)$ for all $x \in dom f \cap dom g$.

Therefore, by the inequality rule for function limits, $\lim_{x\to a} m \leq \lim_{x\to a} f(x)$, so $m \leq L$, as desired.

Proof. We prove 2.

Corollary 22. limit of a function is between any upper and lower bound of the range of a function

Let f be a real valued function.

If $\lim_{x\to a} f(x)$ exists and there exist real numbers m and M such that $m \leq f(x) \leq M$ for all $x \in domf$, then $m \leq \lim_{x\to a} f(x) \leq M$.

Proof. Let f be a real valued function.

Suppose $\lim_{x\to a} f(x)$ exists and there exist real numbers m and M such that $m \leq f(x) \leq M$ for all $x \in dom f$.

Then $m \leq f(x)$ for all $x \in domf$ and $f(x) \leq M$ for all $x \in domf$. Since $\lim_{x \to a} f(x)$ exists, then there exists $L \in \mathbb{R}$ such that $\lim_{x \to a} f(x) = L$. We must prove $m \leq L \leq M$. Since $f(x) \leq M$ for all $x \in domf$, then M is an upper bound of rngf. Hence, by the previous corollary, $L \leq M$. Since $m \leq f(x)$ for all $x \in domf$, then m is a lower bound of rngf. Hence, by the previous corollary, $m \leq L$.

Therefore, $m \leq L \leq M$, as desired.

Theorem 23. squeeze rule for function limits

Let f, g, h be real valued functions with common domain E. Let a be an accumulation point of E.

If $f(x) \leq h(x) \leq g(x)$ for all $x \in E$ and $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$, then $\lim_{x \to a} h(x) = \lim_{x \to a} f(x) = \lim_{x \to a} g(x)$.

Proof. Suppose $f(x) \le h(x) \le g(x)$ for all $x \in E$ and $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$. Since $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$, then there is a real number L such that $L = \lim_{x \to a} f(x) = \lim_{x \to a} g(x)$.

We must prove $\lim_{x\to a} g(x) = \lim_{x\to a} g(x)$. Let $\epsilon > 0$ be given.

Since $\lim_{x\to a} f(x) = L$, then there exists $\delta_1 > 0$ such that for all $x \in E$, if $0 < |x-a| < \delta_1$, then $|f(x) - L| < \epsilon$.

Since $\lim_{x\to a} g(x) = L$, then there exists $\delta_2 > 0$ such that for all $x \in E$, if $0 < |x-a| < \delta_2$, then $|g(x) - L| < \epsilon$.

Let $\delta = \min\{\delta_1, \delta_2\}$. Then $\delta \leq \delta_1$ and $\delta \leq \delta_2$ and $\delta > 0$. Let $x \in E$ such that $0 < |x - a| < \delta$. Since $x \in E$, then $f(x) \leq h(x) \leq g(x)$. Therefore, $f(x) \leq h(x)$ and $h(x) \leq g(x)$. Since $0 < |x - a| < \delta \leq \delta_1$, then $0 < |x - a| < \delta_1$. Since $x \in E$ and $0 < |x - a| < \delta_1$, then $|f(x) - L| < \epsilon$. Since $0 < |x - a| < \delta \leq \delta_2$, then $0 < |x - a| < \delta_2$. Since $x \in E$ and $0 < |x - a| < \delta_2$, then $|g(x) - L| < \epsilon$. Observe that

$$\begin{aligned} |f(x) - L| &< \epsilon \quad \Leftrightarrow \quad -\epsilon < f(x) - L < \epsilon \\ \Rightarrow \quad -\epsilon < f(x) - L \\ \Leftrightarrow \quad L - \epsilon < f(x). \end{aligned}$$

Since $L - \epsilon < f(x)$ and $f(x) \le h(x)$, then $L - \epsilon < h(x)$, so $-\epsilon < h(x) - L$. Observe that

$$\begin{split} |g(x)-L| < \epsilon & \Leftrightarrow & -\epsilon < g(x)-L < \epsilon \\ & \Rightarrow & g(x)-L < \epsilon \\ & \Leftrightarrow & g(x) < L + \epsilon. \end{split}$$

Since $h(x) \leq g(x)$ and $g(x) < L + \epsilon$, then $h(x) < L + \epsilon$, so $h(x) - L < \epsilon$. Since $-\epsilon < h(x) - L$ and $h(x) - L < \epsilon$, then $-\epsilon < h(x) - L < \epsilon$, so

 $|h(x) - L| < \epsilon.$

Therefore, $\lim_{x\to a} h(x) = L$, as desired.

Proof. Suppose $f(x) \leq h(x) \leq g(x)$ for all $x \in E$ and $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$. Since $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$, then there is a real number L such that $L = \lim_{x \to a} f(x) = \lim_{x \to a} g(x)$.

We must prove $\lim_{x\to a} h(x) = L$.

Since a is an accumulation point of the set E, then there exists a sequence (x_n) of points in $E - \{a\}$ such that $\lim_{n \to \infty} x_n = a$.

Let (x_n) be an arbitrary sequence of points in $E - \{a\}$ such that $\lim_{n \to \infty} x_n = a$.

Since (x_n) is a sequence of points in $E - \{a\}$, then $x_n \in E - \{a\}$ for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$.

Then $x_n \in E - \{a\}$, so $x_n \in E$ and $x_n \neq a$.

Since $x_n \in E$, then $f(x_n) \le h(x_n) \le g(x_n)$.

Hence, $f(x_n) \leq h(x_n) \leq g(x_n)$ for all $n \in \mathbb{N}$.

Since a is an accumulation point of E and $\lim_{x\to a} f(x) = L$ and (x_n) is a sequence of points in $E - \{a\}$ and $\lim_{n\to\infty} x_n = a$, then by the sequential characterization, $(f(x_n))$ is a sequence and $\lim_{n\to\infty} f(x_n) = L$.

Since a is an accumulation point of E and $\lim_{x\to a} g(x) = L$ and (x_n) is a sequence of points in $E - \{a\}$ and $\lim_{n\to\infty} x_n = a$, then by the sequential characterization, $(g(x_n))$ is a sequence and $\lim_{n\to\infty} g(x_n) = L$.

Since $(f(x_n))$ and $(g(x_n))$ and $(h(x_n))$ are sequences and $f(x_n) \leq h(x_n) \leq g(x_n)$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} f(x_n) = L = \lim_{n \to \infty} g(x_n)$, then by the squeeze rule for convergent sequences, $\lim_{n \to \infty} h(x_n) = L$.

Since a is an accumulation point of E and (x_n) is an arbitrary sequence of points in $E - \{a\}$ such that $\lim_{n\to\infty} x_n = a$ and $\lim_{n\to\infty} h(x_n) = L$, then by the sequential characterization, $\lim_{x\to a} h(x) = L$, as desired.