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Limit of a real valued function

Proposition 1. Let f be a real valued function.
Let a be an accumulation point of domf .
If L is a real number, then limx→a f(x) = L iff limx→a |f(x)− L| = 0.

Proof. Suppose L is a real number.
Then

lim
x→a

f(x) = L ⇔

(∀ε > 0)(∃δ > 0)(∀x ∈ domf)(0 < |x− a| < δ → |f(x)− L| < ε) ⇔
(∀ε > 0)(∃δ > 0)(∀x ∈ domf)(0 < |x− a| < δ → ||f(x)− L|| < ε) ⇔

(∀ε > 0)(∃δ > 0)(∀x ∈ domf)(0 < |x− a| < δ → ||f(x)− L| − 0| < ε) ⇔
lim
x→a
|f(x)− L| = 0.

Proposition 2. Let E ⊂ R.
If a is an accumulation point of E, then a is an accumulation point of E −

{a}.

Proof. Suppose a is an accumulation point of E.
Let ε > 0 be given.
Since a is an accumulation point of E, then there exists x ∈ E such that

x ∈ N(a; ε) and x 6= a.
Since x ∈ E and x 6= a, then x ∈ E − {a}.
Thus, there exists x ∈ E − {a} such that x ∈ N(a; ε) and x 6= a.
Therefore, a is an accumulation point of the set E − {a}.

Proposition 3. Let E ⊂ R.
A point a is an accumulation point of E iff there is a sequence (xn) of points

in E − {a} such that limn→∞ xn = a.



Proof. We first prove if a is an accumulation point of E, then there is a sequence
(xn) of points in E − {a} such that limn→∞ xn = a.

Suppose a is an accumulation point of E.
Then for every δ > 0 there exists x ∈ E such that x ∈ N ′(a; δ).
Let δ = 1

n for each n ∈ N.
Then for each n ∈ N, there exists x ∈ E such that x ∈ N ′(a; 1

n ).
Thus, there exists a function f : N→ E such that f(n) ∈ N ′(a; 1

n ) for each
n ∈ N.

Hence, there exists a sequence (xn) in E such that xn ∈ N ′(a; 1
n ) for each

n ∈ N.
Let n ∈ N be given.
Then xn ∈ E and xn ∈ N ′(a; 1

n ).
Since xn ∈ N ′(a; 1

n ), then xn ∈ N(a; 1
n ) and xn 6= a.

Since xn ∈ E and xn 6= a, then xn ∈ E − {a}.
Since xn ∈ N(a; 1

n ), then |xn − a| < 1
n .

Thus, xn ∈ E − {a} and |xn − a| < 1
n for each n ∈ N.

Since xn ∈ E − {a} for each n ∈ N, then {xn : n ∈ N} ⊂ E − {a}, so there
is a sequence (xn) of points in the set E − {a}.

We prove the sequence (xn) converges to a.
Let ε > 0 be given.
Then 1

ε > 0.
Since 1

ε ∈ R, then by the Archimedean property of R, there exists N ∈ N
such that N > 1

ε .
Let n ∈ N such that n > N .
Then n > N > 1

ε , so n > 1
ε .

Hence, ε > 1
n , so 1

n < ε.
Since |xn − a| < 1

n for each n ∈ N, then |xn − a| < 1
n < ε.

Hence, |xn − a| < ε, so limn→∞ xn = a, as desired.

Proof. Conversely, we prove if a is a point and there is a sequence (xn) of points
in E − {a} such that limn→∞ xn = a, then a is an accumulation point of E.

Suppose a is a point and there is a sequence (xn) of points in E − {a} such
that limn→∞ xn = a.

We must prove a is an accumulation point of E.
Let δ > 0 be given.
Since (xn) is a sequence of points in E − {a}, then {xn : n ∈ N} ⊂ E − {a},

so xn ∈ E − {a} for all n ∈ N.
Hence, xn ∈ E and xn 6= a for all n ∈ N.
Since limn→∞ xn = a and δ > 0, then there exists N ∈ N such that if n > N ,

then |xn − a| < δ.
Let n ∈ N such that n > N .
Then |xn − a| < δ, so xn ∈ N(a; δ).
Since n ∈ N, then xn ∈ E and xn 6= a.
Since xn ∈ N(a; δ) and xn 6= a, then xn ∈ N ′(a; δ).
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Thus, there exists xn ∈ E such that xn ∈ N ′(a; δ), so a is an accumulation
point of E.

Theorem 4. sequential characterization of a function limit
Let E ⊂ R.
Let f : E → R be a function.
Let a be an accumulation point of E.
Let L ∈ R.
Then limx→a f(x) = L iff for every sequence (xn) of points in E − {a} such

that limn→∞ xn = a, limn→∞ f(xn) = L.

Proof. We prove if limx→a f(x) = L, then for every sequence (xn) of points in
E − {a} such that limn→∞ xn = a, limn→∞ f(xn) = L.

Suppose limx→a f(x) = L.
Since a is an accumulation point of E, then there is a sequence (xn) of points

in E − {a} such that limn→∞ xn = a.
Let (xn) be an arbitrary sequence of points in E−{a} such that limn→∞ xn =

a.
We must prove limn→∞ f(xn) = L.
Let ε > 0 be given.
Since limx→a f(x) = L, then there exists δ > 0 such that for all x ∈ E, if

0 < |x− a| < δ, then |f(x)− L| < ε.
Since limn→∞ xn = a and δ > 0, then there exists N ∈ N such that if n > N ,

then |xn − a| < δ.
Let n ∈ N such that n > N .
Then |xn − a| < δ.
Since (xn) is a sequence of points in E − {a}, then xn ∈ E − {a} for all

n ∈ N, so xn ∈ E and xn 6= a for all n ∈ N.
Since n ∈ N, then xn ∈ E and xn 6= a.
Since xn 6= a, then |xn − a| > 0.
Thus, 0 < |xn − a| < δ.
Since xn ∈ E and 0 < |xn − a| < δ, then we conclude |f(xn)− L| < ε.
Therefore, limn→∞ f(xn) = L, as desired.

Proof. Conversely, we prove if for every sequence (xn) of points in E−{a} such
that limn→∞ xn = a implies limn→∞ f(xn) = L, then limx→a f(x) = L.

We prove by contrapositive.
Suppose limx→a f(x) 6= L.
Then there exists ε0 > 0 such that for each δ > 0 there corresponds x ∈ E

such that 0 < |x− a| < δ and |f(x)− L| ≥ ε0.
Thus, there exists ε0 > 0 such that for each δ > 0 there corresponds x ∈ E

such that x 6= a and |x− a| < δ and |f(x)−L| ≥ ε0, so there exists ε0 > 0 such
that for each δ > 0 there corresponds x ∈ E − {a} such that |x − a| < δ and
|f(x)− L| ≥ ε0.

Let δ = 1
n for each n ∈ N.

Then for each n ∈ N, there corresponds x ∈ E − {a} such that |x− a| < 1
n

and |f(x)− L| ≥ ε0.
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Thus, there exists a function g : N → R such that g(n) ∈ E − {a} and
|g(n)− a| < 1

n and |f(g(n))−L| ≥ ε0 for each n ∈ N, so there exists a sequence
(xn) in R such that xn ∈ E − {a} and |xn − a| < 1

n and |f(xn) − L| ≥ ε0 for
each n ∈ N.

Since xn ∈ E − {a} for each n ∈ N, then (xn) is a sequence of points in
E − {a}.

We prove limn→∞ xn = a.
Let ε > 0 be given.
Then ε 6= 0, so 1

ε ∈ R.
Hence, by the Archimedean property of R, there exists N ∈ N such that

N > 1
ε .

Let n ∈ N such that n > N .
Then n > N > 1

ε , so n > 1
ε .

Hence, ε > 1
n , so 1

n < ε.
Since n ∈ N and |xn − a| < 1

n for each n ∈ N, then |xn − a| < 1
n .

Thus, |xn − a| < 1
n < ε, so |xn − a| < ε.

Therefore, limn→∞ xn = a, as desired.

We prove limn→∞ f(xn) 6= L.
Let N ∈ N be given.
Let n = N + 1.
Then n ∈ N and n > N .
Since n ∈ N and |f(xn)− L| ≥ ε0 for each n ∈ N, then |f(xn)− L| ≥ ε0.
Thus, there exists ε0 > 0 such that for each N ∈ N, there exists n ∈ N for

which n > N and |f(xn)− L| ≥ ε0.
Therefore, limn→∞ f(xn) 6= L.

Hence, we have shown there exists a sequence (xn) of points in E − {a} such
that limn→∞ xn = a and limn→∞ f(xn) 6= L, as desired.

Proposition 5. limit of an absolute value equals absolute value of a
limit

Let f be a real valued function.
Let a be an accumulation point of domf .
If the limit of f at a exists, then limx→a |f(x)| = | limx→a f(x)|.

Proof. Suppose the limit of f at a exists.
Then there exists a real number L such that limx→a f(x) = L.
We must prove limx→a |f(x)| = |L|.
Let ε > 0 be given.
Since limx→a f(x) = L, then there exists δ > 0 such that for all x ∈ domf ,

if 0 < |x− a| < δ, then |f(x)− L| < ε.
Let x ∈ domf such that 0 < |x− a| < δ.
Then |f(x)− L| < ε.
Hence, ||f(x)| − |L|| ≤ |f(x)− L| < ε, so ||f(x)| − |L|| < ε.
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Therefore, limx→a |f(x)| = |L|.

Lemma 6. Let E ⊂ R.
Let f : E → R be a function.
Let a be a point.
If the limit of f at a exists and is positive, then there exists δ > 0 such that

f(x) > 0 for all x ∈ N ′(a; δ) ∩ E.

Proof. Suppose the limit of f at a exists and is positive.
Then there is a real number L such that limx→a f(x) = L and L > 0.
Since limx→a f(x) = L and L > 0, then there exists δ > 0 such that for all

x ∈ E, if 0 < |x− a| < δ, then |f(x)− L| < L.
Since limx→a f(x) = L, then a is an accumulation point of E, so there exists

x ∈ N ′(a; δ) ∩ E.
Let x ∈ N ′(a; δ) ∩ E be arbitrary.
Then x ∈ N ′(a; δ) and x ∈ E.
Since x ∈ N ′(a; δ), then x ∈ N(a; δ) and x 6= a.
Since x ∈ N(a; δ), then |x− a| < δ.
Since x 6= a, then x− a 6= 0, so |x− a| > 0.
Since 0 < |x− a| and |x− a| < δ, then 0 < |x− a| < δ.
Since x ∈ E and 0 < |x− a| < δ, then |f(x)− L| < L.
Thus, −L < f(x)− L < L, so −L < f(x)− L.
Therefore, 0 < f(x), so f(x) > 0, as desired.

Proposition 7. limit of a square root equals square root of a limit
Let E ⊂ R.
Let f : E → R be a function.
If limx→a f(x) exists and is positive, then limx→a

√
f(x) =

√
limx→a f(x).

Proof. Suppose limx→a f(x) exists and is positive.
Then there exists L ∈ R such that limx→a f(x) = L and L > 0.
Let g(x) =

√
f(x).

Then g is a function and domg = {x ∈ E : g(x) ∈ R} = {x ∈ E :
√
f(x) ∈

R} = {x ∈ E : f(x) ≥ 0}.
We must prove limx→a g(x) =

√
L.

We first prove a is an accumulation point of domg.
Let δ > 0 be given.
Since limx→a f(x) = L and L > 0, then by the previous lemma, there exists

δ1 > 0 such that f(x) > 0 for all x ∈ N ′(a; δ1) ∩ E.
Since limx→a f(x) = L, then a is an accumulation point of E.
Either δ1 ≥ δ or δ1 < δ.
We consider these cases separately.
Case 1: Suppose δ1 ≥ δ.
Since a is an accumulation point of E and δ > 0, then there exists x ∈ E

such that x ∈ N ′(a; δ).
Since x ∈ N ′(a; δ), then x ∈ N(a; δ) and x 6= a.

5



Since 0 < δ ≤ δ1, then N(a; δ) ⊂ N(a; δ1).
Since x ∈ N(a; δ) and N(a; δ) ⊂ N(a; δ1), then x ∈ N(a; δ1).
Since x ∈ N(a; δ1) and x 6= a, then x ∈ N ′(a; δ1).
Since x ∈ N ′(a; δ1) and x ∈ E, then x ∈ N ′(a; δ1) ∩ E, so f(x) > 0.
Since x ∈ E and f(x) > 0, then x ∈ domg.
Therefore, there exists x ∈ domg such that x ∈ N ′(a; δ).
Case 2: Suppose δ1 < δ.
Since a is an accumulation point of E and δ1 > 0, then there exists x ∈ E

such that x ∈ N ′(a; δ1).
Since x ∈ N ′(a; δ1) and x ∈ E, then x ∈ N ′(a; δ1) ∩ E, so f(x) > 0.
Since x ∈ E and f(x) > 0, then x ∈ domg.
Since x ∈ N ′(a; δ1), then x ∈ N(a; δ1) and x 6= a.
Since 0 < δ1 < δ, then N(a; δ1) ⊂ N(a; δ).
Since x ∈ N(a; δ1) and N(a; δ1) ⊂ N(a; δ), then x ∈ N(a; δ).
Since x ∈ N(a; δ) and x 6= a, then x ∈ N ′(a; δ).
Therefore, there exists x ∈ domg such that x ∈ N ′(a; δ).
In all cases, there exists x ∈ domg such that x ∈ N ′(a; δ), so a is an accu-

mulation point of domg.

We next prove limx→a g(x) =
√
L.

Since a is an accumulation point of domg, then there exists a sequence in
domg − {a} that converges to a.

Let (xn) be an arbitrary sequence in domg− {a} such that limn→∞ xn = a.

Let n ∈ N be given.
Then xn ∈ domg − {a}, so xn ∈ domg and xn 6= a.
Since xn ∈ domg and domg ⊂ E, then xn ∈ E.
Since xn ∈ E and xn 6= a, then xn ∈ E − {a}.
Thus, xn ∈ E−{a} for all n ∈ N, so (xn) is a sequence of points in E−{a}.

Since a is an accumulation point of E and limx→a f(x) = L and (xn) is
an arbitrary sequence of points in E − {a} and limn→∞ xn = a, then by the
sequential characterization of a function limit, we have limn→∞ f(xn) = L.

Since limn→∞ f(xn) = L and L > 0 and the limit of a square root of a
convergent sequence equals the square root of the limit, then limn→∞

√
f(xn) =√

limn→∞ f(xn).

Hence, limn→∞ g(xn) = limn→∞
√
f(xn) =

√
limn→∞ f(xn) =

√
L.

Since a is an accumulation point of domg and (xn) is an arbitrary sequence of
points in domg−{a} such that limn→∞ xn = a and limn→∞ g(xn) =

√
L, then by

the sequential characterization of a function limit, we have limx→a g(x) =
√
L,

as desired.
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Algebraic properties of function limits

Theorem 8. scalar multiple rule for limits
Let f be a real valued function.
Let a be a point.
If the limit of f at a exists and is a real number, then for every λ ∈ R, the

limit of λf exists and limx→a λf(x) = λ limx→a f(x).

Proof. Suppose the limit of f at a exists and is a real number.
Then a is an accumulation point of domf and there exists L ∈ R such that

limx→a f(x) = L.
Let λ ∈ R be given.
To prove limx→a λf(x) = λ limx→a f(x), we must prove limx→a(λf)(x) =

λL.
Since dom(λf) = domf and a is an accumulation point of domf , then a is

an accumulation point of dom(λf).
Either λ = 0 or λ 6= 0.
We consider these cases separately.
Case 1: Suppose λ = 0.
Observe that

lim
x→a

(0f)(x) = lim
x→a

(0f(x))

= lim
x→a

0

= 0

= 0L.

Therefore, limx→a(0f)(x) = 0L, as desired.
Case 2: Suppose λ 6= 0.
Let ε > 0.
Since |λ| ≥ 0 and λ 6= 0, then |λ| > 0.
Hence, ε

|λ| > 0.

Since limx→a f(x) = L, then there exists δ > 0 such that for all x ∈ domf ,
if 0 < |x− a| < δ, then |f(x)− L| < ε

|λ| .

Let x ∈ dom(λf) such that 0 < |x− a| < δ.
Then x ∈ domf and 0 < |x− a| < δ, so |f(x)− L| < ε

|λ| .

Observe that

|(λf)(x)− λL| = |λf(x)− λL|
= |λ(f(x)− L)|
= |λ||f(x)− L|

< |λ| ε
|λ|

= ε.

Therefore, |(λf)(x)− λL| < ε, so limx→a(λf)(x) = λL, as desired.
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Theorem 9. limit of a sum equals sum of limits
Let f and g be real valued functions.
Let a be an accumulation point of domf ∩ domg.
If the limit of f at a exists and is a real number and the limit of g at a exists

and is a real number, then the limit of f + g exists and
limx→a(f(x) + g(x)) = limx→a f(x) + limx→a g(x).

Proof. Suppose the limit of f at a exists and is a real number and the limit of
g at a exists and is a real number.

Then there exist real numbers L and M such that limx→a f(x) = L and
limx→a g(x) = M .

To prove limx→a(f(x) + g(x)) = limx→a f(x) + limx→a g(x), we must prove
limx→a(f + g)(x) = L+M .

Since dom(f + g) = domf ∩domg and a is an accumulation point of domf ∩
domg, then a is an accumulation point of dom(f + g).

Let ε > 0 be given.
Then ε

2 > 0.
Since limx→a f(x) = L, then there exists δ1 > 0 such that for all x ∈ domf ,

if 0 < |x− a| < δ1, then |f(x)− L| < ε
2 .

Since limx→a g(x) = M , then there exists δ2 > 0 such that for all x ∈ domg,
if 0 < |x− a| < δ2, then |g(x)−M | < ε

2 .
Let δ = min{δ1, δ2}.
Then δ ≤ δ1 and δ ≤ δ2 and δ > 0.
Let x ∈ dom(f + g) such that 0 < |x− a| < δ.
Since x ∈ dom(f + g), then x ∈ domf ∩ domg, so x ∈ domf and x ∈ domg.
Since 0 < |x− a| < δ ≤ δ1, then 0 < |x− a| < δ1.
Since x ∈ domf and 0 < |x− a| < δ1, then |f(x)− L| < ε

2 .
Since 0 < |x− a| < δ ≤ δ2, then 0 < |x− a| < δ2.
Since x ∈ domg and 0 < |x− a| < δ2, then |g(x)−M | < ε

2 .
Observe that

|(f + g)(x)− (L+M)| = |f(x) + g(x)− L−M |
= |(f(x)− L) + (g(x)−M)|
≤ |f(x)− L|+ |g(x)−M |

<
ε

2
+
ε

2
= ε.

Therefore, |(f + g)(x) − (L + M)| < ε, so limx→a(f + g)(x) = L + M , as
desired.

Corollary 10. limit of a difference equals difference of limits
Let f and g be real valued functions.
Let a be an accumulation point of domf ∩ domg.
If the limit of f at a exists and is a real number and the limit of g at a exists

and is a real number, then the limit of f − g exists and
limx→a(f(x)− g(x)) = limx→a f(x)− limx→a g(x).
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Proof. Suppose the limit of f at a exists and is a real number and the limit of
g at a exists and is a real number.

Then there exist real numbers L and M such that limx→a f(x) = L and
limx→a g(x) = M .

To prove limx→a(f(x)− g(x)) = limx→a f(x)− limx→a g(x), we must prove
limx→a(f − g)(x) = L−M .

Since a is an accumulation point of domf ∩ domg and dom(−g) = domg,
then a is an accumulation point of domf ∩ dom(−g).

Observe that

L−M = lim
x→a

f(x)− lim
x→a

g(x)

= lim
x→a

f(x) + (− lim
x→a

g(x))

= lim
x→a

f(x) + lim
x→a
−g(x)

= lim
x→a

[f(x) + (−g(x))]

= lim
x→a

(f(x)− g(x))

= lim
x→a

(f − g)(x).

Therefore, limx→a(f − g)(x) = L−M , as desired.

Corollary 11. limit of a finite sum equals finite sum of limits
Let n ∈ N with n ≥ 2.
Let a be an accumulation point of

⋂n
i=1 domfi.

Let f1, f2, ..., fn be real valued functions.
Then limx→a[f1(x) + f2(x) + ... + fn(x)] = limx→a f1(x) + limx→a f2(x) +

...+ limx→a fn(x).

Proof. We prove by induction.
Let S = {n ∈ N : n ≥ 2∧ limx→a[f1(x)+f2(x)+ ...+fn(x)] = limx→a f1(x)+

limx→a f2(x) + ...+ limx→a fn(x)}.
Basis: Let n = 2.
Since a is an accumulation point of

⋂2
i=1 domfi = domf1 ∩ domf2 and

limx→a[f1(x) + f2(x)] = limx→a f1(x) + limx→a f2(x), then 2 ∈ S.
Induction:
Suppose k ∈ S.
Then k ∈ N and k ≥ 2 and limx→a[f1(x)+f2(x)+...+fk(x)] = limx→a f1(x)+

limx→a f2(x) + ...+ limx→a fk(x).

Since a is an accumulation point of
⋂k
i=1 domfi and

⋂k
i=1 domfi is a subset

of domfi for each i ∈ {1, 2, ..., k}, then a is an accumulation point of domfi for
each i ∈ {1, 2, ..., k}.

Since k ∈ N, then k + 1 ∈ N and k + 1 ≥ 3 > 2, so k + 1 > 2.
Observe that

9



lim
x→a

[f1(x) + f2(x) + ...+ fk+1(x)] = lim
x→a

[f1(x) + f2(x) + ...+ fk(x) + fk+1(x)]

= lim
x→a

[f1(x) + f2(x) + ...+ fk(x)] + lim
x→a

fk+1(x)

= lim
x→a

f1(x) + lim
x→a

f2(x) + ...+ lim
x→a

fk(x) + lim
x→a

fk+1(x).

Thus, k + 1 ∈ S, so k ∈ S implies k + 1 ∈ S for all natural numbers k ≥ 2.
Since 2 ∈ S and k ∈ S implies k+ 1 ∈ S for all natural numbers k ≥ 2, then

by PMI, limx→a[f1(x) + f2(x) + ... + fn(x)] = limx→a f1(x) + limx→a f2(x) +
...+ limx→a fn(x) for all natural numbers n ≥ 2.

Lemma 12. local boundedness of a function limit
Let E ⊂ R.
Let f : E → R be a function.
Let a be a point.
If the limit of f at a exists, then there exist δ > 0 and M ∈ R such that

|f(x)| ≤M for all x ∈ N(a; δ) ∩ E.

Proof. Suppose the limit of f at a exists.
Then a is an accumulation point of E and there exists L ∈ R such that

limx→a f(x) = L.
Let ε = 1.
Then there exists δ > 0 such that |f(x)− L| < 1 for all x ∈ N ′(a; δ) ∩ E.
Since δ > 0 and a is an accumulation point of E, then there exists c ∈

N ′(a; δ) ∩ E, so c ∈ N ′(a; δ) and c ∈ E.
Since c ∈ N ′(a; δ) and N ′(a; δ) ⊂ N(a; δ), then c ∈ N(a; δ).
Hence, c ∈ N(a; δ) ∩ E, so N(a; δ) ∩ E 6= ∅.
Either a ∈ E or a 6∈ E.
We consider each case separately.
Case 1: Suppose a 6∈ E.
Let M = 1 + |L|.
Let x ∈ N(a; δ) ∩ E be arbitrary.
Then x ∈ N(a; δ) and x ∈ E.
Since x ∈ E and a 6∈ E, then x 6= a.
Since x ∈ N(a; δ) and x 6= a, then x ∈ N ′(a; δ).
Since x ∈ N ′(a; δ) and x ∈ E, then x ∈ N ′(a; δ) ∩ E, so |f(x)− L| < 1.
Observe that

|f(x)| = |f(x)− L+ L|
≤ |f(x)− L|+ |L|
< 1 + |L|
= M.

Therefore, |f(x)| < M .
Case 2: Suppose a ∈ E.
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Let M = max{1 + |L|, |f(a)|}.
Then 1 + |L| ≤M and |f(a)| ≤M .
Let x ∈ N(a; δ) ∩ E be arbitrary.
Then x ∈ N(a; δ) and x ∈ E.
Either x = a or x 6= a.
We consider each case separately.
Case 2a: Suppose x = a.
Then |f(x)| = |f(a)| ≤M , so |f(x)| ≤M .
Case 2b: Suppose x 6= a.
Since x ∈ N(a; δ) and x 6= a, then x ∈ N ′(a; δ).
Since x ∈ N ′(a; δ) and x ∈ E, then x ∈ N(′a; δ) ∩ E, so |f(x)− L| < 1.
Observe that

|f(x)| = |f(x)− L+ L|
≤ |f(x)− L|+ |L|
< 1 + |L|
≤ M.

Therefore, |f(x)| < M .
Hence, in all cases, |f(x)| ≤M .

Theorem 13. limit of a product equals product of limits
Let f and g be real valued functions.
Let a be an accumulation point of domf ∩ domg.
If the limit of f at a exists and is a real number and the limit of g at a exists

and is a real number, then the limit of fg exists and
limx→a(f(x)g(x)) = (limx→a f(x))(limx→a g(x)).

Proof. Suppose the limit of f at a exists and is a real number and the limit of
g at a exists and is a real number.

Then there exist real numbers L and M such that limx→a f(x) = L and
limx→a g(x) = M .

To prove limx→a(f(x)g(x)) = limx→a f(x) · limx→a g(x), we must prove
limx→a(fg)(x) = LM .

Since dom(fg) = domf ∩ domg and a is an accumulation point of domf ∩
domg, then a is an accumulation point of dom(fg).

Let ε > 0 be given.
Since the limit of g exists at a, then g is locally bounded near a.
Hence, there exist δ1 > 0 and b > 0 such that |g(x)| < b for all x ∈ N(a; δ1)∩

domg.
Let e′ = ε

b+|L| .

Since b > 0 and |L| ≥ 0, then b+ |L| > 0, so e′ > 0.
Since limx→a f(x) = L and e′ > 0, then there exists δ2 > 0 such that for all

x ∈ domf , if 0 < |x− a| < δ2, then |f(x)− L| < e′.
Since limx→a g(x) = M and e′ > 0, then there exists δ3 > 0 such that for all

x ∈ domg, if 0 < |x− a| < δ3, then |g(x)−M | < e′.
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Let δ = min{δ1, δ2, δ3}.
Then δ ≤ δ1 and δ ≤ δ2 and δ ≤ δ3 and δ > 0.
Let x ∈ dom(fg) such that 0 < |x− a| < δ.
Since x ∈ dom(fg), then x ∈ domf ∩ domg, so x ∈ domf and x ∈ domg.
Since 0 < |x− a| < δ ≤ δ1, then 0 < |x− a| < δ1, so |x− a| < δ1.
Thus, x ∈ N(a; δ1).
Since x ∈ N(a; δ1) and x ∈ domg, then x ∈ N(a; δ1) ∩ domg, so |g(x)| ≤ b.
Since 0 < |x− a| < δ ≤ δ2, then 0 < |x− a| < δ2.
Since x ∈ domf and 0 < |x− a| < δ2, then |f(x)− L| < e′.
Since 0 < |x− a| < δ ≤ δ3, then 0 < |x− a| < δ3.
Since x ∈ domg and 0 < |x− a| < δ3, then |g(x)−M | < e′.
Since 0 ≤ |f(x)− L| < e′ and 0 ≤ |g(x)| < b, then |f(x)− L||g(x)| < e′b.
Since 0 ≤ |g(x)−M | < e′ and |L| ≥ 0, then |L||g(x)−M | ≤ |L|e′.
Observe that

|(fg)(x)− LM | = |f(x)g(x)− LM |
= |f(x)g(x)− Lg(x) + Lg(x)− LM |
≤ |f(x)g(x)− Lg(x)|+ |Lg(x)− LM |
= |(f(x)− L)g(x)|+ |L(g(x)−M)|
= |f(x)− L||g(x)|+ |L||g(x)−M |
< e′b+ |L|e′

= e′(b+ |L|)
= ε.

Therefore, |(fg)(x)− LM | < ε, so limx→a(fg)(x) = LM , as desired.

Lemma 14. boundedness away from zero
Let E ⊂ R.
Let f : E → R be a function.
Let a be a point.
If there is a real number L such that limx→a f(x) = L and L 6= 0, then there

exists δ > 0 such that |f(x)| > |L|
2 for all x ∈ N ′(a; δ) ∩ E.

Proof. Suppose there is a real number L such that limx→a f(x) = L and L 6= 0.

Since L 6= 0, then |L| > 0, so |L|2 > 0.
Since limx→a f(x) = L, then a is an accumulation point of E and there exists

δ > 0 such that |f(x)− L| < |L|
2 for all x ∈ N ′(a; δ) ∩ E.

Since a is an accumulation point of E and δ > 0, then N ′(a; δ) ∩ E 6= ∅.
Let x ∈ N ′(a; δ) ∩ E be arbitrary.

Then |f(x)− L| < |L|
2 .

Since |L|2 > |f(x)− L| ≥ |L| − |f(x)|, then |L|2 > |L| − |f(x)|.
Therefore, |f(x)| > |L|

2 , as desired.
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Lemma 15. Let f be a real valued function.
Let a be a point.
If the limit of f at a exists and is a nonzero real number, then the limit of

1
f exists and limx→a

1
f(x) = 1

limx→a f(x)
.

Proof. Suppose the limit of f at a exists and is a nonzero real number.
Then a is a point of accumulation of domf and there exists a real number

L such that limx→a f(x) = L and L 6= 0.
To prove limx→a

1
f(x) = 1

limx→a f(x)
, we must prove limx→a

1
f (x) = 1

L .

We first prove a is an accumulation point of dom 1
f .

Let δ > 0 be given.
Since limx→a f(x) = L and L 6= 0, then f is bounded away from zero.

Hence, there exists δ1 > 0 such that |f(x)| > |L|
2 for all x ∈ N ′(a; δ1)∩domf .

Let δ2 = min{δ, δ1}.
Then δ2 ≤ δ and δ2 ≤ δ1 and δ2 > 0.
Since a is an accumulation point of domf and δ2 > 0, then there exists

c ∈ domf such that c ∈ N ′(a; δ2).
Since c ∈ N ′(a; δ2), then c ∈ N(a; δ2) and c 6= a.
Since 0 < δ2 ≤ δ1, then N(a; δ2) ⊂ N(a; δ1).
Since c ∈ N(a; δ2) and N(a; δ2) ⊂ N(a; δ1), then c ∈ N(a; δ1).
Since c ∈ N(a; δ1) and c 6= a and c ∈ domf , then c ∈ N ′(a; δ1) ∩ domf , so

|f(c)| > |L|
2 .

Since L 6= 0, then |L| > 0, so |L|2 > 0.

Thus, |f(c)| > |L|
2 > 0, so |f(c)| > 0.

Hence f(c) 6= 0.
Since c ∈ domf and f(c) 6= 0, then c ∈ dom 1

f .

Since 0 < δ2 ≤ δ, then N(a; δ2) ⊂ N(a; δ).
Since c ∈ N(a; δ2) and N(a; δ2) ⊂ N(a; δ), then c ∈ N(a; δ).
Since c 6= a, then c ∈ N ′(a; δ).
Hence, there exists c ∈ dom 1

f such that c ∈ N ′(a; δ).

Therefore, a is an accumulation point of dom 1
f .

Proof. To prove limx→a
1
f (x) = 1

L , let ε > 0 be given.

Since L 6= 0, then 1
L ∈ R and |L| > 0.

Since ε > 0 and |L|2 > 0, then ε|L|2
2 > 0.

Since limx→a f(x) = L, then there exists δ1 > 0 such that for all x ∈ domf ,

if 0 < |x− a| < δ1, then |f(x)− L| < ε|L|2
2 .

Since limx→a f(x) = L and L 6= 0, then f is bounded away from zero.

Hence, there exists δ2 > 0 such that |f(x)| > |L|
2 for all x ∈ N ′(a; δ2)∩domf .

Let δ = min{δ1, δ2}.
Then δ ≤ δ1 and δ ≤ δ2 and δ > 0.
Let x ∈ dom 1

f such that 0 < |x− a| < δ.

Since x ∈ dom 1
f , then x ∈ domf and f(x) 6= 0.

Since 0 < |x− a| < δ ≤ δ1, then 0 < |x− a| < δ1.
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Thus, x ∈ domf and 0 < |x− a| < δ1, so |f(x)− L| < ε|L|2
2 .

Hence, 0 ≤ |f(x)− L| < ε|L|2
2 .

Since 0 < |x− a| < δ ≤ δ2, then 0 < |x− a| < δ2, so x ∈ N ′(a; δ2).

Since x ∈ N ′(a; δ2) and x ∈ domf , then x ∈ N ′(a; δ2)∩domf , so |f(x)| > |L|
2 .

Since |f(x)| > |L|
2 > 0, then 2

|L| >
1

|f(x)| > 0, so 0 < 1
|f(x)| <

2
|L| .

Observe that

| 1
f

(x)− 1

L
| = | 1

f(x)
− 1

L
|

= |L− f(x)

f(x)L
|

= |f(x)− L
f(x)L

|

= |f(x)− L| · 1

|f(x)|
· 1

|L|

<
ε|L|2

2
· 2

|L|
· 1

|L|
= ε.

Therefore, | 1f (x)− 1
L | < ε, so limx→a

1
f (x) = 1

L , as desired.

Theorem 16. limit of a quotient equals quotient of limits
Let f and g be real valued functions.
Let a be an accumulation point of domf ∩ domg.
If the limit of f at a exists and is a real number and the limit of g at a exists

and is a nonzero real number, then the limit of f
g exists and

limx→a
f(x)
g(x) = limx→a f(x)

limx→a g(x)
.

Proof. Suppose the limit of f at a exists and is a real number and the limit of
g at a exists and is a nonzero real number.

Then there exist real numbers L and M such that limx→a f(x) = L and
limx→a g(x) = M and M 6= 0.

We must prove limx→a
f(x)
g(x) = L

M .

We first prove a is an accumulation point of domf ∩ dom 1
g .

Let δ > 0 be given.
Since limx→a g(x) = M and M 6= 0, then g is bounded away from zero, so

there exists δ1 > 0 such that |g(x)| > |M |
2 for all x ∈ N ′(a; δ1) ∩ domg.

Let δ2 = min{δ, δ1}.
Then δ2 ≤ δ and δ2 ≤ δ1 and δ2 > 0.
Since a is an accumulation point of domf ∩ domg and δ2 > 0, then there

exists c ∈ domf ∩ domg such that c ∈ N ′(a; δ2).
Since c ∈ domf ∩ domg, then c ∈ domf and c ∈ domg.
Since c ∈ N ′(a; δ2), then c ∈ N(a; δ2) and c 6= a.
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Since 0 < δ2 ≤ δ1, then N(a; δ2) ⊂ N(a; δ1).
Since c ∈ N(a; δ2) and N(a; δ2) ⊂ N(a; δ1), then c ∈ N(a; δ1).
Since c ∈ N(a; δ1) and c 6= a and c ∈ domg, then c ∈ N ′(a; δ1) ∩ domg, so

|g(c)| > |M |
2 .

Since M 6= 0, then |M | > 0, so |M |2 > 0.

Thus, |g(c)| > |M |
2 > 0, so |g(c)| > 0.

Hence g(c) 6= 0.
Since c ∈ domg and g(c) 6= 0, then c ∈ dom 1

g .

Since c ∈ domf and c ∈ dom 1
g , then c ∈ domf ∩ dom 1

g .

Since 0 < δ2 ≤ δ, then N(a; δ2) ⊂ N(a; δ).
Since c ∈ N(a; δ2) and N(a; δ2) ⊂ N(a; δ), then c ∈ N(a; δ).
Since c 6= a, then c ∈ N ′(a; δ).
Hence, there exists c ∈ domf ∩ dom 1

g such that c ∈ N ′(a; δ).

Therefore, a is an accumulation point of domf ∩ dom 1
g .

Since limx→a g(x) = M andM 6= 0, then by the previous lemma, limx→a
1

g(x) =
1
M .

Since a is an accumulation point of domf ∩ domg, then

L

M
= L · 1

M

= ( lim
x→a

f(x))( lim
x→a

1

g(x)
)

= lim
x→a

(f(x) · 1

g(x)
)

= lim
x→a

f(x)

g(x)
.

Therefore, limx→a
f(x)
g(x) = L

M , as desired.

Lemma 17. For all n ∈ N and all a ∈ R, limx→a x
n = an.

Proof. Let a ∈ R be arbitrary.
We prove limx→a x

n = an for all n ∈ N by induction on n.
Let S = {n ∈ N : limx→a x

n = an}.
Basis:
Since limx→a x = a, then 1 ∈ S.
Induction:
Suppose k ∈ S.
Then k ∈ N and limx→a x

k = ak.
Let f : R→ R be the function given by f(x) = xk.
Let g : R→ R be the function given by g(x) = x.
Then f and g are polynomial functions and domf = domg = R.
Since domf ∩ domg = R∩R = R and a is an accumulation point of R, then

a is an accumulation point of domf ∩ domg.
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Observe that

ak+1 = ak · a
= ( lim

x→a
xk)( lim

x→a
x)

= lim
x→a

(xk · x)

= lim
x→a

(xk+1).

Therefore, limx→a(xk+1) = ak+1, so k + 1 ∈ S.
Hence, k ∈ S implies k + 1 ∈ S for all k ∈ N.
Since 1 ∈ S and k ∈ S implies k + 1 ∈ S for all k ∈ N, then by induction,

S = N.
Therefore, limx→a x

n = an for all n ∈ N.

Theorem 18. limit of a polynomial function
If p is a polynomial function and c ∈ R, then limx→c p(x) = p(c).

Proof. Suppose p is a polynomial function and c ∈ R.
Since p is a polynomial function, then there exist a nonnegative integer n

and real numbers a0, a1, ..., an such that p(x) = anx
n + ...+ a1x+ a0.

Since n is a nonnegative integer, then n ∈ Z and n ≥ 0, so either n > 0 or
n = 0.

We consider these cases separately.
Case 1: Suppose n = 0.
Then p(x) = a0 for all x, so limx→c p(x) = limx→c a0 = a0 = p(c).
Case 2: Suppose n > 0.
Then

p(c) = anc
n + ...+ a2c

2 + a1c+ a0

= an lim
x→c

xn + ...+ a2 lim
x→c

x2 + a1 lim
x→c

x+ lim
x→c

a0

= lim
x→c

anx
n + ...+ lim

x→c
a2x

2 + lim
x→c

a1x+ lim
x→c

a0

= lim
x→c

(anx
n + ...+ a2x

2 + a1x+ a0)

= lim
x→c

p(x).

Therefore, limx→c p(x) = p(c), as desired.

Theorem 19. limit of a rational function

Let r be a rational function defined by r(x) = p(x)
q(x) such that p and q are

polynomial functions.

If c ∈ R such that q(c) 6= 0, then limx→c r(x) = r(c) = p(c)
q(c) .

Proof. Let c ∈ R such that q(c) 6= 0.
Observe that c is an accumulation point of R = R ∩ R = domp ∩ domq.
Since p is a polynomial function and c ∈ R, then limx→c p(x) = p(c).
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Since q is a polynomial function and c ∈ R, then limx→c q(x) = q(c).
Since q(c) 6= 0, then limx→c q(x) 6= 0, so

r(c) =
p(c)

q(c)

=
limx→c p(x)

limx→c q(x)

= lim
x→c

p(x)

q(x)

= lim
x→c

r(x).

Therefore, limx→c r(x) = r(c) = p(c)
q(c) .

Theorem 20. a limit preserves a non strict inequality
Let f and g be real valued functions such that the limit of f at a exists and

the limit of g at a exists and a is an accumulation point of domf ∩ domg.
If f(x) ≤ g(x) for all x ∈ domf ∩ domg, then limx→a f(x) ≤ limx→a g(x).

Proof. Suppose f(x) ≤ g(x) for all x ∈ domf ∩ domg.
Since the limit of f at a exists, then there exists L ∈ R such that limx→a f(x) =

L.
Since the limit of g at a exists, then there existsM ∈ R such that limx→a g(x) =

M .
We must prove L ≤M .
Suppose for the sake of contradiction L > M .
Then L−M > 0, so L−M

2 > 0.

Let ε = L−M
2 .

Then ε > 0.
Since limx→a f(x) = L, then there exists δ1 > 0 such that for all x ∈ domf ,

if 0 < |x− a| < δ1, then |f(x)− L| < ε.
Since limx→a g(x) = M , then there exists exists δ2 > 0 such that for all

x ∈ domg, if 0 < |x− a| < δ2, then |g(x)−M | < ε.
Let δ = min{δ1, δ2}.
Then δ ≤ δ1 and δ ≤ δ2 and δ > 0.
Since a is an accumulation point of domf ∩ domg and δ > 0, then there

exists x ∈ domf ∩ domg such that x ∈ N ′(a; δ).
Since x ∈ domf ∩ domg, then x ∈ domf and x ∈ domg.
Since x ∈ N ′(a; δ), then x ∈ N(a; δ) and x 6= a, so |x−a| < δ and |x−a| > 0.
Thus, 0 < |x− a| < δ.
Since 0 < |x− a| < δ ≤ δ1, then 0 < |x− a| < δ1.
Since x ∈ domf and 0 < |x− a| < δ1, then |f(x)− L| < ε.
Thus, −ε < f(x)− L < ε, so L− ε < f(x) < L+ ε.
Since 0 < |x− a| < δ ≤ δ2, then 0 < |x− a| < δ2.
Since x ∈ domg and 0 < |x− a| < δ2, then |g(x)−M | < ε.
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Thus, −ε < g(x)−M < ε, so M − ε < g(x) < M + ε.
Since x ∈ domf ∩ domg, then f(x) ≤ g(x).
Since ε = L−M

2 , then 2ε = L−M , so ε+ ε = L−M .
Thus, M + ε = L− ε.
Therefore, g(x) < M + ε = L − ε < f(x) ≤ g(x), so g(x) < g(x), a contra-

diction.
Hence, L ≤M , as desired.

Corollary 21. Let f be a real valued function such that limx→a f(x) exists.
1. If M ∈ R is an upper bound of rngf , then limx→a f(x) ≤M .
2. If m ∈ R is a lower bound of rngf , then m ≤ limx→a f(x).

Proof. We prove 1.
Since limx→a f(x) exists, then a is an accumulation point of domf and there

exists a real number L such that limx→a f(x) = L.
Suppose M ∈ R is an upper bound of rngf .
Then f(x) ≤M for all x ∈ domf .
We must prove L ≤M .
Let g : R→ R be the constant function defined by g(x) = M for all x ∈ R.
Then limx→a g(x) = limx→aM = M .
Since domf ⊂ R, then domf ∩ domg = domf ∩ R = domf .
Since a is an accumulation point of domf and domf = domf ∩ domg, then

a is an accumulation point of domf ∩ domg.
Let x ∈ domf ∩ domg.
Then x ∈ domf , so f(x) ≤M .
Hence, f(x) ≤M for all x ∈ domf ∩ domg.
Therefore, by the inequality rule for function limits, limx→a f(x) ≤ limx→aM ,

so L ≤M , as desired.

Proof. We prove 2.
Since limx→a f(x) exists, then a is an accumulation point of domf and there

exists a real number L such that limx→a f(x) = L.
Suppose m ∈ R is a lower bound of rngf .
Then m ≤ f(x) for all x ∈ domf .
We must prove m ≤ L.
Let g : R→ R be the constant function defined by g(x) = m for all x ∈ R.
Then limx→a g(x) = limx→am = m.
Since domf ⊂ R, then domf ∩ domg = domf ∩ R = domf .
Since a is an accumulation point of domf and domf = domf ∩ domg, then

a is an accumulation point of domf ∩ domg.
Let x ∈ domf ∩ domg.
Then x ∈ domf , so m ≤ f(x).
Hence, m ≤ f(x) for all x ∈ domf ∩ domg.
Therefore, by the inequality rule for function limits, limx→am ≤ limx→a f(x),

so m ≤ L, as desired.
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Corollary 22. limit of a function is between any upper and lower
bound of the range of a function

Let f be a real valued function.
If limx→a f(x) exists and there exist real numbers m and M such that m ≤

f(x) ≤M for all x ∈ domf , then m ≤ limx→a f(x) ≤M .

Proof. Let f be a real valued function.
Suppose limx→a f(x) exists and there exist real numbers m and M such that

m ≤ f(x) ≤M for all x ∈ domf .
Then m ≤ f(x) for all x ∈ domf and f(x) ≤M for all x ∈ domf .
Since limx→a f(x) exists, then there exists L ∈ R such that limx→a f(x) = L.
We must prove m ≤ L ≤M .
Since f(x) ≤M for all x ∈ domf , then M is an upper bound of rngf .
Hence, by the previous corollary, L ≤M .
Since m ≤ f(x) for all x ∈ domf , then m is a lower bound of rngf .
Hence, by the previous corollary, m ≤ L.
Therefore, m ≤ L ≤M , as desired.

Theorem 23. squeeze rule for function limits
Let f, g, h be real valued functions with common domain E.
Let a be an accumulation point of E.
If f(x) ≤ h(x) ≤ g(x) for all x ∈ E and limx→a f(x) = limx→a g(x), then

limx→a h(x) = limx→a f(x) = limx→a g(x).

Proof. Suppose f(x) ≤ h(x) ≤ g(x) for all x ∈ E and limx→a f(x) = limx→a g(x).
Since limx→a f(x) = limx→a g(x), then there is a real number L such that

L = limx→a f(x) = limx→a g(x).
We must prove limx→a h(x) = L.
Let ε > 0 be given.
Since limx→a f(x) = L, then there exists δ1 > 0 such that for all x ∈ E, if

0 < |x− a| < δ1, then |f(x)− L| < ε.
Since limx→a g(x) = L, then there exists δ2 > 0 such that for all x ∈ E, if

0 < |x− a| < δ2, then |g(x)− L| < ε.
Let δ = min{δ1, δ2}.
Then δ ≤ δ1 and δ ≤ δ2 and δ > 0.
Let x ∈ E such that 0 < |x− a| < δ.
Since x ∈ E, then f(x) ≤ h(x) ≤ g(x).
Therefore, f(x) ≤ h(x) and h(x) ≤ g(x).
Since 0 < |x− a| < δ ≤ δ1, then 0 < |x− a| < δ1.
Since x ∈ E and 0 < |x− a| < δ1, then |f(x)− L| < ε.
Since 0 < |x− a| < δ ≤ δ2, then 0 < |x− a| < δ2.
Since x ∈ E and 0 < |x− a| < δ2, then |g(x)− L| < ε.
Observe that

|f(x)− L| < ε ⇔ −ε < f(x)− L < ε

⇒ −ε < f(x)− L
⇔ L− ε < f(x).
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Since L− ε < f(x) and f(x) ≤ h(x), then L− ε < h(x), so −ε < h(x)− L.
Observe that

|g(x)− L| < ε ⇔ −ε < g(x)− L < ε

⇒ g(x)− L < ε

⇔ g(x) < L+ ε.

Since h(x) ≤ g(x) and g(x) < L+ ε , then h(x) < L+ ε, so h(x)− L < ε.
Since −ε < h(x) − L and h(x) − L < ε, then −ε < h(x) − L < ε, so

|h(x)− L| < ε.
Therefore, limx→a h(x) = L, as desired.

Proof. Suppose f(x) ≤ h(x) ≤ g(x) for all x ∈ E and limx→a f(x) = limx→a g(x).
Since limx→a f(x) = limx→a g(x), then there is a real number L such that

L = limx→a f(x) = limx→a g(x).
We must prove limx→a h(x) = L.
Since a is an accumulation point of the set E, then there exists a sequence

(xn) of points in E − {a} such that limn→∞ xn = a.
Let (xn) be an arbitrary sequence of points in E−{a} such that limn→∞ xn =

a.
Since (xn) is a sequence of points in E − {a}, then xn ∈ E − {a} for all

n ∈ N.
Let n ∈ N.
Then xn ∈ E − {a}, so xn ∈ E and xn 6= a.
Since xn ∈ E, then f(xn) ≤ h(xn) ≤ g(xn).
Hence, f(xn) ≤ h(xn) ≤ g(xn) for all n ∈ N.
Since a is an accumulation point of E and limx→a f(x) = L and (xn) is

a sequence of points in E − {a} and limn→∞ xn = a, then by the sequential
characterization, (f(xn)) is a sequence and limn→∞ f(xn) = L.

Since a is an accumulation point of E and limx→a g(x) = L and (xn) is
a sequence of points in E − {a} and limn→∞ xn = a, then by the sequential
characterization, (g(xn)) is a sequence and limn→∞ g(xn) = L.

Since (f(xn)) and (g(xn)) and (h(xn)) are sequences and f(xn) ≤ h(xn) ≤
g(xn) for all n ∈ N and limn→∞ f(xn) = L = limn→∞ g(xn), then by the squeeze
rule for convergent sequences, limn→∞ h(xn) = L.

Since a is an accumulation point of E and (xn) is an arbitrary sequence of
points in E − {a} such that limn→∞ xn = a and limn→∞ h(xn) = L, then by
the sequential characterization, limx→a h(x) = L, as desired.
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