Limits of real valued functions Examples

Jason Sass

June 29, 2021

Limit of a real valued function

Example 1. limit of a constant function

For every $k \in \mathbb{R}, \lim _{x \rightarrow a} k=k$. (limit of a constant k is k)
Proof. Let $k \in \mathbb{R}$ be arbitrary.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=k$ for all $x \in \mathbb{R}$.
Let a be an accumulation point of \mathbb{R}.
Let $\epsilon>0$ be given.
Let $\delta=1$.
Let $x \in \mathbb{R}$ such that $0<|x-a|<\delta$.
Since $|f(x)-k|=|k-k|=0<\epsilon$, then the conditional if $0<|x-a|<\delta$, then $|k-k|<\epsilon$ is trivially true.

Therefore, $\lim _{x \rightarrow a} k=k$.
Example 2. limit of the identity function
For all $a \in \mathbb{R}, \lim _{x \rightarrow a} x=a$.
Proof. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=x$ for all $x \in \mathbb{R}$.
Let $a \in \mathbb{R}$ be given.
Since every real number is an accumulation point of \mathbb{R}, then a is an accumulation point of \mathbb{R}, the domain of f.

Let $\epsilon>0$ be given.
Let $\delta=\epsilon$.
Let $x \in \mathbb{R}$ such that $0<|x-a|<\delta$.
Then $|f(x)-a|=|x-a|<\delta=\epsilon$, so $|f(x)-a|<\epsilon$.
Therefore, $\lim _{x \rightarrow a} x=a$.
Example 3. limit of the square function
For all $a \in \mathbb{R}, \lim _{x \rightarrow a} x^{2}=a^{2}$.
Proof. Let a be an arbitrary real number.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x^{2}$ for all $x \in \mathbb{R}$.
Since every real number is an accumulation point of \mathbb{R}, then a is an accumulation point of \mathbb{R}, the domain of f.

We must prove $\lim _{x \rightarrow a} x^{2}=a^{2}$.

Let $\epsilon>0$ be given.
Let $\delta=\min \left\{1, \frac{\epsilon}{1+2|a|}\right\}$.
Then $\delta \leq 1$ and $\delta \leq \frac{\epsilon}{1+2|a|}$.
Since $|a| \geq 0$, then $2|a| \geq 0$, so $1+2|a| \geq 1>0$.
Hence, $1+2|a|>0$, so $\frac{\epsilon}{1+2|a|}>0$.
Thus, $\delta>0$.
Let $x \in \mathbb{R}$ such that $0<|x-a|<\delta$.
Since $0<|x-a|<\delta$, then $|x-a|<\delta$.
Since

$$
\begin{aligned}
|x+a| & =|x-a+2 a| \\
& \leq|x-a|+|2 a| \\
& =|x-a|+2|a| \\
& <\delta+2|a| \\
& \leq 1+2|a|,
\end{aligned}
$$

then $0 \leq|x+a|<1+2|a|$.
Hence,

$$
\begin{aligned}
\left|x^{2}-a^{2}\right| & =|(x-a)(x+a)| \\
& =|x-a||x+a| \\
& <\delta(1+2|a|) \\
& \leq \frac{\epsilon}{1+2|a|} \cdot(1+2|a|) \\
& =\epsilon .
\end{aligned}
$$

Therefore, $\left|x^{2}-a^{2}\right|<\epsilon$, as desired.
Example 4. limit of the cube function
For all $a \in \mathbb{R}, \lim _{x \rightarrow a} x^{3}=a^{3}$.
Proof. Let a be an arbitrary real number.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x^{3}$ for all $x \in \mathbb{R}$.
Since every real number is an accumulation point of \mathbb{R}, then a is an accumulation point of \mathbb{R}, the domain of f.

We must prove $\lim _{x \rightarrow a} x^{3}=a^{3}$.
Let $\epsilon>0$ be given.
Let $\delta=\min \left\{1, \frac{\epsilon}{1+3|a|+3|a|^{2}}\right\}$.
Then $\delta \leq 1$ and $\delta \leq \frac{\epsilon}{1+3|a|+3|a|^{2}}$.
Since $|a| \geq 0$, then $\frac{\epsilon}{1+3|a|+3|a|^{2}}>0$, so $\delta>0$.
Let $x \in \mathbb{R}$ such that $0<|x-a|<\delta$.
Since

$$
\begin{aligned}
|x| & =|(x-a)+a| \\
& \leq|x-a|+|a| \\
& <\delta+|a| \\
& \leq 1+|a|
\end{aligned}
$$

then $|x|<1+|a|$.
Since

$$
\begin{aligned}
\left|x^{2}+a x+a^{2}\right| & \leq\left|x^{2}+a x\right|+|a|^{2} \\
& \leq|x|^{2}+|a||x|+|a|^{2} \\
& <(1+|a|)^{2}+|a|(1+|a|)+|a|^{2} \\
& =1+3|a|+3|a|^{2}
\end{aligned}
$$

then $0 \leq\left|x^{2}+a x+a^{2}\right|<1+3|a|+3|a|^{2}$.
Hence,

$$
\begin{aligned}
\left|x^{3}-a^{3}\right| & =\left|(x-a)\left(x^{2}+a x+a^{2}\right)\right| \\
& =|x-a|\left|x^{2}+a x+a^{2}\right| \\
& <\delta \cdot\left(1+3|a|+3|a|^{2}\right) \\
& \leq \frac{\epsilon}{1+3|a|+3|a|^{2}} \cdot\left(1+3|a|+3|a|^{2}\right) \\
& =\epsilon
\end{aligned}
$$

Therefore, $\left|f(x)-a^{3}\right|<\epsilon$, as desired.
Example 5. limit of the reciprocal function
For all positive real $a, \lim _{x \rightarrow a} \frac{1}{x}=\frac{1}{a}$.
Proof. Let a be a positive real number.
Then $a \in \mathbb{R}$ and $a>0$.
Let $f: \mathbb{R}^{*} \rightarrow \mathbb{R}$ be the function defined by $f(x)=\frac{1}{x}$ for all $x \in \mathbb{R}^{*}$.
We first show that a is an accumulation point of \mathbb{R}^{*}, the domain of f.
Since $a>0$, then $a \in(0, \infty)$.
Since $(0, \infty)$ is an interval, then a is an accumulation point of $(0, \infty)$.
Since $(0, \infty) \subset(-\infty, 0) \cup(0, \infty)=\mathbb{R}-\{0\}=\mathbb{R}^{*}$, then a is an accumulation point of \mathbb{R}^{*}.

To prove $\lim _{x \rightarrow a} \frac{1}{x}=\frac{1}{a}$, let $\epsilon>0$ be given.
Let $\delta=\min \left\{\frac{a}{2}, \frac{a^{2} \epsilon}{2}\right\}$.
Then $\delta \leq \frac{a}{2}$ and $\delta \leq \frac{a^{2} \epsilon}{2}$ and $\delta>0$.
Let $x \in \mathbb{R}^{*}$ such that $0<|x-a|<\delta$.
Then $0<|x-a|$ and $|x-a|<\delta$.
Since $x \in \mathbb{R}^{*}$, then $x \in \mathbb{R}$ and $x \neq 0$, so $|x|>0$.
Since $|x-a|<\delta \leq \frac{a}{2}$, then $|x-a|<\frac{a}{2}$.
Since $\frac{a}{2}>|x-a| \geq|a|-|x|=a-|x|$, then $\frac{a}{2}>a-|x|$, so $|x|>\frac{a}{2}>0$.
Thus, $0<\frac{a}{2}<|x|$, so $0<\frac{1}{|x|}<\frac{2}{a}$.

Observe that

$$
\begin{aligned}
\left|\frac{1}{x}-\frac{1}{a}\right| & =\left|\frac{1}{a}-\frac{1}{x}\right| \\
& =\left|\frac{x-a}{a x}\right| \\
& =\frac{1}{a} \cdot \frac{1}{|x|} \cdot|x-a| \\
& <\frac{1}{a} \cdot \frac{2}{a} \cdot \delta \\
& =\frac{2}{a^{2}} \cdot \delta \\
& \leq \frac{2}{a^{2}} \cdot \frac{a^{2} \epsilon}{2} \\
& =\epsilon .
\end{aligned}
$$

Therefore, $\left|f(x)-\frac{1}{a}\right|<\epsilon$, as desired.
Example 6. limit of the absolute value function
For all $a \in \mathbb{R}, \lim _{x \rightarrow a}|x|=|a|$.
Proof. Let a be an arbitrary real number.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=|x|$ for all $x \in \mathbb{R}$.
Since every real number is an accumulation point of \mathbb{R}, then a is an accumulation point of \mathbb{R}, the domain of f.

To prove $\lim _{x \rightarrow a}|x|=|a|$, let $\epsilon>0$ be given.
Let $\delta=\epsilon$.
Then $\delta>0$.
Let $x \in \mathbb{R}$ such that $0<|x-a|<\delta$.
Then $||x|-|a|| \leq|x-a|<\delta=\epsilon$, so $\| x|-|a||<\epsilon$, as desired.

Example 7. limit of the square root function

For all $a \geq 0, \lim _{x \rightarrow a} \sqrt{x}=\sqrt{a}$.
Proof. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a function defined by $f(x)=\sqrt{x}$ for all $x \geq 0$.
Let $a \geq 0$ be given.
Either $a>0$ or $a=0$.
We consider each case separately.
Case 1: Suppose $a=0$.
Observe that 0 is an accumulation point of the set $[0, \infty)$, the domain of f.
We must prove $\lim _{x \rightarrow 0} \sqrt{x}=0$.
Let $\epsilon>0$ be given.
Let $\delta=\epsilon^{2}$.
Then $\delta>0$.
Let $x \geq 0$ such that $0<|x|<\delta$.
Then $0<x<\delta$, so $0<\sqrt{x}<\sqrt{\delta}$.
Thus, $|\sqrt{x}|=\sqrt{x}<\sqrt{\delta}=\sqrt{\epsilon^{2}}=|\epsilon|=\epsilon$, so $|\sqrt{x}|<\epsilon$, as desired.
Case 2: Suppose $a>0$.

Observe that a is an accumulation point of the set $[0, \infty)$, the domain of f. We must prove $\lim _{x \rightarrow a} \sqrt{x}=\sqrt{a}$.
Let $\epsilon>0$ be given.
Let $\delta=\epsilon \sqrt{a}$.
Since $a>0$, then $\sqrt{a}>0$.
Since $\epsilon>0$ and $\sqrt{a}>0$, then $\delta>0$.
Let $x \in[0, \infty)$ such that $0<|x-a|<\delta$.
Since $x \in[0, \infty)$, then $x \geq 0$, so $\sqrt{x} \geq 0$.
Since $\sqrt{x} \geq 0$ and $\sqrt{a}>0$, then $\sqrt{x}+\sqrt{a} \geq \sqrt{a}>0$, so $\frac{1}{\sqrt{a}} \geq \frac{1}{\sqrt{x}+\sqrt{a}}>0$.
Thus, $0<\frac{1}{\sqrt{x}+\sqrt{a}} \leq \frac{1}{\sqrt{a}}$.
Hence,

$$
\begin{aligned}
|\sqrt{x}-\sqrt{a}| & =\left|(\sqrt{x}-\sqrt{a}) \cdot \frac{\sqrt{x}+\sqrt{a}}{\sqrt{x}+\sqrt{a}}\right| \\
& =\left|\frac{x-a}{\sqrt{x}+\sqrt{a}}\right| \\
& =|x-a| \cdot \frac{1}{\sqrt{x}+\sqrt{a}} \\
& <\delta \cdot \frac{1}{\sqrt{a}} \\
& =\epsilon .
\end{aligned}
$$

Therefore, $|\sqrt{x}-\sqrt{a}|<\epsilon$, as desired.
Example 8. limit of f at a need not equal $f(a)$, function with a removable discontinuity

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)= \begin{cases}x+1 & \text { if } x \neq 1 \\ 5 & \text { if } x=1\end{cases}
$$

Then $\lim _{x \rightarrow 1} f(x)=2$ and $\lim _{x \rightarrow 1} f(x) \neq f(1)$.
Proof. Since every real number is an accumulation point of \mathbb{R}, then 1 is an accumulation point of \mathbb{R}, the domain of f.

We prove $\lim _{x \rightarrow 1} f(x)=2$.
Let $\epsilon>0$ be given.
Let $\delta=\epsilon$.
Then $\delta>0$.
Let $x \in \mathbb{R}$ such that $0<|x-1|<\delta$.
Then $0<|x-1|$ and $|x-1|<\delta$.
Since $|x-1|>0$, then $x-1 \neq 0$, so $x \neq 1$.
Thus,

$$
\begin{aligned}
|f(x)-2| & =|(x+1)-2| \\
& =|x-1| \\
& <\delta \\
& =\epsilon .
\end{aligned}
$$

Therefore, $|f(x)-2|<\epsilon$, as desired.

Since $\lim _{x \rightarrow 1} f(x)=2 \neq 5=f(1)$, then $\lim _{x \rightarrow 1} f(x) \neq f(1)$.

Example 9. function with a jump discontinuity

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)= \begin{cases}1 & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

Then $\lim _{x \rightarrow 0} f(x)$ does not exist in \mathbb{R}.
Proof. Observe that 0 is an accumulation point of \mathbb{R}, the domain of f.
We prove there is no real number L such that $\lim _{x \rightarrow 0} f(x)=L$ by contradiction.

Suppose there is a real number L such that $\lim _{x \rightarrow 0} f(x)=L$.
Then for every $\epsilon>0$, there exists $\delta>0$ such that for all $x \in \mathbb{R}$, if $0<|x|<\delta$, then $|f(x)-L|<\epsilon$.

Let $\epsilon=\frac{1}{3}$.
Then there exists $\delta>0$ such that for all $x \in \mathbb{R}$, if $0<|x|<\delta$, then $|f(x)-L|<\frac{1}{3}$.

Let $x_{1}=\frac{\delta}{2}$.
Since $\delta>0$, then $0<\frac{\delta}{2}=\left|\frac{\delta}{2}\right|<\delta$, so $\left|f\left(\frac{\delta}{2}\right)-L\right|<\frac{1}{3}$.
Hence, $|1-L|<\frac{1}{3}$.
Let $x_{2}=\frac{-\delta}{2}$.
Since $0<\frac{\delta}{2}=\left|\frac{\delta}{2}\right|=\left|\frac{-\delta}{2}\right|<\delta$, then $0<\left|\frac{-\delta}{2}\right|<\delta$, so $\left|f\left(\frac{-\delta}{2}\right)-L\right|<\frac{1}{3}$.
Since $\frac{\delta}{2}>0$, then $\frac{-\delta}{2}<0$, so $|0-L|<\frac{1}{3}$.
Thus, $|L|<\frac{1}{3}$.
Observe that

$$
\begin{aligned}
1 & =|(1-L)+L| \\
& \leq|1-L|+|L| \\
& <\frac{1}{3}+\frac{1}{3} \\
& =\frac{2}{3} .
\end{aligned}
$$

Therefore, $1<\frac{2}{3}$, a contradiction.
Thus, there is no real number L such that $\lim _{x \rightarrow 0} f(x)=L$.

Proof. Observe that 0 is an accumulation point of \mathbb{R}, the domain of f.
To prove there is no real number L such that $\lim _{x \rightarrow 0} f(x)=L$, we prove for every real number $L, \lim _{x \rightarrow 0} f(x) \neq L$.

Let L be an arbitrary real number.
To prove $\lim _{x \rightarrow 0} f(x) \neq L$ using the sequential characterization of a function limit, we must prove there exists a sequence $\left(x_{n}\right)$ of points in $\mathbb{R}-\{0\}=\mathbb{R}^{*}$ such that $\lim _{n \rightarrow \infty} x_{n}=0$ and $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq L$.

Let $\left(x_{n}\right)$ be a sequence defined by $x_{n}=\frac{(-1)^{n+1}}{n}$ for all $n \in \mathbb{N}$.
We first prove $x_{n} \neq 0$ for all $n \in \mathbb{N}$.
Let $n \in \mathbb{N}$ be given.
Then $\left|x_{n}\right|=\left|\frac{(-1)^{n+1}}{n}\right|=\frac{1}{n}>0$, so $\left|x_{n}\right|>0$.
Thus, $x_{n} \neq 0$, so $x_{n} \neq 0$ for all $n \in \mathbb{N}$.
Therefore, $\left(x_{n}\right)$ is a sequence of real numbers in $\mathbb{R}-\{0\}=\mathbb{R}^{*}$.

We next prove $\lim _{n \rightarrow \infty} x_{n}=0$.
Since $-\left|x_{n}\right| \leq x_{n} \leq\left|x_{n}\right|$ for all $n \in \mathbb{N}$, then $-\frac{1}{n} \leq x_{n} \leq \frac{1}{n}$ for all $n \in \mathbb{N}$.
Since $\lim _{n \rightarrow \infty} \frac{-1}{n}=0=\lim _{n \rightarrow \infty} \frac{1}{n}$, then by the squeeze rule for sequences, $\lim _{n \rightarrow \infty} x_{n}=0$.

We next prove $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq L$.
Let $n \in \mathbb{N}$ be given.
Then either n is even or n is odd.
If n is even, then $f\left(x_{n}\right)=f\left(\frac{(-1)^{n+1}}{n}\right)=f\left(\frac{-1}{n}\right)=0$.
If n is odd, then $f\left(x_{n}\right)=f\left(\frac{(-1)^{n+1}}{n}\right)=f\left(\frac{1}{n}\right)=1$.
Thus, the sequence $\left(f\left(x_{n}\right)\right)$ consists of the terms $1,0,1,0,1,0, \ldots$
The even subsequence is the constant sequence with terms $0,0,0,0, \ldots$, so the even subsequence converges to 0 .

The odd subsequence is the constant sequence with terms $1,1,1,1, \ldots$, so the odd subsequence converges to 1 .

Therefore, the sequence $\left(f\left(x_{n}\right)\right)$ is divergent, so $\left(f\left(x_{n}\right)\right)$ is not convergent.
Hence, there is no real number L such that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.
Therefore, for every real number $L, \lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq L$.
Since L is an arbitrary real number, then we conclude $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq$ L.

Example 10. unbounded function, infinite discontinuity

Show that $\lim _{x \rightarrow 0} \frac{1}{x}$ does not exist in \mathbb{R}.
Proof. Let $f: \mathbb{R}^{*} \rightarrow \mathbb{R}$ be the function defined by $f(x)=\frac{1}{x}$ for all $x \in \mathbb{R}^{*}$.
Observe that 0 is an accumulation point of $\mathbb{R}^{*}=\mathbb{R}-\{0\}$, the domain of f.
We prove there is no real number L such that $\lim _{x \rightarrow 0} \frac{1}{x}=L$.
Observe that

$$
\begin{array}{r}
\neg(\exists L \in \mathbb{R})\left(\lim _{x \rightarrow 0} f(x)=L\right) \\
\neg(\exists L \in \mathbb{R})(\forall \epsilon>0)(\exists \delta>0)\left(\forall x \in \mathbb{R}^{*}\right)(0<|x|<\delta \rightarrow|f(x)-L|<\epsilon)
\end{array} \Leftrightarrow
$$

Thus, we prove $(\forall L \in \mathbb{R})(\exists \epsilon>0)(\forall \delta>0)(\exists x \neq 0)\left(0<|x|<\delta \wedge\left|\frac{1}{x}-L\right| \geq \epsilon\right)$. Let L be an arbitrary real number.
Let $\epsilon=|L|+1$.
Since $|L| \geq 0$, then $\epsilon=|L|+1 \geq 1>0$, so $\epsilon>0$.
Let $\delta>0$ be given.
We must prove there exists $x \neq 0$ such that $0<|x|<\delta$ and $\left|\frac{1}{x}-L\right| \geq \epsilon$.

Let $x=\min \left\{\frac{\delta}{2}, \frac{1}{|L|+\epsilon}\right\}$.
Then $x \leq \frac{\delta}{2}$ and $x \leq \frac{1}{|L|+\epsilon}$ and either $x=\frac{\delta}{2}$ or $x=\frac{1}{|L|+\epsilon}$.
Since $|L| \geq 0$ and $\epsilon>0$, then $|L|+\epsilon>0$, so $\frac{1}{|L|+\epsilon}>0$.
Since $\delta>0$, then $\frac{\delta}{2}>0$.
Since either $x=\frac{\delta}{2}$ or $x=\frac{1}{|L|+\epsilon}$ and $\frac{\delta}{2}>0$ and $\frac{1}{|L|+\epsilon}>0$, then $x>0$, so $x \neq 0$.

Since $\delta>0$ and $0<x=|x| \leq \frac{\delta}{2}<\delta$, then $0<|x|<\delta$.
Since $x \leq \frac{1}{|L|+\epsilon}$ and $|L|+\epsilon>0$, then $x(|L|+\epsilon) \leq 1$.
Since $x>0$, then $|L|+\epsilon \leq \frac{1}{x}=\frac{1}{|x|}=\left|\frac{1}{x}\right|$.
Thus, $\epsilon \leq\left|\frac{1}{x}\right|-|L|$.
Therefore, $\left|\frac{1}{x}-L\right| \geq\left|\frac{1}{x}\right|-|L| \geq \epsilon$, so $\left|\frac{1}{x}-L\right| \geq \epsilon$.
Thus, there exists $x \neq 0$ such that $0<|x|<\delta$ and $\left|\frac{1}{x}-L\right| \geq \epsilon$, as desired.

Example 11. oscillating function

Show that $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ does not exist in \mathbb{R}.
Proof. Observe that 0 is an accumulation point of the set $\mathbb{R}-\{0\}$, the domain of f.

Suppose $\lim _{x \rightarrow 0} f(x)$ does exist in \mathbb{R}.
Then there is a real number L such that $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=L$.
Thus, for every $\epsilon>0$, there is $\delta>0$ such that for every $x \neq 0$, if $0<|x|<\delta$, then $\left|\sin \left(\frac{1}{x}\right)-L\right|<\epsilon$.

Let $\epsilon=\frac{1}{2}$.
Then there is $\delta>0$ such that for every $x \neq 0$, if $0<|x|<\delta$, then $\left\lvert\, \sin \left(\frac{1}{x}\right)-\right.$ $L \left\lvert\,<\frac{1}{2}\right.$.

Let $M=\max \left\{\frac{1}{2 \pi \delta}-\frac{1}{4}, \frac{1}{2 \pi \delta}-\frac{3}{4}\right\}$.
Since $\delta>0$, then $M \in \mathbb{R}$, so by the Archimedean property of \mathbb{R}, there exists $n \in \mathbb{N}$ such that $n>M$.

Let $x_{1}=\frac{2}{\pi(4 n+1)}$.
Since $n \in \mathbb{N}$, then $n>0$, so $4 n+1>0$.
Thus, $x_{1}>0$, so $x_{1} \neq 0$.

Since $n>M$ and $M \geq \frac{1}{2 \pi \delta}-\frac{1}{4}$, then $n>\frac{1}{2 \pi \delta}-\frac{1}{4}$.
Thus, $4 n>\frac{2}{\pi \delta}-1$, so $4 n+1>\frac{2}{\pi \delta}$.
Hence, $\delta(4 n+1)>\frac{2}{\pi}$, so $\delta>\frac{2}{\pi(4 n+1)}>0$.
Therefore, $0<\frac{2}{\pi(4 n+1)}=\left|\frac{2}{\pi(4 n+1)}\right|=\left|x_{1}\right|<\delta$.
Since $x_{1} \neq 0$ and $0<\left|x_{1}\right|<\delta$, then $\left|\sin \left(\frac{1}{x_{1}}\right)-L\right|<\frac{1}{2}$.

Let $x_{2}=\frac{2}{\pi(4 n+3)}$.
Since $n \in \mathbb{N}$, then $n>0$, so $4 n+3>0$.
Thus, $x_{2}>0$, so $x_{2} \neq 0$.
Since $n>M$ and $M \geq \frac{1}{2 \pi \delta}-\frac{3}{4}$, then $n>\frac{1}{2 \pi \delta}-\frac{3}{4}$.
Thus, $4 n>\frac{2}{\pi \delta}-3$, so $4 n+3>\frac{2}{\pi_{2}}$.
Hence, $\delta(4 n+3)>\frac{2}{\pi}$, so $\delta>\frac{2}{\pi(4 n+3)}>0$.
Therefore, $0<\frac{2}{\pi(4 n+3)}=\left|\frac{2}{\pi(4 n+3)}\right|=\left|x_{2}\right|<\delta$.
Since $x_{2} \neq 0$ and $0<\left|x_{2}\right|<\delta$, then $\left|\sin \left(\frac{1}{x_{2}}\right)-L\right|<\frac{1}{2}$.
Observe that

$$
\begin{aligned}
2 & =|1-(-1)| \\
& =\left|\sin \left(\frac{\pi}{2}+2 \pi n\right)-\sin \left(\frac{3 \pi}{2}+2 \pi n\right)\right| \\
& =\left|\sin \left(\frac{\pi+4 \pi n}{2}\right)-\sin \left(\frac{3 \pi+4 \pi n}{2}\right)\right| \\
& =\left|\sin \left(\frac{\pi}{2}(1+4 n)\right)-\sin \left(\frac{\pi}{2}(3+4 n)\right)\right| \\
& =\left|\sin \left(\frac{\pi(4 n+1)}{2}\right)-\sin \left(\frac{\pi(4 n+3)}{2}\right)\right| \\
& =\left|\sin \left(\frac{1}{\frac{2}{\pi(4 n+1)}}\right)-\sin \left(\frac{1}{\frac{2}{\pi(4 n+3)}}\right)\right| \\
& =\left|\sin \left(\frac{1}{x_{1}}\right)-\sin \left(\frac{1}{x_{2}}\right)\right| \\
& =\left|\sin \left(\frac{1}{x_{1}}\right)-L+L-\sin \left(\frac{1}{x_{2}}\right)\right| \\
& \leq\left|\sin \left(\frac{1}{x_{1}}\right)-L\right|+\left|L-\sin \left(\frac{1}{x_{2}}\right)\right| \\
& =\left|\sin \left(\frac{1}{x_{1}}\right)-L\right|+\left|\sin \left(\frac{1}{x_{2}}\right)-L\right| \\
& <\frac{1}{2}+\frac{1}{2} \\
& =1 .
\end{aligned}
$$

Thus, we have $2<1$, a contradiction.
Therefore, $\lim _{x \rightarrow 0} f(x)$ does not exist in \mathbb{R}.

Proof. Let $f: \mathbb{R}^{*} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\sin \left(\frac{1}{x}\right)$ for all $x \neq 0$.
Observe that 0 is an accumulation point of $\mathbb{R}^{*}=\mathbb{R}-\{0\}$, the domain of f.

To prove $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ does not exist in \mathbb{R}, we must prove $\lim _{x \rightarrow 0} f(x)$ does not exist in \mathbb{R}, so we must prove there is no real number L such that $\lim _{x \rightarrow 0} f(x)=L$.

Thus, we prove for every real number $L, \lim _{x \rightarrow 0} f(x) \neq L$.
Let L be an arbitrary real number.
To prove $\lim _{x \rightarrow 0} f(x) \neq L$, we use the sequential criterion for a function limit.

Thus, we must prove there exists a sequence $\left(x_{n}\right)$ of points in $\operatorname{dom} f-\{0\}$ such that $\lim _{n \rightarrow \infty} x_{n}=0$ and $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq L$.

Let $\left(x_{n}\right)$ be a sequence in \mathbb{R} defined by $x_{n}=\frac{2}{(2 n-1) \pi}$ for all $n \in \mathbb{N}$.
We first prove $x_{n} \neq 0$ for all $n \in \mathbb{N}$.
Let $n \in \mathbb{N}$ be given.
Then $n \geq 1$ and $x_{n}=\frac{2}{(2 n-1) \pi}$.
Since $n \geq 1$, then $2 n \geq 2$, so $2 n-1 \geq 1>0$.
Hence, $1 \geq \frac{1}{2 n-1}>0$, so $\frac{1}{2 n-1}>0$.
Thus, $\frac{2}{(2 n-1) \pi}>0$, so $\frac{2}{(2 n-1) \pi} \neq 0$.
Therefore, $x_{n} \neq 0$, so $x_{n} \neq 0$ for all $n \in \mathbb{N}$.
Thus, $x_{n} \in \mathbb{R}-\{0\}=\mathbb{R}^{*}=\mathbb{R}^{*}-\{0\}$ for each $n \in \mathbb{N}$, so $\left(x_{n}\right)$ is a sequence of points in $\operatorname{dom} f-\{0\}$.

We next prove $\lim _{n \rightarrow \infty} x_{n}=0$.
Let $n \in \mathbb{N}$ be given.
Then $n \geq 1$ and $x_{n}=\frac{2}{(2 n-1) \pi}$ and $\frac{1}{2 n-1}>0$.
Since $n \geq 1$, then $2 n \geq n+1$, so $2 n-1 \geq n \geq 1>0$.
Thus, $2 n-1 \geq n>0$, so $\frac{1}{n} \geq \frac{1}{2 n-1}>0$.
Hence, $\frac{2}{n \pi} \geq \frac{2}{(2 n-1) \pi}>0$, so $0<\frac{2}{(2 n-1) \pi} \leq \frac{2}{n \pi}$.
Therefore, $0<\frac{2}{(2 n-1) \pi} \leq \frac{2}{n \pi}$ for all $n \in \mathbb{N}$, so $0<x_{n} \leq \frac{2}{n \pi}$ for all $n \in \mathbb{N}$.
Since $\lim _{n \rightarrow \infty} \frac{2}{n \pi}=\frac{2}{\pi}\left(\lim _{n \rightarrow \infty} \frac{1}{n}\right)=\frac{2}{\pi} \cdot 0=0=\lim _{n \rightarrow \infty} 0$ and $0<x_{n} \leq \frac{2}{n \pi}$ for all $n \in \mathbb{N}$, then by the squeeze rule for convergent sequences, $\lim _{n \rightarrow \infty} x_{n}=0$.

Lastly, we prove $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq L$.
Let $\left(a_{n}\right)$ be the sequence defined by $a_{n}=f\left(x_{n}\right)$ for all $n \in \mathbb{N}$.
We must prove $\lim _{n \rightarrow \infty} a_{n} \neq L$.
Let $n \in \mathbb{N}$.
Then $a_{n}=f\left(x_{n}\right)=\sin \left(\frac{1}{x_{n}}\right)=\sin \left(\frac{(2 n-1) \pi}{2}\right)$.
Thus, $a_{n}=1$ if n is odd and $a_{n}=-1$ if n is even.
Let $\left(b_{n}\right)$ be the odd subsequence given by $b_{n}=a_{2 n-1}$.
Then $b_{n}=1$ and (b_{n}) converges to 1 .
Let $\left(c_{n}\right)$ be the even subsequence given by $c_{n}=a_{2 n}$.
Then $c_{n}=-1$ and $\left(c_{n}\right)$ converges to -1 .

Since $\left(b_{n}\right)$ and $\left(c_{n}\right)$ are convergent subsequences of $\left(a_{n}\right)$ and $\lim _{n \rightarrow \infty} b_{n}=$ $1 \neq-1=\lim _{n \rightarrow \infty} c_{n}$, then we conclude that $\left(a_{n}\right)$ is divergent.

Therefore, $\left(a_{n}\right)$ is not convergent, so $\left(a_{n}\right)$ cannot converge to L.

