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Limit of a real valued function

Example 1. limit of a constant function
For every k ∈ R, limx→a k = k. (limit of a constant k is k )

Proof. Let k ∈ R be arbitrary.
Let f : R→ R be a function defined by f(x) = k for all x ∈ R.
Let a be an accumulation point of R.
Let ε > 0 be given.
Let δ = 1.
Let x ∈ R such that 0 < |x− a| < δ.
Since |f(x) − k| = |k − k| = 0 < ε, then the conditional if 0 < |x − a| < δ,

then |k − k| < ε is trivially true.
Therefore, limx→a k = k.

Example 2. limit of the identity function
For all a ∈ R, limx→a x = a.

Proof. Let f : R→ R be a function defined by f(x) = x for all x ∈ R.
Let a ∈ R be given.
Since every real number is an accumulation point of R, then a is an accu-

mulation point of R, the domain of f .
Let ε > 0 be given.
Let δ = ε.
Let x ∈ R such that 0 < |x− a| < δ.
Then |f(x)− a| = |x− a| < δ = ε, so |f(x)− a| < ε.
Therefore, limx→a x = a.

Example 3. limit of the square function
For all a ∈ R, limx→a x

2 = a2.

Proof. Let a be an arbitrary real number.
Let f : R→ R be the function defined by f(x) = x2 for all x ∈ R.
Since every real number is an accumulation point of R, then a is an accu-

mulation point of R, the domain of f .
We must prove limx→a x

2 = a2.



Let ε > 0 be given.
Let δ = min{1, ε

1+2|a|}.
Then δ ≤ 1 and δ ≤ ε

1+2|a| .

Since |a| ≥ 0, then 2|a| ≥ 0, so 1 + 2|a| ≥ 1 > 0.
Hence, 1 + 2|a| > 0, so ε

1+2|a| > 0.

Thus, δ > 0.
Let x ∈ R such that 0 < |x− a| < δ.
Since 0 < |x− a| < δ, then |x− a| < δ.
Since

|x+ a| = |x− a+ 2a|
≤ |x− a|+ |2a|
= |x− a|+ 2|a|
< δ + 2|a|
≤ 1 + 2|a|,

then 0 ≤ |x+ a| < 1 + 2|a|.
Hence,

|x2 − a2| = |(x− a)(x+ a)|
= |x− a||x+ a|
< δ(1 + 2|a|)

≤ ε

1 + 2|a|
· (1 + 2|a|)

= ε.

Therefore, |x2 − a2| < ε, as desired.

Example 4. limit of the cube function
For all a ∈ R, limx→a x

3 = a3.

Proof. Let a be an arbitrary real number.
Let f : R→ R be the function defined by f(x) = x3 for all x ∈ R.
Since every real number is an accumulation point of R, then a is an accu-

mulation point of R, the domain of f .
We must prove limx→a x

3 = a3.
Let ε > 0 be given.
Let δ = min{1, ε

1+3|a|+3|a|2 }.
Then δ ≤ 1 and δ ≤ ε

1+3|a|+3|a|2 .

Since |a| ≥ 0, then ε
1+3|a|+3|a|2 > 0, so δ > 0.

Let x ∈ R such that 0 < |x− a| < δ.
Since

|x| = |(x− a) + a|
≤ |x− a|+ |a|
< δ + |a|
≤ 1 + |a|,
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then |x| < 1 + |a|.
Since

|x2 + ax+ a2| ≤ |x2 + ax|+ |a|2

≤ |x|2 + |a||x|+ |a|2

< (1 + |a|)2 + |a|(1 + |a|) + |a|2

= 1 + 3|a|+ 3|a|2,

then 0 ≤ |x2 + ax+ a2| < 1 + 3|a|+ 3|a|2.
Hence,

|x3 − a3| = |(x− a)(x2 + ax+ a2)|
= |x− a||x2 + ax+ a2|
< δ · (1 + 3|a|+ 3|a|2)

≤ ε

1 + 3|a|+ 3|a|2
· (1 + 3|a|+ 3|a|2)

= ε.

Therefore, |f(x)− a3| < ε, as desired.

Example 5. limit of the reciprocal function
For all positive real a, limx→a

1
x = 1

a .

Proof. Let a be a positive real number.
Then a ∈ R and a > 0.
Let f : R∗ → R be the function defined by f(x) = 1

x for all x ∈ R∗.
We first show that a is an accumulation point of R∗, the domain of f .
Since a > 0, then a ∈ (0,∞).
Since (0,∞) is an interval, then a is an accumulation point of (0,∞).
Since (0,∞) ⊂ (−∞, 0)∪ (0,∞) = R−{0} = R∗, then a is an accumulation

point of R∗.
To prove limx→a

1
x = 1

a , let ε > 0 be given.

Let δ = min{a2 ,
a2ε
2 }.

Then δ ≤ a
2 and δ ≤ a2ε

2 and δ > 0.
Let x ∈ R∗ such that 0 < |x− a| < δ.
Then 0 < |x− a| and |x− a| < δ.
Since x ∈ R∗, then x ∈ R and x 6= 0, so |x| > 0.
Since |x− a| < δ ≤ a

2 , then |x− a| < a
2 .

Since a
2 > |x− a| ≥ |a| − |x| = a− |x|, then a

2 > a− |x|, so |x| > a
2 > 0.

Thus, 0 < a
2 < |x|, so 0 < 1

|x| <
2
a .
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Observe that

| 1
x
− 1

a
| = |1

a
− 1

x
|

= |x− a
ax
|

=
1

a
· 1

|x|
· |x− a|

<
1

a
· 2

a
· δ

=
2

a2
· δ

≤ 2

a2
· a

2ε

2
= ε.

Therefore, |f(x)− 1
a | < ε, as desired.

Example 6. limit of the absolute value function
For all a ∈ R, limx→a |x| = |a|.

Proof. Let a be an arbitrary real number.
Let f : R→ R be the function defined by f(x) = |x| for all x ∈ R.
Since every real number is an accumulation point of R, then a is an accu-

mulation point of R, the domain of f .
To prove limx→a |x| = |a|, let ε > 0 be given.
Let δ = ε.
Then δ > 0.
Let x ∈ R such that 0 < |x− a| < δ.
Then ||x| − |a|| ≤ |x− a| < δ = ε, so ||x| − |a|| < ε, as desired.

Example 7. limit of the square root function
For all a ≥ 0, limx→a

√
x =
√
a.

Proof. Let f : [0,∞)→ R be a function defined by f(x) =
√
x for all x ≥ 0.

Let a ≥ 0 be given.
Either a > 0 or a = 0.
We consider each case separately.
Case 1: Suppose a = 0.
Observe that 0 is an accumulation point of the set [0,∞), the domain of f .
We must prove limx→0

√
x = 0.

Let ε > 0 be given.
Let δ = ε2.
Then δ > 0.
Let x ≥ 0 such that 0 < |x| < δ.
Then 0 < x < δ, so 0 <

√
x <
√
δ.

Thus, |
√
x| =

√
x <
√
δ =
√
ε2 = |ε| = ε, so |

√
x| < ε, as desired.

Case 2: Suppose a > 0.
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Observe that a is an accumulation point of the set [0,∞), the domain of f .
We must prove limx→a

√
x =
√
a.

Let ε > 0 be given.
Let δ = ε

√
a.

Since a > 0, then
√
a > 0.

Since ε > 0 and
√
a > 0, then δ > 0.

Let x ∈ [0,∞) such that 0 < |x− a| < δ.
Since x ∈ [0,∞), then x ≥ 0, so

√
x ≥ 0.

Since
√
x ≥ 0 and

√
a > 0, then

√
x+
√
a ≥
√
a > 0, so 1√

a
≥ 1√

x+
√
a
> 0.

Thus, 0 < 1√
x+
√
a
≤ 1√

a
.

Hence,

|
√
x−
√
a| = |(

√
x−
√
a) ·
√
x+
√
a√

x+
√
a
|

= | x− a√
x+
√
a
|

= |x− a| · 1√
x+
√
a

< δ · 1√
a

= ε.

Therefore, |
√
x−
√
a| < ε, as desired.

Example 8. limit of f at a need not equal f(a), function with a re-
movable discontinuity

Let f : R→ R be a function defined by

f(x) =

{
x+ 1 if x 6= 1

5 if x = 1

Then limx→1 f(x) = 2 and limx→1 f(x) 6= f(1).

Proof. Since every real number is an accumulation point of R, then 1 is an
accumulation point of R, the domain of f .

We prove limx→1 f(x) = 2.
Let ε > 0 be given.
Let δ = ε.
Then δ > 0.
Let x ∈ R such that 0 < |x− 1| < δ.
Then 0 < |x− 1| and |x− 1| < δ.
Since |x− 1| > 0, then x− 1 6= 0, so x 6= 1.
Thus,
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|f(x)− 2| = |(x+ 1)− 2|
= |x− 1|
< δ

= ε.

Therefore, |f(x)− 2| < ε, as desired.

Since limx→1 f(x) = 2 6= 5 = f(1), then limx→1 f(x) 6= f(1).

Example 9. function with a jump discontinuity
Let f : R→ R be a function defined by

f(x) =

{
1 if x ≥ 0

0 if x < 0

Then limx→0 f(x) does not exist in R.

Proof. Observe that 0 is an accumulation point of R, the domain of f .
We prove there is no real number L such that limx→0 f(x) = L by contra-

diction.
Suppose there is a real number L such that limx→0 f(x) = L.
Then for every ε > 0, there exists δ > 0 such that for all x ∈ R, if 0 < |x| < δ,

then |f(x)− L| < ε.
Let ε = 1

3 .
Then there exists δ > 0 such that for all x ∈ R, if 0 < |x| < δ, then

|f(x)− L| < 1
3 .

Let x1 = δ
2 .

Since δ > 0, then 0 < δ
2 = | δ2 | < δ, so |f( δ2 )− L| < 1

3 .
Hence, |1− L| < 1

3 .

Let x2 = −δ
2 .

Since 0 < δ
2 = | δ2 | = |

−δ
2 | < δ, then 0 < |−δ2 | < δ, so |f(−δ2 )− L| < 1

3 .

Since δ
2 > 0, then −δ2 < 0, so |0− L| < 1

3 .
Thus, |L| < 1

3 .
Observe that

1 = |(1− L) + L|
≤ |1− L|+ |L|

<
1

3
+

1

3

=
2

3
.

Therefore, 1 < 2
3 , a contradiction.

Thus, there is no real number L such that limx→0 f(x) = L.
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Proof. Observe that 0 is an accumulation point of R, the domain of f .
To prove there is no real number L such that limx→0 f(x) = L, we prove for

every real number L, limx→0 f(x) 6= L.
Let L be an arbitrary real number.
To prove limx→0 f(x) 6= L using the sequential characterization of a function

limit, we must prove there exists a sequence (xn) of points in R−{0} = R∗ such
that limn→∞ xn = 0 and limn→∞ f(xn) 6= L.

Let (xn) be a sequence defined by xn = (−1)n+1

n for all n ∈ N.
We first prove xn 6= 0 for all n ∈ N.
Let n ∈ N be given.

Then |xn| = | (−1)
n+1

n | = 1
n > 0, so |xn| > 0.

Thus, xn 6= 0, so xn 6= 0 for all n ∈ N.
Therefore, (xn) is a sequence of real numbers in R− {0} = R∗.

We next prove limn→∞ xn = 0.
Since −|xn| ≤ xn ≤ |xn| for all n ∈ N, then − 1

n ≤ xn ≤
1
n for all n ∈ N.

Since limn→∞
−1
n = 0 = limn→∞

1
n , then by the squeeze rule for sequences,

limn→∞ xn = 0.

We next prove limn→∞ f(xn) 6= L.
Let n ∈ N be given.
Then either n is even or n is odd.
If n is even, then f(xn) = f( (−1)n+1

n ) = f(−1n ) = 0.

If n is odd, then f(xn) = f( (−1)n+1

n ) = f( 1
n ) = 1.

Thus, the sequence (f(xn)) consists of the terms 1, 0, 1, 0, 1, 0, ....
The even subsequence is the constant sequence with terms 0, 0, 0, 0, ..., so

the even subsequence converges to 0.
The odd subsequence is the constant sequence with terms 1, 1, 1, 1, ..., so the

odd subsequence converges to 1.
Therefore, the sequence (f(xn)) is divergent, so (f(xn)) is not convergent.
Hence, there is no real number L such that limn→∞ f(xn) = L.
Therefore, for every real number L, limn→∞ f(xn) 6= L.
Since L is an arbitrary real number, then we conclude limn→∞ f(xn) 6=

L.

Example 10. unbounded function, infinite discontinuity
Show that limx→0

1
x does not exist in R.

Proof. Let f : R∗ → R be the function defined by f(x) = 1
x for all x ∈ R∗.

Observe that 0 is an accumulation point of R∗ = R− {0}, the domain of f .
We prove there is no real number L such that limx→0

1
x = L.

Observe that
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¬(∃L ∈ R)( lim
x→0

f(x) = L) ⇔

¬(∃L ∈ R)(∀ε > 0)(∃δ > 0)(∀x ∈ R∗)(0 < |x| < δ → |f(x)− L| < ε) ⇔
(∀L ∈ R)(∃ε > 0)(∀δ > 0)(∃x ∈ R∗)(0 < |x| < δ ∧ |f(x)− L| ≥ ε).

Thus, we prove (∀L ∈ R)(∃ε > 0)(∀δ > 0)(∃x 6= 0)(0 < |x| < δ∧| 1x−L| ≥ ε).
Let L be an arbitrary real number.
Let ε = |L|+ 1.
Since |L| ≥ 0, then ε = |L|+ 1 ≥ 1 > 0, so ε > 0.
Let δ > 0 be given.
We must prove there exists x 6= 0 such that 0 < |x| < δ and | 1x − L| ≥ ε.

Let x = min{ δ2 ,
1
|L|+ε}.

Then x ≤ δ
2 and x ≤ 1

|L|+ε and either x = δ
2 or x = 1

|L|+ε .

Since |L| ≥ 0 and ε > 0, then |L|+ ε > 0, so 1
|L|+ε > 0.

Since δ > 0, then δ
2 > 0.

Since either x = δ
2 or x = 1

|L|+ε and δ
2 > 0 and 1

|L|+ε > 0, then x > 0, so

x 6= 0.
Since δ > 0 and 0 < x = |x| ≤ δ

2 < δ, then 0 < |x| < δ.
Since x ≤ 1

|L|+ε and |L|+ ε > 0, then x(|L|+ ε) ≤ 1.

Since x > 0, then |L|+ ε ≤ 1
x = 1

|x| = | 1x |.
Thus, ε ≤ | 1x | − |L|.
Therefore, | 1x − L| ≥ |

1
x | − |L| ≥ ε, so | 1x − L| ≥ ε.

Thus, there exists x 6= 0 such that 0 < |x| < δ and | 1x−L| ≥ ε, as desired.

Example 11. oscillating function
Show that limx→0 sin( 1

x ) does not exist in R.

Proof. Observe that 0 is an accumulation point of the set R− {0}, the domain
of f .

Suppose limx→0 f(x) does exist in R.
Then there is a real number L such that limx→0 sin( 1

x ) = L.
Thus, for every ε > 0, there is δ > 0 such that for every x 6= 0, if 0 < |x| < δ,

then | sin( 1
x )− L| < ε.

Let ε = 1
2 .

Then there is δ > 0 such that for every x 6= 0, if 0 < |x| < δ, then | sin( 1
x )−

L| < 1
2 .

Let M = max{ 1
2πδ −

1
4 ,

1
2πδ −

3
4}.

Since δ > 0, then M ∈ R, so by the Archimedean property of R, there exists
n ∈ N such that n > M .

Let x1 = 2
π(4n+1) .

Since n ∈ N, then n > 0, so 4n+ 1 > 0.
Thus, x1 > 0, so x1 6= 0.

8



Since n > M and M ≥ 1
2πδ −

1
4 , then n > 1

2πδ −
1
4 .

Thus, 4n > 2
πδ − 1, so 4n+ 1 > 2

πδ .
Hence, δ(4n+ 1) > 2

π , so δ > 2
π(4n+1) > 0.

Therefore, 0 < 2
π(4n+1) = | 2

π(4n+1) | = |x1| < δ.

Since x1 6= 0 and 0 < |x1| < δ, then | sin( 1
x1

)− L| < 1
2 .

Let x2 = 2
π(4n+3) .

Since n ∈ N, then n > 0, so 4n+ 3 > 0.
Thus, x2 > 0, so x2 6= 0.
Since n > M and M ≥ 1

2πδ −
3
4 , then n > 1

2πδ −
3
4 .

Thus, 4n > 2
πδ − 3, so 4n+ 3 > 2

πδ .
Hence, δ(4n+ 3) > 2

π , so δ > 2
π(4n+3) > 0.

Therefore, 0 < 2
π(4n+3) = | 2

π(4n+3) | = |x2| < δ.

Since x2 6= 0 and 0 < |x2| < δ, then | sin( 1
x2

)− L| < 1
2 .

Observe that

2 = |1− (−1)|

= | sin(
π

2
+ 2πn)− sin(

3π

2
+ 2πn)|

= | sin(
π + 4πn

2
)− sin(

3π + 4πn

2
)|

= | sin(
π

2
(1 + 4n))− sin(

π

2
(3 + 4n))|

= | sin(
π(4n+ 1)

2
)− sin(

π(4n+ 3)

2
)|

= | sin(
1
2

π(4n+1)

)− sin(
1
2

π(4n+3)

)|

= | sin(
1

x1
)− sin(

1

x2
)|

= | sin(
1

x1
)− L+ L− sin(

1

x2
)|

≤ | sin(
1

x1
)− L|+ |L− sin(

1

x2
)|

= | sin(
1

x1
)− L|+ | sin(

1

x2
)− L|

<
1

2
+

1

2
= 1.

Thus, we have 2 < 1, a contradiction.
Therefore, limx→0 f(x) does not exist in R.
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Proof. Let f : R∗ → R be a function defined by f(x) = sin( 1
x ) for all x 6= 0.

Observe that 0 is an accumulation point of R∗ = R− {0}, the domain of f .

To prove limx→0 sin( 1
x ) does not exist in R, we must prove limx→0 f(x)

does not exist in R, so we must prove there is no real number L such that
limx→0 f(x) = L.

Thus, we prove for every real number L, limx→0 f(x) 6= L.
Let L be an arbitrary real number.
To prove limx→0 f(x) 6= L, we use the sequential criterion for a function

limit.
Thus, we must prove there exists a sequence (xn) of points in domf − {0}

such that limn→∞ xn = 0 and limn→∞ f(xn) 6= L.

Let (xn) be a sequence in R defined by xn = 2
(2n−1)π for all n ∈ N.

We first prove xn 6= 0 for all n ∈ N.
Let n ∈ N be given.
Then n ≥ 1 and xn = 2

(2n−1)π .

Since n ≥ 1, then 2n ≥ 2, so 2n− 1 ≥ 1 > 0.
Hence, 1 ≥ 1

2n−1 > 0, so 1
2n−1 > 0.

Thus, 2
(2n−1)π > 0, so 2

(2n−1)π 6= 0.

Therefore, xn 6= 0, so xn 6= 0 for all n ∈ N.
Thus, xn ∈ R− {0} = R∗ = R∗ − {0} for each n ∈ N, so (xn) is a sequence

of points in domf − {0}.

We next prove limn→∞ xn = 0.
Let n ∈ N be given.
Then n ≥ 1 and xn = 2

(2n−1)π and 1
2n−1 > 0.

Since n ≥ 1, then 2n ≥ n+ 1, so 2n− 1 ≥ n ≥ 1 > 0.
Thus, 2n− 1 ≥ n > 0, so 1

n ≥
1

2n−1 > 0.

Hence, 2
nπ ≥

2
(2n−1)π > 0, so 0 < 2

(2n−1)π ≤
2
nπ .

Therefore, 0 < 2
(2n−1)π ≤

2
nπ for all n ∈ N, so 0 < xn ≤ 2

nπ for all n ∈ N.

Since limn→∞
2
nπ = 2

π (limn→∞
1
n ) = 2

π · 0 = 0 = limn→∞ 0 and 0 < xn ≤ 2
nπ

for all n ∈ N, then by the squeeze rule for convergent sequences, limn→∞ xn = 0.

Lastly, we prove limn→∞ f(xn) 6= L.
Let (an) be the sequence defined by an = f(xn) for all n ∈ N.
We must prove limn→∞ an 6= L.
Let n ∈ N.
Then an = f(xn) = sin( 1

xn
) = sin( (2n−1)π

2 ).
Thus, an = 1 if n is odd and an = −1 if n is even.
Let (bn) be the odd subsequence given by bn = a2n−1.
Then bn = 1 and (bn) converges to 1.
Let (cn) be the even subsequence given by cn = a2n.
Then cn = −1 and (cn) converges to −1.
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Since (bn) and (cn) are convergent subsequences of (an) and limn→∞ bn =
1 6= −1 = limn→∞ cn, then we conclude that (an) is divergent.

Therefore, (an) is not convergent, so (an) cannot converge to L.
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