Limits of real valued functions Exercises

Jason Sass

June 29, 2021

Limit of a real valued function

Exercise 1. Given $\lim_{x\to 2}(x^2-3)=1$ and $\epsilon=0.01$, find $\delta>0$ that satisfies the definition of limit of a function.

Solution. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = x^2 - 3$. Observe that 2 is an accumulation point of the set \mathbb{R} , the domain of f. Since $\lim_{x\to 2} f(x) = 1$ and $\epsilon = 0.01$, we must find $\delta > 0$ so that for all $x \in \mathbb{R}$, if $0 < |x - 2| < \delta$, then |f(x) - 1| < 0.01. Let $\delta = \frac{0.01}{5}$. Then $0 < \delta = 0.002 < 1$, so $0 < \delta$ and $\delta < 1$. Let $x \in \mathbb{R}$ such that $0 < |x - 2| < \delta$. Since $0 < |x - 2| < \delta$, then 0 < |x - 2| and $|x - 2| < \delta$. Since $|x - 2| < \delta$ and $\delta < 1$, then |x - 2| < 1, so -1 < x - 2 < 1. Hence, 3 < x + 2 < 5. Since 0 < 3 < x + 2 < 5, then 0 < x + 2 = |x + 2| < 5, so 0 < |x + 2| < 5. Thus,

$$|f(x) - 1| = |(x^2 - 3) - 1|$$

= |x^2 - 4|
= |(x - 2)(x + 2)|
= |x - 2||x + 2|
< 5\delta
= 0.01.

Therefore, |f(x) - 1| < 0.01.

Exercise 2. Show that $\lim_{x\to -2} \frac{x^2-4}{x+2} = -4$.

Solution. Let $f: (-2,0) \to \mathbb{R}$ be a function defined by $f(x) = \frac{x^2-4}{x+2}$ for all $x \in (-2,0)$.

Observe that -2 is an accumulation point of the interval (-2, 0), the domain of f.

We prove $\lim_{x\to -2} f(x) = -4$. Let $\epsilon > 0$ be given. Let $\delta = \epsilon$. Then $\delta > 0$. Let $x \in (-2, 0)$ such that $0 < |x + 2| < \delta$. Since $0 < |x + 2| < \delta$, then 0 < |x + 2| and $|x + 2| < \delta$. Since |x + 2| > 0, then $x + 2 \neq 0$. Thus,

$$f(x) + 4| = |\frac{x^2 - 4}{x + 2} + 4|$$

= $|\frac{(x - 2)(x + 2)}{x + 2} + 4|$
= $|(x - 2) + 4|$
= $|x + 2|$
< δ
= ϵ .

Therefore, $|f(x) + 4| < \epsilon$, as desired.

Exercise 3. Show that $\lim_{x\to 2}(3x-2) = 4$.

Solution. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by f(x) = 3x - 2 for all $x \in \mathbb{R}$. Since every real number is an accumulation point of \mathbb{R} , then 2 is an accumulation point of \mathbb{R} .

We prove $\lim_{x\to 2} f(x) = 4$. Let $\epsilon > 0$ be given. Let $\delta = \frac{\epsilon}{3}$. Then $\delta > 0$. Let $x \in \mathbb{R}$ such that $0 < |x - 2| < \delta$. Then $|x - 2| < \delta$. Thus,

$$|f(x) - 4| = |(3x - 2) - 4|$$

$$= |3x - 6|$$

$$= 3|x - 2|$$

$$< 3\delta$$

$$= 3 \cdot \frac{\epsilon}{3}$$

$$= \epsilon.$$

 $\mathbf{2}$

Therefore, $|f(x) - 4| < \epsilon$, as desired.

Exercise 4. Show that $\lim_{x\to 2} (x^2 + 4x) = 12$.

Solution. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = x^2 + 4x$ for all $x \in \mathbb{R}$. Since every real number is an accumulation point of \mathbb{R} , then 2 is an accumulation point of \mathbb{R} .

We prove $\lim_{x\to 2} f(x) = 12$. Let $\epsilon > 0$ be given. Let $\delta = \min\{1, \frac{\epsilon}{9}\}$. Then $\delta \le 1$ and $\delta \le \frac{\epsilon}{9}$ and $\delta > 0$. Let $x \in \mathbb{R}$ such that $0 < |x - 2| < \delta$. Observe that

$$|x+6| = |(x-2)+8| \le |x-2|+8 \le \delta+8 \le 9.$$

Hence, $0 \le |x+6| < 9$. Thus,

$$|f(x) - 12| = |(x^2 + 4x) - 12| = |(x - 2)(x + 6)| = |x - 2||x + 6| < \delta(9) \le \frac{\epsilon}{9} \cdot 9 = \epsilon.$$

Therefore, $|f(x) - 12| < \epsilon$, as desired.

Exercise 5. Show that $\lim_{x\to 3} \frac{2x+3}{4x-9} = 3$.

Solution. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = \frac{2x+3}{4x-9}$ for all $x \neq \frac{9}{4}$. Observe that 3 is an accumulation point of $\{x \in \mathbb{R} : x \neq \frac{9}{4}\}$, the domain of f.

We prove $\lim_{x\to 3} f(x) = 3$. Let $\epsilon > 0$ be given. Let $\delta = \min\{\frac{1}{2}, \frac{\epsilon}{10}\}$. Then $\delta \leq \frac{1}{2}$ and $\delta \leq \frac{\epsilon}{10}$ and $\delta > 0$. Let $x \in \mathbb{R}$ such that $x \neq \frac{9}{4}$ and $0 < |x - 3| < \delta$. Then $0 < |x - 3| < \delta \leq \frac{1}{2}$, so $0 < |x - 3| < \frac{1}{2}$. Hence, $\frac{-1}{2} < x - 3 < \frac{1}{2}$, so $\frac{-1}{2} < x - 3$. Thus, $\frac{5}{2} < x$. Observe that $\frac{5}{2} < x \iff 0 < 10 < 4x$ $\Leftrightarrow 0 < 1 < 4x - 9$ $\Leftrightarrow 0 < \frac{1}{4x - 9} < 1$.

_	

Hence, $0 < \frac{1}{4x-9} < 1$. Thus,

$$\begin{aligned} |f(x) - 3| &= |\frac{2x + 3}{4x - 9} - 3| \\ &= |\frac{-10x + 30}{4x - 9}| \\ &= |\frac{-10(x - 3)}{4x - 9}| \\ &= 10|x - 3||\frac{1}{4x - 9}| \\ &= 10|x - 3|\frac{1}{4x - 9}| \\ &\leq 10|x - 3|\frac{1}{4x - 9}| \\ &\leq 10\delta \\ &\leq 10 \cdot \frac{\epsilon}{10} \\ &= \epsilon. \end{aligned}$$

Therefore, $|f(x) - 3| < \epsilon$, as desired.

Exercise 6. Show that $\lim_{x\to 6} \frac{x^2 - 3x}{x+3} = 2$.

Solution. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = \frac{x^2 - 3x}{x+3}$ for all $x \neq -3$. Observe that 6 is an accumulation point of the set $\{x \in \mathbb{R} : x \neq -3\}$, the domain of f.

We prove $\lim_{x\to 6} f(x) = 2$. Let $\epsilon > 0$ be given. Let $\delta = \min\{1, \epsilon\}$. Then $\delta \le 1$ and $\delta \le \epsilon$ and $\delta > 0$. Let $x \in \mathbb{R}$ such that $x \ne -3$ and $0 < |x - 6| < \delta$. Then $0 < |x - 6| < \delta \le 1$, so 0 < |x - 6| < 1. Hence, -1 < x - 6 < 1, so 5 < x < 7. Since 5 < x < 7, then 0 < 6 < x + 1 < 8, so 0 < x + 1 < 8. Since 5 < x, then 0 < 8 < x + 3, so $0 < \frac{1}{x+3} < \frac{1}{8}$. Thus,

$$\begin{aligned} |f(x) - 2| &= |\frac{x^2 - 3x}{x + 3} - 2| \\ &= |\frac{x^2 - 5x - 6}{x + 3}| \\ &= |\frac{(x - 6)(x + 1)}{x + 3}| \\ &= |x - 6| \cdot (x + 1) \cdot \frac{1}{x + 3} \\ &< \delta \\ &\leq \epsilon. \end{aligned}$$

Therefore, $|f(x) - 2| < \epsilon$, as desired.

Exercise 7. Let $f: (0,1) \to \mathbb{R}$ be a function defined by $f(x) = \frac{x^3 - x^2 + x - 1}{x - 1}$. Then $\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x - 1} = 2$.

Solution. Observe that 1 is an accumulation point of the interval (0, 1), the domain of f.

We prove $\lim_{x\to 1} f(x) = 2$. Let $\epsilon > 0$ be given. Let $\delta = \frac{\epsilon}{2}$. Then $\delta > 0$. Let $x \in (0, 1)$ such that $0 < |x - 1| < \delta$. Since $x \in (0, 1)$, then 0 < x < 1, so 0 < 1 < x + 1 < 2. Hence, |x + 1| = x + 1 < 2, so |x + 1| < 2. Thus,

$$\begin{aligned} |f(x) - 2| &= |\frac{x^3 - x^2 + x - 1}{x - 1} - 2| \\ &= |\frac{x^2(x - 1) + (x - 1)}{x - 1} - 2| \\ &= |\frac{(x - 1)(x^2 + 1)}{x - 1} - 2| \\ &= |(x^2 + 1) - 2| \\ &= |(x^2 - 1)| \\ &= |(x - 1)(x + 1)| \\ &= |(x - 1)||x + 1| \\ &< 2\delta \\ &= \epsilon. \end{aligned}$$

Therefore, $|f(x) - 2| < \epsilon$, as desired.

Exercise 8. Show that $\lim_{x\to 4} \sqrt{x} = 2$.

Solution. Let $f : \mathbb{R}_+ \to \mathbb{R}$ be a function defined by $f(x) = \sqrt{x}$ for all $x \ge 0$. Observe that 4 is an accumulation point of the set $\{x \in \mathbb{R} : x \ge 0\} = [0, \infty)$, the domain of f.

We prove $\lim_{x\to 4} \sqrt{x} = 2$. Let $\epsilon > 0$ be given. Let $\delta = \min\{1, 2\epsilon\}$. Then $\delta \le 1$ and $\delta \le 2\epsilon$ and $\delta > 0$. Let $x \in \mathbb{R}$ such that $0 < |x - 4| < \delta$. Since $|x - 4| < \delta$, then $-\delta < x - 4 < \delta$, so $-\delta < x - 4$. Hence, $4 - \delta < x$. Since $\delta \le 1 < 4$, then $\delta < 4$, so $0 < 4 - \delta$. Thus, $0 < 4 - \delta < x$. Observe that

$$\begin{array}{rcl} 0 < 4-\delta < x & \Leftrightarrow & 0 < \sqrt{4-\delta} < \sqrt{x} \\ & \Leftrightarrow & 0 < 2 < \sqrt{4-\delta} + 2 < \sqrt{x} + 2 \\ & \Leftrightarrow & 0 < 2 < \sqrt{x} + 2 \\ & \Leftrightarrow & 0 < \frac{1}{\sqrt{x}+2} < \frac{1}{2}. \end{array}$$

Thus,

$$\begin{aligned} |\sqrt{x} - 2| &= |(\sqrt{x} - 2) \cdot \frac{\sqrt{x} + 2}{\sqrt{x} + 2}| \\ &= |\frac{x - 4}{\sqrt{x} + 2}| \\ &= |x - 4| \cdot \frac{1}{\sqrt{x} + 2}| \\ &< \delta \cdot \frac{1}{2} \\ &\leq 2\epsilon \cdot \frac{1}{2} \\ &= \epsilon. \end{aligned}$$

Therefore, $|\sqrt{x} - 2| < \epsilon$, as desired.

Exercise 9. Show that $\lim_{x\to 0} \sqrt[3]{x} = 0$.

Solution. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = \sqrt[3]{x}$. Observe that 0 is an accumulation point of the set \mathbb{R} , the domain of f. We prove $\lim_{x\to 0} \sqrt[3]{x} = 0$. Let $\epsilon > 0$ be given. Let $\delta = \epsilon^3$. Then $\delta > 0$. Let $x \in \mathbb{R}$ such that $0 < |x| < \delta$. Then $0 < |x| < \epsilon^3$, so $0 < |x|^{\frac{1}{3}} < (\epsilon^3)^{\frac{1}{3}}$. Thus, $0 < |x|^{\frac{1}{3}} < \epsilon$, so $0 < |x|^{\frac{1}{3}} < \epsilon$. Hence, $|x^{\frac{1}{3}}| < \epsilon$, so $|\sqrt[3]{x}| < \epsilon$, as desired.

Exercise 10. Show that $\lim_{x \to \frac{1}{2}} \frac{1}{x} = 2$.

Proof. Let $f : \mathbb{R}^* \to \mathbb{R}$ be the function defined by $f(x) = \frac{1}{x}$ for all $x \in \mathbb{R}^*$. Observe that $\frac{1}{2}$ is an accumulation point of \mathbb{R}^* , the domain of f. Let $\epsilon > 0$ be given. Let $\delta = \min\{\frac{1}{4}, \frac{\epsilon}{8}\}$. Then $\delta \leq \frac{1}{4}$ and $\delta \leq \frac{\epsilon}{8}$ and $\delta > 0$. Let $x \in \mathbb{R}^*$ such that $0 < |x - \frac{1}{2}| < \delta$. Since $x \in \mathbb{R}^*$, then $x \neq 0$, so |x| > 0.

6

Since $0 < |x - \frac{1}{2}| < \delta \le \frac{1}{4}$, then $0 < |x - \frac{1}{2}| < \frac{1}{4}$, so $\frac{1}{4} > |x - \frac{1}{2}| \ge \frac{1}{2} - |x|$. Hence, $\frac{1}{4} > \frac{1}{2} - |x|$, so $|x| > \frac{1}{4}$. Thus, $4 > \frac{1}{|x|} > 0$, so $0 < \frac{1}{|x|} < 4$. Observe that

$$\begin{split} |f(x) - 2| &= |\frac{1}{x} - 2| \\ &= |2 - \frac{1}{x}| \\ &= |\frac{2}{x}(x - \frac{1}{2})| \\ &= |\frac{2}{x}| \cdot |x - \frac{1}{2}| \\ &= 2 \cdot |\frac{1}{x}| \cdot |x - \frac{1}{2}| \\ &= 2 \cdot \frac{1}{|x|} \cdot |x - \frac{1}{2}| \\ &= 2 \cdot \frac{1}{|x|} \cdot |x - \frac{1}{2}| \\ &< 8 \cdot |x - \frac{1}{2}| \\ &< 8 \delta \\ &\leq 8 \cdot \frac{\epsilon}{8} \\ &= \epsilon. \end{split}$$

Therefore, $|f(x) - 2| < \epsilon$.

Exercise 11. Show that $\lim_{x\to 2} \frac{1}{1-x} = -1$.

Proof. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = \frac{1}{1-x}$ for all $x \neq 1$. Observe that 2 is an accumulation point of the set $\{x \in \mathbb{R} : x \neq 1\}$, the domain of f.

Let $\epsilon > 0$ be given. Let $\delta = \min\{\frac{1}{2}, \frac{\epsilon}{2}\}$. Then $\delta \le \frac{1}{2}$ and $\delta \le \frac{\epsilon}{2}$ and $\delta > 0$. Let $x \in \mathbb{R}$ such that $x \ne 1$ and $0 < |x - 2| < \delta$. Since $0 < |x - 2| < \delta \le \frac{1}{2}$, then $0 < |x - 2| < \frac{1}{2}$. Hence, $\frac{1}{2} > |x - 2| \ge 2 - |x|$, so $\frac{1}{2} > 2 - |x|$. Thus, $|x| > \frac{3}{2}$. Hence, $|x - 1| \ge |x| - 1 > \frac{1}{2}$, so $|x - 1| > \frac{1}{2} > 0$. Thus, $2 > |\frac{1}{x - 1}| > 0$, so $0 < |\frac{1}{x - 1}| < 2$.

Observe that

$$\begin{split} |f(x) - (-1)| &= |\frac{1}{1-x} + 1| \\ &= |\frac{2-x}{1-x}| \\ &= \frac{|2-x|}{|1-x|} \\ &= \frac{|x-2|}{|x-1|} \\ &= |x-2| \cdot |\frac{1}{|x-1|} \\ &< 2\delta \\ &\leq 2 \cdot \frac{\epsilon}{2} \\ &= \epsilon. \end{split}$$

Therefore, $|f(x) - (-1)| < \epsilon$.

Exercise 12. Show that $\lim_{x\to 1} \frac{x}{1+x} = \frac{1}{2}$.

Proof. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = \frac{x}{1+x}$ for all $x \neq -1$. Observe that 1 is an accumulation point of the set $\{x \in \mathbb{R} : x \neq -1\}$, the domain of f.

Let $\epsilon > 0$ be given. Let $\delta = \min\{1, 2\epsilon\}$. Then $\delta \leq 1$ and $\delta \leq 2\epsilon$ and $\delta > 0$. Let $x \in \mathbb{R}$ such that $x \neq -1$ and $0 < |x - 1| < \delta$. Since $0 < |x - 1| < \delta \leq 1$, then 0 < |x - 1| < 1. Thus, -1 < x - 1 < 1, so -1 < x - 1. Hence, 0 < x, so 0 < 1 < x + 1. Thus, $0 < \frac{1}{x+1} < 1$. Observe that

$$\begin{aligned} |f(x) - \frac{1}{2}| &= |\frac{x}{1+x} - \frac{1}{2}| \\ &= |\frac{x-1}{2(1+x)}| \\ &= \frac{1}{2} \cdot |x-1| \cdot |\frac{1}{x+1}| \\ &< \frac{1}{2}\delta \\ &\leq \frac{1}{2} \cdot 2\epsilon \\ &= \epsilon. \end{aligned}$$

Therefore, $|f(x) - \frac{1}{2}| < \epsilon$.

Exercise 13. Show that $\lim_{x\to -1} \frac{x+5}{2x+3} = 4$.

Solution. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = \frac{x+5}{2x+3}$ for all $x \neq \frac{-3}{2}$. Observe that -1 is an accumulation point of $\{x \in \mathbb{R} : x \neq \frac{-3}{2}\}$, the domain of f.

We prove $\lim_{x\to -1} f(x) = 4$. Let $\epsilon > 0$ be given. Let $\delta = \min\{\frac{1}{4}, \frac{\epsilon_1}{14}\}$. Then $\delta \leq \frac{1}{4}$ and $\delta \leq \frac{\epsilon}{14}$ and $\delta > 0$. Let $x \in \mathbb{R}$ such that $x \neq \frac{-3}{2}$ and $0 < |x - (-1)| < \delta$. Then $0 < |x + 1| < \delta \leq \frac{1}{4}$, so $0 < |x + 1| < \frac{1}{4}$. Hence, $\frac{-1}{4} < x + 1 < \frac{1}{4}$, so $\frac{-1}{4} < x + 1$. Thus, $\frac{-5}{4} < x$. Observe that

$$\begin{array}{rcl} \displaystyle \frac{-5}{4} < x & \Leftrightarrow & \displaystyle \frac{-5}{2} < 2x \\ & \Leftrightarrow & \displaystyle 0 < \frac{1}{2} < 2x + 3 \\ & \Leftrightarrow & \displaystyle 0 < \frac{1}{2x+3} < 2 \end{array}$$

Hence, $0 < \frac{1}{2x+3} < 2$. Thus,

$$|f(x) - 4| = |\frac{x+5}{2x+3} - 4|$$

= $|\frac{-7x-7}{2x+3}|$
= $7|x+1||\frac{1}{2x+3}$
= $7|x+1|\frac{1}{2x+3}$
< 14δ
< $14 \cdot \frac{\epsilon}{14}$
= ϵ

Therefore, $|f(x) - 4| < \epsilon$, as desired.

Exercise 14. Show that $\lim_{x \to -2} \frac{2x^2 + 3x - 2}{x+2} = -5$.

Solution. Let $f : \mathbb{R} - \{-2\} \to \mathbb{R}$ be a function defined by $f(x) = \frac{2x^2 + 3x - 2}{x+2}$ for all $x \neq -2$.

Observe that -2 is an accumulation point of the set $\{x \in \mathbb{R} : x \neq -2\}$, the domain of f.

We prove $\lim_{x\to -2} f(x) = -5$.

Let $\epsilon > 0$ be given. Let $\delta = \frac{\epsilon}{2}$. Then $\delta > 0$. Let $x \in \mathbb{R} - \{-2\}$ such that $0 < |x + 2| < \delta$. Since $0 < |x + 2| < \delta$, then 0 < |x + 2| and $|x + 2| < \delta$. Since |x + 2| > 0, then $x + 2 \neq 0$. Observe that

$$\begin{aligned} |f(x)+5| &= |\frac{2x^2+3x-2}{x+2}+5| \\ &= |\frac{(2x-1)(x+2)}{x+2}+5| \\ &= |(2x-1)+5| \\ &= |2x+4| \\ &= |2(x+2)| \\ &= 2|x+2| \\ &< 2\delta \\ &= \epsilon. \end{aligned}$$

Therefore, $|f(x) + 5| < \epsilon$, as desired.

Exercise 15. Show that $\lim_{x \to 1} \frac{x^2 - x + 1}{x + 1} = \frac{1}{2}$.

Solution. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = \frac{x^2 - x + 1}{x + 1}$ for all $x \neq -1$.

Observe that 1 is an accumulation point of the set $\{x \in \mathbb{R} : x \neq -1\}$, the domain of f.

We prove $\lim_{x\to 1} f(x) = \frac{1}{2}$. Let $\epsilon > 0$ be given. Let $\delta = \min\{\frac{1}{2}, \frac{3\epsilon}{2}\}$. Then $\delta \le \frac{1}{2}$ and $\delta \le \frac{3\epsilon}{2}$ and $\delta > 0$. Let $x \in \mathbb{R}$ such that $x \ne -1$ and $0 < |x-1| < \delta$. Then $0 < |x-1| < \delta \le \frac{1}{2}$, so $0 < |x-1| < \frac{1}{2}$. Hence, $\frac{-1}{2} < x - 1 < \frac{1}{2}$, so $0 < |x-1| < \frac{1}{2}$. Hence, $\frac{-1}{2} < x$, so $0 < \frac{3}{2} < x + 1$. Therefore, $0 < \frac{1}{x+1} < \frac{2}{3}$. Since $|x-1| < \frac{1}{2}$, then $|2x-1| = |2(x-1)+1| \le 2|x-1|+1 < 2 \cdot \frac{1}{2} + 1 = 2$, so $0 \le |2x-1| < 2$. Observe that

$$\begin{split} |f(x) - \frac{1}{2}| &= |\frac{x^2 - x + 1}{x + 1} - \frac{1}{2}| \\ &= |\frac{2x^2 - 3x + 1}{2(x + 1)}| \\ &= |\frac{(x - 1)(2x - 1)}{2(x + 1)}| \\ &= \frac{1}{2}|x - 1||2x - 1| \cdot \frac{1}{x + 1} \\ &< \frac{1}{2}\delta \cdot 2 \cdot \frac{2}{3} \\ &= \frac{2}{3} \cdot \delta \\ &\leq \frac{2}{3} \cdot \frac{3\epsilon}{2} \\ &= \epsilon. \end{split}$$

Therefore, $|f(x) - \frac{1}{2}| < \epsilon$, as desired.

Exercise 16. Show that $\lim_{x\to 2} \frac{x^3-4}{x^2+1} = \frac{4}{5}$.

 $\begin{array}{ll} Proof. \ \mathrm{Let}\ f:\mathbb{R}\to\mathbb{R}\ \mathrm{be\ the\ function\ defined\ by\ }f(x)=\frac{x^3-4}{x^2+1}\ \mathrm{for\ all\ }x\in\mathbb{R}.\\ \mathrm{Observe\ that\ }2\ \mathrm{is\ an\ accumulation\ point\ of\ }\mathbb{R},\ \mathrm{the\ domain\ of\ }f.\\ \mathrm{Let\ }\epsilon>0\ \mathrm{be\ given}.\\ \mathrm{Let\ }\epsilon>0\ \mathrm{be\ given}.\\ \mathrm{Let\ }\delta=\min\{1,\frac{2\epsilon}{15}\}.\\ \mathrm{Then\ }\delta\leq 1\ \mathrm{and\ }\delta\leq\frac{2\epsilon}{15}\ \mathrm{and\ }\delta>0.\\ \mathrm{Let\ }x\in\mathbb{R}\ \mathrm{such\ that\ }0<|x-2|<\delta.\\ \mathrm{Since\ }|x-2|<\delta\ \mathrm{and\ }\delta\leq 1,\ \mathrm{then\ }|x-2|<1,\ \mathrm{so\ }-1< x-2<1.\\ \mathrm{Hence,\ }1< x<3.\\ \mathrm{Since\ }1< x,\ \mathrm{then\ }1< x^2,\ \mathrm{so\ }0<2< x^2+1.\\ \mathrm{Thus,\ }0<\frac{1}{x^2+1}<\frac{1}{2}.\\ \mathrm{Since\ }|x|=|(x-2)+2|\leq|x-2|+2<\delta+2\leq3,\ \mathrm{then\ }|x|<3.\\ \mathrm{Since\ }|x|=|(x-2)+2|\leq|x-2|+2<\delta+2\leq3,\ \mathrm{then\ }|x|<3.\\ \mathrm{Since\ }|5x^2+6x+12|\ \leq\ |5x^2+6x|+12\\ \end{array}$

$$5x^{2} + 6x^{2} + 12| \leq |5x^{2} + 6x| + 12$$

$$\leq |5x^{2}| + |6x| + 12$$

$$= 5|x|^{2} + 6|x| + 12$$

$$< 5(3)^{2} + 6(3) + 12$$

$$= 75,$$

then $|5x^2 + 6x + 12| < 75$.

Hence,

$$\begin{aligned} |\frac{x^3 - 4}{x^2 + 1} - \frac{4}{5}| &= |\frac{5x^3 - 4x^2 - 24}{5(x^2 + 1)}| \\ &= |\frac{(x - 2)(5x^2 + 6x + 12)}{5(x^2 + 1)}| \\ &= \frac{|x - 2|}{5} \cdot |5x^2 + 6x + 12| \cdot \frac{1}{x^2 + 1} \\ &< \frac{\delta}{5} \cdot \frac{75}{2} \\ &= \delta \cdot \frac{15}{2} \\ &\leq \frac{2\epsilon}{15} \cdot \frac{15}{2} \\ &= \epsilon. \end{aligned}$$

Therefore, $|\frac{x^3-4}{x^2+1} - \frac{4}{5}| < \epsilon$.

Exercise 17. Show that $\lim_{x\to 0} \frac{x^2}{|x|} = 0.$

Solution. Let $f : \mathbb{R}^* \to \mathbb{R}$ be a function defined by $f(x) = \frac{x^2}{|x|}$ for all $x \neq 0$. Let $x \in \mathbb{R}^*$. Then $x \neq 0$, so either x > 0 or x < 0. If x > 0, then $f(x) = \frac{x^2}{|x|} = \frac{x^2}{x} = x$. If x < 0, then $f(x) = \frac{x^2}{|x|} = \frac{x^2}{-x} = -x$. Thus,

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ -x & \text{if } x < 0 \end{cases}$$

Observe that 0 is an accumulation point of $\mathbb{R}^* = \{x \in \mathbb{R} : x \neq 0\}$, the domain of f.

We prove $\lim_{x\to 0} f(x) = 0$. Let $\epsilon > 0$ be given. Let $\delta = \epsilon$. Then $\delta > 0$. Let $x \in \mathbb{R}$ such that $0 < |x| < \delta$. Then 0 < |x| and $|x| < \delta$. Thus, $|f(x)| = |\frac{x^2}{|x|}| = \frac{|x^2|}{||x||} = |x| < \delta = \epsilon$. Therefore, $|f(x)| < \epsilon$, as desired.

Exercise 18. Let $f : \mathbb{Q} \to \mathbb{R}$ be a function defined by $f(x) = x^2$ for all $x \in \mathbb{Q}$. Then $\lim_{x \to \sqrt{2}} f(x) = 2$.

Solution.

Since every real number is an accumulation point of \mathbb{Q} , then $\sqrt{2}$ is an accumulation point of \mathbb{Q} , the domain of f.

We prove $\lim_{x\to\sqrt{2}} f(x) = 2$. Let $\epsilon > 0$ be given. Let $\delta = \min\{1, \frac{\epsilon}{1+2\sqrt{2}}\}$. Then $\delta \le 1$ and $\delta \le \frac{\epsilon}{1+2\sqrt{2}}$ and $\delta > 0$. Let $x \in \mathbb{Q}$ such that $0 < |x - \sqrt{2}| < \delta$. Then

$$\begin{aligned} |x + \sqrt{2}| &= |(x - \sqrt{2}) + 2\sqrt{2}| \\ &\leq |x - \sqrt{2}| + 2\sqrt{2} \\ &< \delta + 2\sqrt{2} \\ &\leq 1 + 2\sqrt{2}. \end{aligned}$$

Thus, $0 \le |x + \sqrt{2}| < 1 + 2\sqrt{2}$. Hence,

$$\begin{aligned} |f(x) - 2| &= |x^2 - 2| \\ &= |(x - \sqrt{2})(x + \sqrt{2})| \\ &= |x - \sqrt{2}||x + \sqrt{2}| \\ &< \delta(1 + 2\sqrt{2}) \\ &\le \frac{\epsilon}{1 + 2\sqrt{2}} \cdot (1 + 2\sqrt{2}) \\ &= \epsilon. \end{aligned}$$

Therefore, $|f(x) - 2| < \epsilon$, as desired.

Exercise 19. Show that $\lim_{x\to a}(-12x+4) = -12a+4$ using the sequential characterization of a limit.

Solution. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by f(x) = -12x + 4 for all $x \in \mathbb{R}$.

Observe that $a \in \mathbb{R}$ is an accumulation point of \mathbb{R} , the domain of f.

Let (x_n) be an arbitrary sequence of points in $\mathbb{R} - \{a\}$ such that $\lim_{n \to \infty} x_n = a$.

To prove $\lim_{x \to a} (-12x + 4) = -12a + 4$, we must prove $\lim_{n \to \infty} f(x_n) = -12a + 4$.

Observe that

$$-12a + 4 = -12(\lim_{n \to \infty} x_n) + 4$$
$$= \lim_{n \to \infty} (-12x_n) + 4$$
$$= \lim_{n \to \infty} (-12x_n) + \lim_{n \to \infty} 4$$
$$= \lim_{n \to \infty} (-12x_n + 4)$$
$$= \lim_{n \to \infty} f(x_n).$$

Therefore, $\lim_{n\to\infty} f(x_n) = -12a + 4$, as desired.

Exercise 20. Let *m* and *b* be fixed real numbers. Then for every real number *a*, $\lim_{x\to a} (mx + b) = ma + b$.

Proof. Let a be an arbitrary real number.

Let $f : \mathbb{R} \to \mathbb{R}$ be the linear function defined by f(x) = mx + b. Observe that a is an accumulation point of $dom f = \mathbb{R}$. We must prove $\lim_{x\to a} (mx+b) = ma+b$. Either m = 0 or $m \neq 0$. We consider these cases separately. Case 1: Suppose m = 0. Then $\lim_{x \to a} (mx + b) = \lim_{x \to a} (0x + b) = \lim_{x \to a} b = b = 0 + b = 0a + b = 0$ ma + b. Case 2: Suppose $m \neq 0$. Let $\epsilon > 0$ be given. Let $\delta = \frac{\epsilon}{|m|}$. Since $m \neq 0$, then |m| > 0, so $\delta > 0$. Let $x \in \mathbb{R}$ such that $0 < |x - a| < \delta$. Then $|f(x)\rangle$ (..., $|h\rangle$) |(..., (**1**) 1)

$$|f(x) - (ma + b)| = |(mx + b) - (ma + b)|$$

$$= |mx + b - ma - b|$$

$$= |mx - ma|$$

$$= |m(x - a)|$$

$$= |m||x - a|$$

$$< |m|\delta$$

$$= |m| \cdot \frac{\epsilon}{|m|}$$

$$= \epsilon.$$

Therefore, $|(mx+b) - (ma+b)| < \epsilon$, so $\lim_{x \to a} (mx+b) = ma+b$.

Proof. Let a be an arbitrary real number.

Let $f : \mathbb{R} \to \mathbb{R}$ be the linear function defined by f(x) = mx + b. Observe that a is an accumulation point of $dom f = \mathbb{R}$. To prove $\lim_{x\to a}(mx+b) = ma+b$ using the sequential characterization of a limit, let (x_n) be an arbitrary sequence of points in $\mathbb{R} - \{a\}$ such that $\lim_{n\to\infty} x_n = a$.

We must prove $\lim_{n\to\infty} f(x_n) = ma + b$. Observe that

$$ma + b = m \lim_{n \to \infty} x_n + b$$

= $m \lim_{n \to \infty} x_n + \lim_{n \to \infty} b$
= $\lim_{n \to \infty} mx_n + \lim_{n \to \infty} b$
= $\lim_{n \to \infty} (mx_n + b)$
= $\lim_{n \to \infty} f(x_n).$

Therefore, $\lim_{n\to\infty} f(x_n) = ma + b$, as desired.

Exercise 21. limit of the square function

Prove that for all $a \in \mathbb{R}$, $\lim_{x \to a} x^2 = a^2$ using using the sequential characterization of a limit.

Proof. Let a be an arbitrary real number.

Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = x^2$ for all $x \in \mathbb{R}$.

Since every real number is an accumulation point of \mathbb{R} , then *a* is an accumulation point of \mathbb{R} , the domain of *f*.

Since a is an accumulation point of \mathbb{R} , then there exists a sequence of points in $\mathbb{R} - \{a\}$ that converges to a.

To prove $\lim_{x\to a} x^2 = a^2$ using the sequential characterization of a limit, let (x_n) be an arbitrary sequence of points in $\mathbb{R} - \{a\}$ such that $\lim_{n\to\infty} x_n = a$.

We must prove $\lim_{n\to\infty} f(x_n) = a^2$. Observe that

$$a^{2} = (\lim_{n \to \infty} x_{n})(\lim_{n \to \infty} x_{n})$$
$$= \lim_{n \to \infty} (x_{n}x_{n})$$
$$= \lim_{n \to \infty} (x_{n})^{2}$$
$$= \lim_{n \to \infty} f(x_{n}).$$

Therefore, $\lim_{n\to\infty} f(x_n) = a^2$, as desired.

Exercise 22. Let a > 0. Let I = (0, a). Then for any $x, c \in I$, $|x^2 - c^2| \le 2a|x - c|$ and $\lim_{x\to c} x^2 = c^2$ for all $c \in I$.

Proof. Let $x, c \in I$.

Since $x \in I$, then $x \in (0, a)$, so 0 < x < a. Since $c \in I$, then $c \in (0, a)$, so 0 < c < a.

Thus,

$$\begin{aligned} |x+c| &\leq |x|+|c| \\ &= x+c \\ &< a+a \\ &= 2a. \end{aligned}$$

Hence, |x+c| < 2a.

Since $|x - c| \ge 0$, then $|x + c| |x - c| \le 2a |x - c|$, so $|x^2 - c^2| \le 2a |x - c|$. Let $f: I \to \mathbb{R}$ be the function defined by $f(x) = x^2$ for all $x \in I$. We prove $\lim_{x\to c} x^2 = c^2$ for all $c \in I$. Let $c \in I$ be given. Then $c \in (0, a)$, so c is an accumulation point of I. Let $\epsilon > 0$ be given. Let $\delta = \frac{\epsilon}{2a}$. Since $\epsilon > 0$ and a > 0, then $\delta > 0$. Let $x \in I$ such that $0 < |x - c| < \delta$. Then

$$|x^2 - c^2| \leq 2a|x - c|$$

$$< 2a\delta$$

$$= 2a \cdot \frac{\epsilon}{2a}$$

$$= \epsilon.$$

Therefore, $|x^2 - c^2| < \epsilon$, as desired.

Exercise 23. limit of a square root equals square root of a limit Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function such that $f(x) \ge 0$ for all $x \in E$. If $\lim_{x\to a} f(x)$ exists, then $\lim_{x\to a} \sqrt{f(x)} = \sqrt{\lim_{x\to a} f(x)}$.

Proof. Suppose $\lim_{x\to a} f(x)$ exists.

Then there exists $L \in \mathbb{R}$ such that $\lim_{x \to a} f(x) = L$, so a is an accumulation point of E.

Let $g(x) = \sqrt{f(x)}$.

Then g is a function and $domg = \{x \in E : g(x) \in \mathbb{R}\} = \{x \in E : \sqrt{f(x)} \in \mathbb{R}\} = \{x \in E : f(x) \ge 0\}.$ We must prove $\lim_{x \to a} g(x) = \sqrt{L}.$

We first prove a is an accumulation point of domg.

Let $\epsilon > 0$ be given.

Since a is an accumulation point of E, then there exists $x \in E$ such that $x \in N'(a; \epsilon)$.

Since $x \in E$, then $f(x) \ge 0$.

Since $x \in E$ and $f(x) \ge 0$, then $x \in domg$.

Since there exists $x \in domg$ such that $x \in N'(a; \epsilon)$, then a is an accumulation point of domg.

We next prove $\lim_{x\to a} g(x) = \sqrt{L}$.

Since a is an accumulation point of domg, then there exists a sequence in $domg - \{a\}$ that converges to a.

Let (x_n) be an arbitrary sequence in $domg - \{a\}$ such that $\lim_{n \to \infty} x_n = a$.

Let $n \in \mathbb{N}$ be given.

Then $x_n \in domg - \{a\}$, so $x_n \in domg$ and $x_n \neq a$.

Since $x_n \in domg$ and $domg \subset E$, then $x_n \in E$, so $f(x_n) \ge 0$.

Since $x_n \in E$ and $x_n \neq a$, then $x_n \in E - \{a\}$.

Thus, $f(x_n) \ge 0$ and $x_n \in E - \{a\}$ for all $n \in \mathbb{N}$, so $f(x_n) \ge 0$ for all $n \in \mathbb{N}$ and $x_n \in E - \{a\}$ for all $n \in \mathbb{N}$.

Since $x_n \in E - \{a\}$ for all $n \in \mathbb{N}$, then (x_n) is a sequence of points in $E - \{a\}$. Since a is an accumulation point of E and $\lim_{x\to a} f(x) = L$ and (x_n) is a sequence of points in $E - \{a\}$ and $\lim_{n\to\infty} x_n = a$, then by the sequential characterization of a function limit, we have $\lim_{n\to\infty} f(x_n) = L$, so $\lim_{n\to\infty} f(x_n)$ exists.

Since $f(x_n) \ge 0$ for all $n \in \mathbb{N}$ and $\lim_{n\to\infty} f(x_n)$ exists, then by a previous proposition, $\lim_{n\to\infty} g(x_n) = \lim_{n\to\infty} \sqrt{f(x_n)} = \sqrt{\lim_{n\to\infty} f(x_n)} = \sqrt{L}$.

Since (x_n) is an arbitrary sequence of points in $domg - \{a\}$ such that $\lim_{n\to\infty} x_n = a$ and $\lim_{n\to\infty} g(x_n) = \sqrt{L}$, then by the sequential characterization of a function limit, we have $\lim_{x\to a} g(x) = \sqrt{L}$, as desired.

Exercise 24. Let $I \subset \mathbb{R}$ be an interval with at least two elements.

Let $f: I \to \mathbb{R}$ be a function defined for all $x \in I$.

Let $a \in I$.

If there exist real numbers K, L such that $|f(x) - L| \le K|x - a|$ for all $x \in I$, then $\lim_{x \to a} f(x) = L$.

Proof. Suppose there exist real numbers K, L such that $|f(x) - L| \le K|x - a|$ for all $x \in I$.

Since I has at least two elements and $a \in I$, then a is an accumulation point of I, the domain of f.

Since $a \in I$ and I has at least two elements, then there exists at least one element of I that is distinct from a.

Hence, there exists $b \in I$ such that $b \neq a$. Thus, d(b, a) = |b - a| > 0. Since $b \in I$, then $0 \leq |f(b) - L| \leq K|b - a|$, so $0 \leq K|b - a|$. Since |b - a| > 0, then $0 \leq K$, so $K \geq 0$. Thus, either K > 0 or K = 0. We consider these cases separately. **Case 1:** Suppose K = 0. Let $\epsilon > 0$ be given. Let $\delta = \epsilon$. Then $\delta > 0$. Since there is at least one element of I distinct from a, let $x \in I$ such that $0 < |x - a| < \delta$.

Since $x \in I$, then

$$|f(x) - L| \leq K|x - a|$$

= $0|x - a|$
= 0
 $< \epsilon$.

Therefore, $|f(x) - L| < \epsilon$, so $\lim_{x \to a} f(x) = L$. **Case 2:** Suppose K > 0. Let $\epsilon > 0$ be given. Let $\delta = \frac{\epsilon}{K}$. Since $\epsilon > 0$ and K > 0, then $\delta > 0$. Since there is at least one element of I distinct from a, let $x \in I$ such that $0 < |x - a| < \delta$. Then $|x - a| < \delta$.

Since $x \in I$, then

$$|f(x) - L| \leq K|x - a|$$

$$< K\delta$$

$$= \epsilon.$$

Therefore, $|f(x) - L| < \epsilon$, so $\lim_{x \to a} f(x) = L$. Thus, in all cases, $\lim_{x \to a} f(x) = L$, as desired.

Exercise 25. Let $f : \mathbb{R}^+ \to \mathbb{R}$ be a function defined by $f(x) = \frac{1}{x^2}$ for all x > 0. Then $\lim_{x\to 0} f(x)$ does not exist in \mathbb{R} .

Solution.

Observe that 0 is an accumulation point of $\mathbb{R}^+ = (0, \infty)$, the domain of f. We prove there is no real L such that $\lim_{x\to 0} f(x) = L$. Observe that

$$\neg (\exists L \in \mathbb{R}) (\lim_{x \to 0} f(x) = L) \quad \Leftrightarrow \quad \\ \neg (\exists L \in \mathbb{R}) (\forall \epsilon > 0) (\exists \delta > 0) (\forall x > 0) (0 < |x| < \delta \rightarrow |f(x) - L| < \epsilon) \quad \Leftrightarrow \quad \\ (\forall L \in \mathbb{R}) (\exists \epsilon > 0) (\forall \delta > 0) (\exists x > 0) (0 < |x| < \delta \land |f(x) - L| \ge \epsilon).$$

Thus, we prove $(\forall L \in \mathbb{R})(\exists \epsilon > 0)(\forall \delta > 0)(\exists x > 0)(0 < |x| < \delta \land |f(x) - L| \ge \epsilon)$.

Let L be an arbitrary real number. Let $\epsilon = \max\{0, -L\} + 1$. Then $\epsilon - 1 = \max\{0, -L\}$, so $\epsilon - 1 \ge 0$ and $\epsilon - 1 \ge -L$. Since $\epsilon - 1 \ge 0$, then $\epsilon \ge 1 > 0$, so $\epsilon > 0$. Since $\epsilon - 1 \ge -L$, then $L + \epsilon \ge 1 > 0$, so $L + \epsilon > 0$. Hence, $\frac{1}{L+\epsilon} > 0$, so $\frac{1}{\sqrt{L+\epsilon}} > 0$. Let $\delta > 0$ be given. We must prove there exists x > 0 such that $0 < |x| < \delta$ and $|f(x) - L| \ge \epsilon$.

Let $x = \min\{\frac{\delta}{2}, \frac{1}{\sqrt{L+\epsilon}}\}$. Then $x \leq \frac{\delta}{2}$ and $x \leq \frac{1}{\sqrt{L+\epsilon}}$ and x > 0. Since $0 < |x| = x \leq \frac{\delta}{2} < \delta$, then $0 < |x| < \delta$. Since $0 < x \leq \frac{1}{\sqrt{L+\epsilon}}$, then $0 < x^2 \leq \frac{1}{L+\epsilon}$, so $0 < L + \epsilon \leq \frac{1}{x^2}$. Hence, $0 < \epsilon \leq \frac{1}{x^2} - L$, so $0 < \frac{1}{x^2} - L$ and $\epsilon \leq \frac{1}{x^2} - L$. Thus, $|f(x) - L| = |\frac{1}{x^2} - L| = \frac{1}{x^2} - L \geq \epsilon$, so $|f(x) - L| \geq \epsilon$. Therefore, there exists x > 0 such that $0 < |x| < \delta$ and $|f(x) - L| \geq \epsilon$, as desired.

Exercise 26. Let $f : \mathbb{R}^+ \to \mathbb{R}$ be a function defined by $f(x) = \frac{1}{\sqrt{x}}$ for all x > 0. Then $\lim_{x\to 0} f(x)$ does not exist in \mathbb{R} .

Solution.

Observe that 0 is an accumulation point of $\mathbb{R}^+ = (0, \infty)$, the domain of f. We prove there is no real L such that $\lim_{x\to 0} f(x) = L$. Observe that

$$\neg (\exists L \in \mathbb{R}) (\lim_{x \to 0} f(x) = L) \quad \Leftrightarrow \\ \neg (\exists L \in \mathbb{R}) (\forall \epsilon > 0) (\exists \delta > 0) (\forall x > 0) (0 < |x| < \delta \to |f(x) - L| < \epsilon) \quad \Leftrightarrow \\ (\forall L \in \mathbb{R}) (\exists \epsilon > 0) (\forall \delta > 0) (\exists x > 0) (0 < |x| < \delta \land |f(x) - L| \ge \epsilon).$$

Thus, we prove $(\forall L \in \mathbb{R})(\exists \epsilon > 0)(\forall \delta > 0)(\exists x > 0)(0 < |x| < \delta \land |f(x) - L| \ge \epsilon)$.

Let L be an arbitrary real number.

Let $\epsilon = \max\{0, -L\} + 1$. Then $\epsilon - 1 = \max\{0, -L\}$, so $\epsilon - 1 \ge 0$ and $\epsilon - 1 \ge -L$. Since $\epsilon - 1 \ge 0$, then $\epsilon \ge 1 > 0$, so $\epsilon > 0$. Since $\epsilon - 1 \ge -L$, then $L + \epsilon \ge 1 > 0$, so $L + \epsilon > 0$. Let $\delta > 0$ be given. We must prove there exists x > 0 such that $0 < |x| < \delta$ and $|f(x) - L| \ge \epsilon$.

Let $x = \min\{\frac{\delta}{2}, \frac{1}{(L+\epsilon)^2}\}$. Then $x \leq \frac{\delta}{2}$ and $x \leq \frac{1}{(L+\epsilon)^2}$. Since $\delta > 0$ and $L + \epsilon > 0$, then x > 0. Since $0 < x = |x| \leq \frac{\delta}{2} < \delta$, then $0 < |x| < \delta$. Since $0 < x \leq \frac{1}{(L+\epsilon)^2}$, then $0 < \sqrt{x} \leq \frac{1}{L+\epsilon}$, so $L + \epsilon \leq \frac{1}{\sqrt{x}}$. Hence, $0 < \epsilon \leq \frac{1}{\sqrt{x}} - L$, so $0 < \frac{1}{\sqrt{x}} - L$ and $\epsilon \leq \frac{1}{\sqrt{x}} - L$. Therefore, $|f(x) - L| = |\frac{1}{\sqrt{x}} - L| = \frac{1}{\sqrt{x}} - L \ge \epsilon$, so $|f(x) - L| \ge \epsilon$. Thus, there exists x > 0 such that $0 < |x| < \delta$ and $|f(x) - L| \ge \epsilon$, as desired.

Exercise 27. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined for all $x \in \mathbb{R}$. Let $a, L \in \mathbb{R}$. Then $\lim_{x\to a} f(x) = L$ iff $\lim_{x\to 0} f(x+a) = L$. *Proof.* We first prove if $\lim_{x\to a} f(x) = L$, then $\lim_{x\to 0} f(x+a) = L$. Suppose $\lim_{x \to a} f(x) = L$. Let $\epsilon > 0$ be given. Then there exists $\delta > 0$ such that for all $x \in \mathbb{R}$, if $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon.$ Let $x \in \mathbb{R}$ such that $0 < |x| < \delta$. Since $x \in \mathbb{R}$, then $x + a \in \mathbb{R}$, so if $0 < |(x+a) - a| < \delta$, then $|f(x+a) - L| < \epsilon$. Hence, if $0 < |x| < \delta$, then $|f(x+a) - L| < \epsilon$. Since $0 < |x| < \delta$, then we conclude $|f(x+a) - L| < \epsilon$. Therefore, $\lim_{x\to 0} f(x+a) = L$. Conversely, we prove if $\lim_{x\to 0} f(x+a) = L$, then $\lim_{x\to a} f(x) = L$. Suppose $\lim_{x\to 0} f(x+a) = L$. Let $\epsilon > 0$ be given. Then there exists $\delta > 0$ such that for all $x \in \mathbb{R}$, if $0 < |x| < \delta$, then $|f(x+a) - L| < \epsilon.$ Let $x \in \mathbb{R}$ such that $0 < |x - a| < \delta$. Since $x \in \mathbb{R}$, then $x - a \in \mathbb{R}$, so if $0 < |x - a| < \delta$, then $|f((x - a) + a) - L| < \epsilon$. Hence, if $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$. Since $0 < |x - a| < \delta$, then we conclude $|f(x) - L| < \epsilon$. Therefore, $\lim_{x \to a} f(x) = L$. **Exercise 28.** Let $a, L \in \mathbb{R}$. Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that $\lim_{x \to a} (f(x))^2 = L$. If L = 0, then $\lim_{x \to a} f(x) = 0$. Provide an example such that $L \neq 0$ and $\lim_{x \to a} f(x)$ does not exist. *Proof.* We must prove if L = 0, then $\lim_{x \to a} f(x) = 0$. Suppose L = 0. Then $\lim_{x \to a} (f(x))^2 = 0.$ To prove $\lim_{x\to a} f(x) = 0$, let $\epsilon > 0$ be given. Then $\epsilon^2 > 0$. Since $\lim_{x\to a} (f(x))^2 = 0$, then there exists $\delta > 0$ such that if $0 < |x-a| < \delta$, then $|(f(x))^2| < \epsilon^2$. Let $x \in \mathbb{R}$ such that $0 < |x - a| < \delta$. Then $|(f(x))^2| < \epsilon^2$, so $0 \le |(f(x))^2| < \epsilon^2$. Hence, $0 \le |f(x)|^2 < \epsilon^2$, so $0 \le |f(x)| < \epsilon$. Therefore, $|f(x)| < \epsilon$, as desired.

Solution. Let $f : \mathbb{R}^* \to \mathbb{R}$ be the function defined by f(x) = 1 if x > 0 and f(x) = -1 if x < 0.

We shall show that $\lim_{x\to 0} (f(x))^2 = 1 \neq 0$ and $\lim_{x\to 0} f(x)$ does not exist.

We first prove $\lim_{x\to 0} (f(x))^2 = 1$.

Observe that 0 is an accumulation point of \mathbb{R}^* , the domain of f. Let $\epsilon > 0$ be given. Let $\delta = \epsilon$. Then $\delta > 0$. Let $x \in \mathbb{R}^*$. Then either x > 0 or x < 0. If x > 0, then $(f(x))^2 = 1^2 = 1$. If x < 0, then $(f(x))^2 = (-1)^2 = 1$. Thus, in all cases, $(f(x))^2 = 1$. Since $|(f(x))^2 - 1| = |1 - 1| = 0 < \epsilon$, then $|(f(x))^2 - 1| < \epsilon$. Hence, the implication if $0 < |x| < \delta$, then $|(f(x))^2 - 1| < \epsilon$ is trivially true. Therefore, $\lim_{x \to 0} (f(x))^2 = 1$.

We next prove $\lim_{x\to 0} f(x)$ does not exist.

We already proved by contradiction that the function f fails to have a limit at 0 in the list of examples.

It has a jump discontinuity at zero. Therefore, $\lim_{x\to 0} f(x)$ does not exist.

Exercise 29. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by f(x) = x if x is rational and f(x) = 0 if x is irrational.

Show that $\lim_{x\to 0} f(x) = 0$.

Show that if $a \neq 0$, then the limit of f at a does not exist.

Proof. Observe that 0 is an accumulation point of \mathbb{R} , the domain of f. We prove $\lim_{x\to 0} f(x) = 0$. Let $\epsilon > 0$ be given. Let $\delta = \epsilon$. Then $\delta > 0$. Let $x \in \mathbb{R}$ such that $0 < |x| < \delta$. Since $x \in \mathbb{R}$, then either x is rational or x is not rational. If x is rational, then $|f(x)| = |x| < \delta = \epsilon$, so $|f(x)| < \epsilon$. If x is not rational, then x is irrational, so $|f(x)| = 0 < \epsilon$. Therefore, in all cases, $|f(x)| < \epsilon$, so $\lim_{x\to 0} f(x) = 0$, as desired.

Proof. Let $a \neq 0$ be given.

Observe that a is an accumulation point of \mathbb{R} , the domain of f.

To prove the limit of f at a does not exist, we must prove there is no real L such that $\lim_{x\to a} f(x) = L$.

Observe that

 $\neg(\exists L \in \mathbb{R})(\lim_{x \to a} f(x) = L) \quad \Leftrightarrow \quad$ $\neg (\exists L \in \mathbb{R}) (\forall \epsilon > 0) (\exists \delta > 0) (\forall x) (0 < |x - a| < \delta \rightarrow |f(x) - L| < \epsilon) \quad \Leftrightarrow \quad$ $(\forall L \in \mathbb{R}) (\exists \epsilon > 0) (\forall \delta > 0) (\exists x) (0 < |x - a| < \delta \land |f(x) - L| \ge \epsilon).$ Thus, we prove $(\forall L \in \mathbb{R})(\exists \epsilon > 0)(\forall \delta > 0)(\exists x)(0 < |x - a| < \delta \land |f(x) - L| \geq$ ϵ). Let L be an arbitrary real number. Either L = 0 or $L \neq 0$. We consider these cases separately. Case 1: Suppose $L \neq 0$. Let $\epsilon = |L|$. Since $L \neq 0$, then |L| > 0, so $\epsilon > 0$. Let $\delta > 0$ be given. Since a and $a + \delta$ are real numbers and $a < a + \delta$, then there exists an irrational number x such that $a < x < a + \delta$. Thus, a < x and $0 < x - a < \delta$. Since $0 < x - a < \delta$, then $|x - a| = x - a < \delta$, so $|x - a| < \delta$. Since x > a, then x - a > 0, so $0 < |x - a| < \delta$. Since x is irrational, then $|f(x) - L| = |0 - L| = |-L| = |L| = \epsilon$, so $|f(x) - L| = \epsilon.$ Thus, $|f(x) - L| \ge \epsilon$. Case 2: Suppose L = 0. Let $\epsilon = |a|$. Since $a \neq 0$, then |a| > 0, so $\epsilon > 0$. Let $\delta > 0$ be given. Since $a \neq 0$, then either a > 0 or a < 0. Case 2a: Suppose a > 0. Since a and $a + \delta$ are real numbers and $a < a + \delta$, then there exists a rational number x such that $a < x < a + \delta$. Thus, a < x and $0 < x - a < \delta$. Since $0 < x - a < \delta$, then $|x - a| = x - a < \delta$, so $|x - a| < \delta$. Since x > a, then x - a > 0, so $0 < |x - a| < \delta$. Since 0 < a < x, then |x| = x > a = |a|, so |x| > |a|. Since x is rational, then $|f(x) - L| = |x - 0| = |x| > |a| = \epsilon$, so $|f(x) - L| > \epsilon$. Case 2b: Suppose a < 0. Since a and $a + \delta$ are real numbers and $a - \delta < a$, then there exists a rational number x such that $a - \delta < x < a$. Thus, x < a and $-\delta < x - a < 0$. Since $\delta > x - a > 0$, then $|x - a| = x - a < \delta$, so $|x - a| < \delta$. Since x < a, then x - a < 0, so $x - a \neq 0$. Hence, |x - a| > 0, so $0 < |x - a| < \delta$. Since x < a < 0, then |x| = -x > -a = |a|, so |x| > |a|. Since x is rational, then $|f(x) - L| = |x - 0| = |x| > |a| = \epsilon$, so $|f(x) - L| > \epsilon$. Therefore, in either case, $|f(x) - L| > \epsilon$, so $|f(x) - L| \ge \epsilon$.

Thus, there is no real L such that $\lim_{x\to a} f(x) = L$, so if $a \neq 0$, then the limit of f at a does not exist.

Exercise 30. Given that the definition of limit requires that a be an accumulation point of dom f, what real values of a would be excluded from consideration in the limit $\lim_{x\to a} \sqrt{x^2 - 2}$?

Solution. Let $f: [\sqrt{2}, \infty) \to \mathbb{R}$ be the function given by $f(x) = \sqrt{x^2 - 2}$. The domain of f is the interval $[\sqrt{2}, \infty)$, a closed, unbounded set.

Thus, $dom f = [\sqrt{2}, \infty)$.

Values of a that should be included in the consideration of a limit must be accumulation points of dom f.

Hence, values of a that should be excluded from consideration of a limit must not be accumulation points of dom f.

Let S be the set of all real values of a that are excluded from consideration of a limit of f at a.

Then S is the set of all real values of a that are not accumulation points of dom f.

Thus, $S = \{x \in \mathbb{R} : x \text{ is not an accumulation point of } dom f \}$. We prove $S = (-\infty, \sqrt{2})$.

We first prove $(-\infty, \sqrt{2}) \subset S$.

Let $t \in (-\infty, \sqrt{2})$.

Since dom f is a closed set, then if x is an accumulation point of dom f, then $x \in dom f$.

Hence, if $x \notin dom f$, then x is not an accumulation point of dom f.

Since $t \in (-\infty, \sqrt{2})$ and the interval $(-\infty, \sqrt{2})$ is the complement of $[\sqrt{2}, \infty) = dom f$, then $t \notin dom f$.

Thus, t is not an accumulation point of dom f, so $t \in S$. Hence, $(-\infty, \sqrt{2}) \subset S$.

We now prove $S \subset (-\infty, \sqrt{2})$.

Let $s \in S$.

Then $s \in \mathbb{R}$ and s is not an accumulation point of dom f.

Suppose for the sake of contradiction $s \in dom f$.

Then $s \in [\sqrt{2}, \infty)$, so s is an accumulation point of $[\sqrt{2}, \infty)$.

Hence, s is an accumulation point of dom f, contradicting the fact that s is not an accumulation point of dom f.

Therefore, $s \notin dom f$, so s is in the complement of dom f.

Thus, $s \in (-\infty, \sqrt{2})$, the complement of *domf*.

Hence,
$$S \subset (-\infty, \sqrt{2})$$
.

Since $S \subset (-\infty, \sqrt{2})$ and $(-\infty, \sqrt{2}) \subset S$, then $S = (-\infty, \sqrt{2})$.

Exercise 31. Let $f: (0,1) \to \mathbb{R}$ be a function defined by $f(x) = \sin(\frac{1}{x})$ for all $x \in (0,1)$.

Then $\lim_{x\to 0} \sin(\frac{1}{x})$ does not exist in \mathbb{R} .

Solution.

Observe that 0 is an accumulation point of (0, 1), the domain of f. We prove there is no real L such that $\lim_{x\to 0} f(x) = L$. Observe that

$$\begin{split} \neg(\exists L \in \mathbb{R})(\lim_{x \to 0} f(x) = L) & \Leftrightarrow \\ \neg(\exists L \in \mathbb{R})(\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in (0, 1))(0 < |x| < \delta \to |f(x) - L| < \epsilon) \\ (\forall L \in \mathbb{R})(\exists \epsilon > 0)(\forall \delta > 0)(\exists x \in (0, 1))(0 < |x| < \delta \land |f(x) - L| \ge \epsilon). \end{split}$$

Thus, we prove $(\forall L \in \mathbb{R})(\exists \epsilon > 0)(\forall \delta > 0)(\exists x \in (0, 1))(0 < |x| < \delta \land |f(x) - L| \ge \epsilon).$

Let L be an arbitrary real number. Let $\epsilon = \frac{1}{3}$. Let $\delta > 0$ be given.

We must prove there exists $x \in (0, 1)$ such that $0 < |x| < \delta$ and $|f(x) - L| \ge \epsilon$.

We first prove either $0 \notin N(L; \epsilon)$ or $1 \notin N(L; \epsilon)$ by contradiction. Suppose $0 \in N(L; \epsilon)$ and $1 \in N(L; \epsilon)$. Then $d(0, L) < \epsilon$ and $d(1, L) < \epsilon$, so $|0 - L| < \epsilon$ and $|1 - L| < \epsilon$. Hence, $|L| < \epsilon$ and $|1 - L| < \epsilon$. Observe that

$$1 = |(1 - L) + L| \\ \leq |1 - L| + |L| \\ < \epsilon + \epsilon \\ = \frac{1}{3} + \frac{1}{3} \\ = \frac{2}{3}.$$

Therefore, $1 < \frac{2}{3}$, a contradiction.

Hence, either $0 \notin N(L; \epsilon)$ or $1 \notin N(L; \epsilon)$. We consider these cases separately. **Case 1:** Suppose $0 \notin N(L; \epsilon)$. Then $d(0, L) \ge \epsilon$, so $|0 - L| \ge \epsilon$. Since $\delta > 0$, then $\delta \pi > 0$, so by the Archimedean property of \mathbb{R} , there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < \delta \pi$. Hence, $\frac{1}{n\pi} < \delta$. Let $x = \frac{1}{n\pi}$. Since $0 < \frac{1}{\pi} < n$ for any $n \in \mathbb{N}$, then $0 < 1 < n\pi$, so $0 < \frac{1}{n\pi} < 1$. Thus, $\frac{1}{n\pi} \in (0, 1)$. Since $0 < \frac{1}{n\pi} = |\frac{1}{n\pi}| < \delta$, then $0 < |\frac{1}{n\pi}| < \delta$.

Since $|f(\frac{1}{n\pi}) - L| = |\sin(n\pi) - L| = |0 - L| \ge \epsilon$, then $|f(\frac{1}{n\pi}) - L| \ge \epsilon$. **Case 2:** Suppose $1 \notin N(L; \epsilon)$. Then $d(1,L) \ge \epsilon$, so $|1-L| \ge \epsilon$. Since $\delta > 0$, then $\frac{\delta \pi}{2} > 0$, so by the Archimedean property of \mathbb{R} , there exists $\begin{array}{l} k \in \mathbb{N} \text{ such that } \frac{1}{k} < \frac{\delta^2_{\pi}}{2}.\\ \text{Thus, } \frac{2}{k\pi} < \delta.\\ \text{Let } m = 4k+1. \end{array}$ Then m - 1 = 4k, so 4|(m - 1). Hence, $m \equiv 1 \pmod{4}$. Since m - k = (4k + 1) - k = 3k + 1 > 0, then m - k > 0, so m > k. Since m - k = (4k + 1) - k = 5k + 1 > 0, then m - k > 0, so m > k. Since m > k > 0, then $0 < \frac{1}{m} < \frac{1}{k}$, so $0 < \frac{2}{m\pi} < \frac{2}{k\pi}$. Thus, $0 < \frac{2}{m\pi} < \frac{2}{k\pi} < \delta$, so $0 < \frac{2}{m\pi} < \delta$. Let $x = \frac{2}{m\pi}$. Since $0 < \frac{2}{\pi} < m$ for any $m \in \mathbb{N}$, then $0 < 2 < m\pi$, so $0 < \frac{2}{m\pi} < 1$. Thus, $\frac{2}{m\pi} \in (0, 1)$. Since $0 < \frac{2}{m\pi} = |\frac{2}{m\pi}| < \delta$, then $0 < |\frac{2}{m\pi}| < \delta$. Since $m \equiv 1 \pmod{4}$, then $|f(\frac{2}{m\pi}) - L| = |\sin(\frac{m\pi}{2}) - L| = |1 - L| \ge \epsilon$, so $(-\frac{2}{2}) - L| \ge \epsilon$ $|f(\frac{2}{m\pi}) - L| \ge \epsilon.$ Therefore, in all cases, there exists $x \in (0,1)$ such that $0 < |x| < \delta$ and

 $|f(x) - L| \ge \epsilon$, as desired.

Exercise 32. Show that $\lim_{x\to 0} \cos(\frac{1}{x})$ does not exist in \mathbb{R} .

Solution. Let $f : \mathbb{R} - \{0\} \to \mathbb{R}$ be a function defined by $f(x) = \cos(\frac{1}{x})$.

Since 0 is an accumulation point of \mathbb{R} , then 0 is an accumulation point of $\mathbb{R} - \{0\}$, the domain of f.

Suppose $\lim_{x\to 0} f(x)$ does exist in \mathbb{R} .

Then there is a real number L such that $\lim_{x\to 0} \cos(\frac{1}{x}) = L$.

Thus, for every $\epsilon > 0$, there is $\delta > 0$ such that for every $x \neq 0$, if $0 < |x| < \delta$, then $|\cos(\frac{1}{x}) - L| < \epsilon$.

Let $\epsilon = \frac{1}{2}$.

Then there is $\delta > 0$ such that for every $x \in \mathbb{R} - \{0\}$, if $0 < |x| < \delta$, then $|\cos(\frac{1}{x}) - L| < \frac{1}{2}.$ Let $M = \frac{1}{2\pi\delta}.$ Then $M \in \mathbb{R}$, so by the Archimedean property of \mathbb{R} , there exists $n_1 \in \mathbb{N}$

such that $n_1 > M$. Let $x_1 = \frac{1}{2\pi n_1}$. Since $n_1 \in \mathbb{N}$, then $n_1 > 0$, so $x_1 > 0$. Hence, $x_1 \neq 0$. Since $n_1 > M$ and $M = \frac{1}{2\pi\delta}$, then $n_1 > \frac{1}{2\pi\delta}$. Since $\delta > 0$ and $n_1 > 0$, then $\delta > \frac{1}{2\pi n_1}$, so $\delta > x_1$. Thus, $\delta > x_1 = |x_1| > 0$. Since $x_1 \neq 0$ and $0 < |x_1| < \delta$, then $|\cos(\frac{1}{x_1}) - L| < \frac{1}{2}$. Let $N = \frac{\frac{1}{\pi\delta} - 1}{2}$. Then $N \in \mathbb{R}$, so by the Archimedean property of \mathbb{R} , there exists $n_2 \in \mathbb{N}$ such that $n_2 > N$. Let $x_2 = \frac{1}{(2n_2+1)\pi}$. Since $n_2 \in \mathbb{N}$, then $n_2 > 0$, so $2n_2 + 1 > 0$. Hence, $x_2 > 0$, so $x_2 \neq 0$. Since $n_2 > N$ and $N = \frac{\frac{1}{\pi\delta} - 1}{2}$, then $n_2 > \frac{\frac{1}{\pi\delta} - 1}{2}$. Thus, $2n_2 > \frac{1}{\pi\delta} - 1$, so $2n_2 + 1 > \frac{1}{\pi\delta}$. Since $\delta > 0$ and $n_2 > 0$, then $\delta > \frac{1}{(2n_2+1)\pi}$, so $\delta > x_2$. Thus, $\delta > x_2 = |x_2| > 0$. Since $x_2 \neq 0$ and $0 < |x_2| < \delta$, then $|\cos(\frac{1}{x_2}) - L| < \frac{1}{2}$.

Observe that

$$\begin{array}{rcl} 2 & = & |1 - (-1)| \\ & = & |\cos(2\pi n_1) - \cos((2n_2 + 1)\pi)| \\ & = & |\cos(\frac{1}{\frac{1}{2\pi n_1}}) - \cos(\frac{1}{(2n_2 + 1)\pi})| \\ & = & |\cos(\frac{1}{x_1}) - \cos(\frac{1}{x_2})| \\ & = & |\cos(\frac{1}{x_1}) - L + L - \cos(\frac{1}{x_2})| \\ & \leq & |\cos(\frac{1}{x_1}) - L| + |L - \cos(\frac{1}{x_2})| \\ & = & |\cos(\frac{1}{x_1}) - L| + |\cos(\frac{1}{x_2}) - L| \\ & < & \frac{1}{2} + \frac{1}{2} \\ & = & 1. \end{array}$$

Thus, we have 2 < 1, a contradiction. Therefore, $\lim_{x\to 0} \cos(\frac{1}{x})$ does not exist in \mathbb{R} .

Exercise 33. Show that $\lim_{x\to 0} x \sin(\frac{1}{x}) = 0$.

Proof. Let $f : \mathbb{R}^* \to \mathbb{R}$ be the function defined by $f(x) = x \sin(\frac{1}{x})$ for all $x \neq 0$. Observe that 0 is an accumulation point of the set $\mathbb{R}^* = \{x \in \mathbb{R} : x \neq 0\}$,

the domain of f. Let $\epsilon > 0$ be given. Let $\delta = \epsilon$. Then $\delta > 0$. Let $x \in \mathbb{R}^*$ such that $0 < |x| < \delta$. Since $x \in \mathbb{R}^*$, then $x \in \mathbb{R}$ and $x \neq 0$, so $\frac{1}{x} \in \mathbb{R}$. Since $|\sin \theta| \le 1$ for all $\theta \in \mathbb{R}$, then in particular, $|\sin(\frac{1}{x})| \le 1$, so $0 \le |\sin(\frac{1}{x})| \le 1$.

Therefore, $|x \sin(\frac{1}{x})| = |x| \cdot |\sin(\frac{1}{x})| \le |x| < \delta = \epsilon$. Thus, $|x \sin(\frac{1}{x})| < \epsilon$, as desired.

Proof. Let $f : \mathbb{R}^* \to \mathbb{R}$ be the function defined by $f(x) = x \sin(\frac{1}{x})$ for all $x \neq 0$. Observe that 0 is an accumulation point of the set $\mathbb{R}^* = \{x \in \mathbb{R} : x \neq 0\}$, the domain of f.

Let $x \in \mathbb{R}^*$. Then $x \in \mathbb{R}$ and $x \neq 0$. Hence, |x| > 0 and -|x| < 0 and $\frac{1}{x} \in \mathbb{R}$. Since $|\sin \theta| \le 1$ for all $\theta \in \mathbb{R}$, then in particular, $|\sin(\frac{1}{x})| \le 1$. Since $x \neq 0$, then $x\sin(\frac{1}{x}) \in \mathbb{R}$, so $-|x\sin(\frac{1}{x})| \le x\sin(\frac{1}{x}) \le |x\sin(\frac{1}{x})|$. Thus, $-|x\sin(\frac{1}{x})| \le x\sin(\frac{1}{x})$ and $x\sin(\frac{1}{x}) \le |x\sin(\frac{1}{x})|$. Since $x\sin(\frac{1}{x}) \le |x\sin(\frac{1}{x})| = |x||\sin(\frac{1}{x})| \le |x|$, then $x\sin(\frac{1}{x}) \le |x|$. Since $-|x\sin(\frac{1}{x})| \le x\sin(\frac{1}{x})$, then $x\sin(\frac{1}{x}) \ge -|x\sin(\frac{1}{x})| = -|x||\sin(\frac{1}{x})| \ge -|x|$, so $x\sin(\frac{1}{x}) \ge -|x|$. Thus, $-|x| \le x\sin(\frac{1}{x}) \le |x|$, so $-|x| \le x\sin(\frac{1}{x}) \le |x|$ for all $x \in \mathbb{R}^*$. Since $-|x| \le x\sin(\frac{1}{x}) \le |x|$ for all $x \in \mathbb{R}^*$ and $\lim_{x \to 0} |x| = |0| = 0 = -|0| = -|0|$

 $-\lim_{x\to 0} |x| \leq \lim_{x\to 0} -|x|, \text{ then by the squeeze rule, } \lim_{x\to 0} x\sin(\frac{1}{x}) = 0. \square$

Proof. Let $f : \mathbb{R}^* \to \mathbb{R}$ be the function defined by $f(x) = x \sin(\frac{1}{x})$ for all $x \neq 0$. Observe that 0 is an accumulation point of the set $\mathbb{R}^* = \{x \in \mathbb{R} : x \neq 0\}$, the domain of f.

We prove by using the sequential criterion for function limits.

Since 0 is an accumulation point of \mathbb{R}^* , then there exists a sequence (x_n) of points in \mathbb{R}^* such that $\lim_{n\to\infty} x_n = 0$.

Let (x_n) be an arbitrary sequence of points in \mathbb{R}^* such that $\lim_{n\to\infty} x_n = 0$. Since (x_n) is a sequence of points in $\mathbb{R}^* = \mathbb{R} - \{0\}$, then $x_n \neq 0$ for all $n \in \mathbb{N}$. We first prove $\lim_{n\to\infty} f(x_n) = 0$.

Let $\epsilon > 0$ be given.

Since $\lim_{n\to\infty} x_n = 0$, then there exists $N \in \mathbb{N}$ such that if n > N, then $|x_n| < \epsilon$.

Let $n \in \mathbb{N}$ such that n > N.

Then $|x_n| < \epsilon$, so $0 < |x_n| < \epsilon$.

Since $x_n \neq 0$, then $\frac{1}{x_n} \in \mathbb{R}$.

Since $|\sin \theta| \le 1$ for all $\theta \in \mathbb{R}$, then in particular, $|\sin(\frac{1}{x_n})| \le 1$, so $0 \le |\sin(\frac{1}{x_n})| \le 1$.

Hence, $|f(x_n)| = |x_n \sin(\frac{1}{x_n})| = |x_n| \cdot |\sin(\frac{1}{x_n})| \le |x_n| < \epsilon$, so $\lim_{n \to \infty} f(x_n) = 0$.

Since (x_n) is an arbitrary sequence of points in $\mathbb{R}^* = dom f = dom f - \{0\}$ such that $\lim_{n\to\infty} x_n = 0$ and $\lim_{n\to\infty} f(x_n) = 0$, then by the sequential criterion for function limits, $\lim_{x\to 0} f(x) = 0$.

Therefore, $\lim_{x\to 0} x \sin(\frac{1}{x}) = 0.$

Algebraic properties of function limits

Exercise 34. Let $f: (0,1) \to \mathbb{R}$ be a function defined by $f(x) = \frac{x^3 + 6x^2 + x}{x^2 - 6x}$. Then $\lim_{x\to 0} f(x) = \frac{-1}{6}$.

Proof. Observe that 0 is an accumulation point of the interval (0, 1), the domain of f.

Let $x \in (0, 1)$. Then 0 < x < 1, so 0 < x. Since x > 0, then $x \neq 0$. Thus, $x \neq 0$ for all $x \in (0, 1)$, so

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x^3 + 6x^2 + x}{x^2 - 6x}$$
$$= \lim_{x \to 0} \frac{x(x^2 + 6x + 1)}{x(x - 6)}$$
$$= \lim_{x \to 0} \frac{x^2 + 6x + 1}{x - 6}.$$

Since $\lim_{x\to 0} (x^2 + 6x + 1) = 1$ and $\lim_{x\to 0} (x - 6) = -6 \neq 0$, then by the quotient rule for limits we have

$$\lim_{x \to 0} \frac{x^2 + 6x + 1}{x - 6} = \frac{\lim_{x \to 0} (x^2 + 6x + 1)}{\lim_{x \to 0} (x - 6)}$$
$$= \frac{1}{-6}.$$

Therefore, $\lim_{x\to 0} f(x) = \frac{-1}{6}$.

Exercise 35. Show that $\lim_{x \to -1} \frac{x+1}{x^3+1} = \frac{1}{3}$.

Proof. Let $f : \mathbb{R} - \{-1\} \to \mathbb{R}$ be a function defined by $f(x) = \frac{x+1}{x^3+1}$. Since -1 is an accumulation point of \mathbb{R} , then -1 is an accumulation point

of $\mathbb{R} - \{-1\}$, the domain of f. Since $x^3 + 1 = (x+1)(x^2 - x + 1)$, then $\frac{x^3+1}{x+1} = x^2 - x + 1$ if $x \neq -1$. Let $x \in \mathbb{R} - \{-1\}$. Then $x \in \mathbb{R}$ and $x \neq -1$, so $\frac{x^3+1}{x+1} = x^2 - x + 1$. Since $\lim_{x \to -1} 1 = 1$ and $\lim_{x \to -1} (x^2 - x + 1) = 3 \neq 0$, then

$$\frac{1}{3} = \frac{\lim_{x \to -1} 1}{\lim_{x \to -1} (x^2 - x + 1)}$$
$$= \lim_{x \to -1} \frac{1}{x^2 - x + 1}$$
$$= \lim_{x \to -1} \frac{1}{\frac{x^3 + 1}{x^3 + 1}}$$
$$= \lim_{x \to -1} \frac{x + 1}{x^3 + 1}.$$

Therefore, $\lim_{x \to -1} \frac{x+1}{x^3+1} = \frac{1}{3}$.

Exercise 36. Show that $\lim_{h\to 0} \frac{\sin(\frac{\pi}{6}+h)-\frac{1}{2}}{h} = \frac{\sqrt{3}}{2}$.

Solution. We observe that this limit is simply the definition of the derivative of sin at $\frac{\pi}{6}$ which is $\cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}$.

Proof. Since $\lim_{h\to 0} \frac{\sin h}{h} = 1$ and $\lim_{h\to 0} \frac{\cos h - 1}{h} = 0$, then

$$\begin{split} \frac{\sqrt{3}}{2} &= \frac{1}{2} \cdot \sqrt{3} \cdot 1 \\ &= \frac{1}{2} \cdot \sqrt{3} \cdot \lim_{h \to 0} \frac{\sin h}{h} \\ &= \frac{1}{2} \cdot \lim_{h \to 0} \frac{\sqrt{3} \sin h}{h} \\ &= \frac{1}{2} (0 + \lim_{h \to 0} \frac{\sqrt{3} \sin h}{h}) \\ &= \frac{1}{2} (0 + \lim_{h \to 0} \frac{\sqrt{3} \sin h}{h}) \\ &= \frac{1}{2} (\lim_{h \to 0} \frac{\cos h - 1}{h} + \lim_{h \to 0} \frac{\sqrt{3} \sin h}{h}) \\ &= \frac{1}{2} \cdot \lim_{h \to 0} (\frac{\cos h - 1}{h} + \frac{\sqrt{3} \sin h}{h}) \\ &= \frac{1}{2} \cdot \lim_{h \to 0} \frac{\cos h - 1 + \sqrt{3} \sin h}{h} \\ &= \lim_{h \to 0} \frac{1}{2} \cdot \frac{\cos h - 1 + \sqrt{3} \sin h}{h} \\ &= \lim_{h \to 0} \frac{\frac{\cos h}{2} - \frac{1}{2} + \frac{\sqrt{3}}{2} \sin h}{h} \\ &= \lim_{h \to 0} \frac{\frac{\cos h}{2} + \frac{\sqrt{3}}{2} \sin h - \frac{1}{2}}{h} \\ &= \lim_{h \to 0} \frac{\sin(\frac{\pi}{6}) \cos(h) + \cos(\frac{\pi}{6}) \sin h - \frac{1}{2}}{h} \\ &= \lim_{h \to 0} \frac{\sin(\frac{\pi}{6} + h) - \frac{1}{2}}{h}. \end{split}$$

Therefore, $\lim_{h\to 0} \frac{\sin(\frac{\pi}{6}+h)-\frac{1}{2}}{h} = \frac{\sqrt{3}}{2}$.

Exercise 37. Let $f:(0,1) \to \mathbb{R}$ be a function defined by $f(x) = \frac{\sqrt{1+x}-1}{x}$. Then $\lim_{x\to 0} f(x) = \frac{1}{2}$.

Proof. Observe that 0 is an accumulation point of the interval (0, 1), the domain of f.

Let $x \in (0, 1)$. Then 0 < x < 1, so 0 < x.

Since x > 0, then $x \neq 0$. Since -1 < 0 and 0 < x, then -1 < x, so 0 < 1 + x. Hence, 1 + x > 0, so $\sqrt{1 + x} > 0$. Thus, $\sqrt{1 + x} + 1 > 1 > 0$, so $\sqrt{1 + x} + 1 > 0$. Therefore, $\sqrt{1 + x} + 1 \neq 0$. Since $x \neq 0$ and $\sqrt{1 + x} + 1 \neq 0$, then

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sqrt{1+x}-1}{x}$$

$$= \lim_{x \to 0} \frac{\sqrt{1+x}-1}{x} \cdot \frac{\sqrt{1+x}+1}{\sqrt{1+x}+1}$$

$$= \lim_{x \to 0} \frac{(1+x)-1}{x(\sqrt{1+x}+1)}$$

$$= \lim_{x \to 0} \frac{x}{x(\sqrt{1+x}+1)}$$

$$= \lim_{x \to 0} \frac{1}{\sqrt{1+x}+1}.$$

Since $\lim_{x\to 0} (1+x) = 1 > 0$, then $\lim_{x\to 0} \sqrt{1+x} = \sqrt{\lim_{x\to 0} (1+x)}$. Since $\lim_{x\to 0} 1 = 1$, then

$$2 = \sqrt{1} + 1$$

= $\sqrt{\lim_{x \to 0} (1+x)} + \lim_{x \to 0} 1$
= $\lim_{x \to 0} \sqrt{1+x} + \lim_{x \to 0} 1$
= $\lim_{x \to 0} (\sqrt{1+x} + 1).$

Since $\lim_{x\to 0} 1 = 1$ and $\lim_{x\to 0} (\sqrt{1+x}+1) = 2 \neq 0$, then by the quotient rule

$$\lim_{x \to 0} \frac{1}{\sqrt{1+x}+1} = \frac{\lim_{x \to 0} 1}{\lim_{x \to 0} (\sqrt{1+x}+1)} = \frac{1}{2}.$$

Therefore, $\lim_{x\to 0} f(x) = \frac{1}{2}$.

Exercise 38. Let $f:(0,1) \to \mathbb{R}$ be a function defined by $f(x) = \frac{\sqrt{9-x}-3}{x}$. Then $\lim_{x\to 0} f(x) = \frac{-1}{6}$.

Proof. Observe that 0 is an accumulation point of the interval (0, 1), the domain of f.

Let $x \in (0, 1)$.

Then 0 < x < 1, so 0 < x and x < 1. Since x > 0, then $x \neq 0$. Since x < 1 and 1 < 9, then x < 9, so 0 < 9 - x. Hence, 9 - x > 0, so $\sqrt{9 - x} > 0$. Thus, $\sqrt{9 - x} + 3 > 3 > 0$, so $\sqrt{9 - x} + 3 > 0$. Therefore, $\sqrt{9 - x} + 3 \neq 0$. Since $x \neq 0$ and $\sqrt{9 - x} + 3 \neq 0$, then

$$\begin{split} \lim_{x \to 0} f(x) &= \lim_{x \to 0} \frac{\sqrt{9 - x} - 3}{x} \\ &= \lim_{x \to 0} \frac{\sqrt{9 - x} - 3}{x} \cdot \frac{\sqrt{9 - x} + 3}{\sqrt{9 - x} + 3} \\ &= \lim_{x \to 0} \frac{(9 - x) - 9}{x(\sqrt{9 - x} + 3)} \\ &= \lim_{x \to 0} \frac{-x}{x(\sqrt{9 - x} + 3)} \\ &= \lim_{x \to 0} \frac{-1}{\sqrt{9 - x} + 3}. \end{split}$$

Since $\lim_{x\to 0} (9-x) = 9 > 0$, then $\lim_{x\to 0} \sqrt{9-x} = \sqrt{\lim_{x\to 0} (9-x)}$. Since $\lim_{x\to 0} 3 = 3$, then

$$6 = \sqrt{9} + 3$$

= $\sqrt{\lim_{x \to 0} (9 - x)} + \lim_{x \to 0} 3$
= $\lim_{x \to 0} \sqrt{9 - x} + \lim_{x \to 0} 3$
= $\lim_{x \to 0} (\sqrt{9 - x} + 3).$

Since $\lim_{x\to 0} -1 = -1$ and $\lim_{x\to 0} (\sqrt{9-x}+3) = 6 \neq 0$, then by the quotient rule

$$\lim_{x \to 0} \frac{-1}{\sqrt{9 - x} + 3} = \frac{\lim_{x \to 0} -1}{\lim_{x \to 0} (\sqrt{9 - x} + 3)}$$
$$= \frac{-1}{6}.$$

Therefore, $\lim_{x\to 0} f(x) = \frac{-1}{6}$.

Exercise 39. Let f and g be real valued functions defined on $E \subset \mathbb{R}$. Let a be an accumulation point of E.

a. If $\lim_{x\to a} f(x)$ and $\lim_{x\to a} (f+g)(x)$ exist, then $\lim_{x\to a} g(x)$ exists.

b. If $\lim_{x\to a} f(x)$ and $\lim_{x\to a} (fg)(x)$ exist, then it does not necessarily follow that $\lim_{x\to a} g(x)$ exists.

Proof. We prove a.

Suppose $\lim_{x\to a} f(x)$ and $\lim_{x\to a} (f+g)(x)$ exist.

Then there exist real numbers L and M such that $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} (f+g)(x) = M$.

Thus,

$$M - L = \lim_{x \to a} (f + g)(x) - \lim_{x \to a} f(x)$$

=
$$\lim_{x \to a} [f(x) + g(x)] - \lim_{x \to a} f(x)$$

=
$$\lim_{x \to a} f(x) + \lim_{x \to a} g(x) - \lim_{x \to a} f(x)$$

=
$$\lim_{x \to a} g(x).$$

Therefore, $\lim_{x\to a} g(x) = M - L$, so the limit of g at a exists.

Solution. We provide a counterexample to the assertion that $\lim_{x\to a} f(x)$ and $\lim_{x\to a} (fg)(x)$ exist implies $\lim_{x\to a} g(x)$ exists.

Let $f : \mathbb{R}^* \to \mathbb{R}$ be the function defined by f(x) = x.

Let $g : \mathbb{R}^* \to \mathbb{R}$ be the function defined by $g(x) = \sin(\frac{1}{x})$.

Then $\lim_{x\to 0} f(x) = \lim_{x\to 0} x = 0$ and $\lim_{x\to 0} (fg)(x) = \lim_{x\to 0} f(x)g(x) = \lim_{x\to 0} x \sin(\frac{1}{x}) = 0$, but $\lim_{x\to 0} \sin(\frac{1}{x})$ does not exist.

Exercise 40. Show that $\lim_{x\to 0} x^2 \cos(\frac{1}{x}) = 0$.

Proof. Let $f : \mathbb{R}^* \to \mathbb{R}$ be the function defined by $f(x) = x^2 \cos(\frac{1}{x})$ for all $x \neq 0$. Observe that 0 is an accumulation point of the set $\mathbb{R}^* = \{x \in \mathbb{R} : x \neq 0\}$, the domain of f.

Let $\epsilon > 0$ be given. Then $\sqrt{\epsilon} > 0$. Let $\delta = \sqrt{\epsilon}$. Then $\delta > 0$. Let $x \in \mathbb{R}^*$ such that $0 < |x| < \delta$. Since $0 < |x| < \delta$, then 0 < |x| and $|x| < \delta$. Since $x \in \mathbb{R}^*$, then $x \in \mathbb{R}$ and $x \neq 0$, so $\frac{1}{x} \in \mathbb{R}$. Since $|\cos \theta| \le 1$ for all $\theta \in \mathbb{R}$, then in particular, $|\cos(\frac{1}{x})| \le 1$, so $0 \le |\cos(\frac{1}{x})| \le 1$. Therefore, $|x^2 \cos(\frac{1}{x})| = |x^2| \cdot |\cos(\frac{1}{x})| = |x|^2 \cdot |\cos(\frac{1}{x})| \le |x|^2 < \delta^2 = \epsilon$, so $|x^2 \cos(\frac{1}{x})| < \epsilon$, as desired.

Exercise 41. Show that $\lim_{x\to c} (x^2 + x + 1) = c^2 + c + 1$ for any $c \in \mathbb{R}$.

Solution. Let $c \in \mathbb{R}$ be given.

Let $f : \mathbb{R} \to \mathbb{R}$ be the function given by $f(x) = x^2 + x + 1$.

Since f is a polynomial function and $c \in \mathbb{R}$, then we conclude that $\lim_{x\to c} (x^2 + x + 1) = \lim_{x\to c} f(x) = f(c) = c^2 + c + 1$.

Exercise 42. Let $f: E \to \mathbb{R}$ and $g: E \to \mathbb{R}$ be functions.

Let a be an accumulation point of E.

If $\lim_{x\to a} f(x) = 0$ and g(x) is bounded locally near a, then $\lim_{x\to a} f(x)g(x) = 0$.

Proof. Suppose $\lim_{x\to a} f(x) = 0$ and g(x) is bounded near a. Let $\epsilon > 0$ be given. Since g(x) is bounded locally near a, then there exist δ_1 and M > 0 such that $|g(x)| \leq M$ for all $x \in N(a; \delta_1) \cap E$. Since $\epsilon > 0$ and M > 0, then $\frac{\epsilon}{M} > 0$. Since $\lim_{x\to a} f(x) = 0$, then there exists $\delta_2 > 0$ such that $|f(x)| < \frac{\epsilon}{M}$ for all $x \in \cap N'(a; \delta_2) \cap E.$ Let $\delta = \min\{\delta_1, \delta_2\}.$ Then $\delta \leq \delta_1$ and $\delta \leq \delta_2$ and $\delta > 0$. Let $x \in E \cap N'(a; \delta)$. Then $x \in E$ and $x \in N'(a; \delta)$. Since $x \in N'(a; \delta)$, then $x \in N(a; \delta)$. Since $0 < \delta \leq \delta_1$, then $N(a; \delta) \subset N(a; \delta_1)$. Since $x \in N(a; \delta)$ and $N(a; \delta) \subset N(a; \delta_1)$, then $x \in N(a; \delta_1)$. Since $x \in N(a; \delta_1)$ and $x \in E$, then $x \in N(a; \delta_1) \cap E$, so $|g(x)| \leq M$. Since $0 < \delta \leq \delta_2$, then $N(a; \delta) \subset N(a; \delta_2)$. Since $x \in N(a; \delta)$ and $N(a; \delta) \subset N(a; \delta_2)$, then $x \in N(a; \delta_2)$. Since $x \in N(a; \delta_2)$ and $x \in E$, then $x \in N(a; \delta_2) \cap E$, so $|f(x)| < \frac{\epsilon}{M}$. Since $0 \le |f(x)| < \frac{\epsilon}{M}$ and $0 \le |g(x)| < M$, then

$$\begin{aligned} |f(x)g(x)| &= |f(x)||g(x)| \\ &< \frac{\epsilon}{M} \cdot M \\ &= \epsilon. \end{aligned}$$

Therefore, $|f(x)g(x)| < \epsilon$, so $\lim_{x \to a} f(x)g(x) = 0$.

Exercise 43. Let $f : A \to \mathbb{R}$ and $g : B \to \mathbb{R}$ be functions.

Let a be an accumulation point of A and B.

Assume f(x) = g(x) for all $x \in A \cap B$.

a. What conditions on A and B ensure that if $\lim_{x\to a} f(x)$ exists, then $\lim_{x\to a} g(x)$ exists?

b. What conditions on A and B ensure that if $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist, then they must be equal?

Proof. b. We assume that $B \subset A$. Then if $\lim_{x\to a} f(x)$ exists, then $\lim_{x\to a} g(x)$ exists. Suppose $\lim_{x\to a} f(x)$ exists and $B \subset A$.

Since $\lim_{x\to a} f(x)$ exists, then there is a real number L such that $\lim_{x\to a} f(x) = L$.

Let $\epsilon > 0$ be given.

Since $\lim_{x\to a} f(x) = L$, then there exists $\delta > 0$ such that if $x \in A$ and $0 < |x-a| < \delta$, then $|f(x) - L| < \epsilon$.

Since a is an accumulation point of B and $\delta > 0$, let $x \in B$ such that $0 < |x - a| < \delta$.

Since $x \in B$ and $B \subset A$, then $x \in A$.

Since $x \in A$ and $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$.

Since $x \in A$ and $x \in B$, then $x \in A \cap B$, so f(x) = g(x). Hence, $|g(x) - L| = |f(x) - L| < \epsilon$, so $\lim_{x \to a} g(x) = L$. Therefore, the limit of g at a exists.

Proof. b. We assume that a is an accumulation point of $A \cap B$.

If this assumption holds, then if $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist, then $\lim_{x\to a} f(x) = \lim_{x\to a} g(x)$.

Suppose a is an accumulation point of $A \cap B$ and $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist.

Since $\lim_{x\to a} f(x)$ exists, then there is a real number L such that $\lim_{x\to a} f(x) = L$.

To prove $\lim_{x\to a} g(x) = L$, we must prove for every $\epsilon > 0$, there exists $\delta > 0$ such that $|g(x) - L| < \epsilon$ for all $x \in N'(a; \delta) \cap B$.

Let $\epsilon > 0$ be given.

Since $\lim_{x\to a} f(x) = L$, then there exists $\delta > 0$ such that $|f(x) - L| < \epsilon$ for all $x \in N'(a; \delta) \cap A$.

Since a is an accumulation point of $A \cap B$ and $\delta > 0$, then there exists $x \in A \cap B$ such that $x \in N'(a; \delta)$.

Let x be an arbitrary element of $A \cap B$ such that $x \in N'(a; \delta)$. Since $x \in A \cap B$, then $x \in A$ and $x \in B$. Since $x \in N'(a; \delta)$ and $x \in A$, then $x \in N'(a; \delta) \cap A$, so $|f(x) - L| < \epsilon$. Since $x \in A \cap B$, then f(x) = g(x). Since $x \in N'(a; \delta)$ and $x \in B$, then $x \in N'(a; \delta) \cap B$. Observe that $|g(x) - L| = |f(x) - L| < \epsilon$. Therefore, $\lim_{x \to a} g(x) = L$.

Proposition 44. Let $a, b \in \mathbb{R}$ with a < b.

Let $f : [a,b] \to \mathbb{R}$ be a monotonic increasing function. Then $\lim_{x\to b} f(x) = \sup\{f(x) : x \in [a,b], x < b\}.$

 $\begin{array}{l} \textit{Proof. Let } S = \{f(x): x \in [a,b], x < b\}.\\ \text{We first prove sup } S \text{ exists.}\\ \text{If } x \in [a,b], \text{ then } f(x) \in \mathbb{R} \text{ since } f \text{ is a real valued function.}\\ \text{Hence, } S \subset \mathbb{R}.\\ \text{Since } a \in [a,b] \text{ and } a < b, \text{ then } f(a) \in S, \text{ so } S \neq \emptyset.\\ \text{Let } y \in S \text{ be arbitrary.}\\ \text{Then there exists } x \in [a,b] \text{ with } x < b \text{ such that } f(x) = y.\\ \text{Since } f \text{ is monotonic increasing on } [a,b] \text{ and } x \in [a,b] \text{ and } b \in [a,b] \text{ and } x < b, \text{ then } f(x) \leq f(b).\\ \text{Hence, } y \leq f(b), \text{ so } y \leq f(b) \text{ for all } y \in S.\\ \text{Therefore, } f(b) \text{ is an upper bound of } S, \text{ so } S \text{ is bounded above in } \mathbb{R}.\\ \text{Since } S \subset \mathbb{R} \text{ and } S \neq \emptyset \text{ and } S \text{ is bounded above in } \mathbb{R}, \text{ then by completeness} \end{array}$

of \mathbb{R} , sup S exists.

We next prove $\lim_{x\to b} f(x) = \sup S$. Let $\epsilon > 0$ be given. Since $\sup S - \epsilon < \sup S$, then $\sup S - \epsilon$ is not an upper bound of S, so there exists $s \in S$ such that $s > \sup S - \epsilon$. Since $s \in S$, then there exists $c \in [a, b]$ with c < b such that f(c) = s. Let $\delta = b - c$. Since b > c, then $\delta = b - c > 0$, so $\delta > 0$. Let $x \in [a, b]$ such that $0 < |x - b| < \delta$. Since $0 < |x-b| < \delta$, then 0 < |x-b| and $|x-b| < \delta$. Since |x - b| > 0, then $x - b \neq 0$, so $x \neq b$. Since $x \in [a, b]$, then $a \leq x \leq b$, so $x \leq b$. Since $x \leq b$ and $x \neq b$, then x < b. Since $x \in [a, b]$ and x < b, then $f(x) \in S$. Since $\sup S$ is an upper bound of S, then $f(x) < \sup S$. Since $f(x) \leq \sup S$ and $\sup S < \sup S + \epsilon$, then $f(x) < \sup S + \epsilon$, so $f(x) - \sup S < \epsilon.$ Since $\delta = b - c$, then $c = b - \delta$. Since x < b, then $0 < b - x = |b - x| = |x - b| < \delta$, so $b - x < \delta$. Thus, $b - \delta < x$, so c < x. Since f is monotonic increasing on [a, b] and $c \in [a, b]$ and $x \in [a, b]$ and c < x, then $s = f(c) \leq f(x)$. Since $\sup S - \epsilon < s$ and $s \leq f(x)$, then $\sup S - \epsilon < f(x)$, so $-\epsilon < f(x) - \sup S$. Since $-\epsilon < f(x) - \sup S$ and $f(x) - \sup S < \epsilon$, then $-\epsilon < f(x) - \sup S < \epsilon$, so $|f(x) - \sup S| < \epsilon$, as desired. **Proposition 45.** Let $I \subset \mathbb{R}$ be an interval. Let $f: I \to \mathbb{R}$ be a function such that f is (monotonic) increasing on I. Let a be an interior point of I. Then $\lim_{x \to a^+} f(x) = \inf\{f(x) : x \in I, x > a\}.$ *Proof.* Let $S = \{f(x) : x \in I, x > a\}.$ We first prove $S \neq \emptyset$. Since a is an interior point of I, then I is not empty, so there exists $\delta > 0$ such that $N(a; \delta) \subset I$. Since $|(a + \frac{\delta}{2}) - a| = \frac{\delta}{2} < \delta$, then $a + \frac{\delta}{2} \in N(a; \delta)$. Since $N(a; \delta) \subset I$, then $a + \frac{\delta}{2} \in I$, so $f(a + \frac{\delta}{2})$ exists. Since $a + \frac{\delta}{2} > a$, then $f(a + \frac{\delta}{2}) \in S$, so $S \neq \emptyset$. We next prove S is bounded below in \mathbb{R} .

Since $S \neq \emptyset$, let $x \in I$ such that x > a. Then $f(x) \in S$. Since a < x and f is increasing, then $f(a) \leq f(x)$. Hence, $f(a) \leq f(x)$ for every $f(x) \in S$, so f(a) is a lower bound of S. Thus, S is bounded below in \mathbb{R} . Since $S \neq \emptyset$ and S is bounded below in \mathbb{R} , then inf S exists. Hence, there exists $L \in \mathbb{R}$ such that $L = \inf S$.

To prove $\lim_{x\to a^+} f(x) = L$, let $\epsilon > 0$ be given. Since L is a lower bound of S, then $L + \epsilon$ is not a lower bound of S, so there exists $f(b) \in S$ such that $f(b) < L + \epsilon$. Thus, $f(b) - L < \epsilon$. Since $f(b) \in S$, then $b \in I$ and b > a. Let $\delta = b - a$. Since b - a > 0, then $\delta > 0$. Let $x \in I$ such that $0 < x - a < \delta$. Then 0 < x - a < b - a, so 0 < x - a and x - a < b - a. Since 0 < x - a, then a < x. Since x - a < b - a, then x < b. Since f is increasing, then $f(x) \le f(b)$, so $f(x) - L \le f(b) - L < \epsilon$. Hence, $f(x) - L < \epsilon$. Since $x \in I$ and x > a, then $f(x) \in S$. Since L is a lower bound of S, then $L \leq f(x)$, so $f(x) - L \geq 0$. Therefore, $0 \le f(x) - L < \epsilon$, so $|f(x) - L| < \epsilon$, as desired.