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Limit of a real valued function

Exercise 1. Given limx→2(x2 − 3) = 1 and ε = 0.01, find δ > 0 that satisfies
the definition of limit of a function.

Solution. Let f : R→ R be the function defined by f(x) = x2 − 3.
Observe that 2 is an accumulation point of the set R, the domain of f .
Since limx→2 f(x) = 1 and ε = 0.01, we must find δ > 0 so that for all x ∈ R,

if 0 < |x− 2| < δ, then |f(x)− 1| < 0.01.
Let δ = 0.01

5 .
Then 0 < δ = 0.002 < 1, so 0 < δ and δ < 1.
Let x ∈ R such that 0 < |x− 2| < δ.
Since 0 < |x− 2| < δ, then 0 < |x− 2| and |x− 2| < δ.
Since |x− 2| < δ and δ < 1, then |x− 2| < 1, so −1 < x− 2 < 1.
Hence, 3 < x+ 2 < 5.
Since 0 < 3 < x+ 2 < 5, then 0 < x+ 2 = |x+ 2| < 5, so 0 < |x+ 2| < 5.
Thus,

|f(x)− 1| = |(x2 − 3)− 1|
= |x2 − 4|
= |(x− 2)(x+ 2)|
= |x− 2||x+ 2|
< 5δ

= 0.01.

Therefore, |f(x)− 1| < 0.01.

Exercise 2. Show that limx→−2
x2−4
x+2 = −4.

Solution. Let f : (−2, 0) → R be a function defined by f(x) = x2−4
x+2 for all

x ∈ (−2, 0).
Observe that −2 is an accumulation point of the interval (−2, 0), the domain

of f .



We prove limx→−2 f(x) = −4.
Let ε > 0 be given.
Let δ = ε.
Then δ > 0.
Let x ∈ (−2, 0) such that 0 < |x+ 2| < δ.
Since 0 < |x+ 2| < δ, then 0 < |x+ 2| and |x+ 2| < δ.
Since |x+ 2| > 0, then x+ 2 6= 0.
Thus,

|f(x) + 4| = |x
2 − 4

x+ 2
+ 4|

= | (x− 2)(x+ 2)

x+ 2
+ 4|

= |(x− 2) + 4|
= |x+ 2|
< δ

= ε.

Therefore, |f(x) + 4| < ε, as desired.

Exercise 3. Show that limx→2(3x− 2) = 4.

Solution. Let f : R→ R be a function defined by f(x) = 3x− 2 for all x ∈ R.
Since every real number is an accumulation point of R, then 2 is an accu-

mulation point of R.
We prove limx→2 f(x) = 4.
Let ε > 0 be given.
Let δ = ε

3 .
Then δ > 0.
Let x ∈ R such that 0 < |x− 2| < δ.
Then |x− 2| < δ.
Thus,

|f(x)− 4| = |(3x− 2)− 4|
= |3x− 6|
= 3|x− 2|
< 3δ

= 3 · ε
3

= ε.

Therefore, |f(x)− 4| < ε, as desired.

Exercise 4. Show that limx→2(x2 + 4x) = 12.
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Solution. Let f : R→ R be a function defined by f(x) = x2 + 4x for all x ∈ R.
Since every real number is an accumulation point of R, then 2 is an accu-

mulation point of R.
We prove limx→2 f(x) = 12.
Let ε > 0 be given.
Let δ = min{1, ε9}.
Then δ ≤ 1 and δ ≤ ε

9 and δ > 0.
Let x ∈ R such that 0 < |x− 2| < δ.
Observe that

|x+ 6| = |(x− 2) + 8|
≤ |x− 2|+ 8

< δ + 8

≤ 9.

Hence, 0 ≤ |x+ 6| < 9.
Thus,

|f(x)− 12| = |(x2 + 4x)− 12|
= |(x− 2)(x+ 6)|
= |x− 2||x+ 6|
< δ(9)

≤ ε

9
· 9

= ε.

Therefore, |f(x)− 12| < ε, as desired.

Exercise 5. Show that limx→3
2x+3
4x−9 = 3.

Solution. Let f : R→ R be a function defined by f(x) = 2x+3
4x−9 for all x 6= 9

4 .

Observe that 3 is an accumulation point of {x ∈ R : x 6= 9
4}, the domain of

f .
We prove limx→3 f(x) = 3.
Let ε > 0 be given.
Let δ = min{ 12 ,

ε
10}.

Then δ ≤ 1
2 and δ ≤ ε

10 and δ > 0.
Let x ∈ R such that x 6= 9

4 and 0 < |x− 3| < δ.
Then 0 < |x− 3| < δ ≤ 1

2 , so 0 < |x− 3| < 1
2 .

Hence, −12 < x− 3 < 1
2 , so −12 < x− 3.

Thus, 5
2 < x.

Observe that

5

2
< x ⇔ 0 < 10 < 4x

⇔ 0 < 1 < 4x− 9

⇔ 0 <
1

4x− 9
< 1.
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Hence, 0 < 1
4x−9 < 1.

Thus,

|f(x)− 3| = |2x+ 3

4x− 9
− 3|

= |−10x+ 30

4x− 9
|

= |−10(x− 3)

4x− 9
|

= 10|x− 3|| 1

4x− 9
|

= 10|x− 3| 1

4x− 9
< 10δ

≤ 10 · ε
10

= ε.

Therefore, |f(x)− 3| < ε, as desired.

Exercise 6. Show that limx→6
x2−3x
x+3 = 2.

Solution. Let f : R→ R be a function defined by f(x) = x2−3x
x+3 for all x 6= −3.

Observe that 6 is an accumulation point of the set {x ∈ R : x 6= −3}, the
domain of f .

We prove limx→6 f(x) = 2.
Let ε > 0 be given.
Let δ = min{1, ε}.
Then δ ≤ 1 and δ ≤ ε and δ > 0.
Let x ∈ R such that x 6= −3 and 0 < |x− 6| < δ.
Then 0 < |x− 6| < δ ≤ 1, so 0 < |x− 6| < 1.
Hence, −1 < x− 6 < 1, so 5 < x < 7.
Since 5 < x < 7, then 0 < 6 < x+ 1 < 8, so 0 < x+ 1 < 8.
Since 5 < x, then 0 < 8 < x+ 3, so 0 < 1

x+3 <
1
8 .

Thus,

|f(x)− 2| = |x
2 − 3x

x+ 3
− 2|

= |x
2 − 5x− 6

x+ 3
|

= | (x− 6)(x+ 1)

x+ 3
|

= |x− 6| · (x+ 1) · 1

x+ 3
< δ

≤ ε.
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Therefore, |f(x)− 2| < ε, as desired.

Exercise 7. Let f : (0, 1)→ R be a function defined by f(x) = x3−x2+x−1
x−1 .

Then limx→1
x3−x2+x−1

x−1 = 2.

Solution. Observe that 1 is an accumulation point of the interval (0, 1), the
domain of f .

We prove limx→1 f(x) = 2.
Let ε > 0 be given.
Let δ = ε

2 .
Then δ > 0.
Let x ∈ (0, 1) such that 0 < |x− 1| < δ.
Since x ∈ (0, 1), then 0 < x < 1, so 0 < 1 < x+ 1 < 2.
Hence, |x+ 1| = x+ 1 < 2, so |x+ 1| < 2.
Thus,

|f(x)− 2| = |x
3 − x2 + x− 1

x− 1
− 2|

= |x
2(x− 1) + (x− 1)

x− 1
− 2|

= | (x− 1)(x2 + 1)

x− 1
− 2|

= |(x2 + 1)− 2|
= |x2 − 1|
= |(x− 1)(x+ 1)|
= |(x− 1)||x+ 1|
< 2δ

= ε.

Therefore, |f(x)− 2| < ε, as desired.

Exercise 8. Show that limx→4
√
x = 2.

Solution. Let f : R+ → R be a function defined by f(x) =
√
x for all x ≥ 0.

Observe that 4 is an accumulation point of the set {x ∈ R : x ≥ 0} = [0,∞),
the domain of f .

We prove limx→4
√
x = 2.

Let ε > 0 be given.
Let δ = min{1, 2ε}.
Then δ ≤ 1 and δ ≤ 2ε and δ > 0.
Let x ∈ R such that 0 < |x− 4| < δ.
Since |x− 4| < δ, then −δ < x− 4 < δ, so −δ < x− 4.
Hence, 4− δ < x.
Since δ ≤ 1 < 4, then δ < 4, so 0 < 4− δ.
Thus, 0 < 4− δ < x.
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Observe that

0 < 4− δ < x ⇔ 0 <
√

4− δ <
√
x

⇔ 0 < 2 <
√

4− δ + 2 <
√
x+ 2

⇔ 0 < 2 <
√
x+ 2

⇔ 0 <
1√
x+ 2

<
1

2
.

Thus,

|
√
x− 2| = |(

√
x− 2) ·

√
x+ 2√
x+ 2

|

= | x− 4√
x+ 2

|

= |x− 4| · 1√
x+ 2

< δ · 1

2

≤ 2ε · 1

2
= ε.

Therefore, |
√
x− 2| < ε, as desired.

Exercise 9. Show that limx→0
3
√
x = 0.

Solution. Let f : R→ R be a function defined by f(x) = 3
√
x.

Observe that 0 is an accumulation point of the set R, the domain of f .
We prove limx→0

3
√
x = 0.

Let ε > 0 be given.
Let δ = ε3.
Then δ > 0.
Let x ∈ R such that 0 < |x| < δ.

Then 0 < |x| < ε3, so 0 < |x| 13 < (ε3)
1
3 .

Thus, 0 < |x| 13 < ε, so 0 < |x 1
3 | < ε.

Hence, |x 1
3 | < ε, so | 3

√
x| < ε, as desired.

Exercise 10. Show that limx→ 1
2

1
x = 2.

Proof. Let f : R∗ → R be the function defined by f(x) = 1
x for all x ∈ R∗.

Observe that 1
2 is an accumulation point of R∗, the domain of f .

Let ε > 0 be given.
Let δ = min{ 14 ,

ε
8}.

Then δ ≤ 1
4 and δ ≤ ε

8 and δ > 0.
Let x ∈ R∗ such that 0 < |x− 1

2 | < δ.
Since x ∈ R∗, then x 6= 0, so |x| > 0.
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Since 0 < |x− 1
2 | < δ ≤ 1

4 , then 0 < |x− 1
2 | <

1
4 , so 1

4 > |x−
1
2 | ≥

1
2 − |x|.

Hence, 1
4 >

1
2 − |x|, so |x| > 1

4 .
Thus, 4 > 1

|x| > 0, so 0 < 1
|x| < 4.

Observe that

|f(x)− 2| = | 1
x
− 2|

= |2− 1

x
|

= | 2
x

(x− 1

2
)|

= | 2
x
| · |x− 1

2
|

= 2 · | 1
x
| · |x− 1

2
|

= 2 · 1

|x|
· |x− 1

2
|

< 8 · |x− 1

2
|

< 8δ

≤ 8 · ε
8

= ε.

Therefore, |f(x)− 2| < ε.

Exercise 11. Show that limx→2
1

1−x = −1.

Proof. Let f : R→ R be the function defined by f(x) = 1
1−x for all x 6= 1.

Observe that 2 is an accumulation point of the set {x ∈ R : x 6= 1}, the
domain of f .

Let ε > 0 be given.
Let δ = min{ 12 ,

ε
2}.

Then δ ≤ 1
2 and δ ≤ ε

2 and δ > 0.
Let x ∈ R such that x 6= 1 and 0 < |x− 2| < δ.
Since 0 < |x− 2| < δ ≤ 1

2 , then 0 < |x− 2| < 1
2 .

Hence, 1
2 > |x− 2| ≥ 2− |x|, so 1

2 > 2− |x|.
Thus, |x| > 3

2 .
Hence, |x− 1| ≥ |x| − 1 > 1

2 , so |x− 1| > 1
2 > 0.

Thus, 2 > | 1
x−1 | > 0, so 0 < | 1

x−1 | < 2.
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Observe that

|f(x)− (−1)| = | 1

1− x
+ 1|

= |2− x
1− x

|

=
|2− x|
|1− x|

=
|x− 2|
|x− 1|

= |x− 2| · | 1

x− 1
|

< 2δ

≤ 2 · ε
2

= ε.

Therefore, |f(x)− (−1)| < ε.

Exercise 12. Show that limx→1
x

1+x = 1
2 .

Proof. Let f : R→ R be the function defined by f(x) = x
1+x for all x 6= −1.

Observe that 1 is an accumulation point of the set {x ∈ R : x 6= −1}, the
domain of f .

Let ε > 0 be given.
Let δ = min{1, 2ε}.
Then δ ≤ 1 and δ ≤ 2ε and δ > 0.
Let x ∈ R such that x 6= −1 and 0 < |x− 1| < δ.
Since 0 < |x− 1| < δ ≤ 1, then 0 < |x− 1| < 1.
Thus, −1 < x− 1 < 1, so −1 < x− 1.
Hence, 0 < x, so 0 < 1 < x+ 1.
Thus, 0 < 1

x+1 < 1.
Observe that

|f(x)− 1

2
| = | x

1 + x
− 1

2
|

= | x− 1

2(1 + x)
|

=
1

2
· |x− 1| · | 1

x+ 1
|

<
1

2
δ

≤ 1

2
· 2ε

= ε.

Therefore, |f(x)− 1
2 | < ε.
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Exercise 13. Show that limx→−1
x+5
2x+3 = 4.

Solution. Let f : R→ R be a function defined by f(x) = x+5
2x+3 for all x 6= −3

2 .

Observe that −1 is an accumulation point of {x ∈ R : x 6= −3
2 }, the domain

of f .
We prove limx→−1 f(x) = 4.
Let ε > 0 be given.
Let δ = min{ 14 ,

ε
14}.

Then δ ≤ 1
4 and δ ≤ ε

14 and δ > 0.
Let x ∈ R such that x 6= −3

2 and 0 < |x− (−1)| < δ.
Then 0 < |x+ 1| < δ ≤ 1

4 , so 0 < |x+ 1| < 1
4 .

Hence, −14 < x+ 1 < 1
4 , so −14 < x+ 1.

Thus, −54 < x.
Observe that

−5

4
< x ⇔ −5

2
< 2x

⇔ 0 <
1

2
< 2x+ 3

⇔ 0 <
1

2x+ 3
< 2.

Hence, 0 < 1
2x+3 < 2.

Thus,

|f(x)− 4| = | x+ 5

2x+ 3
− 4|

= |−7x− 7

2x+ 3
|

= 7|x+ 1|| 1

2x+ 3
|

= 7|x+ 1| 1

2x+ 3
< 14δ

≤ 14 · ε
14

= ε.

Therefore, |f(x)− 4| < ε, as desired.

Exercise 14. Show that limx→−2
2x2+3x−2

x+2 = −5.

Solution. Let f : R−{−2} → R be a function defined by f(x) = 2x2+3x−2
x+2 for

all x 6= −2.
Observe that −2 is an accumulation point of the set {x ∈ R : x 6= −2}, the

domain of f .
We prove limx→−2 f(x) = −5.
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Let ε > 0 be given.
Let δ = ε

2 .
Then δ > 0.
Let x ∈ R− {−2} such that 0 < |x+ 2| < δ.
Since 0 < |x+ 2| < δ, then 0 < |x+ 2| and |x+ 2| < δ.
Since |x+ 2| > 0, then x+ 2 6= 0.
Observe that

|f(x) + 5| = |2x
2 + 3x− 2

x+ 2
+ 5|

= | (2x− 1)(x+ 2)

x+ 2
+ 5|

= |(2x− 1) + 5|
= |2x+ 4|
= |2(x+ 2)|
= 2|x+ 2|
< 2δ

= ε.

Therefore, |f(x) + 5| < ε, as desired.

Exercise 15. Show that limx→1
x2−x+1
x+1 = 1

2 .

Solution. Let f : R → R be a function defined by f(x) = x2−x+1
x+1 for all

x 6= −1.
Observe that 1 is an accumulation point of the set {x ∈ R : x 6= −1}, the

domain of f .
We prove limx→1 f(x) = 1

2 .
Let ε > 0 be given.
Let δ = min{ 12 ,

3ε
2 }.

Then δ ≤ 1
2 and δ ≤ 3ε

2 and δ > 0.
Let x ∈ R such that x 6= −1 and 0 < |x− 1| < δ.
Then 0 < |x− 1| < δ ≤ 1

2 , so 0 < |x− 1| < 1
2 .

Hence, −12 < x− 1 < 1
2 , so −12 < x− 1.

Thus, 1
2 < x, so 0 < 3

2 < x+ 1.
Therefore, 0 < 1

x+1 <
2
3 .

Since |x−1| < 1
2 , then |2x−1| = |2(x−1) + 1| ≤ 2|x−1|+ 1 < 2 · 12 + 1 = 2,

so 0 ≤ |2x− 1| < 2.
Observe that
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|f(x)− 1

2
| = |x

2 − x+ 1

x+ 1
− 1

2
|

= |2x
2 − 3x+ 1

2(x+ 1)
|

= | (x− 1)(2x− 1)

2(x+ 1)
|

=
1

2
|x− 1||2x− 1| · 1

x+ 1

<
1

2
δ · 2 · 2

3

=
2

3
· δ

≤ 2

3
· 3ε

2
= ε.

Therefore, |f(x)− 1
2 | < ε, as desired.

Exercise 16. Show that limx→2
x3−4
x2+1 = 4

5 .

Proof. Let f : R→ R be the function defined by f(x) = x3−4
x2+1 for all x ∈ R.

Observe that 2 is an accumulation point of R, the domain of f .
Let ε > 0 be given.
Let δ = min{1, 2ε15}.
Then δ ≤ 1 and δ ≤ 2ε

15 and δ > 0.
Let x ∈ R such that 0 < |x− 2| < δ.
Since |x− 2| < δ and δ ≤ 1, then |x− 2| < 1, so −1 < x− 2 < 1.
Hence, 1 < x < 3.
Since 1 < x, then 1 < x2, so 0 < 2 < x2 + 1.
Thus, 0 < 1

x2+1 <
1
2 .

Since |x| = |(x− 2) + 2| ≤ |x− 2|+ 2 < δ + 2 ≤ 3, then |x| < 3.
Since

|5x2 + 6x+ 12| ≤ |5x2 + 6x|+ 12

≤ |5x2|+ |6x|+ 12

= 5|x|2 + 6|x|+ 12

< 5(3)2 + 6(3) + 12

= 75,

then |5x2 + 6x+ 12| < 75.
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Hence,

|x
3 − 4

x2 + 1
− 4

5
| = |5x

3 − 4x2 − 24

5(x2 + 1)
|

= | (x− 2)(5x2 + 6x+ 12)

5(x2 + 1)
|

=
|x− 2|

5
· |5x2 + 6x+ 12| · 1

x2 + 1

<
δ

5
· 75

2

= δ · 15

2

≤ 2ε

15
· 15

2
= ε.

Therefore, |x
3−4
x2+1 −

4
5 | < ε.

Exercise 17. Show that limx→0
x2

|x| = 0.

Solution. Let f : R∗ → R be a function defined by f(x) = x2

|x| for all x 6= 0.

Let x ∈ R∗.
Then x 6= 0, so either x > 0 or x < 0.

If x > 0, then f(x) = x2

|x| = x2

x = x.

If x < 0, then f(x) = x2

|x| = x2

−x = −x.

Thus,

f(x) =

{
x if x > 0

−x if x < 0

Observe that 0 is an accumulation point of R∗ = {x ∈ R : x 6= 0}, the
domain of f .

We prove limx→0 f(x) = 0.
Let ε > 0 be given.
Let δ = ε.
Then δ > 0.
Let x ∈ R such that 0 < |x| < δ.
Then 0 < |x| and |x| < δ.

Thus, |f(x)| = | x
2

|x| | =
|x2|
||x|| = |x|2

|x| = |x| < δ = ε.

Therefore, |f(x)| < ε, as desired.

Exercise 18. Let f : Q→ R be a function defined by f(x) = x2 for all x ∈ Q.
Then limx→

√
2 f(x) = 2.
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Solution.
Since every real number is an accumulation point of Q, then

√
2 is an accu-

mulation point of Q, the domain of f .
We prove limx→

√
2 f(x) = 2.

Let ε > 0 be given.
Let δ = min{1, ε

1+2
√
2
}.

Then δ ≤ 1 and δ ≤ ε
1+2
√
2

and δ > 0.

Let x ∈ Q such that 0 < |x−
√

2| < δ.
Then

|x+
√

2| = |(x−
√

2) + 2
√

2|
≤ |x−

√
2|+ 2

√
2

< δ + 2
√

2

≤ 1 + 2
√

2.

Thus, 0 ≤ |x+
√

2| < 1 + 2
√

2.
Hence,

|f(x)− 2| = |x2 − 2|
= |(x−

√
2)(x+

√
2)|

= |x−
√

2||x+
√

2|
< δ(1 + 2

√
2)

≤ ε

1 + 2
√

2
· (1 + 2

√
2)

= ε.

Therefore, |f(x)− 2| < ε, as desired.

Exercise 19. Show that limx→a(−12x + 4) = −12a + 4 using the sequential
characterization of a limit.

Solution. Let f : R → R be a function defined by f(x) = −12x + 4 for all
x ∈ R.

Observe that a ∈ R is an accumulation point of R, the domain of f .
Let (xn) be an arbitrary sequence of points in R−{a} such that limn→∞ xn =

a.
To prove limx→a(−12x + 4) = −12a + 4, we must prove limn→∞ f(xn) =

−12a+ 4.
Observe that
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−12a+ 4 = −12( lim
n→∞

xn) + 4

= lim
n→∞

(−12xn) + 4

= lim
n→∞

(−12xn) + lim
n→∞

4

= lim
n→∞

(−12xn + 4)

= lim
n→∞

f(xn).

Therefore, limn→∞ f(xn) = −12a+ 4, as desired.

Exercise 20. Let m and b be fixed real numbers.
Then for every real number a, limx→a(mx+ b) = ma+ b.

Proof. Let a be an arbitrary real number.
Let f : R→ R be the linear function defined by f(x) = mx+ b.
Observe that a is an accumulation point of domf = R.
We must prove limx→a(mx+ b) = ma+ b.
Either m = 0 or m 6= 0.
We consider these cases separately.
Case 1: Suppose m = 0.
Then limx→a(mx+ b) = limx→a(0x+ b) = limx→a b = b = 0 + b = 0a+ b =

ma+ b.
Case 2: Suppose m 6= 0.
Let ε > 0 be given.
Let δ = ε

|m| .

Since m 6= 0, then |m| > 0, so δ > 0.
Let x ∈ R such that 0 < |x− a| < δ.
Then

|f(x)− (ma+ b)| = |(mx+ b)− (ma+ b)|
= |mx+ b−ma− b|
= |mx−ma|
= |m(x− a)|
= |m||x− a|
< |m|δ

= |m| · ε

|m|
= ε.

Therefore, |(mx+ b)− (ma+ b)| < ε, so limx→a(mx+ b) = ma+ b.

Proof. Let a be an arbitrary real number.
Let f : R→ R be the linear function defined by f(x) = mx+ b.
Observe that a is an accumulation point of domf = R.
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To prove limx→a(mx + b) = ma + b using the sequential characterization
of a limit, let (xn) be an arbitrary sequence of points in R − {a} such that
limn→∞ xn = a.

We must prove limn→∞ f(xn) = ma+ b.
Observe that

ma+ b = m lim
n→∞

xn + b

= m lim
n→∞

xn + lim
n→∞

b

= lim
n→∞

mxn + lim
n→∞

b

= lim
n→∞

(mxn + b)

= lim
n→∞

f(xn).

Therefore, limn→∞ f(xn) = ma+ b, as desired.

Exercise 21. limit of the square function
Prove that for all a ∈ R, limx→a x

2 = a2 using using the sequential charac-
terization of a limit.

Proof. Let a be an arbitrary real number.
Let f : R→ R be the function defined by f(x) = x2 for all x ∈ R.
Since every real number is an accumulation point of R, then a is an accu-

mulation point of R, the domain of f .
Since a is an accumulation point of R, then there exists a sequence of points

in R− {a} that converges to a.
To prove limx→a x

2 = a2 using the sequential characterization of a limit, let
(xn) be an arbitrary sequence of points in R− {a} such that limn→∞ xn = a.

We must prove limn→∞ f(xn) = a2.
Observe that

a2 = ( lim
n→∞

xn)( lim
n→∞

xn)

= lim
n→∞

(xnxn)

= lim
n→∞

(xn)2

= lim
n→∞

f(xn).

Therefore, limn→∞ f(xn) = a2, as desired.

Exercise 22. Let a > 0.
Let I = (0, a).
Then for any x, c ∈ I, |x2 − c2| ≤ 2a|x− c| and limx→c x

2 = c2 for all c ∈ I.

Proof. Let x, c ∈ I.
Since x ∈ I, then x ∈ (0, a), so 0 < x < a.
Since c ∈ I, then c ∈ (0, a), so 0 < c < a.
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Thus,

|x+ c| ≤ |x|+ |c|
= x+ c

< a+ a

= 2a.

Hence, |x+ c| < 2a.
Since |x− c| ≥ 0, then |x+ c||x− c| ≤ 2a|x− c|, so |x2 − c2| ≤ 2a|x− c|.
Let f : I → R be the function defined by f(x) = x2 for all x ∈ I.
We prove limx→c x

2 = c2 for all c ∈ I.
Let c ∈ I be given.
Then c ∈ (0, a), so c is an accumulation point of I.
Let ε > 0 be given.
Let δ = ε

2a .
Since ε > 0 and a > 0, then δ > 0.
Let x ∈ I such that 0 < |x− c| < δ.
Then

|x2 − c2| ≤ 2a|x− c|
< 2aδ

= 2a · ε
2a

= ε.

Therefore, |x2 − c2| < ε, as desired.

Exercise 23. limit of a square root equals square root of a limit
Let E ⊂ R.
Let f : E → R be a function such that f(x) ≥ 0 for all x ∈ E.
If limx→a f(x) exists, then limx→a

√
f(x) =

√
limx→a f(x).

Proof. Suppose limx→a f(x) exists.
Then there exists L ∈ R such that limx→a f(x) = L, so a is an accumulation

point of E.
Let g(x) =

√
f(x).

Then g is a function and domg = {x ∈ E : g(x) ∈ R} = {x ∈ E :
√
f(x) ∈

R} = {x ∈ E : f(x) ≥ 0}.
We must prove limx→a g(x) =

√
L.

We first prove a is an accumulation point of domg.
Let ε > 0 be given.
Since a is an accumulation point of E, then there exists x ∈ E such that

x ∈ N ′(a; ε).
Since x ∈ E, then f(x) ≥ 0.
Since x ∈ E and f(x) ≥ 0, then x ∈ domg.
Since there exists x ∈ domg such that x ∈ N ′(a; ε), then a is an accumulation

point of domg.
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We next prove limx→a g(x) =
√
L.

Since a is an accumulation point of domg, then there exists a sequence in
domg − {a} that converges to a.

Let (xn) be an arbitrary sequence in domg− {a} such that limn→∞ xn = a.

Let n ∈ N be given.
Then xn ∈ domg − {a}, so xn ∈ domg and xn 6= a.
Since xn ∈ domg and domg ⊂ E, then xn ∈ E, so f(xn) ≥ 0.
Since xn ∈ E and xn 6= a, then xn ∈ E − {a}.
Thus, f(xn) ≥ 0 and xn ∈ E − {a} for all n ∈ N, so f(xn) ≥ 0 for all n ∈ N

and xn ∈ E − {a} for all n ∈ N.

Since xn ∈ E−{a} for all n ∈ N, then (xn) is a sequence of points in E−{a}.
Since a is an accumulation point of E and limx→a f(x) = L and (xn) is a

sequence of points in E −{a} and limn→∞ xn = a, then by the sequential char-
acterization of a function limit, we have limn→∞ f(xn) = L, so limn→∞ f(xn)
exists.

Since f(xn) ≥ 0 for all n ∈ N and limn→∞ f(xn) exists, then by a previous
proposition, limn→∞ g(xn) = limn→∞

√
f(xn) =

√
limn→∞ f(xn) =

√
L.

Since (xn) is an arbitrary sequence of points in domg − {a} such that
limn→∞ xn = a and limn→∞ g(xn) =

√
L, then by the sequential characteri-

zation of a function limit, we have limx→a g(x) =
√
L, as desired.

Exercise 24. Let I ⊂ R be an interval with at least two elements.
Let f : I → R be a function defined for all x ∈ I.
Let a ∈ I.
If there exist real numbers K,L such that |f(x)−L| ≤ K|x−a| for all x ∈ I,

then limx→a f(x) = L.

Proof. Suppose there exist real numbers K,L such that |f(x) − L| ≤ K|x − a|
for all x ∈ I.

Since I has at least two elements and a ∈ I, then a is an accumulation point
of I, the domain of f .

Since a ∈ I and I has at least two elements, then there exists at least one
element of I that is distinct from a.

Hence, there exists b ∈ I such that b 6= a.
Thus, d(b, a) = |b− a| > 0.
Since b ∈ I, then 0 ≤ |f(b)− L| ≤ K|b− a|, so 0 ≤ K|b− a|.
Since |b− a| > 0, then 0 ≤ K, so K ≥ 0.
Thus, either K > 0 or K = 0.
We consider these cases separately.
Case 1: Suppose K = 0.
Let ε > 0 be given.
Let δ = ε.
Then δ > 0.
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Since there is at least one element of I distinct from a, let x ∈ I such that
0 < |x− a| < δ.

Since x ∈ I, then

|f(x)− L| ≤ K|x− a|
= 0|x− a|
= 0

< ε.

Therefore, |f(x)− L| < ε, so limx→a f(x) = L.
Case 2: Suppose K > 0.
Let ε > 0 be given.
Let δ = ε

K .
Since ε > 0 and K > 0, then δ > 0.
Since there is at least one element of I distinct from a, let x ∈ I such that

0 < |x− a| < δ.
Then |x− a| < δ.
Since x ∈ I, then

|f(x)− L| ≤ K|x− a|
< Kδ

= ε.

Therefore, |f(x)− L| < ε, so limx→a f(x) = L.
Thus, in all cases, limx→a f(x) = L, as desired.

Exercise 25. Let f : R+ → R be a function defined by f(x) = 1
x2 for all x > 0.

Then limx→0 f(x) does not exist in R.

Solution.
Observe that 0 is an accumulation point of R+ = (0,∞), the domain of f .
We prove there is no real L such that limx→0 f(x) = L.
Observe that

¬(∃L ∈ R)( lim
x→0

f(x) = L) ⇔

¬(∃L ∈ R)(∀ε > 0)(∃δ > 0)(∀x > 0)(0 < |x| < δ → |f(x)− L| < ε) ⇔
(∀L ∈ R)(∃ε > 0)(∀δ > 0)(∃x > 0)(0 < |x| < δ ∧ |f(x)− L| ≥ ε).

Thus, we prove (∀L ∈ R)(∃ε > 0)(∀δ > 0)(∃x > 0)(0 < |x| < δ∧|f(x)−L| ≥
ε).

Let L be an arbitrary real number.
Let ε = max{0,−L}+ 1.
Then ε− 1 = max{0,−L}, so ε− 1 ≥ 0 and ε− 1 ≥ −L.
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Since ε− 1 ≥ 0, then ε ≥ 1 > 0, so ε > 0.
Since ε− 1 ≥ −L, then L+ ε ≥ 1 > 0, so L+ ε > 0.
Hence, 1

L+ε > 0, so 1√
L+ε

> 0.

Let δ > 0 be given.
We must prove there exists x > 0 such that 0 < |x| < δ and |f(x)− L| ≥ ε.

Let x = min{ δ2 ,
1√
L+ε
}.

Then x ≤ δ
2 and x ≤ 1√

L+ε
and x > 0.

Since 0 < |x| = x ≤ δ
2 < δ, then 0 < |x| < δ.

Since 0 < x ≤ 1√
L+ε

, then 0 < x2 ≤ 1
L+ε , so 0 < L+ ε ≤ 1

x2 .

Hence, 0 < ε ≤ 1
x2 − L, so 0 < 1

x2 − L and ε ≤ 1
x2 − L.

Thus, |f(x)− L| = | 1x2 − L| = 1
x2 − L ≥ ε, so |f(x)− L| ≥ ε.

Therefore, there exists x > 0 such that 0 < |x| < δ and |f(x) − L| ≥ ε, as
desired.

Exercise 26. Let f : R+ → R be a function defined by f(x) = 1√
x

for all x > 0.

Then limx→0 f(x) does not exist in R.

Solution.
Observe that 0 is an accumulation point of R+ = (0,∞), the domain of f .
We prove there is no real L such that limx→0 f(x) = L.
Observe that

¬(∃L ∈ R)( lim
x→0

f(x) = L) ⇔

¬(∃L ∈ R)(∀ε > 0)(∃δ > 0)(∀x > 0)(0 < |x| < δ → |f(x)− L| < ε) ⇔
(∀L ∈ R)(∃ε > 0)(∀δ > 0)(∃x > 0)(0 < |x| < δ ∧ |f(x)− L| ≥ ε).

Thus, we prove (∀L ∈ R)(∃ε > 0)(∀δ > 0)(∃x > 0)(0 < |x| < δ∧|f(x)−L| ≥
ε).

Let L be an arbitrary real number.
Let ε = max{0,−L}+ 1.
Then ε− 1 = max{0,−L}, so ε− 1 ≥ 0 and ε− 1 ≥ −L.
Since ε− 1 ≥ 0, then ε ≥ 1 > 0, so ε > 0.
Since ε− 1 ≥ −L, then L+ ε ≥ 1 > 0, so L+ ε > 0.
Let δ > 0 be given.
We must prove there exists x > 0 such that 0 < |x| < δ and |f(x)− L| ≥ ε.

Let x = min{ δ2 ,
1

(L+ε)2 }.
Then x ≤ δ

2 and x ≤ 1
(L+ε)2 .

Since δ > 0 and L+ ε > 0, then x > 0.
Since 0 < x = |x| ≤ δ

2 < δ, then 0 < |x| < δ.
Since 0 < x ≤ 1

(L+ε)2 , then 0 <
√
x ≤ 1

L+ε , so L+ ε ≤ 1√
x

.

Hence, 0 < ε ≤ 1√
x
− L, so 0 < 1√

x
− L and ε ≤ 1√

x
− L.
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Therefore, |f(x)− L| = | 1√
x
− L| = 1√

x
− L ≥ ε, so |f(x)− L| ≥ ε.

Thus, there exists x > 0 such that 0 < |x| < δ and |f(x) − L| ≥ ε, as
desired.

Exercise 27. Let f : R→ R be a function defined for all x ∈ R.
Let a, L ∈ R.
Then limx→a f(x) = L iff limx→0 f(x+ a) = L.

Proof. We first prove if limx→a f(x) = L, then limx→0 f(x+ a) = L.
Suppose limx→a f(x) = L.
Let ε > 0 be given.
Then there exists δ > 0 such that for all x ∈ R, if 0 < |x − a| < δ, then

|f(x)− L| < ε.
Let x ∈ R such that 0 < |x| < δ.
Since x ∈ R, then x+a ∈ R, so if 0 < |(x+a)−a| < δ, then |f(x+a)−L| < ε.
Hence, if 0 < |x| < δ, then |f(x+ a)− L| < ε.
Since 0 < |x| < δ, then we conclude |f(x+ a)− L| < ε.
Therefore, limx→0 f(x+ a) = L.

Conversely, we prove if limx→0 f(x+ a) = L, then limx→a f(x) = L.
Suppose limx→0 f(x+ a) = L.
Let ε > 0 be given.
Then there exists δ > 0 such that for all x ∈ R, if 0 < |x| < δ, then

|f(x+ a)− L| < ε.
Let x ∈ R such that 0 < |x− a| < δ.
Since x ∈ R, then x−a ∈ R, so if 0 < |x−a| < δ, then |f((x−a)+a)−L| < ε.
Hence, if 0 < |x− a| < δ, then |f(x)− L| < ε.
Since 0 < |x− a| < δ, then we conclude |f(x)− L| < ε.
Therefore, limx→a f(x) = L.

Exercise 28. Let a, L ∈ R.
Let f : R→ R be a function such that limx→a(f(x))2 = L.
If L = 0, then limx→a f(x) = 0.
Provide an example such that L 6= 0 and limx→a f(x) does not exist.

Proof. We must prove if L = 0, then limx→a f(x) = 0.
Suppose L = 0.
Then limx→a(f(x))2 = 0.
To prove limx→a f(x) = 0, let ε > 0 be given.
Then ε2 > 0.
Since limx→a(f(x))2 = 0, then there exists δ > 0 such that if 0 < |x−a| < δ,

then |(f(x))2| < ε2.
Let x ∈ R such that 0 < |x− a| < δ.
Then |(f(x))2| < ε2, so 0 ≤ |(f(x))2| < ε2.
Hence, 0 ≤ |f(x)|2 < ε2, so 0 ≤ |f(x)| < ε.
Therefore, |f(x)| < ε, as desired.
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Solution. Let f : R∗ → R be the function defined by f(x) = 1 if x > 0 and
f(x) = −1 if x < 0.

We shall show that limx→0(f(x))2 = 1 6= 0 and limx→0 f(x) does not exist.

We first prove limx→0(f(x))2 = 1.
Observe that 0 is an accumulation point of R∗, the domain of f .
Let ε > 0 be given.
Let δ = ε.
Then δ > 0.
Let x ∈ R∗.
Then either x > 0 or x < 0.
If x > 0, then (f(x))2 = 12 = 1.
If x < 0, then (f(x))2 = (−1)2 = 1.
Thus, in all cases, (f(x))2 = 1.
Since |(f(x))2 − 1| = |1− 1| = 0 < ε, then |(f(x))2 − 1| < ε.
Hence, the implication if 0 < |x| < δ, then |(f(x))2 − 1| < ε is trivially true.
Therefore, limx→0(f(x))2 = 1.

We next prove limx→0 f(x) does not exist.
We already proved by contradiction that the function f fails to have a limit

at 0 in the list of examples.
It has a jump discontinuity at zero.
Therefore, limx→0 f(x) does not exist.

Exercise 29. Let f : R→ R be a function defined by f(x) = x if x is rational
and f(x) = 0 if x is irrational.

Show that limx→0 f(x) = 0.
Show that if a 6= 0, then the limit of f at a does not exist.

Proof. Observe that 0 is an accumulation point of R, the domain of f .
We prove limx→0 f(x) = 0.
Let ε > 0 be given.
Let δ = ε.
Then δ > 0.
Let x ∈ R such that 0 < |x| < δ.
Since x ∈ R, then either x is rational or x is not rational.
If x is rational, then |f(x)| = |x| < δ = ε, so |f(x)| < ε.
If x is not rational, then x is irrational, so |f(x)| = 0 < ε.
Therefore, in all cases, |f(x)| < ε, so limx→0 f(x) = 0, as desired.

Proof. Let a 6= 0 be given.
Observe that a is an accumulation point of R, the domain of f .
To prove the limit of f at a does not exist, we must prove there is no real L

such that limx→a f(x) = L.
Observe that
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¬(∃L ∈ R)( lim
x→a

f(x) = L) ⇔

¬(∃L ∈ R)(∀ε > 0)(∃δ > 0)(∀x)(0 < |x− a| < δ → |f(x)− L| < ε) ⇔
(∀L ∈ R)(∃ε > 0)(∀δ > 0)(∃x)(0 < |x− a| < δ ∧ |f(x)− L| ≥ ε).

Thus, we prove (∀L ∈ R)(∃ε > 0)(∀δ > 0)(∃x)(0 < |x−a| < δ∧ |f(x)−L| ≥
ε).

Let L be an arbitrary real number.
Either L = 0 or L 6= 0.
We consider these cases separately.
Case 1: Suppose L 6= 0.
Let ε = |L|.
Since L 6= 0, then |L| > 0, so ε > 0.
Let δ > 0 be given.
Since a and a + δ are real numbers and a < a + δ, then there exists an

irrational number x such that a < x < a+ δ.
Thus, a < x and 0 < x− a < δ.
Since 0 < x− a < δ, then |x− a| = x− a < δ, so |x− a| < δ.
Since x > a, then x− a > 0, so 0 < |x− a| < δ.
Since x is irrational, then |f(x) − L| = |0 − L| = | − L| = |L| = ε, so

|f(x)− L| = ε.
Thus, |f(x)− L| ≥ ε.
Case 2: Suppose L = 0.
Let ε = |a|.
Since a 6= 0, then |a| > 0, so ε > 0.
Let δ > 0 be given.
Since a 6= 0, then either a > 0 or a < 0.
Case 2a: Suppose a > 0.
Since a and a+δ are real numbers and a < a+δ, then there exists a rational

number x such that a < x < a+ δ.
Thus, a < x and 0 < x− a < δ.
Since 0 < x− a < δ, then |x− a| = x− a < δ, so |x− a| < δ.
Since x > a, then x− a > 0, so 0 < |x− a| < δ.
Since 0 < a < x, then |x| = x > a = |a|, so |x| > |a|.
Since x is rational, then |f(x)−L| = |x−0| = |x| > |a| = ε, so |f(x)−L| > ε.
Case 2b: Suppose a < 0.
Since a and a+δ are real numbers and a−δ < a, then there exists a rational

number x such that a− δ < x < a.
Thus, x < a and −δ < x− a < 0.
Since δ > x− a > 0, then |x− a| = x− a < δ, so |x− a| < δ.
Since x < a, then x− a < 0, so x− a 6= 0.
Hence, |x− a| > 0, so 0 < |x− a| < δ.
Since x < a < 0, then |x| = −x > −a = |a|, so |x| > |a|.
Since x is rational, then |f(x)−L| = |x−0| = |x| > |a| = ε, so |f(x)−L| > ε.
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Therefore, in either case, |f(x)− L| > ε, so |f(x)− L| ≥ ε.
Thus, there is no real L such that limx→a f(x) = L, so if a 6= 0, then the

limit of f at a does not exist.

Exercise 30. Given that the definition of limit requires that a be an accumula-
tion point of domf , what real values of a would be excluded from consideration
in the limit limx→a

√
x2 − 2 ?

Solution. Let f : [
√

2,∞)→ R be the function given by f(x) =
√
x2 − 2.

The domain of f is the interval [
√

2,∞), a closed, unbounded set.
Thus, domf = [

√
2,∞).

Values of a that should be included in the consideration of a limit must be
accumulation points of domf .

Hence, values of a that should be excluded from consideration of a limit
must not be accumulation points of domf .

Let S be the set of all real values of a that are excluded from consideration
of a limit of f at a.

Then S is the set of all real values of a that are not accumulation points of
domf .

Thus, S = {x ∈ R : x is not an accumulation point of domf }.
We prove S = (−∞,

√
2).

We first prove (−∞,
√

2) ⊂ S.
Let t ∈ (−∞,

√
2).

Since domf is a closed set, then if x is an accumulation point of domf , then
x ∈ domf .

Hence, if x 6∈ domf , then x is not an accumulation point of domf .
Since t ∈ (−∞,

√
2) and the interval (−∞,

√
2) is the complement of [

√
2,∞) =

domf , then t 6∈ domf .
Thus, t is not an accumulation point of domf , so t ∈ S.
Hence, (−∞,

√
2) ⊂ S.

We now prove S ⊂ (−∞,
√

2).
Let s ∈ S.
Then s ∈ R and s is not an accumulation point of domf .
Suppose for the sake of contradiction s ∈ domf .
Then s ∈ [

√
2,∞), so s is an accumulation point of [

√
2,∞).

Hence, s is an accumulation point of domf , contradicting the fact that s is
not an accumulation point of domf .

Therefore, s 6∈ domf , so s is in the complement of domf .
Thus, s ∈ (−∞,

√
2), the complement of domf .

Hence, S ⊂ (−∞,
√

2).
Since S ⊂ (−∞,

√
2) and (−∞,

√
2) ⊂ S, then S = (−∞,

√
2).

Exercise 31. Let f : (0, 1)→ R be a function defined by f(x) = sin( 1
x ) for all

x ∈ (0, 1).
Then limx→0 sin( 1

x ) does not exist in R.
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Solution.
Observe that 0 is an accumulation point of (0, 1), the domain of f .
We prove there is no real L such that limx→0 f(x) = L.
Observe that

¬(∃L ∈ R)( lim
x→0

f(x) = L) ⇔

¬(∃L ∈ R)(∀ε > 0)(∃δ > 0)(∀x ∈ (0, 1))(0 < |x| < δ → |f(x)− L| < ε) ⇔
(∀L ∈ R)(∃ε > 0)(∀δ > 0)(∃x ∈ (0, 1))(0 < |x| < δ ∧ |f(x)− L| ≥ ε).

Thus, we prove (∀L ∈ R)(∃ε > 0)(∀δ > 0)(∃x ∈ (0, 1))(0 < |x| < δ ∧ |f(x)−
L| ≥ ε).

Let L be an arbitrary real number.
Let ε = 1

3 .
Let δ > 0 be given.
We must prove there exists x ∈ (0, 1) such that 0 < |x| < δ and |f(x)−L| ≥ ε.

We first prove either 0 6∈ N(L; ε) or 1 6∈ N(L; ε) by contradiction.
Suppose 0 ∈ N(L; ε) and 1 ∈ N(L; ε).
Then d(0, L) < ε and d(1, L) < ε, so |0− L| < ε and |1− L| < ε.
Hence, |L| < ε and |1− L| < ε.
Observe that

1 = |(1− L) + L|
≤ |1− L|+ |L|
< ε+ ε

=
1

3
+

1

3

=
2

3
.

Therefore, 1 < 2
3 , a contradiction.

Hence, either 0 6∈ N(L; ε) or 1 6∈ N(L; ε).
We consider these cases separately.
Case 1: Suppose 0 6∈ N(L; ε).
Then d(0, L) ≥ ε, so |0− L| ≥ ε.
Since δ > 0, then δπ > 0, so by the Archimedean property of R, there exists

n ∈ N such that 1
n < δπ.

Hence, 1
nπ < δ.

Let x = 1
nπ .

Since 0 < 1
π < n for any n ∈ N, then 0 < 1 < nπ, so 0 < 1

nπ < 1.
Thus, 1

nπ ∈ (0, 1).
Since 0 < 1

nπ = | 1
nπ | < δ, then 0 < | 1

nπ | < δ.
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Since |f( 1
nπ )− L| = | sin(nπ)− L| = |0− L| ≥ ε, then |f( 1

nπ )− L| ≥ ε.
Case 2: Suppose 1 6∈ N(L; ε).
Then d(1, L) ≥ ε, so |1− L| ≥ ε.
Since δ > 0, then δπ

2 > 0, so by the Archimedean property of R, there exists

k ∈ N such that 1
k <

δπ
2 .

Thus, 2
kπ < δ.

Let m = 4k + 1.
Then m− 1 = 4k, so 4|(m− 1).
Hence, m ≡ 1 (mod 4).
Since m− k = (4k + 1)− k = 3k + 1 > 0, then m− k > 0, so m > k.
Since m > k > 0, then 0 < 1

m < 1
k , so 0 < 2

mπ <
2
kπ .

Thus, 0 < 2
mπ <

2
kπ < δ, so 0 < 2

mπ < δ.
Let x = 2

mπ .
Since 0 < 2

π < m for any m ∈ N, then 0 < 2 < mπ, so 0 < 2
mπ < 1.

Thus, 2
mπ ∈ (0, 1).

Since 0 < 2
mπ = | 2

mπ | < δ, then 0 < | 2
mπ | < δ.

Since m ≡ 1 (mod 4), then |f( 2
mπ ) − L| = | sin(mπ2 ) − L| = |1 − L| ≥ ε, so

|f( 2
mπ )− L| ≥ ε.
Therefore, in all cases, there exists x ∈ (0, 1) such that 0 < |x| < δ and

|f(x)− L| ≥ ε, as desired.

Exercise 32. Show that limx→0 cos( 1
x ) does not exist in R.

Solution. Let f : R− {0} → R be a function defined by f(x) = cos( 1
x ).

Since 0 is an accumulation point of R, then 0 is an accumulation point of
R− {0}, the domain of f .

Suppose limx→0 f(x) does exist in R.
Then there is a real number L such that limx→0 cos( 1

x ) = L.
Thus, for every ε > 0, there is δ > 0 such that for every x 6= 0, if 0 < |x| < δ,

then | cos( 1
x )− L| < ε.

Let ε = 1
2 .

Then there is δ > 0 such that for every x ∈ R − {0}, if 0 < |x| < δ, then
| cos( 1

x )− L| < 1
2 .

Let M = 1
2πδ .

Then M ∈ R, so by the Archimedean property of R, there exists n1 ∈ N
such that n1 > M .

Let x1 = 1
2πn1

.
Since n1 ∈ N, then n1 > 0, so x1 > 0.
Hence, x1 6= 0.
Since n1 > M and M = 1

2πδ , then n1 >
1

2πδ .
Since δ > 0 and n1 > 0, then δ > 1

2πn1
, so δ > x1.

Thus, δ > x1 = |x1| > 0.
Since x1 6= 0 and 0 < |x1| < δ, then | cos( 1

x1
)− L| < 1

2 .

25



Let N =
1
πδ−1

2 .
Then N ∈ R, so by the Archimedean property of R, there exists n2 ∈ N such

that n2 > N .
Let x2 = 1

(2n2+1)π .

Since n2 ∈ N, then n2 > 0, so 2n2 + 1 > 0.
Hence, x2 > 0, so x2 6= 0.

Since n2 > N and N =
1
πδ−1

2 , then n2 >
1
πδ−1

2 .
Thus, 2n2 >

1
πδ − 1, so 2n2 + 1 > 1

πδ .
Since δ > 0 and n2 > 0, then δ > 1

(2n2+1)π , so δ > x2.

Thus, δ > x2 = |x2| > 0.
Since x2 6= 0 and 0 < |x2| < δ, then | cos( 1

x2
)− L| < 1

2 .

Observe that

2 = |1− (−1)|
= | cos(2πn1)− cos((2n2 + 1)π)|

= | cos(
1
1

2πn1

)− cos(
1
1

(2n2+1)π

)|

= | cos(
1

x1
)− cos(

1

x2
)|

= | cos(
1

x1
)− L+ L− cos(

1

x2
)|

≤ | cos(
1

x1
)− L|+ |L− cos(

1

x2
)|

= | cos(
1

x1
)− L|+ | cos(

1

x2
)− L|

<
1

2
+

1

2
= 1.

Thus, we have 2 < 1, a contradiction.
Therefore, limx→0 cos( 1

x ) does not exist in R.

Exercise 33. Show that limx→0 x sin( 1
x ) = 0.

Proof. Let f : R∗ → R be the function defined by f(x) = x sin( 1
x ) for all x 6= 0.

Observe that 0 is an accumulation point of the set R∗ = {x ∈ R : x 6= 0},
the domain of f .

Let ε > 0 be given.
Let δ = ε.
Then δ > 0.
Let x ∈ R∗ such that 0 < |x| < δ.
Since x ∈ R∗, then x ∈ R and x 6= 0, so 1

x ∈ R.
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Since | sin θ| ≤ 1 for all θ ∈ R, then in particular, | sin( 1
x )| ≤ 1, so 0 ≤

| sin( 1
x )| ≤ 1.

Therefore, |x sin( 1
x )| = |x| · | sin( 1

x )| ≤ |x| < δ = ε.
Thus, |x sin( 1

x )| < ε, as desired.

Proof. Let f : R∗ → R be the function defined by f(x) = x sin( 1
x ) for all x 6= 0.

Observe that 0 is an accumulation point of the set R∗ = {x ∈ R : x 6= 0},
the domain of f .

Let x ∈ R∗.
Then x ∈ R and x 6= 0.
Hence, |x| > 0 and −|x| < 0 and 1

x ∈ R.
Since | sin θ| ≤ 1 for all θ ∈ R, then in particular, | sin( 1

x )| ≤ 1.
Since x 6= 0, then x sin( 1

x ) ∈ R, so −|x sin( 1
x )| ≤ x sin( 1

x ) ≤ |x sin( 1
x )|.

Thus, −|x sin( 1
x )| ≤ x sin( 1

x ) and x sin( 1
x ) ≤ |x sin( 1

x )|.
Since x sin( 1

x ) ≤ |x sin( 1
x )| = |x|| sin( 1

x )| ≤ |x|, then x sin( 1
x ) ≤ |x|.

Since −|x sin( 1
x )| ≤ x sin( 1

x ), then x sin( 1
x ) ≥ −|x sin( 1

x )| = −|x|| sin( 1
x )| ≥

−|x|, so x sin( 1
x ) ≥ −|x|.

Thus, −|x| ≤ x sin( 1
x ) ≤ |x|, so −|x| ≤ x sin( 1

x ) ≤ |x| for all x ∈ R∗.
Since −|x| ≤ x sin( 1

x ) ≤ |x| for all x ∈ R∗ and limx→0 |x| = |0| = 0 = −|0| =
− limx→0 |x| = limx→0−|x|, then by the squeeze rule, limx→0 x sin( 1

x ) = 0.

Proof. Let f : R∗ → R be the function defined by f(x) = x sin( 1
x ) for all x 6= 0.

Observe that 0 is an accumulation point of the set R∗ = {x ∈ R : x 6= 0},
the domain of f .

We prove by using the sequential criterion for function limits.
Since 0 is an accumulation point of R∗, then there exists a sequence (xn) of

points in R∗ such that limn→∞ xn = 0.
Let (xn) be an arbitrary sequence of points in R∗ such that limn→∞ xn = 0.
Since (xn) is a sequence of points in R∗ = R−{0}, then xn 6= 0 for all n ∈ N.
We first prove limn→∞ f(xn) = 0.
Let ε > 0 be given.
Since limn→∞ xn = 0, then there exists N ∈ N such that if n > N , then

|xn| < ε.
Let n ∈ N such that n > N .
Then |xn| < ε, so 0 < |xn| < ε.
Since xn 6= 0, then 1

xn
∈ R.

Since | sin θ| ≤ 1 for all θ ∈ R, then in particular, | sin( 1
xn

)| ≤ 1, so 0 ≤
| sin( 1

xn
)| ≤ 1.

Hence, |f(xn)| = |xn sin( 1
xn

)| = |xn|·| sin( 1
xn

)| ≤ |xn| < ε, so limn→∞ f(xn) =
0.

Since (xn) is an arbitrary sequence of points in R∗ = domf = domf −
{0} such that limn→∞ xn = 0 and limn→∞ f(xn) = 0, then by the sequential
criterion for function limits, limx→0 f(x) = 0.

Therefore, limx→0 x sin( 1
x ) = 0.
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Algebraic properties of function limits

Exercise 34. Let f : (0, 1)→ R be a function defined by f(x) = x3+6x2+x
x2−6x .

Then limx→0 f(x) = −1
6 .

Proof. Observe that 0 is an accumulation point of the interval (0, 1), the domain
of f .

Let x ∈ (0, 1).
Then 0 < x < 1, so 0 < x.
Since x > 0, then x 6= 0.
Thus, x 6= 0 for all x ∈ (0, 1), so

lim
x→0

f(x) = lim
x→0

x3 + 6x2 + x

x2 − 6x

= lim
x→0

x(x2 + 6x+ 1)

x(x− 6)

= lim
x→0

x2 + 6x+ 1

x− 6
.

Since limx→0(x2 + 6x + 1) = 1 and limx→0(x − 6) = −6 6= 0, then by the
quotient rule for limits we have

lim
x→0

x2 + 6x+ 1

x− 6
=

limx→0(x2 + 6x+ 1)

limx→0(x− 6)

=
1

−6
.

Therefore, limx→0 f(x) = −1
6 .

Exercise 35. Show that limx→−1
x+1
x3+1 = 1

3 .

Proof. Let f : R− {−1} → R be a function defined by f(x) = x+1
x3+1 .

Since −1 is an accumulation point of R, then −1 is an accumulation point
of R− {−1}, the domain of f .

Since x3 + 1 = (x+ 1)(x2 − x+ 1), then x3+1
x+1 = x2 − x+ 1 if x 6= −1.

Let x ∈ R− {−1}.
Then x ∈ R and x 6= −1, so x3+1

x+1 = x2 − x+ 1.

Since limx→−1 1 = 1 and limx→−1(x2 − x+ 1) = 3 6= 0, then

1

3
=

limx→−1 1

limx→−1(x2 − x+ 1)

= lim
x→−1

1

x2 − x+ 1

= lim
x→−1

1
x3+1
x+1

= lim
x→−1

x+ 1

x3 + 1
.
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Therefore, limx→−1
x+1
x3+1 = 1

3 .

Exercise 36. Show that limh→0
sin(π6 +h)− 1

2

h =
√
3
2 .

Solution. We observe that this limit is simply the definition of the derivative

of sin at π
6 which is cos(π6 ) =

√
3
2 .

Proof. Since limh→0
sinh
h = 1 and limh→0

cosh−1
h = 0, then

√
3

2
=

1

2
·
√

3 · 1

=
1

2
·
√

3 · lim
h→0

sinh

h

=
1

2
· lim
h→0

√
3 sinh

h

=
1

2
(0 + lim

h→0

√
3 sinh

h
)

=
1

2
( lim
h→0

cosh− 1

h
+ lim
h→0

√
3 sinh

h
)

=
1

2
· lim
h→0

(
cosh− 1

h
+

√
3 sinh

h
)

=
1

2
· lim
h→0

cosh− 1 +
√

3 sinh

h

= lim
h→0

1

2
· cosh− 1 +

√
3 sinh

h

= lim
h→0

cosh
2 − 1

2 +
√
3
2 sinh

h

= lim
h→0

cosh
2 +

√
3
2 sinh− 1

2

h

= lim
h→0

sin(π6 ) cos(h) + cos(π6 ) sinh− 1
2

h

= lim
h→0

sin(π6 + h)− 1
2

h
.

Therefore, limh→0
sin(π6 +h)− 1

2

h =
√
3
2 .

Exercise 37. Let f : (0, 1)→ R be a function defined by f(x) =
√
1+x−1
x .

Then limx→0 f(x) = 1
2 .

Proof. Observe that 0 is an accumulation point of the interval (0, 1), the domain
of f .

Let x ∈ (0, 1).
Then 0 < x < 1, so 0 < x.
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Since x > 0, then x 6= 0.
Since −1 < 0 and 0 < x, then −1 < x, so 0 < 1 + x.
Hence, 1 + x > 0, so

√
1 + x > 0.

Thus,
√

1 + x+ 1 > 1 > 0, so
√

1 + x+ 1 > 0.
Therefore,

√
1 + x+ 1 6= 0.

Since x 6= 0 and
√

1 + x+ 1 6= 0, then

lim
x→0

f(x) = lim
x→0

√
1 + x− 1

x

= lim
x→0

√
1 + x− 1

x
·
√

1 + x+ 1√
1 + x+ 1

= lim
x→0

(1 + x)− 1

x(
√

1 + x+ 1)

= lim
x→0

x

x(
√

1 + x+ 1)

= lim
x→0

1√
1 + x+ 1

.

Since limx→0(1 + x) = 1 > 0, then limx→0

√
1 + x =

√
limx→0(1 + x).

Since limx→0 1 = 1, then

2 =
√

1 + 1

=
√

lim
x→0

(1 + x) + lim
x→0

1

= lim
x→0

√
1 + x+ lim

x→0
1

= lim
x→0

(
√

1 + x+ 1).

Since limx→0 1 = 1 and limx→0(
√

1 + x + 1) = 2 6= 0, then by the quotient
rule

lim
x→0

1√
1 + x+ 1

=
limx→0 1

limx→0(
√

1 + x+ 1)

=
1

2
.

Therefore, limx→0 f(x) = 1
2 .

Exercise 38. Let f : (0, 1)→ R be a function defined by f(x) =
√
9−x−3
x .

Then limx→0 f(x) = −1
6 .

Proof. Observe that 0 is an accumulation point of the interval (0, 1), the domain
of f .

Let x ∈ (0, 1).
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Then 0 < x < 1, so 0 < x and x < 1.
Since x > 0, then x 6= 0.
Since x < 1 and 1 < 9, then x < 9, so 0 < 9− x.
Hence, 9− x > 0, so

√
9− x > 0.

Thus,
√

9− x+ 3 > 3 > 0, so
√

9− x+ 3 > 0.
Therefore,

√
9− x+ 3 6= 0.

Since x 6= 0 and
√

9− x+ 3 6= 0, then

lim
x→0

f(x) = lim
x→0

√
9− x− 3

x

= lim
x→0

√
9− x− 3

x
·
√

9− x+ 3√
9− x+ 3

= lim
x→0

(9− x)− 9

x(
√

9− x+ 3)

= lim
x→0

−x
x(
√

9− x+ 3)

= lim
x→0

−1√
9− x+ 3

.

Since limx→0(9− x) = 9 > 0, then limx→0

√
9− x =

√
limx→0(9− x).

Since limx→0 3 = 3, then

6 =
√

9 + 3

=
√

lim
x→0

(9− x) + lim
x→0

3

= lim
x→0

√
9− x+ lim

x→0
3

= lim
x→0

(
√

9− x+ 3).

Since limx→0−1 = −1 and limx→0(
√

9− x+3) = 6 6= 0, then by the quotient
rule

lim
x→0

−1√
9− x+ 3

=
limx→0−1

limx→0(
√

9− x+ 3)

=
−1

6
.

Therefore, limx→0 f(x) = −1
6 .

Exercise 39. Let f and g be real valued functions defined on E ⊂ R.
Let a be an accumulation point of E.
a. If limx→a f(x) and limx→a(f + g)(x) exist, then limx→a g(x) exists.
b. If limx→a f(x) and limx→a(fg)(x) exist, then it does not necessarily follow

that limx→a g(x) exists.
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Proof. We prove a.
Suppose limx→a f(x) and limx→a(f + g)(x) exist.
Then there exist real numbers L and M such that limx→a f(x) = L and

limx→a(f + g)(x) = M .
Thus,

M − L = lim
x→a

(f + g)(x)− lim
x→a

f(x)

= lim
x→a

[f(x) + g(x)]− lim
x→a

f(x)

= lim
x→a

f(x) + lim
x→a

g(x)− lim
x→a

f(x)

= lim
x→a

g(x).

Therefore, limx→a g(x) = M − L, so the limit of g at a exists.

Solution. We provide a counterexample to the assertion that limx→a f(x) and
limx→a(fg)(x) exist implies limx→a g(x) exists.

Let f : R∗ → R be the function defined by f(x) = x.
Let g : R∗ → R be the function defined by g(x) = sin( 1

x ).
Then limx→0 f(x) = limx→0 x = 0 and limx→0(fg)(x) = limx→0 f(x)g(x) =

limx→0 x sin( 1
x ) = 0, but limx→0 sin( 1

x ) does not exist.

Exercise 40. Show that limx→0 x
2 cos( 1

x ) = 0.

Proof. Let f : R∗ → R be the function defined by f(x) = x2 cos( 1
x ) for all x 6= 0.

Observe that 0 is an accumulation point of the set R∗ = {x ∈ R : x 6= 0},
the domain of f .

Let ε > 0 be given.
Then

√
ε > 0.

Let δ =
√
ε.

Then δ > 0.
Let x ∈ R∗ such that 0 < |x| < δ.
Since 0 < |x| < δ, then 0 < |x| and |x| < δ.
Since x ∈ R∗, then x ∈ R and x 6= 0, so 1

x ∈ R.
Since | cos θ| ≤ 1 for all θ ∈ R, then in particular, | cos( 1

x )| ≤ 1, so 0 ≤
| cos( 1

x )| ≤ 1.
Therefore, |x2 cos( 1

x )| = |x2| · | cos( 1
x )| = |x|2 · | cos( 1

x )| ≤ |x|2 < δ2 = ε, so
|x2 cos( 1

x )| < ε, as desired.

Exercise 41. Show that limx→c(x
2 + x+ 1) = c2 + c+ 1 for any c ∈ R.

Solution. Let c ∈ R be given.
Let f : R→ R be the function given by f(x) = x2 + x+ 1.
Since f is a polynomial function and c ∈ R, then we conclude that limx→c(x

2+
x+ 1) = limx→c f(x) = f(c) = c2 + c+ 1.

Exercise 42. Let f : E → R and g : E → R be functions.
Let a be an accumulation point of E.
If limx→a f(x) = 0 and g(x) is bounded locally near a, then limx→a f(x)g(x) =

0.
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Proof. Suppose limx→a f(x) = 0 and g(x) is bounded near a.
Let ε > 0 be given.
Since g(x) is bounded locally near a, then there exist δ1 and M > 0 such

that |g(x)| ≤M for all x ∈ N(a; δ1) ∩ E.
Since ε > 0 and M > 0, then ε

M > 0.
Since limx→a f(x) = 0, then there exists δ2 > 0 such that |f(x)| < ε

M for all
x ∈ ∩N ′(a; δ2) ∩ E.

Let δ = min{δ1, δ2}.
Then δ ≤ δ1 and δ ≤ δ2 and δ > 0.
Let x ∈ E ∩N ′(a; δ).
Then x ∈ E and x ∈ N ′(a; δ).
Since x ∈ N ′(a; δ), then x ∈ N(a; δ).
Since 0 < δ ≤ δ1, then N(a; δ) ⊂ N(a; δ1).
Since x ∈ N(a; δ) and N(a; δ) ⊂ N(a; δ1), then x ∈ N(a; δ1).
Since x ∈ N(a; δ1) and x ∈ E, then x ∈ N(a; δ1) ∩ E, so |g(x)| ≤M .
Since 0 < δ ≤ δ2, then N(a; δ) ⊂ N(a; δ2).
Since x ∈ N(a; δ) and N(a; δ) ⊂ N(a; δ2), then x ∈ N(a; δ2).
Since x ∈ N(a; δ2) and x ∈ E, then x ∈ N(a; δ2) ∩ E, so |f(x)| < ε

M .
Since 0 ≤ |f(x)| < ε

M and 0 ≤ |g(x)| < M , then

|f(x)g(x)| = |f(x)||g(x)|

<
ε

M
·M

= ε.

Therefore, |f(x)g(x)| < ε, so limx→a f(x)g(x) = 0.

Exercise 43. Let f : A→ R and g : B → R be functions.
Let a be an accumulation point of A and B.
Assume f(x) = g(x) for all x ∈ A ∩B.
a. What conditions on A and B ensure that if limx→a f(x) exists, then

limx→a g(x) exists?
b. What conditions on A and B ensure that if limx→a f(x) and limx→a g(x)

exist, then they must be equal?

Proof. b. We assume that B ⊂ A.
Then if limx→a f(x) exists, then limx→a g(x) exists.
Suppose limx→a f(x) exists and B ⊂ A.
Since limx→a f(x) exists, then there is a real number L such that limx→a f(x) =

L.
Let ε > 0 be given.
Since limx→a f(x) = L, then there exists δ > 0 such that if x ∈ A and

0 < |x− a| < δ, then |f(x)− L| < ε.
Since a is an accumulation point of B and δ > 0, let x ∈ B such that

0 < |x− a| < δ.
Since x ∈ B and B ⊂ A, then x ∈ A.
Since x ∈ A and 0 < |x− a| < δ, then |f(x)− L| < ε.
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Since x ∈ A and x ∈ B, then x ∈ A ∩B, so f(x) = g(x).
Hence, |g(x)− L| = |f(x)− L| < ε, so limx→a g(x) = L.
Therefore, the limit of g at a exists.

Proof. b. We assume that a is an accumulation point of A ∩B.
If this assumption holds, then if limx→a f(x) and limx→a g(x) exist, then

limx→a f(x) = limx→a g(x).
Suppose a is an accumulation point ofA∩B and limx→a f(x) and limx→a g(x)

exist.
Since limx→a f(x) exists, then there is a real number L such that limx→a f(x) =

L.
To prove limx→a g(x) = L, we must prove for every ε > 0, there exists δ > 0

such that |g(x)− L| < ε for all x ∈ N ′(a; δ) ∩B.
Let ε > 0 be given.
Since limx→a f(x) = L, then there exists δ > 0 such that |f(x)− L| < ε for

all x ∈ N ′(a; δ) ∩A.
Since a is an accumulation point of A ∩ B and δ > 0, then there exists

x ∈ A ∩B such that x ∈ N ′(a; δ).
Let x be an arbitrary element of A ∩B such that x ∈ N ′(a; δ).
Since x ∈ A ∩B, then x ∈ A and x ∈ B.
Since x ∈ N ′(a; δ) and x ∈ A, then x ∈ N ′(a; δ) ∩A, so |f(x)− L| < ε.
Since x ∈ A ∩B, then f(x) = g(x).
Since x ∈ N ′(a; δ) and x ∈ B, then x ∈ N ′(a; δ) ∩B.
Observe that |g(x)− L| = |f(x)− L| < ε.
Therefore, limx→a g(x) = L.

Proposition 44. Let a, b ∈ R with a < b.
Let f : [a, b]→ R be a monotonic increasing function.
Then limx→b f(x) = sup{f(x) : x ∈ [a, b], x < b}.

Proof. Let S = {f(x) : x ∈ [a, b], x < b}.
We first prove supS exists.
If x ∈ [a, b], then f(x) ∈ R since f is a real valued function.
Hence, S ⊂ R.
Since a ∈ [a, b] and a < b, then f(a) ∈ S, so S 6= ∅.
Let y ∈ S be arbitrary.
Then there exists x ∈ [a, b] with x < b such that f(x) = y.
Since f is monotonic increasing on [a, b] and x ∈ [a, b] and b ∈ [a, b] and

x < b, then f(x) ≤ f(b).
Hence, y ≤ f(b), so y ≤ f(b) for all y ∈ S.
Therefore, f(b) is an upper bound of S, so S is bounded above in R.
Since S ⊂ R and S 6= ∅ and S is bounded above in R, then by completeness

of R, supS exists.
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We next prove limx→b f(x) = supS.
Let ε > 0 be given.
Since supS − ε < supS, then supS − ε is not an upper bound of S, so there

exists s ∈ S such that s > supS − ε.
Since s ∈ S, then there exists c ∈ [a, b] with c < b such that f(c) = s.
Let δ = b− c.
Since b > c, then δ = b− c > 0, so δ > 0.
Let x ∈ [a, b] such that 0 < |x− b| < δ.
Since 0 < |x− b| < δ, then 0 < |x− b| and |x− b| < δ.
Since |x− b| > 0, then x− b 6= 0, so x 6= b.
Since x ∈ [a, b], then a ≤ x ≤ b, so x ≤ b.
Since x ≤ b and x 6= b, then x < b.
Since x ∈ [a, b] and x < b, then f(x) ∈ S.
Since supS is an upper bound of S, then f(x) ≤ supS.
Since f(x) ≤ supS and supS < supS + ε, then f(x) < supS + ε, so

f(x)− supS < ε.
Since δ = b− c, then c = b− δ.
Since x < b, then 0 < b− x = |b− x| = |x− b| < δ, so b− x < δ.
Thus, b− δ < x, so c < x.
Since f is monotonic increasing on [a, b] and c ∈ [a, b] and x ∈ [a, b] and

c < x, then s = f(c) ≤ f(x).
Since supS−ε < s and s ≤ f(x), then supS−ε < f(x), so −ε < f(x)−supS.
Since −ε < f(x)− supS and f(x)− supS < ε, then −ε < f(x)− supS < ε,

so |f(x)− supS| < ε, as desired.

Proposition 45. Let I ⊂ R be an interval.
Let f : I → R be a function such that f is (monotonic) increasing on I.
Let a be an interior point of I.
Then limx→a+ f(x) = inf{f(x) : x ∈ I, x > a}.

Proof. Let S = {f(x) : x ∈ I, x > a}.
We first prove S 6= ∅.
Since a is an interior point of I, then I is not empty, so there exists δ > 0

such that N(a; δ) ⊂ I.
Since |(a+ δ

2 )− a| = δ
2 < δ, then a+ δ

2 ∈ N(a; δ).

Since N(a; δ) ⊂ I, then a+ δ
2 ∈ I, so f(a+ δ

2 ) exists.

Since a+ δ
2 > a, then f(a+ δ

2 ) ∈ S, so S 6= ∅.

We next prove S is bounded below in R.
Since S 6= ∅, let x ∈ I such that x > a.
Then f(x) ∈ S.
Since a < x and f is increasing, then f(a) ≤ f(x).
Hence, f(a) ≤ f(x) for every f(x) ∈ S, so f(a) is a lower bound of S.
Thus, S is bounded below in R.
Since S 6= ∅ and S is bounded below in R, then inf S exists.
Hence, there exists L ∈ R such that L = inf S.
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To prove limx→a+ f(x) = L, let ε > 0 be given.
Since L is a lower bound of S, then L+ ε is not a lower bound of S, so there

exists f(b) ∈ S such that f(b) < L+ ε.
Thus, f(b)− L < ε.
Since f(b) ∈ S, then b ∈ I and b > a.
Let δ = b− a.
Since b− a > 0, then δ > 0.
Let x ∈ I such that 0 < x− a < δ.
Then 0 < x− a < b− a, so 0 < x− a and x− a < b− a.
Since 0 < x− a, then a < x.
Since x− a < b− a, then x < b.
Since f is increasing, then f(x) ≤ f(b), so f(x)− L ≤ f(b)− L < ε.
Hence, f(x)− L < ε.
Since x ∈ I and x > a, then f(x) ∈ S.
Since L is a lower bound of S, then L ≤ f(x), so f(x)− L ≥ 0.
Therefore, 0 ≤ f(x)− L < ε, so |f(x)− L| < ε, as desired.
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