Limits of real valued functions Exercises

Jason Sass

June 29, 2021

Limit of a real valued function

Exercise 1. Given $\lim _{x \rightarrow 2}\left(x^{2}-3\right)=1$ and $\epsilon=0.01$, find $\delta>0$ that satisfies the definition of limit of a function.

Solution. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x^{2}-3$.
Observe that 2 is an accumulation point of the set \mathbb{R}, the domain of f.
Since $\lim _{x \rightarrow 2} f(x)=1$ and $\epsilon=0.01$, we must find $\delta>0$ so that for all $x \in \mathbb{R}$, if $0<|x-2|<\delta$, then $|f(x)-1|<0.01$.

Let $\delta=\frac{0.01}{5}$.
Then $0<\delta=0.002<1$, so $0<\delta$ and $\delta<1$.
Let $x \in \mathbb{R}$ such that $0<|x-2|<\delta$.
Since $0<|x-2|<\delta$, then $0<|x-2|$ and $|x-2|<\delta$.
Since $|x-2|<\delta$ and $\delta<1$, then $|x-2|<1$, so $-1<x-2<1$.
Hence, $3<x+2<5$.
Since $0<3<x+2<5$, then $0<x+2=|x+2|<5$, so $0<|x+2|<5$.
Thus,

$$
\begin{aligned}
|f(x)-1| & =\left|\left(x^{2}-3\right)-1\right| \\
& =\left|x^{2}-4\right| \\
& =|(x-2)(x+2)| \\
& =|x-2||x+2| \\
& <5 \delta \\
& =0.01
\end{aligned}
$$

Therefore, $|f(x)-1|<0.01$.
Exercise 2. Show that $\lim _{x \rightarrow-2} \frac{x^{2}-4}{x+2}=-4$.
Solution. Let $f:(-2,0) \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{x^{2}-4}{x+2}$ for all $x \in(-2,0)$.

Observe that -2 is an accumulation point of the interval $(-2,0)$, the domain of f.

We prove $\lim _{x \rightarrow-2} f(x)=-4$.
Let $\epsilon>0$ be given.
Let $\delta=\epsilon$.
Then $\delta>0$.
Let $x \in(-2,0)$ such that $0<|x+2|<\delta$.
Since $0<|x+2|<\delta$, then $0<|x+2|$ and $|x+2|<\delta$.
Since $|x+2|>0$, then $x+2 \neq 0$.
Thus,

$$
\begin{aligned}
|f(x)+4| & =\left|\frac{x^{2}-4}{x+2}+4\right| \\
& =\left|\frac{(x-2)(x+2)}{x+2}+4\right| \\
& =|(x-2)+4| \\
& =|x+2| \\
& <\delta \\
& =\epsilon
\end{aligned}
$$

Therefore, $|f(x)+4|<\epsilon$, as desired.
Exercise 3. Show that $\lim _{x \rightarrow 2}(3 x-2)=4$.
Solution. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=3 x-2$ for all $x \in \mathbb{R}$.
Since every real number is an accumulation point of \mathbb{R}, then 2 is an accumulation point of \mathbb{R}.

We prove $\lim _{x \rightarrow 2} f(x)=4$.
Let $\epsilon>0$ be given.
Let $\delta=\frac{\epsilon}{3}$.
Then $\delta>0$.
Let $x \in \mathbb{R}$ such that $0<|x-2|<\delta$.
Then $|x-2|<\delta$.
Thus,

$$
\begin{aligned}
|f(x)-4| & =|(3 x-2)-4| \\
& =|3 x-6| \\
& =3|x-2| \\
& <3 \delta \\
& =3 \cdot \frac{\epsilon}{3} \\
& =\epsilon
\end{aligned}
$$

Therefore, $|f(x)-4|<\epsilon$, as desired.
Exercise 4. Show that $\lim _{x \rightarrow 2}\left(x^{2}+4 x\right)=12$.

Solution. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=x^{2}+4 x$ for all $x \in \mathbb{R}$.
Since every real number is an accumulation point of \mathbb{R}, then 2 is an accumulation point of \mathbb{R}.

We prove $\lim _{x \rightarrow 2} f(x)=12$.
Let $\epsilon>0$ be given.
Let $\delta=\min \left\{1, \frac{\epsilon}{9}\right\}$.
Then $\delta \leq 1$ and $\delta \leq \frac{\epsilon}{9}$ and $\delta>0$.
Let $x \in \mathbb{R}$ such that $0<|x-2|<\delta$.
Observe that

$$
\begin{aligned}
|x+6| & =|(x-2)+8| \\
& \leq|x-2|+8 \\
& <\delta+8 \\
& \leq 9
\end{aligned}
$$

Hence, $0 \leq|x+6|<9$.
Thus,

$$
\begin{aligned}
|f(x)-12| & =\left|\left(x^{2}+4 x\right)-12\right| \\
& =|(x-2)(x+6)| \\
& =|x-2||x+6| \\
& <\delta(9) \\
& \leq \frac{\epsilon}{9} \cdot 9 \\
& =\epsilon .
\end{aligned}
$$

Therefore, $|f(x)-12|<\epsilon$, as desired.
Exercise 5. Show that $\lim _{x \rightarrow 3} \frac{2 x+3}{4 x-9}=3$.
Solution. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{2 x+3}{4 x-9}$ for all $x \neq \frac{9}{4}$.
Observe that 3 is an accumulation point of $\left\{x \in \mathbb{R}: x \neq \frac{9}{4}\right\}$, the domain of f.

We prove $\lim _{x \rightarrow 3} f(x)=3$.
Let $\epsilon>0$ be given.
Let $\delta=\min \left\{\frac{1}{2}, \frac{\epsilon}{10}\right\}$.
Then $\delta \leq \frac{1}{2}$ and $\delta \leq \frac{\epsilon}{10}$ and $\delta>0$.
Let $x \in \mathbb{R}$ such that $x \neq \frac{9}{4}$ and $0<|x-3|<\delta$.
Then $0<|x-3|<\delta \leq \frac{1}{2}$, so $0<|x-3|<\frac{1}{2}$.
Hence, $\frac{-1}{2}<x-3<\frac{1}{2}$, so $\frac{-1}{2}<x-3$.
Thus, $\frac{5}{2}<x$.
Observe that

$$
\begin{aligned}
\frac{5}{2}<x & \Leftrightarrow 0<10<4 x \\
& \Leftrightarrow 0<1<4 x-9 \\
& \Leftrightarrow 0<\frac{1}{4 x-9}<1
\end{aligned}
$$

Hence, $0<\frac{1}{4 x-9}<1$.
Thus,

$$
\begin{aligned}
|f(x)-3| & =\left|\frac{2 x+3}{4 x-9}-3\right| \\
& =\left|\frac{-10 x+30}{4 x-9}\right| \\
& =\left|\frac{-10(x-3)}{4 x-9}\right| \\
& =10|x-3|\left|\frac{1}{4 x-9}\right| \\
& =10|x-3| \frac{1}{4 x-9} \\
& <10 \delta \\
& \leq 10 \cdot \frac{\epsilon}{10} \\
& =\epsilon .
\end{aligned}
$$

Therefore, $|f(x)-3|<\epsilon$, as desired.
Exercise 6. Show that $\lim _{x \rightarrow 6} \frac{x^{2}-3 x}{x+3}=2$.
Solution. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{x^{2}-3 x}{x+3}$ for all $x \neq-3$.
Observe that 6 is an accumulation point of the set $\{x \in \mathbb{R}: x \neq-3\}$, the domain of f.

We prove $\lim _{x \rightarrow 6} f(x)=2$.
Let $\epsilon>0$ be given.
Let $\delta=\min \{1, \epsilon\}$.
Then $\delta \leq 1$ and $\delta \leq \epsilon$ and $\delta>0$.
Let $x \in \mathbb{R}$ such that $x \neq-3$ and $0<|x-6|<\delta$.
Then $0<|x-6|<\delta \leq 1$, so $0<|x-6|<1$.
Hence, $-1<x-6<1$, so $5<x<7$.
Since $5<x<7$, then $0<6<x+1<8$, so $0<x+1<8$.
Since $5<x$, then $0<8<x+3$, so $0<\frac{1}{x+3}<\frac{1}{8}$.
Thus,

$$
\begin{aligned}
|f(x)-2| & =\left|\frac{x^{2}-3 x}{x+3}-2\right| \\
& =\left|\frac{x^{2}-5 x-6}{x+3}\right| \\
& =\left|\frac{(x-6)(x+1)}{x+3}\right| \\
& =|x-6| \cdot(x+1) \cdot \frac{1}{x+3} \\
& <\delta \\
& \leq \epsilon
\end{aligned}
$$

Therefore, $|f(x)-2|<\epsilon$, as desired.
Exercise 7. Let $f:(0,1) \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{x^{3}-x^{2}+x-1}{x-1}$.
Then $\lim _{x \rightarrow 1} \frac{x^{3}-x^{2}+x-1}{x-1}=2$.
Solution. Observe that 1 is an accumulation point of the interval $(0,1)$, the domain of f.

We prove $\lim _{x \rightarrow 1} f(x)=2$.
Let $\epsilon>0$ be given.
Let $\delta=\frac{\epsilon}{2}$.
Then $\delta>0$.
Let $x \in(0,1)$ such that $0<|x-1|<\delta$.
Since $x \in(0,1)$, then $0<x<1$, so $0<1<x+1<2$.
Hence, $|x+1|=x+1<2$, so $|x+1|<2$.
Thus,

$$
\begin{aligned}
|f(x)-2| & =\left|\frac{x^{3}-x^{2}+x-1}{x-1}-2\right| \\
& =\left|\frac{x^{2}(x-1)+(x-1)}{x-1}-2\right| \\
& =\left|\frac{(x-1)\left(x^{2}+1\right)}{x-1}-2\right| \\
& =\left|\left(x^{2}+1\right)-2\right| \\
& =\left|x^{2}-1\right| \\
& =|(x-1)(x+1)| \\
& =|(x-1)||x+1| \\
& <2 \delta \\
& =\epsilon .
\end{aligned}
$$

Therefore, $|f(x)-2|<\epsilon$, as desired.
Exercise 8. Show that $\lim _{x \rightarrow 4} \sqrt{x}=2$.
Solution. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\sqrt{x}$ for all $x \geq 0$.
Observe that 4 is an accumulation point of the set $\{x \in \mathbb{R}: x \geq 0\}=[0, \infty)$, the domain of f.

We prove $\lim _{x \rightarrow 4} \sqrt{x}=2$.
Let $\epsilon>0$ be given.
Let $\delta=\min \{1,2 \epsilon\}$.
Then $\delta \leq 1$ and $\delta \leq 2 \epsilon$ and $\delta>0$.
Let $x \in \mathbb{R}$ such that $0<|x-4|<\delta$.
Since $|x-4|<\delta$, then $-\delta<x-4<\delta$, so $-\delta<x-4$.
Hence, $4-\delta<x$.
Since $\delta \leq 1<4$, then $\delta<4$, so $0<4-\delta$.
Thus, $0<4-\delta<x$.

Observe that

$$
\begin{aligned}
0<4-\delta<x & \Leftrightarrow 0<\sqrt{4-\delta}<\sqrt{x} \\
& \Leftrightarrow 0<2<\sqrt{4-\delta}+2<\sqrt{x}+2 \\
& \Leftrightarrow 0<2<\sqrt{x}+2 \\
& \Leftrightarrow 0<\frac{1}{\sqrt{x}+2}<\frac{1}{2}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
|\sqrt{x}-2| & =\left|(\sqrt{x}-2) \cdot \frac{\sqrt{x}+2}{\sqrt{x}+2}\right| \\
& =\left|\frac{x-4}{\sqrt{x}+2}\right| \\
& =|x-4| \cdot \frac{1}{\sqrt{x}+2} \\
& <\delta \cdot \frac{1}{2} \\
& \leq 2 \epsilon \cdot \frac{1}{2} \\
& =\epsilon .
\end{aligned}
$$

Therefore, $|\sqrt{x}-2|<\epsilon$, as desired.
Exercise 9. Show that $\lim _{x \rightarrow 0} \sqrt[3]{x}=0$.
Solution. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\sqrt[3]{x}$.
Observe that 0 is an accumulation point of the set \mathbb{R}, the domain of f.
We prove $\lim _{x \rightarrow 0} \sqrt[3]{x}=0$.
Let $\epsilon>0$ be given.
Let $\delta=\epsilon^{3}$.
Then $\delta>0$.
Let $x \in \mathbb{R}$ such that $0<|x|<\delta$.
Then $0<|x|<\epsilon^{3}$, so $0<|x|^{\frac{1}{3}}<\left(\epsilon^{3}\right)^{\frac{1}{3}}$.
Thus, $0<|x|^{\frac{1}{3}}<\epsilon$, so $0<\left|x^{\frac{1}{3}}\right|<\epsilon$.
Hence, $\left|x^{\frac{1}{3}}\right|<\epsilon$, so $|\sqrt[3]{x}|<\epsilon$, as desired.
Exercise 10. Show that $\lim _{x \rightarrow \frac{1}{2}} \frac{1}{x}=2$.
Proof. Let $f: \mathbb{R}^{*} \rightarrow \mathbb{R}$ be the function defined by $f(x)=\frac{1}{x}$ for all $x \in \mathbb{R}^{*}$.
Observe that $\frac{1}{2}$ is an accumulation point of \mathbb{R}^{*}, the domain of f.
Let $\epsilon>0$ be given.
Let $\delta=\min \left\{\frac{1}{4}, \frac{\epsilon}{8}\right\}$.
Then $\delta \leq \frac{1}{4}$ and $\delta \leq \frac{\epsilon}{8}$ and $\delta>0$.
Let $x \in \mathbb{R}^{*}$ such that $0<\left|x-\frac{1}{2}\right|<\delta$.
Since $x \in \mathbb{R}^{*}$, then $x \neq 0$, so $|x|>0$.

Since $0<\left|x-\frac{1}{2}\right|<\delta \leq \frac{1}{4}$, then $0<\left|x-\frac{1}{2}\right|<\frac{1}{4}$, so $\frac{1}{4}>\left|x-\frac{1}{2}\right| \geq \frac{1}{2}-|x|$. Hence, $\frac{1}{4}>\frac{1}{2}-|x|$, so $|x|>\frac{1}{4}$.
Thus, $4>\frac{1}{|x|}>0$, so $0<\frac{1}{|x|}<4$.
Observe that

$$
\begin{aligned}
|f(x)-2| & =\left|\frac{1}{x}-2\right| \\
& =\left|2-\frac{1}{x}\right| \\
& =\left|\frac{2}{x}\left(x-\frac{1}{2}\right)\right| \\
& =\left|\frac{2}{x}\right| \cdot\left|x-\frac{1}{2}\right| \\
& =2 \cdot\left|\frac{1}{x}\right| \cdot\left|x-\frac{1}{2}\right| \\
& =2 \cdot \frac{1}{|x|} \cdot\left|x-\frac{1}{2}\right| \\
& <8 \cdot\left|x-\frac{1}{2}\right| \\
& <8 \delta \\
& \leq 8 \cdot \frac{\epsilon}{8} \\
& =\epsilon .
\end{aligned}
$$

Therefore, $|f(x)-2|<\epsilon$.
Exercise 11. Show that $\lim _{x \rightarrow 2} \frac{1}{1-x}=-1$.
Proof. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=\frac{1}{1-x}$ for all $x \neq 1$.
Observe that 2 is an accumulation point of the set $\{x \in \mathbb{R}: x \neq 1\}$, the domain of f.

Let $\epsilon>0$ be given.
Let $\delta=\min \left\{\frac{1}{2}, \frac{\epsilon}{2}\right\}$.
Then $\delta \leq \frac{1}{2}$ and $\delta \leq \frac{\epsilon}{2}$ and $\delta>0$.
Let $x \in \mathbb{R}$ such that $x \neq 1$ and $0<|x-2|<\delta$.
Since $0<|x-2|<\delta \leq \frac{1}{2}$, then $0<|x-2|<\frac{1}{2}$.
Hence, $\frac{1}{2}>|x-2| \geq 2-|x|$, so $\frac{1}{2}>2-|x|$.
Thus, $|x|>\frac{3}{2}$.
Hence, $|x-1| \geq|x|-1>\frac{1}{2}$, so $|x-1|>\frac{1}{2}>0$.
Thus, $2>\left|\frac{1}{x-1}\right|>0$, so $0<\left|\frac{1}{x-1}\right|<2$.

Observe that

$$
\begin{aligned}
|f(x)-(-1)| & =\left|\frac{1}{1-x}+1\right| \\
& =\left|\frac{2-x}{1-x}\right| \\
& =\frac{|2-x|}{|1-x|} \\
& =\frac{|x-2|}{|x-1|} \\
& =|x-2| \cdot\left|\frac{1}{x-1}\right| \\
& <2 \delta \\
& \leq 2 \cdot \frac{\epsilon}{2} \\
& =\epsilon .
\end{aligned}
$$

Therefore, $|f(x)-(-1)|<\epsilon$.
Exercise 12. Show that $\lim _{x \rightarrow 1} \frac{x}{1+x}=\frac{1}{2}$.
Proof. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=\frac{x}{1+x}$ for all $x \neq-1$.
Observe that 1 is an accumulation point of the set $\{x \in \mathbb{R}: x \neq-1\}$, the domain of f.

Let $\epsilon>0$ be given.
Let $\delta=\min \{1,2 \epsilon\}$.
Then $\delta \leq 1$ and $\delta \leq 2 \epsilon$ and $\delta>0$.
Let $x \in \mathbb{R}$ such that $x \neq-1$ and $0<|x-1|<\delta$.
Since $0<|x-1|<\delta \leq 1$, then $0<|x-1|<1$.
Thus, $-1<x-1<1$, so $-1<x-1$.
Hence, $0<x$, so $0<1<x+1$.
Thus, $0<\frac{1}{x+1}<1$.
Observe that

$$
\begin{aligned}
\left|f(x)-\frac{1}{2}\right| & =\left|\frac{x}{1+x}-\frac{1}{2}\right| \\
& =\left|\frac{x-1}{2(1+x)}\right| \\
& =\frac{1}{2} \cdot|x-1| \cdot\left|\frac{1}{x+1}\right| \\
& <\frac{1}{2} \delta \\
& \leq \frac{1}{2} \cdot 2 \epsilon \\
& =\epsilon
\end{aligned}
$$

Therefore, $\left|f(x)-\frac{1}{2}\right|<\epsilon$.

Exercise 13. Show that $\lim _{x \rightarrow-1} \frac{x+5}{2 x+3}=4$.
Solution. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{x+5}{2 x+3}$ for all $x \neq \frac{-3}{2}$.
Observe that -1 is an accumulation point of $\left\{x \in \mathbb{R}: x \neq \frac{-3}{2}\right\}$, the domain of f.

We prove $\lim _{x \rightarrow-1} f(x)=4$.
Let $\epsilon>0$ be given.
Let $\delta=\min \left\{\frac{1}{4}, \frac{\epsilon}{14}\right\}$.
Then $\delta \leq \frac{1}{4}$ and $\delta \leq \frac{\epsilon}{14}$ and $\delta>0$.
Let $x \in \mathbb{R}$ such that $x \neq \frac{-3}{2}$ and $0<|x-(-1)|<\delta$.
Then $0<|x+1|<\delta \leq \frac{1}{4}$, so $0<|x+1|<\frac{1}{4}$.
Hence, $\frac{-1}{4}<x+1<\frac{1}{4}$, so $\frac{-1}{4}<x+1$.
Thus, $\frac{-5}{4}<x$.
Observe that

$$
\begin{aligned}
\frac{-5}{4}<x & \Leftrightarrow \quad \frac{-5}{2}<2 x \\
& \Leftrightarrow 0<\frac{1}{2}<2 x+3 \\
& \Leftrightarrow \quad 0<\frac{1}{2 x+3}<2
\end{aligned}
$$

Hence, $0<\frac{1}{2 x+3}<2$.
Thus,

$$
\begin{aligned}
|f(x)-4| & =\left|\frac{x+5}{2 x+3}-4\right| \\
& =\left|\frac{-7 x-7}{2 x+3}\right| \\
& =7|x+1|\left|\frac{1}{2 x+3}\right| \\
& =7|x+1| \frac{1}{2 x+3} \\
& <14 \delta \\
& \leq 14 \cdot \frac{\epsilon}{14} \\
& =\epsilon
\end{aligned}
$$

Therefore, $|f(x)-4|<\epsilon$, as desired.
Exercise 14. Show that $\lim _{x \rightarrow-2} \frac{2 x^{2}+3 x-2}{x+2}=-5$.
Solution. Let $f: \mathbb{R}-\{-2\} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{2 x^{2}+3 x-2}{x+2}$ for all $x \neq-2$.

Observe that -2 is an accumulation point of the set $\{x \in \mathbb{R}: x \neq-2\}$, the domain of f.

We prove $\lim _{x \rightarrow-2} f(x)=-5$.

Let $\epsilon>0$ be given.
Let $\delta=\frac{\epsilon}{2}$.
Then $\delta>0$.
Let $x \in \mathbb{R}-\{-2\}$ such that $0<|x+2|<\delta$.
Since $0<|x+2|<\delta$, then $0<|x+2|$ and $|x+2|<\delta$.
Since $|x+2|>0$, then $x+2 \neq 0$.
Observe that

$$
\begin{aligned}
|f(x)+5| & =\left|\frac{2 x^{2}+3 x-2}{x+2}+5\right| \\
& =\left|\frac{(2 x-1)(x+2)}{x+2}+5\right| \\
& =|(2 x-1)+5| \\
& =|2 x+4| \\
& =|2(x+2)| \\
& =2|x+2| \\
& <2 \delta \\
& =\epsilon .
\end{aligned}
$$

Therefore, $|f(x)+5|<\epsilon$, as desired.
Exercise 15. Show that $\lim _{x \rightarrow 1} \frac{x^{2}-x+1}{x+1}=\frac{1}{2}$.
Solution. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{x^{2}-x+1}{x+1}$ for all $x \neq-1$.

Observe that 1 is an accumulation point of the set $\{x \in \mathbb{R}: x \neq-1\}$, the domain of f.

We prove $\lim _{x \rightarrow 1} f(x)=\frac{1}{2}$.
Let $\epsilon>0$ be given.
Let $\delta=\min \left\{\frac{1}{2}, \frac{3 \epsilon}{2}\right\}$.
Then $\delta \leq \frac{1}{2}$ and $\delta \leq \frac{3 \epsilon}{2}$ and $\delta>0$.
Let $x \in \mathbb{R}$ such that $x \neq-1$ and $0<|x-1|<\delta$.
Then $0<|x-1|<\delta \leq \frac{1}{2}$, so $0<|x-1|<\frac{1}{2}$.
Hence, $\frac{-1}{2}<x-1<\frac{1}{2}$, so $\frac{-1}{2}<x-1$.
Thus, $\frac{1}{2}<x$, so $0<\frac{3}{2}<x+1$.
Therefore, $0<\frac{1}{x+1}<\frac{2}{3}$.
Since $|x-1|<\frac{1}{2}$, then $|2 x-1|=|2(x-1)+1| \leq 2|x-1|+1<2 \cdot \frac{1}{2}+1=2$, so $0 \leq|2 x-1|<2$.

Observe that

$$
\begin{aligned}
\left|f(x)-\frac{1}{2}\right| & =\left|\frac{x^{2}-x+1}{x+1}-\frac{1}{2}\right| \\
& =\left|\frac{2 x^{2}-3 x+1}{2(x+1)}\right| \\
& =\left|\frac{(x-1)(2 x-1)}{2(x+1)}\right| \\
& =\frac{1}{2}|x-1||2 x-1| \cdot \frac{1}{x+1} \\
& <\frac{1}{2} \delta \cdot 2 \cdot \frac{2}{3} \\
& =\frac{2}{3} \cdot \delta \\
& \leq \frac{2}{3} \cdot \frac{3 \epsilon}{2} \\
& =\epsilon .
\end{aligned}
$$

Therefore, $\left|f(x)-\frac{1}{2}\right|<\epsilon$, as desired.
Exercise 16. Show that $\lim _{x \rightarrow 2} \frac{x^{3}-4}{x^{2}+1}=\frac{4}{5}$.
Proof. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=\frac{x^{3}-4}{x^{2}+1}$ for all $x \in \mathbb{R}$.
Observe that 2 is an accumulation point of \mathbb{R}, the domain of f.
Let $\epsilon>0$ be given.
Let $\delta=\min \left\{1, \frac{2 \epsilon}{15}\right\}$.
Then $\delta \leq 1$ and $\delta \leq \frac{2 \epsilon}{15}$ and $\delta>0$.
Let $x \in \mathbb{R}$ such that $0<|x-2|<\delta$.
Since $|x-2|<\delta$ and $\delta \leq 1$, then $|x-2|<1$, so $-1<x-2<1$.
Hence, $1<x<3$.
Since $1<x$, then $1<x^{2}$, so $0<2<x^{2}+1$.
Thus, $0<\frac{1}{x^{2}+1}<\frac{1}{2}$.
Since $|x|=|(x-2)+2| \leq|x-2|+2<\delta+2 \leq 3$, then $|x|<3$.
Since

$$
\begin{aligned}
\left|5 x^{2}+6 x+12\right| & \leq\left|5 x^{2}+6 x\right|+12 \\
& \leq\left|5 x^{2}\right|+|6 x|+12 \\
& =5|x|^{2}+6|x|+12 \\
& <5(3)^{2}+6(3)+12 \\
& =75
\end{aligned}
$$

then $\left|5 x^{2}+6 x+12\right|<75$.

Hence,

$$
\begin{aligned}
\left|\frac{x^{3}-4}{x^{2}+1}-\frac{4}{5}\right| & =\left|\frac{5 x^{3}-4 x^{2}-24}{5\left(x^{2}+1\right)}\right| \\
& =\left|\frac{(x-2)\left(5 x^{2}+6 x+12\right)}{5\left(x^{2}+1\right)}\right| \\
& =\frac{|x-2|}{5} \cdot\left|5 x^{2}+6 x+12\right| \cdot \frac{1}{x^{2}+1} \\
& <\frac{\delta}{5} \cdot \frac{75}{2} \\
& =\delta \cdot \frac{15}{2} \\
& \leq \frac{2 \epsilon}{15} \cdot \frac{15}{2}
\end{aligned}
$$

Therefore, $\left|\frac{x^{3}-4}{x^{2}+1}-\frac{4}{5}\right|<\epsilon$.
Exercise 17. Show that $\lim _{x \rightarrow 0} \frac{x^{2}}{|x|}=0$.
Solution. Let $f: \mathbb{R}^{*} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{x^{2}}{|x|}$ for all $x \neq 0$.
Let $x \in \mathbb{R}^{*}$.
Then $x \neq 0$, so either $x>0$ or $x<0$.
If $x>0$, then $f(x)=\frac{x^{2}}{|x|}=\frac{x^{2}}{x}=x$.
If $x<0$, then $f(x)=\frac{x^{2}}{|x|}=\frac{x^{2}}{-x}=-x$.
Thus,

$$
f(x)= \begin{cases}x & \text { if } x>0 \\ -x & \text { if } x<0\end{cases}
$$

Observe that 0 is an accumulation point of $\mathbb{R}^{*}=\{x \in \mathbb{R}: x \neq 0\}$, the domain of f.

We prove $\lim _{x \rightarrow 0} f(x)=0$.
Let $\epsilon>0$ be given.
Let $\delta=\epsilon$.
Then $\delta>0$.
Let $x \in \mathbb{R}$ such that $0<|x|<\delta$.
Then $0<|x|$ and $|x|<\delta$.
Thus, $|f(x)|=\left|\frac{x^{2}}{|x|}\right|=\frac{\left|x^{2}\right|}{|x| \mid}=\frac{|x|^{2}}{|x|}=|x|<\delta=\epsilon$.
Therefore, $|f(x)|<\epsilon$, as desired.
Exercise 18. Let $f: \mathbb{Q} \rightarrow \mathbb{R}$ be a function defined by $f(x)=x^{2}$ for all $x \in \mathbb{Q}$. Then $\lim _{x \rightarrow \sqrt{2}} f(x)=2$.

Solution.

Since every real number is an accumulation point of \mathbb{Q}, then $\sqrt{2}$ is an accumulation point of \mathbb{Q}, the domain of f.

We prove $\lim _{x \rightarrow \sqrt{2}} f(x)=2$.
Let $\epsilon>0$ be given.
Let $\delta=\min \left\{1, \frac{\epsilon}{1+2 \sqrt{2}}\right\}$.
Then $\delta \leq 1$ and $\delta \leq \frac{\epsilon}{1+2 \sqrt{2}}$ and $\delta>0$.
Let $x \in \mathbb{Q}$ such that $0<|x-\sqrt{2}|<\delta$.
Then

$$
\begin{aligned}
|x+\sqrt{2}| & =|(x-\sqrt{2})+2 \sqrt{2}| \\
& \leq|x-\sqrt{2}|+2 \sqrt{2} \\
& <\delta+2 \sqrt{2} \\
& \leq 1+2 \sqrt{2} .
\end{aligned}
$$

Thus, $0 \leq|x+\sqrt{2}|<1+2 \sqrt{2}$.
Hence,

$$
\begin{aligned}
|f(x)-2| & =\left|x^{2}-2\right| \\
& =|(x-\sqrt{2})(x+\sqrt{2})| \\
& =|x-\sqrt{2}||x+\sqrt{2}| \\
& <\delta(1+2 \sqrt{2}) \\
& \leq \frac{\epsilon}{1+2 \sqrt{2}} \cdot(1+2 \sqrt{2}) \\
& =\epsilon .
\end{aligned}
$$

Therefore, $|f(x)-2|<\epsilon$, as desired.
Exercise 19. Show that $\lim _{x \rightarrow a}(-12 x+4)=-12 a+4$ using the sequential characterization of a limit.

Solution. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=-12 x+4$ for all $x \in \mathbb{R}$.

Observe that $a \in \mathbb{R}$ is an accumulation point of \mathbb{R}, the domain of f.
Let $\left(x_{n}\right)$ be an arbitrary sequence of points in $\mathbb{R}-\{a\}$ such that $\lim _{n \rightarrow \infty} x_{n}=$ a.

To prove $\lim _{x \rightarrow a}(-12 x+4)=-12 a+4$, we must prove $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=$ $-12 a+4$.

Observe that

$$
\begin{aligned}
-12 a+4 & =-12\left(\lim _{n \rightarrow \infty} x_{n}\right)+4 \\
& =\lim _{n \rightarrow \infty}\left(-12 x_{n}\right)+4 \\
& =\lim _{n \rightarrow \infty}\left(-12 x_{n}\right)+\lim _{n \rightarrow \infty} 4 \\
& =\lim _{n \rightarrow \infty}\left(-12 x_{n}+4\right) \\
& =\lim _{n \rightarrow \infty} f\left(x_{n}\right) .
\end{aligned}
$$

Therefore, $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=-12 a+4$, as desired.
Exercise 20. Let m and b be fixed real numbers.
Then for every real number $a, \lim _{x \rightarrow a}(m x+b)=m a+b$.
Proof. Let a be an arbitrary real number.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the linear function defined by $f(x)=m x+b$.
Observe that a is an accumulation point of $\operatorname{dom} f=\mathbb{R}$.
We must prove $\lim _{x \rightarrow a}(m x+b)=m a+b$.
Either $m=0$ or $m \neq 0$.
We consider these cases separately.
Case 1: Suppose $m=0$.
Then $\lim _{x \rightarrow a}(m x+b)=\lim _{x \rightarrow a}(0 x+b)=\lim _{x \rightarrow a} b=b=0+b=0 a+b=$ $m a+b$.

Case 2: Suppose $m \neq 0$.
Let $\epsilon>0$ be given.
Let $\delta=\frac{\epsilon}{|m|}$.
Since $m \neq 0$, then $|m|>0$, so $\delta>0$.
Let $x \in \mathbb{R}$ such that $0<|x-a|<\delta$.
Then

$$
\begin{aligned}
|f(x)-(m a+b)| & =|(m x+b)-(m a+b)| \\
& =|m x+b-m a-b| \\
& =|m x-m a| \\
& =|m(x-a)| \\
& =|m||x-a| \\
& <|m| \delta \\
& =|m| \cdot \frac{\epsilon}{|m|} \\
& =\epsilon .
\end{aligned}
$$

Therefore, $|(m x+b)-(m a+b)|<\epsilon$, so $\lim _{x \rightarrow a}(m x+b)=m a+b$.
Proof. Let a be an arbitrary real number.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the linear function defined by $f(x)=m x+b$.
Observe that a is an accumulation point of $\operatorname{dom} f=\mathbb{R}$.

To prove $\lim _{x \rightarrow a}(m x+b)=m a+b$ using the sequential characterization of a limit, let $\left(x_{n}\right)$ be an arbitrary sequence of points in $\mathbb{R}-\{a\}$ such that $\lim _{n \rightarrow \infty} x_{n}=a$.

We must prove $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=m a+b$.
Observe that

$$
\begin{aligned}
m a+b & =m \lim _{n \rightarrow \infty} x_{n}+b \\
& =m \lim _{n \rightarrow \infty} x_{n}+\lim _{n \rightarrow \infty} b \\
& =\lim _{n \rightarrow \infty} m x_{n}+\lim _{n \rightarrow \infty} b \\
& =\lim _{n \rightarrow \infty}\left(m x_{n}+b\right) \\
& =\lim _{n \rightarrow \infty} f\left(x_{n}\right) .
\end{aligned}
$$

Therefore, $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=m a+b$, as desired.

Exercise 21. limit of the square function

Prove that for all $a \in \mathbb{R}, \lim _{x \rightarrow a} x^{2}=a^{2}$ using using the sequential characterization of a limit.

Proof. Let a be an arbitrary real number.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x^{2}$ for all $x \in \mathbb{R}$.
Since every real number is an accumulation point of \mathbb{R}, then a is an accumulation point of \mathbb{R}, the domain of f.

Since a is an accumulation point of \mathbb{R}, then there exists a sequence of points in $\mathbb{R}-\{a\}$ that converges to a.

To prove $\lim _{x \rightarrow a} x^{2}=a^{2}$ using the sequential characterization of a limit, let $\left(x_{n}\right)$ be an arbitrary sequence of points in $\mathbb{R}-\{a\}$ such that $\lim _{n \rightarrow \infty} x_{n}=a$.

We must prove $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=a^{2}$.
Observe that

$$
\begin{aligned}
a^{2} & =\left(\lim _{n \rightarrow \infty} x_{n}\right)\left(\lim _{n \rightarrow \infty} x_{n}\right) \\
& =\lim _{n \rightarrow \infty}\left(x_{n} x_{n}\right) \\
& =\lim _{n \rightarrow \infty}\left(x_{n}\right)^{2} \\
& =\lim _{n \rightarrow \infty} f\left(x_{n}\right)
\end{aligned}
$$

Therefore, $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=a^{2}$, as desired.
Exercise 22. Let $a>0$.
Let $I=(0, a)$.
Then for any $x, c \in I,\left|x^{2}-c^{2}\right| \leq 2 a|x-c|$ and $\lim _{x \rightarrow c} x^{2}=c^{2}$ for all $c \in I$.
Proof. Let $x, c \in I$.
Since $x \in I$, then $x \in(0, a)$, so $0<x<a$.
Since $c \in I$, then $c \in(0, a)$, so $0<c<a$.

Thus,

$$
\begin{aligned}
|x+c| & \leq|x|+|c| \\
& =x+c \\
& <a+a \\
& =2 a .
\end{aligned}
$$

Hence, $|x+c|<2 a$.
Since $|x-c| \geq 0$, then $|x+c||x-c| \leq 2 a|x-c|$, so $\left|x^{2}-c^{2}\right| \leq 2 a|x-c|$.
Let $f: I \rightarrow \mathbb{R}$ be the function defined by $f(x)=x^{2}$ for all $x \in I$.
We prove $\lim _{x \rightarrow c} x^{2}=c^{2}$ for all $c \in I$.
Let $c \in I$ be given.
Then $c \in(0, a)$, so c is an accumulation point of I.
Let $\epsilon>0$ be given.
Let $\delta=\frac{\epsilon}{2 a}$.
Since $\epsilon>0$ and $a>0$, then $\delta>0$.
Let $x \in I$ such that $0<|x-c|<\delta$.
Then

$$
\begin{aligned}
\left|x^{2}-c^{2}\right| & \leq 2 a|x-c| \\
& <2 a \delta \\
& =2 a \cdot \frac{\epsilon}{2 a} \\
& =\epsilon
\end{aligned}
$$

Therefore, $\left|x^{2}-c^{2}\right|<\epsilon$, as desired.
Exercise 23. limit of a square root equals square root of a limit
Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function such that $f(x) \geq 0$ for all $x \in E$.
If $\lim _{x \rightarrow a} f(x)$ exists, then $\lim _{x \rightarrow a} \sqrt{f(x)}=\sqrt{\lim _{x \rightarrow a} f(x)}$.
Proof. Suppose $\lim _{x \rightarrow a} f(x)$ exists.
Then there exists $L \in \mathbb{R}$ such that $\lim _{x \rightarrow a} f(x)=L$, so a is an accumulation point of E.

Let $g(x)=\sqrt{f(x)}$.
Then g is a function and $d o m g=\{x \in E: g(x) \in \mathbb{R}\}=\{x \in E: \sqrt{f(x)} \in$ $\mathbb{R}\}=\{x \in E: f(x) \geq 0\}$.

We must prove $\lim _{x \rightarrow a} g(x)=\sqrt{L}$.

We first prove a is an accumulation point of domg.
Let $\epsilon>0$ be given.
Since a is an accumulation point of E, then there exists $x \in E$ such that $x \in N^{\prime}(a ; \epsilon)$.

Since $x \in E$, then $f(x) \geq 0$.
Since $x \in E$ and $f(x) \geq 0$, then $x \in$ domg.
Since there exists $x \in d o m g$ such that $x \in N^{\prime}(a ; \epsilon)$, then a is an accumulation point of domg.

We next prove $\lim _{x \rightarrow a} g(x)=\sqrt{L}$.
Since a is an accumulation point of domg, then there exists a sequence in $d o m g-\{a\}$ that converges to a.

Let $\left(x_{n}\right)$ be an arbitrary sequence in $d o m g-\{a\}$ such that $\lim _{n \rightarrow \infty} x_{n}=a$.

Let $n \in \mathbb{N}$ be given.
Then $x_{n} \in d o m g-\{a\}$, so $x_{n} \in d o m g$ and $x_{n} \neq a$.
Since $x_{n} \in d o m g$ and $d o m g \subset E$, then $x_{n} \in E$, so $f\left(x_{n}\right) \geq 0$.
Since $x_{n} \in E$ and $x_{n} \neq a$, then $x_{n} \in E-\{a\}$.
Thus, $f\left(x_{n}\right) \geq 0$ and $x_{n} \in E-\{a\}$ for all $n \in \mathbb{N}$, so $f\left(x_{n}\right) \geq 0$ for all $n \in \mathbb{N}$ and $x_{n} \in E-\{a\}$ for all $n \in \mathbb{N}$.

Since $x_{n} \in E-\{a\}$ for all $n \in \mathbb{N}$, then $\left(x_{n}\right)$ is a sequence of points in $E-\{a\}$.
Since a is an accumulation point of E and $\lim _{x \rightarrow a} f(x)=L$ and $\left(x_{n}\right)$ is a sequence of points in $E-\{a\}$ and $\lim _{n \rightarrow \infty} x_{n}=a$, then by the sequential characterization of a function limit, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$, so $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ exists.

Since $f\left(x_{n}\right) \geq 0$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ exists, then by a previous proposition, $\lim _{n \rightarrow \infty} g\left(x_{n}\right)=\lim _{n \rightarrow \infty} \sqrt{f\left(x_{n}\right)}=\sqrt{\lim _{n \rightarrow \infty} f\left(x_{n}\right)}=\sqrt{L}$.

Since $\left(x_{n}\right)$ is an arbitrary sequence of points in domg $-\{a\}$ such that $\lim _{n \rightarrow \infty} x_{n}=a$ and $\lim _{n \rightarrow \infty} g\left(x_{n}\right)=\sqrt{L}$, then by the sequential characterization of a function limit, we have $\lim _{x \rightarrow a} g(x)=\sqrt{L}$, as desired.

Exercise 24. Let $I \subset \mathbb{R}$ be an interval with at least two elements.
Let $f: I \rightarrow \mathbb{R}$ be a function defined for all $x \in I$.
Let $a \in I$.
If there exist real numbers K, L such that $|f(x)-L| \leq K|x-a|$ for all $x \in I$, then $\lim _{x \rightarrow a} f(x)=L$.

Proof. Suppose there exist real numbers K, L such that $|f(x)-L| \leq K|x-a|$ for all $x \in I$.

Since I has at least two elements and $a \in I$, then a is an accumulation point of I, the domain of f.

Since $a \in I$ and I has at least two elements, then there exists at least one element of I that is distinct from a.

Hence, there exists $b \in I$ such that $b \neq a$.
Thus, $d(b, a)=|b-a|>0$.
Since $b \in I$, then $0 \leq|f(b)-L| \leq K|b-a|$, so $0 \leq K|b-a|$.
Since $|b-a|>0$, then $0 \leq K$, so $K \geq 0$.
Thus, either $K>0$ or $K=0$.
We consider these cases separately.
Case 1: Suppose $K=0$.
Let $\epsilon>0$ be given.
Let $\delta=\epsilon$.
Then $\delta>0$.

Since there is at least one element of I distinct from a, let $x \in I$ such that $0<|x-a|<\delta$.

Since $x \in I$, then

$$
\begin{aligned}
|f(x)-L| & \leq K|x-a| \\
& =0|x-a| \\
& =0 \\
& <\epsilon .
\end{aligned}
$$

Therefore, $|f(x)-L|<\epsilon$, so $\lim _{x \rightarrow a} f(x)=L$.
Case 2: Suppose $K>0$.
Let $\epsilon>0$ be given.
Let $\delta=\frac{\epsilon}{K}$.
Since $\epsilon>0$ and $K>0$, then $\delta>0$.
Since there is at least one element of I distinct from a, let $x \in I$ such that $0<|x-a|<\delta$.

Then $|x-a|<\delta$.
Since $x \in I$, then

$$
\begin{aligned}
|f(x)-L| & \leq K|x-a| \\
& <K \delta \\
& =\epsilon .
\end{aligned}
$$

Therefore, $|f(x)-L|<\epsilon$, so $\lim _{x \rightarrow a} f(x)=L$.
Thus, in all cases, $\lim _{x \rightarrow a} f(x)=L$, as desired.
Exercise 25. Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{1}{x^{2}}$ for all $x>0$.
Then $\lim _{x \rightarrow 0} f(x)$ does not exist in \mathbb{R}.

Solution.

Observe that 0 is an accumulation point of $\mathbb{R}^{+}=(0, \infty)$, the domain of f.
We prove there is no real L such that $\lim _{x \rightarrow 0} f(x)=L$.
Observe that

$$
\begin{aligned}
\neg(\exists L \in \mathbb{R})\left(\lim _{x \rightarrow 0} f(x)=L\right) & \Leftrightarrow \\
\neg(\exists L \in \mathbb{R})(\forall \epsilon>0)(\exists \delta>0)(\forall x>0)(0<|x|<\delta \rightarrow|f(x)-L|<\epsilon) & \Leftrightarrow \\
(\forall L \in \mathbb{R})(\exists \epsilon>0)(\forall \delta>0)(\exists x>0)(0<|x|<\delta \wedge|f(x)-L| \geq \epsilon) . &
\end{aligned}
$$

Thus, we prove $(\forall L \in \mathbb{R})(\exists \epsilon>0)(\forall \delta>0)(\exists x>0)(0<|x|<\delta \wedge|f(x)-L| \geq$ ϵ).

Let L be an arbitrary real number.
Let $\epsilon=\max \{0,-L\}+1$.
Then $\epsilon-1=\max \{0,-L\}$, so $\epsilon-1 \geq 0$ and $\epsilon-1 \geq-L$.

Since $\epsilon-1 \geq 0$, then $\epsilon \geq 1>0$, so $\epsilon>0$.
Since $\epsilon-1 \geq-L$, then $L+\epsilon \geq 1>0$, so $L+\epsilon>0$.
Hence, $\frac{1}{L+\epsilon}>0$, so $\frac{1}{\sqrt{L+\epsilon}}>0$.
Let $\delta>0$ be given.
We must prove there exists $x>0$ such that $0<|x|<\delta$ and $|f(x)-L| \geq \epsilon$.
Let $x=\min \left\{\frac{\delta}{2}, \frac{1}{\sqrt{L+\epsilon}}\right\}$.
Then $x \leq \frac{\delta}{2}$ and $x \leq \frac{1}{\sqrt{L+\epsilon}}$ and $x>0$.
Since $0<|x|=x \leq \frac{\delta}{2}<\delta$, then $0<|x|<\delta$.
Since $0<x \leq \frac{1}{\sqrt{L+\epsilon}}$, then $0<x^{2} \leq \frac{1}{L+\epsilon}$, so $0<L+\epsilon \leq \frac{1}{x^{2}}$.
Hence, $0<\epsilon \leq \frac{1}{x^{2}}-L$, so $0<\frac{1}{x^{2}}-L$ and $\epsilon \leq \frac{1}{x^{2}}-L$.
Thus, $|f(x)-L|=\left|\frac{1}{x^{2}}-L\right|=\frac{1}{x^{2}}-L \geq \epsilon$, so $\left|f^{x}(x)-L\right| \geq \epsilon$.
Therefore, there exists $x>0$ such that $0<|x|<\delta$ and $|f(x)-L| \geq \epsilon$, as desired.

Exercise 26. Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{1}{\sqrt{x}}$ for all $x>0$.
Then $\lim _{x \rightarrow 0} f(x)$ does not exist in \mathbb{R}.

Solution.

Observe that 0 is an accumulation point of $\mathbb{R}^{+}=(0, \infty)$, the domain of f.
We prove there is no real L such that $\lim _{x \rightarrow 0} f(x)=L$.
Observe that

$$
\begin{array}{r}
\neg(\exists L \in \mathbb{R})\left(\lim _{x \rightarrow 0} f(x)=L\right)
\end{array} \begin{array}{r}
\Leftrightarrow \\
\neg(\exists L \in \mathbb{R})(\forall \epsilon>0)(\exists \delta>0)(\forall x>0)(0<|x|<\delta \rightarrow|f(x)-L|<\epsilon)
\end{array} \Leftrightarrow
$$

Thus, we prove $(\forall L \in \mathbb{R})(\exists \epsilon>0)(\forall \delta>0)(\exists x>0)(0<|x|<\delta \wedge|f(x)-L| \geq$ ϵ).

Let L be an arbitrary real number.
Let $\epsilon=\max \{0,-L\}+1$.
Then $\epsilon-1=\max \{0,-L\}$, so $\epsilon-1 \geq 0$ and $\epsilon-1 \geq-L$.
Since $\epsilon-1 \geq 0$, then $\epsilon \geq 1>0$, so $\epsilon>0$.
Since $\epsilon-1 \geq-L$, then $L+\epsilon \geq 1>0$, so $L+\epsilon>0$.
Let $\delta>0$ be given.
We must prove there exists $x>0$ such that $0<|x|<\delta$ and $|f(x)-L| \geq \epsilon$.
Let $x=\min \left\{\frac{\delta}{2}, \frac{1}{(L+\epsilon)^{2}}\right\}$.
Then $x \leq \frac{\delta}{2}$ and $x \leq \frac{1}{(L+\epsilon)^{2}}$.
Since $\delta>0$ and $L+\epsilon>0$, then $x>0$.
Since $0<x=|x| \leq \frac{\delta}{2}<\delta$, then $0<|x|<\delta$.
Since $0<x \leq \frac{1}{(L+\epsilon)^{2}}$, then $0<\sqrt{x} \leq \frac{1}{L+\epsilon}$, so $L+\epsilon \leq \frac{1}{\sqrt{x}}$.
Hence, $0<\epsilon \leq \frac{1}{\sqrt{x}}-L$, so $0<\frac{1}{\sqrt{x}}-L$ and $\epsilon \leq \frac{1}{\sqrt{x}}-L$.

Therefore, $|f(x)-L|=\left|\frac{1}{\sqrt{x}}-L\right|=\frac{1}{\sqrt{x}}-L \geq \epsilon$, so $|f(x)-L| \geq \epsilon$.
Thus, there exists $x>0$ such that $0<|x|<\delta$ and $|f(x)-L| \geq \epsilon$, as desired.

Exercise 27. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined for all $x \in \mathbb{R}$.
Let $a, L \in \mathbb{R}$.
Then $\lim _{x \rightarrow a} f(x)=L$ iff $\lim _{x \rightarrow 0} f(x+a)=L$.
Proof. We first prove if $\lim _{x \rightarrow a} f(x)=L$, then $\lim _{x \rightarrow 0} f(x+a)=L$.
Suppose $\lim _{x \rightarrow a} f(x)=L$.
Let $\epsilon>0$ be given.
Then there exists $\delta>0$ such that for all $x \in \mathbb{R}$, if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.

Let $x \in \mathbb{R}$ such that $0<|x|<\delta$.
Since $x \in \mathbb{R}$, then $x+a \in \mathbb{R}$, so if $0<|(x+a)-a|<\delta$, then $|f(x+a)-L|<\epsilon$.
Hence, if $0<|x|<\delta$, then $|f(x+a)-L|<\epsilon$.
Since $0<|x|<\delta$, then we conclude $|f(x+a)-L|<\epsilon$.
Therefore, $\lim _{x \rightarrow 0} f(x+a)=L$.

Conversely, we prove if $\lim _{x \rightarrow 0} f(x+a)=L$, then $\lim _{x \rightarrow a} f(x)=L$.
Suppose $\lim _{x \rightarrow 0} f(x+a)=L$.
Let $\epsilon>0$ be given.
Then there exists $\delta>0$ such that for all $x \in \mathbb{R}$, if $0<|x|<\delta$, then $|f(x+a)-L|<\epsilon$.

Let $x \in \mathbb{R}$ such that $0<|x-a|<\delta$.
Since $x \in \mathbb{R}$, then $x-a \in \mathbb{R}$, so if $0<|x-a|<\delta$, then $|f((x-a)+a)-L|<\epsilon$.
Hence, if $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.
Since $0<|x-a|<\delta$, then we conclude $|f(x)-L|<\epsilon$.
Therefore, $\lim _{x \rightarrow a} f(x)=L$.
Exercise 28. Let $a, L \in \mathbb{R}$.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $\lim _{x \rightarrow a}(f(x))^{2}=L$.
If $L=0$, then $\lim _{x \rightarrow a} f(x)=0$.
Provide an example such that $L \neq 0$ and $\lim _{x \rightarrow a} f(x)$ does not exist.
Proof. We must prove if $L=0$, then $\lim _{x \rightarrow a} f(x)=0$.
Suppose $L=0$.
Then $\lim _{x \rightarrow a}(f(x))^{2}=0$.
To prove $\lim _{x \rightarrow a} f(x)=0$, let $\epsilon>0$ be given.
Then $\epsilon^{2}>0$.
Since $\lim _{x \rightarrow a}(f(x))^{2}=0$, then there exists $\delta>0$ such that if $0<|x-a|<\delta$, then $\left|(f(x))^{2}\right|<\epsilon^{2}$.

Let $x \in \mathbb{R}$ such that $0<|x-a|<\delta$.
Then $\left|(f(x))^{2}\right|<\epsilon^{2}$, so $0 \leq\left|(f(x))^{2}\right|<\epsilon^{2}$.
Hence, $0 \leq|f(x)|^{2}<\epsilon^{2}$, so $0 \leq|f(x)|<\epsilon$.
Therefore, $|f(x)|<\epsilon$, as desired.

Solution. Let $f: \mathbb{R}^{*} \rightarrow \mathbb{R}$ be the function defined by $f(x)=1$ if $x>0$ and $f(x)=-1$ if $x<0$.

We shall show that $\lim _{x \rightarrow 0}(f(x))^{2}=1 \neq 0$ and $\lim _{x \rightarrow 0} f(x)$ does not exist.

We first prove $\lim _{x \rightarrow 0}(f(x))^{2}=1$.
Observe that 0 is an accumulation point of \mathbb{R}^{*}, the domain of f.
Let $\epsilon>0$ be given.
Let $\delta=\epsilon$.
Then $\delta>0$.
Let $x \in \mathbb{R}^{*}$.
Then either $x>0$ or $x<0$.
If $x>0$, then $(f(x))^{2}=1^{2}=1$.
If $x<0$, then $(f(x))^{2}=(-1)^{2}=1$.
Thus, in all cases, $(f(x))^{2}=1$.
Since $\left|(f(x))^{2}-1\right|=|1-1|=0<\epsilon$, then $\left|(f(x))^{2}-1\right|<\epsilon$.
Hence, the implication if $0<|x|<\delta$, then $\left|(f(x))^{2}-1\right|<\epsilon$ is trivially true. Therefore, $\lim _{x \rightarrow 0}(f(x))^{2}=1$.

We next prove $\lim _{x \rightarrow 0} f(x)$ does not exist.
We already proved by contradiction that the function f fails to have a limit at 0 in the list of examples.

It has a jump discontinuity at zero.
Therefore, $\lim _{x \rightarrow 0} f(x)$ does not exist.
Exercise 29. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=x$ if x is rational and $f(x)=0$ if x is irrational.

Show that $\lim _{x \rightarrow 0} f(x)=0$.
Show that if $a \neq 0$, then the limit of f at a does not exist.
Proof. Observe that 0 is an accumulation point of \mathbb{R}, the domain of f.
We prove $\lim _{x \rightarrow 0} f(x)=0$.
Let $\epsilon>0$ be given.
Let $\delta=\epsilon$.
Then $\delta>0$.
Let $x \in \mathbb{R}$ such that $0<|x|<\delta$.
Since $x \in \mathbb{R}$, then either x is rational or x is not rational.
If x is rational, then $|f(x)|=|x|<\delta=\epsilon$, so $|f(x)|<\epsilon$.
If x is not rational, then x is irrational, so $|f(x)|=0<\epsilon$.
Therefore, in all cases, $|f(x)|<\epsilon$, so $\lim _{x \rightarrow 0} f(x)=0$, as desired.
Proof. Let $a \neq 0$ be given.
Observe that a is an accumulation point of \mathbb{R}, the domain of f.
To prove the limit of f at a does not exist, we must prove there is no real L such that $\lim _{x \rightarrow a} f(x)=L$.

Observe that

$$
\begin{array}{r}
\neg(\exists L \in \mathbb{R})\left(\lim _{x \rightarrow a} f(x)=L\right)
\end{array} \begin{array}{r}
\Leftrightarrow \\
\neg(\exists L \in \mathbb{R})(\forall \epsilon>0)(\exists \delta>0)(\forall x)(0<|x-a|<\delta \rightarrow|f(x)-L|<\epsilon)
\end{array} \Leftrightarrow
$$

Thus, we prove $(\forall L \in \mathbb{R})(\exists \epsilon>0)(\forall \delta>0)(\exists x)(0<|x-a|<\delta \wedge|f(x)-L| \geq$ $\epsilon)$.

Let L be an arbitrary real number.
Either $L=0$ or $L \neq 0$.
We consider these cases separately.
Case 1: Suppose $L \neq 0$.
Let $\epsilon=|L|$.
Since $L \neq 0$, then $|L|>0$, so $\epsilon>0$.
Let $\delta>0$ be given.
Since a and $a+\delta$ are real numbers and $a<a+\delta$, then there exists an irrational number x such that $a<x<a+\delta$.

Thus, $a<x$ and $0<x-a<\delta$.
Since $0<x-a<\delta$, then $|x-a|=x-a<\delta$, so $|x-a|<\delta$.
Since $x>a$, then $x-a>0$, so $0<|x-a|<\delta$.
Since x is irrational, then $|f(x)-L|=|0-L|=|-L|=|L|=\epsilon$, so $|f(x)-L|=\epsilon$.

Thus, $|f(x)-L| \geq \epsilon$.
Case 2: Suppose $L=0$.
Let $\epsilon=|a|$.
Since $a \neq 0$, then $|a|>0$, so $\epsilon>0$.
Let $\delta>0$ be given.
Since $a \neq 0$, then either $a>0$ or $a<0$.
Case 2a: Suppose $a>0$.
Since a and $a+\delta$ are real numbers and $a<a+\delta$, then there exists a rational number x such that $a<x<a+\delta$.

Thus, $a<x$ and $0<x-a<\delta$.
Since $0<x-a<\delta$, then $|x-a|=x-a<\delta$, so $|x-a|<\delta$.
Since $x>a$, then $x-a>0$, so $0<|x-a|<\delta$.
Since $0<a<x$, then $|x|=x>a=|a|$, so $|x|>|a|$.
Since x is rational, then $|f(x)-L|=|x-0|=|x|>|a|=\epsilon$, so $|f(x)-L|>\epsilon$.
Case 2b: Suppose $a<0$.
Since a and $a+\delta$ are real numbers and $a-\delta<a$, then there exists a rational number x such that $a-\delta<x<a$.

Thus, $x<a$ and $-\delta<x-a<0$.
Since $\delta>x-a>0$, then $|x-a|=x-a<\delta$, so $|x-a|<\delta$.
Since $x<a$, then $x-a<0$, so $x-a \neq 0$.
Hence, $|x-a|>0$, so $0<|x-a|<\delta$.
Since $x<a<0$, then $|x|=-x>-a=|a|$, so $|x|>|a|$.
Since x is rational, then $|f(x)-L|=|x-0|=|x|>|a|=\epsilon$, so $|f(x)-L|>\epsilon$.

Therefore, in either case, $|f(x)-L|>\epsilon$, so $|f(x)-L| \geq \epsilon$.
Thus, there is no real L such that $\lim _{x \rightarrow a} f(x)=L$, so if $a \neq 0$, then the limit of f at a does not exist.

Exercise 30. Given that the definition of limit requires that a be an accumulation point of $\operatorname{dom} f$, what real values of a would be excluded from consideration in the limit $\lim _{x \rightarrow a} \sqrt{x^{2}-2}$?

Solution. Let $f:[\sqrt{2}, \infty) \rightarrow \mathbb{R}$ be the function given by $f(x)=\sqrt{x^{2}-2}$.
The domain of f is the interval $[\sqrt{2}, \infty)$, a closed, unbounded set.
Thus, $\operatorname{dom} f=[\sqrt{2}, \infty)$.
Values of a that should be included in the consideration of a limit must be accumulation points of domf.

Hence, values of a that should be excluded from consideration of a limit must not be accumulation points of $\operatorname{dom} f$.

Let S be the set of all real values of a that are excluded from consideration of a limit of f at a.

Then S is the set of all real values of a that are not accumulation points of domf.

Thus, $S=\{x \in \mathbb{R}: x$ is not an accumulation point of $\operatorname{dom} f\}$.
We prove $S=(-\infty, \sqrt{2})$.

We first prove $(-\infty, \sqrt{2}) \subset S$.
Let $t \in(-\infty, \sqrt{2})$.
Since $\operatorname{dom} f$ is a closed set, then if x is an accumulation point of $\operatorname{dom} f$, then $x \in \operatorname{dom} f$.

Hence, if $x \notin \operatorname{domf}$, then x is not an accumulation point of $\operatorname{dom} f$.
Since $t \in(-\infty, \sqrt{2})$ and the interval $(-\infty, \sqrt{2})$ is the complement of $[\sqrt{2}, \infty)=$ $\operatorname{dom} f$, then $t \notin \operatorname{dom} f$.

Thus, t is not an accumulation point of $\operatorname{dom} f$, so $t \in S$.
Hence, $(-\infty, \sqrt{2}) \subset S$.

We now prove $S \subset(-\infty, \sqrt{2})$.
Let $s \in S$.
Then $s \in \mathbb{R}$ and s is not an accumulation point of $\operatorname{dom} f$.
Suppose for the sake of contradiction $s \in \operatorname{domf}$.
Then $s \in[\sqrt{2}, \infty)$, so s is an accumulation point of $[\sqrt{2}, \infty)$.
Hence, s is an accumulation point of $\operatorname{dom} f$, contradicting the fact that s is not an accumulation point of $\operatorname{dom} f$.

Therefore, $s \notin \operatorname{domf}$, so s is in the complement of $\operatorname{dom} f$.
Thus, $s \in(-\infty, \sqrt{2})$, the complement of $\operatorname{dom} f$.
Hence, $S \subset(-\infty, \sqrt{2})$.
Since $S \subset(-\infty, \sqrt{2})$ and $(-\infty, \sqrt{2}) \subset S$, then $S=(-\infty, \sqrt{2})$.
Exercise 31. Let $f:(0,1) \rightarrow \mathbb{R}$ be a function defined by $f(x)=\sin \left(\frac{1}{x}\right)$ for all $x \in(0,1)$.

Then $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ does not exist in \mathbb{R}.

Solution.

Observe that 0 is an accumulation point of $(0,1)$, the domain of f.
We prove there is no real L such that $\lim _{x \rightarrow 0} f(x)=L$.
Observe that

$$
\begin{aligned}
\neg(\exists L \in \mathbb{R})\left(\lim _{x \rightarrow 0} f(x)=L\right) & \Leftrightarrow \\
\neg(\exists L \in \mathbb{R})(\forall \epsilon>0)(\exists \delta>0)(\forall x \in(0,1))(0<|x|<\delta \rightarrow|f(x)-L|<\epsilon) & \Leftrightarrow \\
(\forall L \in \mathbb{R})(\exists \epsilon>0)(\forall \delta>0)(\exists x \in(0,1))(0<|x|<\delta \wedge|f(x)-L| \geq \epsilon) . &
\end{aligned}
$$

Thus, we prove $(\forall L \in \mathbb{R})(\exists \epsilon>0)(\forall \delta>0)(\exists x \in(0,1))(0<|x|<\delta \wedge \mid f(x)-$ $L \mid \geq \epsilon$.

Let L be an arbitrary real number.
Let $\epsilon=\frac{1}{3}$.
Let $\delta>0$ be given.
We must prove there exists $x \in(0,1)$ such that $0<|x|<\delta$ and $|f(x)-L| \geq \epsilon$.

We first prove either $0 \notin N(L ; \epsilon)$ or $1 \notin N(L ; \epsilon)$ by contradiction.
Suppose $0 \in N(L ; \epsilon)$ and $1 \in N(L ; \epsilon)$.
Then $d(0, L)<\epsilon$ and $d(1, L)<\epsilon$, so $|0-L|<\epsilon$ and $|1-L|<\epsilon$.
Hence, $|L|<\epsilon$ and $|1-L|<\epsilon$.
Observe that

$$
\begin{aligned}
1 & =|(1-L)+L| \\
& \leq|1-L|+|L| \\
& <\epsilon+\epsilon \\
& =\frac{1}{3}+\frac{1}{3} \\
& =\frac{2}{3} .
\end{aligned}
$$

Therefore, $1<\frac{2}{3}$, a contradiction.

Hence, either $0 \notin N(L ; \epsilon)$ or $1 \notin N(L ; \epsilon)$.
We consider these cases separately.
Case 1: Suppose $0 \notin N(L ; \epsilon)$.
Then $d(0, L) \geq \epsilon$, so $|0-L| \geq \epsilon$.
Since $\delta>0$, then $\delta \pi>0$, so by the Archimedean property of \mathbb{R}, there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<\delta \pi$.

Hence, $\frac{1}{n \pi}<\delta$.
Let $x=\frac{1}{n \pi}$.
Since $0<\frac{1}{\pi}<n$ for any $n \in \mathbb{N}$, then $0<1<n \pi$, so $0<\frac{1}{n \pi}<1$.
Thus, $\frac{1}{n \pi} \in(0,1)$.
Since $0<\frac{1}{n \pi}=\left|\frac{1}{n \pi}\right|<\delta$, then $0<\left|\frac{1}{n \pi}\right|<\delta$.

Since $\left|f\left(\frac{1}{n \pi}\right)-L\right|=|\sin (n \pi)-L|=|0-L| \geq \epsilon$, then $\left|f\left(\frac{1}{n \pi}\right)-L\right| \geq \epsilon$.
Case 2: Suppose $1 \notin N(L ; \epsilon)$.
Then $d(1, L) \geq \epsilon$, so $|1-L| \geq \epsilon$.
Since $\delta>0$, then $\frac{\delta \pi}{2}>0$, so by the Archimedean property of \mathbb{R}, there exists $k \in \mathbb{N}$ such that $\frac{1}{k}<\frac{\delta \pi}{2}$.

Thus, $\frac{2}{k \pi}<\delta$.
Let $m=4 k+1$.
Then $m-1=4 k$, so $4 \mid(m-1)$.
Hence, $m \equiv 1(\bmod 4)$.
Since $m-k=(4 k+1)-k=3 k+1>0$, then $m-k>0$, so $m>k$.
Since $m>k>0$, then $0<\frac{1}{m}<\frac{1}{k}$, so $0<\frac{2}{m \pi}<\frac{2}{k \pi}$.
Thus, $0<\frac{2}{m \pi}<\frac{2}{k \pi}<\delta$, so $0<\frac{2}{m \pi}<\delta$.
Let $x=\frac{2}{m \pi}$.
Since $0<\frac{m \pi}{\pi}<m$ for any $m \in \mathbb{N}$, then $0<2<m \pi$, so $0<\frac{2}{m \pi}<1$.
Thus, $\frac{2}{m \pi} \in(0,1)$.
Since $0<\frac{2}{m \pi}=\left|\frac{2}{m \pi}\right|<\delta$, then $0<\left|\frac{2}{m \pi}\right|<\delta$.
Since $m \equiv 1(\bmod 4)$, then $\left|f\left(\frac{2}{m \pi}\right)-L\right|=\left|\sin \left(\frac{m \pi}{2}\right)-L\right|=|1-L| \geq \epsilon$, so $\left|f\left(\frac{2}{m \pi}\right)-L\right| \geq \epsilon$.

Therefore, in all cases, there exists $x \in(0,1)$ such that $0<|x|<\delta$ and $|f(x)-L| \geq \epsilon$, as desired.
Exercise 32. Show that $\lim _{x \rightarrow 0} \cos \left(\frac{1}{x}\right)$ does not exist in \mathbb{R}.
Solution. Let $f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\cos \left(\frac{1}{x}\right)$.
Since 0 is an accumulation point of \mathbb{R}, then 0 is an accumulation point of $\mathbb{R}-\{0\}$, the domain of f.

Suppose $\lim _{x \rightarrow 0} f(x)$ does exist in \mathbb{R}.
Then there is a real number L such that $\lim _{x \rightarrow 0} \cos \left(\frac{1}{x}\right)=L$.
Thus, for every $\epsilon>0$, there is $\delta>0$ such that for every $x \neq 0$, if $0<|x|<\delta$, then $\left|\cos \left(\frac{1}{x}\right)-L\right|<\epsilon$.

Let $\epsilon=\frac{1}{2}$.
Then there is $\delta>0$ such that for every $x \in \mathbb{R}-\{0\}$, if $0<|x|<\delta$, then $\left|\cos \left(\frac{1}{x}\right)-L\right|<\frac{1}{2}$.

Let $M=\frac{1}{2 \pi \delta}$.
Then $M \in \mathbb{R}$, so by the Archimedean property of \mathbb{R}, there exists $n_{1} \in \mathbb{N}$ such that $n_{1}>M$.

Let $x_{1}=\frac{1}{2 \pi n_{1}}$.
Since $n_{1} \in \mathbb{N}$, then $n_{1}>0$, so $x_{1}>0$.
Hence, $x_{1} \neq 0$.
Since $n_{1}>M$ and $M=\frac{1}{2 \pi \delta}$, then $n_{1}>\frac{1}{2 \pi \delta}$.
Since $\delta>0$ and $n_{1}>0$, then $\delta>\frac{1}{2 \pi n_{1}}$, so $\delta>x_{1}$.
Thus, $\delta>x_{1}=\left|x_{1}\right|>0$.
Since $x_{1} \neq 0$ and $0<\left|x_{1}\right|<\delta$, then $\left|\cos \left(\frac{1}{x_{1}}\right)-L\right|<\frac{1}{2}$.

Let $N=\frac{\frac{1}{\pi \delta}-1}{2}$.
Then $N \in \mathbb{R}$, so by the Archimedean property of \mathbb{R}, there exists $n_{2} \in \mathbb{N}$ such that $n_{2}>N$.

Let $x_{2}=\frac{1}{\left(2 n_{2}+1\right) \pi}$.
Since $n_{2} \in \mathbb{N}$, then $n_{2}>0$, so $2 n_{2}+1>0$.
Hence, $x_{2}>0$, so $x_{2} \neq 0$.
Since $n_{2}>N$ and $N=\frac{\frac{1}{\pi \delta}-1}{2}$, then $n_{2}>\frac{\frac{1}{\pi \delta}-1}{2}$.
Thus, $2 n_{2}>\frac{1}{\pi \delta}-1$, so $2 n_{2}+1>\frac{1}{\pi \delta}$.
Since $\delta>0$ and $n_{2}>0$, then $\delta>\frac{1}{\left(2 n_{2}+1\right) \pi}$, so $\delta>x_{2}$.
Thus, $\delta>x_{2}=\left|x_{2}\right|>0$.
Since $x_{2} \neq 0$ and $0<\left|x_{2}\right|<\delta$, then $\left|\cos \left(\frac{1}{x_{2}}\right)-L\right|<\frac{1}{2}$.
Observe that

$$
\begin{aligned}
2 & =|1-(-1)| \\
& =\left|\cos \left(2 \pi n_{1}\right)-\cos \left(\left(2 n_{2}+1\right) \pi\right)\right| \\
& =\left|\cos \left(\frac{1}{\frac{1}{2 \pi n_{1}}}\right)-\cos \left(\frac{1}{\left(2 n_{2}+1\right) \pi}\right)\right| \\
& =\left|\cos \left(\frac{1}{x_{1}}\right)-\cos \left(\frac{1}{x_{2}}\right)\right| \\
& =\left|\cos \left(\frac{1}{x_{1}}\right)-L+L-\cos \left(\frac{1}{x_{2}}\right)\right| \\
& \leq\left|\cos \left(\frac{1}{x_{1}}\right)-L\right|+\left|L-\cos \left(\frac{1}{x_{2}}\right)\right| \\
& =\left|\cos \left(\frac{1}{x_{1}}\right)-L\right|+\left|\cos \left(\frac{1}{x_{2}}\right)-L\right| \\
& <\frac{1}{2}+\frac{1}{2} \\
& =1
\end{aligned}
$$

Thus, we have $2<1$, a contradiction.
Therefore, $\lim _{x \rightarrow 0} \cos \left(\frac{1}{x}\right)$ does not exist in \mathbb{R}.
Exercise 33. Show that $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$.
Proof. Let $f: \mathbb{R}^{*} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x \sin \left(\frac{1}{x}\right)$ for all $x \neq 0$.
Observe that 0 is an accumulation point of the set $\mathbb{R}^{*}=\{x \in \mathbb{R}: x \neq 0\}$, the domain of f.

Let $\epsilon>0$ be given.
Let $\delta=\epsilon$.
Then $\delta>0$.
Let $x \in \mathbb{R}^{*}$ such that $0<|x|<\delta$.
Since $x \in \mathbb{R}^{*}$, then $x \in \mathbb{R}$ and $x \neq 0$, so $\frac{1}{x} \in \mathbb{R}$.

Since $|\sin \theta| \leq 1$ for all $\theta \in \mathbb{R}$, then in particular, $\left|\sin \left(\frac{1}{x}\right)\right| \leq 1$, so $0 \leq$ $\left|\sin \left(\frac{1}{x}\right)\right| \leq 1$.

Therefore, $\left|x \sin \left(\frac{1}{x}\right)\right|=|x| \cdot\left|\sin \left(\frac{1}{x}\right)\right| \leq|x|<\delta=\epsilon$.
Thus, $\left|x \sin \left(\frac{1}{x}\right)\right|<\epsilon$, as desired.
Proof. Let $f: \mathbb{R}^{*} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x \sin \left(\frac{1}{x}\right)$ for all $x \neq 0$.
Observe that 0 is an accumulation point of the set $\mathbb{R}^{*}=\{x \in \mathbb{R}: x \neq 0\}$, the domain of f.

Let $x \in \mathbb{R}^{*}$.
Then $x \in \mathbb{R}$ and $x \neq 0$.
Hence, $|x|>0$ and $-|x|<0$ and $\frac{1}{x} \in \mathbb{R}$.
Since $|\sin \theta| \leq 1$ for all $\theta \in \mathbb{R}$, then in particular, $\left|\sin \left(\frac{1}{x}\right)\right| \leq 1$.
Since $x \neq 0$, then $x \sin \left(\frac{1}{x}\right) \in \mathbb{R}$, so $-\left|x \sin \left(\frac{1}{x}\right)\right| \leq x \sin \left(\frac{1}{x}\right) \leq\left|x \sin \left(\frac{1}{x}\right)\right|$.
Thus, $-\left|x \sin \left(\frac{1}{x}\right)\right| \leq x \sin \left(\frac{1}{x}\right)$ and $x \sin \left(\frac{1}{x}\right) \leq\left|x \sin \left(\frac{1}{x}\right)\right|$.
Since $x \sin \left(\frac{1}{x}\right) \leq\left|x \sin \left(\frac{1}{x}\right)\right|=|x|\left|\sin \left(\frac{1}{x}\right)\right| \leq|x|$, then $x \sin \left(\frac{1}{x}\right) \leq|x|$.
Since $-\left|x \sin \left(\frac{1}{x}\right)\right| \leq x \sin \left(\frac{1}{x}\right)$, then $x \sin \left(\frac{1}{x}\right) \geq-\left|x \sin \left(\frac{1}{x}\right)\right|=-|x|\left|\sin \left(\frac{1}{x}\right)\right| \geq$ $-|x|$, so $x \sin \left(\frac{1}{x}\right) \geq-|x|$.

Thus, $-|x| \leq x \sin \left(\frac{1}{x}\right) \leq|x|$, so $-|x| \leq x \sin \left(\frac{1}{x}\right) \leq|x|$ for all $x \in \mathbb{R}^{*}$.
Since $-|x| \leq x \sin \left(\frac{1}{x}\right) \leq|x|$ for all $x \in \mathbb{R}^{*}$ and $\lim _{x \rightarrow 0}|x|=|0|=0=-|0|=$ $-\lim _{x \rightarrow 0}|x|=\lim _{x \rightarrow 0}-|x|$, then by the squeeze rule, $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$.

Proof. Let $f: \mathbb{R}^{*} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x \sin \left(\frac{1}{x}\right)$ for all $x \neq 0$.
Observe that 0 is an accumulation point of the set $\mathbb{R}^{*}=\{x \in \mathbb{R}: x \neq 0\}$, the domain of f.

We prove by using the sequential criterion for function limits.
Since 0 is an accumulation point of \mathbb{R}^{*}, then there exists a sequence $\left(x_{n}\right)$ of points in \mathbb{R}^{*} such that $\lim _{n \rightarrow \infty} x_{n}=0$.

Let $\left(x_{n}\right)$ be an arbitrary sequence of points in \mathbb{R}^{*} such that $\lim _{n \rightarrow \infty} x_{n}=0$.
Since $\left(x_{n}\right)$ is a sequence of points in $\mathbb{R}^{*}=\mathbb{R}-\{0\}$, then $x_{n} \neq 0$ for all $n \in \mathbb{N}$.
We first prove $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=0$.
Let $\epsilon>0$ be given.
Since $\lim _{n \rightarrow \infty} x_{n}=0$, then there exists $N \in \mathbb{N}$ such that if $n>N$, then $\left|x_{n}\right|<\epsilon$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $\left|x_{n}\right|<\epsilon$, so $0<\left|x_{n}\right|<\epsilon$.
Since $x_{n} \neq 0$, then $\frac{1}{x_{n}} \in \mathbb{R}$.
Since $|\sin \theta| \leq 1$ for all $\theta \in \mathbb{R}$, then in particular, $\left|\sin \left(\frac{1}{x_{n}}\right)\right| \leq 1$, so $0 \leq$ $\left|\sin \left(\frac{1}{x_{n}}\right)\right| \leq 1$.

Hence, $\left|f\left(x_{n}\right)\right|=\left|x_{n} \sin \left(\frac{1}{x_{n}}\right)\right|=\left|x_{n}\right| \cdot\left|\sin \left(\frac{1}{x_{n}}\right)\right| \leq\left|x_{n}\right|<\epsilon$, so $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=$ 0.

Since $\left(x_{n}\right)$ is an arbitrary sequence of points in $\mathbb{R}^{*}=\operatorname{domf}=\operatorname{dom} f-$ $\{0\}$ such that $\lim _{n \rightarrow \infty} x_{n}=0$ and $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=0$, then by the sequential criterion for function limits, $\lim _{x \rightarrow 0} f(x)=0$.

Therefore, $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$.

Algebraic properties of function limits

Exercise 34. Let $f:(0,1) \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{x^{3}+6 x^{2}+x}{x^{2}-6 x}$.
Then $\lim _{x \rightarrow 0} f(x)=\frac{-1}{6}$.
Proof. Observe that 0 is an accumulation point of the interval $(0,1)$, the domain of f.

Let $x \in(0,1)$.
Then $0<x<1$, so $0<x$.
Since $x>0$, then $x \neq 0$.
Thus, $x \neq 0$ for all $x \in(0,1)$, so

$$
\begin{aligned}
\lim _{x \rightarrow 0} f(x) & =\lim _{x \rightarrow 0} \frac{x^{3}+6 x^{2}+x}{x^{2}-6 x} \\
& =\lim _{x \rightarrow 0} \frac{x\left(x^{2}+6 x+1\right)}{x(x-6)} \\
& =\lim _{x \rightarrow 0} \frac{x^{2}+6 x+1}{x-6}
\end{aligned}
$$

Since $\lim _{x \rightarrow 0}\left(x^{2}+6 x+1\right)=1$ and $\lim _{x \rightarrow 0}(x-6)=-6 \neq 0$, then by the quotient rule for limits we have

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x^{2}+6 x+1}{x-6} & =\frac{\lim _{x \rightarrow 0}\left(x^{2}+6 x+1\right)}{\lim _{x \rightarrow 0}(x-6)} \\
& =\frac{1}{-6}
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow 0} f(x)=\frac{-1}{6}$.
Exercise 35. Show that $\lim _{x \rightarrow-1} \frac{x+1}{x^{3}+1}=\frac{1}{3}$.
Proof. Let $f: \mathbb{R}-\{-1\} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{x+1}{x^{3}+1}$.
Since -1 is an accumulation point of \mathbb{R}, then -1 is an accumulation point of $\mathbb{R}-\{-1\}$, the domain of f.

Since $x^{3}+1=(x+1)\left(x^{2}-x+1\right)$, then $\frac{x^{3}+1}{x+1}=x^{2}-x+1$ if $x \neq-1$.
Let $x \in \mathbb{R}-\{-1\}$.
Then $x \in \mathbb{R}$ and $x \neq-1$, so $\frac{x^{3}+1}{x+1}=x^{2}-x+1$.
Since $\lim _{x \rightarrow-1} 1=1$ and $\lim _{x \rightarrow-1}\left(x^{2}-x+1\right)=3 \neq 0$, then

$$
\begin{aligned}
\frac{1}{3} & =\frac{\lim _{x \rightarrow-1} 1}{\lim _{x \rightarrow-1}\left(x^{2}-x+1\right)} \\
& =\lim _{x \rightarrow-1} \frac{1}{x^{2}-x+1} \\
& =\lim _{x \rightarrow-1} \frac{1}{\frac{x^{3}+1}{x+1}} \\
& =\lim _{x \rightarrow-1} \frac{x+1}{x^{3}+1}
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow-1} \frac{x+1}{x^{3}+1}=\frac{1}{3}$.
Exercise 36. Show that $\lim _{h \rightarrow 0} \frac{\sin \left(\frac{\pi}{6}+h\right)-\frac{1}{2}}{h}=\frac{\sqrt{3}}{2}$.
Solution. We observe that this limit is simply the definition of the derivative of \sin at $\frac{\pi}{6}$ which is $\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$.
Proof. Since $\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$ and $\lim _{h \rightarrow 0} \frac{\cos h-1}{h}=0$, then

$$
\begin{aligned}
\frac{\sqrt{3}}{2} & =\frac{1}{2} \cdot \sqrt{3} \cdot 1 \\
& =\frac{1}{2} \cdot \sqrt{3} \cdot \lim _{h \rightarrow 0} \frac{\sin h}{h} \\
& =\frac{1}{2} \cdot \lim _{h \rightarrow 0} \frac{\sqrt{3} \sin h}{h} \\
& =\frac{1}{2}\left(0+\lim _{h \rightarrow 0} \frac{\sqrt{3} \sin h}{h}\right) \\
& =\frac{1}{2}\left(\lim _{h \rightarrow 0} \frac{\cos h-1}{h}+\lim _{h \rightarrow 0} \frac{\sqrt{3} \sin h}{h}\right) \\
& =\frac{1}{2} \cdot \lim _{h \rightarrow 0}\left(\frac{\cos h-1}{h}+\frac{\sqrt{3} \sin h}{h}\right) \\
& =\frac{1}{2} \cdot \lim _{h \rightarrow 0} \frac{\cos h-1+\sqrt{3} \sin h}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{2} \cdot \frac{\cos h-1+\sqrt{3} \sin h}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{\cos h}{2}-\frac{1}{2}+\frac{\sqrt{3}}{2} \sin h}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{\cos h}{2}+\frac{\sqrt{3}}{2} \sin h-\frac{1}{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin \left(\frac{\pi}{6}\right) \cos (h)+\cos \left(\frac{\pi}{6}\right) \sin h-\frac{1}{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin \left(\frac{\pi}{6}+h\right)-\frac{1}{2}}{h}
\end{aligned}
$$

Therefore, $\lim _{h \rightarrow 0} \frac{\sin \left(\frac{\pi}{6}+h\right)-\frac{1}{2}}{h}=\frac{\sqrt{3}}{2}$.
Exercise 37. Let $f:(0,1) \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{\sqrt{1+x}-1}{x}$.
Then $\lim _{x \rightarrow 0} f(x)=\frac{1}{2}$.
Proof. Observe that 0 is an accumulation point of the interval $(0,1)$, the domain of f.

Let $x \in(0,1)$.
Then $0<x<1$, so $0<x$.

Since $x>0$, then $x \neq 0$.
Since $-1<0$ and $0<x$, then $-1<x$, so $0<1+x$.
Hence, $1+x>0$, so $\sqrt{1+x}>0$.
Thus, $\sqrt{1+x}+1>1>0$, so $\sqrt{1+x}+1>0$.
Therefore, $\sqrt{1+x}+1 \neq 0$.
Since $x \neq 0$ and $\sqrt{1+x}+1 \neq 0$, then

$$
\begin{aligned}
\lim _{x \rightarrow 0} f(x) & =\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x} \\
& =\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x} \cdot \frac{\sqrt{1+x}+1}{\sqrt{1+x}+1} \\
& =\lim _{x \rightarrow 0} \frac{(1+x)-1}{x(\sqrt{1+x}+1)} \\
& =\lim _{x \rightarrow 0} \frac{x}{x(\sqrt{1+x}+1)} \\
& =\lim _{x \rightarrow 0} \frac{1}{\sqrt{1+x}+1}
\end{aligned}
$$

Since $\lim _{x \rightarrow 0}(1+x)=1>0$, then $\lim _{x \rightarrow 0} \sqrt{1+x}=\sqrt{\lim _{x \rightarrow 0}(1+x)}$. Since $\lim _{x \rightarrow 0} 1=1$, then

$$
\begin{aligned}
2 & =\sqrt{1}+1 \\
& =\sqrt{\lim _{x \rightarrow 0}(1+x)}+\lim _{x \rightarrow 0} 1 \\
& =\lim _{x \rightarrow 0} \sqrt{1+x}+\lim _{x \rightarrow 0} 1 \\
& =\lim _{x \rightarrow 0}(\sqrt{1+x}+1)
\end{aligned}
$$

Since $\lim _{x \rightarrow 0} 1=1$ and $\lim _{x \rightarrow 0}(\sqrt{1+x}+1)=2 \neq 0$, then by the quotient rule

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1}{\sqrt{1+x}+1} & =\frac{\lim _{x \rightarrow 0} 1}{\lim _{x \rightarrow 0}(\sqrt{1+x}+1)} \\
& =\frac{1}{2}
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow 0} f(x)=\frac{1}{2}$.
Exercise 38. Let $f:(0,1) \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{\sqrt{9-x}-3}{x}$.
Then $\lim _{x \rightarrow 0} f(x)=\frac{-1}{6}$.
Proof. Observe that 0 is an accumulation point of the interval $(0,1)$, the domain of f.

Let $x \in(0,1)$.

Then $0<x<1$, so $0<x$ and $x<1$.
Since $x>0$, then $x \neq 0$.
Since $x<1$ and $1<9$, then $x<9$, so $0<9-x$.
Hence, $9-x>0$, so $\sqrt{9-x}>0$.
Thus, $\sqrt{9-x}+3>3>0$, so $\sqrt{9-x}+3>0$.
Therefore, $\sqrt{9-x}+3 \neq 0$.
Since $x \neq 0$ and $\sqrt{9-x}+3 \neq 0$, then

$$
\begin{aligned}
\lim _{x \rightarrow 0} f(x) & =\lim _{x \rightarrow 0} \frac{\sqrt{9-x}-3}{x} \\
& =\lim _{x \rightarrow 0} \frac{\sqrt{9-x}-3}{x} \cdot \frac{\sqrt{9-x}+3}{\sqrt{9-x}+3} \\
& =\lim _{x \rightarrow 0} \frac{(9-x)-9}{x(\sqrt{9-x}+3)} \\
& =\lim _{x \rightarrow 0} \frac{-x}{x(\sqrt{9-x}+3)} \\
& =\lim _{x \rightarrow 0} \frac{-1}{\sqrt{9-x}+3}
\end{aligned}
$$

Since $\lim _{x \rightarrow 0}(9-x)=9>0$, then $\lim _{x \rightarrow 0} \sqrt{9-x}=\sqrt{\lim _{x \rightarrow 0}(9-x)}$.
Since $\lim _{x \rightarrow 0} 3=3$, then

$$
\begin{aligned}
6 & =\sqrt{9}+3 \\
& \left.=\sqrt{\lim _{x \rightarrow 0}(9-x}\right)+\lim _{x \rightarrow 0} 3 \\
& =\lim _{x \rightarrow 0} \sqrt{9-x}+\lim _{x \rightarrow 0} 3 \\
& =\lim _{x \rightarrow 0}(\sqrt{9-x}+3)
\end{aligned}
$$

Since $\lim _{x \rightarrow 0}-1=-1$ and $\lim _{x \rightarrow 0}(\sqrt{9-x}+3)=6 \neq 0$, then by the quotient rule

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{-1}{\sqrt{9-x}+3} & =\frac{\lim _{x \rightarrow 0}-1}{\lim _{x \rightarrow 0}(\sqrt{9-x}+3)} \\
& =\frac{-1}{6}
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow 0} f(x)=\frac{-1}{6}$.
Exercise 39. Let f and g be real valued functions defined on $E \subset \mathbb{R}$.
Let a be an accumulation point of E.
a. If $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a}(f+g)(x)$ exist, then $\lim _{x \rightarrow a} g(x)$ exists.
b. If $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a}(f g)(x)$ exist, then it does not necessarily follow that $\lim _{x \rightarrow a} g(x)$ exists.

Proof. We prove a.
Suppose $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a}(f+g)(x)$ exist.
Then there exist real numbers L and M such that $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a}(f+g)(x)=M$.

Thus,

$$
\begin{aligned}
M-L & =\lim _{x \rightarrow a}(f+g)(x)-\lim _{x \rightarrow a} f(x) \\
& =\lim _{x \rightarrow a}[f(x)+g(x)]-\lim _{x \rightarrow a} f(x) \\
& =\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)-\lim _{x \rightarrow a} f(x) \\
& =\lim _{x \rightarrow a} g(x)
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow a} g(x)=M-L$, so the limit of g at a exists.
Solution. We provide a counterexample to the assertion that $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a}(f g)(x)$ exist implies $\lim _{x \rightarrow a} g(x)$ exists.

Let $f: \mathbb{R}^{*} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x$.
Let $g: \mathbb{R}^{*} \rightarrow \mathbb{R}$ be the function defined by $g(x)=\sin \left(\frac{1}{x}\right)$.
Then $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x=0$ and $\lim _{x \rightarrow 0}(f g)(x)=\lim _{x \rightarrow 0} f(x) g(x)=$ $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$, but $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ does not exist.
Exercise 40. Show that $\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x}\right)=0$.
Proof. Let $f: \mathbb{R}^{*} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x^{2} \cos \left(\frac{1}{x}\right)$ for all $x \neq 0$.
Observe that 0 is an accumulation point of the set $\mathbb{R}^{*}=\{x \in \mathbb{R}: x \neq 0\}$, the domain of f.

Let $\epsilon>0$ be given.
Then $\sqrt{\epsilon}>0$.
Let $\delta=\sqrt{\epsilon}$.
Then $\delta>0$.
Let $x \in \mathbb{R}^{*}$ such that $0<|x|<\delta$.
Since $0<|x|<\delta$, then $0<|x|$ and $|x|<\delta$.
Since $x \in \mathbb{R}^{*}$, then $x \in \mathbb{R}$ and $x \neq 0$, so $\frac{1}{x} \in \mathbb{R}$.
Since $|\cos \theta| \leq 1$ for all $\theta \in \mathbb{R}$, then in particular, $\left|\cos \left(\frac{1}{x}\right)\right| \leq 1$, so $0 \leq$ $\left|\cos \left(\frac{1}{x}\right)\right| \leq 1$.

Therefore, $\left|x^{2} \cos \left(\frac{1}{x}\right)\right|=\left|x^{2}\right| \cdot\left|\cos \left(\frac{1}{x}\right)\right|=|x|^{2} \cdot\left|\cos \left(\frac{1}{x}\right)\right| \leq|x|^{2}<\delta^{2}=\epsilon$, so $\left|x^{2} \cos \left(\frac{1}{x}\right)\right|<\epsilon$, as desired.
Exercise 41. Show that $\lim _{x \rightarrow c}\left(x^{2}+x+1\right)=c^{2}+c+1$ for any $c \in \mathbb{R}$.
Solution. Let $c \in \mathbb{R}$ be given.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function given by $f(x)=x^{2}+x+1$.
Since f is a polynomial function and $c \in \mathbb{R}$, then we conclude that $\lim _{x \rightarrow c}\left(x^{2}+\right.$ $x+1)=\lim _{x \rightarrow c} f(x)=f(c)=c^{2}+c+1$.

Exercise 42. Let $f: E \rightarrow \mathbb{R}$ and $g: E \rightarrow \mathbb{R}$ be functions.
Let a be an accumulation point of E.
If $\lim _{x \rightarrow a} f(x)=0$ and $g(x)$ is bounded locally near a, then $\lim _{x \rightarrow a} f(x) g(x)=$ 0 .

Proof. Suppose $\lim _{x \rightarrow a} f(x)=0$ and $g(x)$ is bounded near a.
Let $\epsilon>0$ be given.
Since $g(x)$ is bounded locally near a, then there exist δ_{1} and $M>0$ such that $|g(x)| \leq M$ for all $x \in N\left(a ; \delta_{1}\right) \cap E$.

Since $\epsilon>0$ and $M>0$, then $\frac{\epsilon}{M}>0$.
Since $\lim _{x \rightarrow a} f(x)=0$, then there exists $\delta_{2}>0$ such that $|f(x)|<\frac{\epsilon}{M}$ for all $x \in \cap N^{\prime}\left(a ; \delta_{2}\right) \cap E$.

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$.
Then $\delta \leq \delta_{1}$ and $\delta \leq \delta_{2}$ and $\delta>0$.
Let $x \in E \cap N^{\prime}(a ; \delta)$.
Then $x \in E$ and $x \in N^{\prime}(a ; \delta)$.
Since $x \in N^{\prime}(a ; \delta)$, then $x \in N(a ; \delta)$.
Since $0<\delta \leq \delta_{1}$, then $N(a ; \delta) \subset N\left(a ; \delta_{1}\right)$.
Since $x \in N(a ; \delta)$ and $N(a ; \delta) \subset N\left(a ; \delta_{1}\right)$, then $x \in N\left(a ; \delta_{1}\right)$.
Since $x \in N\left(a ; \delta_{1}\right)$ and $x \in E$, then $x \in N\left(a ; \delta_{1}\right) \cap E$, so $|g(x)| \leq M$.
Since $0<\delta \leq \delta_{2}$, then $N(a ; \delta) \subset N\left(a ; \delta_{2}\right)$.
Since $x \in N(a ; \delta)$ and $N(a ; \delta) \subset N\left(a ; \delta_{2}\right)$, then $x \in N\left(a ; \delta_{2}\right)$.
Since $x \in N\left(a ; \delta_{2}\right)$ and $x \in E$, then $x \in N\left(a ; \delta_{2}\right) \cap E$, so $|f(x)|<\frac{\epsilon}{M}$.
Since $0 \leq|f(x)|<\frac{\epsilon}{M}$ and $0 \leq|g(x)|<M$, then

$$
\begin{aligned}
|f(x) g(x)| & =|f(x)||g(x)| \\
& <\frac{\epsilon}{M} \cdot M \\
& =\epsilon .
\end{aligned}
$$

Therefore, $|f(x) g(x)|<\epsilon$, so $\lim _{x \rightarrow a} f(x) g(x)=0$.
Exercise 43. Let $f: A \rightarrow \mathbb{R}$ and $g: B \rightarrow \mathbb{R}$ be functions.
Let a be an accumulation point of A and B.
Assume $f(x)=g(x)$ for all $x \in A \cap B$.
a. What conditions on A and B ensure that if $\lim _{x \rightarrow a} f(x)$ exists, then $\lim _{x \rightarrow a} g(x)$ exists?
b. What conditions on A and B ensure that if $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist, then they must be equal?

Proof. b. We assume that $B \subset A$.
Then if $\lim _{x \rightarrow a} f(x)$ exists, then $\lim _{x \rightarrow a} g(x)$ exists.
Suppose $\lim _{x \rightarrow a} f(x)$ exists and $B \subset A$.
Since $\lim _{x \rightarrow a} f(x)$ exists, then there is a real number L such that $\lim _{x \rightarrow a} f(x)=$ L.

Let $\epsilon>0$ be given.
Since $\lim _{x \rightarrow a} f(x)=L$, then there exists $\delta>0$ such that if $x \in A$ and $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.

Since a is an accumulation point of B and $\delta>0$, let $x \in B$ such that $0<|x-a|<\delta$.

Since $x \in B$ and $B \subset A$, then $x \in A$.
Since $x \in A$ and $0<|x-a|<\delta$, then $|f(x)-L|<\epsilon$.

Since $x \in A$ and $x \in B$, then $x \in A \cap B$, so $f(x)=g(x)$.
Hence, $|g(x)-L|=|f(x)-L|<\epsilon$, so $\lim _{x \rightarrow a} g(x)=L$.
Therefore, the limit of g at a exists.
Proof. b. We assume that a is an accumulation point of $A \cap B$.
If this assumption holds, then if $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist, then $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$.

Suppose a is an accumulation point of $A \cap B$ and $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist.

Since $\lim _{x \rightarrow a} f(x)$ exists, then there is a real number L such that $\lim _{x \rightarrow a} f(x)=$ L.

To prove $\lim _{x \rightarrow a} g(x)=L$, we must prove for every $\epsilon>0$, there exists $\delta>0$ such that $|g(x)-L|<\epsilon$ for all $x \in N^{\prime}(a ; \delta) \cap B$.

Let $\epsilon>0$ be given.
Since $\lim _{x \rightarrow a} f(x)=L$, then there exists $\delta>0$ such that $|f(x)-L|<\epsilon$ for all $x \in N^{\prime}(a ; \delta) \cap A$.

Since a is an accumulation point of $A \cap B$ and $\delta>0$, then there exists $x \in A \cap B$ such that $x \in N^{\prime}(a ; \delta)$.

Let x be an arbitrary element of $A \cap B$ such that $x \in N^{\prime}(a ; \delta)$.
Since $x \in A \cap B$, then $x \in A$ and $x \in B$.
Since $x \in N^{\prime}(a ; \delta)$ and $x \in A$, then $x \in N^{\prime}(a ; \delta) \cap A$, so $|f(x)-L|<\epsilon$.
Since $x \in A \cap B$, then $f(x)=g(x)$.
Since $x \in N^{\prime}(a ; \delta)$ and $x \in B$, then $x \in N^{\prime}(a ; \delta) \cap B$.
Observe that $|g(x)-L|=|f(x)-L|<\epsilon$.
Therefore, $\lim _{x \rightarrow a} g(x)=L$.
Proposition 44. Let $a, b \in \mathbb{R}$ with $a<b$.
Let $f:[a, b] \rightarrow \mathbb{R}$ be a monotonic increasing function.
Then $\lim _{x \rightarrow b} f(x)=\sup \{f(x): x \in[a, b], x<b\}$.
Proof. Let $S=\{f(x): x \in[a, b], x<b\}$.
We first prove $\sup S$ exists.
If $x \in[a, b]$, then $f(x) \in \mathbb{R}$ since f is a real valued function.
Hence, $S \subset \mathbb{R}$.
Since $a \in[a, b]$ and $a<b$, then $f(a) \in S$, so $S \neq \emptyset$.
Let $y \in S$ be arbitrary.
Then there exists $x \in[a, b]$ with $x<b$ such that $f(x)=y$.
Since f is monotonic increasing on $[a, b]$ and $x \in[a, b]$ and $b \in[a, b]$ and $x<b$, then $f(x) \leq f(b)$.

Hence, $y \leq f(b)$, so $y \leq f(b)$ for all $y \in S$.
Therefore, $f(b)$ is an upper bound of S, so S is bounded above in \mathbb{R}.
Since $S \subset \mathbb{R}$ and $S \neq \emptyset$ and S is bounded above in \mathbb{R}, then by completeness of $\mathbb{R}, \sup S$ exists.

We next prove $\lim _{x \rightarrow b} f(x)=\sup S$.
Let $\epsilon>0$ be given.
Since $\sup S-\epsilon<\sup S$, then $\sup S-\epsilon$ is not an upper bound of S, so there exists $s \in S$ such that $s>\sup S-\epsilon$.

Since $s \in S$, then there exists $c \in[a, b]$ with $c<b$ such that $f(c)=s$.
Let $\delta=b-c$.
Since $b>c$, then $\delta=b-c>0$, so $\delta>0$.
Let $x \in[a, b]$ such that $0<|x-b|<\delta$.
Since $0<|x-b|<\delta$, then $0<|x-b|$ and $|x-b|<\delta$.
Since $|x-b|>0$, then $x-b \neq 0$, so $x \neq b$.
Since $x \in[a, b]$, then $a \leq x \leq b$, so $x \leq b$.
Since $x \leq b$ and $x \neq b$, then $x<b$.
Since $x \in[a, b]$ and $x<b$, then $f(x) \in S$.
Since $\sup S$ is an upper bound of S, then $f(x) \leq \sup S$.
Since $f(x) \leq \sup S$ and $\sup S<\sup S+\epsilon$, then $f(x)<\sup S+\epsilon$, so $f(x)-\sup S<\epsilon$.

Since $\delta=b-c$, then $c=b-\delta$.
Since $x<b$, then $0<b-x=|b-x|=|x-b|<\delta$, so $b-x<\delta$.
Thus, $b-\delta<x$, so $c<x$.
Since f is monotonic increasing on $[a, b]$ and $c \in[a, b]$ and $x \in[a, b]$ and $c<x$, then $s=f(c) \leq f(x)$.

Since $\sup S-\epsilon<s$ and $s \leq f(x)$, then $\sup S-\epsilon<f(x)$, so $-\epsilon<f(x)-\sup S$.
Since $-\epsilon<f(x)-\sup S$ and $f(x)-\sup S<\epsilon$, then $-\epsilon<f(x)-\sup S<\epsilon$, so $|f(x)-\sup S|<\epsilon$, as desired.

Proposition 45. Let $I \subset \mathbb{R}$ be an interval.
Let $f: I \rightarrow \mathbb{R}$ be a function such that f is (monotonic) increasing on I.
Let a be an interior point of I.
Then $\lim _{x \rightarrow a^{+}} f(x)=\inf \{f(x): x \in I, x>a\}$.
Proof. Let $S=\{f(x): x \in I, x>a\}$.
We first prove $S \neq \emptyset$.
Since a is an interior point of I, then I is not empty, so there exists $\delta>0$ such that $N(a ; \delta) \subset I$.

Since $\left|\left(a+\frac{\delta}{2}\right)-a\right|=\frac{\delta}{2}<\delta$, then $a+\frac{\delta}{2} \in N(a ; \delta)$.
Since $N(a ; \delta) \subset I$, then $a+\frac{\delta}{2} \in I$, so $f\left(a+\frac{\delta}{2}\right)$ exists.
Since $a+\frac{\delta}{2}>a$, then $f\left(a+\frac{\delta}{2}\right) \in S$, so $S \neq \emptyset$.
We next prove S is bounded below in \mathbb{R}.
Since $S \neq \emptyset$, let $x \in I$ such that $x>a$.
Then $f(x) \in S$.
Since $a<x$ and f is increasing, then $f(a) \leq f(x)$.
Hence, $f(a) \leq f(x)$ for every $f(x) \in S$, so $f(a)$ is a lower bound of S.
Thus, S is bounded below in \mathbb{R}.
Since $S \neq \emptyset$ and S is bounded below in \mathbb{R}, then inf S exists.
Hence, there exists $L \in \mathbb{R}$ such that $L=\inf S$.

To prove $\lim _{x \rightarrow a^{+}} f(x)=L$, let $\epsilon>0$ be given.
Since L is a lower bound of S, then $L+\epsilon$ is not a lower bound of S, so there exists $f(b) \in S$ such that $f(b)<L+\epsilon$.

Thus, $f(b)-L<\epsilon$.
Since $f(b) \in S$, then $b \in I$ and $b>a$.
Let $\delta=b-a$.
Since $b-a>0$, then $\delta>0$.
Let $x \in I$ such that $0<x-a<\delta$.
Then $0<x-a<b-a$, so $0<x-a$ and $x-a<b-a$.
Since $0<x-a$, then $a<x$.
Since $x-a<b-a$, then $x<b$.
Since f is increasing, then $f(x) \leq f(b)$, so $f(x)-L \leq f(b)-L<\epsilon$.
Hence, $f(x)-L<\epsilon$.
Since $x \in I$ and $x>a$, then $f(x) \in S$.
Since L is a lower bound of S, then $L \leq f(x)$, so $f(x)-L \geq 0$.
Therefore, $0 \leq f(x)-L<\epsilon$, so $|f(x)-L|<\epsilon$, as desired.

