Limits of real valued functions Notes

Jason Sass

May 25, 2023

Sets of Numbers

 \mathbb{R} = set of all real numbers $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\} = (0, \infty) =$ set of all positive real numbers $\mathbb{R}^* = \{x \in \mathbb{R} : x \neq 0\} = (-\infty, 0) \cup (0, \infty) =$ set of all nonzero real numbers

Limit of a real valued function

The limit concept expresses the idea that for a given function f, f(x) is arbitrarily close to some number L if x is sufficiently close to some number a.

Definition 1. ϵ, δ definition of a limit of a real valued function

Let $E \subset \mathbb{R}$. Let $f : E \to \mathbb{R}$ be a function. Let a be an accumulation point of E. A real number L is a limit of f at a, denoted $\lim_{x\to a} f(x) = L$, iff for every $\epsilon > 0$, there exists $\delta > 0$ such that $|f(x) - L| < \epsilon$ whenever $0 < |x - a| < \delta$. Therefore, $\lim_{x\to a} f(x) = L$ iff $(\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in E)(0 < |x - a| < \delta \to |f(x) - L| < \epsilon)$.

Observe that

$$\begin{array}{ll} (\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in E)(0 < |x - a| < \delta \rightarrow |f(x) - L| < \epsilon) &\Leftrightarrow \\ (\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in E)(|x - a| > 0 \land |x - a| < \delta \rightarrow |f(x) - L| < \epsilon) &\Leftrightarrow \\ (\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in E)(x - a \neq 0 \land |x - a| < \delta \rightarrow |f(x) - L| < \epsilon) &\Leftrightarrow \\ (\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in E)(x \neq a \land |x - a| < \delta \rightarrow |f(x) - L| < \epsilon) &\Leftrightarrow \\ (\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in E)(x \neq a \land x \in N(a; \delta) \rightarrow f(x) \in N(L; \epsilon)) &\Leftrightarrow \\ (\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in E)(x \in N'(a; \delta) \rightarrow f(x) \in N(L; \epsilon)) &\Leftrightarrow \\ (\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in E)(x \in C \cap N'(a; \delta))(f(x) \in N(L; \epsilon)). \end{array}$$

Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function. Let *a* be an accumulation point of *E*. Suppose the limit of f at a exists.

Then there exists $L \in \mathbb{R}$ such that $\lim_{x \to a} f(x) = L$. Therefore, $\lim_{x \to a} f(x) = L$ iff $(\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in E)(0 < |x - a| < \delta \rightarrow |f(x) - L| < \epsilon)$ iff $(\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in E \cap N'(a; \delta))(f(x) \in N(L; \epsilon)).$

Suppose a real number L is not the limit of f at a.

Then $\lim_{x\to a} f(x) \neq L$.

Therefore, $(\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in E)(0 < |x - a| < \delta \rightarrow |f(x) - L| < \epsilon)$ is false.

Observe that

$$\begin{array}{l} \neg(\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in E)(0 < |x - a| < \delta \rightarrow |f(x) - L| < \epsilon) &\Leftrightarrow \\ (\exists \epsilon > 0)(\forall \delta > 0)(\exists x \in E)(0 < |x - a| < \delta \land \neg(|f(x) - L| < \epsilon)) &\Leftrightarrow \\ (\exists \epsilon > 0)(\forall \delta > 0)(\exists x \in E)(0 < |x - a| \land |x - a| < \delta \land \neg(f(x) \in N(L;\epsilon))) &\Leftrightarrow \\ (\exists \epsilon > 0)(\forall \delta > 0)(\exists x \in E)(0 < |x - a| \land x \in N(a;\delta) \land f(x) \notin N(L;\epsilon)) &\Leftrightarrow \\ (\exists \epsilon > 0)(\forall \delta > 0)(\exists x \in E)(x - a \neq 0 \land x \in N(a;\delta) \land f(x) \notin N(L;\epsilon)) &\Leftrightarrow \\ (\exists \epsilon > 0)(\forall \delta > 0)(\exists x \in E)(x \neq a \land x \in N(a;\delta) \land f(x) \notin N(L;\epsilon)) &\Leftrightarrow \\ (\exists \epsilon > 0)(\forall \delta > 0)(\exists x \in E)(x \neq a \land x \in N(a;\delta) \land f(x) \notin N(L;\epsilon)) &\Leftrightarrow \\ (\exists \epsilon > 0)(\forall \delta > 0)(\exists x \in E)(x \in N'(a;\delta) \land f(x) \notin N(L;\epsilon)) &\Leftrightarrow \\ (\exists \epsilon > 0)(\forall \delta > 0)(\exists x \in E)(x \in N'(a;\delta))(f(x) \notin N(L;\epsilon)) &\Leftrightarrow \\ (\exists \epsilon > 0)(\forall \delta > 0)(\exists x \in E)(x \in N'(a;\delta))(f(x) \notin N(L;\epsilon)). \end{array}$$

Therefore, $\lim_{x\to a} f(x) \neq L$ iff $(\exists \epsilon > 0)(\forall \delta > 0)(\exists x \in E \cap N'(a; \delta))(f(x) \notin N(L; \epsilon)).$

Suppose the limit of f at a does not exist. Then there is no $L \in \mathbb{R}$ such that $\lim_{x \to a} f(x) = L$. Thus, $\neg (\exists L \in \mathbb{R})(\lim_{x \to a} f(x) = L)$.

- **Example 2.** limit of a constant function For every $k \in \mathbb{R}$, $\lim_{x \to a} k = k$. (limit of a constant k is k)
- **Example 3.** limit of the identity function For all $a \in \mathbb{R}$, $\lim_{x \to a} x = a$.
- **Example 4. limit of the square function** For all $a \in \mathbb{R}$, $\lim_{x \to a} x^2 = a^2$.
- **Example 5. limit of the cube function** For all $a \in \mathbb{R}$, $\lim_{x \to a} x^3 = a^3$.
- **Example 6.** limit of the reciprocal function For all positive real a, $\lim_{x\to a} \frac{1}{x} = \frac{1}{a}$.
- Example 7. limit of the absolute value function For all $a \in \mathbb{R}$, $\lim_{x \to a} |x| = |a|$.

Example 8. limit of the square root function

For all $a \ge 0$, $\lim_{x \to a} \sqrt{x} = \sqrt{a}$.

Proposition 9. Let f be a real valued function. Let a be an accumulation point of domf. If L is a real number, then $\lim_{x\to a} f(x) = L$ iff $\lim_{x\to a} |f(x) - L| = 0$.

Proposition 10. Let $E \subset \mathbb{R}$.

If a is an accumulation point of E, then a is an accumulation point of $E - \{a\}$.

Proposition 11. Let $E \subset \mathbb{R}$.

A point a is an accumulation point of E iff there is a sequence (x_n) of points in $E - \{a\}$ such that $\lim_{n\to\infty} x_n = a$.

Theorem 12. sequential characterization of a function limit

Let $E \subset \mathbb{R}$. Let $f : E \to \mathbb{R}$ be a function. Let a be an accumulation point of E. Let $L \in \mathbb{R}$. Then $\lim_{x\to a} f(x) = L$ iff for every sequence (x_n) of points in $E - \{a\}$ such that $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} f(x_n) = L$.

Therefore, $\lim_{x\to a} f(x) \neq L$ iff there exists a sequence (x_n) of points in $E - \{a\}$ such that $\lim_{n\to\infty} x_n = a$ and $\lim_{n\to\infty} f(x_n) \neq L$.

Proposition 13. limit of an absolute value equals absolute value of a limit

Let f be a real valued function. Let a be an accumulation point of domf. If the limit of f at a exists, then $\lim_{x\to a} |f(x)| = |\lim_{x\to a} f(x)|$.

Lemma 14. Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function.

Let a be a point.

If the limit of f at a exists and is positive, then there exists $\delta > 0$ such that f(x) > 0 for all $x \in N'(a; \delta) \cap E$.

Proposition 15. *limit of a square root equals square root of a limit* Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function.

If $\lim_{x \to a} f(x)$ exists and is positive, then $\lim_{x \to a} \sqrt{f(x)} = \sqrt{\lim_{x \to a} f(x)}$.

Example 16. limit of f at a need not equal f(a), function with a removable discontinuity

Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} x+1 & \text{if } x \neq 1\\ 5 & \text{if } x = 1 \end{cases}$$

Then $\lim_{x\to 1} f(x) = 2$ and $\lim_{x\to 1} f(x) \neq f(1)$.

Example 17. function with a jump discontinuity

Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} 1 & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

Then $\lim_{x\to 0} f(x)$ does not exist in \mathbb{R} .

Example 18. unbounded function, infinite discontinuity Show that $\lim_{x\to 0} \frac{1}{x}$ does not exist in \mathbb{R} .

Example 19. oscillating function Show that $\lim_{x\to 0} \sin(\frac{1}{x})$ does not exist in \mathbb{R} .

Algebraic properties of function limits

Theorem 20. scalar multiple rule for limits

Let f be a real valued function. Let a be a point. If the limit of f at a exists and is a real number, then for every $\lambda \in \mathbb{R}$, the limit of λf exists and $\lim_{x \to a} \lambda f(x) = \lambda \lim_{x \to a} f(x)$.

Therefore, $\lim_{x\to a} \lambda f = \lambda \lim_{x\to a} f$.

Theorem 21. limit of a sum equals sum of limits

Let f and g be real valued functions.

Let a be an accumulation point of $dom f \cap dom g$.

If the limit of f at a exists and is a real number and the limit of g at a exists and is a real number, then the limit of f + g exists and

 $\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x).$

Therefore, $\lim_{x \to a} (f + g) = \lim_{x \to a} f + \lim_{x \to a} g$.

Corollary 22. limit of a difference equals difference of limits Let f and g be real valued functions. Let a be an accumulation point of dom $f \cap$ domg. If the limit of f at a exists and is a real number and the limit of g at a exists

and is a real number, then the limit of f - g exists and $\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x).$

Therefore, $\lim_{x\to a} (f-g) = \lim_{x\to a} f - \lim_{x\to a} g$.

Corollary 23. limit of a finite sum equals finite sum of limits

Let $n \in \mathbb{N}$ with $n \geq 2$. Let a be an accumulation point of $\bigcap_{i=1}^{n} dom f_{i}$. Let $f_{1}, f_{2}, ..., f_{n}$ be real valued functions. Then $\lim_{x \to a} [f_{1}(x) + f_{2}(x) + ... + f_{n}(x)] = \lim_{x \to a} f_{1}(x) + \lim_{x \to a} f_{2}(x) + ... + \lim_{x \to a} f_{n}(x)$. Therefore, $\lim_{x \to a} (f_1 + f_2 + \dots + f_n) = \lim_{x \to a} f_1 + \lim_{x \to a} f_2 + \dots + \lim_{x \to a} f_n.$

Lemma 24. local boundedness of a function limit

Let $E \subset \mathbb{R}$. Let $f : E \to \mathbb{R}$ be a function. Let a be a point.

If the limit of f at a exists, then there exist $\delta > 0$ and $M \in \mathbb{R}$ such that $|f(x)| \leq M$ for all $x \in N(a; \delta) \cap E$.

Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function.

Let a be a point.

Suppose the limit of f at a exists.

Then a is an accumulation point of E and there exist $\delta > 0$ and $M \in \mathbb{R}$ such that $|f(x)| \leq M$ for all $x \in N(a; \delta) \cap E$.

Thus, f is bounded in some δ neighborhood of a, so f is bounded locally near a.

Since $M \in \mathbb{R}$ and $|f(x)| \leq M$ for all $x \in N(a; \delta) \cap E$, then there exists b > 0 such that |f(x)| < b for all $x \in N(a; \delta) \cap E$.

Therefore, if the limit of f at a exists, then f is bounded locally near a.

Therefore, if f is not locally bounded near a, then the limit of f at a does not exist.

Theorem 25. limit of a product equals product of limits

Let f and g be real valued functions.

Let a be an accumulation point of $dom f \cap dom g$.

If the limit of f at a exists and is a real number and the limit of g at a exists and is a real number, then the limit of fg exists and

 $\lim_{x \to a} (f(x)g(x)) = (\lim_{x \to a} f(x))(\lim_{x \to a} g(x)).$

Therefore, $\lim_{x\to a} (fg) = (\lim_{x\to a} f)(\lim_{x\to a} g).$

Lemma 26. boundedness away from zero

Let $E \subset \mathbb{R}$.

Let $f: E \to \mathbb{R}$ be a function.

Let a be a point.

If there is a real number L such that $\lim_{x\to a} f(x) = L$ and $L \neq 0$, then there exists $\delta > 0$ such that $|f(x)| > \frac{|L|}{2}$ for all $x \in N'(a; \delta) \cap E$.

Lemma 27. Let f be a real valued function.

Let a be a point.

If the limit of f at a exists and is a nonzero real number, then the limit of $\frac{1}{f}$ exists and $\lim_{x\to a} \frac{1}{f(x)} = \frac{1}{\lim_{x\to a} f(x)}$.

Theorem 28. limit of a quotient equals quotient of limits

Let f and g be real valued functions.

Let a be an accumulation point of dom $f \cap dom g$.

If the limit of f at a exists and is a real number and the limit of g at a exists and is a nonzero real number, then the limit of $\frac{f}{a}$ exists and

 $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}.$

Therefore, $\lim_{x \to a} \left(\frac{f}{g}\right) = \frac{\lim_{x \to a} f}{\lim_{x \to a} g}$.

If $f(x) \to L$ and $g(x) \to M$, then 1. Scalar Multiple Rule $\lambda f(x) \to \lambda L$ for every $\lambda \in \mathbb{R}$. 2. Sum Rule $f(x) + g(x) \to L + M$. 3. Difference Rule $f(x) - g(x) \to L - M$. 4. Product Rule $f(x)g(x) \to LM$. 5. Quotient Rule If $M \neq 0$, then $\frac{f(x)}{g(x)} \to \frac{L}{M}$.

Lemma 29. For all $n \in \mathbb{N}$ and all $a \in \mathbb{R}$, $\lim_{x \to a} x^n = a^n$.

Theorem 30. limit of a polynomial function

If p is a polynomial function and $c \in \mathbb{R}$, then $\lim_{x\to c} p(x) = p(c)$.

Theorem 31. limit of a rational function

Let r be a rational function defined by $r(x) = \frac{p(x)}{q(x)}$ such that p and q are polynomial functions.

If $c \in \mathbb{R}$ such that $q(c) \neq 0$, then $\lim_{x \to c} r(x) = r(c) = \frac{p(c)}{q(c)}$.

Theorem 32. a limit preserves a non strict inequality

Let f and g be real valued functions such that the limit of f at a exists and the limit of g at a exists and a is an accumulation point of dom $f \cap$ dom g.

If $f(x) \leq g(x)$ for all $x \in dom f \cap dom g$, then $\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x)$.

Corollary 33. Let f be a real valued function such that $\lim_{x\to a} f(x)$ exists. 1. If $M \in \mathbb{R}$ is an upper bound of rngf, then $\lim_{x\to a} f(x) \leq M$. 2. If $m \in \mathbb{R}$ is a lower bound of rngf, then $m \leq \lim_{x\to a} f(x)$.

Corollary 34. limit of a function is between any upper and lower bound of the range of a function

Let f be a real valued function.

If $\lim_{x\to a} f(x)$ exists and there exist real numbers m and M such that $m \leq f(x) \leq M$ for all $x \in domf$, then $m \leq \lim_{x\to a} f(x) \leq M$.

Example 35. If $\lim_{n\to\infty} a_n = L$ and $a_n \ge 0$ for all $n \in \mathbb{N}$, then $L \ge 0$. However, $a_n > 0$ for all $n \in \mathbb{N}$ does not imply L > 0. *Proof.* Suppose $\lim_{n\to\infty} a_n = L$ and $a_n \ge 0$ for all $n \in \mathbb{N}$.

Since $a_n \ge 0$ for all $n \in \mathbb{N}$, then 0 is a lower bound of (a_n) . Since $\lim_{n\to\infty} a_n = L$ and 0 is a lower bound of (a_n) , then $0 \le L$, so $L \ge 0$, as desired.

Here is a counterexample: Let $a_n = \frac{1}{n}$. Then $\lim_{n \to \infty} a_n = 0$ and $a_n = \frac{1}{n} > 0$ for all $n \in \mathbb{N}$, but $0 \neq 0$.

Theorem 36. squeeze rule for function limits

Let f, g, h be real valued functions with common domain E. Let a be an accumulation point of E.

If $f(x) \leq h(x) \leq g(x)$ for all $x \in E$ and $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$, then $\lim_{x \to a} h(x) = \lim_{x \to a} f(x) = \lim_{x \to a} g(x).$

Example 37. If x > 0, then $\lim_{x \to 0} x^{\frac{3}{2}} = 0$.

 $\lim_{x \to 0} x^{\frac{3}{2}} = 0.$

Solution. Let $f : \mathbb{R}^+ \to \mathbb{R}$ be a function given by $f(x) = x^{\frac{3}{2}}$. Then $dom f = (0, \infty)$. Suppose x > 0. If 0 < x < 1, then $x < \sqrt{x} < 1$, so $x^2 < x^{\frac{3}{2}} < x$ for all $x \in (0, 1)$. Since 0 is an accumulation point of the open interval (0, 1) and $x^2 < x^{\frac{3}{2}} < x$ for all $x \in (0,1)$ and $\lim_{x\to 0} x^2 = 0 = \lim_{x\to 0} x$, then by the squeeze theorem,