# Limits of real valued functions Notes 

Jason Sass

May 25, 2023

## Sets of Numbers

$\mathbb{R}=$ set of all real numbers
$\mathbb{R}^{+}=\{x \in \mathbb{R}: x>0\}=(0, \infty)=$ set of all positive real numbers $\mathbb{R}^{*}=\{x \in \mathbb{R}: x \neq 0\}=(-\infty, 0) \cup(0, \infty)=$ set of all nonzero real numbers

## Limit of a real valued function

The limit concept expresses the idea that for a given function $f, f(x)$ is arbitrarily close to some number $L$ if $x$ is sufficiently close to some number $a$.

Definition 1. $\epsilon, \delta$ definition of a limit of a real valued function
Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let $a$ be an accumulation point of $E$.
A real number $L$ is a limit of $f$ at $a$, denoted $\lim _{x \rightarrow a} f(x)=L$, iff for every $\epsilon>0$, there exists $\delta>0$ such that $|f(x)-L|<\epsilon$ whenever $0<|x-a|<\delta$.

Therefore, $\lim _{x \rightarrow a} f(x)=L$ iff
$(\forall \epsilon>0)(\exists \delta>0)(\forall x \in E)(0<|x-a|<\delta \rightarrow|f(x)-L|<\epsilon)$.
Observe that

$$
\begin{array}{rll}
(\forall \epsilon>0)(\exists \delta>0)(\forall x \in E)(0<|x-a|<\delta \rightarrow|f(x)-L|<\epsilon) & \Leftrightarrow \\
(\forall \epsilon>0)(\exists \delta>0)(\forall x \in E)(|x-a|>0 \wedge|x-a|<\delta \rightarrow|f(x)-L|<\epsilon) & \Leftrightarrow \\
(\forall \epsilon>0)(\exists \delta>0)(\forall x \in E)(x-a \neq 0 \wedge|x-a|<\delta \rightarrow|f(x)-L|<\epsilon) & \Leftrightarrow \\
(\forall \epsilon>0)(\exists \delta>0)(\forall x \in E)(x \neq a \wedge|x-a|<\delta \rightarrow|f(x)-L|<\epsilon) & \Leftrightarrow \\
(\forall \epsilon>0)(\exists \delta>0)(\forall x \in E)(x \neq a \wedge x \in N(a ; \delta) \rightarrow f(x) \in N(L ; \epsilon)) & \Leftrightarrow \\
(\forall \epsilon>0)(\exists \delta>0)(\forall x \in E)\left(x \in N^{\prime}(a ; \delta) \rightarrow f(x) \in N(L ; \epsilon)\right) & \Leftrightarrow \\
(\forall \epsilon>0)(\exists \delta>0)\left(\forall x \in E \cap N^{\prime}(a ; \delta)\right)(f(x) \in N(L ; \epsilon)) . &
\end{array}
$$

Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let $a$ be an accumulation point of $E$.

Suppose the limit of $f$ at $a$ exists.
Then there exists $L \in \mathbb{R}$ such that $\lim _{x \rightarrow a} f(x)=L$.
Therefore, $\lim _{x \rightarrow a} f(x)=L$ iff
$(\forall \epsilon>0)(\exists \delta>0)(\forall x \in E)(0<|x-a|<\delta \rightarrow|f(x)-L|<\epsilon)$ iff $(\forall \epsilon>0)(\exists \delta>0)\left(\forall x \in E \cap N^{\prime}(a ; \delta)\right)(f(x) \in N(L ; \epsilon))$.

Suppose a real number $L$ is not the limit of $f$ at $a$.
Then $\lim _{x \rightarrow a} f(x) \neq L$.
Therefore, $(\forall \epsilon>0)(\exists \delta>0)(\forall x \in E)(0<|x-a|<\delta \rightarrow|f(x)-L|<\epsilon)$ is false.

Observe that

$$
\begin{aligned}
\neg(\forall \epsilon>0)(\exists \delta>0)(\forall x \in E)(0<|x-a|<\delta \rightarrow|f(x)-L|<\epsilon) & \Leftrightarrow \\
(\exists \epsilon>0)(\forall \delta>0)(\exists x \in E)(0<|x-a|<\delta \wedge \neg(|f(x)-L|<\epsilon)) & \Leftrightarrow \\
(\exists \epsilon>0)(\forall \delta>0)(\exists x \in E)(0<|x-a| \wedge|x-a|<\delta \wedge \neg(f(x) \in N(L ; \epsilon))) & \Leftrightarrow \\
(\exists \epsilon>0)(\forall \delta>0)(\exists x \in E)(0<|x-a| \wedge x \in N(a ; \delta) \wedge f(x) \notin N(L ; \epsilon)) & \Leftrightarrow \\
(\exists \epsilon>0)(\forall \delta>0)(\exists x \in E)(x-a \neq 0 \wedge x \in N(a ; \delta) \wedge f(x) \notin N(L ; \epsilon)) & \Leftrightarrow \\
(\exists \epsilon>0)(\forall \delta>0)(\exists x \in E)(x \neq a \wedge x \in N(a ; \delta) \wedge f(x) \notin N(L ; \epsilon)) & \Leftrightarrow \\
(\exists \epsilon>0)(\forall \delta>0)(\exists x \in E)\left(x \in N^{\prime}(a ; \delta) \wedge f(x) \notin N(L ; \epsilon)\right) & \Leftrightarrow \\
(\exists \epsilon>0)(\forall \delta>0)\left(\exists x \in E \cap N^{\prime}(a ; \delta)\right)(f(x) \notin N(L ; \epsilon)) . &
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow a} f(x) \neq L$ iff $(\exists \epsilon>0)(\forall \delta>0)\left(\exists x \in E \cap N^{\prime}(a ; \delta)\right)(f(x) \notin$ $N(L ; \epsilon))$.

Suppose the limit of $f$ at $a$ does not exist.
Then there is no $L \in \mathbb{R}$ such that $\lim _{x \rightarrow a} f(x)=L$.
Thus, $\neg(\exists L \in \mathbb{R})\left(\lim _{x \rightarrow a} f(x)=L\right)$.

## Example 2. limit of a constant function

For every $k \in \mathbb{R}, \lim _{x \rightarrow a} k=k$. (limit of a constant $k$ is $k$ )
Example 3. limit of the identity function
For all $a \in \mathbb{R}, \lim _{x \rightarrow a} x=a$.
Example 4. limit of the square function
For all $a \in \mathbb{R}, \lim _{x \rightarrow a} x^{2}=a^{2}$.
Example 5. limit of the cube function
For all $a \in \mathbb{R}, \lim _{x \rightarrow a} x^{3}=a^{3}$.
Example 6. limit of the reciprocal function
For all positive real $a, \lim _{x \rightarrow a} \frac{1}{x}=\frac{1}{a}$.
Example 7. limit of the absolute value function
For all $a \in \mathbb{R}, \lim _{x \rightarrow a}|x|=|a|$.

Example 8. limit of the square root function For all $a \geq 0, \lim _{x \rightarrow a} \sqrt{x}=\sqrt{a}$.

Proposition 9. Let $f$ be a real valued function.
Let $a$ be an accumulation point of domf.
If $L$ is a real number, then $\lim _{x \rightarrow a} f(x)=L$ iff $\lim _{x \rightarrow a}|f(x)-L|=0$.
Proposition 10. Let $E \subset \mathbb{R}$.
If $a$ is an accumulation point of $E$, then $a$ is an accumulation point of $E-$ $\{a\}$.
Proposition 11. Let $E \subset \mathbb{R}$.
A point $a$ is an accumulation point of $E$ iff there is a sequence $\left(x_{n}\right)$ of points in $E-\{a\}$ such that $\lim _{n \rightarrow \infty} x_{n}=a$.
Theorem 12. sequential characterization of a function limit
Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let $a$ be an accumulation point of $E$.
Let $L \in \mathbb{R}$.
Then $\lim _{x \rightarrow a} f(x)=L$ iff for every sequence $\left(x_{n}\right)$ of points in $E-\{a\}$ such that $\lim _{n \rightarrow \infty} x_{n}=a, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.

Therefore, $\lim _{x \rightarrow a} f(x) \neq L$ iff there exists a sequence $\left(x_{n}\right)$ of points in $E-\{a\}$ such that $\lim _{n \rightarrow \infty} x_{n}=a$ and $\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq L$.
Proposition 13. limit of an absolute value equals absolute value of a limit

Let $f$ be a real valued function.
Let $a$ be an accumulation point of domf.
If the limit of $f$ at a exists, then $\lim _{x \rightarrow a}|f(x)|=\left|\lim _{x \rightarrow a} f(x)\right|$.
Lemma 14. Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let a be a point.
If the limit of $f$ at a exists and is positive, then there exists $\delta>0$ such that $f(x)>0$ for all $x \in N^{\prime}(a ; \delta) \cap E$.

Proposition 15. limit of a square root equals square root of a limit Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
If $\lim _{x \rightarrow a} f(x)$ exists and is positive, then $\lim _{x \rightarrow a} \sqrt{f(x)}=\sqrt{\lim _{x \rightarrow a} f(x)}$.
Example 16. limit of $f$ at $a$ need not equal $f(a)$, function with a removable discontinuity

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)= \begin{cases}x+1 & \text { if } x \neq 1 \\ 5 & \text { if } x=1\end{cases}
$$

Then $\lim _{x \rightarrow 1} f(x)=2$ and $\lim _{x \rightarrow 1} f(x) \neq f(1)$.

Example 17. function with a jump discontinuity Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)= \begin{cases}1 & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

Then $\lim _{x \rightarrow 0} f(x)$ does not exist in $\mathbb{R}$.
Example 18. unbounded function, infinite discontinuity Show that $\lim _{x \rightarrow 0} \frac{1}{x}$ does not exist in $\mathbb{R}$.

Example 19. oscillating function
Show that $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ does not exist in $\mathbb{R}$.

## Algebraic properties of function limits

Theorem 20. scalar multiple rule for limits
Let $f$ be a real valued function.
Let a be a point.
If the limit of $f$ at a exists and is a real number, then for every $\lambda \in \mathbb{R}$, the limit of $\lambda f$ exists and $\lim _{x \rightarrow a} \lambda f(x)=\lambda \lim _{x \rightarrow a} f(x)$.

Therefore, $\lim _{x \rightarrow a} \lambda f=\lambda \lim _{x \rightarrow a} f$.
Theorem 21. limit of a sum equals sum of limits
Let $f$ and $g$ be real valued functions.
Let $a$ be an accumulation point of $\operatorname{dom} f \cap \operatorname{domg}$.
If the limit of $f$ at a exists and is a real number and the limit of $g$ at a exists and is a real number, then the limit of $f+g$ exists and
$\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$.
Therefore, $\lim _{x \rightarrow a}(f+g)=\lim _{x \rightarrow a} f+\lim _{x \rightarrow a} g$.
Corollary 22. limit of a difference equals difference of limits
Let $f$ and $g$ be real valued functions.
Let a be an accumulation point of $\operatorname{dom} f \cap \operatorname{domg}$.
If the limit of $f$ at a exists and is a real number and the limit of $g$ at a exists and is a real number, then the limit of $f-g$ exists and
$\lim _{x \rightarrow a}(f(x)-g(x))=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$.
Therefore, $\lim _{x \rightarrow a}(f-g)=\lim _{x \rightarrow a} f-\lim _{x \rightarrow a} g$.
Corollary 23. limit of a finite sum equals finite sum of limits
Let $n \in \mathbb{N}$ with $n \geq 2$.
Let a be an accumulation point of $\bigcap_{i=1}^{n} \operatorname{dom} f_{i}$.
Let $f_{1}, f_{2}, \ldots, f_{n}$ be real valued functions.
Then $\lim _{x \rightarrow a}\left[f_{1}(x)+f_{2}(x)+\ldots+f_{n}(x)\right]=\lim _{x \rightarrow a} f_{1}(x)+\lim _{x \rightarrow a} f_{2}(x)+$ $\ldots+\lim _{x \rightarrow a} f_{n}(x)$.

Therefore, $\lim _{x \rightarrow a}\left(f_{1}+f_{2}+\ldots+f_{n}\right)=\lim _{x \rightarrow a} f_{1}+\lim _{x \rightarrow a} f_{2}+\ldots+\lim _{x \rightarrow a} f_{n}$.

## Lemma 24. local boundedness of a function limit

Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let a be a point.
If the limit of $f$ at a exists, then there exist $\delta>0$ and $M \in \mathbb{R}$ such that $|f(x)| \leq M$ for all $x \in N(a ; \delta) \cap E$.

Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let $a$ be a point.
Suppose the limit of $f$ at $a$ exists.
Then $a$ is an accumulation point of $E$ and there exist $\delta>0$ and $M \in \mathbb{R}$ such that $|f(x)| \leq M$ for all $x \in N(a ; \delta) \cap E$.

Thus, $f$ is bounded in some $\delta$ neighborhood of $a$, so $f$ is bounded locally near $a$.

Since $M \in \mathbb{R}$ and $|f(x)| \leq M$ for all $x \in N(a ; \delta) \cap E$, then there exists $b>0$ such that $|f(x)|<b$ for all $x \in N(a ; \delta) \cap E$.

Therefore, if the limit of $f$ at $a$ exists, then $f$ is bounded locally near $a$.
Therefore, if $f$ is not locally bounded near $a$, then the limit of $f$ at $a$ does not exist.

Theorem 25. limit of a product equals product of limits
Let $f$ and $g$ be real valued functions.
Let $a$ be an accumulation point of $\operatorname{domf} \cap \operatorname{domg}$.
If the limit of $f$ at a exists and is a real number and the limit of $g$ at a exists and is a real number, then the limit of $f g$ exists and
$\lim _{x \rightarrow a}(f(x) g(x))=\left(\lim _{x \rightarrow a} f(x)\right)\left(\lim _{x \rightarrow a} g(x)\right)$.
Therefore, $\lim _{x \rightarrow a}(f g)=\left(\lim _{x \rightarrow a} f\right)\left(\lim _{x \rightarrow a} g\right)$.
Lemma 26. boundedness away from zero
Let $E \subset \mathbb{R}$.
Let $f: E \rightarrow \mathbb{R}$ be a function.
Let a be a point.
If there is a real number $L$ such that $\lim _{x \rightarrow a} f(x)=L$ and $L \neq 0$, then there exists $\delta>0$ such that $|f(x)|>\frac{|L|}{2}$ for all $x \in N^{\prime}(a ; \delta) \cap E$.

Lemma 27. Let $f$ be a real valued function.
Let a be a point.
If the limit of $f$ at a exists and is a nonzero real number, then the limit of
$\frac{1}{f}$ exists and $\lim _{x \rightarrow a} \frac{1}{f(x)}=\frac{1}{\lim _{x \rightarrow a} f(x)}$.
Theorem 28. limit of a quotient equals quotient of limits
Let $f$ and $g$ be real valued functions.
Let $a$ be an accumulation point of $\operatorname{dom} f \cap \operatorname{domg}$.

If the limit of $f$ at a exists and is a real number and the limit of $g$ at a exists and is a nonzero real number, then the limit of $\frac{f}{g}$ exists and
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$.
Therefore, $\lim _{x \rightarrow a}\left(\frac{f}{g}\right)=\frac{\lim _{x \rightarrow a} f}{\lim _{x \rightarrow a} g}$.
If $f(x) \rightarrow L$ and $g(x) \rightarrow M$, then

1. Scalar Multiple Rule
$\lambda f(x) \rightarrow \lambda L$ for every $\lambda \in \mathbb{R}$.
2. Sum Rule
$f(x)+g(x) \rightarrow L+M$.
3. Difference Rule
$f(x)-g(x) \rightarrow L-M$.
4. Product Rule
$f(x) g(x) \rightarrow L M$.
5. Quotient Rule

If $M \neq 0$, then $\frac{f(x)}{g(x)} \rightarrow \frac{L}{M}$.
Lemma 29. For all $n \in \mathbb{N}$ and all $a \in \mathbb{R}, \lim _{x \rightarrow a} x^{n}=a^{n}$.
Theorem 30. limit of a polynomial function
If $p$ is a polynomial function and $c \in \mathbb{R}$, then $\lim _{x \rightarrow c} p(x)=p(c)$.
Theorem 31. limit of a rational function
Let $r$ be a rational function defined by $r(x)=\frac{p(x)}{q(x)}$ such that $p$ and $q$ are polynomial functions.

If $c \in \mathbb{R}$ such that $q(c) \neq 0$, then $\lim _{x \rightarrow c} r(x)=r(c)=\frac{p(c)}{q(c)}$.
Theorem 32. a limit preserves a non strict inequality
Let $f$ and $g$ be real valued functions such that the limit of $f$ at a exists and the limit of $g$ at $a$ exists and $a$ is an accumulation point of $\operatorname{dom} f \cap \operatorname{domg}$.

If $f(x) \leq g(x)$ for all $x \in \operatorname{dom} f \cap \operatorname{domg}$, then $\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)$.
Corollary 33. Let $f$ be a real valued function such that $\lim _{x \rightarrow a} f(x)$ exists.

1. If $M \in \mathbb{R}$ is an upper bound of rngf, then $\lim _{x \rightarrow a} f(x) \leq M$.
2. If $m \in \mathbb{R}$ is a lower bound of $r n g f$, then $m \leq \lim _{x \rightarrow a} f(x)$.

Corollary 34. limit of a function is between any upper and lower bound of the range of a function

Let $f$ be a real valued function.
If $\lim _{x \rightarrow a} f(x)$ exists and there exist real numbers $m$ and $M$ such that $m \leq$ $f(x) \leq M$ for all $x \in \operatorname{dom} f$, then $m \leq \lim _{x \rightarrow a} f(x) \leq M$.

Example 35. If $\lim _{n \rightarrow \infty} a_{n}=L$ and $a_{n} \geq 0$ for all $n \in \mathbb{N}$, then $L \geq 0$.
However, $a_{n}>0$ for all $n \in \mathbb{N}$ does not imply $L>0$.

Proof. Suppose $\lim _{n \rightarrow \infty} a_{n}=L$ and $a_{n} \geq 0$ for all $n \in \mathbb{N}$.
Since $a_{n} \geq 0$ for all $n \in \mathbb{N}$, then 0 is a lower bound of $\left(a_{n}\right)$.
Since $\lim _{n \rightarrow \infty} a_{n}=L$ and 0 is a lower bound of $\left(a_{n}\right)$, then $0 \leq L$, so $L \geq 0$, as desired.

Here is a counterexample:
Let $a_{n}=\frac{1}{n}$.
Then $\lim _{n \rightarrow \infty} a_{n}=0$ and $a_{n}=\frac{1}{n}>0$ for all $n \in \mathbb{N}$, but $0 \ngtr 0$.
Theorem 36. squeeze rule for function limits
Let $f, g, h$ be real valued functions with common domain $E$.
Let a be an accumulation point of $E$.
If $f(x) \leq h(x) \leq g(x)$ for all $x \in E$ and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$, then $\lim _{x \rightarrow a} h(x)=\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$.

Example 37. If $x>0$, then $\lim _{x \rightarrow 0} x^{\frac{3}{2}}=0$.
Solution. Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be a function given by $f(x)=x^{\frac{3}{2}}$.
Then $\operatorname{dom} f=(0, \infty)$.
Suppose $x>0$.
If $0<x<1$, then $x<\sqrt{x}<1$, so $x^{2}<x^{\frac{3}{2}}<x$ for all $x \in(0,1)$.
Since 0 is an accumulation point of the open interval $(0,1)$ and $x^{2}<x^{\frac{3}{2}}<x$ for all $x \in(0,1)$ and $\lim _{x \rightarrow 0} x^{2}=0=\lim _{x \rightarrow 0} x$, then by the squeeze theorem, $\lim _{x \rightarrow 0} x^{\frac{3}{2}}=0$.

