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Sets of Numbers

R = set of all real numbers
R+ = {x ∈ R : x > 0} = (0,∞) = set of all positive real numbers
R∗ = {x ∈ R : x 6= 0} = (−∞, 0) ∪ (0,∞) = set of all nonzero real numbers

Limit of a real valued function

The limit concept expresses the idea that for a given function f , f(x) is arbi-
trarily close to some number L if x is sufficiently close to some number a.

Definition 1. ε, δ definition of a limit of a real valued function
Let E ⊂ R.
Let f : E → R be a function.
Let a be an accumulation point of E.
A real number L is a limit of f at a, denoted limx→a f(x) = L, iff for every

ε > 0, there exists δ > 0 such that |f(x)− L| < ε whenever 0 < |x− a| < δ.
Therefore, limx→a f(x) = L iff
(∀ε > 0)(∃δ > 0)(∀x ∈ E)(0 < |x− a| < δ → |f(x)− L| < ε).

Observe that

(∀ε > 0)(∃δ > 0)(∀x ∈ E)(0 < |x− a| < δ → |f(x)− L| < ε) ⇔
(∀ε > 0)(∃δ > 0)(∀x ∈ E)(|x− a| > 0 ∧ |x− a| < δ → |f(x)− L| < ε) ⇔
(∀ε > 0)(∃δ > 0)(∀x ∈ E)(x− a 6= 0 ∧ |x− a| < δ → |f(x)− L| < ε) ⇔

(∀ε > 0)(∃δ > 0)(∀x ∈ E)(x 6= a ∧ |x− a| < δ → |f(x)− L| < ε) ⇔
(∀ε > 0)(∃δ > 0)(∀x ∈ E)(x 6= a ∧ x ∈ N(a; δ)→ f(x) ∈ N(L; ε)) ⇔

(∀ε > 0)(∃δ > 0)(∀x ∈ E)(x ∈ N ′(a; δ)→ f(x) ∈ N(L; ε)) ⇔
(∀ε > 0)(∃δ > 0)(∀x ∈ E ∩N ′(a; δ))(f(x) ∈ N(L; ε)).

Let E ⊂ R.
Let f : E → R be a function.
Let a be an accumulation point of E.



Suppose the limit of f at a exists.
Then there exists L ∈ R such that limx→a f(x) = L.
Therefore, limx→a f(x) = L iff
(∀ε > 0)(∃δ > 0)(∀x ∈ E)(0 < |x− a| < δ → |f(x)− L| < ε) iff
(∀ε > 0)(∃δ > 0)(∀x ∈ E ∩N ′(a; δ))(f(x) ∈ N(L; ε)).

Suppose a real number L is not the limit of f at a.
Then limx→a f(x) 6= L.
Therefore, (∀ε > 0)(∃δ > 0)(∀x ∈ E)(0 < |x − a| < δ → |f(x) − L| < ε) is

false.
Observe that

¬(∀ε > 0)(∃δ > 0)(∀x ∈ E)(0 < |x− a| < δ → |f(x)− L| < ε) ⇔
(∃ε > 0)(∀δ > 0)(∃x ∈ E)(0 < |x− a| < δ ∧ ¬(|f(x)− L| < ε)) ⇔

(∃ε > 0)(∀δ > 0)(∃x ∈ E)(0 < |x− a| ∧ |x− a| < δ ∧ ¬(f(x) ∈ N(L; ε))) ⇔
(∃ε > 0)(∀δ > 0)(∃x ∈ E)(0 < |x− a| ∧ x ∈ N(a; δ) ∧ f(x) 6∈ N(L; ε)) ⇔
(∃ε > 0)(∀δ > 0)(∃x ∈ E)(x− a 6= 0 ∧ x ∈ N(a; δ) ∧ f(x) 6∈ N(L; ε)) ⇔

(∃ε > 0)(∀δ > 0)(∃x ∈ E)(x 6= a ∧ x ∈ N(a; δ) ∧ f(x) 6∈ N(L; ε)) ⇔
(∃ε > 0)(∀δ > 0)(∃x ∈ E)(x ∈ N ′(a; δ) ∧ f(x) 6∈ N(L; ε)) ⇔

(∃ε > 0)(∀δ > 0)(∃x ∈ E ∩N ′(a; δ))(f(x) 6∈ N(L; ε)).

Therefore, limx→a f(x) 6= L iff (∃ε > 0)(∀δ > 0)(∃x ∈ E ∩N ′(a; δ))(f(x) 6∈
N(L; ε)).

Suppose the limit of f at a does not exist.
Then there is no L ∈ R such that limx→a f(x) = L.
Thus, ¬(∃L ∈ R)(limx→a f(x) = L).

Example 2. limit of a constant function
For every k ∈ R, limx→a k = k. (limit of a constant k is k)

Example 3. limit of the identity function
For all a ∈ R, limx→a x = a.

Example 4. limit of the square function
For all a ∈ R, limx→a x

2 = a2.

Example 5. limit of the cube function
For all a ∈ R, limx→a x

3 = a3.

Example 6. limit of the reciprocal function
For all positive real a, limx→a

1
x = 1

a .

Example 7. limit of the absolute value function
For all a ∈ R, limx→a |x| = |a|.
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Example 8. limit of the square root function
For all a ≥ 0, limx→a

√
x =
√
a.

Proposition 9. Let f be a real valued function.
Let a be an accumulation point of domf .
If L is a real number, then limx→a f(x) = L iff limx→a |f(x)− L| = 0.

Proposition 10. Let E ⊂ R.
If a is an accumulation point of E, then a is an accumulation point of E −

{a}.
Proposition 11. Let E ⊂ R.

A point a is an accumulation point of E iff there is a sequence (xn) of points
in E − {a} such that limn→∞ xn = a.

Theorem 12. sequential characterization of a function limit
Let E ⊂ R.
Let f : E → R be a function.
Let a be an accumulation point of E.
Let L ∈ R.
Then limx→a f(x) = L iff for every sequence (xn) of points in E − {a} such

that limn→∞ xn = a, limn→∞ f(xn) = L.

Therefore, limx→a f(x) 6= L iff there exists a sequence (xn) of points in
E − {a} such that limn→∞ xn = a and limn→∞ f(xn) 6= L.

Proposition 13. limit of an absolute value equals absolute value of a
limit

Let f be a real valued function.
Let a be an accumulation point of domf .
If the limit of f at a exists, then limx→a |f(x)| = | limx→a f(x)|.

Lemma 14. Let E ⊂ R.
Let f : E → R be a function.
Let a be a point.
If the limit of f at a exists and is positive, then there exists δ > 0 such that

f(x) > 0 for all x ∈ N ′(a; δ) ∩ E.

Proposition 15. limit of a square root equals square root of a limit
Let E ⊂ R.
Let f : E → R be a function.
If limx→a f(x) exists and is positive, then limx→a

√
f(x) =

√
limx→a f(x).

Example 16. limit of f at a need not equal f(a), function with a
removable discontinuity

Let f : R→ R be a function defined by

f(x) =

{
x+ 1 if x 6= 1

5 if x = 1

Then limx→1 f(x) = 2 and limx→1 f(x) 6= f(1).
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Example 17. function with a jump discontinuity
Let f : R→ R be a function defined by

f(x) =

{
1 if x ≥ 0

0 if x < 0

Then limx→0 f(x) does not exist in R.

Example 18. unbounded function, infinite discontinuity
Show that limx→0

1
x does not exist in R.

Example 19. oscillating function
Show that limx→0 sin( 1

x ) does not exist in R.

Algebraic properties of function limits

Theorem 20. scalar multiple rule for limits
Let f be a real valued function.
Let a be a point.
If the limit of f at a exists and is a real number, then for every λ ∈ R, the

limit of λf exists and limx→a λf(x) = λ limx→a f(x).

Therefore, limx→a λf = λ limx→a f .

Theorem 21. limit of a sum equals sum of limits
Let f and g be real valued functions.
Let a be an accumulation point of domf ∩ domg.
If the limit of f at a exists and is a real number and the limit of g at a exists

and is a real number, then the limit of f + g exists and
limx→a(f(x) + g(x)) = limx→a f(x) + limx→a g(x).

Therefore, limx→a(f + g) = limx→a f + limx→a g.

Corollary 22. limit of a difference equals difference of limits
Let f and g be real valued functions.
Let a be an accumulation point of domf ∩ domg.
If the limit of f at a exists and is a real number and the limit of g at a exists

and is a real number, then the limit of f − g exists and
limx→a(f(x)− g(x)) = limx→a f(x)− limx→a g(x).

Therefore, limx→a(f − g) = limx→a f − limx→a g.

Corollary 23. limit of a finite sum equals finite sum of limits
Let n ∈ N with n ≥ 2.
Let a be an accumulation point of

⋂n
i=1 domfi.

Let f1, f2, ..., fn be real valued functions.
Then limx→a[f1(x) + f2(x) + ... + fn(x)] = limx→a f1(x) + limx→a f2(x) +

...+ limx→a fn(x).
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Therefore, limx→a(f1+f2+...+fn) = limx→a f1+limx→a f2+...+limx→a fn.

Lemma 24. local boundedness of a function limit
Let E ⊂ R.
Let f : E → R be a function.
Let a be a point.
If the limit of f at a exists, then there exist δ > 0 and M ∈ R such that

|f(x)| ≤M for all x ∈ N(a; δ) ∩ E.

Let E ⊂ R.
Let f : E → R be a function.
Let a be a point.
Suppose the limit of f at a exists.
Then a is an accumulation point of E and there exist δ > 0 and M ∈ R such

that |f(x)| ≤M for all x ∈ N(a; δ) ∩ E.
Thus, f is bounded in some δ neighborhood of a, so f is bounded locally

near a.
Since M ∈ R and |f(x)| ≤M for all x ∈ N(a; δ)∩E, then there exists b > 0

such that |f(x)| < b for all x ∈ N(a; δ) ∩ E.
Therefore, if the limit of f at a exists, then f is bounded locally near a.
Therefore, if f is not locally bounded near a, then the limit of f at a does

not exist.

Theorem 25. limit of a product equals product of limits
Let f and g be real valued functions.
Let a be an accumulation point of domf ∩ domg.
If the limit of f at a exists and is a real number and the limit of g at a exists

and is a real number, then the limit of fg exists and
limx→a(f(x)g(x)) = (limx→a f(x))(limx→a g(x)).

Therefore, limx→a(fg) = (limx→a f)(limx→a g).

Lemma 26. boundedness away from zero
Let E ⊂ R.
Let f : E → R be a function.
Let a be a point.
If there is a real number L such that limx→a f(x) = L and L 6= 0, then there

exists δ > 0 such that |f(x)| > |L|
2 for all x ∈ N ′(a; δ) ∩ E.

Lemma 27. Let f be a real valued function.
Let a be a point.
If the limit of f at a exists and is a nonzero real number, then the limit of

1
f exists and limx→a

1
f(x) = 1

limx→a f(x) .

Theorem 28. limit of a quotient equals quotient of limits
Let f and g be real valued functions.
Let a be an accumulation point of domf ∩ domg.
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If the limit of f at a exists and is a real number and the limit of g at a exists
and is a nonzero real number, then the limit of f

g exists and

limx→a
f(x)
g(x) = limx→a f(x)

limx→a g(x) .

Therefore, limx→a( f
g ) = limx→a f

limx→a g .

If f(x)→ L and g(x)→M , then
1. Scalar Multiple Rule
λf(x)→ λL for every λ ∈ R.
2. Sum Rule
f(x) + g(x)→ L+M .
3. Difference Rule
f(x)− g(x)→ L−M .
4. Product Rule
f(x)g(x)→ LM .
5. Quotient Rule

If M 6= 0, then f(x)
g(x) →

L
M .

Lemma 29. For all n ∈ N and all a ∈ R, limx→a x
n = an.

Theorem 30. limit of a polynomial function
If p is a polynomial function and c ∈ R, then limx→c p(x) = p(c).

Theorem 31. limit of a rational function

Let r be a rational function defined by r(x) = p(x)
q(x) such that p and q are

polynomial functions.

If c ∈ R such that q(c) 6= 0, then limx→c r(x) = r(c) = p(c)
q(c) .

Theorem 32. a limit preserves a non strict inequality
Let f and g be real valued functions such that the limit of f at a exists and

the limit of g at a exists and a is an accumulation point of domf ∩ domg.
If f(x) ≤ g(x) for all x ∈ domf ∩ domg, then limx→a f(x) ≤ limx→a g(x).

Corollary 33. Let f be a real valued function such that limx→a f(x) exists.
1. If M ∈ R is an upper bound of rngf , then limx→a f(x) ≤M .
2. If m ∈ R is a lower bound of rngf , then m ≤ limx→a f(x).

Corollary 34. limit of a function is between any upper and lower
bound of the range of a function

Let f be a real valued function.
If limx→a f(x) exists and there exist real numbers m and M such that m ≤

f(x) ≤M for all x ∈ domf , then m ≤ limx→a f(x) ≤M .

Example 35. If limn→∞ an = L and an ≥ 0 for all n ∈ N, then L ≥ 0.
However, an > 0 for all n ∈ N does not imply L > 0.
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Proof. Suppose limn→∞ an = L and an ≥ 0 for all n ∈ N.
Since an ≥ 0 for all n ∈ N, then 0 is a lower bound of (an).
Since limn→∞ an = L and 0 is a lower bound of (an), then 0 ≤ L, so L ≥ 0,

as desired.
Here is a counterexample:
Let an = 1

n .
Then limn→∞ an = 0 and an = 1

n > 0 for all n ∈ N, but 0 6> 0.

Theorem 36. squeeze rule for function limits
Let f, g, h be real valued functions with common domain E.
Let a be an accumulation point of E.
If f(x) ≤ h(x) ≤ g(x) for all x ∈ E and limx→a f(x) = limx→a g(x), then

limx→a h(x) = limx→a f(x) = limx→a g(x).

Example 37. If x > 0, then limx→0 x
3
2 = 0.

Solution. Let f : R+ → R be a function given by f(x) = x
3
2 .

Then domf = (0,∞).
Suppose x > 0.
If 0 < x < 1, then x <

√
x < 1, so x2 < x

3
2 < x for all x ∈ (0, 1).

Since 0 is an accumulation point of the open interval (0, 1) and x2 < x
3
2 < x

for all x ∈ (0, 1) and limx→0 x
2 = 0 = limx→0 x, then by the squeeze theorem,

limx→0 x
3
2 = 0.
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