Real Number System Theory

Jason Sass

July 3, 2023

Construction of \mathbb{Q}

Proposition 1. Let \sim be a relation defined for all $(a,b),(c,d)\in\mathbb{Z}\times\mathbb{Z}^*$ by $(a,b)\sim(c,d)$ iff ad=bc.

Then \sim is an equivalence relation over $\mathbb{Z} \times \mathbb{Z}^*$.

Proof. Observe that \sim is a relation over $\mathbb{Z} \times \mathbb{Z}^*$.

Let $(m, n) \in \mathbb{Z} \times \mathbb{Z}^*$.

Then $m \in \mathbb{Z}$ and $n \in \mathbb{Z}^*$, so $n \in \mathbb{Z}$ and $n \neq 0$.

Since mn = nm and $n \neq 0$, then $(m, n) \sim (m, n)$.

Therefore, \sim is reflexive.

Let $(m, n) \in \mathbb{Z} \times \mathbb{Z}^*$ and $(p, q) \in \mathbb{Z} \times \mathbb{Z}^*$ such that $(m, n) \sim (p, q)$.

Then $m \in \mathbb{Z}$ and $n \in \mathbb{Z}^*$ and $p \in \mathbb{Z}$ and $q \in \mathbb{Z}^*$ and mq = np.

Since $n \in \mathbb{Z}^*$, then $n \neq 0$.

Since $q \in \mathbb{Z}^*$, then $q \neq 0$.

Observe that pn = np = mq = qm.

Since pn = qm and $q \neq 0$ and $n \neq 0$, then $(p,q) \sim (m,n)$, so \sim is symmetric.

Let $(m,n) \in \mathbb{Z} \times \mathbb{Z}^*$ and $(p,q) \in \mathbb{Z} \times \mathbb{Z}^*$ and $(r,s) \in \mathbb{Z} \times \mathbb{Z}^*$ such that $(m,n) \sim (p,q)$ and $(p,q) \sim (r,s)$.

Then $m \in \mathbb{Z}$ and $n \in \mathbb{Z}^*$ and $p \in \mathbb{Z}$ and $q \in \mathbb{Z}^*$ and $r \in \mathbb{Z}$ and $s \in \mathbb{Z}^*$ and mq = np and ps = qr.

Since $n \in \mathbb{Z}^*$, then $n \in \mathbb{Z}$ and $n \neq 0$.

Since $s \in \mathbb{Z}^*$, then $s \in \mathbb{Z}$ and $s \neq 0$.

We right multiply the equation mq = np by s to obtain mqs = nps.

We left multiply the equation ps = qr by n to obtain nps = nqr.

Thus, mqs = nps and nps = nqr, so mqs = nqr.

Hence, q(ms) = q(nr).

Since $q \in \mathbb{Z}^*$, then $q \in \mathbb{Z}$ and $q \neq 0$.

Hence, by the multiplicative cancellation law for the integral domain \mathbb{Z} , we obtain ms=nr.

Since ms = nr and $n \neq 0$ and $s \neq 0$, then $(m, n) \sim (r, s)$, so \sim is transitive. Since \sim is reflexive, symmetric, and transitive, then \sim is an equivalence relation over $\mathbb{Z} \times \mathbb{Z}^*$. **Proposition 2.** Addition is a binary operation on \mathbb{Q}

Proof. Let $+: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$ be defined by $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$ for all $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$. To prove addition is a binary operation on \mathbb{Q} , we must prove \mathbb{Q} is closed

under addition and addition is well defined since elements of \mathbb{Q} are equivalence classes.

To prove addition is well defined, we must prove if $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$, then $\frac{a}{b} + \frac{c}{d} = \frac{a'}{b'} + \frac{c'}{d'}$ for every $\frac{a}{b}, \frac{a'}{b'}, \frac{c}{d}, \frac{c'}{d'} \in \mathbb{Q}$.

We prove \mathbb{Q} is closed under addition.

Let $\frac{a}{b}$, $\frac{c}{d} \in \mathbb{Q}$.

Then $a, b, c, d \in \mathbb{Z}$ and $b \neq 0$ and $d \neq 0$.

By closure of \mathbb{Z} under addition and multiplication, $bd \in \mathbb{Z}$ and $ad + bc \in \mathbb{Z}$. Since the product of any two nonzero integers is nonzero and $b \neq 0$ and $d \neq 0$, then $bd \neq 0$.

Therefore, $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd} \in \mathbb{Q}$.

We prove addition over $\mathbb Q$ is well defined.

Let $\frac{a}{b}, \frac{a'}{b'}, \frac{c}{d}, \frac{c'}{d'} \in \mathbb{Q}$ such that $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$. Then $a,b,c,d,a',b',c',d' \in \mathbb{Z}$ and $b,b',d,d' \neq 0$ and ab' = ba' and cd' = dc'.

Observe that

$$(ad + bc)(b'd') = (ad)(b'd') + (bc)(b'd')$$

$$= a(db')d' + b(cb')d'$$

$$= a(b'd)d' + b(b'c)d'$$

$$= (ab')(dd') + (bb')(cd')$$

$$= (ba')(dd') + (bb')(dc')$$

$$= b(a'd)d' + b(b'd)c'$$

$$= b(da')d' + b(db')c'$$

$$= (bd)(a'd') + (bd)(b'c')$$

$$= (bd)(a'd' + b'c').$$

Therefore, (ad + bc)(b'd') = (bd)(a'd' + b'c').

Since the product of any two nonzero integers is nonzero and $b \neq 0$ and $d \neq 0$ and $b' \neq 0$ and $d' \neq 0$, then $bd \neq 0$ and $b'd' \neq 0$.

Since (ad+bc)(b'd')=(bd)(a'd'+b'c') and $bd\neq 0$ and $b'd'\neq 0$, then $\frac{ad+bc}{bd}=\frac{a'd'+b'c'}{b'd'}$. Therefore,

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
$$= \frac{a'd' + b'c'}{b'd'}$$
$$= \frac{a'}{b'} + \frac{c'}{d'}.$$

Theorem 3. algebraic properties of addition over $\mathbb Q$

1.
$$\frac{m}{n} + (\frac{p}{a} + \frac{r}{s}) = (\frac{m}{n} + \frac{p}{a}) + \frac{r}{s}$$
 for all $\frac{m}{n}, \frac{p}{a}, \frac{r}{s} \in \mathbb{Q}$. (associative)

2.
$$\frac{m}{n} + \frac{p}{q} = \frac{p}{p} + \frac{m}{n}$$
 for all $\frac{m}{n}, \frac{p}{q} \in \mathbb{Q}$. (commutative)

3.
$$\frac{m}{n} + 0 = 0 + \frac{m}{n} = \frac{m}{n}$$
 for all $\frac{m}{n} \in \mathbb{Q}$. (additive identity)

1.
$$\frac{m}{n} + (\frac{p}{q} + \frac{r}{s}) = (\frac{m}{n} + \frac{p}{q}) + \frac{r}{s}$$
 for all $\frac{m}{n}, \frac{p}{q}, \frac{r}{s} \in \mathbb{Q}$. (associative)
2. $\frac{m}{n} + \frac{p}{q} = \frac{p}{q} + \frac{m}{n}$ for all $\frac{m}{n}, \frac{p}{q} \in \mathbb{Q}$. (commutative)
3. $\frac{m}{n} + 0 = 0 + \frac{m}{n} = \frac{m}{n}$ for all $\frac{m}{n} \in \mathbb{Q}$. (additive identity)
4. $\frac{m}{n} + \frac{-m}{n} = \frac{-m}{n} + \frac{m}{n} = 0$ for all $\frac{m}{n} \in \mathbb{Q}$. (additive inverses)

Proof. We prove addition is associative.

Let $\frac{m}{n}$, $\frac{p}{q}$, $\frac{r}{s} \in \mathbb{Q}$. Then $m, n, p, q, r, s \in \mathbb{Z}$ and $n, q, s \neq 0$.

Observe that

$$(\frac{m}{n} + \frac{p}{q}) + \frac{r}{s} = \frac{mq + np}{nq} + \frac{r}{s}$$

$$= \frac{(mq + np)s + (nq)r}{(nq)s}$$

$$= \frac{mqs + nps + nqr}{nqs}$$

$$= \frac{m(qs) + n(ps + qr)}{n(qs)}$$

$$= \frac{m}{n} + \frac{ps + qr}{qs}$$

$$= \frac{m}{n} + (\frac{p}{q} + \frac{r}{s}).$$

Therefore, addition is associative.

Proof. We prove addition is commutative.

Let $\frac{m}{n}$, $\frac{p}{q} \in \mathbb{Q}$. Then $m, n, p, q \in \mathbb{Z}$ and $n, q \neq 0$.

Observe that

$$\frac{m}{n} + \frac{p}{q} = \frac{mq + np}{nq}$$

$$= \frac{np + mq}{nq}$$

$$= \frac{pn + qm}{qn}$$

$$= \frac{p}{q} + \frac{m}{n}.$$

Therefore, addition is commutative.

Proof. We prove $\frac{m}{n} + 0 = 0 + \frac{m}{n} = \frac{m}{n}$ for all $\frac{m}{n} \in \mathbb{Q}$. Let $\frac{m}{n} \in \mathbb{Q}$.

Then $m, n \in \mathbb{Z}$ and $n \neq 0$.

Since 0 and 1 are integers and $1 \neq 0$, then $0 = \frac{0}{1} \in \mathbb{Q}$.

Observe that

$$\frac{m}{n} + 0 = \frac{m}{n} + \frac{0}{1}$$

$$= \frac{m \cdot 1 + n \cdot 0}{n \cdot 1}$$

$$= \frac{m + 0}{n}$$

$$= \frac{m}{n}$$

$$= \frac{0 + m}{n}$$

$$= \frac{0 \cdot n + 1 \cdot m}{1 \cdot n}$$

$$= \frac{0}{1} + \frac{m}{n}$$

$$= 0 + \frac{m}{n}.$$

Therefore, $\frac{m}{n} + 0 = \frac{m}{n} = 0 + \frac{m}{n}$.

Proof. We prove $\frac{m}{n} + \frac{-m}{n} = \frac{-m}{n} + \frac{m}{n} = 0$ for all $\frac{m}{n} \in \mathbb{Q}$.

Let $\frac{m}{n} \in \mathbb{Q}$.

Then $m, n \in \mathbb{Z}$ and $n \neq 0$.

Since $m \in \mathbb{Z}$, then $-m \in \mathbb{Z}$.

Since -m and n are integers and $n \neq 0$, then $\frac{-m}{n} \in \mathbb{Q}$. Since $n \in \mathbb{Z}$ and $n \neq 0$, then $n^2 \neq 0$, so $\frac{0}{n^2} = 0$.

Observe that

$$\frac{m}{n} + \frac{-m}{n} = \frac{-m}{n} + \frac{m}{n}$$

$$= \frac{(-m)n + nm}{n^2}$$

$$= \frac{-mn + mn}{n^2}$$

$$= \frac{0}{n^2}$$

$$= 0.$$

Therefore, $\frac{m}{n} + \frac{-m}{n} = \frac{-m}{n} + \frac{m}{n} = 0$.

Proposition 4. Multiplication is a binary operation on \mathbb{Q} .

Proof. Let $\cdot : \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$ be defined by $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$ for all $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$.

To prove multiplication is a binary operation on \mathbb{Q} , we must prove \mathbb{Q} is closed under multiplication and multiplication is well defined since elements of $\mathbb Q$ are equivalence classes.

To prove multiplication is well defined, we must prove if $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$, then $\frac{a}{b} \cdot \frac{c}{d} = \frac{a'}{b'} \cdot \frac{c'}{d'}$ for every $\frac{a}{b}, \frac{a'}{b'}, \frac{c}{d}, \frac{c'}{d'} \in \mathbb{Q}$.

We prove \mathbb{Q} is closed under multiplication.

Let $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$.

Then $a, b, c, d \in \mathbb{Z}$ and $b \neq 0$ and $d \neq 0$.

By closure of \mathbb{Z} under multiplication, $ac \in \mathbb{Z}$ and $bd \in \mathbb{Z}$.

Since the product of any two nonzero integers is nonzero and $b,d\in\mathbb{Z}$ and $b \neq 0$ and $d \neq 0$, then $bd \neq 0$.

Therefore, $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} \in \mathbb{Q}$, as desired.

We prove multiplication over \mathbb{Q} is well defined.

Let $\frac{a}{b}, \frac{a'}{b'}, \frac{c}{d}, \frac{c'}{d'} \in \mathbb{Q}$ such that $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$. Then $a,b,c,d,a',b',c',d' \in \mathbb{Z}$ and $b,b',d,d' \neq 0$ and ab' = ba' and cd' = dc'.

Observe that

$$(ac)(b'd') = a(cb')d'$$

$$= a(b'c)d'$$

$$= (ab')(cd')$$

$$= (ba')(dc')$$

$$= b(a'd)c'$$

$$= b(da')c'$$

$$= (bd)(a'c').$$

Therefore, (ac)(b'd') = (bd)(a'c').

Since the product of any two nonzero integers is nonzero and $b, d, b', d' \in \mathbb{Z}$ and $b \neq 0$ and $d \neq 0$ and $b' \neq 0$ and $d' \neq 0$, then $bd \neq 0$ and $b'd' \neq 0$.

Since (ac)(b'd') = (bd)(a'c') and $bd \neq 0$ and $b'd' \neq 0$, then $\frac{ac}{bd} = \frac{a'c'}{b'd'}$. Therefore,

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$
$$= \frac{a'c'}{b'd'}$$
$$= \frac{a'}{b'} \cdot \frac{c'}{d'}$$

Theorem 5. algebraic properties of multiplication over \mathbb{Q} 1. $\frac{m}{n} \cdot (\frac{p}{q} \cdot \frac{r}{s}) = (\frac{m}{n} \cdot \frac{p}{q}) \cdot \frac{r}{s}$ for all $\frac{m}{n}, \frac{p}{q}, \frac{r}{s} \in \mathbb{Q}$. (associative) 2. $\frac{m}{n} \cdot \frac{p}{q} = \frac{p}{q} \cdot \frac{m}{n}$ for all $\frac{m}{n}, \frac{p}{q} \in \mathbb{Q}$. (commutative) 3. $\frac{m}{n} \cdot 1 = 1 \cdot \frac{m}{n} = \frac{m}{n}$ for all $\frac{m}{n} \in \mathbb{Q}$. (multiplicative identity) 4. $\frac{m}{n} \cdot 0 = 0 \cdot \frac{m}{n} = 0$ for all $\frac{m}{n} \in \mathbb{Q}$. 5. $\frac{m}{n} \cdot (\frac{p}{q} + \frac{r}{s}) = \frac{m}{n} \cdot \frac{p}{q} + \frac{m}{n} \cdot \frac{r}{s}$ for all $\frac{m}{n}, \frac{p}{q}, \frac{r}{s} \in \mathbb{Q}$. (left distributive) 6. $(\frac{m}{n} + \frac{p}{q}) \cdot \frac{r}{s} = \frac{m}{n} \cdot \frac{r}{s} + \frac{p}{q} \cdot \frac{r}{s}$ for all $\frac{m}{n}, \frac{p}{q}, \frac{r}{s} \in \mathbb{Q}$. (right distributive)

5

Proof. We prove multiplication is associative.

Let
$$\frac{m}{n}, \frac{p}{q}, \frac{r}{s} \in \mathbb{Q}$$
.

Let $\frac{m}{n}$, $\frac{p}{q}$, $\frac{r}{s} \in \mathbb{Q}$. Then $m, n, p, q, r, s \in \mathbb{Z}$ and $n, q, s \neq 0$.

Observe that

$$(\frac{m}{n} \cdot \frac{p}{q}) \frac{r}{s} = \frac{mp}{nq} \cdot \frac{r}{s}$$

$$= \frac{(mp)r}{(nq)s}$$

$$= \frac{m(pr)}{n(qs)}$$

$$= \frac{m}{n} \cdot \frac{pr}{qs}$$

$$= \frac{m}{n} (\frac{p}{q} \cdot \frac{r}{s}).$$

Therefore, multiplication is associative.

Proof. We prove multiplication is commutative.

Let
$$\frac{m}{n}, \frac{p}{a} \in \mathbb{Q}$$

Let $\frac{m}{n}$, $\frac{\bar{p}}{q} \in \mathbb{Q}$. Then $m, n, p, q \in \mathbb{Z}$ and $n, q \neq 0$.

Observe that

$$\frac{m}{n} \cdot \frac{p}{q} = \frac{mp}{nq}$$

$$= \frac{pm}{qn}$$

$$= \frac{p}{q} \cdot \frac{m}{n}.$$

Therefore, multiplication is commutative.

Proof. We prove $\frac{m}{n} \cdot 1 = 1 \cdot \frac{m}{n} = \frac{m}{n}$ for all $\frac{m}{n} \in \mathbb{Q}$. Let $\frac{m}{n} \in \mathbb{Q}$.

Then $m, n \in \mathbb{Z}$ and $n \neq 0$.

Since 1 is an integer and $1 \neq 0$, then $1 = \frac{1}{1} \in \mathbb{Q}$. Observe that

$$\frac{m}{n} \cdot 1 = \frac{m}{n} \cdot \frac{1}{1}$$

$$= \frac{m \cdot 1}{n \cdot 1}$$

$$= \frac{m}{n}$$

$$= \frac{1 \cdot m}{1 \cdot n}$$

$$= \frac{1}{1} \cdot \frac{m}{n}$$

$$= 1 \cdot \frac{m}{n}$$

Therefore, $\frac{m}{n} \cdot 1 = \frac{m}{n} = 1 \cdot \frac{m}{n}$.

Proof. We prove $\frac{m}{n} \cdot 0 = 0 \cdot \frac{m}{n} = 0$ for all $\frac{m}{n} \in \mathbb{Q}$. Let $\frac{m}{n} \in \mathbb{Q}$. Then $m, n \in \mathbb{Z}$ and $n \neq 0$. Since 0 is an integer and $0 = \frac{0}{1}$ and $1 \neq 0$, then $0 = \frac{0}{1} \in \mathbb{Q}$.

Observe that

$$\frac{m}{n} \cdot 0 = \frac{m}{n} \cdot \frac{0}{1}$$

$$= \frac{m \cdot 0}{n \cdot 1}$$

$$= \frac{0}{n}$$

$$= 0$$

$$= \frac{0}{n}$$

$$= \frac{0 \cdot m}{1 \cdot n}$$

$$= \frac{0}{1} \cdot \frac{m}{n}$$

$$= 0 \cdot \frac{m}{n}.$$

Therefore, $\frac{m}{n} \cdot 0 = 0 = 0 \cdot \frac{m}{n}$.

Proof. We prove $\frac{m}{n} \cdot (\frac{p}{q} + \frac{r}{s}) = \frac{m}{n} \cdot \frac{p}{q} + \frac{m}{n} \cdot \frac{r}{s}$ for all $\frac{m}{n}, \frac{p}{q}, \frac{r}{s} \in \mathbb{Q}$. Let $\frac{m}{n}, \frac{p}{q}, \frac{r}{s} \in \mathbb{Q}$. Then $m, n, p, q, r, s \in \mathbb{Z}$ and $n, q, s \neq 0$. Since n is a nonzero integer, then $\frac{n}{n} = \frac{1}{1}$.

Observe that

$$\frac{m}{n}(\frac{p}{q} + \frac{r}{s}) = \frac{m}{n} \cdot \frac{ps + qr}{qs}$$

$$= \frac{m(ps + qr)}{n(qs)}$$

$$= \frac{mps + mqr}{nqs}$$

$$= \frac{1}{1} \cdot \frac{mps + mqr}{nqs}$$

$$= \frac{n}{n} \cdot \frac{mps + mqr}{nqs}$$

$$= \frac{n(mps + mqr)}{n(nqs)}$$

$$= \frac{nmps + nmqr}{n(nqs)}$$

$$= \frac{n(mp)s + nqmr}{n(nq)s}$$

$$= \frac{m(mp)s + nqmr}{n(nq)s}$$

$$= \frac{m(mp)(ns) + (nq)(mr)}{(nq)(ns)}$$

$$= \frac{mp}{nq} + \frac{mr}{ns}$$

$$= \frac{m}{n} \cdot \frac{p}{q} + \frac{m}{n} \cdot \frac{r}{s}$$

Therefore, multiplication is left distributive over addition.

Proof. We prove $(\frac{m}{n} + \frac{p}{q}) \cdot \frac{r}{s} = \frac{m}{n} \cdot \frac{r}{s} + \frac{p}{q} \cdot \frac{r}{s}$ for all $\frac{m}{n}, \frac{p}{q}, \frac{r}{s} \in \mathbb{Q}$. Let $\frac{m}{n}, \frac{p}{q}, \frac{r}{s} \in \mathbb{Q}$. Then $m, n, p, q, r, s \in \mathbb{Z}$ and $n, q, s \neq 0$. Since s is a nonzero integer, then $\frac{s}{s} = \frac{1}{1}$. Observe that

$$(\frac{m}{n} + \frac{p}{q}) \cdot \frac{r}{s} = \frac{mq + np}{nq} \cdot \frac{r}{s}$$

$$= \frac{(mq + np)r}{(nq)s}$$

$$= \frac{mqr + npr}{nqs} \cdot \frac{1}{1}$$

$$= \frac{mqr + npr}{nqs} \cdot \frac{s}{s}$$

$$= \frac{(mqr + npr)s}{nqss}$$

$$= \frac{(mqr + npr)s}{nqss}$$

$$= \frac{mqrs + nprs}{nqss}$$

$$= \frac{(mr)(qs) + (ns)(pr)}{(ns)(qs)}$$

$$= \frac{mr}{ns} + \frac{pr}{qs}$$

$$= \frac{m}{n} \cdot \frac{r}{s} + \frac{p}{q} \cdot \frac{r}{s}$$

Therefore, multiplication is right distributive over addition.

Proposition 6. \mathbb{Q} extends \mathbb{Z} .

Let $\mathbb{Q} = \{\frac{m}{n} : n \neq 0\}$ where $\frac{m}{n}$ is the class of ordered pairs (p,q) in $\mathbb{Z} \times \mathbb{Z}$ such that $(p,q) \sim (m,n)$ iff pn = qm and $q, n \neq 0$. \mathbb{Q} extends \mathbb{Z} .

Proof. Let $S = \{\frac{n}{1} : n \in \mathbb{Z}\}.$ Then $S \subset \mathbb{Q}.$

We first prove S is a subring of \mathbb{Q} .

Since $\frac{1}{1} \in S$, then $S \neq \emptyset$. Let $\frac{m}{1}, \frac{n}{1} \in S$.

Then $m, n \in \mathbb{Z}$.

Observe that $\frac{m}{1} - \frac{n}{1} = \frac{m-n}{1} \in S$ since m-n is an integer. Therefore, S is closed under subtraction.

Observe that $\frac{m}{1} \cdot \frac{n}{1} = \frac{mn}{1} \in S$ since mn is an integer. Therefore, S is closed under multiplication.

The multiplicative identity of \mathbb{Q} is $\frac{1}{1}$ and $\frac{1}{1} \in S$.

Therefore, S is a subring of \mathbb{Q} .

We prove S is isomorphic to \mathbb{Z} .

Let $f: \mathbb{Z} \to S$ be defined by $f(n) = \frac{n}{1}$ for all $n \in \mathbb{Z}$.

We prove f is a ring homomorphism.

Let $m, n \in \mathbb{Z}$.

Then

$$f(m+n) = \frac{m+n}{1}$$
$$= \frac{m}{1} + \frac{n}{1}$$
$$= f(m) + f(n)$$

and

$$f(mn) = \frac{mn}{1}$$

$$= \frac{mn}{1 \cdot 1}$$

$$= \frac{m}{1} \cdot \frac{n}{1}$$

$$= f(m) \cdot f(n)$$

and $f(1) = \frac{1}{1}$ and the multiplicative identity of S is $\frac{1}{1}$.

Therefore, f is a ring homomorphism from \mathbb{Z} to S.

Let $m, n \in \mathbb{Z}$ such that f(m) = f(n).

Then $\frac{m}{1} = \frac{n}{1}$, so $m \cdot 1 = 1 \cdot n$. Therefore, m = n, so f is injective.

Let $\frac{m}{1} \in S$.

Then m is an integer.

Hence, there is an integer m such that $f(m) = \frac{m}{1}$.

Therefore, f is surjective.

Since f is injective and surjective, then f is bijective.

Since f is a bijective ring homomorphism, then f is a ring isomorphism.

Therefore, $\mathbb{Z} \cong S$.

Ordered Fields

Proposition 7. Positivity of \mathbb{Q} is well defined.

Proof. To prove positivity of \mathbb{Q} is well defined, let $\frac{m}{n}, \frac{m'}{n'} \in \mathbb{Q}$. Then $m, n \in \mathbb{Z}$ and $n \neq 0$ and $m', n' \in \mathbb{Z}$ and $n' \neq 0$.

We must prove if $(m,n) \sim (m',n')$, then $\frac{m}{n}$ is positive iff $\frac{m'}{n'}$ is positive.

Let $(m, n) \sim (m', n')$.

Then $\frac{m}{n} = \frac{m'}{n'}$ and mn' = nm' and $n, n' \neq 0$.

Since $(m, n) \sim (m', n')$, then $(m', n') \sim (m, n)$, so $\frac{m'}{n'} = \frac{m}{n}$.

We prove if $\frac{m}{n}$ is positive, then $\frac{m'}{n'}$ is positive. Suppose $\frac{m}{n}$ is positive.

Then there exist positive integers a and b such that $\frac{m}{n} = \frac{a}{b}$.

Since $\frac{m'}{n'} = \frac{m}{n} = \frac{a}{b}$, then there exist positive integers a and b such that $\frac{m'}{n'} = \frac{a}{b}$.

Therefore, $\frac{m'}{n'}$ is positive.

Conversely, we prove if $\frac{m'}{n'}$ is positive, then $\frac{m}{n}$ is positive.

Suppose $\frac{m'}{n'}$ is positive.

Then there exist positive integers c and d such that $\frac{m'}{n'} = \frac{c}{d}$.

Since $\frac{m}{n} = \frac{m'}{n'} = \frac{c}{d}$, then there exist positive integers c and d such that $\frac{m}{n} = \frac{c}{d}$.

Therefore, $\frac{m}{n}$ is positive.

Proposition 8. $(\mathbb{Q}, +, \cdot)$ is an ordered field.

Proof. Observe that $(\mathbb{Q}, +, \cdot)$ is a field.

Let \mathbb{Q}^+ be the set of all positive rational numbers.

Then $\mathbb{Q}^+ = \{ \frac{a}{b} \in \mathbb{Q} : a, b \in \mathbb{Z}^+ \}$, so $\mathbb{Q}^+ \subset \mathbb{Q}$.

Since $1 \in \mathbb{Z}^+$, then $\frac{1}{1} \in \mathbb{Q}^+$, so \mathbb{Q}^+ is not empty.

To prove \mathbb{Q} is an ordered field, we must prove \mathbb{Q}^+ is closed under addition and multiplication of \mathbb{Q} and the trichotomy law holds.

Let $u, v \in \mathbb{Q}^+$.

Then there exist positive integers a, b, c, d such that $u = \frac{a}{b}$ and $v = \frac{c}{d}$.

We prove \mathbb{Q}^+ is closed under addition in \mathbb{Q} .

Since $a, b, c, d \in \mathbb{Z}^+$, then $ad, bc, bd \in \mathbb{Z}^+$, by closure of \mathbb{Z}^+ under multiplication.

Thus, $ad + bc \in \mathbb{Z}^+$, by closure of \mathbb{Z}^+ under addition.

Observe that $u + v = \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$.

Therefore, there exist positive integers ad+bc and bd such that $u+v=\frac{ad+bc}{bd}$, so u+v is positive.

We prove \mathbb{Q}^+ is closed under multiplication in \mathbb{Q} .

Since $a, b, c, d \in \mathbb{Z}^+$, then $ac \in \mathbb{Z}^+$ and $bd \in \mathbb{Z}^+$, by closure of \mathbb{Z}^+ under multiplication.

Observe that $uv = \frac{a}{b} \frac{c}{d} = \frac{ac}{bd}$.

Therefore, there exist positive integers ac and bd such that $uv = \frac{ac}{bd}$, so uv is positive.

To prove trichotomy, we must prove exactly one of the following holds: $q \in \mathbb{Q}^+$, q = 0, $-q \in \mathbb{Q}^+$ for every $q \in \mathbb{Q}$.

Let $q \in \mathbb{Q}$.

Then there exist integers a, b with $b \neq 0$ such that $q = \frac{a}{b}$.

By trichotomy of \mathbb{Z} , either a > 0 or a = 0 or a < 0.

We consider these cases separately.

Case 1: Suppose a = 0.

Since $b \neq 0$, then $q = \frac{a}{b} = \frac{0}{b} = 0$.

Therefore, q = 0.

Case 2: Suppose a > 0.

Then $a \in \mathbb{Z}^+$.

Since $b \neq 0$, then either b > 0 or b < 0.

```
If b > 0, then b \in \mathbb{Z}^+.
        Hence, a \in \mathbb{Z}^+ and b \in \mathbb{Z}^+.
        Therefore, \frac{a}{b} = q \in \mathbb{Q}^+.
        If b < 0, then -b \in \mathbb{Z}^+.
        Hence, a \in \mathbb{Z}^+ and -b \in \mathbb{Z}^+.
        Therefore \frac{a}{-b} = -\frac{a}{b} = -q \in \mathbb{Q}^+.
Case 3: Suppose a < 0.
        Then -a \in \mathbb{Z}^+.
         Since b \neq 0, then either b > 0 or b < 0.
        If b > 0, then b \in \mathbb{Z}^+.
        Hence, -a \in \mathbb{Z}^+ and b \in \mathbb{Z}^+.
        Therefore, \frac{-a}{b} = -\frac{a}{b} = -q \in \mathbb{Q}^+.
If b < 0, then -b \in \mathbb{Z}^+.
        Hence, -a \in \mathbb{Z}^+ and -b \in \mathbb{Z}^+.
        Therefore \frac{-a}{-b} = \frac{a}{b} = q \in \mathbb{Q}^+.
        Hence, either q \in \mathbb{Q}^+ or q = 0 or -q \in \mathbb{Q}^+.
                                                                                                                                                                                                                  Therefore, the trichotomy law holds.
Proposition 9. Let F be an ordered field with positive subset P. Then
         1. 1 \in P.
         2. if x \in P, then x^{-1} \in P.
         3. if x, y \in P, then \frac{x}{y} \in P.
         4. if x \in F and x \neq 0, then x^2 \in P.
         5. if x \in P, then nx \in P for all n \in \mathbb{N}.
Proof. We prove 1.
         Since F is an ordered field, then either 1 \in P or 1 = 0 or -1 \in P.
         Since F is a field, then 1 \neq 0.
         Suppose -1 \in P.
         Since F is a ring, then (-1)(-1) = -(-1) = 1 \in P.
        Thus, -1 \in P and 1 \in P, a violation of trichotomy.
        Hence, -1 \notin P.
         Since 1 \neq 0 and -1 \notin P, then we must conclude 1 \in P.
                                                                                                                                                                                                                  Proof. We prove 2.
         Suppose x \in P.
         Then x \neq 0.
         Since F is a field, then every nonzero element of F has a multiplicative
inverse in F, so x^{-1} \in F.
         Either x^{-1} \in P or x^{-1} = 0 or -x^{-1} \in P.
         Since F is a division ring and x \neq 0, then x^{-1} \neq 0.
         Suppose -x^{-1} \in P.
        Since x \in P and -x^{-1} \in P, then x(-x^{-1}) \in P, so x(-x^{-1}) = -(xx^{-1}) = -(xx^{-1}
-1 \in P.
         Hence, 1 \in P and -1 \in P, a violation of trichotomy.
        Thus, -x^{-1} \notin P.
```

Since $x^{-1} \neq 0$ and $-x^{-1} \notin P$, then we conclude $x^{-1} \in P$.

```
Proof. We prove 3.
```

Let $x, y \in P$.

Since $y \in P$, then $y^{-1} \in P$.

Since $x \in P$ and $y^{-1} \in P$, then $xy^{-1} = \frac{x}{y} \in P$, by closure of P under multiplication in F.

Proof. We prove 4.

Suppose $x \in F$ and $x \neq 0$.

By trichotomy, either $x \in P$ or x = 0 or $-x \in P$.

Since $x \neq 0$, then either $x \in P$ or $-x \in P$.

We consider these cases separately.

Case 1: Suppose $x \in P$.

Then $x^2 = xx \in P$, by closure of P under multiplication in F.

Case 2: Suppose $-x \in P$.

Then $x^2 = xx = (-x)(-x) \in P$, by closure of P under multiplication in F.

Therefore, in all cases, $x^2 \in P$.

Proof. We prove 5.

Let $x \in P$.

Let $S = \{ n \in \mathbb{N} : nx \in P \}.$

We prove $S = \mathbb{N}$ by induction on n.

Basis:

Since $1x = x \in P$, then $1 \in S$.

Induction:

Suppose $k \in S$.

Then $k \in \mathbb{N}$ and $kx \in P$.

Since $kx \in P$ and $x \in P$, then $kx + x \in P$, by closure of P under addition in F, so $(k+1)x = kx + x \in P$.

Since $k \in \mathbb{N}$, then $k + 1 \in \mathbb{N}$.

Since $k+1 \in \mathbb{N}$ and $(k+1)x \in P$, then $k+1 \in S$, so $k \in S$ implies $k+1 \in S$.

Hence, by induction, $S = \mathbb{N}$,

Therefore, $nx \in P$ for all $n \in \mathbb{N}$.

Proposition 10. Let F be an ordered field with positive subset P. Then for all $a, b \in F$

- 1. a > 0 iff $a \in P$.
- 2. a < 0 iff $-a \in P$.
- 3. a < b iff b a > 0.

Proof. We prove 1.

Let $a \in F$.

Observe that

$$\begin{array}{lll} a>0 &\Leftrightarrow & 0< a\\ &\Leftrightarrow & a-0\in P\\ &\Leftrightarrow & a+(-0)\in P\\ &\Leftrightarrow & a+0\in P\\ &\Leftrightarrow & a\in P. \end{array}$$

Therefore, a > 0 iff $a \in P$.

Proof. We prove 2.

Let $a \in F$.

Observe that a < 0 iff $0 - a \in P$ iff $0 + (-a) \in P$ iff $-a \in P$.

Therefore, a < 0 iff $-a \in P$.

Proof. We prove 3.

Let $a \in F$.

Observe that a < b iff $b - a \in P$ iff b - a > 0.

Therefore, a < b iff b - a > 0.

Lemma 11. Let $(F, +, \cdot, <)$ be an ordered field with $a, b \in F$.

If a > 0 and b < 0, then ab < 0.

Proof. Suppose a > 0 and b < 0.

Let P be the positive subset of F.

Then $a \in P$ and $-b \in P$.

Hence, by closure of P under multiplication, $a(-b) \in P$.

Since F is a ring, then -(ab) = a(-b), so $-(ab) \in P$.

Therefore, ab < 0.

Proposition 12. positivity of a product in an ordered field

Let $(F, +, \cdot, <)$ be an ordered field with $a, b \in F$. Then

1. ab > 0 iff either a > 0 and b > 0 or a < 0 and b < 0.

2. ab < 0 iff either a > 0 and b < 0 or a < 0 and b > 0.

Proof. We prove 1.

Let P be the positive subset of F.

Suppose either a > 0 and b > 0 or a < 0 and b < 0.

We consider these cases separately.

Case 1: Suppose a > 0 and b > 0.

Then $a \in P$ and $b \in P$.

Hence, by closure of P under multiplication, $ab \in P$.

Therefore, ab > 0.

Case 2: Suppose a < 0 and b < 0.

Then $-a \in P$ and $-b \in P$.

Hence, by closure of P under multiplication, $(-a)(-b) \in P$.

Since F is a ring, then ab = (-a)(-b), so $ab \in P$.

Therefore, ab > 0.

Thus, in all cases, ab > 0, as desired.

```
Conversely, suppose ab > 0.
```

If
$$a = 0$$
, then $ab = 0b = 0$.

Thus, ab > 0 and ab = 0, a violation of trichotomy.

Therefore, $a \neq 0$, so either a > 0 or a < 0.

We consider these cases separately.

Case 1: Suppose a > 0.

Then
$$a \in P$$
, so $a^{-1} \in P$.

Hence,
$$a^{-1} > 0$$
.

Since
$$a^{-1} > 0$$
 and $ab > 0$, then $b = 1 \cdot b = (a^{-1} \cdot a)b = a^{-1} \cdot (ab) > 0$.

Therefore,
$$a > 0$$
 and $b > 0$.

Case 2: Suppose a < 0.

Then
$$-a \in P$$
, so $(-a)^{-1} \in P$.

Hence,
$$\frac{1}{-a} \in P$$
, so $-\frac{1}{a} \in P$.

Thus,
$$-(a^{-1}) \in P$$
, so $a^{-1} < 0$.

Since
$$ab > 0$$
 and $a^{-1} < 0$, then by the previous lemma $b = 1 \cdot b = (a^{-1} \cdot a)b = a^{-1} \cdot (ab) = ab \cdot a^{-1} < 0$.

Therefore,
$$a < 0$$
 and $b < 0$.

Thus, either
$$a > 0$$
 and $b > 0$ or $a < 0$ and $b < 0$, as desired.

Proof. We prove 2.

Suppose either a > 0 and b < 0 or a < 0 and b > 0.

We consider these cases separately.

Case 1: Suppose a > 0 and b < 0.

Then by the previous lemma, ab < 0.

Case 2: Suppose a < 0 and b > 0.

Then b > 0 and a < 0, so by the previous lemma, ab = ba < 0.

Therefore, in all cases, ab < 0, as desired.

Conversely, suppose ab < 0.

Then
$$-(ab) > 0$$
.

Since F is a ring, then
$$a(-b) = -(ab)$$
, so $a(-b) > 0$.

Hence, by 1, either
$$a > 0$$
 and $-b > 0$ or $a < 0$ and $-b < 0$.

Thus, either
$$a > 0$$
 and $-(-b) < 0$ or $a < 0$ and $-(-b) > 0$.

Therefore, either
$$a > 0$$
 and $b < 0$ or $a < 0$ and $b > 0$, as desired.

Corollary 13. Let $(F, +, \cdot, <)$ be an ordered field.

Let
$$a, b \in F$$
.

Then
$$\frac{a}{b} > 0$$
 iff $ab > 0$.

Proof. Suppose $\frac{a}{h} > 0$.

Then
$$b \neq 0$$
, so $\frac{1}{b} \neq 0$.

Since
$$\frac{a}{b} = a \cdot \frac{1}{b}$$
, then $a \cdot \frac{1}{b} > 0$

Since
$$\frac{a}{b} = a \cdot \frac{1}{b}$$
, then $a \cdot \frac{1}{b} > 0$.
Thus, either $a > 0$ and $\frac{1}{b} > 0$ or $a < 0$ and $\frac{1}{b} < 0$.

We consider these cases separately.

Case 1: Suppose
$$a > 0$$
 and $\frac{1}{b} > 0$.

Since
$$\frac{1}{b} > 0$$
, then $\frac{1}{\frac{1}{b}} > 0$, so $b > 0$.

```
Case 2: Suppose a < 0 and \frac{1}{b} < 0.
   Since \frac{1}{b} < 0, then \frac{1}{-b} > 0, so \frac{1}{\frac{1}{b}} > 0.
   Thus, -b > 0.
    Since a < 0, then -a > 0.
   Thus, ab = (-a)(-b) > 0, so ab > 0.
   Therefore, in all cases, ab > 0, as desired.
  Conversely, suppose ab > 0.
   Then either a > 0 and b > 0 or a < 0 and b < 0.
    We consider these cases separately.
    Case 1: Suppose a > 0 and b > 0.
    Since b > 0, then \frac{1}{b} > 0.
   Since a > 0 and \frac{1}{b} > 0, then \frac{a}{b} = a \cdot \frac{1}{b} > 0.
    Case 2: Suppose a < 0 and b < 0.
    Since b < 0, then -b > 0, so -\frac{1}{b} > 0.
   Since a < 0, then -a > 0.
   Hence, \frac{a}{b} = (-a)(-\frac{1}{b}) > 0.
   Therefore, in all cases, \frac{a}{b} > 0, as desired.
                                                                                     Theorem 14. ordered fields satisfy transitivity and trichotomy laws
    Let (F, +, \cdot, <) be an ordered field. Then
    1. a < a is false for all a \in F. (Therefore, < is not reflexive.)
    2. For all a, b, c \in F, if a < b and b < c, then a < c. (< is transitive)
    3. For every a \in F, exactly one of the following is true (trichotomy):
    i. a > 0
    ii. a=0
    iii. a < 0
    4. For every a, b \in F, exactly one of the following is true (trichotomy):
    i. \ a > b
    ii. \ a = b
    iii. a < b
Proof. We prove 1.
   Let a \in F.
   We must prove a < a is false.
   Since a < a iff a - a \in P iff 0 \in P and 0 \notin P, then a < a is false.
                                                                                     Proof. We prove 2.
   Let a, b, c \in F such that a < b and b < c.
   Since a < b, then b - a \in P.
    Since b < c, then c - b \in P.
   Hence, (c-b) + (b-a) \in P, by closure of P under addition of F.
    Observe that (c-b) + (b-a) = c + (-b+b) - a = c + 0 - a = c - a.
                                                                                     Therefore, c - a \in P, so a < c.
```

Since a > 0 and b > 0, then ab > 0.

```
Proof. We prove 3.
```

Let $a \in F$.

By trichotomy, exactly one of the following is true: $a \in P$, $a = 0, -a \in P$.

Observe that $a \in P$ iff a > 0 and $-a \in P$ iff a < 0.

Therefore, exactly one of the following is true: a > 0, a = 0, a < 0.

Proof. We prove 4.

Let $a, b \in F$.

Since F is a ring, then F is closed under subtraction, so $a - b \in F$.

Since F is an ordered field, then by trichotomy, exactly one of the following is true: $a - b \in P$, a - b = 0, $-(a - b) \in P$.

Observe that $a - b \in P$ iff b < a iff a > b.

Observe that a - b = 0 iff a = b.

Observe that $-(a-b) \in P$ iff $-a+b \in P$ iff $b-a \in P$ iff a < b.

Therefore, exactly one of the following is true: a > b, a = b, a < b.

Corollary 15. Let $(F, +, \cdot, <)$ be an ordered field.

Let $a, b \in F$.

If 0 < a < b, then $0 < \frac{1}{b} < \frac{1}{a}$.

Proof. Suppose 0 < a < b.

Then 0 < a and a < b, so 0 < b.

Since b > 0, then $b \in P$, so $\frac{1}{b} \in P$.

Hence, $\frac{1}{b} > 0$.

Since a > 0 and b > 0, then $a \in P$ and $b \in P$, so $ab \in P$.

Since a < b, then $b - a \in P$.

Thus, $\frac{b-a}{ab} \in P$, so $\frac{b-a}{ab} > 0$. Hence, $\frac{1}{a} - \frac{1}{b} > 0$, so $\frac{1}{b} < \frac{1}{a}$. Therefore, $0 < \frac{1}{b} < \frac{1}{a}$, as desired.

Theorem 16. order is preserved by the field operations in an ordered field

Let $(F, +, \cdot, <)$ be an ordered field.

Let $a, b, c, d \in F$.

- 1. If a < b, then a + c < b + c. (preserves order for addition)
- 2. If a < b, then a c < b c. (preserves order for subtraction)
- 3. If a < b and c > 0, then ac < bc. (preserves order for multiplication by a positive element)
- 4. If a < b and c < 0, then ac > bc. (reverses order for multiplication by a negative element)
- 5. If a < b and c > 0, then $\frac{a}{c} < \frac{b}{c}$. (preserves order for division by a positive element)

Proof. Let P be the positive subset of F.

We prove 1.

Suppose a < b.

Then $b - a \in P$.

```
Observe that b - a = (b - a) + 0 = (b - a) + (c - c) = b - a + c - c =
b + c - a - c = (b + c) - (a + c).
   Therefore, (b+c) - (a+c) \in P, so a+c < b+c.
                                                                                   Proof. We prove 2.
   Suppose a < b.
   Since c \in F, then -c \in F.
   Therefore, a + (-c) < b + (-c), so a - c < b - c.
                                                                                   Proof. We prove 3.
   Suppose a < b and c > 0.
   Since a < b, then b - a \in P.
   Since c > 0, then c \in P.
   Hence, (b-a)c \in P, by closure of P under multiplication of F.
                                                                                   Since (b-a)c = bc - ac, then bc - ac \in P, so ac < bc.
Proof. We prove 4.
   Suppose a < b and c < 0.
   To prove ac > bc, we must prove bc < ac, i.e. ac - bc \in P.
   Since a < b, then b - a \in P.
   Since c < 0, then -c \in P.
   Hence, (b-a)(-c) \in P, by closure of P under multiplication of F.
   Observe that (b-a)(-c) = b(-c) - a(-c) = -bc + ac = ac - bc.
   Therefore, ac - bc \in P, as desired.
                                                                                   Proof. We prove 5.
   Suppose a < b and c > 0.
   Since c > 0, then \frac{1}{c} > 0.
Since a < b and \frac{1}{c} > 0, then a \cdot \frac{1}{c} < b \cdot \frac{1}{c}.
Therefore, \frac{a}{c} < \frac{b}{c}.
                                                                                   Proposition 17. Let (F, +, \cdot, <) be an ordered field.
   Let a, b, c, d \in F.
   1. If a < b and c < d, then a + c < b + d. (adding inequalities is valid)
   2. If 0 < a < b and 0 < c < d, then 0 < ac < bd.
Proof. We prove 1.
   Suppose a < b and c < d.
   Since a < b, then a + c < b + c.
   Since c < d, then c + b < d + b, so b + c < b + d.
   Since a + c < b + c and b + c < b + d, then a + c < b + d.
                                                                                   Proof. We prove 2.
   Suppose 0 < a < b and 0 < c < d.
   We must prove 0 < ac < bd.
   Since 0 < a < b, then 0 < a and a < b and 0 < b.
   Since 0 < c < d, then 0 < c and c < d.
```

Since a > 0 and c > 0, then ac > 0.

Since a < b and c > 0, then ac < bc.

Since c < d and b > 0, then bc < bd.

Therefore, ac < bc and bc < bd, so ac < bd.

Hence, 0 < ac and ac < bd, so 0 < ac < bd, as desired.

Proposition 18. Let $(F, +, \cdot, <)$ be an ordered field.

Let $\frac{a}{b}$, $\frac{c}{d} \in F$ with b, d > 0. Then $\frac{a}{b} < \frac{c}{d}$ iff ad < bc.

Proof. We must prove $\frac{a}{b} < \frac{c}{d}$ iff ad < bc.

We prove if $\frac{a}{b} < \frac{c}{d}$, then ad < bc.

Suppose $\frac{a}{b} < \frac{c}{d}$.

Then $\frac{c}{d} - \frac{a}{b} \in P$, so $\frac{cb-da}{db} \in P$. Hence, $\frac{cb-da}{db} > 0$.

Since b > 0 and d > 0, then db > 0.

We multiply by positive db to get cb - da > 0.

Thus, cb > da, so da < cb.

Therefore, ad < bc, as desired.

Conversely, we prove if ad < bc, then $\frac{a}{b} < \frac{c}{d}$.

Suppose ad < bc.

Since b > 0, then we divide by positive b to get $\frac{ad}{b} < c$. Since d > 0, then we divide by positive d to get $\frac{a}{b} < \frac{c}{d}$, as desired.

Theorem 19. density of ordered fields

Between any two distinct elements of an ordered field is a third element.

Proof. Let $(F, +, \cdot, <)$ be an ordered field.

Since $1 \in F$ and $0 \in F$ and $1 \neq 0$, then F contains at least two elements.

Let a and b be distinct elements of F.

Then $a \in F$ and $b \in F$ and $a \neq b$.

We must prove there is at least one element c of F such that a < c < b.

Since $a \neq b$, then either a < b or a > b.

Without loss of generality, assume a < b.

Since $a \in F$ and $b \in F$, then by closure of F under addition, $a + b \in F$.

Since $1 \in F$, then by closure of F under addition, $1 + 1 \in F$.

Define 2 to be 1+1.

Then $2 \in F$ and 2 = 1 + 1.

Since 1 > 0, then 1 + 1 > 0, so 2 > 0.

Let $c = \frac{a+b}{2}$.

Since $a + b \in F$ and $2 \neq 0$, then $\frac{a+b}{2} \in F$, so $c \in F$. Since a < b, then a + a < a + b and a + b < b + b.

Thus, 2a < a + b and a + b < 2b.

Since 2 > 0, we divide by 2 to get $a < \frac{a+b}{2}$ and $\frac{a+b}{2} < b$, so $a < \frac{a+b}{2} < b$.

Therefore, a < c < b, as desired.

Corollary 20. ordered fields are infinite

An ordered field contains an infinite number of elements.

Proof. Let F be an ordered field.

We prove F is infinite by contradiction.

Suppose F is not infinite.

Then F is finite, so F contains a finite number of elements.

Let n be the number of distinct elements of F.

Since $1 \neq 0$ in every field, then every field contains at least two distinct elements.

Therefore, $n \in \mathbb{N}$ and $n \geq 2$.

Let $a_1, a_2, ..., a_n$ be the elements of F arranged so that the a_i element is in the i^{th} position in the order defined by < over F for each i = 1, 2, ..., n.

Then $F = \{a_1, a_2, ..., a_n\}$ and $a_1 < a_2 < ... < a_n$.

Since $a_1 \in F$ and $a_2 \in F$ and $a_1 < a_2$, then a_1 and a_2 are distinct elements of the ordered field F.

Therefore, by the density of F, there exists at least one element $b \in F$ such that $a_1 < b < a_2$.

Hence, $a_1 < b$ and $b < a_2$.

We prove $b \neq a_i$ for each i = 1, 2, ..., n.

Since $a_1 < b$, then $a_1 \neq b$, so $b \neq a_1$.

Since $b < a_2$, then $b \neq a_2$.

Since $b < a_2$ and $a_2 < a_i$ for each i such that $2 < i \le n$, then $b < a_i$ for each i such that $2 < i \le n$.

Thus, $b \neq a_i$ for each i such that $2 < i \le n$.

Therefore, $b \neq a_i$ for each i = 1, 2, ..., n, so $b \notin F$.

Hence, we have $b \in F$ and $b \notin F$, a contradiction.

Therefore, F is not finite, so F is infinite.

Theorem 21. ordered fields are totally ordered

Let $(F, +, \cdot, \leq)$ be an ordered field. Then

1. \leq is a partial order over F. Therefore, (F, \leq) is a poset.

 $2. \leq is \ a \ total \ order \ over \ F.$

Proof. We prove 1.

Let $x \in F$.

Since equality is reflexive, then x = x.

Hence, x = x or x < x, so x < x or x = x.

Therefore, $x \leq x$, so \leq is reflexive.

Let $x, y \in F$ such that $x \leq y$ and $y \leq x$.

Suppose $x \neq y$.

Since $x \leq y$ and $x \neq y$, then x < y.

Since $y \le x$ and $y \ne x$, then y < x.

Thus, x < y and x > y, a violation of trichotomy.

Hence, x = y.

Therefore, \leq is antisymmetric.

Let $x, y, z \in F$ such that $x \leq y$ and $y \leq z$.

Since $x \le y$ and $y \le z$, then x < y or x = y and y < z or y = z.

Hence, either both x < y or x = y and y < z, or both x < y or x = y and y = z.

Thus, either x < y and y < z or x = y and y < z or x < y and y = z or x = y and y = z.

Therefore, there are 4 cases to consider.

Case 1: Suppose x < y and y < z.

Since < is transitive, then x < z.

Case 2: Suppose x < y and y = z.

Then x < z.

Case 3: Suppose x = y and y < z.

Then x < z.

Case 4: Suppose x = y and y = z.

Then x = z.

Thus, in all cases, either x < z or x = z, so $x \le z$.

Therefore, \leq is transitive.

Since \leq is reflexive, antisymmetric, and transitive, then \leq is a partial order over F, so (F, \leq) is a poset.

Proof. We prove 2.

Since (F, \leq) is a poset, then \leq is a total order over F iff either $x \leq y$ or $y \leq x$ for all $x, y \in F$.

Thus, to prove \leq is a total order, we must prove either $x \leq y$ or $y \leq x$ for all $x, y \in F$.

Let $x, y \in F$.

To prove $x \leq y$ or $y \leq x$, assume $x \leq y$ is false.

We must prove $y \leq x$.

Since $x \leq y$ is false, then x is not less than y and $x \neq y$.

Hence, by trichotomy, x > y.

Therefore, y < x, so $y \le x$, as desired.

Proposition 22. Let $(F, +, \cdot, \leq)$ be an ordered field. Then

- 1. $x^2 = 0$ iff x = 0.
- 2. $x^2 > 0$ iff $x \neq 0$.
- 3. $x^2 \ge 0$ for all $x \in F$.

Proof. Since F is an ordered field, then let P be the positive subset of F.

We prove 1.

Let $x \in F$.

We must prove $x^2 = 0$ iff x = 0.

We prove if x = 0, then $x^2 = 0$.

Suppose x = 0.

Then $x^2 = 0^2 = 0$, so $x^2 = 0$, as desired.

Conversely, we prove if $x^2 = 0$, then x = 0 by contrapositive.

Suppose $x \neq 0$.

Then $x^2 \in P$. Since $x^2 \in P$ iff $x^2 > 0$, then $x^2 > 0$.

Hence, $x^2 \neq 0$, as desired.

Proof. We prove 2.

Let $x \in F$.

We must prove $x^2 > 0$ iff $x \neq 0$.

We prove if $x \neq 0$, then $x^2 > 0$.

Suppose $x \neq 0$.

Then $x^2 \in P$.

Since $x^2 \in P$ iff $x^2 > 0$, then $x^2 > 0$, as desired.

Conversely, we prove if $x^2 > 0$, then $x \neq 0$ by contrapositive.

Suppose x = 0.

Then $x^2 = 0^2 = 0 < 0$, so $x^2 < 0$, as desired.

Proof. We prove 3.

Let $x \in F$.

Then either x = 0 or $x \neq 0$.

We consider these cases separately.

Case 1: Suppose x = 0.

Since $x^2 = 0$ iff x = 0, then $x^2 = 0$.

Case 2: Suppose $x \neq 0$.

Since $x^2 > 0$ iff $x \neq 0$, then $x^2 > 0$.

Thus, in all cases, either $x^2 > 0$ or $x^2 = 0$.

Therefore, $x^2 \ge 0$, as desired.

Absolute value in an ordered field

Lemma 23. Let F be an ordered field. Let $x \in F$.

1. If
$$x < 0$$
, then $\frac{1}{x} < 0$

1. If
$$x < 0$$
, then $\frac{1}{x} < 0$.
2. If $x \neq 0$, then $|\frac{1}{x}| = \frac{1}{|x|}$.

Proof. We prove 1.

Let $x \in F$.

Suppose x < 0.

Then $x \neq 0$.

Since F is a field and $x \neq 0$, then $\frac{1}{x} \in F$, so $x \cdot \frac{1}{x} = 1$. Either $\frac{1}{x} > 0$ or $\frac{1}{x} = 0$ or $\frac{1}{x} < 0$.

Suppose $\frac{1}{x} = 0$. Then $1 = x \cdot \frac{1}{x} = x \cdot 0 = 0$, so 1 = 0. But, $1 \neq 0$ in an ordered field, so $\frac{1}{x} \neq 0$.

Suppose $\frac{1}{x} > 0$. Since $\frac{1}{x} > 0$ and x < 0, then $1 = \frac{1}{x} \cdot x < 0$, so 1 < 0, a contradiction.

Hence, $\frac{1}{x}$ cannot be greater than zero.

Therefore,
$$\frac{1}{x} < 0$$
.

Proof. We prove 2.

Let $x \in F$.

Suppose $x \neq 0$.

Then either x > 0 or x < 0.

We consider these cases separately.

Case 1: Suppose x > 0.

Then
$$\frac{1}{x} > 0$$
.

Therefore, $|\frac{1}{x}| = \frac{1}{x} = \frac{1}{|x|}$.

Case 2: Suppose $x < 0$.

Then $\frac{1}{x} < 0$.

Therefore, $|\frac{1}{x}| = -\frac{1}{x} = \frac{1}{|x|}$.

Theorem 24. arithmetic operations and absolute value

Let F be an ordered field. For all $a, b \in F$

1.
$$|ab| = |a||b|$$
.

2. if
$$b \neq 0$$
, then $|\frac{a}{b}| = \frac{|a|}{|b|}$.

3.
$$|a|^2 = a^2$$
.

4. if
$$a \neq 0$$
, then $|a^n| = |a|^n$ for all $n \in \mathbb{Z}$.

Proof. We prove 1.

Let $a, b \in F$.

Either a or b is zero or neither a nor b is zero.

Hence, either a = 0 or b = 0 or $a \neq 0$ and $b \neq 0$.

Thus, either a = 0 or b = 0, or a > 0 or a < 0 and b > 0 or b < 0.

Hence, either a = 0 or b = 0 or both a > 0 and b > 0 or both a > 0 and b < 0 or both a < 0 and b > 0 or both a < 0 and b < 0.

We consider these cases separately.

We must prove |ab| = |a||b|.

Case 1: Suppose a = 0.

Then

$$|ab| = |0 \cdot b|$$

$$= |0|$$

$$= 0$$

$$= 0 \cdot |b|$$

$$= |0||b|$$

$$= |a||b|.$$

Case 2: Suppose b = 0.

Then

$$|ab| = |a \cdot 0|$$

$$= |0|$$

$$= 0$$

$$= |a| \cdot 0$$

$$= |a||0|$$

$$= |a||b|.$$

Case 3: Suppose a > 0 and b > 0. Then |a| = a and |b| = b. Since a > 0 and b > 0, then ab > 0. Hence, |ab| = ab.

$$|ab| = ab$$
$$= |a||b|.$$

Case 4: Suppose a > 0 and b < 0. Then |a| = a and |b| = -b. Since a > 0 and b < 0, then ab < 0. Hence, |ab| = -ab.

$$|ab| = -ab$$
$$= a(-b)$$
$$= |a||b|.$$

Case 5: Suppose a < 0 and b > 0. Then |a| = -a and |b| = b. Since a < 0 and b > 0, then ab < 0. Hence, |ab| = -ab.

$$|ab| = -ab$$
$$= (-a)b$$
$$= |a||b|.$$

Case 6: Suppose a < 0 and b < 0. Then |a| = -a and |b| = -b. Since a < 0 and b < 0, then ab > 0. Hence, |ab| = ab.

$$|ab| = ab$$

$$= (-a)(-b)$$

$$= |a||b|.$$

Therefore, in all cases, |ab| = |a||b|.

Proof. We prove 2.

Let $a, b \in F$.

Suppose $b \neq 0$.

Then $b^{-1} = \frac{1}{b} \neq 0$, so

$$|\frac{a}{b}| = |ab^{-1}|$$

$$= |a \cdot \frac{1}{b}|$$

$$= |a| \cdot |\frac{1}{b}|$$

$$= |a| \cdot \frac{1}{|b|}$$

$$= \frac{|a|}{|b|}.$$

Proof. We prove 3.

Let $a \in F$.

We must prove $|a|^2 = a^2$.

Either a = 0 or $a \neq 0$.

We consider these cases separately.

Case 1: Suppose a = 0.

Then

$$|a|^2 = |0|^2$$
$$= 0^2$$
$$= a^2.$$

Case 2: Suppose $a \neq 0$. Then $a^2 \in F^+$, so $a^2 > 0$.

Hence,

$$|a|^2 = |a||a|$$

$$= |aa|$$

$$= |a^2|$$

$$= a^2$$

Therefore, in all cases, $|a|^2 = a^2$, as desired.

Proof. We prove 4.

Let $a \in F$ with $a \neq 0$.

To prove $|a^n| = |a|^n$ for all $n \in \mathbb{Z}$, we prove $|a^n| = |a|^n$ for all positive integers n and $|a^0| = |a|^0$ and $|a^n| = |a|^n$ for all negative integers n.

We prove $|a^0| = |a|^0$.

Since $a \neq 0$, then $|a^0| = |1| = 1 = |a|^0$.

Therefore, $|a^0| = |a|^0$.

We prove $|a^n| = |a|^n$ for all $n \in \mathbb{N}$ by induction on n.

Let $S = \{ n \in \mathbb{N} : |a^n| = |a|^n \}.$

Basis:

Since $|a^1| = |a| = |a|^1$, then $1 \in S$.

Induction:

Suppose $k \in S$.

Then $k \in \mathbb{N}$ and $|a^k| = |a|^k$.

Since $k \in \mathbb{N}$, then $k + 1 \in \mathbb{N}$.

Observe that

$$|a^{k+1}| = |a^k a|$$

= $|a^k||a|$
= $|a|^k|a|$
= $|a|^{k+1}$.

Since $k+1 \in \mathbb{N}$ and $|a^{k+1}| = |a|^{k+1}$, then $k+1 \in S$.

Thus, $k \in S$ implies $k + 1 \in S$.

Since $1 \in S$ and $k \in S$ implies $k + 1 \in S$, then by PMI, $S = \mathbb{N}$.

Therefore, $|a^n| = |a|^n$ for all $n \in \mathbb{N}$.

We prove $|a^n| = |a|^n$ for all negative integers n.

Let n be an arbitrary negative integer.

Then $n \in \mathbb{Z}$ and n < 0.

Since $n \in \mathbb{Z}$, then $-n \in \mathbb{Z}$ and -n > 0.

Let k = -n.

Then $k \in \mathbb{Z}$ and k > 0 and n = -k.

Since $k \in \mathbb{Z}$ and k > 0, then k is a positive integer, so $|a^k| = |a|^k$.

Since $a \neq 0$, then $a^k \neq 0$.

Observe that

$$|a^{n}| = |a^{-k}|$$

$$= \left|\frac{1}{a^{k}}\right|$$

$$= \frac{1}{|a^{k}|}$$

$$= \frac{1}{|a|^{k}}$$

$$= \frac{1}{|a|^{-n}}$$

$$= \frac{1}{\frac{1}{|a|^{n}}}$$

$$= |a|^{n}.$$

Therefore, $|a^n| = |a|^n$.

Theorem 25. properties of the absolute value function

Let $(F, +, \cdot, \leq)$ be an ordered field.

Let $a, k \in F$ and k > 0. Then

1. $|a| \ge 0$.

2. |a| = 0 iff a = 0.

3. |-a| = |a|.

4. $-|a| \le a \le |a|$.

5. |a| < k iff -k < a < k.

6. |a| > k iff a > k or a < -k.

7. |a| = k iff a = k or a = -k.

Proof. We prove 1.

Let $a \in F$.

Either a > 0 or a = 0 or a < 0.

We consider these cases separately.

We must prove either |a| > 0 or |a| = 0.

Case 1: Suppose a > 0.

Then |a| = a > 0.

Case 2: Suppose a = 0.

Then |a| = a = 0.

Case 3: Suppose a < 0.

Since -a > 0 iff $-a \in F^+$ iff a < 0 and a < 0, then -a > 0.

Since a < 0, then |a| = -a > 0.

Therefore, in all cases, $|a| \geq 0$.

Proof. We prove 2.

Let $a \in F$.

We must prove |a| = 0 iff a = 0.

We prove if a = 0, then |a| = 0.

Conversely, we prove if |a| = 0, then a = 0 by contrapositive.

Suppose $a \neq 0$.

Suppose a = 0. Then |a| = a = 0.

We must prove $|a| \neq 0$.

Since $a \neq 0$, then either a > 0 or a < 0.

In either case |a| > 0.

Therefore, by trichotomy, $|a| \neq 0$, as desired.

Proof. We prove 3.

Let $a \in F$.

We must prove |-a| = |a|.

Either a > 0 or a = 0 or a < 0.

We consider these cases separately.

Case 1: Suppose a > 0.

Then -a < 0.

Therefore, |-a| = -(-a) = a = |a|.

Case 2: Suppose a = 0.

Then |-a| = |-0| = |0| = |a|.

Case 3: Suppose a < 0.

Then -a > 0 and |a| = -a.

Therefore, |-a| = -a = |a|.

Hence, in all cases, |-a| = |a|.

Proof. We prove 4.

Let $a \in F$.

To prove $-|a| \le a \le |a|$, we must prove $-|a| \le a$ and $a \le |a|$.

Either $a \ge 0$ or a < 0.

We consider these cases separately.

Case 1: Suppose $a \ge 0$.

Then |a| = a and $-a \le 0$.

Since $a \le a$ and a = |a|, then $a \le |a|$, as desired.

Since $-a \le 0$ and $0 \le a$, then $-a \le a$, so $-|a| \le a$, as desired.

Case 2: Suppose a < 0.

Then |a| = -a and -a > 0.

Since a < 0 and 0 < -a, then a < -a = |a|, so $a \le |a|$, as desired.

Since $a \le a$, then $-(-a) \le a$, so $-|a| \le a$, as desired.

Proof. We prove 5.

Let $a, k \in F$ with k > 0.

We must prove |a| < k iff -k < a < k.

We prove if |a| < k, then -k < a < k.

Suppose |a| < k.

We must prove -k < a and a < k.

Either $a \ge 0$ or a < 0.

We consider these cases separately.

Case 1: Suppose $a \ge 0$.

Then a = |a| < k.

Therefore, a < k, as desired.

Since k > 0, then -k < 0.

Since -k < 0 and $0 \le a$, then -k < a, as desired.

Case 2: Suppose a < 0.

Since a < 0 and 0 < k, then a < k, as desired.

Since |a| < k, then k > |a| = -a, so k > -a.

Therefore, -k < a, as desired.

Conversely, we prove if -k < a < k, then |a| < k.

Suppose -k < a < k.

Then -k < a and a < k.

We must prove |a| < k.

Either $a \ge 0$ or a < 0.

We consider these cases separately.

Case 1: Suppose $a \ge 0$.

Then |a| = a < k.

Therefore, |a| < k, as desired.

Case 2: Suppose a < 0.

Since -k < a, then k > -a = |a|, so k > |a|.

Therefore, |a| < k, as desired.

Proof. We prove 6.

Let $a, k \in F$ with k > 0.

We must prove |a| > k iff a > k or a < -k.

We prove if |a| > k, then a > k or a < -k.

Suppose |a| > k.

Either $a \ge 0$ or a < 0.

We consider these cases separately.

Case 1: Suppose a > 0.

Then a = |a| > k.

Case 2: Suppose a < 0.

Then -a = |a| > k, so -a > k.

Hence, a < -k.

Therefore, either a > k or a < -k, as desired.

Conversely, to prove if a > k or a < -k, then |a| > k, we must prove both if a > k, then |a| > k and if a < -k, then |a| > k.

We first prove if a > k, then |a| > k.

Suppose a > k.

Since a > k and k > 0, then a > 0.

Therefore, |a| = a > k.

We next prove if a < -k, then |a| > k.

Suppose a < -k.

Then -a > k.

Since -a > k and k > 0, then -a > 0.

Hence, a < 0.

Therefore, |a| = -a > k.

Proof. We prove 7.

Let $a, k \in F$ with k > 0.

We must prove |a| = k iff a = k or a = -k.

To prove if a = k or a = -k, then |a| = k, we must prove both if a = k, then |a| = k and if a = -k, then |a| = k.

We first prove if a = k, then |a| = k.

Suppose a = k.

Since k > 0, then |k| = k.

Therefore, |a| = |k| = k.

We next prove if a = -k, then |a| = k.

Suppose a = -k.

Since k > 0, then -k < 0, so a < 0.

Therefore, |a| = -a = k.

Conversely, we prove if |a| = k, then either a = k or a = -k.

Suppose |a| = k.

Either $a \ge 0$ or a < 0.

We consider these cases separately.

Case 1: Suppose $a \ge 0$.

Then k = |a| = a, so a = k.

Case 2: Suppose a < 0.

Then -a = |a| = k, so -a = k.

Hence, a = -k.

Therefore, either a = k or a = -k, as desired.

Theorem 26. triangle inequality

Let $(F, +, \cdot, \leq)$ be an ordered field.

Let $a, b \in F$. Then $|a + b| \le |a| + |b|$.

Proof. Let $a, b \in F$.

Since $a \in F$, then $-|a| \le a \le |a|$.

Since $b \in F$, then $-|b| \le b \le |b|$.

We add these inequalities to get $-(|a| + |b|) \le a + b \le |a| + |b|$.

Therefore, $|a+b| \le |a| + |b|$.

Corollary 27. Let $(F, +, \cdot, \leq)$ be an ordered field. Then

1. $|a-b| \ge |a| - |b|$ and $|a-b| \ge |b| - |a|$ for all $a, b \in F$.

2. $||a| - |b|| \le |a - b| \le |a| + |b|$ for all $a, b \in F$.

Proof. We prove 1.

Let $a, b \in F$.

Since $|a| = |(a-b)+b| \le |a-b|+|b|$, then $|a| \le |a-b|+|b|$, so $|a|-|b| \le |a-b|$. Hence, $|a-b| \ge |a| - |b|$, so $|a-b| \ge |a| - |b|$ for all $a, b \in F$.

Since $|a-b| \ge |a| - |b|$ for all $a, b \in F$, then in particular, if we switch roles of a and b, we have $|b-a| \ge |b| - |a|$.

Therefore,
$$|a-b| \ge |b| - |a|$$
.

Proof. We prove 2.

Let $a, b \in F$.

We first prove $||a| - |b|| \le |a - b|$.

Since $|a - b| \ge |a| - |b|$, then $|a| - |b| \le |a - b|$. Since $|a - b| \ge |b| - |a|$, then $-|a - b| \le |a| - |b|$.

Thus, $-|a-b| \le |a| - |b|$ and $|a| - |b| \le |a-b|$, so $-|a-b| \le |a| - |b| \le |a-b|$.

Therefore, $||a| - |b|| \le |a - b|$.

We next prove $|a - b| \le |a| + |b|$.

Since
$$|a-b| = |a+(-b)| \le |a|+|-b| = |a|+|b|$$
, then $|a-b| \le |a|+|b|$.
Therefore, $||a|-|b|| \le |a-b| \le |a|+|b|$.

Corollary 28. generalized triangle inequality

Let $(F, +, \cdot, \leq)$ be an ordered field.

Let $n \in \mathbb{N}$.

Let $x_1, x_2, ..., x_n \in F$. Then

$$|x_1 + x_2 + \dots + x_n| \le |x_1| + |x_2| + \dots + |x_n|$$
.

Proof. Define predicate $p(n): |x_1 + x_2 + ... + x_n| \le |x_1| + |x_2| + ... + |x_n|$ over

We prove p(n) for all $n \in \mathbb{N}$ by induction on n.

Basis: Since $|x_1| = |x_1|$, then $|x_1| \le |x_1|$.

Therefore, p(1) is true.

Induction: Let $n \in \mathbb{N}$ such that p(n) is true.

Then $|x_1 + x_2 + ... + x_n| \le |x_1| + |x_2| + ... + |x_n|$.

To prove p(n+1) is true, we must prove

 $|x_1 + x_2 + \dots + x_{n+1}| \le |x_1| + |x_2| + \dots + |x_{n+1}|.$

Observe that

$$|x_1 + x_2 + \dots + x_{n+1}| = |(x_1 + x_2 + \dots + x_n) + x_{n+1}|$$

$$\leq |x_1 + x_2 + \dots + x_n| + |x_{n+1}|$$

$$\leq |x_1| + |x_2| + \dots + |x_n| + |x_{n+1}|.$$

Thus, p(n+1) is true, so p(n) implies p(n+1) for all $n \in \mathbb{N}$.

Hence, by induction, p(n) is true for all $n \in \mathbb{N}$.

Therefore,
$$|x_1 + x_2 + ... + x_n| \le |x_1| + |x_2| + ... + |x_n|$$
 for all $n \in \mathbb{N}$.

Boundedness of sets in an ordered field

Theorem 29. A subset S of an ordered field F is bounded in F iff S is bounded above and below in F.

Proof. Let S be a subset of an ordered field F.

We prove if S is bounded in F, then S is bounded above and below in F.

Suppose S is bounded in F.

Then there exists $b \in F$ such that |x| < b for all $x \in S$.

Thus, $-b \le x \le b$ for all $x \in S$, so $-b \le x$ and $x \le b$ for all $x \in S$.

Hence, $-b \le x$ for all $x \in S$ and $x \le b$ for all $x \in S$.

Since $b \in F$ and $x \leq b$ for all $x \in S$, then b is an upper bound of S, so S is bounded above in F.

Since $-b \in F$ and $-b \le x$ for all $x \in S$, then -b is a lower bound of S, so S is bounded below in F.

Conversely, we prove if S is bounded above and below in F, then S is bounded in F.

Suppose S is bounded above and below in F.

Then there is at least one upper and lower bound of S in F.

Let M be an upper bound of S in F.

Let m be a lower bound of S in F.

To prove S is bounded, we must prove there exists $b \in F$ such that $|x| \le b$ for all $x \in S$.

Let $b = \max\{|M|, |m|\}.$

Then $|m| \leq b$ and $|M| \leq b$.

Since $|M|, |m| \in F$ and either b = |M| or b = |m|, then $b \in F$.

Let $x \in S$.

Since m is a lower bound of S and M is an upper bound of S, then $m \le x \le M$.

Since $|m| \le b$, then $-|m| \ge -b$.

Observe that

 $-b \le -|m| \le m \le x \le M \le |M| \le b.$

Hence, $-b \le x \le b$, so $|x| \le b$, as desired.

Proposition 30. Every element of an ordered field is an upper and lower bound of \emptyset .

Proof. Let $(F, +, \cdot, \leq)$ be an ordered field.

Since \leq is a partial order over F, then (F, \leq) is a partially ordered set.

Since every element of a partially ordered set is an upper and lower bound of \emptyset , then in particular, every element of (F, \leq) is an upper and lower bound of \emptyset .

Proposition 31. A subset of a bounded set is bounded.

Let A be a bounded subset of an ordered field F.

If $B \subset A$, then B is bounded in F.

Proof. Suppose $B \subset A$.

Let $x \in B$.

Since $B \subset A$, then $x \in A$.

Since A is bounded in F, then there exists $M \in F$ such that $|x| \leq M$ for all $x \in A$.

Since $x \in A$, then $|x| \leq M$.

Since x is arbitrary, then $|x| \leq M$ for all $x \in B$.

Therefore, there is $M \in F$ such that $|x| \leq M$ for all $x \in B$, so B is bounded in F.

Proposition 32. A union of bounded sets is bounded.

Let A and B be subsets of an ordered field F.

If A and B are bounded, then $A \cup B$ is bounded.

Proof. Suppose A and B are bounded.

Either $A = \emptyset$ or $A \neq \emptyset$ and either $B = \emptyset$ or $B \neq \emptyset$.

Hence, either $A=\emptyset$ and $B=\emptyset$ or $A=\emptyset$ and $B\neq\emptyset$ or $A\neq\emptyset$ and $B=\emptyset$ or $A\neq\emptyset$ and $B\neq\emptyset$.

Thus, we have 4 cases to consider:

Case 1: Suppose $A = \emptyset$ and $B = \emptyset$.

Then $A \cup B = \emptyset \cup \emptyset = \emptyset$.

Since the empty set is bounded, then $A \cup B$ is bounded.

Case 2: Suppose $A = \emptyset$ and $B \neq \emptyset$.

Then $A \cup B = \emptyset \cup B = B$.

Since B is bounded, then $A \cup B$ is bounded.

Case 3: Suppose $A \neq \emptyset$ and $B = \emptyset$.

Then $A \cup B = A \cup \emptyset = A$.

Since A is bounded, then $A \cup B$ is bounded.

Case 4: Suppose $A \neq \emptyset$ and $B \neq \emptyset$.

Since $A \neq \emptyset$, then there exists $a \in A$.

Since $A \subset A \cup B$, then $a \in A \cup B$, so $A \cup B \neq \emptyset$.

Since A is bounded, then there exists $\alpha \in F$ such that $|x| \leq \alpha$ for all $x \in A$.

Since B is bounded, then there exists $\beta \in F$ such that $|x| \leq \beta$ for all $x \in B$.

Let $S = \{\alpha, \beta\}.$

Let $\gamma = \max S$.

Let $x \in A \cup B$ be given.

Then either $x \in A$ or $x \in B$.

We consider these cases separately.

Case 4a: Suppose $x \in A$.

Then $|x| \leq \alpha$.

Since $\alpha \leq \max S$, then $|x| \leq \max S$.

Case 4b: Suppose $x \in B$.

Then $|x| \leq \beta$.

Since $\beta \leq \max S$, then $|x| \leq \max S$.

Hence, in all cases, $|x| \leq \max S$.

Thus, there exists $\max S$ such that $|x| \leq \max S$ for all $x \in A \cup B$, so $A \cup B$ is bounded.

Theorem 33. uniqueness of least upper bound in an ordered field

A least upper bound of a subset of an ordered field, if it exists, is unique.

Proof. Let S be a subset of an ordered field F.

We prove if a least upper bound of S exists, then it is unique.

Suppose a least upper bound of S exists in F.

Then there is at least one least upper bound of S in F.

Uniqueness:

To prove a least upper bound is unique, let L_1 and L_2 be least upper bounds of S in F.

We must prove $L_1 = L_2$.

Since L_1 is a least upper bound of S, then L_1 is an upper bound of S and $L_1 \leq M$ for any upper bound M of S.

Since L_2 is a least upper bound of S, then L_2 is an upper bound of S and $L_2 \leq M$ for any upper bound M of S.

Since $L_1 \leq M$ for any upper bound M of S and L_2 is an upper bound of S, then $L_1 \leq L_2$.

Since $L_2 \leq M$ for any upper bound M of S and L_1 is an upper bound of S, then $L_2 \leq L_1$.

Since $L_1 \leq L_2$ and $L_2 \leq L_1$, then by the anti-symmetric property of \leq , we have $L_1 = L_2$.

Theorem 34. uniqueness of greatest lower bound in an ordered field

A greatest lower bound of a subset of an ordered field, if it exists, is unique.

Proof. Let S be a subset of an ordered field F.

We prove if a greatest lower bound of S exists, then it is unique.

Suppose a greatest lower bound of S exists in F.

Then there is at least one greatest lower bound of S in F.

Uniqueness:

To prove a greatest lower bound is unique, let L_1 and L_2 be greatest lower bounds of S in F.

We must prove $L_1 = L_2$.

Since L_1 is a greatest lower bound of S, then L_1 is a lower bound of S and $M \leq L_1$ for any lower bound M of S.

Since L_2 is a greatest lower bound of S, then L_2 is a lower bound of S and $M \leq L_2$ for any lower bound M of S.

Since $M \leq L_2$ for any lower bound M of S and L_1 is a lower bound of S, then $L_1 \leq L_2$.

Since $M \leq L_1$ for any lower bound M of S and L_2 is a lower bound of S, then $L_2 \leq L_1$.

Since $L_1 \leq L_2$ and $L_2 \leq L_1$, then by the anti-symmetric property of \leq , we have $L_1 = L_2$.

Proposition 35. 1. There is no least upper bound of \emptyset in an ordered field.

2. There is no greatest lower bound of \emptyset in an ordered field.

Proof. Let F be an ordered field.

We prove 1 by contradiction.

Suppose there is a least upper bound of \emptyset in F.

Let b be the least upper bound of \emptyset in F.

Then $b \in F$ and no element of F less than b is an upper bound of \emptyset .

Since $b-1 \in F$ and b-1 < b, then this implies b-1 is not an upper bound of \emptyset .

Since every element of F is an upper bound of \emptyset and $b-1 \in F$, then b-1 is an upper bound of \emptyset .

Thus, we have b-1 is an upper bound of \emptyset and b-1 is not an upper bound of \emptyset , a contradiction.

Therefore, there is no least upper bound of \emptyset in F.

Proof. We prove 2 by contradiction.

Suppose there is a greatest lower bound of \emptyset in F.

Let b be the greatest lower bound of \emptyset in F.

Then $b \in F$ and no element of F greater than b is a lower bound of \emptyset .

Since $b+1 \in F$ and b+1 > b, then this implies b+1 is not a lower bound of \emptyset .

Since every element of F is a lower of \emptyset and $b+1 \in F$, then b+1 is a lower bound of \emptyset .

Thus, we have b+1 is a lower bound of \emptyset and b+1 is not a lower bound of \emptyset , a contradiction.

Therefore, there is no greatest lower bound of \emptyset in F.

Theorem 36. approximation property of suprema and infima

Let S be a subset of an ordered field F.

- 1. If $\sup S$ exists, then $(\forall \epsilon > 0)(\exists x \in S)(\sup S \epsilon < x \leq \sup S)$.
- 2. If inf S exists, then $(\forall \epsilon > 0)(\exists x \in S)(\inf S \leq x < \inf S + \epsilon)$.

Proof. We prove 1.

Suppose $\sup S$ exists.

Then $\sup S \in F$.

Let $\epsilon > 0$ be given.

Then $\sup S + \epsilon > \sup S$, so $\sup S > \sup S - \epsilon$.

Since $\sup S$ is the least upper bound of S, then $\sup S \leq B$ for every upper bound B of S, so there is no upper bound B of S such that $\sup S > B$.

Since $\sup S > \sup S - \epsilon$, then this implies $\sup S - \epsilon$ cannot be an upper bound of S.

Hence, there exists $x \in S$ such that $x > \sup S - \epsilon$.

Since $\sup S$ is an upper bound of S and $x \in S$, then $x \leq \sup S$.

Therefore, $\sup S - \epsilon < x \le \sup S$.

Proof. We prove 2.

Suppose $\inf S$ exists.

Then inf $S \in F$.

Let $\epsilon > 0$ be given.

Then $\inf S + \epsilon > \inf S$.

Since inf S is the greatest lower bound of S, then $B \leq \inf S$ for every lower bound B of S, so there is no lower bound B of S such that $B > \inf S$.

Since inf $S + \epsilon > \inf S$, then this implies inf $S + \epsilon$ cannot be a lower bound of S.

Hence, there exists $x \in S$ such that $x < \inf S + \epsilon$.

Since inf S is a lower bound of S and $x \in S$, then inf $S \leq x$.

Therefore, inf $S \leq x < \inf S + \epsilon$.

Proposition 37. Let S be a subset of an ordered field F.

If $\sup S$ and $\inf S$ exist, then $\inf S \leq \sup S$.

Proof. Suppose $\sup S$ and $\inf S$ exist.

Then $\sup S \in F$ and $\inf S \in F$ and $S \neq 0$.

Let $x \in S$ be given.

Since inf S is a lower bound of S and $x \in S$, then inf $S \leq x$.

Since $\sup S$ is an upper bound of S and $x \in S$, then $x < \sup S$.

Therefore, inf $S \leq x \leq \sup S$, so inf $S \leq \sup S$.

Proposition 38. Let S be a subset of an ordered field F.

 $Let -S = \{-s : s \in S\}.$

1. If inf S exists, then $\sup(-S) = -\inf S$.

2. If $\sup S$ exists, then $\inf(-S) = -\sup S$.

Proof. We prove 1.

Suppose $\inf S$ exists.

Then inf $S \in F$ and $S \neq \emptyset$.

Since $S \neq \emptyset$, then there exists $s \in S$, so $-s \in -S$.

Hence, the set -S is not empty.

Let $x \in -S$.

Then there exists $s \in S$ such that x = -s.

Since inf S is a lower bound of S and $s \in S$, then inf $S \leq s$, so $-\inf S \geq -s$.

Thus, $-\inf S \ge x$, so $x \le -\inf S$.

Therefore, $-\inf S$ is an upper bound of -S.

We prove $-\inf S$ is the least upper bound of -S.

Let $\epsilon > 0$.

Since inf S is the greatest lower bound of S and inf $S+\epsilon > \inf S$, then inf $S+\epsilon$ is not a lower bound of S, so there exists $s' \in S$ such that $s' < \inf S + \epsilon$.

Hence, there exists $-s' \in -S$ such that $-s' > -\inf S - \epsilon$.

Therefore, $-\inf S$ is the least upper bound of -S, so $\sup(-S) = -\inf S$. \square

Proof. We prove 2.

Suppose $\sup S$ exists.

Then sup $S \in F$ and $S \neq \emptyset$.

Since $S \neq \emptyset$, then there exists $s \in S$, so $-s \in -S$.

Hence, the set -S is not empty.

Let $x \in -S$.

Then there exists $s \in S$ such that x = -s.

Since $\sup S$ is an upper bound of S and $s \in S$, then $s \leq \sup S$, so $-s \geq -\sup S$.

Thus, $x \ge -\sup S$, so $-\sup S \le x$.

Therefore, $-\sup S$ is a lower bound of -S.

We prove $-\sup S$ is the greatest lower bound of -S.

Let $\epsilon > 0$.

Since $\sup S$ is the least upper bound of S and $\sup S - \epsilon < \sup S$, then $\sup S - \epsilon$ is not an upper bound of S, so there exists $s' \in S$ such that $s' > \sup S - \epsilon$.

Hence, there exists $-s' \in -S$ such that $-s' < -\sup S + \epsilon$.

Therefore, $-\sup S$ is the greatest lower bound of -S, so $\inf(-S) = -\sup S$.

Lemma 39. Let S be a subset of an ordered field F.

Let $k \in F$.

Let $K = \{k\}.$

Let $k + S = \{k + s : s \in S\}.$

Let $K + S = \{k + s : k \in K, s \in S\}$. Then

1. $\sup K = k$.

2. inf K = k.

3. k + S = K + S.

Proof. We prove 1.

Since $k \leq k$, then k is an upper bound of K.

Let M be an arbitrary upper bound of K.

Then $k \leq M$.

Since k is an upper bound of K and $k \leq M$, then k is the least upper bound of K, so $k = \sup K$.

Proof. We prove 2.

Since $k \leq k$, then k is a lower bound of K.

Let M be an arbitrary lower bound of K.

Then $M \leq k$.

Since k is a lower bound of K and $M \leq k$, then k is the greatest lower bound of K, so $k = \inf K$.

Proof. We prove 3.

Let $x \in k + S$.

Then there exists $s \in S$ such that x = k + s.

Since $k \in K$ and $s \in S$ and x = k + s, then $x \in K + S$.

Therefore, k + S is a subset of K + S.

Let $y \in K + S$.

Then there exists $s \in S$ such that y = k + s, so $y \in k + S$.

Therefore, K + S is a subset of k + S.

```
Since k + S is a subset of K + S and K + S is a subset of k + S, then k + S = K + S.
```

Proposition 40. additive property of suprema and infima

Let A and B be subsets of an ordered field F.

Let $A + B = \{a + b : a \in A, b \in B\}.$

- 1. If $\sup A$ and $\sup B$ exist, then $\sup(A+B) = \sup A + \sup B$.
- 2. If $\inf A$ and $\inf B$ exist, then $\inf(A+B) = \inf A + \inf B$.

Proof. We prove 1.

Suppose $\sup A$ and $\sup B$ exist in F.

Since sup A exists in F, then $A \neq \emptyset$, so there exists $a \in A$.

Since sup B exists in F, then $B \neq \emptyset$, so there exists $b \in B$.

Thus, there exists $a+b\in A+B$, so the set A+B is not empty. Let $c\in A+B$.

Then there exist $a \in A$ and $b \in B$ such that c = a + b.

Since $a \in A$ and $\sup A$ is an upper bound of A, then $a \leq \sup A$.

Since $b \in B$ and $\sup B$ is an upper bound of B, then $b \leq \sup B$.

Hence, $a + b \le \sup A + \sup B$.

Thus, $c \leq \sup A + \sup B$.

Therefore, $\sup A + \sup B$ is an upper bound of A + B.

We prove $\sup A + \sup B$ is the least upper bound of A + B.

Let $\epsilon > 0$.

Then $\frac{\epsilon}{2} > 0$.

Since $\sup A$ is the least upper bound of A, then there exists $x \in A$ such that $x > \sup A - \frac{\epsilon}{2}$.

Since $\sup B$ is the least upper bound of B, then there exists $y \in B$ such that $y > \sup B - \frac{\epsilon}{2}$.

Thus, $x + y > (\sup A - \frac{\epsilon}{2}) + (\sup B - \frac{\epsilon}{2}).$

Hence, there exists $x + y \in A + B$ such that $x + y > (\sup A + \sup B) - \epsilon$.

Therefore, $\sup A + \sup B$ is the least upper bound of A + B, so $\sup A + \sup B = \sup(A + B)$.

Proof. We prove 2.

Suppose $\inf A$ and $\inf B$ exist in F.

Since inf A exists in F, then $A \neq \emptyset$, so there exists $a \in A$.

Since inf B exists in F, then $B \neq \emptyset$, so there exists $b \in B$.

Thus, there exists $a + b \in A + B$, so the set A + B is not empty.

Let $c \in A + B$.

Then there exist $a \in A$ and $b \in B$ such that c = a + b.

Since $a \in A$ and inf A is a lower bound of A, then inf $A \leq a$.

Since $b \in B$ and inf B is a lower bound of B, then inf $B \le b$.

Hence, $\inf A + \inf B \le a + b$.

Thus, $\inf A + \inf B \leq c$.

Therefore, $\inf A + \inf B$ is a lower bound of A + B.

We prove $\inf A + \inf B$ is the greatest lower bound of A + B.

Let $\epsilon > 0$.

Then $\frac{\epsilon}{2} > 0$.

Since $\inf A$ is the greatest lower bound of A, then there exists $x \in A$ such that $x < \inf A + \frac{\epsilon}{2}$.

Since inf B is the greatest lower bound of B, then there exists $y \in B$ such that $y < \inf B + \frac{\epsilon}{2}$.

Thus, $x + y < \inf A + \frac{\epsilon}{2} + \inf B + \frac{\epsilon}{2}$.

Hence, there exists $x + y \in A + B$ such that $x + y < (\inf A + \inf B) + \epsilon$.

Therefore, inf $A+\inf B$ is the greatest lower bound of A+B, so inf $A+\inf B=\inf(A+B)$.

Corollary 41. Let S be a subset of an ordered field F.

Let $k \in F$.

Let $k + S = \{k + s : s \in S\}.$

- 1. If $\sup S$ exists, then $\sup(k+S) = k + \sup S$.
- 2. If $\inf S$ exists, then $\inf(k+S) = k + \inf S$.

Proof. We prove 1.

Suppose $\sup S$ exists.

Let $K = \{k\}$.

Then $\sup K = k$.

Let $K + S = \{k + s : k \in K, s \in S\}.$

Then k + S = K + S.

Therefore,

$$k + \sup S = \sup K + \sup S$$
$$= \sup (K + S)$$
$$= \sup (k + S).$$

Proof. We prove 2.

Suppose $\inf S$ exists.

Let $K = \{k\}$.

Then $\inf K = k$.

Let $K + S = \{k + s : k \in K, s \in S\}.$

Then k + S = K + S.

Therefore,

$$k + \inf S = \inf K + \inf S$$
$$= \inf(K + S)$$
$$= \inf(k + S).$$

Corollary 42. Let A and B be subsets of an ordered field F.

Let
$$A - B = \{a - b : a \in A, b \in B\}.$$

If $\sup A$ and $\inf B$ exist, then $\sup(A - B) = \sup A - \inf B$.

Proof. Suppose $\sup A$ and $\inf B$ exist.

Then $A \neq \emptyset$ and $B \neq \emptyset$.

Let $-B = \{-b : b \in B\}.$

Since inf B exists, then $\sup(-B) = -\inf B$.

Let $A + (-B) = \{a + b : a \in A, b \in -B\}.$

We first prove A - B = A + (-B).

Let $x \in A - B$.

Then x = a - b for some $a \in A$ and $b \in B$.

Since $b \in B$, then $-b \in -B$.

Since $a \in A$ and $-b \in -B$, then $a + (-b) = a - b = x \in A + (-B)$.

Thus, $A - B \subset A + (-B)$.

Let $y \in A + (-B)$.

Then y = a + b for some $a \in A$ and $b \in -B$.

Since $b \in -B$, then b = -b' for some $b' \in B$.

Since $a \in A$ and $b' \in B$, then $a - b' = a + b = y \in A - B$.

Thus, $A + (-B) \subset A - B$.

Since $A - B \subset A + (-B)$ and $A + (-B) \subset A - B$, then A - B = A + (-B).

Therefore,

$$sup(A - B) = sup(A + (-B))$$

$$= sup A + sup(-B)$$

$$= sup A - inf B.$$

Proposition 43. comparison property of suprema and infima

Let A and B be subsets of an ordered field F such that $A \subset B$.

- 1. If $\sup A$ and $\sup B$ exist, then $\sup A < \sup B$.
- 2. If $\inf A$ and $\inf B$ exist, then $\inf B < \inf A$.

Proof. We prove 1.

Suppose $\sup A$ and $\sup B$ exist.

Since $\sup A$ exists, then A is not empty.

Let $x \in A$.

Since $A \subset B$, then $x \in B$.

Since $\sup B$ is an upper bound of B, then $x \leq \sup B$.

Hence, $\sup B$ is an upper bound of A.

Since $\sup A$ is the least upper bound of A, then $\sup A \leq \sup B$.

```
Proof. We prove 2.
```

Suppose $\inf A$ and $\inf B$ exist.

Since $\inf A$ exists, then A is not empty.

Let $x \in A$.

Since $A \subset B$, then $x \in B$.

Since $\inf B$ is a lower bound of B, then $\inf B \leq x$.

Hence, $\inf B$ is a lower bound of A.

Since $\inf A$ is the greatest lower bound of A, then $\inf B \leq \inf A$.

Proposition 44. scalar multiple property of suprema and infima

Let S be a subset of an ordered field F.

Let $k \in F$.

Let $kS = \{ks : s \in S\}$.

- 1. If k > 0 and $\sup S$ exists, then $\sup(kS) = k \sup S$.
- 2. If k > 0 and inf S exists, then $\inf(kS) = k \inf S$.
- 3. If k < 0 and inf S exists, then $\sup(kS) = k \inf S$.
- 4. If k < 0 and $\sup S$ exists, then $\inf(kS) = k \sup S$.

Proof. We prove 1.

Suppose k > 0 and sup S exists.

Since sup S exists, then $S \neq \emptyset$, so there exists $s \in S$.

Hence, $ks \in kS$, so the set kS is not empty.

Let $x \in kS$.

Then there exists $s \in S$ such that x = ks.

Since $\sup S$ is an upper bound of S and $s \in S$, then $s \leq \sup S$.

Since k > 0, then $ks \le k \sup S$, so $x \le k \sup S$.

Therefore, $k \sup S$ is an upper bound of kS.

We prove $k \sup S$ is the least upper bound of kS.

Let $\epsilon > 0$.

Since k > 0, then $\frac{\epsilon}{k} > 0$.

Since $\sup S$ is the least upper bound of S, then there exists $s' \in S$ such that $s' > \sup S - \frac{\epsilon}{k}$.

Since k > 0, then there exists $ks' \in kS$ such that $ks' > k \sup S - \epsilon$.

Therefore, $k \sup S$ is the least upper bound of kS, so $k \sup S = \sup(kS)$. \square

Proof. We prove 2.

Suppose k > 0 and inf S exists.

Since inf S exists, then $S \neq \emptyset$, so there exists $s \in S$.

Hence, $ks \in kS$, so the set kS is not empty.

Let $x \in kS$.

Then there exists $s \in S$ such that x = ks.

Since inf S is a lower bound of S and $s \in S$, then inf $S \leq s$.

Since k > 0, then $k \inf S \le ks$, so $k \inf S \le x$.

Therefore, $k \inf S$ is a lower bound of kS.

We prove $k \inf S$ is the greatest lower bound of kS. Let $\epsilon > 0$. Since k > 0, then $\frac{\epsilon}{k} > 0$. Since inf S is the greatest lower bound of S, then there exists $s' \in S$ such that $s' < \inf S + \frac{\epsilon}{k}$. Since k > 0, then there exists $ks' \in kS$ such that $ks' < k \inf S + \epsilon$. Therefore, $k \inf S$ is the greatest lower bound of kS, so $k \inf S = \inf(kS)$. \square *Proof.* We prove 3. Suppose k < 0 and inf S exists. Since k < 0, then -k > 0. Since -k > 0 and inf S exists, then $\inf(-kS) = -k \inf S$. Since $\inf(-kS)$ exists, then $\sup(-(-kS)) = -\inf(-kS)$. Therefore, $\sup(kS) = -(-k\inf S) = k\inf S$. П *Proof.* We prove 4. Suppose k < 0 and $\sup S$ exists. Since k < 0, then -k > 0. Since -k > 0 and $\sup S$ exists, then $\sup(-kS) = -k \sup S$. Since $\sup(-kS)$ exists, then $\inf(-(-kS)) = -\sup(-kS)$. Therefore, $\inf(kS) = -(-k \sup S) = k \sup S$. Proposition 45. sufficient conditions for existence of supremum and infimum in an ordered field Let S be a subset of an ordered field F. 1. If $\max S$ exists, then $\sup S = \max S$. 2. If min S exists, then inf $S = \min S$. *Proof.* We prove 1. Suppose $\max S$ exists in F. Since (F, \leq) is a partially ordered set and $S \subset F$ and $\max S$ exists, then $\sup S = \max S.$ *Proof.* We prove 2. Suppose $\min S$ exists in F. Since (F, \leq) is a partially ordered set and $S \subset F$ and min S exists, then $\inf S = \min S$. **Proposition 46.** Let S be a subset of an ordered field F. $Let -S = \{-s : s \in S\}.$ 1. If min S exists, then $\max(-S) = -\min S$. 2. If $\max S$ exists, then $\min(-S) = -\max S$.

Proof. We prove 1.

Let $x \in -S$.

Suppose $\min S$ exists.

Then $\min S \in S$, so $-\min S \in -S$. Hence, the set -S is not empty. Then there exists $s \in S$ such that x = -s.

Since min S is a lower bound of S and $s \in S$, then min $S \leq s$.

Hence, $-\min S \ge -s$, so $-\min S \ge x$.

Thus, $x \leq -\min S$.

Therefore, $-\min S$ is an upper bound of -S.

Since $-\min S \in -S$ and $-\min S$ is an upper bound of -S, then $-\min S = \max(-S)$.

Proof. We prove 2.

Suppose $\max S$ exists.

Then $\max S \in S$, so $-\max S \in -S$.

Hence, the set -S is not empty.

Let $x \in -S$.

Then there exists $s \in S$ such that x = -s.

Since $\max S$ is an upper bound of S and $s \in S$, then $s \leq \max S$.

Hence, $-s \ge -\max S$, so $x \ge -\max S$.

Thus, $-\max S \leq x$.

Therefore, $-\max S$ is a lower bound of -S.

Since $-\max S \in -S$ and $-\max S$ is a lower bound of -S, then $-\max S = \min(-S)$.

Lemma 47. Let A and B be nonempty subsets of an ordered field F.

Then $u \in F$ is an upper bound of $A \cup B$ iff u is an upper bound of A and B.

Proof. We prove if u is an upper bound of $A \cup B$, then u is an upper bound of A and B.

Suppose u is an upper bound of $A \cup B$ in F.

Since A is not empty, then there is at least one element in A.

Let $x \in A$.

Since $A \subset A \cup B$, then $x \in A \cup B$.

Since u is an upper bound of $A \cup B$, then $x \leq u$.

Therefore, $x \leq u$ for all $x \in A$, so u is an upper bound of A.

Since B is not empty, then there is at least one element in B.

Let $x \in B$.

Since $B \subset A \cup B$, then $x \in A \cup B$.

Since u is an upper bound of $A \cup B$, then x < u.

Therefore, $x \leq u$ for all $x \in B$, so u is an upper bound of B.

Proof. Conversely, we prove if u is an upper bound of A and B, then u is an upper bound of $A \cup B$.

Suppose u is an upper bound of A and B in F.

Since A is not empty, then there is at least one element in A.

Let $a \in A$.

Since $A \subset A \cup B$, then $a \in A \cup B$.

Hence, $A \cup B$ is not empty.

Let $x \in A \cup B$.

Then either $x \in A$ or $x \in B$.

We consider these cases separately.

Case 1: Suppose $x \in A$.

Since u is an upper bound of A, then $x \leq u$.

Case 2: Suppose $x \in B$.

Since u is an upper bound of B, then $x \leq u$.

Hence, in all cases, $x \leq u$.

Therefore, u is an upper bound of $A \cup B$, as desired.

Proposition 48. Let A and B be subsets of an ordered field F.

If $\sup A$ and $\sup B$ exist, then $\sup(A \cup B) = \max \{\sup A, \sup B\}$.

Proof. Suppose $\sup A$ and $\sup B$ exist.

Then $A \neq \emptyset$ and $B \neq \emptyset$.

Let $S = \{\sup A, \sup B\}.$

Since $\sup A \in F$ and $\sup B \in F$, then $S \subset F$.

Since $\sup A \in S$ and $\sup B \in S$ and either $\sup A \leq \sup B$ or $\sup B \leq \sup A$, then either $\max S = \sup B$ or $\max S = \sup A$.

Hence, $\max S \in F$ and $\sup A \leq \max S$ and $\sup B \leq \max S$.

We prove $\max S$ is an upper bound of $A \cup B$.

Since $A \neq \emptyset$, let $a \in A$.

Since $A \subset A \cup B$, then $a \in A \cup B$, so $A \cup B$ is not empty.

Let $x \in A \cup B$.

Then either $x \in A$ or $x \in B$.

We consider these cases separately.

Case 1: Suppose $x \in A$.

Since $\sup A$ is an upper bound of A, then $x \leq \sup A$.

Since $\sup A \leq \max S$, then $x \leq \max S$.

Case 2: Suppose $x \in B$.

Since $\sup B$ is an upper bound of B, then $x \leq \sup B$.

Since $\sup B \leq \max S$, then $x \leq \max S$.

Hence, in all cases, $x \leq \max S$.

Since $x \leq \max S$ for all $x \in A \cup B$, then $\max S$ is an upper bound of $A \cup B$.

To prove max S is the least upper bound of $A \cup B$, let M be an arbitrary upper bound of $A \cup B$.

Since $A \neq \emptyset$ and $B \neq \emptyset$ and M is an upper bound of $A \cup B$, then M is an upper bound of A and B.

We must prove $\max S \leq M$.

Since M is an upper bound of A and $\sup A$ is the least upper bound of A, then $\sup A \leq M$.

Since M is an upper bound of B and $\sup B$ is the least upper bound of B, then $\sup B \leq M$.

Since either $\max S = \sup A$ or $\max S = \sup B$, then this implies $\max S \leq M$. Therefore, $\max S$ is the least upper bound of $A \cup B$, so $\max S = \sup(A \cup B)$. **Lemma 49.** Let A and B be subsets of an ordered field F.

If $\max A$ and $\max B$ exist in F, then $\max(A \cup B) = \max\{\max A, \max B\}$.

Proof. Suppose $\max A$ and $\max B$ exist in F.

Let $S = {\max A, \max B}$.

Since $\max A \in S$ and $\max B \in S$ and either $\max A \leq \max B$ or $\max B \leq \max A$, then either $\max B$ is the maximum of S or $\max A$ is the maximum of S. Hence, $\max S$ exists.

Since either $\max S = \max A$ or $\max S = \max B$ and $\max A \in A$ and $\max B \in B$, then either $\max S \in A$ or $\max S \in B$.

Hence, $\max S \in A \cup B$.

Since max S is the maximum of S, then max $A \leq \max S$ and max $B \leq \max S$.

We prove $\max S$ is an upper bound of $A \cup B$.

Since max A is the maximum of A, then max $A \in A$, so A is not empty.

Let $a \in A$.

Since $A \subset A \cup B$, then $a \in A \cup B$.

Hence, $A \cup B$ is not empty.

Let $x \in A \cup B$.

Then either $x \in A$ or $x \in B$.

We consider these cases separately.

Case 1: Suppose $x \in A$.

Since $\max A$ is an upper bound of A, then $x \leq \max A$.

Thus, $x \leq \max A$ and $\max A \leq \max S$, so $x \leq \max S$.

Case 2: Suppose $x \in B$.

Since $\max B$ is an upper bound of B, then $x \leq \max B$.

Thus, $x \leq \max B$ and $\max B \leq \max S$, so $x \leq \max S$.

Hence, in all cases, $x \leq \max S$.

Therefore, $\max S$ is an upper bound of $A \cup B$.

Thus, $\max S \in A \cup B$ and $\max S$ is an upper bound of $A \cup B$, so $\max S = \max(A \cup B)$, as desired. \square

Theorem 50. Every nonempty finite subset of an ordered field has a maximum.

Proof. Let F be an ordered field.

Define the predicate p(n) over \mathbb{N} to be the statement:

If a subset S of F contains exactly n elements, then $\max S$ exists.

We prove p(n) is true for all $n \in \mathbb{N}$ by induction on n.

Basis

Since F is a field, then F is not empty, so there is at least one element of F. Let x be an element of F.

Let $S = \{x\}$.

Since $x \in F$, then $S \subset F$.

Clearly, S contains exactly one element.

Since $x \in S$ and $x \le x$, then x is the maximum of S.

Thus, $\max S$ exists.

Therefore, p(1) is true.

Thus, if S is any subset of F that contains exactly one element, then $\max S$ exists.

Induction:

Let $n \in \mathbb{N}$ such that p(n) is true.

Then if a subset S of F contains exactly n elements, then $\max S$ exists.

To prove p(n+1) follows, we must prove if a subset A of F contains exactly n+1 elements, then max A exists.

Since F is an ordered field, then F is infinite, so F contains infinitely many elements.

Hence, there exist a finite number of elements of F.

In particular, there exist exactly n+1 elements of F.

Let A be a subset of F that contains exactly n+1 elements.

Then there exist $x_1,...,x_n,x_{n+1}$ elements of F such that $A=\{x_1,...,x_n,x_{n+1}\}$ and $A\subset F$.

Let $B = \{x_1, ..., x_n\}$ and $B' = \{x_{n+1}\}.$

Then $B \subset A$ and $B' \subset A$ and $A = B \cup B'$ and B contains exactly n elements and B' contains exactly one element.

Since $B \subset A \subset F$, then $B \subset F$.

Thus, B is a subset of F and contains exactly n elements, so by the induction hypothesis, $\max B$ exists.

Since $B' \subset A \subset F$, then $B' \subset F$.

Thus, B' is a subset of F and contains exactly one element, so max B' exists.

Since $\max B$ and $\max B'$ exist, then $\max(B \cup B') = \max\{\max B, \max B'\}$.

Thus, $\max A = \max\{\max B, \max B'\}$, so $\max A$ exists.

Thus, p(n+1) is true.

Hence, p(n) implies p(n+1) for all $n \in \mathbb{N}$.

Since p(1) is true and p(n) implies p(n+1) for all $n \in \mathbb{N}$, then by induction p(n) is true for all $n \in \mathbb{N}$.

Thus, for all $n \in \mathbb{N}$, if a subset S of F contains exactly n elements, then $\max S$ exists.

Hence, if S is a nonempty finite subset of F, then max S exists.

Therefore, if S is a nonempty finite subset of F, then S has a maximum.

Thus, every nonempty finite subset of an ordered field has a maximum, as desired. \Box

Complete ordered fields

Theorem 51. greatest lower bound property in a complete ordered field

Every nonempty subset of a complete ordered field F that is bounded below in F has a greatest lower bound in F.

Proof. Let S be a nonempty subset of a complete ordered field F that is bounded below in F.

We must prove $\inf S$ exists in F.

Let
$$-S = \{-s : s \in S\}.$$

Since $S \subset F$, then $-S \subset F$.

Since S is not empty, then there is at least one element of S.

Then $-x \in -S$, so $-S \neq \emptyset$.

Let $t \in -S$.

Then there exists $s \in S$ such that t = -s.

Since S is bounded below in F, then there is a lower bound of S in F.

Let L be a lower bound of S in F.

Since L is a lower bound of S and $s \in S$, then L < s, so -L > -s.

Hence, $-L \ge t$, so $t \le -L$ for all $t \in -S$.

Therefore, -L is an upper bound of -S, so -S is bounded above in F.

Thus, -S is a nonempty subset of F bounded above in F.

Since F is complete, then $\sup(-S)$ exists in F.

Hence, $\inf(-(-S)) = -\sup(-S)$, so $\inf(S) = -\sup(-S)$.

Therefore, we conclude $\inf(S)$ exists in F.

Proposition 52. There is no rational number x such that $x^2 = 2$.

Proof. Suppose there is a rational number x such that $x^2 = 2$.

Then there exist a pair of integers p and q with $q \neq 0$ such that $x = \frac{p}{a}$.

Surely, if such a pair exists, then a pair exists having no common factors

Therefore, assume p and q have no common factors greater than 1.

Observe that $2 = x^2 = (\frac{p}{q})^2 = \frac{p^2}{q^2}$. Thus, $p^2 = 2q^2$, so p^2 is even.

Since an integer n^2 is even if and only if n is even, then in particular, p^2 is even iff p is even.

Thus, p is even.

Hence, p = 2m for some integer m.

Therefore, $2q^2 = (2m)^2 = 4m^2$, so $q^2 = 2m^2$.

Hence, q^2 is even, so q is even.

Since p and q are both even, then 2 is a common factor of both p and q and is greater than 1; but this contradicts the assumption that p and q have no common factors greater than 1.

Hence, no such pair of integers exist.

Therefore, there is no rational number x such that $x^2 = 2$.

Proposition 53. Let A and B be subsets of \mathbb{R} such that $\sup A$ and $\sup B$ exist in \mathbb{R} .

If $A \cap B \neq \emptyset$, then $\sup(A \cap B) \leq \min \{ \sup A, \sup B \}$.

Moreover, if A and B are bounded intervals such that $A \cap B \neq \emptyset$, then $\sup(A \cap B) = \min \{ \sup A, \sup B \}.$

Proof. Suppose $A \cap B \neq \emptyset$.

Since $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$, then $A \cap B \subset \mathbb{R}$.

Let $S = \{\sup A, \sup B\}.$

Since $\sup A \in \mathbb{R}$ and $\sup B \in \mathbb{R}$, then $S \subset \mathbb{R}$.

Since $\sup A \in S$ and $\sup B \in S$ and either $\sup A \leq \sup B$ or $\sup B \leq \sup A$, then either $\sup A = \min S$ or $\sup B = \min S$.

Hence, $\min S \in \mathbb{R}$ and $\min S \leq \sup A$ and $\min S \leq \sup B$.

We prove min S is an upper bound of $A \cap B$ in \mathbb{R} .

Since $A \cap B$ is not empty, let $x \in A \cap B$.

Then $x \in A$ and $x \in B$.

Either $\sup A = \min S$ or $\sup B = \min S$.

We consider these cases separately.

Case 1: Suppose $\sup A = \min S$.

Since $x \in A$ and $\sup A$ is an upper bound of A, then $x \leq \sup A$.

Thus, $x \leq \min S$.

Case 2: Suppose $\sup B = \min S$.

Since $x \in B$ and $\sup B$ is an upper bound of B, then $x \leq \sup B$.

Thus, $x < \min S$.

Hence, in all cases, $x \leq \min S$.

Therefore, min S is an upper bound of $A \cap B$ in \mathbb{R} .

Thus, $A \cap B$ is bounded above in \mathbb{R} .

Since $A \cap B$ is a nonempty subset of \mathbb{R} and is bounded above in \mathbb{R} and \mathbb{R} is complete, then $A \cap B$ has a least upper bound in \mathbb{R} .

Therefore, $\sup(A \cap B)$ is the least upper bound of $A \cap B$ in \mathbb{R} .

Since $\sup(A \cap B)$ is the least upper bound of $A \cap B$ and $\min S$ is an upper bound of $A \cap B$, then $\sup(A \cap B) \leq \min S$, as desired.

We prove if A and B are bounded intervals such that $A \cap B \neq \emptyset$, then $\sup(A \cap B) = \min \{ \sup A, \sup B \}$.

Suppose A and B are bounded intervals such that $A \cap B \neq \emptyset$.

Since A and B are intervals, then $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$.

Since A is bounded, then A is bounded above and below in \mathbb{R} .

Since B is bounded, then B is bounded above and below in \mathbb{R} .

Since $A \cap B \neq \emptyset$, then let $x \in A \cap B$.

Then $x \in A$ and $x \in B$.

Hence, A is not empty and B is not empty.

Since A is a nonempty subset of \mathbb{R} that is bounded above in \mathbb{R} , then A has a least upper bound in \mathbb{R} .

Therefore, $\sup A$ is the least upper bound of A in \mathbb{R} .

Since A is a nonempty subset of \mathbb{R} that is bounded below in \mathbb{R} , then A has a greatest lower bound in \mathbb{R} .

Therefore, inf A is the greatest lower bound of A in \mathbb{R} .

Since B is a nonempty subset of \mathbb{R} that is bounded above in \mathbb{R} , then B has a least upper bound in \mathbb{R} .

Therefore, sup B is the least upper bound of B in \mathbb{R} .

Since B is a nonempty subset of \mathbb{R} that is bounded below in \mathbb{R} , then B has a greatest lower bound in \mathbb{R} .

Therefore, inf B is the greatest lower bound of B in \mathbb{R} .

Let $S = \{\sup A, \sup B\}.$

Since A and B are subsets of \mathbb{R} and sup A and sup B exist in \mathbb{R} and $A \cap B \neq \emptyset$, then $\sup(A \cap B) \leq \min S$.

We must prove $\sup(A \cap B) = \min S$.

Since min S is an upper bound of $A \cap B$, then $A \cap B$ has at least one upper bound in \mathbb{R} .

Let K be an arbitrary upper bound of $A \cap B$ in \mathbb{R} .

Then $K \in \mathbb{R}$.

We must prove $\min S \leq K$.

Suppose for the sake of contradiction min S > K.

Then $K < \min S$.

Since $x \in A \cap B$ and K is an upper bound of $A \cap B$, then $x \leq K$.

Hence, $x \leq K < \min S$.

Since $\min S \leq \sup A$, then $x \leq K < \min S \leq \sup A$, so $x \leq K < \sup A$.

Since A is an interval and sup A is the least upper bound of A, then if $x \in A$, then $c \in A$ if $x \le c < \sup A$.

Since A is an interval and $x \in A$ and $x < K < \sup A$, then $K \in A$.

Since $\min S \leq \sup B$, then $x \leq K < \min S \leq \sup B$, so $x \leq K < \sup B$.

Since B is an interval and sup B is the least upper bound of B, then if $x \in B$, then $c \in B$ if $x \le c < \sup B$.

Since B is an interval and $x \in B$ and $x \le K < \sup B$, then $K \in B$.

Either $\sup A = \min S$ or $\sup B = \min S$.

We consider these cases separately.

Case 1: Suppose $\min S = \sup A$.

Since $K \in A$ and $K < \frac{K + \sup A}{2} < \sup A$, then $\frac{K + \sup A}{2} \in A$. Since $\min S = \sup A$, then $K < \frac{K + \min S}{2} < \sup A$ and $\frac{K + \min S}{2} \in A$. Thus, $\frac{K + \min S}{2} \in A$ and $\frac{K + \min S}{2} > K$.

Since $\min \overline{S} \leq \sup B$, then either $\min S < \sup B$ or $\min S = \sup B$.

Suppose $\min S < \sup B$.

Since $\min S = \sup A$, then $\sup A < \sup B$.

Since $K \in B$ and $K < \min S < \sup B$, then $\min S \in B$.

Since B is an interval and $K \in B$ and $\min S \in B$ and $K < \frac{K + \min S}{2} < \min S$, then $\frac{K+\min S}{2} \in B$.

Thus, $\frac{K+\min S}{2} \in B$ and $\frac{K+\min S}{2} > K$.

Suppose $\min S = \sup B$.

Since $K \in B$ and $K < \frac{K + \sup B}{2} < \sup B$, then $\frac{K + \sup B}{2} \in B$. Since $\sup B = \min S$, then $K < \frac{K + \min S}{2} < \sup B$ and $\frac{K + \min S}{2} \in B$.

Thus, $\frac{K+\min S}{2} \in B$ and $\frac{K+\min S}{2} > K$.

Thus, in either case $\frac{K+\min S}{2} \in B$ and $\frac{K+\min S}{2} > K$.

Since $\frac{K+\min S}{2} \in A$ and $\frac{K+\min S}{2} \in B$, then $\frac{K+\min S}{2} \in A \cap B$.

Hence, there exists $\frac{K+\min S}{2} \in A \cap B$ such that $\frac{K+\min S}{2} > K$.

But, this contradicts the fact that K is an upper bound of $A \cap B$.

Therefore, $\min S \neq \sup A$.

 $\begin{array}{l} \textbf{Case 2: Suppose } \min S = \sup B. \\ \text{Since } K \in B \text{ and } K < \frac{K + \sup B}{2} < \sup B, \text{ then } \frac{K + \sup B}{2} \in B. \\ \text{Since } \min S = \sup B, \text{ then } K < \frac{K + \min S}{2} < \sup B \text{ and } \frac{K + \min S}{2} \in B. \end{array}$

```
Thus, \frac{K+\min S}{2} \in B and \frac{K+\min S}{2} > K.
      Since \min \tilde{S} \leq \sup A, then either \min S < \sup A or \min S = \sup A.
      Suppose \min S < \sup A.
      Since \min S = \sup B, then \sup B < \sup A.
      Since K \in A and K < \min S < \sup A, then \min S \in A.
      Since A is an interval and K \in A and \min S \in A and K < \frac{K + \min S}{2} < \min S,
then \frac{K+\min S}{2} \in A.
Thus, \frac{K+\min S}{2} \in A and \frac{K+\min S}{2} > K.
     Suppose \min S = \sup A.

Since K \in A and K < \frac{K + \sup A}{2} < \sup A, then \frac{K + \sup A}{2} \in A.

Since \sup A = \min S, then K < \frac{K + \min S}{2} < \sup A and \frac{K + \min S}{2} \in A.

Thus, \frac{K + \min S}{2} \in A and \frac{K + \min S}{2} > K.
     Thus, \frac{1}{2} \in A and \frac{1}{2} > K.

Thus, in either case \frac{K+\min S}{2} \in A and \frac{K+\min S}{2} > K.

Since \frac{K+\min S}{2} \in A and \frac{K+\min S}{2} \in B, then \frac{K+\min S}{2} \in A \cap B.

Hence, there exists \frac{K+\min S}{2} \in A \cap B such that \frac{K+\min S}{2} > K.

But, this contradicts the fact that K is an upper bound of A \cap B.
      Therefore, \min S \neq \sup A.
      Thus, in either case, \min S \neq \sup A and \min S \neq \sup B.
      This contradicts the fact that either min S = \sup A or min S = \sup B.
      Hence, \min S cannot be greater than K.
      Therefore, \min S \leq K, so \min S is the least upper bound of A \cap B.
      Thus, \min S = \sup(A \cap B), as desired.
```

Archimedean ordered fields

```
Theorem 54. Archimedean property of \mathbb{Q}
```

The field $(\mathbb{Q}, +, \cdot, \leq)$ is Archimedean ordered.

```
Proof. Let a, b \in \mathbb{Q} such that b > 0.
```

We must prove there exists $n \in \mathbb{N}$ such that $n > \frac{a}{b}$.

Either $a \leq 0$ or a > 0.

We consider these cases separately.

Case 1: Suppose a < 0.

Let n=1.

Then $n \in \mathbb{N}$.

Since $a \le 0$ and b > 0, then $\frac{a}{b} \le 0 < 1 = n$.

Therefore, there exists $n \in \mathbb{N}$ such that $n > \frac{a}{b}$.

Case 2: Suppose a > 0.

Since $a \in \mathbb{Q}$ and a > 0, then there exist $r, s \in \mathbb{Z}^+$ such that $a = \frac{r}{s}$.

Since $b \in \mathbb{Q}$ and b > 0, then there exist $t, v \in \mathbb{Z}^+$ such that $b = \frac{t}{v}$.

Let n = rv(rv + 1).

Since $r, v \in \mathbb{Z}^+$ and \mathbb{Z}^+ is closed under addition and multiplication, then $n \in \mathbb{Z}^+$, so $n \in \mathbb{N}$.

Since $s, t \in \mathbb{Z}^+$, then $s \ge 1$ and $t \ge 1$, so $st \ge 1$.

Since $r, v \in \mathbb{Z}^+$, then $r \ge 1$ and $v \ge 1$, so $rv \ge 1$.

Since $rv \ge 1$, then $rv + 1 \ge 2 > 1$, so rv + 1 > 1.

Since rv + 1 > 1 and $st \ge 1$, then (rv + 1)st > 1.

Since $\frac{nb}{a} = \frac{rv(rv+1)\frac{t}{v}}{\frac{r}{s}} = \frac{r(rv+1)t}{\frac{r}{s}} = \frac{r(rv+1)st}{r} = (rv+1)st > 1$, then $\frac{nb}{a} > 1$. Since a > 0, then nb > a.

Since b > 0, then $n > \frac{a}{b}$.

Therefore, there exists $n \in \mathbb{N}$ such that $n > \frac{a}{b}$.

Theorem 55. Archimedean property of \mathbb{R}

A complete ordered field is necessarily Archimedean ordered.

Proof. Let F be a complete ordered field.

To prove F is Archimedean ordered, let $a, b \in F$ with b > 0.

We must prove there exists $n \in \mathbb{Z}^+$ such that nb > a.

We prove by contradiction.

Suppose there does not exist a positive integer n such that nb > a.

Then $nb \leq a$ for all positive integers n.

Let S be the set of all positive integer multiples of b.

Then $S = \{nb : n \in \mathbb{Z}^+\}.$

Since b = 1b and $1 \in \mathbb{Z}^+$, then $b \in S$, so S is not empty.

Let $s \in S$.

Then there exists $n \in \mathbb{Z}^+$ such that s = nb.

Since $b \in F^+$ and $n \in \mathbb{N}$, then $s = nb \in F^+$.

Since $s \in F^+$ and $F^+ \subset F$, then $s \in F$, so $S \subset F$.

Since $n \in \mathbb{Z}^+$, then by hypothesis, $nb \leq a$, so $s \leq a$.

Therefore, a is an upper bound of S in F, so S is bounded above in F.

Hence, S is a nonempty subset of F that is bounded above in F.

Since F is complete, then S has a least upper bound in F.

Let $\sup S$ be the least upper bound of S in F.

Since $b > 0 = \sup S - \sup S$, then $\sup S + b > \sup S$, so $\sup S > \sup S - b$.

Since $\sup S - b < \sup S$, then $\sup S - b$ is not an upper bound of S, so there exists $x \in S$ such that $x > \sup S - b$.

Since $x \in S$, then there exists $m \in \mathbb{Z}^+$ such that x = mb, so $mb > \sup S - b$.

Hence, $(m+1)b = mb + b > \sup S$.

Since $m+1 \in \mathbb{Z}^+$, then $(m+1)b \in S$.

Hence, there exists $(m+1)b \in S$ such that $(m+1)b > \sup S$.

But, this contradicts the fact that $\sup S$ is an upper bound of S.

Therefore, there does exist a positive integer n such that nb > a, as desired.

Theorem 56. N is unbounded in an Archimedean ordered field.

Let F be an Archimedean ordered field.

Then for every $x \in F$, there exists $n \in \mathbb{N}$ such that n > x.

Proof. Since F is a field, then $1 \in F$, so $F \neq \emptyset$.

Let $x \in F$ be arbitrary.

Since F is Archimedean and $x \in F$ and 1 > 0, then there exists $n \in \mathbb{N}$ such that $n \cdot 1 > x$.

Therefore, there exists $n \in \mathbb{N}$ such that n > x.

Proposition 57. Let F be an Archimedean ordered field.

For every positive $\epsilon \in F$, there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < \epsilon$.

Proof. Let ϵ be a positive element of F.

Then $\epsilon > 0$.

Since F is Archimedean ordered and $1 \in F$ and $\epsilon > 0$, then there exists $n \in \mathbb{N}$ such that $n\epsilon > 1$.

Since $n \in \mathbb{N}$, then n > 0, so $\epsilon > \frac{1}{n}$. Therefore, there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < \epsilon$.

Lemma 58. Each real number lies between two consecutive integers

For each real number x there is a unique integer n such that $n \le x < n + 1$.

Solution. We must prove: $(\forall x \in \mathbb{R})(\exists! n \in \mathbb{Z})(n \leq x < n + 1)$.

Proof. Existence:

Let x be an arbitrary real number.

We must prove there is an integer n such that $n \le x < n + 1$.

Let $S = \{ n \in \mathbb{Z} : n < x \}.$

Suppose for the sake of contradiction $S = \emptyset$.

Then there is no integer n such that $n \leq x$.

Hence, n > x for every integer n, so for every integer n, x < n.

Thus, x is a lower bound of \mathbb{Z} , so \mathbb{Z} is bounded below in \mathbb{R} .

Since $\mathbb{Z} \neq \emptyset$ and \mathbb{Z} is bounded below in \mathbb{R} , then by completeness of \mathbb{R} , inf \mathbb{Z} exists.

Since $\inf \mathbb{Z} + 1$ is not a lower bound of \mathbb{Z} , then there exists $t \in \mathbb{Z}$ such that $t < \inf \mathbb{Z} + 1$.

Thus, $t-1 < \inf \mathbb{Z}$.

Since $t \in \mathbb{Z}$, then $t - 1 \in \mathbb{Z}$.

Hence, we have $t-1 \in \mathbb{Z}$ and $t-1 < \inf \mathbb{Z}$.

This contradicts the fact that $\inf \mathbb{Z}$ is a lower bound of \mathbb{Z} .

Therefore, $S \neq \emptyset$.

Let $s \in S$ be given.

Then $s \in \mathbb{Z}$ and $s \leq x$.

Thus, $s \leq x$ for all $s \in S$, so x is an upper bound of S.

Hence, S is bounded above in \mathbb{R} .

Since $S \neq \emptyset$ and S is bounded above in \mathbb{R} , then by completeness of \mathbb{R} , sup S exists.

Since $\sup S - 1$ is not an upper bound of S, then there exists $n \in S$ such that $n > \sup S - 1$.

Thus, $n+1 > \sup S$.

Since $n \in S$, then $n \in \mathbb{Z}$ and $n \leq x$.

Since $\sup S$ is an upper bound of S, then if $n \in S$, then $n \leq \sup S$.

Hence, if $n > \sup S$, then $n \notin S$.

Since $n+1 > \sup S$, then we conclude $n+1 \notin S$.

Since $n+1 \in S$ iff $n+1 \in \mathbb{Z}$ and $n+1 \le x$, then $n+1 \notin S$ iff either $n+1 \notin \mathbb{Z}$ or n+1 > x.

П

Thus, either $n+1 \notin \mathbb{Z}$ or n+1 > x.

Since $s \in \mathbb{Z}$, then $n+1 \in \mathbb{Z}$.

Hence, we conclude n+1>x.

Therefore, there exists $n \in \mathbb{Z}$ such that $n \leq x < n + 1$.

Proof. Uniqueness:

Let $x \in \mathbb{R}$.

We must prove there is a unique integer n such that $n \le x < n + 1$.

Suppose there exist integers m and n such that $m \le x < m+1$ and $n \le x < n+1$

To prove uniqueness, we must prove m = n.

Since $m \le x < m+1$, then $m \le x$ and x < m+1.

Since $n \le x < n+1$, then $n \le x$ and x < n+1.

By trichotomy, either m < n or m = n or m > n.

Suppose m < n.

Then n-m>0.

Since m and n are integers, then $n - m \ge 1$.

Hence, $n \ge m+1$, so $m+1 \le n$.

Since $m+1 \le n \le x$, then $m+1 \le x$.

Thus, we have $m+1 \leq x$ and m+1 > x, a violation of trichotomy.

Therefore, m cannot be less than n.

Suppose m > n.

Then m-n>0.

Since m and n are integers, then $m - n \ge 1$.

Hence, $m \ge n + 1$, so $n + 1 \le m$.

Since $n+1 \le m$ and $m \le x$, then $n+1 \le x$.

Thus, we have $n+1 \le x$ and n+1 > x, a violation of trichotomy.

Therefore, m cannot be greater than n.

Hence, we must conclude m = n, as desired.

Theorem 59. \mathbb{O} is dense in \mathbb{R}

For every $a, b \in \mathbb{R}$ with a < b, there exists $q \in \mathbb{Q}$ such that a < q < b.

Proof. Let a and b be real numbers with a < b.

Then b - a > 0.

By the Archimedean property of \mathbb{R} , there exists a positive integer n such that $\frac{1}{n} < b - a$.

Since n > 0, then 1 < bn - an, so an + 1 < bn.

Since every real number lies between two consecutive integers, then in particular, the real number an lies between two consecutive integers.

Hence, there exists an integer m such that $m \le an < m + 1$.

Thus, $m \le an$ and an < m + 1.

Since $m \le an$, then $m + 1 \le an + 1$.

Since $m + 1 \le an + 1$ and an + 1 < bn, then m + 1 < bn.

Hence, an < m+1 and m+1 < bn. Since n > 0, then $a < \frac{m+1}{n}$ and $\frac{m+1}{n} < b$, so $a < \frac{m+1}{n} < b$. Let $q = \frac{m+1}{n}$.

Since $m+1, n \in \mathbb{Z}$ and $n \neq 0$, then $q \in \mathbb{Q}$.

Therefore, there exists $q \in \mathbb{Q}$ such that a < q < b, as desired.

Corollary 60. between any two distinct real numbers is a nonzero $rational\ number$

For every $a,b \in \mathbb{R}$ with a < b, there exists $q \in \mathbb{Q}$ such that $q \neq 0$ and a < q < b.

Proof. Let $a, b \in \mathbb{R}$ such that a < b.

Either it is the case that a < 0 < b or not.

We consider these cases separately.

Case 1: Suppose a < 0 < b.

Then a < 0 and 0 < b.

Since \mathbb{Q} is dense in \mathbb{R} and 0 < b, then there exists $q \in \mathbb{Q}$ such that 0 < q < b. Hence, 0 < q, so $q \neq 0$.

Since a < 0 and 0 < q < b, then a < 0 < q < b, so a < q < b.

Case 2: Suppose it is not the case that a < 0 < b.

Then it is not the case that a < 0 and 0 < b, so either $a \ge 0$ or $0 \ge b$.

We consider these cases separately.

Case 2a: Suppose $a \geq 0$.

Since \mathbb{Q} is dense in \mathbb{R} and a < b, then there exists $q \in \mathbb{Q}$ such that a < q < b. Hence, a < q.

Since $0 \le a$ and a < q, then 0 < q, so $q \ne 0$.

Case 2b: Suppose $0 \ge b$.

Since \mathbb{Q} is dense in \mathbb{R} and a < b, then there exists $q \in \mathbb{Q}$ such that a < q < b. Hence, q < b.

Since q < b and $b \le 0$, then q < 0, so $q \ne 0$.

Therefore, in all cases, there exists $q \in \mathbb{Q}$ such that $q \neq 0$ and a < q < b, as desired.

Existence of square roots in \mathbb{R}

Proposition 61. A square root of a negative real number does not exist in \mathbb{R} .

Proof. Let x be a negative real number.

Then $x \in \mathbb{R}$ and x < 0.

Suppose a square root of x exists in \mathbb{R} .

Then there is a real number y such that $y^2 = x$.

Hence, $y^2 < 0$.

Since \mathbb{R} is an ordered field, then $r^2 \geq 0$ for all $r \in \mathbb{R}$.

In particular, $y^2 \ge 0$.

```
Thus, we have y^2 < 0 and y^2 \ge 0, a violation of trichotomy.
   Therefore, a square root of x does not exist in \mathbb{R}.
                                                                                         Proposition 62. Zero is the unique square root of 0.
Proof. Clearly, 0 is a real number and 0^2 = 0.
   Therefore, 0 is a square root of 0.
   To prove 0 is a unique square root of 0, suppose there is a real number x
that is a square root of 0.
   Then x \in \mathbb{R} and x^2 = 0.
    We must prove x = 0.
   Since \mathbb{R} is an ordered field, then x^2 = 0 iff x = 0.
   Since x^2 = 0, then we conclude x = 0, as desired.
                                                                                         Lemma 63. Let F be an ordered field.
    Let a, b \in F.
    If 0 < a < b, then 0 < a^2 < ab < b^2.
Proof. Suppose 0 < a < b.
   Then 0 < a and a < b, so 0 < b.
   Since 0 < a and a > 0, then a0 < aa, so 0 < a^2.
   Since a < b and a > 0, then aa < ab, so a^2 < ab.
   Since a < b and b > 0, then ab < bb, so ab < b^2.
   Therefore, 0 < a^2 and a^2 < ab and ab < b^2, so 0 < a^2 < ab < b^2, as
desired.
Lemma 64. Let F be an ordered field.
   Let a \in F.
   If |a| < \epsilon for all \epsilon > 0, then a = 0.
Proof. Suppose |a| < \epsilon for all \epsilon > 0.
    Since |a| \ge 0, then either |a| > 0 or |a| = 0.
    Suppose |a| > 0.
   Then |a| < |a|, a contradiction.
   Therefore, |a| = 0, so a = 0, as desired.
                                                                                         Proof. We must prove (\forall \epsilon > 0)(|a| < \epsilon) \rightarrow (a = 0).
   We prove by contrapositive.
   Suppose a \neq 0.
   Let \epsilon = \frac{|a|}{2}.
   Since |a| \ge 0 and a \ne 0, then |a| > 0, so \frac{|a|}{2} > 0.
   Hence, \epsilon > 0.
   Since 1 \ge 1/2 and |a| > 0, then |a| \ge \frac{|a|}{2} = \epsilon.
Therefore, there exists \epsilon > 0 such that |a| \ge \epsilon, as desired.
                                                                                         Theorem 65. existence and uniqueness of positive square roots
```

A unique positive square root of r exists in \mathbb{R} iff r > 0.

Let $r \in \mathbb{R}$.

Proof. We prove if a unique positive square root of r exists in \mathbb{R} , then r > 0.

Suppose there exists a unique positive square root of r in \mathbb{R} .

Let x be the unique positive square root of r in \mathbb{R} .

Then $x \in \mathbb{R}$ and x > 0 and $x^2 = r$.

Since \mathbb{R} is an ordered field and x > 0, then $x^2 > 0$, so r > 0, as desired. \square

Proof. Conversely, we prove if r > 0, then a unique positive square root of r exists in \mathbb{R} .

Suppose r > 0.

To prove a unique positive square root of r exists in \mathbb{R} , we must prove there exists a unique $\alpha \in \mathbb{R}$ such that $\alpha > 0$ and $\alpha^2 = r$.

Thus, we must prove:

1. Existence:

There exists $\alpha \in \mathbb{R}$ such that $\alpha > 0$ and $\alpha^2 = r$.

2. Uniqueness:

If α and β are positive square roots of r, then $\alpha = \beta$.

Proof. Uniqueness:

We prove if α and β are positive square roots of r, then $\alpha = \beta$.

Suppose α and β are positive square roots of r.

Since α is a positive square root of r, then $\alpha \in \mathbb{R}$ and $\alpha > 0$ and $\alpha^2 = r$.

Since β is a positive square root of r, then $\beta \in \mathbb{R}$ and $\beta > 0$ and $\beta^2 = r$.

Since $\alpha^2 = r = \beta^2$, then $\alpha^2 = \beta^2$, so $\alpha^2 - \beta^2 = 0$.

Hence, $(\alpha + \beta)(\alpha - \beta) = 0$, so either $\alpha + \beta = 0$ or $\alpha - \beta = 0$.

Thus, either $\alpha = -\beta$ or $\alpha = \beta$.

Suppose $\alpha = -\beta$.

Since $\beta > 0$, then $-\beta < 0$, so $\alpha < 0$.

Thus, we have $\alpha < 0$ and $\alpha > 0$, a violation of trichotomy.

Hence, $\alpha \neq -\beta$.

Therefore, $\alpha = \beta$, as desired.

Proof. Existence:

We prove there exists $\alpha \in \mathbb{R}$ such that $\alpha > 0$ and $\alpha^2 = r$.

Let $S = \{x \in \mathbb{R} : x > 0, x^2 < r\}.$

Clearly, $S \subset \mathbb{R}$.

We prove S is not empty.

Let $A = \{1, r\}.$

Since $1 \in A$ and $r \in A$ and either $1 \le r$ or $r \le 1$, then either min A = 1 or min A = r, so min A exists in \mathbb{R} .

Since min A is a lower bound of A and $1 \in A$, then min $A \leq 1$.

Since either min A = 1 or min A = r and 1 > 0 and r > 0, then min A > 0.

Since $\min A \le 1$ and $\min A > 0$, then $(\min A)^2 \le \min A$.

Since min A is a lower bound of A and $r \in A$, then min $A \leq r$.

Thus, $(\min A)^2 \le \min A \le r$, so $(\min A)^2 \le r$.

Since $\min A > 0$, then $(\min A)^2 > 0$.

Since $\min A \in \mathbb{R}$ and $(\min A)^2 > 0$ and $(\min A)^2 < r$, then $\min A \in S$.

Therefore S is not empty.

Since $1 \in A$ and $r \in A$ and either $1 \le r$ or $r \le 1$, then either max A = r or $\max A = 1$, so $\max A$ exists in \mathbb{R} .

Let $x \in \mathbb{R}$.

To prove max A is an upper bound of S, we must prove if $x \in S$, then $x \leq \max A$.

We prove by contrapositive.

Suppose $x > \max A$.

We must prove $x \notin S$.

Since max A is an upper bound of A and $1 \in A$, then $1 \le \max A$.

Thus, $x > \max A \ge 1 > 0$, so x > 1 and x > 0 and $\max A > 0$.

Since $x > \max A$ and x > 0, then $x^2 > x \max A$.

Since x > 1 and $\max A > 0$, then $x \max A > \max A$.

Thus, $x^2 > x \max A > \max A$, so $x^2 > \max A$.

Since $\max A$ is an upper bound of A and $r \in A$, then $r \leq \max A$.

Since $x^2 > \max A$ and $\max A \ge r$, then $x^2 > r$.

Since $x \in \mathbb{R}$ and $x^2 > r$, then $x \notin S$, as desired.

Therefore, max A is an upper bound of S, so S is bounded above in \mathbb{R} .

Since S is a nonempty subset of \mathbb{R} and is bounded above in \mathbb{R} and \mathbb{R} is complete, then S has a least upper bound in \mathbb{R} .

Let α be the least upper bound of S in \mathbb{R} .

Then $\alpha \in \mathbb{R}$ and α is an upper bound of S.

We prove $\alpha > 0$.

Since α is an upper bound of S and min $A \in S$, then min $A < \alpha$.

Since $0 < \min A$ and $\min A \le \alpha$, then $0 < \alpha$, so $\alpha > 0$, as desired.

We prove $\alpha^2 = r$.

Either $\alpha^2 < r$ or $\alpha^2 = r$ or $\alpha^2 > r$.

$$\begin{split} & \text{Suppose } \alpha^2 < r. \\ & \text{Let } \delta = \min\{1, \frac{r - \alpha^2}{2\alpha + 1}\}. \\ & \text{Since } \alpha^2 < r, \, \text{then } r - \alpha^2 > 0. \end{split}$$

Since $\alpha > 0$, then $2\alpha + 1 > 0$, so $\frac{r - \alpha^2}{2\alpha + 1} > 0$.

Thus, $\delta > 0$.

We prove $\alpha + \delta \in S$.

Since $\alpha > 0$ and $\delta > 0$, then $\alpha + \delta > 0$.

Since $\delta \leq 1$, then $0 < \delta \leq 1$, so $\delta^2 \leq \delta$. Since $\delta \leq \frac{r-\alpha^2}{2\alpha+1}$ and $2\alpha+1>0$, then $2\alpha\delta+\delta \leq r-\alpha^2$.

$$(\alpha + \delta)^2 = \alpha^2 + 2\alpha\delta + \delta^2$$

$$\leq \alpha^2 + 2\alpha\delta + \delta$$

$$\leq \alpha^2 + r - \alpha^2$$

$$= r.$$

Since $\alpha + \delta > 0$ and $(\alpha + \delta)^2 \le r$, then $\alpha + \delta \in S$.

Since $\delta > 0$, then $\alpha + \delta > \alpha$.

Thus, there exists $\alpha + \delta \in S$ such that $\alpha + \delta > \alpha$.

This contradicts the fact that α is an upper bound of S.

Therefore, α^2 cannot be less than r.

Suppose $\alpha^2 > r$. Let $\epsilon = \min\{\alpha, \frac{\alpha^2 - r}{2\alpha}\}$. Since $\alpha^2 > r$, then $\alpha^2 - r > 0$.

Since $\alpha > 0$, then $\frac{\alpha^2 - r}{2\alpha} > 0$, so $\epsilon > 0$. We prove $(\alpha - \epsilon)^2 > r$.

Since $\epsilon \leq \frac{\alpha^2 - r}{2\alpha}$, then $2\alpha\epsilon \leq \alpha^2 - r$, so $r \leq \alpha^2 - 2\alpha\epsilon$. Since $\epsilon > 0$, then $\epsilon^2 > 0$.

Thus,

$$(\alpha - \epsilon)^2 = \alpha^2 - 2\alpha\epsilon + \epsilon^2$$

$$> \alpha^2 - 2\alpha\epsilon$$

$$> r$$

Hence, $(\alpha - \epsilon)^2 > r$.

Let $x \in S$.

Then x > 0 and $x^2 < r$.

Suppose for the sake of contradiction $x > \alpha - \epsilon$.

Since $\epsilon \leq \alpha$, then $0 \leq \alpha - \epsilon$.

Thus, $0 \le \alpha - \epsilon < x$, so $(\alpha - \epsilon)^2 < x^2$. Since $x^2 \le r$, then $(\alpha - \epsilon)^2 < r$.

But, this contradicts the fact $(\alpha - \epsilon)^2 > r$.

Therefore, $x \leq \alpha - \epsilon$.

Thus, there exists $\epsilon > 0$ such that $x \leq \alpha - \epsilon$ for each $x \in S$, so $\alpha - \epsilon$ is an upper bound of S.

Since $\alpha - \epsilon < \alpha$, then this contradicts the fact that α is the least upper bound of S.

Hence, α^2 cannot be greater than r.

Since α^2 cannot be less than r and α^2 cannot be greater than r, then we must conclude $\alpha^2 = r$.

Proposition 66. Let $x \in \mathbb{R}$.

Then $\sqrt{x} \in \mathbb{R}$ iff $x \geq 0$.

Proof. We first prove if $x \geq 0$, then $\sqrt{x} \in \mathbb{R}$.

Suppose $x \ge 0$.

Then x > 0 or x = 0.

We consider these cases separately.

Case 1: Suppose x = 0.

Since $\sqrt{x} = \sqrt{0} = 0$ and $0 \in \mathbb{R}$, then $\sqrt{x} \in \mathbb{R}$.

Case 2: Suppose x > 0.

Then a unique positive square root of x exists in \mathbb{R} .

Thus, there is a unique $y \in \mathbb{R}$ such that $y^2 = x$.

Since x > 0 and y is a positive square root of x, then $y = \sqrt{x}$.

Since $\sqrt{x} = y$ and $y \in \mathbb{R}$, then $\sqrt{x} \in \mathbb{R}$.

Therefore, in either case, $\sqrt{x} \in \mathbb{R}$.

Proof. Conversely, we prove if $\sqrt{x} \in \mathbb{R}$, then $x \geq 0$.

Suppose $\sqrt{x} \in \mathbb{R}$.

Let $y = \sqrt{x}$.

Since y is the nonnegative square root of x, then $y \in \mathbb{R}$ and $y^2 = x$ and y > 0.

Since $y \ge 0$, then either y > 0 or y = 0.

We consider these cases separately.

Case 1: Suppose y = 0.

Then $x = y^2 = 0^2 = 0$, so x = 0.

Case 2: Suppose y > 0.

Since $y \in \mathbb{R}$ and y > 0, then $y^2 > 0$.

Thus, $x = y^2 > 0$, so x > 0.

Therefore, in either case, $x \geq 0$.

Proposition 67. Let $x \in \mathbb{R}$.

Then $\sqrt{x} \ge 0$ iff $x \ge 0$.

Proof. We first prove if $x \ge 0$, then $\sqrt{x} \ge 0$.

Suppose $x \geq 0$.

Then x > 0 or x = 0.

We consider these cases separately.

Case 1: Suppose x = 0.

Then $\sqrt{x} = \sqrt{0} = 0$.

Case 2: Suppose x > 0.

Then a unique positive square root of x exists in \mathbb{R} .

Thus, there is a unique $y \in \mathbb{R}$ such that $y^2 = x$ and y > 0.

Since x > 0 and y is a positive square root of x, then $y = \sqrt{x}$.

Thus, $\sqrt{x} = y > 0$.

Therefore, in either case, $\sqrt{x} \ge 0$.

Proof. Conversely, we prove if $\sqrt{x} \ge 0$, then $x \ge 0$.

Suppose $\sqrt{x} \geq 0$.

Then x > 0 or x = 0.

We consider these cases separately.

Case 1: Suppose $\sqrt{x} = 0$.

Let $y = \sqrt{x}$.

Since y is the square root of x, then $y \in \mathbb{R}$ and $y^2 = x$.

Since $y = \sqrt{x} = 0$, then y = 0.

Thus, $x = y^2 = y \cdot y = 0 \cdot 0 = 0$, so x = 0.

Case 2: Suppose $\sqrt{x} > 0$.

Let $y = \sqrt{x}$.

Since y is the square root of x, then $y \in \mathbb{R}$ and $y^2 = x$.

Since $y = \sqrt{x} > 0$, then y > 0.

Since $y \in \mathbb{R}$ and y > 0, then $y^2 > 0$.

Thus, $x = y^2 > 0$, so x > 0.

Therefore, in either case, $x \geq 0$.

Proposition 68. Let $a, b \in \mathbb{R}$ with $a \ge 0$ and $b \ge 0$.

Then $\sqrt{a} = \sqrt{b}$ iff a = b.

Proof. Since $a \ge 0$, then there exists a real number $x \ge 0$ such that $x^2 = a$ and $x = \sqrt{a}$.

Since $b \ge 0$, then there exists a real number $y \ge 0$ such that $y^2 = b$ and $y = \sqrt{b}$.

We prove if $\sqrt{a} = \sqrt{b}$, then a = b.

Suppose $\sqrt{a} = \sqrt{b}$.

Then x = y.

Hence, $a = x^2 = xx = xy = yy = y^2 = b$, so a = b, as desired.

Proof. Conversely, we prove if a = b, then $\sqrt{a} = \sqrt{b}$.

Either both x = 0 and y = 0, or $x \neq 0$ or $y \neq 0$.

We consider these cases separately.

Case 1: Suppose x = 0 and y = 0.

Then $\sqrt{a} = x = 0 = y = \sqrt{b}$, so $\sqrt{a} = \sqrt{b}$.

Hence, the implication if a = b, then $\sqrt{a} = \sqrt{b}$ is trivially true.

Case 2: Suppose either $x \neq 0$ or $y \neq 0$.

We consider these cases separately.

Case 2a: Suppose $x \neq 0$.

Since $x \ge 0$ and $x \ne 0$, then x > 0.

Since x > 0 and $y \ge 0$, then x + y > 0.

Case 2b: Suppose $y \neq 0$.

Since $y \ge 0$ and $y \ne 0$, then y > 0.

Since $x \ge 0$ and y > 0, then x + y > 0.

Thus, in either case, x + y > 0, so $x + y \neq 0$.

We prove if a = b, then $\sqrt{a} = \sqrt{b}$ by contrapositive.

Suppose $\sqrt{a} \neq \sqrt{b}$.

Then $x \neq y$, so $x - y \neq 0$.

Since $x - y \neq 0$ and $x + y \neq 0$, then $x^2 - y^2 = (x - y)(x + y) \neq 0$, so $x^2 - y^2 \neq 0$.

Therefore, $a - b \neq 0$, so $a \neq b$, as desired.

Proposition 69. Let $a, b \in \mathbb{R}$.

If $a \ge 0$ and $b \ge 0$, then $\sqrt{ab} = \sqrt{a}\sqrt{b}$.

Proof. Suppose $a \ge 0$ and $b \ge 0$.

Then $ab \geq 0$, so the square root of ab exists.

Since $a \ge 0$, then the square root of a exists, so $\sqrt{a} \ge 0$ and $\sqrt{a} \cdot \sqrt{a} = a$.

Since $b \ge 0$, then the square root of b exists, so $\sqrt{b} \ge 0$ and $\sqrt{b} \cdot \sqrt{b} = b$.

Since $\sqrt{a} \ge 0$ and $\sqrt{b} \ge 0$, then $\sqrt{a}\sqrt{b} \ge 0$. Observe that

$$(\sqrt{a} \cdot \sqrt{b})^2 = (\sqrt{a} \cdot \sqrt{b})(\sqrt{a} \cdot \sqrt{b})$$

$$= \sqrt{a} \cdot (\sqrt{b} \cdot \sqrt{a}) \cdot \sqrt{b}$$

$$= \sqrt{a} \cdot (\sqrt{a} \cdot \sqrt{b}) \cdot \sqrt{b}$$

$$= (\sqrt{a} \cdot \sqrt{a})(\sqrt{b} \cdot \sqrt{b})$$

$$= ab.$$

Since $\sqrt{a} \cdot \sqrt{b} \ge 0$ and $(\sqrt{a} \cdot \sqrt{b})^2 = ab$ and the square root is unique, then $\sqrt{a} \cdot \sqrt{b}$ is the square root of ab.

Therefore, $\sqrt{ab} = \sqrt{a}\sqrt{b}$, as desired.

Proposition 70. Let $x \in \mathbb{R}$. Then

1.
$$\sqrt{x} = 0$$
 iff $x = 0$.

2.
$$\sqrt{x^2} = |x|$$
.

Proof. We prove 1.

We prove if x=0, then $\sqrt{x}=0$.

Suppose x = 0.

Then $\sqrt{x} = \sqrt{0} = 0$.

Conversely, we prove if $\sqrt{x} = 0$, then x = 0.

Suppose $\sqrt{x} = 0$.

Then there exists $y \in \mathbb{R}$ such that $y^2 = x$ and y = 0.

Hence, $x = y^2 = 0^2 = 0$, so x = 0, as desired.

Proof. We prove 2.

We must prove $\sqrt{x^2} = |x|$.

Either $x \ge 0$ or x < 0.

We consider these cases separately.

Case 1: Suppose x > 0.

Then $x^2 \ge 0$, so the square root of x^2 exists in \mathbb{R} .

Since $|x| = x \ge 0$ and $|x|^2 = x^2$ and the square root is unique, then $\sqrt{x^2} =$ |x|.

Case 2: Suppose x < 0.

Then $x^2 > 0$, so the square root of x^2 exists in \mathbb{R} .

Since |x| = -x > 0 and $|x|^2 = (-x)^2 = x^2$ and the square root is unique, then $\sqrt{x^2} = |x|$.

Therefore, in all cases, $\sqrt{x^2} = |x|$, as desired.

Lemma 71. Let $x \in \mathbb{R}$.

If
$$x > 0$$
, then $\sqrt{\frac{1}{x}} = \frac{1}{\sqrt{x}}$.

Proof. Suppose x > 0.

Then $\frac{1}{x} > 0$, so the square root of $\frac{1}{x}$ exists. Since x > 0, then $\sqrt{x} > 0$, so $\frac{1}{\sqrt{x}} > 0$.

Observe that

$$(\frac{1}{\sqrt{x}})^2 = \frac{1}{\sqrt{x}} \cdot \frac{1}{\sqrt{x}}$$

$$= \frac{1 \cdot 1}{\sqrt{x} \cdot \sqrt{x}}$$

$$= \frac{1}{\sqrt{x \cdot x}}$$

$$= \frac{1}{\sqrt{x^2}}$$

$$= \frac{1}{|x|}$$

$$= \frac{1}{x}.$$

Since $\frac{1}{\sqrt{x}} > 0$ and $(\frac{1}{\sqrt{x}})^2 = \frac{1}{x}$ and the square root is unique, then $\frac{1}{\sqrt{x}}$ is the square root of $\frac{1}{x}$.

Therefore,
$$\sqrt{\frac{1}{x}} = \frac{1}{\sqrt{x}}$$
.

Proposition 72. Let $a, b \in \mathbb{R}$.

If $a \ge 0$ and b > 0, then $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$.

Proof. Suppose $a \ge 0$ and b > 0.

Since b > 0, then $\frac{1}{b} > 0$. Since $a \ge 0$ and $\frac{1}{b} > 0$ and b > 0, then

$$\sqrt{\frac{a}{b}} = \sqrt{a \cdot \frac{1}{b}}$$

$$= \sqrt{a} \cdot \sqrt{\frac{1}{b}}$$

$$= \sqrt{a} \cdot \frac{1}{\sqrt{b}}$$

$$= \frac{\sqrt{a}}{\sqrt{b}}.$$

Lemma 73. Let $a, b \in \mathbb{R}$.

If $0 < a \le b$, then $0 < a^2 \le b^2$.

Proof. Suppose $0 < a \le b$.

Then 0 < a and a < b.

Since $a \leq b$, then either a < b or a = b.

We consider these cases separately.

Case 1: Suppose a < b.

```
Since 0 < a and a < b, then 0 < a < b.
```

Therefore, $0 < a^2 < b^2$.

Case 2: Suppose a = b.

Since a > 0, then $a^2 > 0$.

Since b = a, then $b^2 = a^2$.

Therefore, $0 < a^2$ and $a^2 = b^2$, so $0 < a^2 = b^2$.

Proposition 74. Let $a, b \in \mathbb{R}$.

Then 0 < a < b iff $0 < \sqrt{a} < \sqrt{b}$.

Proof. We prove if 0 < a < b, then $0 < \sqrt{a} < \sqrt{b}$.

Suppose 0 < a < b.

Then 0 < a and a < b, so 0 < b.

Since a > 0, then $\sqrt{a} > 0$.

Since b > 0, then $\sqrt{b} > 0$.

Suppose $\sqrt{a} \ge \sqrt{b}$.

Then $0 < \sqrt{b} \le \sqrt{a}$.

Hence, by the previous lemma $0 < (\sqrt{b})^2 \le (\sqrt{a})^2$, so $0 < b \le a$.

Thus, $b \le a$, so $a \ge b$.

Therefore, we have a < b and $a \ge b$, a violation of trichotomy.

Hence, $\sqrt{a} < \sqrt{b}$.

Thus $0 < \sqrt{a}$ and $\sqrt{a} < \sqrt{b}$, so $0 < \sqrt{a} < \sqrt{b}$, as desired.

Proof. Conversely, we prove if $0 < \sqrt{a} < \sqrt{b}$, then 0 < a < b.

Suppose $0 < \sqrt{a} < \sqrt{b}$.

Since $0 < \sqrt{a} < \sqrt{b}$ and $0 < \sqrt{a} < \sqrt{b}$, then $0 < (\sqrt{a})^2 < (\sqrt{b})^2$.

Therefore, 0 < a < b, as desired.

Corollary 75. Let $x \in \mathbb{R}$.

1. If 0 < x < 1, then $0 < x^2 < x < \sqrt{x} < 1$.

2. If x > 1, then $1 < \sqrt{x} < x < x^2$.

Proof. We prove 1.

Suppose 0 < x < 1.

Then 0 < x and x < 1.

Since 0 < x and x > 0, then $0 < x^2$.

Since x < 1 and x > 0, then $x^2 < x$.

Since $0 < x^2$ and $x^2 < x$, then $0 < x^2 < x$. Thus, $0 < \sqrt{x^2} < \sqrt{x}$.

Since x > 0, then $\sqrt{x^2} = |x| = x$.

Hence, $0 < x < \sqrt{x}$, so $x < \sqrt{x}$.

Since 0 < x < 1, then $0 < \sqrt{x} < \sqrt{1}$.

Thus, $0 < \sqrt{x} < 1$, so $\sqrt{x} < 1$. Hence, $0 < x^2$ and $x^2 < x$ and $x < \sqrt{x}$ and $\sqrt{x} < 1$.

Therefore, $0 < x^2 < x < \sqrt{x} < 1$, as desired.

```
Proof. We prove 2.
```

Suppose x > 1.

Then x > 1 > 0, so x > 0.

Since 0 < 1 < x, then $0 < \sqrt{1} < \sqrt{x}$.

Hence, $0 < 1 < \sqrt{x}$, so $1 < \sqrt{x}$.

Since 1 < x and x > 0, then $x < x^2$.

Since 0 < x and $x < x^2$, then $0 < x < x^2$.

Hence, $0 < \sqrt{x} < \sqrt{x^2} = |x| = x$.

Thus, $0 < \sqrt{x} < x$, so $\sqrt{x} < x$.

Thus, $1 < \sqrt{x}$ and $\sqrt{x} < x$ and $x < x^2$.

Therefore, $1 < \sqrt{x} < x < x^2$, as desired.

Proposition 76. the additive inverse of an irrational number is irrational

Let $a \in \mathbb{R}$.

If a is irrational, then -a is irrational.

Proof. We prove by contrapositive.

Suppose -a is rational.

Then $-a \in \mathbb{Q}$, so $-(-a) \in \mathbb{Q}$.

Therefore, $a \in \mathbb{Q}$, so a is rational, as desired.

Proposition 77. the sum of a rational and irrational number is irrational

Let $a, b \in \mathbb{R}$.

If a is rational and b is irrational, then a + b is irrational.

Proof. We prove by contrapositive.

Suppose a is rational and a + b is rational.

Since a is rational, then $a \in \mathbb{Q}$, so $-a \in \mathbb{Q}$.

Since a + b is rational, then $a + b \in \mathbb{Q}$.

Hence, by closure of \mathbb{Q} under addition, -a + (a+b) = (-a+a) + b = 0 + b = 0 $b \in \mathbb{Q}$.

Therefore, b is rational, as desired.

Proposition 78. the reciprocal of an irrational number is irrational Let $a \in \mathbb{R}$.

If a is irrational, then $\frac{1}{a}$ is irrational.

Proof. We prove by contrapositive.

Suppose $\frac{1}{a}$ is rational. Then $\frac{1}{a} \in \mathbb{Q}$ and $a \neq 0$. Hence, $\frac{1}{a} \neq 0$, so $(\frac{1}{a})^{-1} = a \in \mathbb{Q}$.

Therefore, a is rational, as desired.

Proposition 79. the product of a nonzero rational and irrational number is irrational

Let $a, b \in \mathbb{R}$.

If a is a nonzero rational and b is irrational, then ab is irrational.

Proof. We prove by contrapositive.

Suppose a is a nonzero rational and ab is rational.

Since a is a nonzero rational, then $a \neq 0$ and $a \in \mathbb{Q}$, so $\frac{1}{a} \in \mathbb{Q}$.

Since ab is rational, then $ab \in \mathbb{Q}$.

Hence, by closure of $\mathbb Q$ under multiplication, $\frac{1}{a}(ab)=(\frac{1}{a}a)b=1b=b\in\mathbb Q.$

Therefore, b is rational, as desired.

Corollary 80. the quotient of a nonzero rational and irrational number is irrational

Let $a, b \in \mathbb{R}$.

If a is a nonzero rational and b is irrational, then $\frac{a}{b}$ is irrational.

Proof. Suppose a is a nonzero rational and b is irrational.

Since b is irrational, then $\frac{1}{b}$ is irrational.

Since a is a nonzero rational and $\frac{1}{b}$ is irrational, then $a \cdot \frac{1}{b} = \frac{a}{b}$ is irrational, as desired.

Proposition 81. $\mathbb{R} - \mathbb{Q}$ is dense in \mathbb{Q}

For every $a, b \in \mathbb{Q}$ with a < b, there exists $r \in \mathbb{R} - \mathbb{Q}$ such that a < r < b.

Proof. Let $a, b \in \mathbb{Q}$ such that a < b.

Then $a - \sqrt{2} < b - \sqrt{2}$.

Since \mathbb{Q} is dense in \mathbb{R} , then there exists $q \in \mathbb{Q}$ such that $a - \sqrt{2} < q < b - \sqrt{2}$.

Thus, $a < q + \sqrt{2} < b$.

Let $r = q + \sqrt{2}$.

Since q is rational and $\sqrt{2}$ is irrational, then $q + \sqrt{2} = r$ is irrational.

Therefore, $r \in \mathbb{R} - \mathbb{Q}$ and a < r < b, as desired.

Solution. We consider the midpoint between a and b.

Since the midpoint is equidistant from a and b and the distance between aand b is b-a, then the midpoint is a+(b-a)/2.

Since $\sqrt{2}$ is irrational, we can adjust this slightly to create a potential irrational number $a + \frac{b-a}{2}\sqrt{2}$ between a and b.

We shall prove this number thus constructed is irrational and between a and b.

Proof. Let $a, b \in \mathbb{Q}$ with a < b.

Then b - a > 0.

Let $r = a + \frac{b-a}{2}\sqrt{2}$.

We must prove $r \in \mathbb{R}$ and $r \notin \mathbb{Q}$ and a < r and r < b.

Since $a, b \in \mathbb{Q}$, then $b - a \in \mathbb{Q}$, so $\frac{b-a}{2} \in \mathbb{Q}$. Thus, $\frac{b-a}{2}\sqrt{2} \in \mathbb{R}$, so $a + \frac{b-a}{2}\sqrt{2} = r \in \mathbb{R}$.

We prove $r \notin \mathbb{Q}$ by contradiction.

Suppose $r \in \mathbb{Q}$.

Since $r \in \mathcal{Q}$. Since $r = a + \frac{b-a}{2}\sqrt{2}$, then $r - a = \frac{b-a}{2}\sqrt{2}$, so $2(r-a) = (b-a)\sqrt{2}$. Since b - a > 0, then $b - a \neq 0$. Thus, $\frac{2(r-a)}{b-a} = \sqrt{2}$. Since $a, b, r \in \mathbb{Q}$ and $b - a \neq 0$, then by closure of \mathbb{Q} under subtraction and multiplication, $\frac{2(r-a)}{b-a} \in \mathbb{Q}$.

Hence, $\sqrt{2} \in \mathbb{Q}$.

But, this contradicts the fact that $\sqrt{2} \notin \mathbb{Q}$.

Therefore, $r \notin \mathbb{Q}$.

We prove a < r.

Since $r = a + \frac{b-a}{2}\sqrt{2}$, then $r - a = \frac{b-a}{2}\sqrt{2}$. Since b - a > 0, then $\frac{b-a}{2}\sqrt{2} > 0$, so r - a > 0.

Therefore, r > a, so a < r.

We prove r < b.

Since $\sqrt{2} < 2$, then $\frac{\sqrt{2}}{2} < 1$.

Since b-a>0, then we multiply by b-a to get $\frac{b-a}{2}\sqrt{2} < b-a$.

Therefore, $a + \frac{b-a}{2}\sqrt{2} < b$, so r < b.

Proposition 82. $\mathbb{R} - \mathbb{Q}$ is dense in \mathbb{R}

For every $a, b \in \mathbb{R}$ with a < b, there exists $r \in \mathbb{R} - \mathbb{Q}$ such that a < r < b.

Proof. Let $a, b \in \mathbb{R}$ such that a < b.

Then $a - \sqrt{2} < b - \sqrt{2}$.

Since \mathbb{Q} is dense in \mathbb{R} , then there exists $q \in \mathbb{Q}$ such that $a - \sqrt{2} < q < b - \sqrt{2}$.

Thus, $a < q + \sqrt{2} < b$.

Let $r = q + \sqrt{2}$.

Since q is rational and $\sqrt{2}$ is irrational, then $q + \sqrt{2} = r$ is irrational.

Therefore, $r \in \mathbb{R} - \mathbb{Q}$ and a < r < b, as desired.