Real Number System Examples

Jason Sass

May 27, 2023

Boundedness of sets in an ordered field

Example 1. $\sup(0, 1) = 1$.

Proof. Let S = (0, 1). Since $0 < \frac{1}{2} < 1$, then $\frac{1}{2} \in (0, 1) = S$, so $S \neq \emptyset$. Let $x \in S$. Then 0 < x < 1, so x < 1. Hence, x < 1 for all $x \in S$, so 1 is an upper bound of S.

Let $r \in \mathbb{R}$ such that r < 1.

To prove r is not an upper bound of S, we must prove there exists $s \in S$ such that s > r, so we must prove there exists s such that 0 < s < 1 and s > r. Let $T = \{0, r\}.$ Let $s = \frac{\max T + 1}{2}$ Since $\max T \ge 0$, then $\max T + 1 \ge 1$, so $\frac{\max T + 1}{2} \ge \frac{1}{2}$. Thus, $s \ge \frac{1}{2} > 0$, so s > 0. Since 0 < 1 and r < 1 and either max T = 0 or max T = r, then max T < 1, so max T + 1 < 2. Hence, $\frac{\max T + 1}{2} < 1$, so s < 1. Since 0 < s and s < 1, then 0 < s < 1. Since $r \leq \max T$ and r < 1, then $2r < \max T + 1$. Hence, $r < \frac{\max T+1}{2}$, so r < s. Since there exists s such that 0 < s < 1 and r < s, then there exists $s \in S$ such that s > r, so r is not an upper bound of S. Thus, every real number r < 1 is not an upper bound of S. Since 1 is an upper bound of S and every real number r < 1 is not an upper bound of S, then 1 is the least upper bound of S. Therefore, $1 = \sup S$, so $1 = \sup(0, 1)$.

Example 2. inf(0,1) = 0.

Proof. Let S = (0, 1). Since $0 < \frac{1}{2} < 1$, then $\frac{1}{2} \in (0, 1) = S$, so $S \neq \emptyset$. Let $x \in S$. Then 0 < x < 1, so 0 < x. Hence, 0 < x for all $x \in S$, so 0 is a lower bound of S.

Let $r \in \mathbb{R}$ such that r > 0.

To prove r is not a lower bound of S, we must prove there exists $s \in S$ such that s < r, so we must prove there exists s such that 0 < s < 1 and s < r. Let $T = \{1, r\}$. Let $s = \frac{\min T}{2}$. Since 1 > 0 and r > 0 and either min T = 1 or min T = r, then min T > 0. Thus, $\frac{\min T}{2} > 0$, so s > 0. Since 0 < 1 and min $T \le 1$, then min T < 2. Hence, $\frac{\min T}{2} < 1$, so s < 1. Since 0 < s and s < 1, then 0 < s < 1. Since min $T \le r$ and 0 < r, then min T < 2r. Hence, $\frac{\min T}{2} < r$, so s < r. Since there exists s such that 0 < s < 1 and s < r, then there exists $s \in S$ such that s < r, so r is not a lower bound of S. Thus, every real number r > 0 is not a lower bound of S.

Since 0 is a lower bound of S and every real number r > 0 is not a lower bound of S, then 0 is the greatest lower bound of S.

Therefore, $0 = \inf S$, so $0 = \inf(0, 1)$.

Complete ordered fields

Example 3. \mathbb{Q} is not a complete ordered field.

The set $\{q \in \mathbb{Q} : q^2 < 2\}$ is bounded above in \mathbb{Q} , but does not have a least upper bound in \mathbb{Q} .

Proof. Let $S = \{q \in \mathbb{Q} : q^2 < 2\}.$ We prove 2 is an upper bound of S in \mathbb{Q} . Observe that $2 = \frac{2}{1} \in \mathbb{Q}$. Since $1 \in \mathbb{Q}$ and $1^2 = 1 < 2$, then $1 \in S$. Hence, S is not empty. Let $x \in \mathbb{Q}$ such that x > 2. Since x > 2 > 0, then x > 0. Thus, $x^2 > 2x > 2 \cdot 2 > 2 \cdot 1 = 2$, so $x^2 > 2$. Hence, $x \notin S$. Thus, if $x \in S$, then $x \leq 2$. Therefore, $x \leq 2$ for every $x \in S$, so 2 is an upper bound of S in \mathbb{Q} . Consequently, S is bounded above in \mathbb{Q} . We prove S does not have a least upper bound in \mathbb{Q} . For the sake of contradiction suppose that S has a least upper bound in \mathbb{Q} . Let $M = \sup(S)$ in \mathbb{Q} . Then $M \in \mathbb{Q}$. Either $M^2 < 2$ or $M^2 = 2$ or $M^2 > 2$.

We consider these cases separately. \widehat{a}

Case 1: Suppose $M^2 = 2$. Since $M \in \mathbb{Q}$ and $M^2 = 2$, then there is a rational number whose square is

2.

This contradicts the fact that there is no rational number whose square is 2. Therefore, $M^2 \neq 2$.

Case 2: Suppose $M^2 < 2$. Let $q = M + \frac{2-M^2}{4}$. Since $M \in \mathbb{Q}$ and \mathbb{Q} is a field, then $q \in \mathbb{Q}$. Since $M^2 < 2$, then $0 < 2 - M^2$, so $2 - M^2 > 0$. Hence, $q - M = \frac{2-M^2}{4} > 0$. Therefore, q - M > 0, so q > M. Observe that

$$\begin{split} q^2 - 2 &= (M + \frac{2 - M^2}{4})^2 - 2 \\ &= M^2 + \frac{2M}{4}(2 - M^2) + (\frac{2 - M^2}{4})^2 - 2 \\ &= (M^2 - 2) - \frac{2M}{4}(M^2 - 2) + (\frac{M^2 - 2}{4})^2 \\ &= 4^2 \frac{M^2 - 2}{4^2} - (2 \cdot 4M) \frac{M^2 - 2}{4^2} + \frac{(M^2 - 2)^2}{4^2} \\ &= \frac{M^2 - 2}{4^2}(4^2 - 2 \cdot 4M + M^2 - 2) \\ &= \frac{M^2 - 2}{16}(M^2 - 4M - 4M + 10 + 4) \\ &= \frac{M^2 - 2}{16}[(M - 2)^2 + (10 - 4M)]. \end{split}$$

Since $M^2 < 2$, then $M^2 - 2 < 0$, so $\frac{M^2 - 2}{16} < 0$. Observe that $(M - 2)^2 > 0$ iff $M - 2 \neq 0$. If M - 2 = 0, then M = 2, so $M^2 = 4 > 2$. Thus, $M^2 > 2$, contradicting the assumption $M^2 < 2$. Hence, $M - 2 \neq 0$, so $(M - 2)^2 > 0$. Observe that 10 - 4M > 0 iff $M < \frac{5}{2}$. If $M \ge \frac{5}{2}$, then $M^2 \ge \frac{25}{4} > 2$. Thus, $M^2 > 2$, contradicting the assumption $M^2 < 2$. Hence, $M < \frac{5}{2}$, so 10 - 4M > 0. Since $(M - 2)^2 > 0$ and 10 - 4M > 0, then $(M - 2)^2 + (10 - 4M) > 0$. Since $\frac{M^2 - 2}{16} < 0$ and $(M - 2)^2 + (10 - 4M) > 0$, then $q^2 - 2 < 0$, so $q^2 < 2$. Since $q \in \mathbb{Q}$ and $q^2 < 2$, then $q \in S$. Therefore, there exists $q \in S$ such that q > M. This contradicts the fact that M is an upper bound of S. Hence, M^2 cannot be less than 2. **Case 3:** Suppose $M^2 > 2$.

Suppose y is a positive rational such that $y^2 > 2$. Then $y \in \mathbb{Q}$ and y > 0 and $y^2 > 2$. Since S is not empty, let $s \in S$. Then $s \in \mathbb{Q}$ and $s^2 < 2$. Suppose that s > y. Then 0 < y < s. Hence, $2 < y^2 < s^2$, so $2 < s^2$. Thus, $s^2 > 2$ and $s^2 < 2$, a contradiction. Therefore, $s \leq y$, so y is an upper bound of S. Hence, if y is any positive rational such that $y^2 > 2$, then y is an upper bound of S. Let $U = \frac{M^2 + 2}{2M}$. Since $M \in \mathbb{Q}$ and \mathbb{Q} is a field, then $U \in \mathbb{Q}$. Since $1 \in S$ and M is an upper bound of S, then $1 \leq M$, so M > 0. Thus, 2M > 0 and $M^2 + 2 > 0$, so U > 0. Since $2 < M^2$, then $M^2 + 2 < 2M^2$. We divide by positive 2M to get $U = \frac{M^2+2}{2M} < M$. Therefore, U < M.

Observe that

$$U^{2} - 2 = \left(\frac{M^{2} + 2}{2M}\right)^{2} - 2$$

= $-2 + \frac{(M^{2} + 2)^{2}}{4M^{2}}$
= $\frac{-8M^{2} + M^{4} + 4M^{2} + 4}{4M^{2}}$
= $\frac{M^{4} - 4M^{2} + 4}{4M^{2}}$
= $\frac{(M^{2} - 2)^{2}}{(2M)^{2}}$
= $\left(\frac{M^{2} - 2}{2M}\right)^{2}$.

Since $M \in \mathbb{Q}$ and $2M \neq 0$, then $\frac{M^2-2}{2M} \in \mathbb{Q}$. Since $M^2 - 2 > 0$, then $M^2 - 2 \neq 0$, so $\frac{M^2-2}{2M} \neq 0$. Hence, $U^2 - 2 = (\frac{M^2-2}{2M})^2 > 0$. Therefore, $U^2 - 2 > 0$, so $U^2 > 2$. Thus, U is a positive rational such that $U^2 > 2$. Hence, U is an upper bound of S in \mathbb{Q} . Therefore, there exists an upper bound U of S such that U < M. This contradicts the fact that M is the least upper bound of S. Thus, M^2 cannot be greater than 2. In all cases a contradiction is reached. Therefore, S does not have a least upper bound in \mathbb{Q} .

Archimedean ordered fields

Example 4. Let $S = \{\frac{1}{n} : n \in \mathbb{N}\}$. Then max $S = \sup S = 1$ and min S does not exist and inf S = 0. *Proof.* Since $1 \in \mathbb{N}$ and $\frac{1}{1} = 1$, then $1 \in S$. Hence, S is not empty. Let $x \in S$. Then there exists $n \in \mathbb{N}$ such that $x = \frac{1}{n}$. Since $n \in \mathbb{N}$, then $n \ge 1 > 0$, so n > 0. Since $1 \le n$ and n > 0, then we divide by n to obtain $\frac{1}{n} \le 1$. Thus, $x \le 1$, so $x \le 1$ for all $x \in S$. Therefore, 1 is an upper bound of S. Since $1 \in S$ and 1 is an upper bound of S, then $1 = \max S$. Since $S \subset \mathbb{R}$ and \mathbb{R} is an ordered field and max S exists, then $\sup S = \max S = 1$.

Since we proved 1 is an upper bound of S, we may equivalently prove $\sup S = 1$ by showing for every $\epsilon > 0$, there exists $x \in S$ such that $x > 1 - \epsilon$. Let $\epsilon > 0$ be given.

Let x = 1. Since $1 = \frac{1}{1}$ and $1 \in \mathbb{N}$, then $x \in S$. Since $\epsilon > 0 = 1 - 1$, then $1 + \epsilon > 1$, so $1 > 1 - \epsilon$. Since x = 1, then $x > 1 - \epsilon$, as desired.

Proof. Suppose for the sake of contradiction that min S exists. Since min $S \in S$, then there exists $n \in \mathbb{N}$ such that min $S = \frac{1}{n}$. Since $n \in \mathbb{N}$, then $n + 1 \in \mathbb{N}$, so $\frac{1}{n+1} \in S$. Since 0 < n < n + 1, then $\frac{1}{n+1} < \frac{1}{n} = \min S$. Thus, there exists $\frac{1}{n+1} \in S$ such that $\frac{1}{n+1} < \min S$. But, this contradicts the fact that min S is a lower bound of S. Therefore, min S does not exist.

Proof. We prove $0 = \inf S$. Let $x \in S$. Then there exists $n \in \mathbb{N}$ such that $x = \frac{1}{n}$. Since $n \in \mathbb{N}$, then n > 0. Hence, $\frac{1}{n} > 0$, so $0 < \frac{1}{n}$. Thus, 0 < x, so 0 < x for all $x \in S$. Therefore, 0 is a lower bound of S. Let $\epsilon > 0$. To prove 0 is the greatest lower bound of S, we must prove there exists $s \in S$ such that $s < \epsilon$. By the Archimedean property of \mathbb{R} , there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < \epsilon$. Let $s = \frac{1}{n}$. Then $s \in S$ and $s < \epsilon$. Therefore, $0 = \inf S$.

Existence of square roots in \mathbb{R}

Example 5. If $S = \{q \in \mathbb{Q} : q^2 < 2\}$, then $\sup S = \sqrt{2}$.

Proof. We prove $\sqrt{2}$ is an upper bound of S in \mathbb{R} . Since $0 \in \mathbb{Q}$ and $0^2 = 0 < 2$, then $0 \in S$, so $S \neq \emptyset$. Let $x \in S$. Then $x \in \mathbb{Q}$ and $x^2 < 2$. Since \mathbb{Q} is an ordered field and $x \in \mathbb{Q}$, then $x^2 \ge 0$. Thus, $0 \le x^2 < 2$, so $0 \le \sqrt{x^2} < \sqrt{2}$. Hence, $0 \le |x| < \sqrt{2}$, so $|x| < \sqrt{2}$. Consequently, $-\sqrt{2} < x < \sqrt{2}$, so $x < \sqrt{2}$. Therefore, $\sqrt{2}$ is an upper bound of S in \mathbb{R} .

Let $r \in \mathbb{R}$ such that $r < \sqrt{2}$. To prove r is not an upper bound of S, we must prove there exists $q \in S$ such that q > r. Since $r \in \mathbb{R}$, then $|r| \in \mathbb{R}$, so either $|r| < \sqrt{2}$ or $|r| > \sqrt{2}$. We consider these cases separately. Case 1: Suppose $|r| < \sqrt{2}$. Since \mathbb{Q} is dense in \mathbb{R} , then there exists $q \in \mathbb{Q}$ such that $|r| < q < \sqrt{2}$. Since $0 \le |r| < q < \sqrt{2}$, then |r| < q and $0 < q < \sqrt{2}$. Since $0 < q < \sqrt{2}$, then $q^2 < 2$. Since $q \in \mathbb{Q}$ and $q^2 < 2$, then $q \in S$. Since |r| < q, then -q < r < q, so r < q. Thus, there exists $q \in S$ such that q > r. Case 2: Suppose $|r| \ge \sqrt{2}$. Then either $r \ge \sqrt{2}$ or $r \le -\sqrt{2}$. Since $r < \sqrt{2}$, then r cannot be greater than or equal to $\sqrt{2}$. Hence, $r < -\sqrt{2}$. Let q = 0. Since $0 \in S$, then $q \in S$. Since $q = 0 > -\sqrt{2} \ge r$, then q > r. Thus, there exists $q \in S$ such that q > r. In all cases, there exists $q \in S$ such that q > r, so r is not an upper bound of S.

Hence, every real number $r < \sqrt{2}$ is not an upper bound of S.

Since $\sqrt{2}$ is an upper bound of S and every real number $r < \sqrt{2}$ is not an upper bound of S, then $\sqrt{2}$ is the least upper bound of S, so $\sqrt{2} = \sup S$. \Box

Proof. We prove $\sqrt{2}$ is an upper bound of S in \mathbb{R} . Clearly, $\sqrt{2} \in \mathbb{R}$. Let $x \in S$. Then $x \in \mathbb{Q}$ and $x^2 < 2$. Since \mathbb{Q} is an ordered field and $x \in \mathbb{Q}$, then $x^2 \ge 0$. Thus, $0 \le x^2 < 2$, so $0 \le \sqrt{x^2} < \sqrt{2}$. Hence, $0 \le |x| < \sqrt{2}$, so $0 \le x < \sqrt{2}$. Therefore, $x < \sqrt{2}$, so $\sqrt{2}$ is an upper bound of S in \mathbb{R} . To prove $\sqrt{2}$ is the least upper bound of S, let $\epsilon > 0$. We must prove there exists $s \in S$ such that $s > \sqrt{2} - \epsilon$. Either $\epsilon < \sqrt{2}$ or $\epsilon = \sqrt{2}$ or $\epsilon > \sqrt{2}$. We consider these cases separately. **Case 1:** Suppose $\epsilon = \sqrt{2}$. Since $1 \in \mathbb{Q}$ and $1^2 = 1 < 2$, then $1 \in S$. Observe that

$$1 > 0$$

= $\sqrt{2} - \sqrt{2}$
= $\sqrt{2} - \epsilon$.

Thus, there exists $1 \in S$ such that $1 > \sqrt{2} - \epsilon$. Case 2: Suppose $\epsilon > \sqrt{2}$. Then $\epsilon - \sqrt{2} > 0$, so $\sqrt{2} - \epsilon < 0$. Since $0 \in \mathbb{Q}$ and $0^2 = 0 < 2$, then $0 \in S$. Thus, there exists $0 \in S$ such that $0 > \sqrt{2} - \epsilon$. **Case 3:** Suppose $\epsilon < \sqrt{2}$. Then $\sqrt{2} - \epsilon > 0$. Since \mathbb{Q} is dense in \mathbb{R} and $\sqrt{2} - \epsilon \in \mathbb{R}$ and $\sqrt{2} \in \mathbb{R}$ and $\sqrt{2} - \epsilon < \sqrt{2}$, then there exists a rational number q between $\sqrt{2} - \epsilon$ and $\sqrt{2}$. Therefore, there exists $q \in \mathbb{Q}$ such that $\sqrt{2} - \epsilon < q < \sqrt{2}$. Thus, $0 < \sqrt{2} - \epsilon < q < \sqrt{2}$, so $0 < q < \sqrt{2}$ and $\sqrt{2} - \epsilon < q$. Since $0 < q < \sqrt{2}$, then $0 < q^2 < 2$, so $q^2 < 2$. Since $q \in \mathbb{Q}$ and $q^2 < 2$, then $q \in S$. Thus, there exists $q \in S$ such that $q > \sqrt{2} - \epsilon$. Therefore, in all cases, there is an element of S greater than $\sqrt{2} - \epsilon$. Hence, $\sqrt{2}$ is the least upper bound of S in \mathbb{R} , as desired.