Real Number System Examples

Jason Sass

May 27, 2023

Boundedness of sets in an ordered field

Example 1. $\sup (0,1)=1$.
Proof. Let $S=(0,1)$.
Since $0<\frac{1}{2}<1$, then $\frac{1}{2} \in(0,1)=S$, so $S \neq \emptyset$.
Let $x \in S$.
Then $0<x<1$, so $x<1$.
Hence, $x<1$ for all $x \in S$, so 1 is an upper bound of S.

Let $r \in \mathbb{R}$ such that $r<1$.
To prove r is not an upper bound of S, we must prove there exists $s \in S$ such that $s>r$, so we must prove there exists s such that $0<s<1$ and $s>r$.

Let $T=\{0, r\}$.
Let $s=\frac{\max T+1}{2}$.
Since $\max T \geq 0$, then $\max T+1 \geq 1$, so $\frac{\max T+1}{2} \geq \frac{1}{2}$.
Thus, $s \geq \frac{1}{2}>0$, so $s>0$.
Since $0<1$ and $r<1$ and either $\max T=0$ or $\max T=r$, then $\max T<1$, so $\max T+1<2$.

Hence, $\frac{\max T+1}{2}<1$, so $s<1$.
Since $0<s$ and $s<1$, then $0<s<1$.
Since $r \leq \max T$ and $r<1$, then $2 r<\max T+1$.
Hence, $r<\frac{\max T+1}{2}$, so $r<s$.
Since there exists s such that $0<s<1$ and $r<s$, then there exists $s \in S$ such that $s>r$, so r is not an upper bound of S.

Thus, every real number $r<1$ is not an upper bound of S.
Since 1 is an upper bound of S and every real number $r<1$ is not an upper bound of S, then 1 is the least upper bound of S.

Therefore, $1=\sup S$, so $1=\sup (0,1)$.
Example 2. $\inf (0,1)=0$.
Proof. Let $S=(0,1)$.
Since $0<\frac{1}{2}<1$, then $\frac{1}{2} \in(0,1)=S$, so $S \neq \emptyset$.
Let $x \in S$.

Then $0<x<1$, so $0<x$.
Hence, $0<x$ for all $x \in S$, so 0 is a lower bound of S.

Let $r \in \mathbb{R}$ such that $r>0$.
To prove r is not a lower bound of S, we must prove there exists $s \in S$ such that $s<r$, so we must prove there exists s such that $0<s<1$ and $s<r$.

Let $T=\{1, r\}$.
Let $s=\frac{\min T}{2}$.
Since $1>0$ and $r>0$ and either $\min T=1$ or $\min T=r$, then $\min T>0$.
Thus, $\frac{\min T}{2}>0$, so $s>0$.
Since $0<1$ and $\min T \leq 1$, then $\min T<2$.
Hence, $\frac{\min T}{2}<1$, so $s<1$.
Since $0<s$ and $s<1$, then $0<s<1$.
Since $\min T \leq r$ and $0<r$, then $\min T<2 r$.
Hence, $\frac{\min T}{2}<r$, so $s<r$.
Since there exists s such that $0<s<1$ and $s<r$, then there exists $s \in S$ such that $s<r$, so r is not a lower bound of S.

Thus, every real number $r>0$ is not a lower bound of S.
Since 0 is a lower bound of S and every real number $r>0$ is not a lower bound of S, then 0 is the greatest lower bound of S.

Therefore, $0=\inf S$, so $0=\inf (0,1)$.

Complete ordered fields

Example 3. \mathbb{Q} is not a complete ordered field.

The set $\left\{q \in \mathbb{Q}: q^{2}<2\right\}$ is bounded above in \mathbb{Q}, but does not have a least upper bound in \mathbb{Q}.
Proof. Let $S=\left\{q \in \mathbb{Q}: q^{2}<2\right\}$.
We prove 2 is an upper bound of S in \mathbb{Q}.
Observe that $2=\frac{2}{1} \in \mathbb{Q}$.
Since $1 \in \mathbb{Q}$ and $1^{2}=1<2$, then $1 \in S$.
Hence, S is not empty.
Let $x \in \mathbb{Q}$ such that $x>2$.
Since $x>2>0$, then $x>0$.
Thus, $x^{2}>2 x>2 \cdot 2>2 \cdot 1=2$, so $x^{2}>2$.
Hence, $x \notin S$.
Thus, if $x \in S$, then $x \leq 2$.
Therefore, $x \leq 2$ for every $x \in S$, so 2 is an upper bound of S in \mathbb{Q}.
Consequently, S is bounded above in \mathbb{Q}.
We prove S does not have a least upper bound in \mathbb{Q}.
For the sake of contradiction suppose that S has a least upper bound in \mathbb{Q}.
Let $M=\sup (S)$ in \mathbb{Q}.
Then $M \in \mathbb{Q}$.
Either $M^{2}<2$ or $M^{2}=2$ or $M^{2}>2$.

We consider these cases separately.
Case 1: Suppose $M^{2}=2$.
Since $M \in \mathbb{Q}$ and $M^{2}=2$, then there is a rational number whose square is 2.

This contradicts the fact that there is no rational number whose square is 2 .
Therefore, $M^{2} \neq 2$.
Case 2: Suppose $M^{2}<2$.
Let $q=M+\frac{2-M^{2}}{4}$.
Since $M \in \mathbb{Q}$ and \mathbb{Q} is a field, then $q \in \mathbb{Q}$.
Since $M^{2}<2$, then $0<2-M^{2}$, so $2-M^{2}>0$.
Hence, $q-M=\frac{2-M^{2}}{4}>0$.
Therefore, $q-M>0$, so $q>M$.
Observe that

$$
\begin{aligned}
q^{2}-2 & =\left(M+\frac{2-M^{2}}{4}\right)^{2}-2 \\
& =M^{2}+\frac{2 M}{4}\left(2-M^{2}\right)+\left(\frac{2-M^{2}}{4}\right)^{2}-2 \\
& =\left(M^{2}-2\right)-\frac{2 M}{4}\left(M^{2}-2\right)+\left(\frac{M^{2}-2}{4}\right)^{2} \\
& =4^{2} \frac{M^{2}-2}{4^{2}}-(2 \cdot 4 M) \frac{M^{2}-2}{4^{2}}+\frac{\left(M^{2}-2\right)^{2}}{4^{2}} \\
& =\frac{M^{2}-2}{4^{2}}\left(4^{2}-2 \cdot 4 M+M^{2}-2\right) \\
& =\frac{M^{2}-2}{16}\left(M^{2}-4 M-4 M+10+4\right) \\
& =\frac{M^{2}-2}{16}\left[(M-2)^{2}+(10-4 M)\right]
\end{aligned}
$$

Since $M^{2}<2$, then $M^{2}-2<0$, so $\frac{M^{2}-2}{16}<0$.
Observe that $(M-2)^{2}>0$ iff $M-2 \neq 0$.
If $M-2=0$, then $M=2$, so $M^{2}=4>2$.
Thus, $M^{2}>2$, contradicting the assumption $M^{2}<2$.
Hence, $M-2 \neq 0$, so $(M-2)^{2}>0$.
Observe that $10-4 M>0$ iff $M<\frac{5}{2}$.
If $M \geq \frac{5}{2}$, then $M^{2} \geq \frac{25}{4}>2$.
Thus, $M^{2}>2$, contradicting the assumption $M^{2}<2$.
Hence, $M<\frac{5}{2}$, so $10-4 M>0$.
Since $(M-2)^{2}>0$ and $10-4 M>0$, then $(M-2)^{2}+(10-4 M)>0$.
Since $\frac{M^{2}-2}{16}<0$ and $(M-2)^{2}+(10-4 M)>0$, then $q^{2}-2<0$, so $q^{2}<2$.
Since $q \in \mathbb{Q}$ and $q^{2}<2$, then $q \in S$.
Therefore, there exists $q \in S$ such that $q>M$.
This contradicts the fact that M is an upper bound of S.
Hence, M^{2} cannot be less than 2.
Case 3: Suppose $M^{2}>2$.

Suppose y is a positive rational such that $y^{2}>2$.
Then $y \in \mathbb{Q}$ and $y>0$ and $y^{2}>2$.
Since S is not empty, let $s \in S$.
Then $s \in \mathbb{Q}$ and $s^{2}<2$.
Suppose that $s>y$.
Then $0<y<s$.
Hence, $2<y^{2}<s^{2}$, so $2<s^{2}$.
Thus, $s^{2}>2$ and $s^{2}<2$, a contradiction.
Therefore, $s \leq y$, so y is an upper bound of S.
Hence, if y is any positive rational such that $y^{2}>2$, then y is an upper bound of S.

Let $U=\frac{M^{2}+2}{2 M}$.
Since $M \in \mathbb{Q}$ and \mathbb{Q} is a field, then $U \in \mathbb{Q}$.
Since $1 \in S$ and M is an upper bound of S, then $1 \leq M$, so $M>0$.
Thus, $2 M>0$ and $M^{2}+2>0$, so $U>0$.
Since $2<M^{2}$, then $M^{2}+2<2 M^{2}$.
We divide by positive $2 M$ to get $U=\frac{M^{2}+2}{2 M}<M$.
Therefore, $U<M$.
Observe that

$$
\begin{aligned}
U^{2}-2 & =\left(\frac{M^{2}+2}{2 M}\right)^{2}-2 \\
& =-2+\frac{\left(M^{2}+2\right)^{2}}{4 M^{2}} \\
& =\frac{-8 M^{2}+M^{4}+4 M^{2}+4}{4 M^{2}} \\
& =\frac{M^{4}-4 M^{2}+4}{4 M^{2}} \\
& =\frac{\left(M^{2}-2\right)^{2}}{(2 M)^{2}} \\
& =\left(\frac{M^{2}-2}{2 M}\right)^{2}
\end{aligned}
$$

Since $M \in \mathbb{Q}$ and $2 M \neq 0$, then $\frac{M^{2}-2}{2 M} \in \mathbb{Q}$.
Since $M^{2}-2>0$, then $M^{2}-2 \neq 0$, so $\frac{M^{2}-2}{2 M} \neq 0$.
Hence, $U^{2}-2=\left(\frac{M^{2}-2}{2 M}\right)^{2}>0$.
Therefore, $U^{2}-2>0$, so $U^{2}>2$.
Thus, U is a positive rational such that $U^{2}>2$.
Hence, U is an upper bound of S in \mathbb{Q}.
Therefore, there exists an upper bound U of S such that $U<M$.
This contradicts the fact that M is the least upper bound of S.
Thus, M^{2} cannot be greater than 2 .
In all cases a contradiction is reached.
Therefore, S does not have a least upper bound in \mathbb{Q}.

Archimedean ordered fields

Example 4. Let $S=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$.
Then $\max S=\sup S=1$ and $\min S$ does not exist and $\inf S=0$.
Proof. Since $1 \in \mathbb{N}$ and $\frac{1}{1}=1$, then $1 \in S$.
Hence, S is not empty.
Let $x \in S$.
Then there exists $n \in \mathbb{N}$ such that $x=\frac{1}{n}$.
Since $n \in \mathbb{N}$, then $n \geq 1>0$, so $n>0$.
Since $1 \leq n$ and $n>0$, then we divide by n to obtain $\frac{1}{n} \leq 1$.
Thus, $x \leq 1$, so $x \leq 1$ for all $x \in S$.
Therefore, 1 is an upper bound of S.
Since $1 \in S$ and 1 is an upper bound of S, then $1=\max S$.
Since $S \subset \mathbb{R}$ and \mathbb{R} is an ordered field and $\max S$ exists, then $\sup S=$ $\max S=1$.

Since we proved 1 is an upper bound of S, we may equivalently prove $\sup S=1$ by showing for every $\epsilon>0$, there exists $x \in S$ such that $x>1-\epsilon$.

Let $\epsilon>0$ be given.
Let $x=1$.
Since $1=\frac{1}{1}$ and $1 \in \mathbb{N}$, then $x \in S$.
Since $\epsilon>0=1-1$, then $1+\epsilon>1$, so $1>1-\epsilon$.
Since $x=1$, then $x>1-\epsilon$, as desired.

Proof. Suppose for the sake of contradiction that min S exists.
Since $\min S \in S$, then there exists $n \in \mathbb{N}$ such that $\min S=\frac{1}{n}$.
Since $n \in \mathbb{N}$, then $n+1 \in \mathbb{N}$, so $\frac{1}{n+1} \in S$.
Since $0<n<n+1$, then $\frac{1}{n+1}<\frac{1}{n}=\min S$.
Thus, there exists $\frac{1}{n+1} \in S$ such that $\frac{1}{n+1}<\min S$.
But, this contradicts the fact that $\min S$ is a lower bound of S.
Therefore, $\min S$ does not exist.
Proof. We prove $0=\inf S$.
Let $x \in S$.
Then there exists $n \in \mathbb{N}$ such that $x=\frac{1}{n}$.
Since $n \in \mathbb{N}$, then $n>0$.
Hence, $\frac{1}{n}>0$, so $0<\frac{1}{n}$.
Thus, $0<x$, so $0<x$ for all $x \in S$.
Therefore, 0 is a lower bound of S.

Let $\epsilon>0$.
To prove 0 is the greatest lower bound of S, we must prove there exists $s \in S$ such that $s<\epsilon$.

By the Archimedean property of \mathbb{R}, there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<\epsilon$.
Let $s=\frac{1}{n}$.
Then $s \in S$ and $s<\epsilon$.
Therefore, $0=\inf S$.

Existence of square roots in \mathbb{R}

Example 5. If $S=\left\{q \in \mathbb{Q}: q^{2}<2\right\}$, then $\sup S=\sqrt{2}$.
Proof. We prove $\sqrt{2}$ is an upper bound of S in \mathbb{R}.
Since $0 \in \mathbb{Q}$ and $0^{2}=0<2$, then $0 \in S$, so $S \neq \emptyset$.
Let $x \in S$.
Then $x \in \mathbb{Q}$ and $x^{2}<2$.
Since \mathbb{Q} is an ordered field and $x \in \mathbb{Q}$, then $x^{2} \geq 0$.
Thus, $0 \leq x^{2}<2$, so $0 \leq \sqrt{x^{2}}<\sqrt{2}$.
Hence, $0 \leq|x|<\sqrt{2}$, so $|x|<\sqrt{2}$.
Consequently, $-\sqrt{2}<x<\sqrt{2}$, so $x<\sqrt{2}$.
Therefore, $\sqrt{2}$ is an upper bound of S in \mathbb{R}.
Let $r \in \mathbb{R}$ such that $r<\sqrt{2}$.
To prove r is not an upper bound of S, we must prove there exists $q \in S$ such that $q>r$.

Since $r \in \mathbb{R}$, then $|r| \in \mathbb{R}$, so either $|r|<\sqrt{2}$ or $|r| \geq \sqrt{2}$.
We consider these cases separately.
Case 1: Suppose $|r|<\sqrt{2}$.
Since \mathbb{Q} is dense in \mathbb{R}, then there exists $q \in \mathbb{Q}$ such that $|r|<q<\sqrt{2}$.
Since $0 \leq|r|<q<\sqrt{2}$, then $|r|<q$ and $0<q<\sqrt{2}$.
Since $0<q<\sqrt{2}$, then $q^{2}<2$.
Since $q \in \mathbb{Q}$ and $q^{2}<2$, then $q \in S$.
Since $|r|<q$, then $-q<r<q$, so $r<q$.
Thus, there exists $q \in S$ such that $q>r$.
Case 2: Suppose $|r| \geq \sqrt{2}$.
Then either $r \geq \sqrt{2}$ or $r \leq-\sqrt{2}$.
Since $r<\sqrt{2}$, then r cannot be greater than or equal to $\sqrt{2}$.
Hence, $r \leq-\sqrt{2}$.
Let $q=0$.
Since $0 \in S$, then $q \in S$.
Since $q=0>-\sqrt{2} \geq r$, then $q>r$.
Thus, there exists $q \in S$ such that $q>r$.
In all cases, there exists $q \in S$ such that $q>r$, so r is not an upper bound of S.

Hence, every real number $r<\sqrt{2}$ is not an upper bound of S.

Since $\sqrt{2}$ is an upper bound of S and every real number $r<\sqrt{2}$ is not an upper bound of S, then $\sqrt{2}$ is the least upper bound of S, so $\sqrt{2}=\sup S$.

Proof. We prove $\sqrt{2}$ is an upper bound of S in \mathbb{R}.
Clearly, $\sqrt{2} \in \mathbb{R}$.
Let $x \in S$.
Then $x \in \mathbb{Q}$ and $x^{2}<2$.
Since \mathbb{Q} is an ordered field and $x \in \mathbb{Q}$, then $x^{2} \geq 0$.
Thus, $0 \leq x^{2}<2$, so $0 \leq \sqrt{x^{2}}<\sqrt{2}$.
Hence, $0 \leq|x|<\sqrt{2}$, so $0 \leq x<\sqrt{2}$.
Therefore, $x<\sqrt{2}$, so $\sqrt{2}$ is an upper bound of S in \mathbb{R}.
To prove $\sqrt{2}$ is the least upper bound of S, let $\epsilon>0$.
We must prove there exists $s \in S$ such that $s>\sqrt{2}-\epsilon$.
Either $\epsilon<\sqrt{2}$ or $\epsilon=\sqrt{2}$ or $\epsilon>\sqrt{2}$.
We consider these cases separately.
Case 1: Suppose $\epsilon=\sqrt{2}$.
Since $1 \in \mathbb{Q}$ and $1^{2}=1<2$, then $1 \in S$.
Observe that

$$
\begin{aligned}
1 & >0 \\
& =\sqrt{2}-\sqrt{2} \\
& =\sqrt{2}-\epsilon .
\end{aligned}
$$

Thus, there exists $1 \in S$ such that $1>\sqrt{2}-\epsilon$.
Case 2: Suppose $\epsilon>\sqrt{2}$.
Then $\epsilon-\sqrt{2}>0$, so $\sqrt{2}-\epsilon<0$.
Since $0 \in \mathbb{Q}$ and $0^{2}=0<2$, then $0 \in S$.
Thus, there exists $0 \in S$ such that $0>\sqrt{2}-\epsilon$.
Case 3: Suppose $\epsilon<\sqrt{2}$.
Then $\sqrt{2}-\epsilon>0$.
Since \mathbb{Q} is dense in \mathbb{R} and $\sqrt{2}-\epsilon \in \mathbb{R}$ and $\sqrt{2} \in \mathbb{R}$ and $\sqrt{2}-\epsilon<\sqrt{2}$, then there exists a rational number q between $\sqrt{2}-\epsilon$ and $\sqrt{2}$.

Therefore, there exists $q \in \mathbb{Q}$ such that $\sqrt{2}-\epsilon<q<\sqrt{2}$.
Thus, $0<\sqrt{2}-\epsilon<q<\sqrt{2}$, so $0<q<\sqrt{2}$ and $\sqrt{2}-\epsilon<q$.
Since $0<q<\sqrt{2}$, then $0<q^{2}<2$, so $q^{2}<2$.
Since $q \in \mathbb{Q}$ and $q^{2}<2$, then $q \in S$.
Thus, there exists $q \in S$ such that $q>\sqrt{2}-\epsilon$.
Therefore, in all cases, there is an element of S greater than $\sqrt{2}-\epsilon$.
Hence, $\sqrt{2}$ is the least upper bound of S in \mathbb{R}, as desired.

