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Boundedness of sets in an ordered field
Example 1. sup(0,1) = 1.

Proof. Let S =(0,1).
Since 0 < 3 < 1, then 3 € (0,1) = 5, so S # 0.
Let x € S.
Then 0 <z < 1,80z < 1.
Hence, z < 1 for all z € S, so 1 is an upper bound of S.

Let 7 € R such that r < 1.

To prove r is not an upper bound of S, we must prove there exists s € S
such that s > r, so we must prove there exists s such that 0 < s <1 and s > r.

Let T = {0,7}.

Let s = maxTtl

Since max T > 0, then maxT + 1 > 1, so %TH >

Thus, s > 1 >0, s0 s > 0.

Since 0 < 1 and r < 1 and either maxT = 0 or maxT = r, then max7T < 1,
somaxT +1 < 2.

Hence, maxfm <1,s0s<1.

Since 0 < s and s < 1, then 0 < s < 1.

Since r < maxT and r < 1, then 2r < maxT + 1.

Hence, r < %T'H, sor < S.

Since there exists s such that 0 < s < 1 and r < s, then there exists s € S
such that s > r, so r is not an upper bound of S.

Thus, every real number r < 1 is not an upper bound of S.

Since 1 is an upper bound of S and every real number r < 1 is not an upper
bound of S, then 1 is the least upper bound of S.

Therefore, 1 = sup S, so 1 = sup(0, 1). O
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Example 2. inf(0,1) = 0.

Proof. Let S = (0,1).
Since 0 < 3 < 1, then § € (0,1) = 5, so S # 0.
Let x € S.



Then 0 <z < 1,500 < x.
Hence, 0 < z for all x € S, so 0 is a lower bound of S.

Let 7 € R such that r > 0.

To prove r is not a lower bound of S, we must prove there exists s € S such
that s < r, so we must prove there exists s such that 0 < s <1 and s <.

Let T ={1,r}.

Let s = %IT

Since 1 > 0 and r > 0 and either min7 =1 or minT = r, then min7T > 0.

Thus, %nT > 0,s0s>0.

Since 0 < 1 and min7T < 1, then min7T" < 2.

Hence, mi;lT <1l,s0s<1.

Since 0 < s and s < 1, then 0 < s < 1.

Since minT < r and 0 < r, then min T < 2r.

Hence, mi;‘T <r,sos<r.

Since there exists s such that 0 < s < 1 and s < r, then there exists s € S
such that s < r, so r is not a lower bound of S.

Thus, every real number r > 0 is not a lower bound of S.

Since 0 is a lower bound of S and every real number r > 0 is not a lower
bound of S, then 0 is the greatest lower bound of S.

Therefore, 0 = inf S, so 0 = inf(0, 1). O

Complete ordered fields

Example 3. Q is not a complete ordered field.
The set {qg € Q : ¢ < 2} is bounded above in Q, but does not have a least
upper bound in Q.

Proof. Let S ={q€ Q:¢* <2}.
We prove 2 is an upper bound of S in Q.
Observe that 2 = % €Q.
Sincel€ Qand 12=1<2,then 1€ S.
Hence, S is not empty.
Let x € Q such that x > 2.
Since = > 2 > 0, then = > 0.
Thus, 22 > 22 >2-2>2-1=2, 50 22 > 2.
Hence, z ¢ S.
Thus, if z € S, then z < 2.
Therefore, x < 2 for every x € .S, so 2 is an upper bound of S in Q.
Consequently, S is bounded above in Q.
We prove S does not have a least upper bound in Q.
For the sake of contradiction suppose that S has a least upper bound in Q.
Let M = sup(S) in Q.
Then M € Q.
Either M? < 2 or M? =2 or M? > 2.



We consider these cases separately.
Case 1: Suppose M? = 2.
Since M € Q and M? = 2, then there is a rational number whose square is

This contradicts the fact that there is no rational number whose square is 2.
Therefore, M? # 2.

Case 2: Suppose M2 < 2.

Let g=M + Q_i\/ﬂ.

Since M € Q and Q is a field, then ¢ € Q.

Since M? < 2, then 0 < 2 — M?,s02— M? > 0.

Hence, ¢ — M = # > 0.

Therefore, ¢ — M > 0, so ¢ > M.

Observe that
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Since M? < 2, then M? —2 < 0, so Mfgz < 0.
Observe that (M —2)%2 > 0iff M —2 # 0.
If M —2=0, then M =2,s0 M?=4>2.
Thus, M? > 2, contradicting the assumption M? < 2.
Hence, M — 2 # 0, so (M —2)? > 0.
Observe that 10 —4M > 0 iff M < %
If M >3, then M2 > 2 > 2.
Thus, M? > 2, contradicting the assumption M? < 2.
Hence, M < g, so 10 —4M > 0.
Since (M —2)? > 0 and 10 — 4M > 0, then (M — 2)? 4 (10 — 4M) > 0.
Since M126T2 <0and (M —2)%+ (10 —4M) > 0, then ¢> —2 < 0, s0 ¢® < 2.
Since ¢ € Q and ¢2 < 2, then g € S.
Therefore, there exists g € S such that ¢ > M.
This contradicts the fact that M is an upper bound of S.
Hence, M? cannot be less than 2.
Case 3: Suppose M2 > 2.




Suppose y is a positive rational such that y? > 2.

Then y € Q and y > 0 and y? > 2.

Since S is not empty, let s € S.

Then s € Q and s2 < 2.

Suppose that s > y.

Then 0 < y < s.

Hence, 2 < 3% < 5%, 50 2 < s2.

Thus, s? > 2 and s < 2, a contradiction.

Therefore, s < y, so y is an upper bound of S.

Hence, if y is any positive rational such that y? > 2, then y is an upper
bound of S.

Let U = M2,

Since M € Q and Q is a field, then U € Q.

Since 1 € S and M is an upper bound of .S, then 1 < M, so M > 0.

Thus, 2M > 0 and M2 +2 >0, so U > 0.

Since 2 < M?, then M? + 2 < 2M?2.

We divide by positive 2M to get U = M;;\f < M.

Therefore, U < M.

Observe that
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Since M € Q and 2M # 0, then M;IV?Q € Q.

Since M? —2 > 0, then M? —2 # 0, so %7&0.

Hence, U2 — 2 = (%)2 > 0.

Therefore, U2 —2 > 0, so U? > 2.

Thus, U is a positive rational such that U? > 2.

Hence, U is an upper bound of S in Q.

Therefore, there exists an upper bound U of S such that U < M.

This contradicts the fact that M is the least upper bound of S.

Thus, M? cannot be greater than 2.

In all cases a contradiction is reached.

Therefore, S does not have a least upper bound in Q. O




Archimedean ordered fields

Example 4. Let S = {1 :n e N}.
Then max .S = sup S = 1 and min S does not exist and inf S = 0.

Proof. Since 1 € N and % =1,then1€S.
Hence, S is not empty.
Let z € S.
Then there exists n € N such that x = %
Since n € N, thenn > 1> 0, son > 0.
Since 1 < n and n > 0, then we divide by n to obtain % <1
Thus, z <1,sox <1forallx € S.
Therefore, 1 is an upper bound of S.
Since 1 € S and 1 is an upper bound of S, then 1 = max S.
Since S C R and R is an ordered field and max S exists, then sup S =
max S = 1.

Since we proved 1 is an upper bound of S, we may equivalently prove sup.S = 1
by showing for every € > 0, there exists z € S such that z > 1 —e.
Let € > 0 be given.
Let x = 1.
Since 1 = % and 1 € N, then x € S.
Sincee>0=1—1,thenl4+e>1,s01>1—c¢.

Since x = 1, then = > 1 — ¢, as desired.

Proof. Suppose for the sake of contradiction that min .S exists.
Since min S € S, then there exists n € N such that min.S = %
Since n € N, then n+1 € N, so n%rl es.

Since 0 <n < n+ 1, then n%rl < % =minS.
Thus, there exists %H € S such that n%rl < minS.
But, this contradicts the fact that min S is a lower bound of S.

Therefore, min .S does not exist. O

Proof. We prove 0 = inf S.
Let x € S.
Then there exists n € N such that x = %L
Since n € N, then n > 0.
Hence, % > 0,500 < %
Thus, 0 < z,s0 0 < z for all x € S.
Therefore, 0 is a lower bound of S.



Let € > 0.
To prove 0 is the greatest lower bound of S, we must prove there exists s € S
such that s < e.
By the Archimedean property of R, there exists n € N such that % < e.

Let s = %
Then s € S and s < e.
Therefore, 0 = inf S. O

Existence of square roots in R
Example 5. If S = {qg € Q: ¢ < 2}, then sup S = V2.

Proof. We prove /2 is an upper bound of S in R.
Since 0 cQand 0° =0< 2, then 0 € S, so S # ).
Let z € S.

Then z € Q and 22 < 2.

Since Q is an ordered field and z € Q, then 22 > 0.
Thus, 0 < 22 < 2,50 0 < Va2 < V2.

Hence, 0 < |z| < v/2, so |z]| < V2.

Consequently, —V2<ax< \/i, S0 T < V2.
Therefore, v/2 is an upper bound of S in R.

Let r € R such that r < v/2.
To prove r is not an upper bound of S, we must prove there exists ¢ € S
such that ¢ > r.
Since 7 € R, then |r| € R, so either |r| < v/2 or |r| > v/2.
We consider these cases separately.
Case 1: Suppose |r| < v/2.
Since Q is dense in R, then there exists ¢ € Q such that |r| < ¢ < V2.
Since 0 < |r| < ¢ < v/2, then |r| < gand 0 < ¢ < /2.
Since 0 < ¢ < /2, then ¢% < 2.
Since ¢ € Q and ¢% < 2, then g € S.
Since |r| < ¢, then —¢ < r < ¢, 801 < q.
Thus, there exists ¢ € S such that g > r.
Case 2: Suppose |r| > /2.
Then either r > /2 or r < —v/2.
Since r < v/2, then r cannot be greater than or equal to v/2.
Hence, r < —V2.
Let ¢ = 0.
Since 0 € S, then g € S.
Sinceq=0>—\/§2r7thenq>r.
Thus, there exists ¢ € S such that g > r.
In all cases, there exists ¢ € S such that ¢ > r, so r is not an upper bound
of S.
Hence, every real number 7 < /2 is not an upper bound of S.



Since v/2 is an upper bound of S and every real number r < /2 is not an
upper bound of S, then v/2 is the least upper bound of S, so v2 =supS. O

Proof. We prove v/2 is an upper bound of S in R.
Clearly, v/2 € R.
Let z € S.
Then z € Q and 22 < 2.
Since Q is an ordered field and z € Q, then 22 > 0.
Thus,0§m2<2,500§\/3?<\/§.
Hence,OS\x|<\/§,soO§m<\/§.
Therefore, < v/2, so /2 is an upper bound of S in R.
To prove v/2 is the least upper bound of S, let € > 0.
We must prove there exists s € S such that s > V2 —e
Either € < v/2 or e = v/2 or € > /2.
We consider these cases separately.
Case 1: Suppose € = /2.
Since 1€ Qand 12=1<2,then1€S.
Observe that

1 > 0
- V2-V2
V2 —e.

Thus, there exists 1 € S such that 1 > V2 —e

Case 2: Suppose € > /2.

Thene—\/§>07 s0v2—e<0.

Since 0 cQand 0° =0< 2, then 0 € S.

Thus, there exists 0 € S such that 0 > /2 —e.

Case 3: Suppose € < /2.

Then v2 — € > 0.

Since Q is dense in R and V2 —c € R and V2 € R and \/§—e<\/§, then
there exists a rational number ¢ between V2 — € and V2.

Therefore, there exists ¢ € Q such that v/2 — e < ¢ < /2.

Thus, 0 < V2 —e<qg<v2,500<g<+v2and V2 —¢€<q.

Since 0 < ¢ < v/2, then 0 < ¢ < 2, 50 ¢* < 2.

Since ¢ € Q and ¢ < 2, then ¢ € S.

Thus, there exists ¢ € S such that ¢ > v/2 —e.

Therefore, in all cases, there is an element of S greater than v/2 — e.

Hence, v/2 is the least upper bound of S in R, as desired. O



