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Boundedness of sets in an ordered field

Example 1. sup(0, 1) = 1.

Proof. Let S = (0, 1).
Since 0 < 1

2 < 1, then 1
2 ∈ (0, 1) = S, so S 6= ∅.

Let x ∈ S.
Then 0 < x < 1, so x < 1.
Hence, x < 1 for all x ∈ S, so 1 is an upper bound of S.

Let r ∈ R such that r < 1.
To prove r is not an upper bound of S, we must prove there exists s ∈ S

such that s > r, so we must prove there exists s such that 0 < s < 1 and s > r.
Let T = {0, r}.
Let s = maxT+1

2 .

Since maxT ≥ 0, then maxT + 1 ≥ 1, so maxT+1
2 ≥ 1

2 .
Thus, s ≥ 1

2 > 0, so s > 0.
Since 0 < 1 and r < 1 and either maxT = 0 or maxT = r, then maxT < 1,

so maxT + 1 < 2.
Hence, maxT+1

2 < 1, so s < 1.
Since 0 < s and s < 1, then 0 < s < 1.
Since r ≤ maxT and r < 1, then 2r < maxT + 1.
Hence, r < maxT+1

2 , so r < s.
Since there exists s such that 0 < s < 1 and r < s, then there exists s ∈ S

such that s > r, so r is not an upper bound of S.
Thus, every real number r < 1 is not an upper bound of S.
Since 1 is an upper bound of S and every real number r < 1 is not an upper

bound of S, then 1 is the least upper bound of S.
Therefore, 1 = supS, so 1 = sup(0, 1).

Example 2. inf(0, 1) = 0.

Proof. Let S = (0, 1).
Since 0 < 1

2 < 1, then 1
2 ∈ (0, 1) = S, so S 6= ∅.

Let x ∈ S.



Then 0 < x < 1, so 0 < x.
Hence, 0 < x for all x ∈ S, so 0 is a lower bound of S.

Let r ∈ R such that r > 0.
To prove r is not a lower bound of S, we must prove there exists s ∈ S such

that s < r, so we must prove there exists s such that 0 < s < 1 and s < r.
Let T = {1, r}.
Let s = minT

2 .
Since 1 > 0 and r > 0 and either minT = 1 or minT = r, then minT > 0.
Thus, minT

2 > 0, so s > 0.
Since 0 < 1 and minT ≤ 1, then minT < 2.
Hence, minT

2 < 1, so s < 1.
Since 0 < s and s < 1, then 0 < s < 1.
Since minT ≤ r and 0 < r, then minT < 2r.
Hence, minT

2 < r, so s < r.
Since there exists s such that 0 < s < 1 and s < r, then there exists s ∈ S

such that s < r, so r is not a lower bound of S.
Thus, every real number r > 0 is not a lower bound of S.
Since 0 is a lower bound of S and every real number r > 0 is not a lower

bound of S, then 0 is the greatest lower bound of S.
Therefore, 0 = inf S, so 0 = inf(0, 1).

Complete ordered fields

Example 3. Q is not a complete ordered field.
The set {q ∈ Q : q2 < 2} is bounded above in Q, but does not have a least

upper bound in Q.

Proof. Let S = {q ∈ Q : q2 < 2}.
We prove 2 is an upper bound of S in Q.
Observe that 2 = 2

1 ∈ Q.
Since 1 ∈ Q and 12 = 1 < 2, then 1 ∈ S.
Hence, S is not empty.
Let x ∈ Q such that x > 2.
Since x > 2 > 0, then x > 0.
Thus, x2 > 2x > 2 · 2 > 2 · 1 = 2, so x2 > 2.
Hence, x 6∈ S.
Thus, if x ∈ S, then x ≤ 2.
Therefore, x ≤ 2 for every x ∈ S, so 2 is an upper bound of S in Q.
Consequently, S is bounded above in Q.
We prove S does not have a least upper bound in Q.
For the sake of contradiction suppose that S has a least upper bound in Q.
Let M = sup(S) in Q.
Then M ∈ Q.
Either M2 < 2 or M2 = 2 or M2 > 2.
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We consider these cases separately.
Case 1: Suppose M2 = 2.
Since M ∈ Q and M2 = 2, then there is a rational number whose square is

2.
This contradicts the fact that there is no rational number whose square is 2.
Therefore, M2 6= 2.
Case 2: Suppose M2 < 2.

Let q = M + 2−M2

4 .
Since M ∈ Q and Q is a field, then q ∈ Q.
Since M2 < 2, then 0 < 2−M2, so 2−M2 > 0.

Hence, q −M = 2−M2

4 > 0.
Therefore, q −M > 0, so q > M .
Observe that

q2 − 2 = (M +
2−M2

4
)2 − 2

= M2 +
2M

4
(2−M2) + (

2−M2

4
)2 − 2

= (M2 − 2)− 2M

4
(M2 − 2) + (

M2 − 2

4
)2

= 42
M2 − 2

42
− (2 · 4M)

M2 − 2

42
+

(M2 − 2)2

42

=
M2 − 2

42
(42 − 2 · 4M +M2 − 2)

=
M2 − 2

16
(M2 − 4M − 4M + 10 + 4)

=
M2 − 2

16
[(M − 2)2 + (10− 4M)].

Since M2 < 2, then M2 − 2 < 0, so M2−2
16 < 0.

Observe that (M − 2)2 > 0 iff M − 2 6= 0.
If M − 2 = 0, then M = 2, so M2 = 4 > 2.
Thus, M2 > 2, contradicting the assumption M2 < 2.
Hence, M − 2 6= 0, so (M − 2)2 > 0.
Observe that 10− 4M > 0 iff M < 5

2 .
If M ≥ 5

2 , then M2 ≥ 25
4 > 2.

Thus, M2 > 2, contradicting the assumption M2 < 2.
Hence, M < 5

2 , so 10− 4M > 0.
Since (M − 2)2 > 0 and 10− 4M > 0, then (M − 2)2 + (10− 4M) > 0.

Since M2−2
16 < 0 and (M − 2)2 + (10− 4M) > 0, then q2 − 2 < 0, so q2 < 2.

Since q ∈ Q and q2 < 2, then q ∈ S.
Therefore, there exists q ∈ S such that q > M .
This contradicts the fact that M is an upper bound of S.
Hence, M2 cannot be less than 2.
Case 3: Suppose M2 > 2.
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Suppose y is a positive rational such that y2 > 2.
Then y ∈ Q and y > 0 and y2 > 2.
Since S is not empty, let s ∈ S.
Then s ∈ Q and s2 < 2.
Suppose that s > y.
Then 0 < y < s.
Hence, 2 < y2 < s2, so 2 < s2.
Thus, s2 > 2 and s2 < 2, a contradiction.
Therefore, s ≤ y, so y is an upper bound of S.
Hence, if y is any positive rational such that y2 > 2, then y is an upper

bound of S.
Let U = M2+2

2M .
Since M ∈ Q and Q is a field, then U ∈ Q.
Since 1 ∈ S and M is an upper bound of S, then 1 ≤M , so M > 0.
Thus, 2M > 0 and M2 + 2 > 0, so U > 0.
Since 2 < M2, then M2 + 2 < 2M2.

We divide by positive 2M to get U = M2+2
2M < M .

Therefore, U < M .
Observe that

U2 − 2 = (
M2 + 2

2M
)2 − 2

= −2 +
(M2 + 2)2

4M2

=
−8M2 +M4 + 4M2 + 4

4M2

=
M4 − 4M2 + 4

4M2

=
(M2 − 2)2

(2M)2

= (
M2 − 2

2M
)2.

Since M ∈ Q and 2M 6= 0, then M2−2
2M ∈ Q.

Since M2 − 2 > 0, then M2 − 2 6= 0, so M2−2
2M 6= 0.

Hence, U2 − 2 = (M2−2
2M )2 > 0.

Therefore, U2 − 2 > 0, so U2 > 2.
Thus, U is a positive rational such that U2 > 2.
Hence, U is an upper bound of S in Q.
Therefore, there exists an upper bound U of S such that U < M .
This contradicts the fact that M is the least upper bound of S.
Thus, M2 cannot be greater than 2.
In all cases a contradiction is reached.
Therefore, S does not have a least upper bound in Q.
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Archimedean ordered fields

Example 4. Let S = { 1n : n ∈ N}.
Then maxS = supS = 1 and minS does not exist and inf S = 0.

Proof. Since 1 ∈ N and 1
1 = 1, then 1 ∈ S.

Hence, S is not empty.
Let x ∈ S.
Then there exists n ∈ N such that x = 1

n .
Since n ∈ N, then n ≥ 1 > 0, so n > 0.
Since 1 ≤ n and n > 0, then we divide by n to obtain 1

n ≤ 1.
Thus, x ≤ 1, so x ≤ 1 for all x ∈ S.
Therefore, 1 is an upper bound of S.
Since 1 ∈ S and 1 is an upper bound of S, then 1 = maxS.
Since S ⊂ R and R is an ordered field and maxS exists, then supS =

maxS = 1.

Since we proved 1 is an upper bound of S, we may equivalently prove supS = 1
by showing for every ε > 0, there exists x ∈ S such that x > 1− ε.

Let ε > 0 be given.
Let x = 1.
Since 1 = 1

1 and 1 ∈ N, then x ∈ S.
Since ε > 0 = 1− 1, then 1 + ε > 1, so 1 > 1− ε.
Since x = 1, then x > 1− ε, as desired.

Proof. Suppose for the sake of contradiction that minS exists.
Since minS ∈ S, then there exists n ∈ N such that minS = 1

n .
Since n ∈ N, then n+ 1 ∈ N, so 1

n+1 ∈ S.

Since 0 < n < n+ 1, then 1
n+1 <

1
n = minS.

Thus, there exists 1
n+1 ∈ S such that 1

n+1 < minS.
But, this contradicts the fact that minS is a lower bound of S.
Therefore, minS does not exist.

Proof. We prove 0 = inf S.
Let x ∈ S.
Then there exists n ∈ N such that x = 1

n .
Since n ∈ N, then n > 0.
Hence, 1

n > 0, so 0 < 1
n .

Thus, 0 < x, so 0 < x for all x ∈ S.
Therefore, 0 is a lower bound of S.
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Let ε > 0.
To prove 0 is the greatest lower bound of S, we must prove there exists s ∈ S

such that s < ε.
By the Archimedean property of R, there exists n ∈ N such that 1

n < ε.
Let s = 1

n .
Then s ∈ S and s < ε.
Therefore, 0 = inf S.

Existence of square roots in R
Example 5. If S = {q ∈ Q : q2 < 2}, then supS =

√
2.

Proof. We prove
√

2 is an upper bound of S in R.
Since 0 ∈ Q and 02 = 0 < 2, then 0 ∈ S, so S 6= ∅.
Let x ∈ S.
Then x ∈ Q and x2 < 2.
Since Q is an ordered field and x ∈ Q, then x2 ≥ 0.
Thus, 0 ≤ x2 < 2, so 0 ≤

√
x2 <

√
2.

Hence, 0 ≤ |x| <
√

2, so |x| <
√

2.
Consequently, −

√
2 < x <

√
2, so x <

√
2.

Therefore,
√

2 is an upper bound of S in R.

Let r ∈ R such that r <
√

2.
To prove r is not an upper bound of S, we must prove there exists q ∈ S

such that q > r.
Since r ∈ R, then |r| ∈ R, so either |r| <

√
2 or |r| ≥

√
2.

We consider these cases separately.
Case 1: Suppose |r| <

√
2.

Since Q is dense in R, then there exists q ∈ Q such that |r| < q <
√

2.
Since 0 ≤ |r| < q <

√
2, then |r| < q and 0 < q <

√
2.

Since 0 < q <
√

2, then q2 < 2.
Since q ∈ Q and q2 < 2, then q ∈ S.
Since |r| < q, then −q < r < q, so r < q.
Thus, there exists q ∈ S such that q > r.
Case 2: Suppose |r| ≥

√
2.

Then either r ≥
√

2 or r ≤ −
√

2.
Since r <

√
2, then r cannot be greater than or equal to

√
2.

Hence, r ≤ −
√

2.
Let q = 0.
Since 0 ∈ S, then q ∈ S.
Since q = 0 > −

√
2 ≥ r, then q > r.

Thus, there exists q ∈ S such that q > r.
In all cases, there exists q ∈ S such that q > r, so r is not an upper bound

of S.
Hence, every real number r <

√
2 is not an upper bound of S.
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Since
√

2 is an upper bound of S and every real number r <
√

2 is not an
upper bound of S, then

√
2 is the least upper bound of S, so

√
2 = supS.

Proof. We prove
√

2 is an upper bound of S in R.
Clearly,

√
2 ∈ R.

Let x ∈ S.
Then x ∈ Q and x2 < 2.
Since Q is an ordered field and x ∈ Q, then x2 ≥ 0.
Thus, 0 ≤ x2 < 2, so 0 ≤

√
x2 <

√
2.

Hence, 0 ≤ |x| <
√

2, so 0 ≤ x <
√

2.
Therefore, x <

√
2, so

√
2 is an upper bound of S in R.

To prove
√

2 is the least upper bound of S, let ε > 0.
We must prove there exists s ∈ S such that s >

√
2− ε.

Either ε <
√

2 or ε =
√

2 or ε >
√

2.
We consider these cases separately.
Case 1: Suppose ε =

√
2.

Since 1 ∈ Q and 12 = 1 < 2, then 1 ∈ S.
Observe that

1 > 0

=
√

2−
√

2

=
√

2− ε.

Thus, there exists 1 ∈ S such that 1 >
√

2− ε.
Case 2: Suppose ε >

√
2.

Then ε−
√

2 > 0, so
√

2− ε < 0.
Since 0 ∈ Q and 02 = 0 < 2, then 0 ∈ S.
Thus, there exists 0 ∈ S such that 0 >

√
2− ε.

Case 3: Suppose ε <
√

2.
Then

√
2− ε > 0.

Since Q is dense in R and
√

2 − ε ∈ R and
√

2 ∈ R and
√

2 − ε <
√

2, then
there exists a rational number q between

√
2− ε and

√
2.

Therefore, there exists q ∈ Q such that
√

2− ε < q <
√

2.
Thus, 0 <

√
2− ε < q <

√
2, so 0 < q <

√
2 and

√
2− ε < q.

Since 0 < q <
√

2, then 0 < q2 < 2, so q2 < 2.
Since q ∈ Q and q2 < 2, then q ∈ S.
Thus, there exists q ∈ S such that q >

√
2− ε.

Therefore, in all cases, there is an element of S greater than
√

2− ε.
Hence,

√
2 is the least upper bound of S in R, as desired.
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