# Real Number System Exercises 

Jason Sass

July 16, 2023

Exercise 1. For every $x \in \mathbb{R}$, if $x>0$, then $x^{2}>0$.
Proof. Let $x \in \mathbb{R}$ such that $x>0$.
Since $x>0$, then $x>0$ and $x>0$.
Since $\mathbb{R}$ is an ordered field and $x>0$ and $x>0$, then $x^{2}=x x>0$, so $x^{2}>0$.

Exercise 2. Show that the statement $(\forall x, y \in \mathbb{R})[(x>1 \rightarrow y>2) \rightarrow x-y \notin$ $(0,3)]$ is false.

Proof. Let $p(x, y)$ be the predicate defined over $\mathbb{R} \times \mathbb{R}$ such that $p(x, y):(x>$ $1 \rightarrow y>2) \rightarrow x-y \notin(0,3)$.

Observe that
$(\forall x, y \in \mathbb{R})(x>1 \rightarrow y>2) \rightarrow x-y \notin(0,3) \quad \Leftrightarrow \quad(\forall x, y \in \mathbb{R})(x \leq 1 \vee y>2) \rightarrow x-y \notin(0,3)$.
Thus, the negation of the statement is: there exists $x, y \in \mathbb{R}$ such that either $x \leq 1$ or $y>2$ and $x-y \in(0,3)$.

So, to prove the statement is false, we must prove there exists $x, y \in \mathbb{R}$ such that either $x \leq 1$ or $y>2$ and the difference $x-y$ is in the open interval $(0,3)$.

Let $x=4$ and $y=2.5$.
Since $2.5>2$, then $4 \leq 1$ or $2.5>2$ is true.
Observe that

$$
\begin{aligned}
0<1.5<3 & \Leftrightarrow 0<4-2.5<3 \\
& \Leftrightarrow 0<x-y<3 \\
& \Leftrightarrow x-y \in(0,3) .
\end{aligned}
$$

Therefore, the statement $(\forall x, y \in \mathbb{R})[(x>1 \rightarrow y>2) \rightarrow x-y \notin(0,3)]$ is false.

Exercise 3. Let $x, y \in \mathbb{R}$.
If $x y=0$, then $x=0$ or $y=0$.
Solution. The hypothesis is: $x y=0$.
The conclusion is: $x=0 \vee y=0$.
Thus, we have a statement of the form $P \rightarrow Q \vee R$.

We know that $P \rightarrow Q \vee R \Leftrightarrow(P \wedge \neg Q) \rightarrow R$.
Thus, we assume $x \neq 0$, in addition to $x y=0$.
We must prove $y=0$.
Since $x \neq 0$, then $x$ has a multiplicative inverse, $x^{-1} \in \mathbb{R}$ such that $x x^{-1}=1$. Thus, we can multiply $x^{-1}$ with $x y$ to get $x^{-1}(x y)=x^{-1} 0$, so $\left(x^{-1} x\right) y=$ $x^{-1} 0=0$.

Thus, $1 y=0$, so $y=0$.
To write up a correct proof, we write up in a transitive format, so we need to reverse the steps above in the proof.

Proof. Suppose $x y=0$ and $x \neq 0$.
We must prove $y=0$.
Since $x$ is nonzero, then the multiplicative inverse $x^{-1}$ exists, so $x^{-1} x=1$.
Observe that

$$
\begin{aligned}
y & =1 \cdot y \\
& =\left(x^{-1} x\right) y \\
& =x^{-1}(x y) \\
& =x^{-1}(0) \\
& =0, \text { as desired. }
\end{aligned}
$$

Exercise 4. Let $a \in \mathbb{R}$.
If $a \cdot a=a$, then either $a=0$ or $a=1$.
Proof. We prove by contrapositive.
Suppose $a \cdot a=a$ and $a \neq 0$.
We must prove $a=1$.
Since $a^{2}=a \cdot a=a$, then $a^{2}-a=0$, so $a(a-1)=0$.
Hence, either $a=0$ or $a-1=0$.
Since $a \neq 0$, then $a-1=0$, so $a=1$, as desired.
Exercise 5. reciprocal of a product equals product of the reciprocals Let $a, b \in \mathbb{R}$.
If $a \neq 0$ and $b \neq 0$, then $\frac{1}{a b}=\frac{1}{a} \cdot \frac{1}{b}$.
Proof. Suppose $a \neq 0$ and $b \neq 0$.
Then $a b \in \mathbb{R}$ and $a b \neq 0$.
Hence, there exists a unique real number $\frac{1}{a b}$ such that $(a b)\left(\frac{1}{a b}\right)=\left(\frac{1}{a b}\right)(a b)=$
1.

Since $a \neq 0$, then there is a unique real number $\frac{1}{q}$ such that $a \cdot \frac{1}{q}=\frac{1}{q} \cdot a=1$.
Since $b \neq 0$, then there is a unique real number $\frac{q}{b}$ such that $b \cdot \frac{q}{b}=\frac{1}{b} \cdot b=1$.
Hence, $\frac{1}{a} \cdot \frac{1}{b} \in \mathbb{R}$ and

$$
\begin{aligned}
(a b)\left(\frac{1}{a} \cdot \frac{1}{b}\right) & =\left(\frac{1}{a} \cdot \frac{1}{b}\right)(a b) \\
& =\left(\frac{1}{a} \cdot \frac{1}{b}\right)(b a) \\
& =\frac{1}{a} \cdot\left(\frac{1}{b} \cdot b\right) \cdot a \\
& =\frac{1}{a} \cdot 1 \cdot a \\
& =\frac{1}{a} \cdot a \\
& =1
\end{aligned}
$$

Since $\frac{1}{a b}$ is unique, then this implies $\frac{1}{a b}=\frac{1}{a} \cdot \frac{1}{b}$, as desired.

## Ordered Fields

Exercise 6. Let $x, y \in \mathbb{R}$ such that $x y=10$ and $x>5$.
Then $y<2$.
Proof. Since $x>5$, then $2 x>2 \cdot 5=10=x y$, so $2 x>x y$.
Since $x>5>0$, then $x>0$.
Since $2 x>x y$ and $x>0$, then $\frac{2 x}{x}>\frac{x y}{x}$, so $2>y$.
Therefore, $y<2$, as desired.
Exercise 7. Let $x, y \in \mathbb{R}$.
If $x y=6$ and $x>2$, then $y<3$.
Proof. Suppose $x y=6$ and $x>2$.
Since $x>2>0$, then $x>0$.
Since $x y=6>0$, then $x y>0$.
Since $x y>0$ and $x>0$, then $\frac{x y}{x}>\frac{0}{x}$, so $y>0$.
Observe that

$$
\begin{aligned}
x>2 & \Rightarrow x y>2 y \\
& \Leftrightarrow 6>2 y \\
& \Leftrightarrow 2 \cdot 3>2 y \\
& \Leftrightarrow 3>y
\end{aligned}
$$

Since $x>2$ and $x>2$ implies $3>y$, then $3>y$, so $y<3$, as desired.
Lemma 8. Let $a, b, c \in \mathbb{R}$ and $c>0$.
If $a>b+c$, then $a>b$.
Proof. Suppose $a>b+c$.
Since $c>0$, then $b+c>b$.
Since $a>b+c$ and $b+c>b$, then $a>b$.

Proposition 9. Let $a, b, c, d \in \mathbb{R}$.
If $a \leq b$ and $c \leq d$, then $a+c \leq b+d$.
Proof. Suppose $a \leq b$ and $c \leq d$.
Then either $a<b$ or $a=b$ and either $c<d$ or $c=d$.
Thus, either $a<b$ and $c<d$ or $a<b$ and $c=d$ or $a=b$ and $c<d$ or $a=b$ and $c=d$.

We consider these cases separately.
Case 1: Suppose $a<b$ and $c<d$.
Then $a+c<b+d$.
Case 2: Suppose $a<b$ and $c=d$.
Then $a+c<b+c=b+d$.
Case 3: Suppose $a=b$ and $c<d$.
Then $a+c=b+c<b+d$.
Case 4: Suppose $a=b$ and $c=d$.
Then $a+c=b+c=b+d$.
Thus, in all cases, $a+c \leq b+d$.
Corollary 10. Let $a_{k}$ and $b_{k}$ be real numbers such that $a_{k} \leq b_{k}$ for every $k \in \mathbb{Z}^{+}$.

Then $\sum_{k=1}^{n} a_{k} \leq \sum_{k=1}^{n} b_{k}$ for all positive integers $n$.
Proof. We prove by induction on $n$.
Let $S=\left\{n \in \mathbb{Z}^{+}: \sum_{k=1}^{n} a_{k} \leq \sum_{k=1}^{n} b_{k}\right\}$.
Then $\sum_{k=1}^{1} a_{k}=a_{1} \leq b_{1}=\sum_{k=1}^{1} b_{k}$.
Since $1 \in \mathbb{Z}^{+}$and $\sum_{k=1}^{1} a_{k} \leq \sum_{k=1}^{1} b_{k}$, then $1 \in S$.
Let $m \in S$.
Then $m \in \mathbb{Z}^{+}$and $\sum_{k=1}^{m} a_{k} \leq \sum_{k=1}^{m} b_{k}$.
Since $m \in \mathbb{Z}^{+}$, then $m+1 \in \mathbb{Z}^{+}$, so $a_{m+1} \leq b_{m+1}$.
Observe that

$$
\begin{aligned}
\sum_{k=1}^{m+1} a_{k} & =\sum_{k=1}^{m} a_{k}+a_{m+1} \\
& \leq \sum_{k=1}^{m} b_{k}+a_{m+1} \\
& \leq \sum_{k=1}^{m} b_{k}+b_{m+1} \\
& =\sum_{k=1}^{m+1} b_{k}
\end{aligned}
$$

Since $m+1 \in \mathbb{Z}^{+}$and $\sum_{k=1}^{m+1} a_{k} \leq \sum_{k=1}^{m+1} b_{k}$, then $m+1 \in S$.
Since $m \in S$ implies $m+1 \in S$, then by PMI, $S=\mathbb{Z}^{+}$.
Therefore, $\sum_{k=1}^{n} a_{k} \leq \sum_{k=1}^{n} b_{k}$ for every $n \in \mathbb{Z}^{+}$.

Exercise 11. Let $a, b, c, d \in \mathbb{R}$.
If $a<b$ and $c \leq d$, then $a+c<b+d$.
Proof. Suppose $a<b$ and $c \leq d$.
Since $c \leq d$, then either $c<d$ or $c=d$.
We consider these cases separately.
Case 1: Suppose $c<d$.
Since $a<b$ and $c<d$, then $a+c<b+d$.
Case 2: Suppose $c=d$.
Since $a<b$, then $a+c<b+c$, so $a+c<b+d$.
Exercise 12. Show that the statement $(\forall x \in \mathbb{R})(x \leq 0) \vee\left(x^{2}>2\right) \vee\left(x^{3}>3\right)$ is false.

Proof. To prove the statement is false, we must prove $(\exists x \in \mathbb{R})(x>0) \wedge\left(x^{2} \leq\right.$ 2) $\wedge\left(x^{3} \leq 3\right)$.

Let $x=1$.
Observe that $1>0$ and $1^{2}=1<2 \leq 2$ and $1^{3}=1<3 \leq 3$.
Exercise 13. Show that the statement $(\exists m, n \in \mathbb{Z})(n \geq 5 \rightarrow m \leq 4) \wedge(m+n \leq$ 9) is true.

Proof. The statement is equivalent to $(\exists m, n \in \mathbb{Z})(n<5 \vee m \leq 4) \wedge(m+n \leq 9)$. Let $m=1$ and $n=2$.
Then $m$ and $n$ are integers and $2<5$ and $1<4 \leq 4$ and $m+n=1+2=$ $3<9 \leq 9$.

Exercise 14. Let $a, b, c, d$ be elements of an ordered field $F$.
If $a<b$ and $c<d$, then $a d+b c<a c+b d$.
Proof. Suppose $a<b$ and $c<d$.
Since $c<d$, then $d>c$, so $d-c>0$.
Since $a<b$ and $d-c>0$, then $a(d-c)<b(d-c)$.
Hence, $a d-a c<b d-b c$.
Observe that

$$
\begin{aligned}
a d-a c+a c & <b d-b c+a c \\
a d+0 & <b d-b c+a c \\
a d & <b d+a c-b c \\
a d+b c & <b d+a c-b c+b c \\
a d+b c & <b d+a c+0 \\
a d+b c & <b d+a c \\
a d+b c & <a c+b d
\end{aligned}
$$

Therefore, $a d+b c<a c+b d$.
Exercise 15. Let $x \in \mathbb{R}$.
If $0 \leq x \leq 2$, then $-x^{3}+4 x+1>0$.

Proof. Suppose $0 \leq x \leq 2$.
Then $0 \leq x$ and $x \leq 2$.
Observe that $-x^{3}+4 x+1=x\left(-x^{2}+4\right)+1=x\left(4-x^{2}\right)+1=x(2-x)(2+x)+1$.
Since $x \leq 2$, then $2-x \geq 0$.
Since $x \geq 0$, then $2+x \geq 2>0$, so $2+x>0$.
Since $x \geq 0$ and $2-x \geq 0$ and $2+x>0$, then $x(2-x)(2+x) \geq 0$.
Thus, $x(2-x)(2+x)+1 \geq 1>0$, so $x(2-x)(2+x)+1>0$.
Therefore, $-x^{3}+4 x+1>0$.
Exercise 16. Let $a, b, x, y$ be positive elements of an ordered field $F$.
If $\frac{x}{y}<\frac{a}{b}$, then $\frac{x}{y}<\frac{x+a}{y+b}<\frac{a}{b}$.
Proof. Suppose $\frac{x}{y}<\frac{a}{b}$.
Since $y>0$ and $b>0$, then $y+b>0$.
Hence, $\frac{x}{y}<\frac{a}{b}$ implies $x b<y a$, so $x y+x b<x y+y a$ and $x b+a b<y a+a b$.
Thus, $x(y+b)<y(x+a)$ and $(x+a) b<(y+b) a$, so $\frac{x}{y}<\frac{x+a}{y+b}$ and $\frac{x+a}{y+b}<\frac{a}{b}$.
Therefore, $\frac{x}{y}<\frac{x+a}{y+b}<\frac{a}{b}$.
Exercise 17. Let $a, b, c, d \in \mathbb{R}$.
If $0<a<b$ and $0 \leq c \leq d$, then $0 \leq a c \leq b d$.
Proof. Suppose $0<a<b$ and $0 \leq c \leq d$.
Since $0<a<b$, then $0<a$ and $a<b$, so $0<b$.
Since $0 \leq c \leq d$, then $0 \leq c$ and $c \leq d$.
Since $0 \leq c$ and $a>0$, then $0=a 0 \leq a c$, so $0 \leq a c$.
Since $0 \leq c$ and $c \leq d$, then either $0<c$ and $c<d$ or $0<c$ and $c=d$ or $0=c$ and $c<d$ or $0=c$ and $c=d$.

We consider these cases separately.
Case 1: Suppose $0<c$ and $c<d$.
Then $0<c<d$.
Since $0<a<b$ and $0<c<d$, then $0<a c<b d$, so $a c<b d$.
Case 2: Suppose $0<c$ and $c=d$.
Since $a<b$ and $c>0$, then $a c<b c=b d$, so $a c<b d$.
Case 3: Suppose $0=c$ and $c<d$.
Then $0<d$.
Since $b>0$ and $d>0$, then $b d>0$.
Since $a c=a 0=0<b d$, then $a c<b d$.
Case 4: Suppose $0=c$ and $c=d$.
Then $a c=a 0=0=b 0=b c=b d$, so $a c=b d$.
Thus, in all cases, either $a c<b d$ or $a c=b d$, so $a c \leq b d$.
Therefore, $0 \leq a c$ and $a c \leq b d$, so $0 \leq a c \leq b d$, as desired.
Exercise 18. Let $a, b \in \mathbb{R}$.
If $0 \leq a<b$, then $a^{2} \leq a b<b^{2}$.

Proof. Suppose $0 \leq a<b$.
Then $0 \leq a$ and $a<b$, so $0<b$.
Since $a<b$ and $b>0$, then $a b<b^{2}$.
Since $a \geq 0$, then either $a>0$ or $a=0$.
We consider these cases separately.
Case 1: Suppose $a>0$.
Since $a<b$ and $a>0$, then $a^{2}<a b$.
Case 2: Suppose $a=0$.
Then $a^{2}=0^{2}=0=0 b=a b$.
Thus, in either case, either $a^{2}<a b$ or $a^{2}=a b$, so $a^{2} \leq a b$.
Since $a^{2} \leq a b$ and $a b<b^{2}$, then $a^{2} \leq a b<b^{2}$, as desired.
Exercise 19. Prove $x^{2}+x+1>0$ for all $x \in \mathbb{R}$.
Proof. Let $x \in \mathbb{R}$.
Then $x+\frac{1}{2} \in \mathbb{R}$, so $\left(x+\frac{1}{2}\right)^{2} \geq 0$.
Hence, $0 \leq\left(x+\frac{1}{2}\right)^{2}=x^{2}+x+\frac{1}{4}$, so $0 \leq x^{2}+x+\frac{1}{4}$.
Therefore $0<\frac{3}{4} \leq x^{2}+x+1$, so $0<x^{2}+x+1$.
Exercise 20. Let $r \in \mathbb{R}$ with $0<r<1$.
Then $0<r^{n}<1$ for all $n \in \mathbb{N}$.
Proof. We prove by induction on $n$.
Let $S=\left\{n \in \mathbb{N}: 0<r^{n}<1\right\}$.
Since $1 \in \mathbb{N}$ and $0<r^{1}=r<1$, then $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $0<r^{k}<1$.
Since $0<r<1$ and $0<r^{k}<1$, then $0<r r^{k}<1 \cdot 1$, so $0<r^{k+1}<1$.
Since $k+1 \in \mathbb{N}$ and $0<r^{k+1}<1$, then $k+1 \in S$.
Thus, $k \in S$ implies $k+1 \in S$.
By the principle of mathematical induction, $0<r^{n}<1$ for all $n \in \mathbb{N}$, as desired.

Proposition 21. Let $a, b \in \mathbb{R}$ with $a>0$.
Then $a^{n}<b^{n}$ for all $n \in \mathbb{N}$ iff $a<b$.
Proof. We first prove if $a^{n}<b^{n}$ for all $n \in \mathbb{N}$, then $a<b$ by contrapositive.
Suppose $a \geq b$.
Then $a^{1}=a \geq b=b^{1}$, so $a^{1} \geq b^{1}$.
Since $1 \in \mathbb{N}$ and $a^{1} \geq b^{1}$, then there is a natural number $n$ such that $a^{n} \geq b^{n}$, as desired.

Proof. We next prove if $a<b$, then $a^{n}<b^{n}$ for all $n \in \mathbb{N}$.
Suppose $a<b$.
Since $b>a$ and $a>0$, then $b>0$.
We must prove $a^{n}<b^{n}$ for all $n \in \mathbb{N}$.
Let $p(n): a^{n}<b^{n}$ be a predicate defined over $\mathbb{N}$.

## Basis:

Since $a<b$, then $a^{1}<b^{1}$, so the statement $p(1)$ is true.

## Induction:

Let $k \in \mathbb{N}$ such that $p(k)$ is true.
Then $a^{k}<b^{k}$.
Since $k \in \mathbb{N}$, then $k>0$.
Since $b>0$ and $k>0$, then $b^{k}>0$.
Since $a^{k}<b^{k}$ and $a>0$ and $a<b$, then

$$
\begin{aligned}
a^{k+1} & =a^{k} a \\
& <b^{k} a \\
& <b^{k} b \\
& =b^{k+1}
\end{aligned}
$$

Therefore, $a^{k+1}<b^{k+1}$, so $p(k+1)$ is true.
Hence, $p(k)$ implies $p(k+1)$ for all $k \in \mathbb{N}$.
Since $p(1)$ is true and $p(k)$ implies $p(k+1)$ for all $k \in \mathbb{N}$, then by induction, $p(n)$ is true for all $n \in \mathbb{N}$.

Therefore, $a^{n}<b^{n}$ for all $n \in \mathbb{N}$, as desired.
Proposition 22. Let $c \in \mathbb{R}$.
If $c>1$, then $c^{n}>c$ for all natural numbers $n>1$.
Proof. Suppose $c>1$.
To prove $c^{n}>c$ for all natural numbers $n>1$, let $S=\left\{n \in \mathbb{N}: c^{n}>c \wedge n>\right.$ $1\}$.

We prove by induction on $n$.
Since $c>1$ and $1>0$, then $c>0$, so $c^{2}>c$.
Since $2 \in \mathbb{N}$ and $c^{2}>c$ and $2>1$, then $2 \in S$.

Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $c^{k}>c$ and $k>1$.
Since $c^{k}>c$ and $c>1$, then $c^{k}>1$.
Since $c>1$ and $1>0$, then $c>0$.
Thus, $c^{k} \cdot c>1 \cdot c$, so $c^{k+1}>c$.
Since $k \in \mathbb{N}$, then $k+1 \in \mathbb{N}$.
Since $k>1$ and $1>0$, then $k>0$, so $k+1>1$.
Since $k+1 \in \mathbb{N}$ and $c^{k+1}>c$ and $k+1>1$, then $k+1 \in S$.
Hence, $k \in S$ implies $k+1 \in S$, so $k \in S$ implies $k+1 \in S$ for all $k \in S$.
Since $2 \in S$ and $k \in S$ implies $k+1 \in S$ for all $k \in S$, then by PMI, $c^{n}>c$ for all natural numbers $n>1$.

Proposition 23. Let $c \in \mathbb{R}$.
If $0<c<1$, then $c^{n}<c$ for all natural numbers $n>1$.

Proof. Suppose $0<c<1$.
Then $0<c$ and $c<1$.
To prove $c^{n}<c$ for all natural numbers $n>1$, let $S=\left\{n \in \mathbb{N}: c^{n}<c \wedge n>\right.$ $1\}$.

We prove by induction on $n$.

Since $c<1$ and $c>0$, then $c \cdot c<1 \cdot c$, so $c^{2}<c$.
Since $2 \in \mathbb{N}$ and $c^{2}<c$ and $2>1$, then $2 \in S$.

Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $c^{k}<c$ and $k>1$.
Since $c^{k}<c$ and $c<1$, then $c^{k}<1$.
Since $c>0$, then $c^{k} \cdot c<1 \cdot c$, so $c^{k+1}<c$.
Since $k \in \mathbb{N}$, then $k+1 \in \mathbb{N}$.
Since $k>1$ and $1>0$, then $k>0$, so $k+1>1$.
Since $k+1 \in \mathbb{N}$ and $c^{k+1}<c$ and $k+1>1$, then $k+1 \in S$.
Hence, $k \in S$ implies $k+1 \in S$, so $k \in S$ implies $k+1 \in S$ for all $k \in S$.
Since $2 \in S$ and $k \in S$ implies $k+1 \in S$ for all $k \in S$, then by PMI, $c^{n}<c$
for all natural numbers $n>1$.
Lemma 24. Let $c \in \mathbb{R}$ with $c>1$.
Then $c^{n} \geq c$ for all $n \in \mathbb{N}$.
Proof. We prove $c^{n} \geq c$ for all $n \in \mathbb{N}$ by induction on $n$.
Let $S=\left\{n \in \mathbb{N}: c^{n} \geq c\right\}$.
Since $1 \in \mathbb{N}$ and $c^{1}=c$, then $1 \in S$.

Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $c^{k} \geq c$.
Since $c>1>0$, then $c>0$.
Since $k \in \mathbb{N}$, then $k+1 \in \mathbb{N}$.
Since $c^{k} \geq c>1$, then $c^{k}>1$.
Thus, $c^{k+1}=c^{k} \cdot c>1 \cdot c=c$.
Since $k+1 \in \mathbb{N}$ and $c^{k+1}>c$, then $k+1 \in S$.
Therefore, by PMI, $c^{n} \geq c$ for all $n \in \mathbb{N}$.
Proposition 25. Let $c \in \mathbb{R}$ with $c>1$ and $m, n \in \mathbb{N}$.
Then $c^{m}>c^{n}$ iff $m>n$.
Proof. We prove if $m>n$, then $c^{m}>c^{n}$.
Suppose $m>n$.
Then $m-n>0$.
Since $m, n \in \mathbb{N}$ and $\mathbb{N} \subset \mathbb{Z}$, then $m, n \in \mathbb{Z}$, so $m-n \in \mathbb{Z}$.
Since $m-n \in \mathbb{Z}$ and $m-n>0$, then $m-n \in \mathbb{Z}^{+}$, so $m-n \in \mathbb{N}$.
Since $c>1$ and $n \in \mathbb{N}$, then by the previous lemma, $c^{n} \geq c$.
Since $c^{n} \geq c>1>0$, then $c^{n}>0$.
Since $c>1$ and $m-n \in \mathbb{N}$, then by the previous lemma, $c^{m-n} \geq c$.

Since $c^{m-n} \geq c>1$, then $c^{m-n}>1$, so $\frac{c^{m}}{c^{n}}>1$.
Since $c^{n}>0$, then $c^{m}>c^{n}$.
Therefore, if $m>n$, then $c^{m}>c^{n}$.
Conversely, we prove if $c^{m}>c^{n}$, then $m>n$.
Suppose $c^{m}>c^{n}$.
Suppose $m \leq n$.
Then $n \geq m$, so either $n>m$ or $n=m$.
If $n=m$, then $c^{n}=c^{m}$.
If $n>m$, then $c^{n}>c^{m}$.
Hence, either $c^{n}>c^{m}$ or $c^{n}=c^{m}$, so $c^{n} \geq c^{m}$.
Thus, we have $c^{m}>c^{n}$ and $c^{m} \leq c^{n}$, a violation of trichotomy.
Therefore, $m<n$, as desired.

## Proposition 26. Bernoulli's inequality

Let $x \in \mathbb{R}$ with $x>-1$.
Then $(1+x)^{n} \geq 1+n x$ for all $n \in \mathbb{N}$.
Proof. Let $S=\left\{n \in \mathbb{N}:(1+x)^{n} \geq 1+n x\right\}$.
We prove using mathematical induction(weak).

## Basis:

Let $n=1$.
Then $(1+x)^{1}=1+x=1+1 x$.
Since $1 \in \mathbb{N}$ and $(1+x)^{1}=1+1 x$, then $1 \in S$.

## Induction:

Let $k \in S$.
Then $k \in \mathbb{N}$ and $(1+x)^{k} \geq 1+k x$.
Since $k \in \mathbb{N}$, then $k+1 \in \mathbb{N}$ and $k>0$.
Since $x>-1$, then $1+x>0$.
Observe that

$$
\begin{aligned}
(1+x)^{k+1} & =(1+x)^{k}(1+x) \\
& \geq(1+k x)(1+x) \\
& =1+x+k x+k x^{2} \\
& =1+k x+x+k x^{2} \\
& =1+(k+1) x+k x^{2}
\end{aligned}
$$

Thus, $(1+x)^{k+1} \geq 1+(k+1) x+k x^{2}$.
Since $x^{2} \geq 0$ and $k>0$, then $k x^{2} \geq 0$.
Thus, $1+(k+1) x+k x^{2} \geq 1+(k+1) x+0=1+(k+1) x$.
Since $(1+x)^{k+1} \geq 1+(k+1) x+k x^{2}$ and $1+(k+1) x+k x^{2} \geq 1+(k+1) x$, then $(1+x)^{k+1} \geq 1+(k+1) x$.

Since $k+1 \in \mathbb{N}$ and $(1+x)^{k+1} \geq 1+(k+1) x$, then $k+1 \in S$, so $k \in S$ implies $k+1 \in S$.

Hence, $k \in S$ implies $k+1 \in S$ for all $k \in \mathbb{N}$.

Since $1 \in S$ and $k \in S$ implies $k+1 \in S$ for all $k \in \mathbb{N}$, then by PMI, $S=\mathbb{N}$, so $(1+x)^{n} \geq 1+n x$ for all $n \in \mathbb{N}$.

Exercise 27. Let $n \in \mathbb{N}$.
Then $2^{0}+2^{1}+2^{2}+2^{3}+\ldots+2^{n}=2^{n+1}-1$.
Proof. Let $S=2^{0}+2^{1}+2^{2}+2^{3}+\ldots+2^{n}$.
We must prove $S=2^{n+1}-1$.
Observe that $2 S=2^{1}+2^{2}+2^{3}+\ldots+2^{n}+2^{n+1}$ and $S-1=2^{1}+2^{2}+2^{3}+\ldots+2^{n}$.
Thus, $2 S=\left(2^{1}+2^{2}+2^{3}+\ldots+2^{n}\right)+2^{n+1}=(S-1)+2^{n+1}$.
Hence, $S=2 S-S=(S-1)+2^{n+1}-S=-1+2^{n+1}=2^{n+1}-1$.
Therefore, $S=2^{n+1}-1$, as desired.
Proposition 28. Let $x \in \mathbb{R}$.
Then $x^{n}-1=(x-1) \sum_{k=0}^{n-1} x^{k}$ for all $n \in \mathbb{Z}^{+}$.
Proof. We prove $x^{n}-1=(x-1) \sum_{k=0}^{n-1} x^{k}$ by induction on $n$.
Let $S=\left\{n \in \mathbb{Z}^{+}: x^{n}-1=(x-1)\left(\sum_{k=0}^{n-1} x^{k}\right)\right\}$.

## Basis:

Observe that $x^{1}-1=x-1=(x-1)(1)=(x-1)\left(x^{0}\right)=(x-1)\left(\sum_{k=0}^{1-1} x^{k}\right)$.
Hence, $1 \in S$.
Induction:
Suppose $m \in S$.
Then $m \in \mathbb{Z}^{+}$and $x^{m}-1=(x-1)\left(\sum_{k=0}^{m-1} x^{k}\right)$.
Observe that

$$
\begin{aligned}
(x-1)\left(\sum_{k=0}^{m} x^{k}\right) & =(x-1)\left[\sum_{k=0}^{m-1} x^{k}+x^{m}\right] \\
& =(x-1) \sum_{k=0}^{m-1} x^{k}+(x-1) x^{m} \\
& =\left(x^{m}-1\right)+\left(x^{m+1}-x^{m}\right) \\
& =x^{m+1}-1
\end{aligned}
$$

Since $m+1 \in \mathbb{Z}^{+}$and $x^{m+1}-1=(x-1)\left(\sum_{k=0}^{m} x^{k}\right)$, then $m+1 \in S$.
Hence, $m \in S$ implies $m+1 \in S$, so by PMI, $S=\mathbb{Z}^{+}$.
Therefore, $x^{n}-1=(x-1) \sum_{k=0}^{n-1} x^{k}$ for all $n \in \mathbb{Z}^{+}$.
Corollary 29. Let $x \in \mathbb{R}$ with $x \neq 1$.
Then $\sum_{k=0}^{n} x^{k}=\frac{x^{n+1}-1}{x-1}$ for all $n \in \mathbb{Z}^{+}$.
Proof. Let $n \in \mathbb{Z}^{+}$be given.
Then $x^{n}-1=(x-1) \sum_{k=0}^{n-1} x^{k}$.
Since $x \neq 1$, then $x-1 \neq 0$, so we divide to obtain $\frac{x^{n}-1}{x-1}=\sum_{k=0}^{n-1} x^{k}$.

Observe that

$$
\begin{aligned}
\sum_{k=0}^{n} x^{k} & =\sum_{k=0}^{n-1} x^{k}+x^{n} \\
& =\frac{x^{n}-1}{x-1}+x^{n} \\
& =\frac{x^{n}-1+x^{n}(x-1)}{x-1} \\
& =\frac{x^{n}-1+x^{n+1}-x^{n}}{x-1} \\
& =\frac{x^{n+1}-1}{x-1}
\end{aligned}
$$

Therefore, $\sum_{k=0}^{n} x^{k}=\frac{x^{n+1}-1}{x-1}$.

## Proposition 30. Difference of powers

Let $a, b \in \mathbb{R}^{*}$.
Then $a^{n}-b^{n}=(a-b) \sum_{k=0}^{n-1} a^{k} b^{n-1-k}$ for all $n \in \mathbb{N}$.
Proof. We prove by induction on $n$.
Let $S=\left\{n \in \mathbb{N}: a^{n}-b^{n}=(a-b) \sum_{k=0}^{n-1} a^{k} b^{n-1-k}\right\}$.

## Basis:

Since $1 \in \mathbb{N}$ and $a^{1}-b^{1}=a-b=(a-b)(1)=(a-b)(a b)^{0}=(a-b) a^{0} b^{0}=$ $(a-b) \sum_{k=0}^{1-1} a^{k} b^{1-1-k}$, then $1 \in S$.

Induction:
Suppose $m \in S$.
Then $m \in \mathbb{N}$ and $a^{m}-b^{m}=(a-b) \sum_{k=0}^{m-1} a^{k} b^{m-1-k}$.
Since $m \in \mathbb{N}$, then $m+1 \in \mathbb{N}$.
Observe that

$$
\begin{aligned}
a^{m+1}-b^{m+1} & =a^{m+1}-a b^{m}+a b^{m}-b^{m+1} \\
& =a\left(a^{m}-b^{m}\right)+b^{m}(a-b) \\
& =a(a-b) \sum_{k=0}^{m-1} a^{k} b^{m-1-k}+b^{m}(a-b) \\
& =(a-b)\left[a \sum_{k=0}^{m-1} a^{k} b^{m-1-k}+b^{m}\right] \\
& =(a-b)\left[\sum_{k=0}^{m-1} a^{k+1} b^{m-1-k}+b^{m}\right] \\
& =(a-b)\left[\left(a^{1} b^{m-1}+a^{2} b^{m-2}+a^{3} b^{m-3}+\ldots+a^{m} b^{0}\right)+a^{0} b^{m}\right] \\
& =(a-b) \sum_{k=0}^{m} a^{k} b^{m-k} .
\end{aligned}
$$

Since $m+1 \in \mathbb{N}$ and $a^{m+1}-b^{m+1}=(a-b) \sum_{k=0}^{m} a^{k} b^{m-k}$, then $m+1 \in S$. Thus, $m \in S$ implies $m+1 \in S$.
Therefore, by the principle of mathematical induction, $a^{n}-b^{n}=(a-$
b) $\sum_{k=0}^{n-1} a^{k} b^{n-1-k}$ for all $n \in \mathbb{N}$, as desired.

Exercise 31. Let $x, y \in \mathbb{R}$.
If $x y=10$ and $|x|>2$, then $|y| \leq 5$.
Proof. We prove by contradiction.
Suppose $x y=10$ and $|x|>2$ and $|y|>5$.
Since $|x|>2$ and $|y|>5$, then $|x| \cdot|y|>2 \cdot 5$, so $|x y|>10$.
Thus, $|10|>10$, so $10>10$, a contradiction.
Therefore, if $x y=10$ and $|x|>2$, then $|y| \leq 5$.
Exercise 32. Let $x, y \in \mathbb{R}$.
If $x y \leq 9$ and $x>3$, then $y<3$.
Proof. Suppose $x y \leq 9$ and $x>3$.
Since $x>3>0$, then $x>0$.
Thus, $3 x>3 \cdot 3=9 \geq x y$, so $3 x>x y$.
Hence, $3>y$, so $y<3$.
Proof. We prove by contradiction.
Suppose $x y \leq 9$ and $x>3$ and $y \geq 3$.
Since $x>3$ and $y \geq 3$, then $x y>9$.
But, this contradicts the fact that $x y \leq 9$.
Therefore, if $x y \leq 9$ and $x>3$, then $y<3$.
Exercise 33. Let $S=\left\{x \in \mathbb{R}: x^{2}-4 x+5 \leq 10\right\}$.
Then $S=[-1,5]$.
Proof. Since $1^{2}-4(1)+5=1-4+5=2<10$, then $1 \in S$, so $S \neq \emptyset$.

We first prove $S \subset[-1,5]$.
Let $x \in S$.
Then $x \in \mathbb{R}$ and $x^{2}-4 x+5 \leq 10$, so $x^{2}-4 x-5 \leq 0$.
Hence, $(x-5)(x+1) \leq 0$, so either $(x-5)(x+1)<0$ or $(x-5)(x+1)=0$.
We consider these cases separately.
Case 1: Suppose $(x-5)(x+1)<0$.
Then either $x-5>0$ and $x+1<0$ or $x-5<0$ and $x+1>0$, so either $x>5$ and $x<-1$, or $x<5$ and $x>-1$.

Since $x$ cannot be both less than -1 and greater than 5 , then $x<5$ and $x>-1$, so $-1<x<5$.

Hence, $x \in(-1,5)$.
Case 2: Suppose $(x-5)(x+1)=0$.
Then either $x-5=0$ or $x+1=0$, so either $x=5$ or $x=-1$.
Hence, $x \in\{-1,5\}$.

Both cases show that either $x \in(-1,5)$ or $x \in\{-1,5\}$, so $x \in(-1,5) \cup$ $\{-1,5\}$.

Therefore, $x \in[-1,5]$.
Since $x \in S$ implies $x \in[-1,5]$, then $S \subset[-1,5]$.

We next prove $[-1,5] \subset S$.
Let $y \in[-1,5]$.
Then $-1 \leq y \leq 5$, so $-1 \leq y$ and $y \leq 5$.
Hence, $0 \leq y+1$ and $y-5 \leq 0$.
Since $y+1 \geq 0$ and $y-5 \leq 0$, then $(y+1)(y-5) \leq 0$, so $y^{2}-4 y-5 \leq 0$.
Thus, $y^{2}-4 y+5 \leq 10$, so $y \in S$.
Therefore, if $y \in[-1,5]$, then $y \in S$, so $[-1,5] \subset S$.
Since $S \subset[-1,5]$ and $[-1,5] \subset S$, then $S=[-1,5]$, as desired.
Exercise 34. Let $S=\left\{x \in \mathbb{R}:\left|\frac{x}{x-2}\right|<4\right\}$.
Then $S=\left(-\infty, \frac{8}{5}\right) \cup\left(\frac{8}{3}, \infty\right)$.
Proof. Let $T=\left(-\infty, \frac{8}{5}\right) \cup\left(\frac{8}{3}, \infty\right)$.
We must prove $S=T$.
Since $\left|\frac{3}{3-2}\right|=\left|\frac{3}{1}\right|=|3|=3<4$, then $3 \in S$, so $S \neq \emptyset$.
We first prove $S \subset T$.
Let $x \in S$.
Then $x \in \mathbb{R}$ and $\left|\frac{x}{x-2}\right|<4$, so $-4<\frac{x}{x-2}<4$.
Since $\frac{x}{x-2} \in \mathbb{R}$ and division by zero is undefined in $\mathbb{R}$, then $x-2 \neq 0$, so $x \neq 2$.

Thus, either $x>2$ or $x<2$.
We consider these cases separately.
Case 1: Suppose $x>2$.
Then $x-2>0$.
Observe that

$$
\begin{aligned}
-4<\frac{x}{x-2}<4 & \Rightarrow-4(x-2)<x<4(x-2) \\
& \Leftrightarrow-4 x+8<x<4 x-8 \\
& \Leftrightarrow-5 x+8<0<3 x-8 \\
& \Leftrightarrow-5 x+8<0 \text { and } 0<3 x-8 \\
& \Leftrightarrow 8<5 x \text { and } 8<3 x \\
& \Leftrightarrow \frac{8}{5}<x \text { and } \frac{8}{3}<x
\end{aligned}
$$

Thus, $-4<\frac{x}{x-2}<4$ implies $\frac{8}{5}<x$ and $\frac{8}{3}<x$.
Since $-4<\frac{x}{x-2}<4$, then we conclude $\frac{8}{5}<x$ and $\frac{8}{3}<x$, so $x>\frac{8}{5}$ and $x>\frac{8}{3}$.

Therefore, $x \in\left(\frac{8}{5}, \infty\right)$ and $x \in\left(\frac{8}{3}, \infty\right)$.
Hence, $x \in\left(\frac{8}{5}, \infty\right) \cap\left(\frac{8}{3}, \infty\right)=\left(\frac{8}{3}, \infty\right)$.
Case 2: Suppose $x<2$.

Then $x-2<0$.
Observe that

$$
\begin{aligned}
-4<\frac{x}{x-2}<4 & \Rightarrow-4(x-2)>x>4(x-2) \\
& \Leftrightarrow-4 x+8>x>4 x-8 \\
& \Leftrightarrow-5 x+8>0>3 x-8 \\
& \Leftrightarrow-5 x+8>0 \text { and } 0>3 x-8 \\
& \Leftrightarrow 8>5 x \text { and } 8>3 x \\
& \Leftrightarrow \frac{8}{5}>x \text { and } \frac{8}{3}>x
\end{aligned}
$$

Thus, $-4<\frac{x}{x-2}<4$ implies $\frac{8}{5}>x$ and $\frac{8}{3}>x$.
Since $-4<\frac{x}{x-2}<4$, then we conclude $\frac{8}{5}>x$ and $\frac{8}{3}>x$, so $x<\frac{8}{5}$ and $x<\frac{8}{3}$.

Therefore, $x \in\left(-\infty, \frac{8}{5}\right)$ and $x \in\left(-\infty, \frac{8}{3}\right)$, so $x \in\left(-\infty, \frac{8}{5}\right) \cap\left(-\infty, \frac{8}{3}\right)=$ $\left(-\infty, \frac{8}{5}\right)$.

Both cases show that either $x \in\left(-\infty, \frac{8}{5}\right)$ or $x \in\left(\frac{8}{3}, \infty\right)$, so $x \in\left(-\infty, \frac{8}{5}\right) \cup$ $\left(\frac{8}{3}, \infty\right)=T$.

Therefore, $x \in S$ implies $x \in T$, so $S \subset T$.

We next prove $T \subset S$.
Let $y \in T$.
Then either $y \in\left(-\infty, \frac{8}{5}\right)$ or $y \in\left(\frac{8}{3}, \infty\right)$.
We consider these cases separately.
Case 1: Suppose $y \in\left(\frac{8}{3}, \infty\right)$.
Then $y>\frac{8}{3}$.
Since $y>\frac{8}{3}>0$, then $y>0$.
Since $y>\frac{8}{3}>2$, then $y>2$, so $y-2>0$.
Observe that

$$
\begin{aligned}
\frac{8}{3}<y & \Leftrightarrow 8<3 y \\
& \Leftrightarrow y+8<4 y \\
& \Leftrightarrow y<4 y-8 \\
& \Leftrightarrow y<4(y-2) \\
& \Rightarrow \frac{y}{y-2}<4 \\
& \Rightarrow \frac{|y|}{|y-2|}<4 \\
& \Leftrightarrow\left|\frac{y}{y-2}\right|<4
\end{aligned}
$$

Since $\frac{8}{3}<y$ and $\frac{8}{3}<y$ implies $\left|\frac{y}{y-2}\right|<4$, then we conclude $\left|\frac{y}{y-2}\right|<4$.

Since $y \in \mathbb{R}$ and $\left|\frac{y}{y-2}\right|<4$, then $y \in S$.
Case 2: Suppose $y \in\left(-\infty, \frac{8}{5}\right)$.
Then $y<\frac{8}{5}$.
Since $y<\frac{8}{5}$ and $\frac{8}{5}<\frac{8}{3}$, then $y<\frac{8}{3}$.
Since $y<\frac{8}{5}$ and $\frac{8}{5}<2$, then $y<2$, so $y-2<0$.
Observe that

$$
\begin{aligned}
\frac{8}{5}>y \text { and } \frac{8}{3}>y & \Leftrightarrow 8>5 y \text { and } 8>3 y \\
& \Leftrightarrow 8-5 y>0 \text { and } 0>3 y-8 \\
& \Leftrightarrow 8-5 y>0>3 y-8 \\
& \Leftrightarrow 8-4 y>y>4 y-8 \\
& \Leftrightarrow-4(y-2)>y>4(y-2) \\
& \Rightarrow-4<\frac{y}{y-2}<4 \\
& \Leftrightarrow\left|\frac{y}{y-2}\right|<4
\end{aligned}
$$

Thus, $\frac{8}{5}>y$ and $\frac{8}{3}>y$ implies $\left|\frac{y}{y-2}\right|<4$.
Since $\frac{8}{5}>y$ and $\frac{8}{3}>y$, then we conclude $\left|\frac{y}{y-2}\right|<4$.
Since $y \in \mathbb{R}$ and $\left|\frac{y}{y-2}\right|<4$, then $y \in S$.
In all cases, $y \in S$.
Thus, if $y \in T$, then $y \in S$, so $T \subset S$.
Since $S \subset T$ and $T \subset S$, then $S=T$, as desired.
Exercise 35. Let $S=\left\{x \in \mathbb{R}: \frac{7}{x-3}>x+3>0\right\}$.
Then $S=(3,4)$.
Solution. Let $x \in S$.
Then $x \in \mathbb{R}$ and $\frac{7}{x-3}>x+3>0$.
Since $x-3 \neq 0$, then either $x-3>0$ or $x-3<0$.
Assume $x-3>0$.
Then $7>(x+3)(x-3)>0$, so $7>x^{2}-9>0$.
Hence, $16>x^{2}>9$, so $9<x^{2}<16$.
Thus, $3<|x|<4$.
Since $x-3>0$, then $x>3>0$, so $x>0$.
Thus, $|x|=x$, so $3<x<4$.
Hence, $x \in(3,4)$.
Assume $x-3<0$.
Then $7<(x+3)(x-3)<0$, so $7<x^{2}-9<0$.
Hence, $16<x^{2}<9$, so $16<9$, a contradiction.
Therefore, $x-3$ cannot be negative.
We conjecture that $S=(3,4)$.
Proof. To prove $S=(3,4)$, we prove $S \subset(3,4)$ and $(3,4) \subset S$.

We first prove $S \subset(3,4)$.
Since $\frac{7}{3.5-3}=\frac{7}{.5}=14>6.5$ and $6.5>0$, then $\frac{7}{3.5-3}>6.5>0$, so $\frac{7}{3.5-3}>3.5+3>0$.

Hence, $3.5 \in S$, so $S \neq \emptyset$.
Let $x \in S$.
Then $x \in \mathbb{R}$ and $\frac{7}{x-3}>x+3>0$.
Suppose $x-3=0$.
Then $\frac{7}{0}>x+3>0$, so $\frac{7}{0} \in \mathbb{R}$.
But, division by zero is not defined, so $x-3 \neq 0$.
Thus, either $x-3>0$ or $x-3<0$.

Suppose $x-3<0$.
Since $\frac{7}{x-3}>x+3>0$ and $x-3<0$, then $7<(x+3)(x-3)<0$, so $7<x^{2}-9<0$.

Hence, $16<x^{2}<9$, so $16<9$, a contradiction.
Therefore, $x-3$ cannot be negative.

Thus, $x-3>0$.
Since $\frac{7}{x-3}>x+3>0$ and $x-3>0$, then $7>(x+3)(x-3)>0$, so $7>x^{2}-9>0$.

Hence, $16>x^{2}>9$, so $9<x^{2}<16$.
Thus, $3<|x|<4$.
Since $x-3>0$, then $x>3>0$, so $x>0$.
Thus, $|x|=x$, so $3<x<4$.
Hence, $x \in(3,4)$.
Therefore, if $x \in S$, then $x \in(3,4)$, so $S \subset(3,4)$.
Proof. We prove $(3,4) \subset S$.
Let $y \in(3,4)$.
Then $y \in \mathbb{R}$ and $3<y<4$, so $3<y$ and $y<4$.
Since $3<y$, then $y>3$, so $y-3>0$.
Since $3<y<4$, then $9<y^{2}<16$, so $0<y^{2}-9<7$.
Hence, $0<(y+3)(y-3)<7$.
Since $y-3>0$, then $0<y+3<\frac{7}{y-3}$.
Since $y \in \mathbb{R}$ and $\frac{7}{y-3}>y+3>0$, then $y \in S$.
Therefore, $(3,4) \subset S$.
Since $S \subset(3,4)$ and $(3,4) \subset S$, then $S=(3,4)$.
Exercise 36. Let $S=\left\{x \in \mathbb{R}^{+}:\left|\frac{x-4}{x}\right| \leq 2\right\}$.
Then $S=\left[\frac{4}{3}, \infty\right)$.
Proof. Since $\left|\frac{2-4}{2}\right|=\left|\frac{-2}{2}\right|=|-1|=1<2 \leq 2$, then $2 \in S$, so $S \neq \emptyset$.

We first prove $S \subset\left[\frac{4}{3}, \infty\right)$.
Let $x \in S$.
Then $x \in \mathbb{R}^{+}$and $\left|\frac{x-4}{x}\right| \leq 2$, so $-2 \leq \frac{x-4}{x} \leq 2$.
Since $x \in \mathbb{R}^{+}$, then $x>0$, so $-2 x \leq x-4 \leq 2 x$.
Hence, $-3 x \leq-4 \leq x$, so $-3 x \leq-4$.
Thus, $x \geq \frac{4}{3}$, so $x \in\left[\frac{4}{3}, \infty\right)$.
Therefore, $S \subset\left[\frac{4}{3}, \infty\right)$.
We next prove $\left[\frac{4}{3}, \infty\right) \subset S$.
Let $y \in\left[\frac{4}{3}, \infty\right)$.
Then $y \geq \frac{4}{3}$, so $3 y \geq 4$.
Since $y \geq \frac{4}{3}>0$, then $y>0$.
Hence, $3 \geq \frac{4}{y}$.
Since $y>0$, then $\frac{4}{y}>0$, so $3 \geq \frac{4}{y}>0$.
Thus, $0<\frac{4}{y} \leq 3$.
Observe that

$$
\begin{aligned}
0<\frac{4}{y} \leq 3 & \Leftrightarrow 0-1<\frac{4}{y}-1 \leq 3-1 \\
& \Leftrightarrow-1<\frac{4}{y}-1 \leq 2 \\
& \Leftrightarrow-2<-1<\frac{4}{y}-1 \leq 2 \\
& \Leftrightarrow-2<\frac{4}{y}-1 \leq 2 \\
& \Rightarrow-2 \leq \frac{4}{y}-1 \leq 2 \\
& \Leftrightarrow\left|\frac{4}{y}-1\right| \leq 2 \\
& \Leftrightarrow\left|\frac{4-y}{y}\right| \leq 2 \\
& \Leftrightarrow\left|\frac{y-4}{y}\right| \leq 2
\end{aligned}
$$

Since $0<\frac{4}{y} \leq 3$ and $0<\frac{4}{y} \leq 3$ implies $\left|\frac{y-4}{y}\right| \leq 2$, then $\left|\frac{y-4}{y}\right| \leq 2$.
Since $y>0$ and $\left|\frac{y-4}{y}\right| \leq 2$, then $y \in S$, so $\left[\frac{4}{3}, \infty\right) \subset S$.
Since $S \subset\left[\frac{4}{3}, \infty\right)$ and $\left[\frac{4}{3}, \infty\right) \subset S$, then $S=\left[\frac{4}{3}, \infty\right)$, as desired.
Exercise 37. Let $S=\left\{x \in \mathbb{R}:\left|\frac{x+4}{x}\right|<1\right\}$.
Then $S=(-\infty,-2)$.
Proof. We prove $S \subset(-\infty,-2)$.
Since $\left|\frac{-3+4}{-3}\right|=\left|\frac{1}{-3}\right|=\frac{1}{3}<1$, then $3 \in S$, so $s \neq \emptyset$.
Let $x \in S$.

Then $x \in \mathbb{R}$ and $\left|\frac{x+4}{x}\right|<1$.
Since $\frac{x+4}{x} \in \mathbb{R}$ and division by zero is undefined in $\mathbb{R}$, then $x$ cannot be zero.
Observe that

$$
\begin{aligned}
\left|\frac{x+4}{x}\right|<1 & \Leftrightarrow\left|1+\frac{4}{x}\right|<1 \\
& \Leftrightarrow-1<1+\frac{4}{x}<1 \\
& \Leftrightarrow-2<\frac{4}{x}<0 \\
& \Leftrightarrow \frac{-1}{2}<\frac{1}{x}<0 .
\end{aligned}
$$

Since $\left|\frac{x+4}{x}\right|<1$ and $\left|\frac{x+4}{x}\right|<1$ if and only if $\frac{-1}{2}<\frac{1}{x}<0$, then $\frac{-1}{2}<\frac{1}{x}<0$, so $\frac{-1}{2}<\frac{1}{x_{1}}$ and $\frac{1}{x}<0$.

Since $\frac{1}{x}<0$, then $x<0$.
Since $\frac{-1}{2}<\frac{1}{x}$ and $x<0$, then $\frac{-x}{2}>1$, so $x<-2$.
Hence, $x \in(-\infty,-2)$, so $S \subset(-\infty,-2)$.

We next prove $(-\infty,-2) \subset S$.
Let $y \in(-\infty,-2)$.
Then $y \in \mathbb{R}$ and $y<-2$.
Since $y<-2<0$, then $y<0$, so $\frac{1}{y}<0$.
Since $y<-2$ and $y<0$, then $1>\frac{-2}{y}$, so $\frac{-1}{2}<\frac{1}{y}$.
Thus, $\frac{-1}{2}<\frac{1}{y}$ and $\frac{1}{y}<0$, so $\frac{-1}{2}<\frac{1}{y}<0$.
Observe that

$$
\begin{aligned}
\frac{-1}{2}<\frac{1}{y}<0 & \Leftrightarrow-2<\frac{4}{y}<0 \\
& \Leftrightarrow-1<1+\frac{4}{y}<1 \\
& \Leftrightarrow\left|1+\frac{4}{y}\right|<1 \\
& \Leftrightarrow\left|\frac{y+4}{y}\right|<1
\end{aligned}
$$

Since $\frac{-1}{2}<\frac{1}{y}<0$ and $\frac{-1}{2}<\frac{1}{y}<0$ if and only if $\left|\frac{y+4}{y}\right|<1$, then $\left|\frac{y+4}{y}\right|<1$.
Since $y \in \mathbb{R}$ and $\left|\frac{y+4}{y}\right|<1$, then $y \in S$.
Hence, $y \in(-\infty,-2)$ implies $y \in S$, so $(-\infty,-2) \subset S$.
Since $S \subset(-\infty,-2)$ and $(-\infty,-2) \subset S$, then $S=(-\infty,-2)$, as desired.
Exercise 38. Let $S=\left\{x \in \mathbb{R}: \frac{2 x+1}{x+2}<1\right\}$.
Then $S=(-2,1)$.
Proof. Let $x \in(-2,1)$.
Then $x \in \mathbb{R}$ and $-2<x<1$, so $-2<x$ and $x<1$.
Since $x>-2$, then $x+2>0$.

Since $x<1$ and $x<1$ iff $x+1<2$ iff $2 x+1<x+2$, then $2 x+1<x+2$.
Since $2 x+1<x+2$ and $x+2>0$, then $\frac{2 x+1}{x+2}<1$.
Since $x \in \mathbb{R}$ and $\frac{2 x+1}{x+2}<1$, then $x \in S$.
Thus, $(-2,1) \subset S$.
Let $y \in S$.
Then $y \in \mathbb{R}$ and $\frac{2 y+1}{y+2}<1$, so $\frac{2 y+1}{y+2}-1<0$.
Thus, $\frac{2 y+1-(y+2)}{y+2}<0$, so $\frac{y-1}{y+2}<0$.
Hence, either $y-1>0$ and $y+2<0$ or $y-1<0$ and $y+2>0$.
Suppose $y-1>0$ and $y+2<0$.
Then $y>1$ and $y<-2$.
Since $y<-2<1$, then $y<1$.
Thus, $y>1$ and $y<1$, a contradiction.
Therefore, $y-1<0$ and $y+2>0$.
Hence, $y<1$ and $y>-2$, so $-2<y<1$.
Thus, $y \in(-2,1)$, so $S \subset(-2,1)$.
Since $S \subset(-2,1)$ and $(-2,1) \subset S$, then $S=(-2,1)$.
Exercise 39. Let $S=\left\{x \in \mathbb{R}: \frac{x-1}{x-2}<\frac{x+1}{x+2}\right\}$.
Then $S=(-\infty,-2) \cup(0,2)$.
Proof. To prove $S=(-\infty,-2) \cup(0,2)$, we prove $S \subset(-\infty,-2) \cup(0,2)$ and $(-\infty,-2) \cup(0,2) \subset S$.

We first prove $S \subset(-\infty,-2) \cup(0,2)$.
Since $\frac{1-1}{1-2}=0<\frac{2}{3}=\frac{1+1}{1+2}$, then $1 \in S$, so $S \neq \emptyset$.
Let $x \in S$.
Then $x \in \mathbb{R}$ and $\frac{x-1}{x-2}<\frac{x+1}{x+2}$.
Suppose $x=2$.
Then $\frac{2-1}{2-2}<\frac{2+1}{2+2}$, so $\frac{1}{0}<\frac{3}{4}$.
Since division by 0 is undefined, then $x \neq 2$.
Suppose $x=-2$.
Then $\frac{-2-1}{-2-2}<\frac{-2+1}{-2+2}$, so $\frac{3}{4}<\frac{-1}{0}$.
Since division by 0 is undefined, then $x \neq-2$.
Since $x \neq 2$ and $x \neq-2$, then either $x>2$ or $-2<x<2$ or $x<-2$.

Suppose $x>2$.
Then $x-2>0$.
Since $\frac{x-1}{x-2}<\frac{x+1}{x+2}$ and $x-2>0$, then $x-1<\frac{x+1}{x+2} \cdot(x-2)$.
Since $x>2$, then $x+2>4>0$, so $x+2>0$.
Thus, $(x-1)(x+2)<(x+1)(x-2)$.
Hence, $x^{2}+x-2<x^{2}-x-2$, so $x<-x$.
Therefore, $2 x<0$, so $x<0$.

Thus, we have $x<0$ and $x>2$, a contradiction.
Hence, $x$ cannot be greater than 2.
Thus, either $-2<x<2$ or $x<-2$.

Suppose $-2<x<2$.
Then $-2<x$ and $x<2$, so $0<x+2$ and $x-2<0$.
Since $\frac{x-1}{x-2}<\frac{x+1}{x+2}$ and $x+2>0$, then $\frac{(x-1)(x+2)}{x-2}<x+1$.
Since $x-2<0$, then $(x-1)(x+2)>(x+1)(x-2)$.
Hence, $x^{2}+x-2>x^{2}-x-2$, so $x>-x$.
Therefore, $2 x>0$, so $x>0$.
Since $0<x$ and $x<2$, then $0<x<2$, so $x \in(0,2)$.
Since either $-2<x<2$ or $x<-2$ and if $-2<x<2$, then $x \in(0,2)$, then either $x \in(0,2)$ or $x<-2$.

Hence, either $x \in(0,2)$ or $x \in(-\infty,-2)$, so $x \in(0,2) \cup(-\infty,-2)$.
Thus, if $x \in S$, then $x \in(0,2) \cup(-\infty,-2)$, so $S \subset(0,2) \cup(-\infty,-2)$.
Therefore, $S \subset(-\infty,-2) \cup(0,2)$.
Proof. We prove $(-\infty,-2) \cup(0,2) \subset S$.
Let $y \in(-\infty,-2) \cup(0,2)$.
Then $y \in \mathbb{R}$ and either $y<-2$ or $0<y<2$.
We consider these cases separately.
Case 1: Suppose $y<-2$.
Then $y+2<0$.
Since $y<-2<0$, then $y<0$, so $-y>0$.
Since $y<0$ and $0<-y$, then $y<-y$.
Thus, $y+\left(y^{2}-2\right)<-y+\left(y^{2}-2\right)$, so $(y-1)(y+2)<(y-2)(y+1)$.
Since $y<-2$ and $-2<2$, then $y<2$, so $y-2<0$.
We divide by negative $y-2$ to get $\frac{(y-1)(y+2)}{y-2}>y+1$.
Since $y+2<0$, then $\frac{y-1}{y-2}<\frac{y+1}{y+2}$.
Since $y \in \mathbb{R}$ and $\frac{y-1}{y-2}<\frac{y+1}{y+2}$, then $y \in S$.
Case 2: Suppose $0<y<2$.
Then $0<y$ and $y<2$.
Since $y>0$, then $-y<0$.
Since $-y<0$ and $0<y$, then $-y<y$.
Thus, $-y+\left(y^{2}-2\right)<y+\left(y^{2}-2\right)$, so $(y-2)(y+1)<(y-1)(y+2)$.
Since $y<2$, then $y-2<0$, so we divide by negative $y-2$ to get $y+1>$ $\frac{(y-1)(y+2)}{y-2}$.

Since $y>0$ and $0>-2$, then $y>-2$, so $y+2>0$.
We divide by positive $y+2$ to get $\frac{y+1}{y+2}>\frac{y-1}{y-2}$.
Hence, $\frac{y-1}{y-2}<\frac{y+1}{y+2}$.
Since $y \in \mathbb{R}$ and $\frac{y-1}{y-2}<\frac{y+1}{y+2}$, then $y \in S$.
Therefore, in all cases, $y \in S$.
Hence, $(-\infty,-2) \cup(0,2) \subset S$.

Since $S \subset(-\infty,-2) \cup(0,2)$ and $(-\infty,-2) \cup(0,2) \subset S$, then $S=(-\infty,-2) \cup$ $(0,2)$.

Lemma 40. Let $a, b \in \mathbb{R}$.
If $a \leq t$ for every real number $t>b$, then $a \leq b$.
Proof. We prove by contrapositive.
Suppose $a>b$.
Let $t=\frac{b+a}{2}$.
Since $b<\frac{b+a}{2}<a$, then $b<t<a$, so $b<t$ and $t<a$.
Thus, there exists $t>b$ such that $a>t$, as desired.
Exercise 41. Let $a$ and $b$ be real numbers.
If $a \leq b+\epsilon$ for every $\epsilon>0$, then $a \leq b$.
Solution. The hypothesis is $(\forall \epsilon>0)(a \leq b+\epsilon)$ and the conclusion is $a \leq b$.
Since the conclusion is simple and hypothesis is complex, we try proof by contrapositive.

Thus, we assume $a>b$ and must find $\epsilon>0$ such that $a>b+\epsilon$.
To find $\epsilon$, let's try working backwards.
Suppose $a>b+\epsilon$.
Then $a-b>\epsilon$, so $\epsilon<a-b$.
Thus, we want $\epsilon$ such that $0<\epsilon<a-b$.
We see that any real number between 0 and $a-b$ will work, so let's conveniently choose $\epsilon=\frac{a-b}{2}$.

Proof. Suppose $a \leq b+\epsilon$ for every $\epsilon>0$.
Let $\epsilon>0$ be given.
Let $t=b+\epsilon$.
Then $\epsilon=t-b$, so $t-b>0$.
Thus, $a \leq b+(t-b)=(t-b)+b=t$, so $a \leq t$.
Hence, $a \leq t$ for every $t-b>0$, so $a \leq t$ for every $t>b$.
Therefore, by the previous lemma, we conclude $a \leq b$, as desired.
Proof. We prove by contrapositive.
Suppose $a>b$.
Then $a-b>0$, so $\frac{a-b}{2}>0$.
Let $\epsilon=\frac{a-b}{2}$.
Then $\epsilon>0$.
Since $1>\frac{1}{2}$ and $a-b>0$, then $a-b>\frac{a-b}{2}=\epsilon$, so $a>b+\epsilon$.
Therefore, there is some $\epsilon>0$ such that $a>b+\epsilon$, as desired.
Proof. We prove by contrapositive.
Suppose $a>b$.
Then $a-b>0$, so $\frac{a-b}{2}>0$.
Let $\epsilon=\frac{a-b}{2}$.
Then $\epsilon>0$.

Since $a>b$ and

$$
\begin{aligned}
a>b & \Leftrightarrow 2 a>b+a \\
& \Leftrightarrow 2 a>2 b+(a-b) \\
& \Leftrightarrow a>b+\frac{a-b}{2} \\
& \Leftrightarrow a>b+\epsilon,
\end{aligned}
$$

then $a>b+\epsilon$.
Therefore, there exists $\epsilon>0$ such that $a>b+\epsilon$, as desired.
Exercise 42. Let $a \in \mathbb{R}$.
If $0 \leq a<\epsilon$ for every real $\epsilon>0$, then $a=0$.
Proof. We prove by contradiction.
Suppose $0 \leq a<\epsilon$ for every real $\epsilon>0$ and $a \neq 0$.
Since $1>0$, then $0 \leq a<1$, so $0 \leq a$.
Since $a \geq 0$ and $a \neq 0$, then $a>0$.
Hence, $0 \leq a<a$, so $a<a$, a contradiction.
Thus, either $0 \leq a<\epsilon$ for every real $\epsilon>0$ is false or $a=0$.
Therefore, $0 \leq a<\epsilon$ for every real $\epsilon>0$ implies $a=0$, as desired.
Exercise 43. Let $a, b \in \mathbb{R}$.
Then $\left(\frac{a+b}{2}\right)^{2} \leq \frac{a^{2}+b^{2}}{2}$.
Proof. Since $a, b \in \mathbb{R}$, then $a-b \in \mathbb{R}$, so $(a-b)^{2} \in \mathbb{R}$.
Thus, $(a-b)^{2} \geq 0$.
Observe that

$$
\begin{aligned}
(a-b)^{2} \geq 0 & \Leftrightarrow a^{2}-2 a b+b^{2} \geq 0 \\
& \Leftrightarrow a^{2}+b^{2} \geq 2 a b \\
& \Leftrightarrow 2 a^{2}+2 b^{2} \geq a^{2}+2 a b+b^{2} \\
& \Leftrightarrow 2\left(a^{2}+b^{2}\right) \geq(a+b)^{2} \\
& \Leftrightarrow \frac{2\left(a^{2}+b^{2}\right)}{4} \geq \frac{(a+b)^{2}}{4} \\
& \Leftrightarrow \frac{a^{2}+b^{2}}{2} \geq\left(\frac{a+b}{2}\right)^{2}
\end{aligned}
$$

Hence, $\frac{a^{2}+b^{2}}{2} \geq\left(\frac{a+b}{2}\right)^{2}$, so $\left(\frac{a+b}{2}\right)^{2} \leq \frac{a^{2}+b^{2}}{2}$.

Exercise 44. At least one of the real numbers $a_{1}, a_{2}, \ldots, a_{n}$ is greater than or equal to the average of these numbers..
Solution. The statement to prove is shown below.
Let $n \in \mathbb{Z}^{+}$and $n \geq 2$.
Let $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$.
Then there exists $k \in\{1,2, \ldots, n\}$ such that $a_{k} \geq \frac{\sum_{i=1}^{n} a_{i}}{n}$.

Proof. Let $n \in \mathbb{Z}^{+}$and $n \geq 2$.
Let $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$.
We prove there exists $k \in\{1,2, \ldots, n\}$ such that $a_{k} \geq \frac{\sum_{i=1}^{n} a_{i}}{n}$.
Since $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$ and $\mathbb{R}$ is an ordered field, then we can order the numbers so that $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$.

Let $k=n$.
Since $n \in\{1,2, \ldots, n\}$, then $k \in\{1,2, \ldots, n\}$.
Since $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$, then $a_{1} \leq a_{n}$ and $a_{2} \leq a_{n}$ and $\ldots, a_{n} \leq a_{n}$.
Adding these $n$ inequalities, we obtain $a_{1}+a_{2}+\ldots+a_{n} \leq a_{n}+a_{n}+\ldots+a_{n}=$ $n a_{n}$.

Observe that

$$
\begin{aligned}
\sum_{i=1}^{n} a_{i} & =a_{1}+a_{2}+\ldots+a_{n} \\
& \leq n a_{n}
\end{aligned}
$$

Since $n \geq 2>0$, then $n>0$, so $n \neq 0$.
Hence, we divide by $n$ to obtain $\frac{\sum_{i=1}^{n} a_{i}}{n} \leq a_{n}=a_{k}$.
Therefore, there exists $k \in\{1,2, \ldots, n\}$ such that $a_{k} \geq \frac{\sum_{i=1}^{n} a_{i}}{n}$, as desired.

Exercise 45. $(\forall x, y \in \mathbb{R})\left(x<y \rightarrow x^{3}<y^{3}\right)$.
Proof. Let $x, y \in \mathbb{R}$ such that $x<y$.
Then $0<y-x$, so $y-x>0$.
Either $x \geq 0$ or $x<0$.
We consider these cases separately.
Case 1: Suppose $x \geq 0$.
Then $0 \leq x<y$, so $0<y$.
Hence, $y>0$, so $y^{2}>0$.
Since $x \geq 0$, then $x^{2} \geq 0$.
Since $x \geq 0$ and $y>0$, then $x y \geq 0$.
Adding these inequalities, we obtain $y^{2}+x y+x^{2}>0$.
Since $y-x>0$ and $y^{2}+x y+x^{2}>0$, then $y^{3}-x^{3}=(y-x)\left(y^{2}+x y+x^{2}\right)>0$, so $y^{3}-x^{3}>0$.

Therefore, $y^{3}>x^{3}$, so $x^{3}<y^{3}$.
Case 2: Suppose $x<0$.
Either $y \geq 0$ or $y<0$.
We consider these cases separately.
Case 2a: Suppose $y \geq 0$.
Then $y^{3} \geq 0$.
Since $x<0$, then $x^{3}<0$, so $x^{3}<0 \leq y^{3}$.
Therefore, $x^{3}<y^{3}$.
Case 2b: Suppose $y<0$.
Then $x<y<0$, so $x<0$.
Since $x<0$, then $x^{2}>0$.

Since $y<0$, then $y^{2}>0$.
Since $x<0$ and $y<0$, then $x y>0$.
Adding these inequalities, we obtain $y^{2}+x y+x^{2}>0$.
Since $y-x>0$ and $y^{2}+x y+x^{2}>0$, then $y^{3}-x^{3}=(y-x)\left(y^{2}+x y+x^{2}\right)>0$, so $y^{3}-x^{3}>0$.

Therefore, $y^{3}>x^{3}$, so $x^{3}<y^{3}$.
Exercise 46. Let $a, b \in \mathbb{R}^{*}$.
If $a<\frac{1}{a}<b<\frac{1}{b}$, then $a<-1$.
Proof. Suppose $a<\frac{1}{a}<b<\frac{1}{b}$.
If $a>1$, then $a^{2}>a>1>0$, so $a^{2}>1$.
Hence, $a>\frac{1}{a}$, which contradicts $a<\frac{1}{a}$.
Therefore, $a \leq 1$.
If $a>0$, then $0<a \leq 1$, so $0<1 \leq \frac{1}{a}$.
Since $1 \leq \frac{1}{a}<b$, then $1<b$, so $b>1>0$.
Since $0<a<\frac{1}{b}$ and $b>0$, then $0<a b<1$, so $a b<1$.
Since $\frac{1}{a}<b$ and $a>0$, then $1<a b$, so $a b>1$, which contradicts $a b<1$.
Hence, $a \leq 0$.
Since $a \neq 0$, then this implies $a<0$.

Suppose $a \geq-1$.
Then $-1 \leq a<0$, so $-a \geq a^{2}>0$.
Since $a<\frac{1}{a}<0$ and $a<0$, then $a^{2}>1>0$.
Since $-a \geq a^{2}$ and $a^{2}>1$, then $-a>1$, so $a<-1$.
But, this contradicts $a \geq-1$.
Therefore, $a<-1$, as desired.

## Absolute value in an ordered field

Exercise 47. Find a constant $M$ such that $\left|\frac{2 x^{2}+3 x+1}{2 x-1}\right| \leq M$ for all $x$ satisfying $2 \leq x \leq 3$.

Solution. Let $x \in \mathbb{R}$ such that $2 \leq x \leq 3$.
Then $2 \leq x$ and $x \leq 3$.
Since $x \geq 2>0$, then $x>0$.
Since $x \leq 3$ and $x>0$, then $0<|x|=x \leq 3$.
Since $x \geq 2$ and $x>0$, then $|x|=x \geq 2$.
Since $\left|2 x^{2}+3 x+1\right| \leq\left|2 x^{2}\right|+|3 x|+|1|=2\left|x^{2}\right|+3|x|+1=2|x|^{2}+3|x|+1$, then $\left|2 x^{2}+3 x+1\right| \leq 2|x|^{2}+3|x|+1$.

Since $0<|x| \leq 3$, then $2|x|^{2}+3|x|+1 \leq 2 \cdot 3^{2}+3 \cdot 3+1=28$.
Since $\left|2 x^{2}+3 x+1\right| \leq 2|x|^{2}+3|x|+1 \leq 28$, then $\left|2 x^{2}+3 x+1\right| \leq 28$.
Since $x>0$, then $2 x^{2}+3 x+1>0$, so $0<\left|2 x^{2}+3 x+1\right| \leq 28$.

Since $|2 x-1| \geq|2 x|-|1|=2|x|-1$, then $|2 x-1| \geq 2|x|-1$.
Since $|x| \geq 2$, then $2|x|-1 \geq 2 \cdot 2-1=3$.
Since $|2 x-1| \geq 2|x|-1 \geq 3$, then $|2 x-1| \geq 3$.
Since $0<3 \leq|2 x-1|$, then $0<\frac{1}{|2 x-1|} \leq \frac{1}{3}$.
Since $0<\left|2 x^{2}+3 x+1\right| \leq 28$ and $0<\frac{1}{|2 x-1|} \leq \frac{1}{3}$, then $0<\frac{\left|2 x^{2}+3 x+1\right|}{|2 x-1|} \leq \frac{28}{3}$, so $\left|\frac{2 x^{2}+3 x+1}{2 x-1}\right| \leq \frac{28}{3}=M$.

Exercise 48. Let $S=\left\{x \in \mathbb{R}:\left|\frac{x}{x+1}\right| \leq 1\right\}$.
Then $S=\left[\frac{-1}{2}, \infty\right)$.
Solution. Suppose $x \in \mathbb{R}$ and $\left|\frac{x}{x+1}\right| \leq 1$.
Then $-1 \leq \frac{x}{x+1} \leq 1$.
Since division by zero is not defined, then $x+1 \neq 0$, so either $x+1>0$ or $x+1<0$.

Assume $x+1>0$.
Then $-(x+1) \leq x \leq x+1$, so $-x-1 \leq x \leq x+1$.
Thus, $-x-1 \leq x$ and $x \leq x+1$, so $-1 \leq 2 x$ and $0 \leq 1$.
Hence, $\frac{-1}{2} \leq x$, so $x \geq \frac{-1}{2}$.
Now, assume $x+1<0$.
Then $-(x+1) \geq x \geq x+1$, so $-(x+1) \geq x$ and $x \geq x+1$.
Thus, $x \geq x+1$, so $0 \geq 1$, a contradiction.
Hence, $x+1$ cannot be negative.
Therefore, $x \geq \frac{-1}{2}$, so $x \in\left[\frac{-1}{2}, \infty\right)$.
We conjecture that $S=\left[\frac{-1}{2}, \infty\right)$.
Proof. To prove $S=\left[\frac{-1}{2}, \infty\right)$, we prove $S \subset\left[\frac{-1}{2}, \infty\right)$ and $\left[\frac{-1}{2}, \infty\right) \subset S$.
We first prove $S \subset\left[\frac{-1}{2}, \infty\right)$.
Since $\left|\frac{0}{0+1}\right|=0<1$, then $0 \in S$, so $S$ is not empty.
Let $x \in S$.
Then $x \in \mathbb{R}$ and $\left|\frac{x}{x+1}\right| \leq 1$, so $-1 \leq \frac{x}{x+1} \leq 1$.
Suppose $x+1=0$.
Then $\left|\frac{x}{0}\right| \leq 1$, so $\frac{x}{0} \in \mathbb{R}$.
But, division by zero is not defined, so $x+1 \neq 0$.
Thus, either $x+1>0$ or $x+1<0$.

Suppose $x+1<0$.
Since $-1 \leq \frac{x}{x+1} \leq 1$ and $x+1<0$, then $-(x+1) \geq x \geq x+1$, so $-x-1 \geq x \geq x+1$.

Hence, $-x-1 \geq x$ and $x \geq x+1$, so $-1 \geq 2 x$ and $0 \geq 1$.
Thus, $0 \geq 1$, a contradiction.
Therefore, $x+1$ cannot be negative.
Hence, $x+1>0$.
Since $-1 \leq \frac{x}{x+1} \leq 1$ and $x+1>0$, then $-(x+1) \leq x \leq x+1$, so $-x-1 \leq x \leq x+1$.

Hence, $-x-1 \leq x$ and $x \leq x+1$, so $-1 \leq 2 x$ and $0 \leq 1$.
Thus, $-1 \leq 2 x$, so $2 x \geq-1$.
Therefore, $x \geq \frac{-1}{2}$, so $x \in\left[\frac{-1}{2}, \infty\right)$.
Consequently, if $x \in S$, then $x \in\left[\frac{-1}{2}, \infty\right)$, so $S \subset\left[\frac{-1}{2}, \infty\right)$.
Proof. We next prove $\left[\frac{-1}{2}, \infty\right) \subset S$.
Let $y \in\left[\frac{-1}{2}, \infty\right)$.
Then $y \geq \frac{-1}{2}$.
Thus, $y+1 \geq \frac{1}{2}>0$, so $y+1>0$.
Hence, $|y+1|=y+1>0$.
Either $y \geq 0$ or $y<0$.
We consider these cases separately.
Case 1: Suppose $y \geq 0$.
Then $|y|=y$.
Since $1>0$, then $y+1>y$.
Since $y+1>0$, then $1>\frac{y}{y+1}=\frac{|y|}{|y+1|}=\left|\frac{y}{y+1}\right|$, so $1>\left|\frac{y}{y+1}\right|$.
Thus, $\left|\frac{y}{y+1}\right|<1$.
Case 2: Suppose $y<0$.
Then $|y|=-y$.
Since $y \geq \frac{-1}{2}$, then $-2 y \leq 1$, so $-y \leq y+1$.
Thus, $|y| \leq|y+1|$.
Since $|y+1|>0$, then $\frac{|y|}{|y+1|} \leq 1$, so $\left|\frac{y}{y+1}\right| \leq 1$.
Therefore, in all cases, $\left|\frac{y}{y+1}\right| \leq 1$, so $y \in S$.
Thus, if $y \in\left[\frac{-1}{2}, \infty\right)$, then $y \in S$, so $\left[\frac{-1}{2}, \infty\right) \subset S$.
Since $S \subset\left[\frac{-1}{2}, \infty\right)$ and $\left[\frac{-1}{2}, \infty\right) \subset S$, then $S=\left[\frac{-1}{2}, \infty\right)$, as desired.
Exercise 49. Let $a, b \in \mathbb{R}$.
If $0 \leq a<b$, then $0 \leq a^{2}<b^{2}$.
Proof. Suppose $0 \leq a<b$.
Then $0 \leq a$ and $a<b$.
Since $a \geq 0$, then either $a>0$ or $a=0$.
We consider these cases separately.
Case 1: Suppose $a=0$.
Since $a<b$, then $0<b$.
Since $b>0$, then $b^{2}>0$.
Since $0=a=0^{2}=a^{2}<b^{2}$, then $0=a^{2}<b^{2}$.
Case 2: Suppose $a>0$.
Since $0<a$ and $a<b$, then $0<a<b$, so $0<a^{2}<b^{2}$.
Therefore, in all cases, $0 \leq a^{2}<b^{2}$.
Exercise 50. Let $B=\{x \in \mathbb{R}:|x-1|<|x|\}$.
Then $B=\left(\frac{1}{2}, \infty\right)$.

Proof. Let $x \in B$.
Then $x \in \mathbb{R}$ and $|x-1|<|x|$.
Since $0 \leq|x-1|<|x|$, then $|x-1|^{2}<|x|^{2}$.
Since $x^{2}-2 x+1=(x-1)^{2}=|x-1|^{2}<|x|^{2}=x^{2}$, then $x^{2}-2 x+1<x^{2}$, so $-2 x+1<0$.

Hence, $1<2 x$, so $\frac{1}{2}<x$.
Thus, $x>\frac{1}{2}$, so $x \in\left(\frac{1}{2}, \infty\right)$.
Therefore, $B \subset\left(\frac{1}{2}, \infty\right)$.
Let $x \in\left(\frac{1}{2}, \infty\right)$.
Then $x>\frac{1}{2}$, so either $\frac{1}{2}<x<1$ or $x \geq 1$.
We consider these cases separately.
Case 1: Suppose $x \geq 1$.
Then $x-1 \geq 0$.
Since $x \geq 1>0$, then $x>0$.
Since $-1<0$, then $x-1<x$.
Hence, $|x-1|=x-1<x=|x|$.
Case 2: Suppose $\frac{1}{2}<x<1$.
Then $\frac{1}{2}<x$ and $x<1$.
Since $x>\frac{1}{2}>0$, then $x>0$.
Since $x<1$, then $x-1<0$.
Since $\frac{1}{2}<x$, then $1<2 x$, so $1-x<x$.
Thus, $|x-1|=1-x<x=|x|$.
In all cases, $|x-1|<|x|$, so $x \in B$.
Therefore, $\left(\frac{1}{2}, \infty\right) \subset B$.
Since $B \subset\left(\frac{1}{2}, \infty\right)$ and $\left(\frac{1}{2}, \infty\right) \subset B$, then $B=\left(\frac{1}{2}, \infty\right)$.
Exercise 51. Let $F$ be an ordered field.
Then $|x-y| \leq|x|+|y|$ for all $x, y \in F$.
Proof. Let $x, y \in F$.
Then

$$
\begin{aligned}
|x-y| & =|x+(-y)| \\
& \leq|x|+|-y| \\
& =|x|+|y| .
\end{aligned}
$$

Therefore, $|x-y| \leq|x|+|y|$.
Exercise 52. Let $a, x$ be elements of an ordered field $F$.
If $a \geq 0$ and $x \leq a$ and $-x \leq a$, then $|x| \leq a$.
Proof. Suppose $a \geq 0$ and $x \leq a$ and $-x \leq a$.
Either $x \geq 0$ or $x<0$.
We consider these cases separately.
Case 1: Suppose $x \geq 0$.

Then $|x|=x \leq a$, so $|x| \leq a$.
Case 2: Suppose $x<0$.
Then $|x|=-x \leq a$, so $|x| \leq a$.
Exercise 53. Let $F$ be an ordered field.
Let $x, y, z \in F$.
Then $d(x, y)=d(x-z, y-z)$.
Proof. Observe that

$$
\begin{aligned}
d(x, y) & =|x-y| \\
& =|x-y-z+z| \\
& =|x-z-y+z| \\
& =|(x-z)-(y-z)| \\
& =d(x-z, y-z)
\end{aligned}
$$

Exercise 54. Let $x, y, z \in \mathbb{R}$ with $x \leq z$.
Then $x \leq y \leq z$ iff $|x-y|+|y-z|=|x-z|$.
Proof. Suppose $x \leq y \leq z$.
Then $x \leq y$ and $y \leq z$ and $x \leq z$, so $x-y \leq 0$ and $y-z \leq 0$ and $x-z \leq 0$.
Thus,

$$
\begin{aligned}
|x-y|+|y-z| & =-(x-y)-(y-z) \\
& =-x+y-y+z \\
& =-x+z \\
& =-(x-z) \\
& =|x-z| .
\end{aligned}
$$

Proof. Conversely, suppose $|x-y|+|y-z|=|x-z|$.
We must prove $x \leq y$ and $y \leq z$.
Suppose $x>y$.
Then $y<x$.
Since $y<x$ and $x \leq z$, then $y<x \leq z$, so $|y-x|+|x-z|=|y-z|$.
Hence, $|x-y|=|y-x|=|y-z|-|x-z|$.
Since $|x-y|+|y-z|=|x-z|$, then $|x-y|=|x-z|-|y-z|$.
Adding these equations we obtain $2|x-y|=0$, so $|x-y|=0$.
Thus, $x-y=0$, so $x=y$.
But, this contradicts the fact that $x>y$.
Therefore, $x \leq y$.

Suppose $y>z$.
Then $z<y$.
Since $x \leq z$ and $z<y$, then $x \leq z<y$, so $|x-z|+|z-y|=|x-y|$.
Hence, $|y-z|=|z-y|=|x-y|-|x-z|$.
Since $|x-y|+|y-z|=|x-z|$, then $|y-z|=|x-z|-|x-y|$.
Adding these equations we obtain $2|y-z|=0$, so $|y-z|=0$.
Thus, $y-z=0$, so $y=z$.
But, this contradicts the fact that $y>z$.
Therefore, $y \leq z$.
Since $x \leq y$ and $y \leq z$, then $x \leq y \leq z$.
Exercise 55. Let $x \in \mathbb{R}$.
Then $|x|=\max \{x,-x\}$.
Proof. Let $S=\{x,-x\}$.
We must prove $|x|=\max S$.
Either $x \geq 0$ or $x<0$.
We consider these cases separately.
Case 1: Suppose $x \geq 0$.
Then $-x \leq 0$.
Hence, $-x \leq 0 \leq x$, so $-x \leq x$.
Since $x \in S$ and $-x \leq x$ and $x \leq x$, then $\max S=x=|x|$.
Case 2: Suppose $x<0$.
Then $-x>0$.
Hence, $x<0<-x$, so $x<-x$.
Thus, $x \leq-x$.
Since $-x \in S$ and $x \leq-x$ and $-x \leq-x$, then $\max S=-x=|x|$.
Therefore, in all cases, $\max S=|x|$, as desired.
Exercise 56. Let $F$ be an ordered field.
Let $a, b \in F$.
If $a$ and $b$ are both non-negative or both negative, then $|a+b|=|a|+|b|$.
Proof. Suppose $a$ and $b$ are both non-negative or both negative.
Then either $a$ and $b$ are both non-negative or $a$ and $b$ are both negative.
We consider these cases separately.
Case 1: Suppose $a$ and $b$ are both non-negative.
Then $a \geq 0$ and $b \geq 0$.
Hence, $a+b \geq 0$.
Therefore, $|a+b|=a+b=|a|+|b|$, as desired.
Case 2: Suppose $a$ and $b$ are both negative.
Then $a<0$ and $b<0$.
Hence, $a+b<0$.
Therefore, $|a+b|=-(a+b)=-a+(-b)=|a|+|b|$, as desired.
Exercise 57. Let $F$ be an ordered field.
Let $a, b \in F$.
If $|a+b|=|a|+|b|$, then $a b \geq 0$.

Proof. Suppose $|a+b|=|a|+|b|$.
Then $|a+b|^{2}=(|a|+|b|)^{2}$.
Thus,

$$
\begin{aligned}
0 & =(|a|+|b|)^{2}-|a+b|^{2} \\
& =|a|^{2}+2|a||b|+|b|^{2}-(a+b)^{2} \\
& =a^{2}+2|a b|+b^{2}-\left(a^{2}+2 a b+b^{2}\right) \\
& =a^{2}+2|a b|+b^{2}-a^{2}-2 a b-b^{2} \\
& =2|a b|-2 a b \\
& =2(|a b|-a b) .
\end{aligned}
$$

Since $2(|a b|-a b)=0$, then $|a b|-a b=0$, so $|a b|=a b$.
Either $a b \geq 0$ or $a b<0$.

Suppose for the sake of contradiction $a b<0$.
Then $|a b|=a b<0$, so $|a b|<0$.
But, this contradicts the fact that $|a b| \geq 0$.
Therefore, $a b \geq 0$.
Exercise 58. Let $\epsilon>0$.
Let $a, x \in \mathbb{R}$.
Then $|x-a|<\epsilon$ iff $a-\epsilon<x<a+\epsilon$.
Proof. For any real number $r$ and $k>0,|r|<k$ iff $-k<r<k$.
Since $x-a \in \mathbb{R}$ and $\epsilon>0$, then $|x-a|<\epsilon$ iff $-\epsilon<x-a<\epsilon$.
Therefore, $|x-a|<\epsilon$ iff $a-\epsilon<x<a+\epsilon$, as desired.
Exercise 59. Prove $|x-z| \geq|x|-|z|$ and $|x+y+z| \leq|x|+|y|+|z|$.
Proof. To prove $|x-z| \geq|x|-|z|$, we let $x$ and $z$ be arbitrary real numbers.
Observe that $|(x-z)+z| \leq|x-z|+|z|$, by the triangle inequality.
Hence, $|x+(-z)+z| \leq|x-z|+|z|$, so $|x+0| \leq|x-z|+|z|$.
Thus, $|x| \leq|x-z|+|z|$, so $|x|-|z| \leq|x-z|$.
Therefore, $|x-z| \geq|x|-|z|$, as desired.
To prove $|x+y+z| \leq|x|+|y|+|z|$, we let $x, y, z \in \mathbb{R}$ be arbitrary.
Then $|(x+y)+z| \leq|x+y|+|z|$, by the triangle inequality.
Hence, $|(x+y)+z|-|z| \leq|x+y|$.
By the triangle inequality, $|x+y| \leq|x|+|y|$.
Since $|(x+y)+z|-|z| \leq|x+y|$ and $|x+y| \leq|x|+|y|$, then by transitivity of $\leq$, we conclude that $|(x+y)+z|-|z| \leq|x|+|y|$.

Therefore, $|(x+y)+z| \leq|x|+|y|+|z|$.
Hence, $|x+y+z| \leq|x|+|y|+|z|$, as desired.

## Boundedness of sets in an ordered field

Exercise 60. In $\mathbb{R} \sup (-\infty, 2]=2$.
Proof. Let $S=(-\infty, 2]=\{x \in \mathbb{R}: x \leq 2\}$.
To prove $\sup S=2$, we must prove 2 is an upper bound of $S$ and 2 is the least upper bound of $S$.

We prove 2 is an upper bound of $S$.
Let $x \in S$.
Then $x \leq 2$, so $x \leq 2$ for all $x \in S$.
Therefore, 2 is an upper bound of $S$.

To prove 2 is the least upper bound of $S$, let $r \in \mathbb{R}$ such that $r<2$.
Since $2 \in S$ and $2>r$, then $r$ is not an upper bound of $S$.
Since $r$ is arbitrary, then every $r$ less than 2 is not an upper bound of $S$. Therefore, 2 is the least upper bound of $S$, so $\sup S=2$.

Exercise 61. $1=\inf (\mathbb{N})$.
Proof. We must prove 1 is the greatest lower bound of $\mathbb{N}$ in $\mathbb{R}$.
Let $n \in \mathbb{N}$.
Then $n \geq 1$, so $1 \leq n$.
Thus, $1 \leq n$ for all $n \in \mathbb{N}$.
Therefore, 1 is a lower bound of $\mathbb{N}$ in $\mathbb{R}$.
Let $\epsilon>0$ be given.
To prove 1 is the greatest lower bound, we must prove there exists $n \in \mathbb{N}$ such that $n<1+\epsilon$.

Take $n=1$.
Then $n=1 \in \mathbb{N}$.
We prove $n<1+\epsilon$.
Observe that

$$
\begin{aligned}
0<\epsilon & \Leftrightarrow 1<1+\epsilon \\
& \Rightarrow n<1+\epsilon .
\end{aligned}
$$

Therefore, $n<1+\epsilon$, as desired.
Exercise 62. Let $a, b \in \mathbb{R}$ with $a<b$.
Then $b=l u b[a, b]$.
Proof. Let $x \in[a, b]$.
Then $x \in \mathbb{R}$ and $a \leq x \leq b$.
Hence, $x \leq b$.
Thus, $x \leq b$ for all $x \in[a, b]$.
Therefore, $b$ is an upper bound of $[a, b]$.
Let $\epsilon>0$ be given.

To prove $b$ is the least upper bound, we must prove there exists $y \in[a, b]$ such that $y>b-\epsilon$.

Take $y=b$.
Since $b \in[a, b]$, then $y \in[a, b]$.
Observe that

$$
\begin{aligned}
\epsilon>0 & \Leftrightarrow \epsilon>b-b \\
& \Leftrightarrow \epsilon+b>b \\
& \Leftrightarrow b>b-\epsilon \\
& \Rightarrow y>b-\epsilon
\end{aligned}
$$

Therefore, $y>b-\epsilon$, as desired.
Exercise 63. Let $a \in \mathbb{R}$.
Then $a=g l b(a, \infty)$.
Proof. Let $x \in(a, \infty)$.
Then $x \in \mathbb{R}$ and $a<x$.
Hence, $a \leq x$.
Thus, $a \leq x$ for all $x \in(a, \infty)$.
Therefore, $a$ is a lower bound of $(a, \infty)$.
Let $\epsilon>0$ be given.
To prove $a$ is the greatest lower bound, we must prove there exists $y \in(a, \infty)$
such that $y<a+\epsilon$.
Take $y=a+\frac{\epsilon}{2}$.
We prove $y \in(a, \infty)$.
Since $\epsilon>0$, then $\frac{\epsilon}{2}>0$, so $a+\frac{\epsilon}{2}>a$.
Hence, $y>a$, so $y \in(a, \infty)$, as desired.
We prove $y<a+\epsilon$.
Since $\frac{1}{2}<1$ and $\epsilon>0$, then $\frac{\epsilon}{2}<\epsilon$.
Hence, $a+\frac{\epsilon}{2}<a+\epsilon$.
Thus, $y<a+\epsilon$, as desired.
Exercise 64. Let $S=(3,4) \cup\{6\}$ in $\mathbb{R}$.
Then $3=\inf S$ and $6=\sup S$.
Proof. We must prove 3 is the greatest lower bound of $S$ in $\mathbb{R}$ and 6 is the least upper bound of $S$ in $\mathbb{R}$.

We prove 3 is the greatest lower bound of $S$ in $\mathbb{R}$.
Let $x \in S$.
Then either $x \in(3,4)$ or $x \in\{6\}$.
We consider these cases separately.
Case 1: Suppose $x \in(3,4)$.
Then $3<x<4$, so $3<x$.
Hence, $3 \leq x$.
Case 2: Suppose $x \in\{6\}$.
Then $x=6$.

Since $3<6=x$, then $3<x$, so $3 \leq x$.
Hence, in all cases, $3 \leq x$.
Thus, $3 \leq x$ for all $x \in S$.
Therefore, 3 is a lower bound of $S$ in $\mathbb{R}$.
Let $\epsilon>0$ be given.
To prove 3 is the greatest lower bound, we must prove there exists $s \in S$
such that $s<3+\epsilon$.
Let $k=\min \left\{\frac{1}{2}, \frac{\epsilon}{2}\right\}$.
Then $k \leq \frac{1}{2}$ and $k \leq \frac{\epsilon}{2}$.
Let $s=3+k$.
To prove $s \in S$, we prove $3+k \in(3,4)$.
Thus, we must prove $3<3+k$ and $3+k<4$.
Since $\epsilon>0$, then $\frac{\epsilon}{2}>0$.
Since $\frac{1}{2}>0$ and $\frac{\epsilon}{2}>0$, then $\min \left\{\frac{1}{2}, \frac{\epsilon}{2}\right\}>0$.
Therefore, $k>0$.
Hence, $0<k$, so $3<3+k$, as desired.
Since $k \leq \frac{1}{2}$ and $\frac{1}{2}<1$, then $k<1$.
Hence, $3+k<4$, as desired.
Therefore, $s \in S$.
We prove $s<3+\epsilon$.
Since $\frac{1}{2}<1$ and $\epsilon>0$, then $\frac{\epsilon}{2}<\epsilon$.
Observe that

$$
\begin{aligned}
s & =3+k \\
& \leq 3+\frac{\epsilon}{2} \\
& <3+\epsilon
\end{aligned}
$$

Therefore, $s<3+\epsilon$, as desired.
Proof. We prove 6 is the least upper bound of $S$ in $\mathbb{R}$.
Let $x \in S$.
Then either $x \in(3,4)$ or $x \in\{6\}$.
We consider these cases separately.
Case 1: Suppose $x \in(3,4)$.
Then $3<x<4$, so $x<4$.
Since $x<4<6$, then $x<6$.
Case 2: Suppose $x \in\{6\}$.
Then $x=6$.
Hence, in all cases, either $x<6$ or $x=6$, so $x \leq 6$.
Thus, $x \leq 6$ for all $x \in S$.
Therefore, 6 is an upper bound of $S$ in $\mathbb{R}$.
Let $\epsilon>0$ be given.
To prove 6 is the least upper bound, we must prove there exists $s \in S$ such that $s>6-\epsilon$.

Take $s=6$.
Then $s=6 \in S$.

We prove $s>6-\epsilon$.
Observe that

$$
\begin{aligned}
\epsilon>0 & \Leftrightarrow \epsilon>6-6 \\
& \Leftrightarrow 6+\epsilon>6 \\
& \Leftrightarrow 6>6-\epsilon \\
& \Leftrightarrow s>6-\epsilon .
\end{aligned}
$$

Therefore, $s>6-\epsilon$, as desired.
Exercise 65. Let $S=\{x \in \mathbb{R}: x \geq 0\}$.
Then

1. There is no upper bound of $S$.
2. 0 is a lower bound of $S$.
3. $\inf S=0$.

Proof. We prove 1.
To prove there is no upper bound of $S$, we prove for every real $B$ there exists $x \in S$ such that $x>B$.

Let $B \in \mathbb{R}$ be arbitrary.
Let $T=\{0, B\}$.
Let $x=\max T+1$.
Since $\max T \geq 0$ and $1>0$, then $\max T+1>0$, so $x>0$.
Thus, $x \in S$.
Since $\max T \geq B$ and $1>0$, then $\max T+1>B$, so $x>B$.
Therefore, there exists $x \in S$ such that $x>B$, as desired.
Proof. We prove 2.
To prove 0 is a lower bound of $S$, we prove for every $x \in S$ we have $0 \leq x$.
Let $x \in S$ be given.
Then $x \geq 0$, so $0 \leq x$ for all $x \in S$.
Therefore, 0 is a lower bound of $S$.
Proof. We prove 3.
To prove $\inf S=0$, we prove 0 is a lower bound of $S$ and every real number $r>0$ is not a lower bound of $S$.

Let $r>0$ be arbitrary.
We prove $r$ is not a lower bound of $S$.
Let $x=\frac{r}{2}$.
Since $r>0$, then $\frac{r}{2}>0$, so $x>0$.
Thus, $x \in S$.
Since $r>0$, then $2 r>r$, so $r>\frac{r}{2}$.
Hence, $r>x$.
Therefore, there exists $x \in S$ such that $x<r$, so $r$ is not a lower bound of $S$.

Consequently, every real number $r>0$ is not a lower bound of $S$.

Since 0 is a lower bound of $S$ and every real number $r>0$ is not a lower bound of $S$, then 0 is the greatest lower bound of $S$, so $0=\inf S$.

Exercise 66. Let $\mathbb{R}^{+}=\{x \in \mathbb{R}: x>0\}$.
Then

1. There is no upper bound of $\mathbb{R}^{+}$, so $\sup \mathbb{R}^{+}$does not exist.
2. 0 is a lower bound of $\mathbb{R}^{+}$.
3. $\inf \mathbb{R}^{+}=0$.

Proof. We prove 1.
To prove there is no upper bound of $\mathbb{R}^{+}$, we prove for every real $B$ there exists $x \in \mathbb{R}^{+}$such that $x>B$.

Let $B \in \mathbb{R}$ be arbitrary.
Let $T=\{0, B\}$.
Let $x=\max T+1$.
Since $\max T \geq 0$ and $1>0$, then $\max T+1>0$, so $x>0$.
Thus, $x \in \mathbb{R}^{+}$.
Since $\max T \geq B$ and $1>0$, then $\max T+1>B$, so $x>B$.
Therefore, there exists $x \in \mathbb{R}^{+}$such that $x>B$, as desired.
Proof. We prove 2.
To prove 0 is a lower bound of $\mathbb{R}^{+}$, we prove for every $x \in \mathbb{R}^{+}$we have $0 \leq x$. Let $x \in \mathbb{R}^{+}$be given.
Then $x \geq 0$, so $0 \leq x$ for all $x \in \mathbb{R}^{+}$.
Therefore, 0 is a lower bound of $\mathbb{R}^{+}$.
Proof. We prove 3.
To prove $\inf \mathbb{R}^{+}=0$, we prove 0 is a lower bound of $\mathbb{R}^{+}$and every real number $r>0$ is not a lower bound of $\mathbb{R}^{+}$.

Let $r>0$ be arbitrary.
We prove $r$ is not a lower bound of $\mathbb{R}^{+}$.
Let $x=\frac{r}{2}$.
Since $r>0$, then $\frac{r}{2}>0$, so $x>0$.
Thus, $x \in \mathbb{R}^{+}$.
Since $r>0$, then $2 r>r$, so $r>\frac{r}{2}$.
Hence, $r>x$.
Therefore, there exists $x \in \mathbb{R}^{+}$such that $x<r$, so $r$ is not a lower bound of $\mathbb{R}^{+}$.

Consequently, every real number $r>0$ is not a lower bound of $\mathbb{R}^{+}$.

Since 0 is a lower bound of $\mathbb{R}^{+}$and every real number $r>0$ is not a lower bound of $S$, then 0 is the greatest lower bound of $\mathbb{R}^{+}$, so $0=\inf \mathbb{R}^{+}$.

Lemma 67. For every natural number $n,\left|(-1)^{n}\right|=1$.

Proof. We prove by induction on $n$.
Let $S=\left\{n \in \mathbb{N}:\left|(-1)^{n}\right|=1\right\}$.
Since $1 \in \mathbb{N}$ and $\left|-1^{1}\right|=|-1|=1$, then $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $\left|(-1)^{k}\right|=1$.
Since $k \in \mathbb{N}$, then $k+1 \in \mathbb{N}$.
Observe that $\left|(-1)^{k+1}\right|=\left|(-1)^{k}(-1)\right|=\left|(-1)^{k}\right| \cdot|-1|=1 \cdot 1=1$.
Since $k+1 \in \mathbb{N}$ and $\left|(-1)^{k+1}\right|=1$, then $k+1 \in S$.
Thus, $k \in S$ implies $k+1 \in S$.
By the principle of mathematical induction, $\left|(-1)^{n}\right|=1$ for all $n \in \mathbb{N}$.
Lemma 68. Let $n \in \mathbb{N}$.

1. If $n$ is even, then $(-1)^{n}=1$.
2. If $n$ is odd, then $(-1)^{n}=-1$.

Proof. We prove 1.
Suppose $n$ is even.
Then $n=2 k$ for some integer $k$.
Thus, $(-1)^{n}=(-1)^{2 k}=\left[(-1)^{2}\right]^{k}=1^{k}=1$.
Proof. We prove 2.
Suppose $n$ is odd.
Then $n=2 k+1$ for some integer $k$.
Since $2 k$ is even, then $(-1)^{n}=(-1)^{2 k+1}=(-1)^{2 k} \cdot(-1)^{1}=1 \cdot(-1)=$ -1 .

Exercise 69. Let $S=\left\{1-\frac{(-1)^{n}}{n}: n \in \mathbb{N}\right\}$.
Then

1. $\sup S=2$.
2. $\inf S=\frac{1}{2}$.

Proof. We prove 1.
We first prove 2 is an upper bound of $S$.
Since $2=1+1=1-(-1)=1-\frac{-1^{1}}{1}$, then $2 \in S$, so $S \neq \emptyset$.
Let $x \in S$.
Then there exists $n \in \mathbb{N}$ such that $x=1-\frac{(-1)^{n}}{n}$.
Since $n \in \mathbb{N}$, then $n \geq 1$, so $1 \geq \frac{1}{n}$.
Hence, $2 \geq 1+\frac{1}{n}$.

Observe that

$$
\begin{aligned}
|x| & =\left|1-\frac{(-1)^{n}}{n}\right| \\
& =\left|1+\frac{(-1)^{n}}{-n}\right| \\
& \leq|1|+\left|\frac{(-1)^{n}}{-n}\right| \\
& =1+\frac{\left|(-1)^{n}\right|}{|-n|} \\
& =1+\frac{1}{n} \\
& \leq 2
\end{aligned}
$$

Thus, $|x| \leq 2$, so $-2 \leq x \leq 2$.
Hence, $x \leq 2$, so 2 is an upper bound of $S$.
To prove 2 is the least upper bound of $S$, we prove every real number $r<2$ is not an upper bound of $S$.

Let $r<2$ be an arbitrary real number.
Since $2 \in S$ and $2>r$, then $r$ is not an upper bound of $S$.
Thus, every real number $r<2$ is not an upper bound of $S$.
Since 2 is an upper bound of $S$ and every real number $r<2$ is not an upper bound of $S$, then 2 is the least upper bound of $S$, so $2=\sup S$.

Proof. We prove 2.
To prove $\frac{1}{2}=\inf S$, we prove $\frac{1}{2}$ is a lower bound of $S$ and we prove for every real number $r>\frac{1}{2}, r$ is not a lower bound of $S$.

We first prove $\frac{1}{2}$ is a lower bound of $S$.
Let $x \in S$.
Then there exists $n \in \mathbb{N}$ such that $x=1-\frac{(-1)^{n}}{n}$.
Since $n \in \mathbb{N}$, then either $n$ is even or $n$ is odd.
We consider these cases separately.
Case 1: Suppose $n$ is even.
Then $n \geq 2$ and $(-1)^{n}=1$.
Observe that

$$
\begin{aligned}
n \geq 2 & \Leftrightarrow \frac{1}{2} \geq \frac{1}{n} \\
& \Leftrightarrow \frac{1}{2} \geq \frac{(-1)^{n}}{n} \\
& \Leftrightarrow 1 \geq \frac{1}{2}+\frac{(-1)^{n}}{n} \\
& \Leftrightarrow 1-\frac{(-1)^{n}}{n} \geq \frac{1}{2} \\
& \Leftrightarrow x \geq \frac{1}{2}
\end{aligned}
$$

Thus, $x \geq \frac{1}{2}$, so $\frac{1}{2} \leq x$.
Case 2: Suppose $n$ is odd.
Then $(-1)^{n}=-1$.
Since $n \in \mathbb{N}$, then $n>0$, so $\frac{1}{n}>0$.
Since $\frac{1}{2}<1$ and $0<\frac{1}{n}$, then $\frac{1}{2}<1+\frac{1}{n}=1-\frac{(-1)^{n}}{n}$.
Thus, $\frac{1}{2}<1-\frac{(-1)^{n}}{n}$, so $\frac{1}{2}<x$.
Hence, in either case, $\frac{1}{2} \leq x$, so $\frac{1}{2}$ is a lower bound of $S$.
Let $r$ be an arbitrary real number such that $r>\frac{1}{2}$.
To prove $r$ is not a lower bound of $S$, we must prove there exists $x \in S$ such that $x<r$.

Since $2 \in \mathbb{N}$, then $1-\frac{(-1)^{2}}{2}=1-\frac{1}{2}=\frac{1}{2} \in S$.
Thus, there exists $\frac{1}{2} \in S$ such that $\frac{1}{2}<r$.
Hence, $r$ is not a lower bound of $S$, so every real number $r>\frac{1}{2}$ is not a lower bound of $S$.

Since $\frac{1}{2}$ is a lower bound of $S$ and every real number $r>\frac{1}{2}$ is not a lower bound of $S$, then $\frac{1}{2}$ is the greatest lower bound of $S$, so $\frac{1}{2}=\inf S$.

Exercise 70. Compute sup and inf of the set $\{x \in \mathbb{R}:|2 x+\pi|<\sqrt{2}\}$.
Solution. Let $S=\{x \in \mathbb{R}:|2 x+\pi|<\sqrt{2}\}$.
Since $|2(-1)+\pi|=\pi-2<\sqrt{2}$, then $-1 \in S$.
Hence, $S$ is not empty.
We prove $S=\left(\frac{\pi+\sqrt{2}}{-2}, \frac{\pi-\sqrt{2}}{-2}\right)$.
Observe that

$$
\begin{aligned}
x \in\left(\frac{\pi+\sqrt{2}}{-2}, \frac{\pi-\sqrt{2}}{-2}\right) & \Leftrightarrow \frac{\pi+\sqrt{2}}{-2}<x<\frac{\pi-\sqrt{2}}{-2} \\
& \Leftrightarrow \frac{\pi+\sqrt{2}}{-1}<2 x<\frac{\pi-\sqrt{2}}{-1} \\
& \Leftrightarrow-\pi-\sqrt{2}<2 x<-\pi+\sqrt{2} \\
& \Leftrightarrow-\sqrt{2}<2 x+\pi<\sqrt{2} \\
& \Leftrightarrow|2 x+\pi|<\sqrt{2} \\
& \Leftrightarrow x \in S .
\end{aligned}
$$

Therefore, $\left(\frac{\pi+\sqrt{2}}{-2}, \frac{\pi-\sqrt{2}}{-2}\right)=S$.
Therefore, $\sup S=\frac{\pi-\sqrt{2}}{-2}$ and $\inf S=\frac{\pi+\sqrt{2}}{-2}$.
Exercise 71. Let $S \subset \mathbb{R}$.
Let $r \in \mathbb{R}$.
Then $r=\sup (S)$ iff $(\forall x \in S)(x \leq r)$ and $(\forall \epsilon>0)(\exists s \in S)(r-\epsilon<s)$.
Proof. We first prove if $(\forall x \in S)(x \leq r)$ and $(\forall \epsilon>0)(\exists s \in S)(r-\epsilon<s)$, then $r=\sup (S)$.

Suppose $(\forall x \in S)(x \leq r)$ and $(\forall \epsilon>0)(\exists s \in S)(r-\epsilon<s)$.

Since $x \leq r$ for all $x \in S$, then $r$ is an upper bound of $S$.
Let $M$ be an arbitrary real number less than $r$.
We prove $M$ is not an upper bound of $S$.
Since $M<r$, then $r-M>0$.
Hence, there exists $s \in S$ such that $r-(r-M)<s$.
Thus, there exists $s \in S$ such that $M<s$.
Since there exists $s \in S$ such that $s>M$, then $M$ is not an upper bound of $S$.

Therefore, every real number $M<r$ is not an upper bound of $S$.
Since $r$ is an upper bound of $S$ and every real number $M<r$ is not an upper bound of $S$, then $r$ is the least upper bound of $S$, so $r=\sup S$.

Conversely, we prove if $r=\sup (S)$, then $(\forall x \in S)(x \leq r)$ and $(\forall \epsilon>0)(\exists s \in$ $S)(r-\epsilon<s)$.

Suppose $r=\sup (S)$.
Then $r$ is the least upper bound of $S$, so $r$ is an upper bound of $S$ and any real number $M<r$ is not an upper bound of $S$.

Since $r \in \mathbb{R}$ and $r$ is an upper bound of $S$, then $(\forall x \in S)(x \leq r)$.
Let $\epsilon>0$ be given.
Then $\epsilon>r-r$, so $r>r-\epsilon$.
Since any real number $M$ less than $r$ is not an upper bound of $S$, then in particular, $r-\epsilon$ is not an upper bound of $S$.

Hence, there exists $s \in S$ such that $s>r-\epsilon$.
Therefore, for every $\epsilon>0$, there exists $s \in S$ such that $r-\epsilon<s$, so $(\forall \epsilon>0)(\exists s \in S)(r-\epsilon<s)$.

Exercise 72. Let $S \subset \mathbb{R}$ be nonempty.
Let $t, u \in \mathbb{R}$.
Then $u$ is an upper bound of $S$ iff $t>u$ implies $t \notin S$.
Proof. We prove if $u$ is an upper bound of $S$, then $t>u$ implies $t \notin S$.
Suppose $u$ is an upper bound of $S$.
Then if $t \in S$, then $t \leq u$.
Hence, if $t>u$, then $t \notin S$.

Conversely, we prove if $t>u$ implies $t \notin S$, then $u$ is an upper bound of $S$.
Suppose $t>u$ implies $t \notin S$.
Then if $t \in S$, then $t \leq u$.
Since $S \neq \emptyset$, let $x \in S$.
Then $x \leq u$.
Thus, $x \leq u$ for all $x \in S$, so $u$ is an upper bound of $S$.
Exercise 73. Let $a \in \mathbb{R}$.
Let $S=\{s \in \mathbb{Q}: s<a\}$.
Then $\sup S=a$.

Proof. Let $s \in S$.
Then $s \in \mathbb{Q}$ and $s<a$.
Thus, $s<a$ for all $s \in S$, so $a$ is an upper bound of $S$.

Let $b \in \mathbb{R}$ such that $b<a$.
Since $\mathbb{Q}$ is dense in $\mathbb{R}$, then there exists $q \in \mathbb{Q}$ such that $b<q<a$, so $b<q$ and $q<a$.

Since $q \in \mathbb{Q}$ and $q<a$, then $q \in S$.
Since $q \in S$ and $q>b$, then $b$ is not an upper bound of $S$.
Hence, every real number $b$ less than $a$ is not an upper bound of $S$.
Therefore, $a=\sup S$.
Exercise 74. Let $S \subset \mathbb{R}$ such that $B \in S$ and $B$ is an upper bound of $S$.
Then $B=\sup S$.
Proof. Since $B$ is an upper bound of $S$, then $S$ has at least one upper bound in R.

Let $M$ be an arbitrary upper bound of $S$ in $\mathbb{R}$.
Since $B \in S$ and $M$ is an upper bound of $S$, then $B \leq M$.
Thus, $B \leq M$ for any upper bound $M$ of $S$.
Since $B$ is an upper bound of $S$ and $B \leq M$ any upper bound $M$ of $S$, then $B$ is the least upper bound of $S$.

Therefore, $B=\sup S$.
Lemma 75. Let $S \subset \mathbb{R}$.
If $\sup S$ exists, then every real number $r>\sup S$ is an upper bound of $S$.
Proof. Suppose sup $S$ exists.
Let $r$ be an arbitrary real number such that $r>\sup S$.
Since $\sup S$ exists, then $S \neq \emptyset$.
Let $x \in S$.
Since $\sup S$ is an upper bound of $S$, then $x \leq \sup S$.
Since $x \leq \sup S$ and $\sup S<r$, then $x<r$.
Thus, $x<r$ for all $x \in S$, so $r$ is an upper bound of $S$.
Exercise 76. Let $S \subset \mathbb{R}$ such that sup $S$ exists. Then

1. $\sup S-\frac{1}{n}$ is not an upper bound of $S$ for all $n \in \mathbb{N}$.
2. $\sup S+\frac{1}{n}$ is an upper bound of $S$ for all $n \in \mathbb{N}$.

Proof. We prove 1.
Let $n \in \mathbb{N}$ be arbitrary.
Then $n>0$, so $\frac{1}{n}>0$.
Thus, $\frac{1}{n}>\sup S-\sup S$, so $\sup S+\frac{1}{n}>\sup S$.
Hence, $\sup S>\sup S-\frac{1}{n}$.
Since $\sup S$ is the least upper bound of $S$, then for every real number $r<$ $\sup S, r$ is not an upper bound of $S$.

Since $\sup S-\frac{1}{n}<\sup S$, then we conclude $\sup S-\frac{1}{n}$ is not an upper bound of $S$.

Proof. We prove 2.
Let $n \in \mathbb{N}$ be arbitrary.
Then $n>0$, so $\frac{1}{n}>0$.
Thus, $\sup S+\frac{1}{n}>\sup S$.
Since $\sup S$ exists, then every real number $r>\sup S$ is an upper bound of $S$.

Since $\sup S+\frac{1}{n}>\sup S$, then we conclude $\sup S+\frac{1}{n}$ is an upper bound of $S$.

Exercise 77. Let $S$ be a subset of an ordered field $F$.
If $b \in F$ and $b$ is an upper bound for $S$, then $\sup S \leq b$.
Proof. Suppose $b \in F$ and $b$ is an upper bound for $S$.
Since $\sup S$ is the least upper bound of $S$, then for every $b \in F$ such that $b<\sup S, b$ is not an upper bound of $S$.

Thus, if $b \in F$ and $b<\sup S$, then $b$ is not an upper bound of $S$.
Hence, if $b \in F$ and $b$ is an upper bound of $S$, then $b \geq \sup S$.
Since $b \in F$ and $b$ is an upper bound of $S$, then we conclude $b \geq \sup S$, so $\sup S \leq b$.

Exercise 78. Let $A$ and $B$ be subsets of an ordered field $F$.
If $A$ is unbounded above in $F$ and $(\forall x \in A)(\exists y \in B)(x \leq y)$, then $B$ is unbounded above in $F$.

Proof. Suppose $A$ is unbounded above in $F$ and $(\forall x \in A)(\exists y \in B)(x \leq y)$.
Let $b \in F$ be arbitrary.
Since $A$ is unbounded above in $F$, then there exists $x \in A$ such that $x>b$.
Since $x \in A$, then there exists $y \in B$ such that $x \leq y$.
Thus, $b<x \leq y$, so $b<y$.
Hence, there exists $y \in B$ such that $y>b$.
Therefore, $B$ is unbounded above in $F$.
Exercise 79. Let $S=\{\sqrt[n]{n}: n \in \mathbb{N}\}$.
Compute $\max S, \min S, \sup S, \inf S$, if they exist.
Solution. We prove $\max S=\sqrt[3]{3}$.
Since $3 \in \mathbb{N}$, then $\sqrt[3]{3} \in S$.
We prove $\sqrt[3]{3}$ is an upper bound of $S$.
Let $x \in S$.
Then $x \in \mathbb{R}$ and there exists $n \in \mathbb{N}$ such that $x=\sqrt[n]{n}$.
To prove $\sqrt[3]{3}$ is an upper bound of $S$, we must prove $x \leq \sqrt[3]{3}$.
Suppose for the sake of contradiction that $x>\sqrt[3]{3}$.
Then $\sqrt[n]{n}>\sqrt[3]{3}$, so $n^{\frac{1}{n}}>3^{\frac{1}{3}}$.
Since $n^{\frac{1}{n}}>3^{\frac{1}{3}}>0$ and $3 n \in \mathbb{N}$, then $\left(n^{\frac{1}{n}}\right)^{3 n}>\left(3^{\frac{1}{3}}\right)^{3 n}$, so $n^{3}>3^{n}$.
Thus, there exists $n \in \mathbb{N}$ such that $n^{3}>3^{n}$.
Since $n \in \mathbb{N}$, then either $n=1$ or $n=2$ or $n=3$ or $n>3$.
Since $1=1^{3}<3^{1}=3$, then $n \neq 1$.
Since $8=2^{3}<3^{2}=9$, then $n \neq 2$.

Since $3^{3} \ngtr 3^{3}$, then $n \neq 3$.
Hence, $n$ cannot be 1 or 2 or 3 .
We prove $n^{3}<3^{n}$ for all natural numbers $n>3$ by induction on $n$.
Define predicate $p(n): n^{3}<3^{n}$ for all natural numbers $n>3$.
Since $64=4^{3}<3^{4}=81$, then $p(4)$ is true.
Suppose $n>3$ such that $p(n)$ is true.
Then $n^{3}<3^{n}$.
To prove $p(n+1)$, we must prove $(n+1)^{3}<3^{n+1}$.
Since $n>3$, then $2 n>6$, so $2 n-3>3$.
Since $n>3$ and $2 n-3>3$, then $n(2 n-3)>3 \cdot 3$, so $2 n^{2}-3 n>9>4$.
Hence, $2 n^{2}-3 n>4$, so $2 n^{2}-3 n-3>1$.
Since $n>1$ and $2 n^{2}-3 n-3>1$, then $n\left(2 n^{2}-3 n-3\right)>1 \cdot 1$, so $2 n^{3}-3 n^{2}-3 n>1$.

Thus, $2 n^{3}>3 n^{2}+3 n+1$, so $3 n^{3}>n^{3}+3 n^{2}+3 n+1=(n+1)^{3}$.
Hence, $3 n^{3}>(n+1)^{3}$, so $(n+1)^{3}<3 n^{3}$.
Since $n^{3}<3^{n}$, then $3 n^{3}<3^{n+1}$.
Thus, $(n+1)^{3}<3 n^{3}$ and $3 n^{3}<3^{n+1}$, so $(n+1)^{3}<3^{n+1}$.
Therefore, $p(n+1)$ is true, as desired.
Hence, by induction, $n^{3}<3^{n}$ for all $n>3$.
Thus, $n^{3} \ngtr 3^{n}$ for all $n>3$.
Therefore, $n$ cannot be greater than 3 .
Thus, there is no $n \in \mathbb{N}$ such that $n^{3}>3^{n}$.
Therefore, $x \leq \sqrt[3]{3}$.
Hence $\sqrt[3]{3}$ is an upper bound of $S$.
Since $\sqrt[3]{3} \in S$ and $\sqrt[3]{3}$ is an upper bound of $S$, then $\sqrt[3]{3}=\max S=\sup S$.
We prove $\min S=1$.
Since $1 \in \mathbb{N}$ and $1=1^{\frac{1}{n}}$, then $1 \in S$.
We prove 1 is a lower bound of $S$.
Let $y \in S$.
Then $y \in \mathbb{R}$ and there exists $n \in \mathbb{N}$ such that $y=\sqrt[n]{n}$.
To prove 1 is a lower bound of $S$, we must prove $1 \leq y$.
Suppose for the sake of contradiction that $1>y$.
Then $1>\sqrt[n]{n}$.
Since $n>0$, then $\sqrt[n]{n}>0$.
Since $1>\sqrt[n]{n}>0$ and $n \in \mathbb{N}$, then $1^{n}>(\sqrt[n]{n})^{n}$.
Hence, $1>n$, so $n<1$.
But, $n \in \mathbb{N}$, so $n \geq 1$.
Thus, we have $n<1$ and $n \geq 1$, a violation of trichotomy.
Therefore, $1 \leq y$, so 1 is a lower bound of $S$.
Since $1 \in S$ and 1 is a lower bound of $S$, then $1=\min S=\inf S$.
Exercise 80. Let $S$ be a set of positive real numbers.
Let $T=\left\{x^{2}: x \in S\right\}$.
If $\sup S$ exists, then $\sup T=(\sup S)^{2}$.

Proof. We first prove $(\sup S)^{2}$ is an upper bound of $T$.
Since $\sup S$ exists, then $S \neq \emptyset$.
Let $x \in S$.
Then $x^{2} \in T$, so $T \neq \emptyset$.
Let $t \in T$ be arbitrary.
Then $t=s^{2}$ for some $s \in S$.
Since $s \in S$, then $s>0$.
Since $s \in S$ and $\sup S$ is an upper bound of $S$, then $s \leq \sup S$.
Thus, $0<s \leq \sup S$, so $0<s^{2}=t \leq(\sup S)^{2}$ and $0<\sup S$.
Hence, $t \leq(\sup S)^{2}$, so $(\sup S)^{2}$ is an upper bound of $T$.

We next prove $(\sup S)^{2}$ is the least upper bound of $T$.
Let $\epsilon>0$ be given.
Since $\sup S>0$, then $\frac{\epsilon}{2 \sup S}>0$.
Since $\sup S$ is the least upper bound of $S$, then there exists $x \in S$ such that $x>\sup S-\frac{\epsilon}{2 \sup S}$.

Hence, $\frac{\epsilon}{2 \sup S}>\sup S-x$.
Since $x \in S$, then $x>0$.
Since $x \in S$ and $\sup S$ is an upper bound of $S$, then $x \leq \sup S$.
Thus, $0<x \leq \sup S$.
Therefore, $0<2 x \leq \sup S+x \leq 2 \sup S$ and $0 \leq \sup S-x$.
Hence, $0<\sup S+x \leq 2 \sup \bar{S}$ and $0 \leq \sup \bar{S}-x<\frac{\epsilon}{2 \sup S}$, so $(\sup S+$
$x)(\sup S-x)<\epsilon$.
Consequently, $(\sup S)^{2}-x^{2}<\epsilon$, so $(\sup S)^{2}-\epsilon<x^{2}$.
Let $t=x^{2}$.
Since $x \in S$, then $t \in T$, so $(\sup S)^{2}-\epsilon<t$.
Therefore, $t>(\sup S)^{2}-\epsilon$, as desired.
Exercise 81. Let $A \subset \mathbb{R}$.
Let $B=\left\{x^{2}: x \in A\right\}$.

1. If $\sup A$ and $\sup B$ exist, then $\sup B \geq(\sup A)^{2}$.
2. If $\inf A$ and $\inf B$ exist, then $\inf B \leq(\inf A)^{2}$.

Proof. We prove 1.
We prove if $\sup A$ and $\sup B$ exist, then $\sup B \geq(\sup A)^{2}$.
Suppose $\sup A$ and $\sup B$ exist in $\mathbb{R}$.
Either $\sup A \geq 0$ or $\sup A<0$.
We consider these cases separately.
Case 1: Suppose $\sup A \leq 0$.
Since $\sup A$ exists, then $A$ is not empty.
Let $x \in A$.
Since $\sup A$ is an upper bound of $A$, then $x \leq \sup A$.
Thus, $x \leq \sup A \leq 0$, so $-x \geq-\sup A \geq 0$.
Hence, $0 \leq-\sup A \leq-x$, so $0 \leq(\sup A)^{2} \leq x^{2}$.
Thus, $(\sup A)^{2} \leq x^{2}$.
Since $x^{2} \in B$ and $\sup B$ is an upper bound of $B$, then $x^{2} \leq \sup B$.

Hence, $(\sup A)^{2} \leq x^{2} \leq \sup B$, so $(\sup A)^{2} \leq \sup B$.
Therefore, $\sup B \geq(\sup A)^{2}$, as desired.
Case 2: Suppose $\sup A>0$.
Since $\sup A$ exists, then $A$ is not empty.
Let $x \in A$.
Then $x^{2} \in B$.
Since $\sup B$ is an upper bound of $B$, then $x^{2} \leq \sup B$.
Since $x^{2} \geq 0$ and $x^{2} \leq \sup B$, then $0 \leq x^{2} \leq \sup B$, so $0 \leq \sup B$.
Suppose for the sake of contradiction $\sup B<(\sup A)^{2}$.
Then $0 \leq \sup B<(\sup A)^{2}$.
Hence, $0 \leq \sqrt{\sup B}<\sup A$, so $\sqrt{\sup B}<\sup A$.
Thus, $\sup A-\sqrt{\sup B}>0$.
Since $\sup A$ is the least upper bound of $A$, then there exists $a \in A$ such that $a>\sup A-(\sup A-\sqrt{\sup B})$.

Hence, there exists $a^{2} \in B$ such that $a>\sqrt{\sup B}$.
Since $a>\sqrt{\sup B} \geq 0$, then $a^{2}>\sup B$.
Therefore, there exists $a^{2} \in B$ such that $a^{2}>\sup B$.
But, this contradicts the fact that $\sup B$ is an upper bound of $B$.
Therefore, $\sup B \geq(\sup A)^{2}$, as desired.
Proof. We prove 2.
We prove if $\inf A$ and $\inf B$ exist, then $\inf B \leq(\inf A)^{2}$.
Suppose inf $A$ and $\inf B$ exist in $\mathbb{R}$.
Suppose for the sake of contradiction $\inf B>(\inf A)^{2}$.
Either $\inf A \geq 0$ or $\inf A<0$.
We consider these cases separately.
Case 1: Suppose $\inf A<0$.
Then $-\inf A>0$.
Thus, $0<(\inf A)^{2}<\inf B$, so $0<\inf B$.
Hence, $\sqrt{\inf B}>0$.
Since $\sqrt{\inf B}>0$ and $-\inf A>0$, then $\sqrt{\inf B}-\inf A>0$.
Since $\inf A$ is the greatest lower bound of $A$, then there exists $a \in A$ such that $a<\inf A+(\sqrt{\inf B}-\inf A)$.

Thus, there exists $a \in A$ such that $a<\sqrt{\inf B}$.
Either $a \geq 0$ or $a<0$.
Suppose $a \geq 0$.
Then $0 \leq a<\sqrt{\inf B}$.
Hence, $0 \leq a^{2}<\inf B$.
Therefore, there exists $a^{2} \in B$ such that $a^{2}<\inf B$.
Suppose $a<0$.
Since $\inf A$ is a lower bound of $A$ and $a \in A$, then $\inf A \leq a$.
Hence, $\inf A \leq a<0$, so $-\inf A \geq-a>0$.
Thus, $0<-a \leq-\inf A$, so $0<a^{2} \leq(\inf A)^{2}$.
Therefore, $0<a^{2} \leq(\inf A)^{2}<\inf B$, so $0<a^{2}<\inf B$.
Hence, there exists $a^{2} \in B$ such that $a^{2}<\inf B$.
In either case, there exists $a^{2} \in B$ such that $a^{2}<\inf B$.

But, this contradicts the fact that $\inf B$ is a lower bound of $B$.
Case 2: Suppose inf $A \geq 0$.
Then $0 \leq(\inf A)^{2}<\inf B$, so $0 \leq \inf A<\sqrt{\inf B}$.
Thus, $\inf A<\sqrt{\inf B}$, so $\sqrt{\inf B}-\inf A>0$.
Since $\inf A$ is the greatest lower bound of $A$, then there exists $a \in A$ such that $a<\inf A+(\sqrt{\inf B}-\inf A)$.

Hence, there exists $a^{2} \in B$ such that $a<\sqrt{\inf B}$.
Since $\inf A$ is a lower bound of $A$ and $a \in A$, then $\inf A \leq a$.
Thus, $0 \leq \inf A \leq a<\sqrt{\inf B}$, so $0 \leq a<\sqrt{\inf B}$.
Hence, $0 \leq a^{2}<\inf B$, so $a^{2}<\inf B$.
Therefore, there exists $a^{2} \in B$ such that $a^{2}<\inf B$.
But, this contradicts the fact that $\inf B$ is a lower bound of $B$.
Since a contradiction arises in all cases, then $\inf B \leq(\inf A)^{2}$, as desired.
Exercise 82. Let $S \subset \mathbb{R}$.
Here is a definition of least upper bound of $S$.
A real number $u$ is called a least upper bound of $S$ iff

1. $(\forall x \in S)(x \leq u)$.
2. $(\forall \epsilon>0)(\exists y \in S)(y>u-\epsilon)$.

Using the above definition of least upper bound of $S$, prove that there is at most one least upper bound of $S$.

Solution. This is a more elegant solution.
The statement there is at most one least upper bound of $S$ means that
if $x$ and $y$ are upper bounds of $S$, then $x=y$.
Define predicate: $A(x): x$ is a least upper bound of $S$ over domain of discourse $\mathbb{R}$.

Then the statement means $A(x) \wedge A(y) \Rightarrow x=y$, so we must prove $(\forall x)(\forall y)(A(x) \wedge$ $A(y) \rightarrow x=y)$.

To prove $(\forall x)(\forall y)(A(x) \wedge A(y) \rightarrow x=y)$, we assume arbitrary $a, b \in \mathbb{R}$ such that $A(a) \wedge A(b)$.

We must prove $a=b$.
To prove $a=b$, assume $a \neq b$ and use proof by contradiction.
Since $a \neq b$, then either $a<b$ or $a>b$.
Without loss of generality, we may assume $a<b$.
How can we derive the desired contradiction?
We must use the fact that $a$ and $b$ are lubs of $S$.
Thus we have:

1. $(\forall x \in S)(x \leq a)$
2. $(\forall \epsilon>0)(\exists y \in S)(y>a-\epsilon)$
3. $(\forall x \in S)(x \leq b)$
4. $(\forall \epsilon>0)(\exists y \in S)(y>b-\epsilon)$

To derive a contradiction among the 4 statements, we need to find a suitable $\epsilon>0$.

How should we choose $\epsilon$ ?
Since $a<b$, then $0<b-a$, so $b-a>0$.

Let's try $\epsilon=b-a$.
Can we derive a contradiction?
We consider the 4 facts given and see if any logical contradictions arise.
Since $\epsilon>0$ is a particular object, by universal elimination, $(\exists y \in S)(y>$ $a-\epsilon)$ and $(\exists y \in S)(y>b-\epsilon)$.

By existential elimination, let $y_{1}, y_{2}$ be some elements of $S$.
Then $y_{1}>a-\epsilon$ and $y_{2}>b-\epsilon$.
Hence, $y_{1}>a-(b-a)$, so $y_{1}>2 a-b$ and $y_{2}>b-(b-a)$, so $y_{2}>a$.
By universal elimination, since $(\forall x \in S)(x \leq a)$ and $y_{2} \in S$, then $y_{2} \leq a$.
Thus, we have $y_{2}>a$ and $y_{2} \leq a$.
Since $y_{2} \in S$ and $S \subset \mathbb{R}$, then $y_{2} \in \mathbb{R}$.
Hence, we have a violation of trichotomy of $\mathbb{R}$.
Thus, $a$ cannot be less than $b$, so it cannot be that $a \neq b$.
Therefore, $a=b$, as desired.
Proof. Let $S$ be a subset of $\mathbb{R}$.
Assume arbitrary real numbers $a$ and $b$ such that $a$ and $b$ are least upper bounds of $S$.

To prove $a=b$, suppose for the sake of contradiction that $a \neq b$.
Since $a \neq b$, then either $a<b$ or $a>b$.
Without loss of generality, we may assume $a<b$.
Since $a$ and $b$ are least upper bounds of $S$, then each element of $S$ is less than or equal to $a$ and for each positive real $\epsilon$, there corresponds $x \in S$ such that $x>b-\epsilon$.

Let $\epsilon=b-a$.
Since $a<b$, then $b>a$, so $b-a>0$.
Hence, $\epsilon>0$.
Thus, there is $x \in S$ such that $x>b-\epsilon$.
Since $x>b-(b-a)$, then $x>a$.
Since $x \in S$, then $x \leq a$.
Hence, $x>a$ and $x \leq a$.
Thus, we have a violation of trichotomy of $\mathbb{R}$.
Consequently, $a$ cannot be less than $b$, so it cannot be that $a \neq b$.
Therefore, $a=b$, as desired.
Exercise 83. Let $A$ and $B$ be subsets of $\mathbb{R}$ such that $(\forall a \in A)(\exists b \in B)(a \leq b)$.
If $\sup A$ and $\sup B$ exist, then $\sup A \leq \sup B$.
Proof. Suppose sup $A$ and $\sup B$ exist.
Since $\sup A$ exists, then $A \neq \emptyset$.
Let $a \in A$ be given.
Then there exists $b \in B$ such that $a \leq b$.
Since $b \in B$ and $\sup B$ is an upper bound of $B$, then $b \leq \sup B$.
Thus, $a \leq b \leq \sup B$, so $a \leq \sup B$.
Hence, $\sup B$ is an upper bound of $A$.
Since $\sup A$ is the least upper bound of $A$ and $\sup B$ is an upper bound of $A$, then $\sup A \leq \sup B$.

Exercise 84. Let $A$ and $B$ be subsets of $\mathbb{R}$ such that $(\forall a \in A)(\forall b \in B)(a \leq b)$. If $\sup A$ and $\inf B$ exist, then $\sup A \leq \inf B$.

Proof. Suppose sup $A$ and $\inf B$ exist.
Since $\inf B$ exists, then $B \neq \emptyset$.
Let $b \in B$.
Then $a \leq b$ for all $a \in A$, so $b$ is an upper bound of $A$.
Since $\sup A$ is the least upper bound of $A$, then $\sup A \leq b$.
Since $b$ is arbitrary, then $\sup A \leq b$ for all $b \in B$, so $\sup A$ is a lower bound of $B$.

Since $\inf B$ is the greatest lower bound of $B$, then $\sup A \leq \inf B$.
Proposition 85. Let $A$ and $B$ be subsets of $\mathbb{R}$ such that $(\forall a \in A)(\forall b \in B)(a \leq$ b).

If $\sup A$ and $\sup B$ exist, then $\sup A \leq \sup B$.
Proof. Suppose sup $A$ and $\sup B$ exist.
Since $\sup B$ exists, then $B \neq \emptyset$, so there exists $b \in B$.
Thus, $a \leq b$ for all $a \in A$, so $b$ is an upper bound of $A$.
Since $\sup A$ is the least upper bound of $A$, then $\sup A \leq b$.
Since $b \in B$ and $\sup B$ is an upper bound of $B$, then $b \leq \sup B$.
Therefore, $\sup A \leq b \leq \sup B$, so $\sup A \leq \sup B$.
Exercise 86. Let $A$ and $B$ be nonempty sets of real numbers.
Let $\delta(A, B)=\inf \{|a-b|: a \in A, b \in B\}$.
We call $\delta(A, B)$ the distance betweens sets $A$ and $B$.

1. Let $A=\mathbb{N}$ and $B=\mathbb{R}-\mathbb{N}$. What is $\delta(A, B)$ ?
2. If $A$ and $B$ are finite sets, what does $\delta(A, B)$ represent?

Solution. We compute $\delta(A, B)$ when $A=\mathbb{N}$ and $B=\mathbb{R}-\mathbb{N}$.
Let $S=\{|a-b|: a \in A, b \in B\}$.
Then $\delta(A, B)=\inf S$.
Since $A$ and $B$ are not empty, then there is at least one element in $A$ and $B$. Let $x \in S$.
Then there exists $a \in A$ and $b \in B$ such that $x=|a-b|$.
Since $a \in A$ and $A=\mathbb{N} \subset \mathbb{R}$, then $a \in \mathbb{R}$.
Since $b \in B$ and $B=\mathbb{R}-\mathbb{N}$, then $b \in \mathbb{R}$ and $b \notin \mathbb{N}$.
Since $a \in \mathbb{R}$ and $b \in \mathbb{R}$, then $a-b \in \mathbb{R}$, so $|a-b| \in \mathbb{R}$.
Since $|x| \geq 0$ for any $x \in \mathbb{R}$, then $|a-b| \geq 0$.
Hence, $x \geq 0$, so $0 \leq x$.
Therefore, 0 is a lower bound of $S$.
We prove $0=\inf S$.
Let $\epsilon>0$.
To prove 0 is the greatest lower bound of $S$, we must prove there exists $s \in S$ such that $s<\epsilon$.

Either $\epsilon>1$ or $\epsilon=1$ or $\epsilon<1$.
We consider these cases separately.

Case 1: Suppose $\epsilon>1$.
Then $1<\epsilon$.
Since $0 \in \mathbb{R}$ and $0 \notin \mathbb{N}$, then $0 \in B$.
Since $1 \in A$ and $0 \in B$, then $|1-0|=1 \in S$.
Thus, there exists $1 \in S$ such that $1<\epsilon$.
Case 2: Suppose $\epsilon=1$.
Since $\frac{1}{2} \in \mathbb{R}$ and $\frac{1}{2} \notin \mathbb{N}$, then $\frac{1}{2} \in B$.
Since $1 \in A$ and $\frac{1}{2} \in B$, then $\left|1-\frac{1}{2}\right|=\frac{1}{2} \in S$.
Thus, there exists $\frac{1}{2} \in S$ such that $\frac{1}{2}<1=\epsilon$.
Case 3: Suppose $\epsilon<1$.
Then $0<\epsilon<1$.
Hence, $\frac{\epsilon}{2} \in \mathbb{R}$ and $0<\frac{\epsilon}{2}<1$.
Suppose $1-\frac{\epsilon}{2} \in \mathbb{N}$.
Then there exists $n \in \mathbb{N}$ such that $n=1-\frac{\epsilon}{2}$.
Hence, $2 n=2-\epsilon$, so $\epsilon=2-2 n$.
Since $n \in \mathbb{N}$ and $\mathbb{N} \subset \mathbb{Z}$, then $n \in \mathbb{Z}$.
Thus, $2-2 n \in \mathbb{Z}$, so $\epsilon \in \mathbb{Z}$.
But, $0<\epsilon<1$, so $\epsilon \notin \mathbb{Z}$.
Therefore, $1-\frac{\epsilon}{2} \notin \mathbb{N}$.
Since $1-\frac{\epsilon}{2} \in \mathbb{R}$ and $1-\frac{\epsilon}{2} \notin \mathbb{N}$, then $1-\frac{\epsilon}{2} \in B$.
Since $\epsilon>0$ and $1 \in A$ and $1-\frac{\epsilon}{2} \in B$, then $\left|1-\left(1-\frac{\epsilon}{2}\right)\right|=\frac{\epsilon}{2} \in S$.
Since $\epsilon>0$ and $\frac{1}{2}<1$, then $\frac{\epsilon}{2}<\epsilon$.
Thus, there exists $\frac{\epsilon}{2} \in S$ such that $\frac{\epsilon}{2}<\epsilon$.
Therefore, in all cases, there exists $s \in S$ such that $s<\epsilon$, as desired.
Hence, $0=\inf S$.
Therefore, $\delta(A, B)=\inf S=0$.

We answer 2.
We try various examples of $A$ and $B$ as nonempty finite sets.
It turns out that $\delta(A, B)$ represents the distance of the element in $A$ that is closest to an element of $B$.

In addition, since $A$ and $B$ are finite sets, then so is $S$.
Exercise 87. Let $X=Y=(0,1)$.
Let $h: X \times Y \rightarrow \mathbb{R}$ be a function defined by $h(x, y)=2 x+y$.

1. If $f(x)=\sup \{h(x, y): y \in Y\}$ for each $x \in X$, then $f(x)=2 x+1$ and $\inf \{f(x): x \in X\}=1$.
2. If $g(y)=\inf \{h(x, y): x \in X\}$ for each $y \in Y$, then $g(y)=y$ and $\sup \{g(y): y \in Y\}=1$.

Proof. We prove 1.
Let $x \in X$ be given.

Then

$$
\begin{aligned}
f(x) & =\sup \{h(x, y): y \in Y\} \\
& =\sup \{2 x+y: y \in Y\} \\
& =2 x+\sup Y \\
& =2 x+\sup (0,1) \\
& =2 x+1
\end{aligned}
$$

Observe that

$$
\begin{aligned}
\inf \{f(x): x \in X\} & =\inf \{2 x+1: x \in X\} \\
& =\inf \{1+2 x: x \in X\} \\
& =1+\inf \{2 x: x \in X\} \\
& =1+2 \inf X \\
& =1+2 \inf (0,1) \\
& =1+2 \cdot 0 \\
& =1
\end{aligned}
$$

Proof. We prove 2.
Let $y \in Y$ be given.
Then

$$
\begin{aligned}
g(y) & =\inf \{h(x, y): x \in X\} \\
& =\inf \{2 x+y: x \in X\} \\
& =\inf \{y+2 x: x \in X\} \\
& =y+\inf \{2 x: x \in X\} \\
& =y+2 \inf X \\
& =y+2 \inf (0,1) \\
& =y+2 \cdot 0 \\
& =y
\end{aligned}
$$

Observe that

$$
\begin{aligned}
\sup \{g(y): y \in Y\} & =\sup \{y: y \in Y\} \\
& =\sup Y \\
& =\sup (0,1) \\
& =1
\end{aligned}
$$

Exercise 88. Let $X=Y=(0,1)$.
Let $h: X \times Y \rightarrow \mathbb{R}$ be a function defined by

$$
h(x, y)= \begin{cases}0 & \text { if } x<y \\ 1 & \text { if } x \geq y\end{cases}
$$

1. If $f(x)=\sup \{h(x, y): y \in Y\}$ for each $x \in X$, then $f(x)=1$.
2. If $g(y)=\inf \{h(x, y): x \in X\}$ for each $y \in Y$, then $g(y)=0$.

Proof. We prove 1.
Suppose $f(x)=\sup \{h(x, y): y \in Y\}$ for each $x \in X$.
Let $x \in X$ be arbitrary.
Then $x \in(0,1)$, so $0<x<1$.
Hence, $0<x$ and $x<1$.
Let $S=\{h(x, y): y \in Y\}$.
We prove $0 \in S$.
Let $y=\frac{x+1}{2}$.
Since $-1<0<x<1$, then $-1<x<1$, so $0<x+1<2$.
Thus, $0<\frac{x+1}{2}<1$, so $0<y<1$.
Hence, $y \in(0,1)$, so $y \in Y$.
Since $x<1$, then $2 x<x+1$, so $x<\frac{x+1}{2}$.
Thus, $x<y$.
Since $y \in Y$ and $x<y$, then $h(x, y)=0$, so $0 \in S$.

We prove $1 \in S$.
Let $y^{\prime}=\frac{x}{2}$.
Since $0<x<1<2$, then $0<x<2$, so $0<\frac{x}{2}<1$.
Thus, $0<y^{\prime}<1$, so $y^{\prime} \in(0,1)$.
Therefore, $y^{\prime} \in Y$.
Since $0<x$, then $x<2 x$, so $\frac{x}{2}<x$.
Thus, $y^{\prime}<x$.
Since $y^{\prime} \in Y$ and $x>y^{\prime}$, then $h\left(x, y^{\prime}\right)=1$, so $1 \in S$.
Since $0 \in S$ and $1 \in S$, then $\{0,1\} \subset S$.
We prove $S \subset\{0,1\}$.
Suppose $s \in S$.
Then there exists $t \in Y$ such that $s=h(x, t)$.
Since $t \in Y$ and $Y \subset \mathbb{R}$, then $t \in \mathbb{R}$, so either $t>x$ or $t \leq x$.
We consider these cases separately.
Case 1: Suppose $t>x$.
Since $t \in Y$ and $x<t$, then $s=h(x, t)=0$.
Case 2: Suppose $t \leq x$.

Since $t \in Y$ and $x \geq t$, then $s=h(x, t)=1$.
Thus, either $s=0$ or $s=1$, so either $s \in\{0\}$ or $s \in\{1\}$.
Hence, $s \in\{0\} \cup\{1\}$, so $s \in\{0,1\}$.
Therefore, if $s \in S$, then $s \in\{0,1\}$, so $S \subset\{0,1\}$.
Since $S \subset\{0,1\}$ and $\{0,1\} \subset S$, then $S=\{0,1\}$.
Therefore,

$$
\begin{aligned}
f(x) & =\sup \{h(x, y): y \in Y\} \\
& =\sup S \\
& =\sup \{0,1\} \\
& =1
\end{aligned}
$$

Thus, $f(x)=1$ for all $x \in X$.
Proof. We prove 2.
Suppose $g(y)=\inf \{h(x, y): x \in X\}$ for each $y \in Y$.
Let $y \in Y$ be arbitrary.
Then $y \in(0,1)$, so $0<y<1$.
Hence, $0<y$ and $y<1$.
Let $S=\{h(x, y): x \in X\}$.
We prove $0 \in S$.
Let $x=\frac{y}{2}$.
Since $0<y<1<2$, then $0<y<2$, so $0<\frac{y}{2}<1$.
Thus, $0<x<1$, so $x \in(0,1)$.
Hence, $x \in X$.
Since $0<y$, then $y<2 y$, so $\frac{y}{2}<y$.
Thus, $x<y$.
Since $x \in X$ and $x<y$, then $h(x, y)=0$, so $0 \in S$.
We prove $1 \in S$.
Let $x^{\prime}=\frac{y+1}{2}$.
Since $-1<0<y<1$, then $-1<y<1$, so $0<y+1<2$.
Thus, $0<\frac{y+1}{2}<1$, so $x^{\prime} \in(0,1)$.
Therefore, $x^{\prime} \in X$.
Since $y<1$, then $2 y<y+1$, so $y<\frac{y+1}{2}$.
Thus, $y<x^{\prime}$.
Since $x^{\prime} \in X$ and $x^{\prime}>y$, then $h\left(x^{\prime}, y\right)=1$, so $1 \in S$.
Since $0 \in S$ and $1 \in S$, then $\{0,1\} \subset S$.

We prove $S \subset\{0,1\}$.
Suppose $s \in S$.
Then there exists $t \in X$ such that $s=h(t, y)$.
Since $t \in X$ and $X \subset \mathbb{R}$, then $t \in \mathbb{R}$, so either $t>y$ or $t \leq y$.
We consider these cases separately.
Case 1: Suppose $t>y$.
Since $t \in X$ and $t>y$, then $s=h(t, y)=1$.
Case 2: Suppose $t \leq y$.
Since $t \in X$ and $t \leq y$, then $s=h(t, y)=0$.
Thus, either $s=0$ or $s=1$, so either $s \in\{0\}$ or $s \in\{1\}$.
Hence, $s \in\{0\} \cup\{1\}$, so $s \in\{0,1\}$.
Therefore, if $s \in S$, then $s \in\{0,1\}$, so $S \subset\{0,1\}$.

Since $S \subset\{0,1\}$ and $\{0,1\} \subset S$, then $S=\{0,1\}$.
Therefore,

$$
\begin{aligned}
g(y) & =\inf \{h(x, y): x \in X\} \\
& =\inf S \\
& =\inf \{0,1\} \\
& =0
\end{aligned}
$$

Thus, $g(y)=0$ for all $y \in Y$.

## Complete ordered fields

Exercise 89. Analyze boundedness of $\mathbb{Q}$.

## Solution.

Exercise 90. Analyze boundedness of $\mathbb{R}$.
Solution. To prove there is no upper bound of $\mathbb{R}$, we prove for every $r \in \mathbb{R}$ there exists $x \in \mathbb{R}$ such that $x>r$.

Let $r \in \mathbb{R}$ be arbitrary.
Let $x=r+1$.
Then $x \in \mathbb{R}$ by closure of $\mathbb{R}$ under addition.
Since $1>0$, then $r+1>r$.
Hence, $x>r$.
Thus, there exists a real number greater than $r$.
Therefore, $\mathbb{R}$ is unbounded above, so there is no upper bound of $\mathbb{R}$.
Since there is no upper bound of $\mathbb{R}$, then there can be no greatest element of $\mathbb{R}$.

Therefore, $\max \mathbb{R}$ does not exist.
Since there is no upper bound of $\mathbb{R}$, then there can be no least upper bound of $\mathbb{R}$.

Therefore, $\sup \mathbb{R}$ does not exist.

To prove there is no lower bound of $\mathbb{R}$, we prove for every $r \in \mathbb{R}$ there exists $x \in \mathbb{R}$ such that $x<r$.

Let $r \in \mathbb{R}$.
Let $x=r-1$.
Then $x \in \mathbb{R}$ by closure of $\mathbb{R}$ under subtraction.
Since $1>0$, then $-1<0$, so $r-1<r$.
Hence, $x<r$.
Thus, there exists a real number less than $r$.
Therefore, $\mathbb{R}$ is unbounded below, so there is no lower bound of $\mathbb{R}$.
Since there is no lower bound of $\mathbb{R}$, then there can be no least element of $\mathbb{R}$. Therefore, $\min \mathbb{R}$ does not exist.
Since there is no lower bound of $\mathbb{R}$, then there can be no greatest lower bound of $\mathbb{R}$.

Therefore, $\inf \mathbb{R}$ does not exist.

## Exercise 91. $\mathbb{N}$ is unbounded above in $\mathbb{R}$

For every real number $x$, there exists a natural number $n$ such that $n>x$.
Proof. To prove $\mathbb{N}$ is unbounded above in $\mathbb{R}$, we must prove there is no upper bound of $\mathbb{N}$ in $\mathbb{R}$.

We prove by contradiction.
Suppose there is an upper bound of $\mathbb{N}$ in $\mathbb{R}$.
Then $\mathbb{N}$ is bounded above in $\mathbb{R}$.
Since $1 \in \mathbb{N}$, then $\mathbb{N}$ is not empty.
Since $\mathbb{N} \subset \mathbb{R}$, then $\mathbb{N}$ is a subset of $\mathbb{R}$.
Thus, $\mathbb{N}$ is a nonempty subset of $\mathbb{R}$ that is bounded above in $\mathbb{R}$.
Hence, by the completeness of $\mathbb{R}, \mathbb{N}$ has a least upper bound in $\mathbb{R}$.
Let $b$ be the least upper bound of $\mathbb{N}$ in $\mathbb{R}$.
Then $b \in \mathbb{R}$ and $b$ is an upper bound of $\mathbb{N}$.
Since $b-1<b$, then $b-1$ is not an upper bound of $\mathbb{N}$.
Hence, there exists $n \in \mathbb{N}$ such that $n>b-1$.
Thus, $n+1>b$.
Therefore, there exists $n+1 \in \mathbb{N}$ such that $n+1>b$.
This contradicts the fact that $b$ is an upper bound of $\mathbb{N}$.
Therefore, there is no upper bound of $\mathbb{N}$ in $\mathbb{R}$.
Exercise 92. Let $E \neq \emptyset$.
Let $f: E \rightarrow \mathbb{R}$ be a function with bounded range.
Let $a \in \mathbb{R}$.

1. Then $\sup \{a+f(x): x \in E\}=a+\sup \{f(x): x \in E\}$.
2. Then $\inf \{a+f(x): x \in E\}=a+\inf \{f(x): x \in E\}$.

Proof. Let $f(E)=\{f(x): x \in E\}$.
Since $E \neq \emptyset$, let $x \in E$.
Then $f(x) \in f(E)$, so $f(E) \neq \emptyset$.
Since the range of $f$ is bounded, then $f(E)$ is bounded, so $f(E)$ is bounded above and below in $\mathbb{R}$.

Since $f(E)$ is not empty and bounded above in $\mathbb{R}$, then by completeness of $\mathbb{R}, \sup f(E)$ exists.

Since $f(E)$ is not empty and bounded below in $\mathbb{R}$, then by completeness of $\mathbb{R}, \inf f(E)$ exists.

Let $a+f(E)=\{a+f(x): x \in E\}$.
We must prove $\sup (a+f(E))=a+\sup f(E)$ and $\inf (a+f(E))=a+\inf f(E)$.
Since $\sup f(E)$ exists, then $\sup (a+f(E))=a+\sup (f(E))$.
Since $\inf f(E)$ exists, then $\inf (a+f(E))=a+\inf (f(E))$.
Exercise 93. Let $E \neq \emptyset$.
Let $f: E \rightarrow \mathbb{R}$ be a function with bounded range.
Let $g: E \rightarrow \mathbb{R}$ be a function with bounded range.

1. Then $\sup \{f(x)+g(x): x \in E\} \leq \sup \{f(x): x \in E\}+\sup \{g(x): x \in E\}$.
2. Then $\inf \{f(x): x \in E\}+\inf \{g(x): x \in E\} \leq \inf \{f(x)+g(x): x \in E\}$.

Proof. Let $f(E)=\{f(x): x \in E\}$.
Since the range of $f$ is bounded, then $f(E)$ is bounded, so $f(E)$ is bounded above and below in $\mathbb{R}$.

Let $g(E)=\{g(x): x \in E\}$.
Since the range of $g$ is bounded, then $g(E)$ is bounded, so $g(E)$ is bounded above and below in $\mathbb{R}$.

Let $f(E)+g(E)=\{f(x)+g(x): x \in E\}$.
Since $E \neq \emptyset$, let $x \in E$.
Then $f(x) \in f(E)$ and $g(x) \in g(E)$, so $f(x)+g(x) \in f(E)+g(E)$.
Since $f(x) \in f(E)$, then $f(E) \neq \emptyset$.
Since $g(x) \in g(E)$, then $g(E) \neq \emptyset$.
Since $f(x)+g(x) \in f(E)+g(E)$, then $f(E)+g(E) \neq \emptyset$.
Since $f(E) \neq \emptyset$ and $f(E)$ is bounded above in $\mathbb{R}$, then by completeness of $\mathbb{R}, \sup f(E)$ exists.

Since $g(E) \neq \emptyset$ and $g(E)$ is bounded above in $\mathbb{R}$, then by completeness of $\mathbb{R}$, $\sup g(E)$ exists.

Since $f(x) \in f(E)$ and $\sup f(E)$ is an upper bound of $f(E)$, then $f(x) \leq$ $\sup f(E)$.

Since $g(x) \in g(E)$ and $\sup g(E)$ is an upper bound of $g(E)$, then $g(x) \leq$ $\sup g(E)$.

Hence, $f(x)+g(x) \leq \sup f(E)+\sup g(E)$.
Thus, $\sup f(E)+\sup g(E)$ is an upper bound of $f(E)+g(E)$, so $f(E)+g(E)$ is bounded above in $\mathbb{R}$.

Since $f(E)+g(E) \neq \emptyset$ and $f(E)+g(E)$ is bounded above in $\mathbb{R}$, then by completeness of $\mathbb{R}, \sup (f(E)+g(E))$ exists.

Since $\sup (f(E)+g(E))$ is the least upper bound of $f(E)+g(E)$ and $\sup f(E)+$ $\sup g(E)$ is an upper bound of $f(E)+g(E)$, then $\sup (f(E)+g(E)) \leq \sup f(E)+$ $\sup g(E)$, as desired.

Since $f(E) \neq \emptyset$ and $f(E)$ is bounded below in $\mathbb{R}$, then by completeness of $\mathbb{R}$, $\inf f(E)$ exists.

Since $g(E) \neq \emptyset$ and $g(E)$ is bounded below in $\mathbb{R}$, then by completeness of $\mathbb{R}$, $\inf g(E)$ exists.

Since $f(x) \in f(E)$ and $\inf f(E)$ is a lower bound of $f(E)$, then $\inf f(E) \leq$ $f(x)$.

Since $g(x) \in g(E)$ and $\inf g(E)$ is a lower bound of $g(E)$, then $\inf g(E) \leq$ $g(x)$.

Hence, $\inf f(E)+\inf g(E) \leq f(x)+g(x)$.
Thus, $\inf f(E)+\inf g(E)$ is a lower bound of $f(E)+g(E)$, so $f(E)+g(E)$ is bounded below in $\mathbb{R}$.

Since $f(E)+g(E) \neq \emptyset$ and $f(E)+g(E)$ is bounded below in $\mathbb{R}$, then by completeness of $\mathbb{R}, \inf (f(E)+g(E))$ exists.

Since $\inf (f(E)+g(E))$ is the greatest lower bound of $f(E)+g(E)$ and $\inf f(E)+\inf g(E)$ is a lower bound of $f(E)+g(E)$, then $\inf f(E)+\inf g(E) \leq$ $\inf (f(E)+g(E))$, as desired.

## Archimedean ordered fields

Exercise 94. Prove $\sup \left\{1-\frac{1}{n}: n \in \mathbb{N}\right\}=1$.
Proof. Let $A=\{1\}$.
Then $\sup A=1$.
Let $B=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$.
Let $A-B=\left\{1-\frac{1}{n}: n \in \mathbb{N}\right\}$.
We must prove $\sup (A-B)=1$.
Since $\inf \left\{\frac{1}{n}: n \in \mathbb{N}\right\}=0$, then $\inf B=0$.
Therefore, $\sup (A-B)=\sup A-\inf B=1-0=1$.
Proof. Let $S=\left\{1-\frac{1}{n}: n \in \mathbb{N}\right\}$.
We must prove $1=\sup S$.

We first prove 1 is an upper bound of $S$.
Since $1 \in \mathbb{N}$ and $1-\frac{1}{1}=1-1=0$, then $0 \in S$, so $S \neq \emptyset$.
Let $x \in S$.
Then there exists $n \in \mathbb{N}$ such that $x=1-\frac{1}{n}$.
Since $n \in \mathbb{N}$, then $n>0$, so $\frac{1}{n}>0$.
Thus, $\frac{1}{n}>1-1$, so $1+\frac{1}{n}>1$.
Hence, $1>1-\frac{1}{n}$, so $1>x$.
Thus, $x<1$ for all $x \in S$, so 1 is an upper bound of $S$.

To prove 1 is the least upper bound of $S$, we prove for every $\epsilon>0$, there exists $x \in S$ such that $x>1-\epsilon$.

Let $\epsilon>0$ be given.
By the Archimedean property of $\mathbb{R}$, there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<\epsilon$.

Thus, $\frac{-1}{n}>-\epsilon$, so $1-\frac{1}{n}>1-\epsilon$.
Let $x=1-\frac{1}{n}$.
Then $x \in S$ and $x>1-\epsilon$.
Therefore, 1 is the least upper bound of $S$, so $1=\sup S$.
Exercise 95. Let $S=\left\{\frac{1}{n}-\frac{1}{m}: m, n \in \mathbb{N}\right\}$.
Then $\sup S=1$ and $\inf S=-1$.
Proof. Let $A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$.
Then $\sup A=1$ and $\inf A=0$.
Let $B=\left\{\frac{1}{m}: m \in \mathbb{N}\right\}$.
Then $\sup B=1$ and $\inf B=0$.
Let $A-B=\left\{\frac{1}{n}-\frac{1}{m}: m, n \in \mathbb{N}\right\}$.
We must prove $\sup (A-B)=1$ and $\inf (A-B)=-1$.
Observe that $\sup (A-B)=\sup A-\inf B=1-0=1$.
Since $\sup (B-A)=\sup B-\inf A=1-0=1$, then $\inf (A-B)=-\sup (B-$
$A)=-1$.
Proof. Since $1 \in \mathbb{N}$ and $\frac{1}{1}-\frac{1}{1}=1-1=0$, then $0 \in S$, so $S \neq \emptyset$.
Let $x \in S$.
Then there exist $m, n \in \mathbb{N}$ such that $x=\frac{1}{n}-\frac{1}{m}$.
Since $m, n \in \mathbb{N}$, then $m \geq 1>0$ and $n \geq 1>0$, so $m \geq 1$ and $n \geq 1$ and $m>0$ and $n>0$.

Since $1 \leq m$ and $m>0$, then $\frac{1}{m} \leq 1$.
Since $m>0$, then $\frac{1}{m}>0$.
Thus, $0<\frac{1}{m} \leq 1$.
Since $1 \leq n$ and $n>0$, then $\frac{1}{n} \leq 1$.
Since $n>0$, then $\frac{1}{n}>0$.
Thus, $0<\frac{1}{n} \leq 1$.
Since $0<\frac{1}{n} \leq 1$ and $0<\frac{1}{m} \leq 1$, then by a previous exercise, we have $\left|\frac{1}{n}-\frac{1}{m}\right| \leq 1-0=1$, so $|x| \leq 1$.

Hence, $-1 \leq x \leq 1$, so $-1 \leq x$ and $x \leq 1$.
Thus, $-1 \leq x$ and $x \leq 1$ for all $x \in S$, so $-1 \leq x$ for all $x \in S$ and $x \leq 1$ for all $x \in S$.

Since $x \leq 1$ for all $x \in S$, then 1 is an upper bound of $S$.
Since $-1 \leq x$ for all $x \in S$, then -1 is a lower bound of $S$.

To prove 1 is the least upper bound of $S$, let $\epsilon>0$ be given.
We must prove there exists $x \in S$ such that $x>1-\epsilon$.
Since $\epsilon>0$, then by the Archimedean property of $\mathbb{R}$, there exists $m \in \mathbb{N}$ such that $\frac{1}{m}<\epsilon$.

Let $x=1-\frac{1}{m}$.
Since $1 \in \mathbb{N}$ and $m \in \mathbb{N}$ and $\frac{1}{1}-\frac{1}{m}=1-\frac{1}{m}=x$, then $x \in S$.
Since $\frac{1}{m}<\epsilon$, then $\frac{-1}{m}>-\epsilon$, so $1-\frac{1}{m}>1-\epsilon$.
Thus, $x>1-\epsilon$.
Since 1 is an upper bound of $S$ and for every $\epsilon>0$, there exists $x \in S$ such that $x>1-\epsilon$, then 1 is the least upper bound of $S$, so $1=\sup S$.

To prove -1 is the greatest lower bound of $S$, let $\epsilon>0$ be given.
We must prove there exists $x \in S$ such that $x<-1+\epsilon$.
Since $\epsilon>0$, then by the Archimedean property of $\mathbb{R}$, there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<\epsilon$.

Let $x=\frac{1}{n}-1$.
Since $1 \in \mathbb{N}$ and $n \in \mathbb{N}$ and $\frac{1}{n}-\frac{1}{1}=\frac{1}{n}-1=x$, then $x \in S$.
Since $\frac{1}{n}<\epsilon$, then $\frac{1}{n}-1<\epsilon-1$, so $x<\epsilon-1$.
Thus, $x<-1+\epsilon$.
Since -1 is a lower bound of $S$ and for every $\epsilon>0$, there exists $x \in S$ such that $x<-1+\epsilon$, then -1 is the greatest lower bound of $S$, so $-1=\inf S$.

Exercise 96. Let $S \subset \mathbb{R}$.
Let $B \in \mathbb{R}$.
If $B-\frac{1}{n}$ is not an upper bound of $S$ for all $n \in \mathbb{N}$ and $B+\frac{1}{n}$ is an upper bound of $S$ for all $n \in \mathbb{N}$, then $B=\sup S$.

Proof. Suppose that $B-\frac{1}{n}$ is not an upper bound of $S$ for all $n \in \mathbb{N}$ and $B+\frac{1}{n}$ is an upper bound of $S$ for all $n \in \mathbb{N}$.

We must prove $B=\sup S$.
Since $1 \in \mathbb{N}$, then $B-\frac{1}{1}=B-1$ is not an upper bound of $S$.
Hence, there exists $s \in S$ such that $s>B-1$.
Suppose $s>B$.
Then $s-B>0$.
By the Archimedean property of $\mathbb{R}$, there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<s-B$, so $B+\frac{1}{n}<s$.

Since $n \in \mathbb{N}$, then $B+\frac{1}{n}$ is an upper bound of $S$.
But, $s \in S$ and $s>B+\frac{1}{n}$ contradicts the fact that $B+\frac{1}{n}$ is an upper bound of $S$.

Hence, there does not exist $s \in S$ such that $s>B$.
Therefore, for every $s \in S$, we have $s \leq B$, so $B$ is an upper bound of $S$.
To prove $B$ is the least upper bound of $S$, let $\epsilon>0$ be given.
We must prove there exists $x \in S$ such that $x>B-\epsilon$.
Since $\epsilon>0$, then by the Archimedean property of $\mathbb{R}$, there exists $m \in \mathbb{N}$ such that $\frac{1}{m}<\epsilon$.

Hence, $\frac{-1}{m}>-\epsilon$, so $B-\frac{1}{m}>B-\epsilon$.
Since $m \in \mathbb{N}$, then $B-\frac{1}{m}$ is not an upper bound of $S$.
Thus, there exists $x \in S$ such that $x>B-\frac{1}{m}$.
Since $x>B-\frac{1}{m}$ and $B-\frac{1}{m}>B-\epsilon$, then $x>B-\epsilon$.
Therefore, for every $\epsilon>0$ there exists $x \in S$ such that $x>B-\epsilon$.
Since $B$ is an upper bound of $S$ and for every $\epsilon>0$ there exists $x \in S$ such that $x>B-\epsilon$, then $B=\sup S$.

Exercise 97. For every rational number $\epsilon>0$, there exists a nonnegative rational number $x$ such that $x^{2}<2<(x+\epsilon)^{2}$.

Proof. Let $\epsilon>0$ be rational.
Suppose for the sake of contradiction there does not exist a nonnegative rational number $x$ such that $x^{2}<2<(x+\epsilon)^{2}$.

Then for every nonnegative rational number $x$, if $x^{2}<2$, then $(x+\epsilon)^{2} \leq 2$.
Let $x$ be a nonnegative rational number such that $x^{2}<2$.
Then $(x+\epsilon)^{2} \leq 2$.
Since $x, \epsilon \in \mathbb{Q}$, then $x+\epsilon \in \mathbb{Q}$, so $(x+\epsilon)^{2} \in \mathbb{Q}$.
Since there is no rational number whose square is two, then $(x+\epsilon)^{2} \neq 2$, so $(x+\epsilon)^{2}<2$.

Therefore, for every nonnegative rational number $x$, if $x^{2}<2$, then $(x+\epsilon)^{2}<$ 2.

Thus, for $x=0$, we have $0^{2}=0<2$, so $(0+\epsilon)^{2}<2$.
Hence, $\epsilon^{2}<2$.

We prove $(n \epsilon)^{2}<2$ for all $n \in \mathbb{N}$ by induction on $n$.

## Basis:

Since $(1 \epsilon)^{2}=\epsilon^{2}<2$, then the statement holds for $n=1$.

## Induction:

Let $k \in \mathbb{N}$ such that $(k \epsilon)^{2}<2$.
Since $k \epsilon \in \mathbb{Q}$ and $k \epsilon>0$ and $(k \epsilon)^{2}<2$, then $(k \epsilon+\epsilon)^{2}<2$.
Thus, $((k+1) \epsilon)^{2}<2$.
Therefore, by PMI, $(n \epsilon)^{2}<2$ for all $n \in \mathbb{N}$.
Since $\frac{2}{\epsilon} \in \mathbb{R}$ and $\mathbb{N}$ is unbounded in $\mathbb{R}$, then there exists $N \in \mathbb{N}$ such that $N>\frac{2}{\epsilon}$.

Thus, $N \epsilon>2$, so $(N \epsilon)^{2}>4>2$.
Hence, $(N \epsilon)^{2}>2$.
Therefore, there exists $N \in \mathbb{N}$ such that $(N \epsilon)^{2}>2$.
This contradicts the statement $(n \epsilon)^{2}<2$ for all $n \in \mathbb{N}$.
Thus, there does exist a nonnegative rational number $x$ such that $x^{2}<2<$ $(x+\epsilon)^{2}$, as desired.

Exercise 98. Given the statement $(\forall \epsilon>0)(\exists n \in \mathbb{N})\left(\frac{1}{n}<\epsilon\right)$, prove that $\mathbb{N}$ has no upper bound in $\mathbb{R}$.

Proof. To prove $\mathbb{N}$ has no upper bound in $\mathbb{R}$, we must prove for each $r \in \mathbb{R}$ there exists $n \in \mathbb{N}$ such that $n>r$.

Let $r \in \mathbb{R}$.
Then either $r>0$ or $r \leq 0$.
We consider these cases separately.
Case 1: Suppose $r \leq 0$.
Since $1>0$ and $0 \geq r$, then $1>r$.
Therefore, 1 is a natural number and $1>r$, as desired.
Case 2: Suppose $r>0$.
Then $\frac{1}{r}>0$.
Thus, there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<\frac{1}{r}$.

Since $\frac{1}{n}<\frac{1}{r}$, then $\frac{1}{r}-\frac{1}{n}>0$, so $\frac{n-r}{r n}>0$.
Since $n$ and $r$ are positive, then $r n$ is positive.
We multiply by $r n$ to get $n-r>0$.
Thus, $n>r$.
Therefore, there is a natural number $n$ such that $n>r$, as desired.
Exercise 99. Assume $\mathbb{N}$ has no upper bound in $\mathbb{R}$.
Prove:

1. $(\forall r \in \mathbb{R})(\exists n \in \mathbb{N})(n>r)$.
2. $(\forall a \in \mathbb{R}, b>0)(\exists n \in \mathbb{N})(n b>a)$.
3. $(\forall \epsilon>0)(\exists n \in \mathbb{N})\left(\frac{1}{n}<\epsilon\right)$.

Proof. Since $\mathbb{N}$ has no upper bound in $\mathbb{R}$, then the statement there is $r \in \mathbb{R}$ such that $n \leq r$ for all $n \in \mathbb{N}$ is false.

Therefore, the statement for all $r \in \mathbb{R}$ there is $n \in \mathbb{N}$ such that $n>r$ is true.
Let $a \in \mathbb{R}$ and $b>0$.
We must prove there is a natural number $n$ such that $n b>a$.
Since $a \in \mathbb{R}$ and $b \in \mathbb{R}$ and $b \neq 0$, then $\frac{a}{b} \in \mathbb{R}$.
Hence, there is a natural number $n$ such that $n>\frac{a}{b}$.
Since $b>0$, then $n b>a$.
Therefore, there is a natural number $n$ for which $n b>a$, as desired.
Let $\epsilon>0$.
Then $\frac{1}{\epsilon}>0$.
We must prove there is a natural number $n$ such that $\frac{1}{n}<\epsilon$.
Since $\frac{1}{\epsilon} \in \mathbb{R}$, then there is a natural number $n$ such that $n>\frac{1}{\epsilon}$.
Since $n>\frac{1}{\epsilon}$ and $\epsilon>0$, then $n \epsilon>1$.
Since $n>0$, then $\epsilon>\frac{1}{n}$.
Therefore, there is a natural number $n$ for which $\frac{1}{n}<\epsilon$, as desired.
Exercise 100. Analyze boundedness of $\mathbb{N}$.
Solution. By the Archimedean property of $\mathbb{N}$ in $\mathbb{R}$ the set $\mathbb{N}$ has no upper bound in $\mathbb{R}$.

Since there is no upper bound of $\mathbb{N}$, then there can be no greatest element of $\mathbb{N}$ in $\mathbb{R}$.

Therefore, $\max \mathbb{N}$ does not exist in $\mathbb{R}$.
Since there is no upper bound of $\mathbb{N}$ in $\mathbb{R}$, then there can be no least upper bound of $\mathbb{N}$ in $\mathbb{R}$.

Therefore, $\sup \mathbb{N}$ does not exist in $\mathbb{R}$.
Since $1 \in \mathbb{N}$ and $1 \leq n$ for all $n \in \mathbb{N}$, then 1 is the least element of $\mathbb{N}$.
Hence, $\min \mathbb{N}=1$.
The set $\mathbb{N}$ has many lower bounds in $\mathbb{R}$.
For example, -3 is a lower bound of $\mathbb{N}$.
Let $n \in \mathbb{N}$.
Then $n \geq 1$.
Since $-3 \leq 1$ and $1 \leq n$, then $-3 \leq n$.
Hence, since $-3 \leq n$ for all $n \in \mathbb{N}$.

Therefore, -3 is a lower bound of $\mathbb{N}$.
We prove $\inf \mathbb{N}=1$.
Since $1 \leq n$ for all $n \in \mathbb{N}$, then 1 is a lower bound of $\mathbb{N}$ in $\mathbb{R}$.
Let $\epsilon>0$ be given.
To prove 1 is the greatest lower bound, we must find $n \in \mathbb{N}$ such that $n<1+\epsilon$.

Take $n=1$.
Clearly, $n \in \mathbb{N}$.
Since $0<\epsilon$, then $1<1+\epsilon$.
Hence, $n<1+\epsilon$, as desired.
Therefore, $1=\inf \mathbb{N}$.
Exercise 101. Analyze boundedness of $\mathbb{Z}$.
Solution. The set of integers $\mathbb{Z}$ is unbounded above in $\mathbb{R}$.
To prove $\mathbb{Z}$ has no upper bound in $\mathbb{R}$, we prove for all $r \in \mathbb{R}$ there exists $n \in \mathbb{Z}$ such that $n>r$.

Let $r \in \mathbb{R}$.
By the Archimedean property of $\mathbb{R}$, there exists $n \in \mathbb{N}$ such that $n>r$.
Since $n \in \mathbb{N}$ and $\mathbb{N} \subset \mathbb{Z}$, then $n \in \mathbb{Z}$.
Hence, there exists an integer $n$ greater than $r$.
Therefore, $\mathbb{Z}$ has no upper bound in $\mathbb{R}$, so $\mathbb{Z}$ is unbounded above in $\mathbb{R}$.
Since there is no upper bound of $\mathbb{Z}$, then there can be no greatest element of $\mathbb{Z}$.

Therefore, $\max \mathbb{Z}$ does not exist in $\mathbb{R}$.
Since there is no upper bound of $\mathbb{Z}$ in $\mathbb{R}$, then there can be no least upper bound of $\mathbb{Z}$ in $\mathbb{R}$.

Therefore, $\sup \mathbb{Z}$ does not exist in $\mathbb{R}$.
To prove $\mathbb{Z}$ has no lower bound in $\mathbb{R}$, we prove for every $r \in \mathbb{R}$ there exists $n \in \mathbb{Z}$ such that $n<r$.

Let $r \in \mathbb{R}$.
Either $r \geq 0$ or $r<0$.
We consider these cases separately.
Case 1: Suppose $r \geq 0$.
Since -1 is an integer and $-1<0 \leq r$, then $-1<r$.
Hence, there exists an integer less than $r$.
Case 2: Suppose $r<0$.
Then $-r>0$.
Since $-r \in \mathbb{R}$, then by the Archimedean property, there exists $n \in \mathbb{N}$ such that $n>-r$.

We multiply by -1 to get $-n<r$.
Since $n \in \mathbb{N}$ and $\mathbb{N} \subset \mathbb{Z}$, then $n \in \mathbb{Z}$.
Hence, $-n \in \mathbb{Z}$.
Thus, there exists an integer less than $r$.
Hence, in all cases, there exists an integer less than $r$.
Therefore, there is no lower bound of $\mathbb{Z}$ in $\mathbb{R}$.

Since there is no lower bound of $\mathbb{Z}$ in $\mathbb{R}$, then there can be no least element of $\mathbb{Z}$.

Therefore, $\min \mathbb{Z}$ does not exist in $\mathbb{R}$.
Since there is no lower bound of $\mathbb{Z}$ in $\mathbb{R}$, then there can be no greatest lower bound of $\mathbb{Z}$ in $\mathbb{R}$.

Therefore, $\inf \mathbb{Z}$ does not exist in $\mathbb{R}$.
Exercise 102. There is no smallest positive rational number.
Proof. We prove by contradiction.
Suppose there is a smallest positive rational number.
Let $m$ be a smallest positive rational number.
Then $m \in \mathbb{Q}$ and $m>0$ and $m \leq q$ for every positive rational number $q$.
Since $m \in \mathbb{Q}$, then $\frac{m}{2} \in \mathbb{Q}$.
Since $m>0$, then $\frac{m}{2}>0$.
Since $\frac{m}{2} \in \mathbb{Q}$ and $\frac{m}{2}>0$, then $\frac{m}{2}$ is a positive rational number.
Since $0<m$, then $m<2 m$, so $\frac{m}{2}<m$.
Thus, there exists a positive rational number $\frac{m}{2}$ such that $m>\frac{m}{2}$.
This contradicts the fact that $m \leq q$ for every positive rational number $q$.
Therefore, there is no smallest positive rational number.
Exercise 103. There is no smallest positive real number.
Solution. If $s$ is a smallest positive real number, then half of $s$ is even smaller. This implies $s$ cannot be the smallest positive real number.

Proof. Suppose there is a smallest positive real number.
Then there exists a positive real number $s$ such that $s \leq x$ for all $x \in \mathbb{R}$.
Since $s$ is a positive real number, then $s \in \mathbb{R}$ and $s>0$.
Since $0<s$, then $s<2 s$, so $\frac{s}{2}<s$.
Since $s \in \mathbb{R}$, then $\frac{s}{2} \in \mathbb{R}$.
Hence, there exists $\frac{s}{2} \in \mathbb{R}$ such that $s>\frac{s}{2}$.
This contradicts the fact that $s \leq x$ for all $x \in \mathbb{R}$.
Therefore, there is no smallest positive real number.
Exercise 104. Disprove the assertion that there is a positive real number that is smaller than all positive rational numbers.

Solution. The assertion states there exists a real number $r>0$ such that $r<q$ for all $q \in \mathbb{Q}^{+}$.

In symbols this is:
$(\exists r>0)\left(\forall q \in \mathbb{Q}^{+}\right)(r<q)$.
The negation is:
$(\forall r>0)\left(\exists q \in \mathbb{Q}^{+}\right)(r \geq q)$.
Therefore, to disprove the assertion we must prove its negation.

Proof. Suppose there is a positive real number that is smaller than all positive rational numbers.

Let $r$ be some positive real number that is smaller than all positive rational numbers.

Then $r \in \mathbb{R}$ and $r>0$ and $r<q$ for all positive rational $q$.
Since $r>0$, then $\frac{1}{r}>0$, so by the Archimedean property of $\mathbb{R}$, there is $n \in \mathbb{N}$ such that $n>\frac{1}{r}$.

Hence, $r>\frac{1}{n}$, so $\frac{1}{n}$ is a positive rational number such that $r>\frac{1}{n}$.
This contradicts the fact that $r$ is smaller than all positive rational numbers.
Therefore, there is no positive real number that is smaller than all positive rational numbers.

Proof. Let $r$ be a positive real number.
To disprove the assertion, we must prove there exists $q \in \mathbb{Q}^{+}$such that $r \geq q$.
Since $r>0$, then by the Archimedean property of $\mathbb{R}$, there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<r$.

Since $\frac{1}{n}<r$, then $\frac{1}{n} \leq r$, so $r \geq \frac{1}{n}$.
Since $\frac{1}{n}$ is a positive rational number, let $q=\frac{1}{n}$.
Then $r \geq q$, as desired.
Lemma 105. For all $n \in \mathbb{N}, 2^{n}>n$.
Proof. We prove by induction on $n$.
Let $S=\left\{n \in \mathbb{N}: 2^{n}>n\right\}$.
Basis:
Since $1 \in \mathbb{N}$ and $2^{1}=2>1$, then $1 \in S$.

## Induction:

Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $2^{k}>k$.
Since $k \in \mathbb{N}$, then $k \geq 1$ and $k+1 \in \mathbb{N}$.
Since $2^{k+1}=2^{k} \cdot 2>2 k=k+k \geq k+1$, then $2^{k+1}>k+1$.
Since $k+1 \in \mathbb{N}$ and $2^{k+1}>k+1$, then $k+1 \in S$.
Thus, by induction, $k \in S$ implies $k+1 \in S$, so $S=\mathbb{N}$.
Therefore, $2^{n}>n$ for all $n \in \mathbb{N}$.
Exercise 106. Let $x>0$.
Then there exists $n \in \mathbb{N}$ such that $2^{n}>\frac{1}{x}$.
Proof. Since $x>0$, then $\frac{1}{x}>0$.
By the Archimedean property of $\mathbb{R}$, there exists $n \in \mathbb{N}$ such that $n>\frac{1}{x}$.
Since $2^{n}>n$ for all $n \in \mathbb{N}$, then $2^{n}>n$.
Thus, we have $2^{n}>n>\frac{1}{x}$, so $2^{n}>\frac{1}{x}$.
Therefore, there exists $n \in \mathbb{N}$ such that $2^{n}>\frac{1}{x}$.
Exercise 107. Let $\epsilon>0$.
Let $x, y \in \mathbb{R}$ such that $x<y$.
Then there exists $q \in \mathbb{Q}$ such that $x<q \epsilon<y$.
(Therefore, the set $\{q \epsilon: q \in \mathbb{Q}\}$ is dense in $\mathbb{R}$ ).

Proof. Since $x<y$ and $\epsilon>0$, then $\frac{x}{\epsilon}<\frac{y}{\epsilon}$.
Since $\mathbb{Q}$ is dense in $\mathbb{R}$, then there exists $q \in \mathbb{Q}$ such that $\frac{x}{\epsilon}<q<\frac{y}{\epsilon}$.
Since $\epsilon>0$, then $x<q \epsilon<y$.
Therefore, there exists $q \in \mathbb{Q}$ such that $x<q \epsilon<y$.
Exercise 108. Let $t \in \mathbb{R}$ and $t \neq 0$.
Let $S=\{q t: q \in \mathbb{Q}\}$.
Then $S$ is dense in $\mathbb{R}$.
Proof. To prove $S$ is dense in $\mathbb{R}$, let $a, b \in \mathbb{R}$ with $a<b$.
We must prove there exists $s \in S$ such that $a<s<b$.
Since $t \neq 0$, then either $t>0$ or $t<0$.
We consider these two cases separately.
Case 1: Suppose $t>0$.
Since $a<b$, then $\frac{a}{t}<\frac{b}{t}$.
Since $\mathbb{Q}$ is dense in $\mathbb{R}$, then there exists $q \in \mathbb{Q}$ such that $\frac{a}{t}<q<\frac{b}{t}$, so $a<q t<b$.

Let $s=q t$.
Since $q \in \mathbb{Q}$, then $s \in S$, so $a<s<b$.
Hence, there exists $s \in S$ such that $a<s<b$.
Case 2: Suppose $t<0$.
Then $-t>0$.
Since $a<b$, then $\frac{a}{-t}<\frac{b}{-t}$.
Since $\mathbb{Q}$ is dense in $\mathbb{R}$, then there exists $q \in \mathbb{Q}$ such that $\frac{a}{-t}<q<\frac{b}{-t}$, so $a<-q t<b$.

Let $s=-q t$.
Since $q \in \mathbb{Q}$, then $-q \in \mathbb{Q}$, so $s \in S$.
Thus, $a<s<b$.
Hence, there exists $s \in S$ such that $a<s<b$.
Therefore, in all cases, there exists $s \in S$ such that $a<s<b$, as desired.

## Existence of square roots in $\mathbb{R}$

Exercise 109. Let $x, y \in \mathbb{R}$.
If $0 \leq x<y$, then $0 \leq \sqrt{x}<\sqrt{y}$.
Proof. Suppose $0 \leq x<y$.
Then $0 \leq x$ and $x<y$.
Since $x \geq 0$, then either $x>0$ or $x=0$.
We consider these cases separately.
Case 1: Suppose $x>0$.
Since $0<x$ and $x<y$, then $0<x<y$.
Hence, $0<\sqrt{x}<\sqrt{y}$.
Case 2: Suppose $x=0$.
Since $y>x$ and $x=0$, then $y>0$, so $\sqrt{y}>0$.
Since $\sqrt{x}=\sqrt{0}=0$ and $0<\sqrt{y}$, then $\sqrt{x}=0<\sqrt{y}$.
Therefore, $0=\sqrt{x}<\sqrt{y}$.

Exercise 110. Let $a, b \in \mathbb{R}$.
If $0<a<b$, then $a<\sqrt{a b}<b$.
Proof. Suppose $0<a<b$.
Then $0<a$ and $a<b$, so $0<b$.
Since $a>0$ and $b>0$, then $a b>0$.
Since $a<b$ an $b>0$, then $a b<b^{2}$.
Thus, $0<a b$ and $a b<b^{2}$, so $0<a b<b^{2}$.
Therefore, $0<\sqrt{a b}<\sqrt{b^{2}}=|b|=b$, so $0<\sqrt{a b}<b$, as desired.

## Exercise 111. another proof of triangle inequality

Let $a, b \in \mathbb{R}$.
Then $|a+b| \leq|a|+|b|$.
Proof. Since $a b \leq|a b|=|a||b|$, then $2 a b \leq 2|a||b|$.
Since $0 \leq(a+b)^{2}=a^{2}+2 a b+b^{2} \leq a^{2}+2|a||b|+b^{2}=|a|^{2}+2|a||b|+|b|^{2}=$
$(|a|+|b|)^{2}$, then $0 \leq(a+b)^{2} \leq(|a|+|b|)^{2}$, so $0 \leq|a+b| \leq||a|+|b||=|a|+|b|$.
Therefore, $|a+b| \leq|a|+|b|$.
Lemma 112. Let $a, b \in \mathbb{R}$.
Then $2 a b \leq a^{2}+b^{2}$ and $a b \leq\left(\frac{a+b}{2}\right)^{2}$.
Furthermore, if $a=b$, then $2 a b=a^{2}+b^{2}$ and $a b=\left(\frac{a+b}{2}\right)^{2}$.
Proof. We first prove $2 a b \leq a^{2}+b^{2}$.
Since $0 \leq(a-b)^{2}=a^{2}-2 a b+b^{2}$, then $2 a b \leq a^{2}+b^{2}$.
Suppose $a=b$.
Then $2 a b=2 a^{2}=a^{2}+a^{2}=a^{2}+b^{2}$.
We next prove $a b \leq\left(\frac{a+b}{2}\right)^{2}$.
Since $2 a b \leq a^{2}+b^{2}$, then $4 a b \leq a^{2}+2 a b+b^{2}=(a+b)^{2}$, so $a b \leq \frac{(a+b)^{2}}{4}=$ $\left(\frac{a+b}{2}\right)^{2}$.

Suppose $a=b$.
Then $a b=a^{2}=\left(\frac{2 a}{2}\right)^{2}=\left(\frac{a+a}{2}\right)^{2}=\left(\frac{a+b}{2}\right)^{2}$.

## Proposition 113. arithmetic-geometric mean inequality

Let $a, b \in \mathbb{R}$.
If $a \geq 0$ and $b \geq 0$, then $\sqrt{a b} \leq \frac{a+b}{2}$.
Furthermore, if $a=b$, then $\sqrt{a b}=\frac{a+b}{2}$.
Proof. Suppose $a \geq 0$ and $b \geq 0$.
Then $\sqrt{a} \geq 0$ and $\sqrt{b} \geq 0$, so $(\sqrt{a}-\sqrt{b})^{2} \geq 0$.
Thus, $0 \leq(\sqrt{a}-\sqrt{b})^{2}=(\sqrt{a})^{2}-2 \sqrt{a} \overline{\sqrt{b}}+(\sqrt{b})^{2}=a-2 \sqrt{a b}+b$, so $0 \leq a-2 \sqrt{a b}+b$.

Hence, $2 \sqrt{a b} \leq a+b$, so $\sqrt{a b} \leq \frac{a+b}{2}$.

Suppose $a=b$.
Then $\sqrt{a b}=\sqrt{a^{2}}=|a|=a=\frac{2 a}{2}=\frac{a+a}{2}=\frac{a+b}{2}$.
Proof. Here is an alternate proof based on the previous lemma.
Since $a \geq 0$ and $b \geq 0$, then $a b \geq 0$ and $a+b \geq 0$.
Thus, $0 \leq a b \leq\left(\frac{a+b}{2}\right)^{2}$, so $\sqrt{a b} \leq\left|\frac{a+b}{2}\right|=\frac{|a+b|}{2}=\frac{a+b}{2}$.
Corollary 114. Let $a, b \in \mathbb{R}$.
If $a>0$ and $b>0$, then $\frac{2 a b}{a+b} \leq \sqrt{a b}$.
Furthermore, if $a=b$, then $\frac{2 a b}{a+b}=\sqrt{a b}$.
Solution. We call the expression $\frac{2 a b}{a+b}$ the harmonic mean of $a$ and $b$.
Thus, if $a>0$ and $b>0$, then $\frac{2 a b}{a+b} \leq \sqrt{a b} \leq \frac{a+b}{2}$.
Therefore, for any positive real numbers $a$ and $b$, the harmonic mean is smaller than the geometric mean which is smaller than the arithmetic mean of $a$ and $b$.

Proof. Suppose $a>0$ and $b>0$.
Then $a+b>0$ and $a b>0$, so $\sqrt{a b}>0$.
Hence, $\frac{2 \sqrt{a b}}{a+b}>0$.
Since $\sqrt{a b} \leq \frac{a+b}{2}$, then $\frac{2 a b}{a+b}=\frac{2(\sqrt{a b})^{2}}{a+b}=\frac{2 \sqrt{a b}}{a+b} \cdot \sqrt{a b} \leq \frac{2 \sqrt{a b}}{a+b} \cdot \frac{a+b}{2}=\sqrt{a b}$.
Suppose $a=b$.
Then $\frac{2 a b}{a+b}=\frac{2 a^{2}}{2 a}=a=(\sqrt{a})^{2}=\sqrt{a} \sqrt{a}=\sqrt{a a}=\sqrt{a b}$.
Exercise 115. Given 400 meters of fence, the largest rectangular area that can fence in from three sides along a straight river using the river as the fourth side is $100 \times 200$ meters.

Proof. Let the rectangular fence be composed of two smaller equal sized rectangular pieces such that each rectangular piece of the fence has length $l$ and width $w$.

Then the dimension of the rectangular fence is $2 l$ by $w$.
The perimeter of the fence is $400=2 l+2 w=2(l+w)$, so $200=l+w$.
Since $l>0$ and $w>0$, then by AGM, $0<\sqrt{l w} \leq \frac{l+w}{2}$, so $l w \leq\left(\frac{l+w}{2}\right)^{2}$.
The maximum area occurs when each smaller rectangle piece is a square, so $l=w$.

Thus, the maximum area is $l w=w w=w^{2}=\left(\frac{l+w}{2}\right)^{2}=\left(\frac{200}{2}\right)^{2}=100^{2}$, so $w^{2}=100^{2}$ 。

Hence, $w=100$ and $l=100$.
Therefore, the fence has dimensions 200 by 100.
Exercise 116. Let $c \in \mathbb{R}$ with $c>0$.
Then the function given by $f(x)=x(c-x)$ is maximized when $x=\frac{c}{2}$.
Suppose $a>0$.
What value of $x$ will maximize $x(c-a x)$ ?

Proof. Let $f:[0, c] \rightarrow \mathbb{R}$ be the function defined by $f(x)=x(c-x)$.
To prove $f$ is maximized when $x=\frac{c}{2}$, we must prove $f(x) \leq f\left(\frac{c}{2}\right)$ for every $x \in \operatorname{dom} f$.

Let $x \in \operatorname{dom} f=[0, c]$.
Then $0 \leq x \leq c$, so $0 \leq x$ and $x \leq c$.
Since $x \leq c$, then $0 \leq c-x$.
Since $x \geq 0$ and $c-x \geq 0$, then by AGM, $\sqrt{x(c-x)} \leq \frac{x+(c-x)}{2}=\frac{c}{2}$.
Since $0 \leq \sqrt{x(c-x)} \leq \frac{c}{2}$, then $f(x)=x(c-x) \leq\left(\frac{c}{2}\right)^{2}=\frac{c}{2} \cdot \frac{c}{2}=\frac{c}{2}\left(c-\frac{c}{2}\right)=$ $f\left(\frac{c}{2}\right)$, so $f(x) \leq f\left(\frac{c}{2}\right)$, as desired.

Solution. Suppose $a>0$.
Let $g$ be a real valued function defined by $g(x)=x(c-a x)$.
We must find a value of $x$ that will maximize $g$.
Observe that $g(x)=x c-a x^{2}=a x\left(\frac{c}{a}-x\right)$.
Let $h$ be a real valued function defined by $h(x)=x\left(\frac{c}{a}-x\right)$.
Then $g(x)=a \cdot h(x)$.
Since $a$ is a constant scalar, then $g$ is maximized when $h$ is maximized.
Since $a>0$ and $c>0$, then $\frac{c}{a}>0$, so $h$ is maximized when $x=\frac{c / a}{2}=\frac{c}{2 a}$.
Therefore, $g$ is maximized when $x=\frac{c}{2 a}$.
Exercise 117. Let $x, y, z \in \mathbb{R}$ such that $x \geq 0$ and $y \geq 0$ and $z \geq 0$ and $y+z \geq 2$.

Then $(x+y+z)^{2} \geq 4 x+4 y z$.
Proof. Since $y \geq 0$ and $z \geq 0$, then by AGM, $\sqrt{y z} \leq \frac{y+z}{2}$.
Since $0 \leq \sqrt{y z} \leq \frac{y+z}{2}$, then $y z \leq \frac{(y+z)^{2}}{4}$, so $4 y z \leq(y+z)^{2}$.
Hence, $(y+z)^{2} \geq 4 y z$.
Since $y+z \geq 2$ and $x \geq 0$, then $2 x(y+z) \geq 4 x$.
Since $x^{2} \geq 0$, then $x^{2}+2 x(y+z) \geq 4 x$.
Observe that

$$
\begin{aligned}
(x+y+z)^{2} & =[x+(y+z)]^{2} \\
& =x^{2}+2 x(y+z)+(y+z)^{2} \\
& \geq x^{2}+2 x(y+z)+4 y z \\
& \geq 4 x+4 y z
\end{aligned}
$$

Therefore, $(x+y+z)^{2} \geq 4 x+4 y z$.
Exercise 118. Let $x, y, u, v \in \mathbb{R}$.
Then $(x u+y v)^{2} \leq\left(x^{2}+y^{2}\right)\left(u^{2}+v^{2}\right)$.
Proof. Since $(x v)^{2} \geq 0$ and $(y u)^{2} \geq 0$, then by AGM, $|x u y v|=|x v y u|=$ $\sqrt{(x v y u)^{2}}=\sqrt{(x v)^{2}(y u)^{2}} \leq \frac{(x v)^{2}+(y u)^{2}}{2}$, so $2|x u y v| \leq(x v)^{2}+(y u)^{2}$.

Hence, $(x u)^{2}+2|x u y v|+(y v)^{2} \leq(x u)^{2}+(x v)^{2}+(y u)^{2}+(y v)^{2}$, so $|x u|^{2}+$ $2|x u y v|+|y v|^{2} \leq x^{2} u^{2}+x^{2} v^{2}+y^{2} u^{2}+y^{2} v^{2}$.

Thus, $(|x u|+|y v|)^{2} \leq\left(x^{2}+y^{2}\right)\left(u^{2}+v^{2}\right)$.

Since $0 \leq|x u+y v| \leq|x u|+|y v|$, then $(x u+y v)^{2}=|x u+y v|^{2} \leq(|x u|+|y v|)^{2}$. Since $(x u+y v)^{2} \leq(|x u|+|y v|)^{2}$ and $(|x u|+|y v|)^{2} \leq\left(x^{2}+y^{2}\right)\left(u^{2}+v^{2}\right)$, then $(x u+y v)^{2} \leq\left(x^{2}+y^{2}\right)\left(u^{2}+v^{2}\right)$, as desired.

Proposition 119. generalized arithmetic-geometric mean inequality
Let $n \in \mathbb{Z}^{+}$.
Let $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}^{+}$.
Then $\sqrt[n]{a_{1} a_{2} \cdots a_{n}} \leq \frac{1}{n} \sum_{k=1}^{n} a_{k}$.
Proof. We prove by induction on $n$.
Exercise 120. If $x$ is irrational, then $x+y$ is irrational for all $y \in \mathbb{Q}$.
Proof. We prove by contrapositive.
Suppose there exists $y \in \mathbb{Q}$ such that $x+y$ is rational.
Since $x+y$ is rational, then $x+y \in \mathbb{Q}$.
Since $\mathbb{Q}$ is closed under subtraction and $x+y \in \mathbb{Q}$ and $y \in \mathbb{Q}$, then $(x+y)-$ $y \in \mathbb{Q}$.

Therefore, $x \in \mathbb{Q}$, so $x$ is rational, as desired.
Exercise 121. The number $\sqrt{3}$ is irrational.
Proof. Suppose for the sake of contradiction that $\sqrt{3}$ is not irrational.
Then $\sqrt{3}$ is rational, so there are integers $a$ and $b$ for which

$$
\begin{equation*}
\sqrt{3}=\frac{a}{b} . \tag{1}
\end{equation*}
$$

Let this fraction be reduced to lowest terms.
This means, in particular, that $a$ and $b$ are not both multiples of 3 , for if they were, the fraction could be further reduced by factoring the 3 's from the numerator and denominator and canceling.

Since $3=\left(\frac{a}{b}\right)^{2}=\frac{a^{2}}{b^{2}}$, then $a^{2}=3 b^{2}$, so $a^{2}$ is a multiple of 3 .
Thus, 3 divides $a^{2}$.
Since $3 \mid a^{2}$ and 3 is prime, then by Euclid's lemma, $3 \mid a$, so $a$ is a multiple of 3.

Hence, $a=3 k$ for some integer $k$.
Thus, $3 b^{2}=(3 k)^{2}=9 k^{2}$, so $b^{2}=3 k^{2}$.
Therefore, $b^{2}$ is a multiple of 3 , so $3 \mid b^{2}$.
Since $3 \mid b^{2}$ and 3 is prime, then by Euclid's lemma, $3 \mid b$, so $b$ is a multiple of 3.

Hence, $a$ and $b$ are both multiples of 3 which contradicts the assumption $a$ and $b$ are not both multiples of 3 .

Therefore, $\sqrt{3}$ is irrational.
Proof. Suppose for the sake of contradiction that $\sqrt{3}$ is not irrational.
Then $\sqrt{3}$ is rational, so there are integers $a$ and $b$ for which

$$
\begin{equation*}
\sqrt{3}=\frac{a}{b} \tag{2}
\end{equation*}
$$

Let this fraction be reduced to lowest terms.
This means, in particular, that $a$ and $b$ are not both even, for if they were, the fraction could be further reduced by factoring the 2 's from the numerator and denominator and canceling.

Squaring both sides of Equation 2 we get

$$
\begin{equation*}
a^{2}=3 b^{2} \tag{3}
\end{equation*}
$$

Either $b$ is even or $b$ is odd.
We consider these two cases separately.
Case 1: Suppose $b$ is even.
Since $a$ and $b$ are not both even and $b$ is even, then it immediately follows that $a$ is odd.

Since $b$ is even, then there is an integer $c$ for which $b=2 c$.
Substituting this into Equation 3 we get $a^{2}=3(2 c)^{2}=12 c^{2}=2\left(6 c^{2}\right)$.
Thus $a^{2}$ is even, and therefore $a$ is even.
But we previously deduced that $a$ is odd, so we now have a contradiction $a$ is even and $a$ is odd.

Thus $b$ cannot be even.
Case 2: Suppose $b$ is odd.
Then there is an integer $c$ for which $b=2 c+1$.
Substituting this into Equation 3 we get $a^{2}=3(2 c+1)^{2}=3\left(4 c^{2}+4 c+1\right)=$ $12 c^{2}+12 c+3=2\left(6 c^{2}+6 c+1\right)+1$.

Therefore $a^{2}$ is odd, and consequently $a$ is odd.
This implies there is an integer $d$ for which $a=2 d+1$.
Substituting into Equation 3 we get

$$
\begin{aligned}
(2 d+1)^{2} & =3(2 c+1)^{2} \\
4 d^{2}+4 d+1 & =3\left(4 c^{2}+4 c+1\right) \\
4 d^{2}+4 d+1 & =12 c^{2}+12 c+3 \\
4 d^{2}+4 d-12 c^{2}-12 c & =2 \\
2 d^{2}+2 d-6 c^{2}-6 c & =1 \\
2\left(d^{2}+d-3 c^{2}-3 c\right) & =1
\end{aligned}
$$

Since $d^{2}+d-3 c^{2}-3 c \in \mathbb{Z}$ then the last equation means that 1 is even, a contradiction.

Both cases show that a contradiction results when we assume that $\sqrt{3}$ is rational. Thus $\sqrt{3}$ must be irrational.

Exercise 122. The number $\sqrt[3]{2}$ is irrational.
Proof. We prove by contradiction.
Suppose $\sqrt[3]{2}$ is rational.
Then there exist integers $a, b$ with $b \neq 0$ such that $\sqrt[3]{2}=\frac{a}{b}$.
We may assume $\frac{a}{b}$ is in lowest terms; that is, we assume $\operatorname{gcd}(a, b)=1$.

Observe that $\left(\frac{a}{b}\right)^{3}=2$, so $a^{3}=2 b^{3}$.
Since $b^{3} \in \mathbb{Z}$ and $a^{3}=2 b^{3}$, then $a^{3}$ is even.
Thus, $a$ is even, so there exists an integer $k$ such that $a=2 k$.
Thus, $2 b^{3}=(2 k)^{3}=8 k^{3}$, so $b^{3}=4 k^{3}=2\left(2 k^{3}\right)$.
Since $2 k^{3} \in \mathbb{Z}$ and $b^{3}=2\left(2 k^{3}\right)$, then $b^{3}$ is even.
Thus, $b$ is even, so there exists an integer $m$ such that $b=2 m$.
Since $a=2 k$ and $b=2 m$, then $2 \mid a$ and $2 \mid b$, so 2 is a common divisor of $a$ and $b$.

By definition of gcd, any common divisor of $a$ and $b$ divides $\operatorname{gcd}(a, b)$.
Hence, 2|1, a contradiction.
Therefore, $\sqrt[3]{2}$ is irrational.
Proof. Suppose $\sqrt[3]{2}$ is rational.
Then there are integers $a$ and $b$ for which $\sqrt[3]{2}=\frac{a}{b}$.
Let this fraction be fully reduced. In particular, this means $a$ and $b$ are not both even, for if they were, the fraction could be further reduced by factoring the 2 's from the numerator and denominator and canceling.

Cubing gives $2=\frac{a^{3}}{b^{3}}$ and therefore $a^{3}=2 b^{3}$.
Thus $a^{3}$ is even. It follows that $a$ is even since we proved proposition (which implies that its contrapositive is true, namely, that if $x^{3}$ is even, then $x$ is even).

Since $a$ is even and $a$ and $b$ are not both even, then it follows that $b$ is not even, ie, $b$ is odd.

Since $a$ is even, then there is some integer $c$ for which $a=2 c$.
Then $(2 c)^{3}=2 b^{3}$. Dividing by 2 gives $4 c^{3}=b^{3}$.
Since $4 c^{3}=2\left(2 c^{3}\right)$ then $b^{3}$ is even and it follows that $b$ is even.
But we previously deduced that $b$ is odd.
Thus we have a contradiction that $b$ is even and $b$ is odd.
Exercise 123. The number $\sqrt[3]{3}$ is irrational.
Proof. We prove by contradiction.
Suppose $\sqrt[3]{3}$ is not irrational.
Then $\sqrt[3]{3}$ is rational, so there exist integers $m$ and $n$ with $n \neq 0$ such that $\frac{m}{n}=\sqrt[3]{3}$.

Assume $\frac{m}{n}$ is in lowest terms, so that $\operatorname{gcd}(m, n)=1$.
Since $\frac{m}{n}=\sqrt[3]{3}$, then $m^{3}=3 n^{3}$.
Since $n^{3} \in \mathbb{Z}$ and $m^{3}=3 n^{3}$, then $3 \mid m^{3}$.
Since 3 is prime and $3 \mid m \cdot m \cdot m$, then by corollary to Euclid's lemma, $3 \mid m$.
Thus, there exists an integer $k$ such that $m=3 k$, so $3 n^{3}=m^{3}=(3 k)^{3}=$ $27 k^{3}$, so $n^{3}=9 k^{3}$.

Since $k^{3}$ is an integer and $n^{3}=9 k^{3}$, then $9 \mid n^{3}$.
Since $3 \mid 9$ and $9 \mid n^{3}$, then by transitivity of the divides relation, $3 \mid n^{3}$.
Since 3 is prime and $3 \mid n \cdot n \cdot n$, then by corollary to Euclid's lemma, $3 \mid n$.
Since $3 \mid m$ and $3 \mid n$, then 3 is a common divisor of $m$ and $n$.
Since 1 is the greatest common divisor of $m$ and $n$, then any positive integer that is a common divisor of $m$ and $n$ must be less than or equal to 1 .

Since 3 is a positive common divisor of $m$ and $n$, then $3 \leq 1$, a contradiction. Therefore, $\sqrt[3]{3}$ is rational.

Exercise 124. For any real number $x$, either $\sqrt{2}+x$ or $\sqrt{2}-x$ is irrational.
Proof. Suppose for the sake of contradiction that there is a real number $x$ such that $\sqrt{2}+x$ is rational and $\sqrt{2}-x$ is rational.

Thus, $\sqrt{2}+x \in \mathbb{Q}$ and $\sqrt{2}-x \in \mathbb{Q}$.
By closure of $\mathbb{Q}$ under addition, we have $(\sqrt{2}+x)+(\sqrt{2}-x) \in \mathbb{Q}$, so $2 \sqrt{2} \in \mathbb{Q}$.
Since 2 is rational and $\sqrt{2}$ is irrational, then the product $2 \sqrt{2}$ is irrational, so $2 \sqrt{2} \notin \mathbb{Q}$.

Hence, we have $2 \sqrt{2} \in \mathbb{Q}$ and $2 \sqrt{2} \notin \mathbb{Q}$, a contradiction.
Therefore, there is no real number $x$ such that $\sqrt{2}+x$ is rational and $\sqrt{2}-x$ is rational.

Thus, for every real number $x$, either $\sqrt{2}+x$ or $\sqrt{2}-x$ is irrational, as desired.

We ask under what conditions is the square root of a natural number a rational number?

Exercise 125. Let $n$ be a positive integer.
Then $\sqrt{n} \in \mathbb{Q}$ iff $n$ is a perfect square.
Proof. Suppose $\sqrt{n} \in \mathbb{Q}$.
Since $n>0$, then there exist positive integers $a$ and $b$ such that $\sqrt{n}=\frac{a}{b}$.
We may assume $\frac{a}{b}$ is reduced to lowest terms; i.e. $a$ and $b$ have no common factor greater than 1.

Thus, $a$ and $b$ are relatively prime, so $\operatorname{gcd}(a, b)=1$.
Hence, $\operatorname{gcd}(b, a)=1$.
Since $\sqrt{n}=\frac{a}{b}$, then $n=\left(\frac{a}{b}\right)^{2}=\frac{a^{2}}{b^{2}}$, so $n b^{2}=a^{2}$.
Since $a^{2}=n b^{2}=n b b=b n b=b(n b)$ and $n b \in \mathbb{Z}$, then $b \mid a^{2}$.
Since $b \mid a^{2}$ and $\operatorname{gcd}(b, a)=1$, then $b \mid a$, so there exists an integer $k$ such that $a=b k$.

Since $b>0$, then $b \neq 0$, so $\frac{a}{b}=k$.
Therefore, $n=k^{2}$, so $n$ is a perfect square, as desired.
Proof. Conversely, we prove if $n$ is a perfect square, then $\sqrt{n} \in \mathbb{Q}$.
Suppose $n$ is a perfect square.
Then there exists an integer $k$ such that $n=k^{2}$.
Thus, $\sqrt{n}=\sqrt{k^{2}}=|k|$.
Since $k \in \mathbb{Z}$, then $|k| \in \mathbb{Z}$.
Since $\mathbb{Z} \subset \mathbb{Q}$, then $|k| \in \mathbb{Q}$.
Therefore, $\sqrt{n} \in \mathbb{Q}$, as desired.
Therefore, $\sqrt{n} \notin \mathbb{Q}$ iff $n$ is not a perfect square.
Hence, $\sqrt{n}$ is irrational iff $n$ is not a perfect square.
Exercise 126. The number $\sqrt{6}$ is irrational.

Proof. Suppose for the sake of contradiction that $\sqrt{6}$ is not irrational.
Then $\sqrt{6}$ is rational, so there are integers $a$ and $b$ for which $\sqrt{6}=\frac{a}{b}$.
Let this fraction be reduced to lowest terms which means that $a$ and $b$ have no common factors $>1$.

In particular, $a$ and $b$ are not both even, for if they were, then 2's could be factored out of the numerator and denominator and canceled.

Squaring both sides we get $6=\left(\frac{a}{b}\right)^{2}$ which implies $a^{2}=6 b^{2}$.
Since $6 b^{2}=2\left(3 b^{2}\right)$ we know that $a^{2}$ must be even. We immediately conclude that $a$ must also be even since we previously proved this.

Since $a$ and $b$ are not both even and $a$ is even, then $b$ must be odd.
Since $a$ is even, then there is an integer $c$ for which $a=2 c$.
Substituting this into the equation $a^{2}=2\left(3 b^{2}\right)$ and dividing by 2 gives $2 c^{2}=3 b^{2}$.

Hence $3 b^{2}$ must be even. Since $3 b^{2}$ is even and 3 is odd, then it follows that $b^{2}$ must be even since we proved this.

Since $b^{2}$ is even, we immediately deduce that $b$ is even.
But previously we deduced that $b$ is odd.
Thus we have the contradiction that $b$ is even and $b$ is odd.
Exercise 127. The number $\sqrt{2}+\sqrt{3}$ is irrational.
Proof. We prove by contradiction.
Suppose $\sqrt{2}+\sqrt{3}$ is rational.
Then there exists $q \in \mathbb{Q}$ such that $\sqrt{2}+\sqrt{3}=q$.
Hence, $q^{2}=(\sqrt{2}+\sqrt{3})^{2}=2+2 \sqrt{2} \sqrt{3}+3=2 \sqrt{6}+5$, so $q^{2}-5=2 \sqrt{6}$.
Thus, $\sqrt{6}=\frac{q^{2}-5}{2}$.
Since $q \in \mathbb{Q}$, then $\frac{q^{2}-5}{2} \in \mathbb{Q}$, so $\sqrt{6}$ is rational.
But, this contradicts the fact that $\sqrt{6}$ is irrational.
Therefore, $\sqrt{2}+\sqrt{3}$ is irrational.
Exercise 128. The number $3 \sqrt{2}-1$ is irrational.
Proof. Since 3 is a nonzero rational and $\sqrt{2}$ is irrational, then the product $3 \sqrt{2}$ is irrational.

Since -1 is rational and $3 \sqrt{2}$ is irrational, then the sum $-1+3 \sqrt{2}=3 \sqrt{2}-1$ is irrational.

Exercise 129. If $r$ is irrational, then $\sqrt{r}$ is irrational.
Proof. We prove by contrapositive.
Suppose $\sqrt{r}$ is rational.
Then $\sqrt{r}=\frac{m}{n}$ for some integers $m$ and $n$.
Since $r=(\sqrt{r})^{2}=\left(\frac{m}{n}\right)^{2}=\frac{m^{2}}{n^{2}}$ and $m^{2}$ and $n^{2}$ are integers, then $r$ is rational, as desired.

Proposition 130. Every nonzero rational number can be expressed as a product of two irrational numbers.

Proof. This proposition can be reworded as follows:
If $r$ is a nonzero rational number, then $r$ is a product of two irrational numbers.

Suppose $r$ is a nonzero rational number.
Then $r=\frac{a}{b}$ for nonzero integers $a$ and $b$.
Also, $r$ can be written as a product of two numbers as follows

$$
r=\sqrt{2} \cdot \frac{r}{\sqrt{2}}
$$

Since we know $\sqrt{2}$ is irrational(we previously proved this fact), we must prove that $r / \sqrt{2}$ is also irrational.

To show this, assume for the sake of contradiction that $r / \sqrt{2}$ is rational.
This means

$$
\frac{r}{\sqrt{2}}=\frac{c}{d}
$$

for nonzero integers $c$ and $d$, so

$$
\sqrt{2}=r \frac{d}{c}
$$

But we know $r=a / b$, so combining this with the above equation we get

$$
\sqrt{2}=r \frac{d}{c}=\frac{a}{b} \frac{d}{c}=\frac{a d}{b c} .
$$

This means $\sqrt{2}$ is rational (since $a d$ and $b c$ are nonzero integers), which is a contradiction because we know $\sqrt{2}$ is irrational.

Therefore $r / \sqrt{2}$ is irrational.
Consequently $r=\sqrt{2} \cdot r / \sqrt{2}$ is a product of two irrational numbers.
Exercise 131. There are two irrational numbers $a$ and $b$ such that $a^{b}$ is rational.
Solution. Let $a, b$ be any arbitrary irrational numbers.
Define predicate $P(a, b): a^{b}$ is rational.
We must find concrete values for $a, b$ with $a \neq b$ such that $P(a, b)$ is true.
By law of excluded middle we know $P(a, b) \vee \neg P(a, b) \Leftrightarrow T$ (no third possibility exists).

We know $\sqrt{2}$ is irrational.
If we think about various ways to combine $\sqrt{2}$ to become 2 , that would help.

Proof. Observe that $\sqrt{2}$ is irrational.
Consider the number $(\sqrt{2})^{\sqrt{2}}$.
By the law of excluded middle either $(\sqrt{2})^{\sqrt{2}}$ is rational or $(\sqrt{2})^{\sqrt{2}}$ is irrational.

We must prove $(\sqrt{2})^{\sqrt{2}}$ is rational.
Suppose $(\sqrt{2})^{\sqrt{2}}$ is rational.

Then we are done and $a=\sqrt{2}$ and $b=\sqrt{2}$.
Suppose $(\sqrt{2})^{\sqrt{2}}$ is irrational.
Let $a=\sqrt{2}^{\sqrt{2}}$ and $b=\sqrt{2}$.
Then $a^{b}=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{\sqrt{2} \sqrt{2}}=(\sqrt{2})^{2}=2$ and 2 is rational.
The proof is complete.
Exercise 132. Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be defined by $f(1)=2$ and $f(n)=\sqrt{3+f(n-1)}$ for all $n \geq 2$.

Then $f(n)<2.4$ for all $n \in \mathbb{N}$.
Proof. Let $S=\{n \in \mathbb{N}: f(n)<2.4\}$.
To prove $f(n)<2.4$ for all $n \in \mathbb{N}$, we prove $S=\mathbb{N}$ by induction on $n$.
Since $1 \in \mathbb{N}$ and $f(1)=2<2.4$, then $1 \in S$.

## Basis:

Since $5<5.76=2.4^{2}$, then $\sqrt{5}<2.4$.
Since $2 \in \mathbb{N}$ and $f(2)=\sqrt{3+f(1)}=\sqrt{3+2}=\sqrt{5}<2.4$, then $2 \in S$.

## Induction:

Let $k \in \mathbb{N}$ with $k \geq 2$ such that $k \in S$.
Since $k \in \mathbb{N}$, then $k+1 \in \mathbb{N}$.
Since $k \in S$, then $f(k)<2.4$, so $3+f(k)<5.4$.
Since $5.4<5.76=2.4^{2}$, then $\sqrt{5.4}<2.4$.
Since $k \geq 2$, then $k+1 \geq 3>2$, so $k+1>2$.
Thus, $f(k+1)=\sqrt{3+f(k)}<\sqrt{5.4}<2.4$.
Since $k+1 \in \mathbb{N}$ and $f(k+1)<2.4$, then $k+1 \in S$.
Hence, $k \in S$ implies $k+1 \in S$, so by induction $S=\mathbb{N}$.
Therefore, $f(n)<2.4$ for all $n \in \mathbb{N}$.
Exercise 133. For all $n \in \mathbb{N}$ with $n \geq 2, \sum_{k=1}^{n} \frac{1}{\sqrt{k}}>\sqrt{n}$.
Proof. Let $p(n)$ be the predicate $\sum_{k=1}^{n} \frac{1}{\sqrt{k}}>\sqrt{n}$ defined over $\mathbb{N}$.
To prove $p(n)$ is true for all $n \geq 2$, we prove by induction on $n$.

## Basis:

Since $\sqrt{2}>1$, then $\sqrt{2}+1>2$, so $\frac{\sqrt{2}+1}{\sqrt{2}}>\frac{2}{\sqrt{2}}$.
Hence, $1+\frac{1}{\sqrt{2}}>\sqrt{2}$.
Since $\sum_{k=1}^{2} \frac{1}{\sqrt{k}}=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}=1+\frac{1}{\sqrt{2}}>\sqrt{2}$, then $p(2)$ is true.

## Induction:

Let $m \in \mathbb{N}$ with $m \geq 2$ such that $p(m)$ is true.
Then $\sum_{k=1}^{m} \frac{1}{\sqrt{k}}>\sqrt{m}$.
To prove $p(m+1)$ is true, we must prove $\sum_{k=1}^{m+1} \frac{1}{\sqrt{k}}>\sqrt{m+1}$.
We first prove $\sqrt{m}+\frac{1}{\sqrt{m+1}}>\sqrt{m+1}$.
Since $m \geq 2>0$, then $m>0$, so $m^{2}+m>m^{2}>0$.
Hence, $m(m+1)>m^{2}>0$, so $\sqrt{m(m+1)}>m>0$.
Thus, $\sqrt{m(m+1)}>m$, so $0>m-\sqrt{m(m+1)}$.

Hence, $1>m+1-\sqrt{m(m+1)}=\sqrt{m+1}(\sqrt{m+1}-\sqrt{m})$.
Therefore, $1>\sqrt{m+1}(\sqrt{m+1}-\sqrt{m})$.
Since $\sqrt{m+1}>0$, then $\frac{1}{\sqrt{m+1}}>\sqrt{m+1}-\sqrt{m}$.
Thus, $\sqrt{m}+\frac{1}{\sqrt{m+1}}>\sqrt{m+1}$.
Observe that

$$
\begin{aligned}
\sum_{k=1}^{m+1} \frac{1}{\sqrt{k}} & =\sum_{k=1}^{m} \frac{1}{\sqrt{k}}+\frac{1}{\sqrt{m+1}} \\
& >\sqrt{m}+\frac{1}{\sqrt{m+1}} \\
& >\sqrt{m+1}
\end{aligned}
$$

Since $m+1 \in \mathbb{N}$ and $\sum_{k=1}^{m+1} \frac{1}{\sqrt{k}}>\sqrt{m+1}$, then $p(m+1)$ is true.
Therefore, $p(m)$ implies $p(m+1)$, so by PMI, $\sum_{k=1}^{n} \frac{1}{\sqrt{k}}>\sqrt{n}$ for all $n \in \mathbb{N}$, as desired.

Exercise 134. Let $K=\{s+t \sqrt{2}: s, t \in \mathbb{Q}\}$.

1. If $x_{1}, x_{2} \in K$, then $x_{1}+x_{2} \in K$. (closure under addition)
2. If $x_{1}, x_{2} \in K$, then $x_{1} x_{2} \in K$. (closure under multiplication)
3. If $x \in K$ and $x \neq 0$, then $\frac{1}{x} \in K$. (multiplicative inverse exists for nonzero elements of $K$ )

This shows that $K$ is a subfield of $\mathbb{R}$ and lies between $\mathbb{Q}$ and $\mathbb{R}$.
Proof. We prove 1.
Suppose $x_{1}, x_{2} \in K$.
Then there exist $s_{1}, t_{1} \in \mathbb{Q}$ such that $x_{1}=s_{1}+t_{1} \sqrt{2}$ and there exist $s_{2}, t_{2} \in \mathbb{Q}$ such that $x_{2}=s_{2}+t_{2} \sqrt{2}$.

Let $s=s_{1}+s_{2}$ and let $t=t_{1}+t_{2}$.
Since $s_{1}, s_{2} \in \mathbb{Q}$ and $\mathbb{Q}$ is closed under addition, then $s \in \mathbb{Q}$.
Since $t_{1}, t_{2} \in \mathbb{Q}$ and $\mathbb{Q}$ is closed under addition, then $t \in \mathbb{Q}$.
Thus,

$$
\begin{aligned}
x_{1}+x_{2} & =\left(s_{1}+t_{1} \sqrt{2}\right)+\left(s_{2}+t_{2} \sqrt{2}\right) \\
& =s_{1}+\left(t_{1} \sqrt{2}+s_{2}\right)+t_{2} \sqrt{2} \\
& =s_{1}+\left(s_{2}+t_{1} \sqrt{2}\right)+t_{2} \sqrt{2} \\
& =\left(s_{1}+s_{2}\right)+\left(t_{1} \sqrt{2}+t_{2} \sqrt{2}\right) \\
& =\left(s_{1}+s_{2}\right)+\left(t_{1}+t_{2}\right) \sqrt{2} \\
& =s+t \sqrt{2} .
\end{aligned}
$$

Since there exist $s, t \in \mathbb{Q}$ such that $x_{1}+x_{2}=s+t \sqrt{2}$, then $x_{1}+x_{2} \in K$, as desired.

Proof. We prove 2.
Suppose $x_{1}, x_{2} \in K$.

Then there exist $s_{1}, t_{1} \in \mathbb{Q}$ such that $x_{1}=s_{1}+t_{1} \sqrt{2}$ and there exist $s_{2}, t_{2} \in \mathbb{Q}$ such that $x_{2}=s_{2}+t_{2} \sqrt{2}$.

Let $s=s_{1} s_{2}+2 t_{1} t_{2}$ and let $t=t_{1} s_{2}+s_{1} t_{2}$.
Since $s_{1}, s_{2}, t_{1}, t_{2} \in \mathbb{Q}$ and $\mathbb{Q}$ is closed under addition and multiplication, then $s, t \in \mathbb{Q}$.

Thus,

$$
\begin{aligned}
x_{1} x_{2} & =\left(s_{1}+t_{1} \sqrt{2}\right)\left(s_{2}+t_{2} \sqrt{2}\right) \\
& =\left(s_{1}+t_{1} \sqrt{2}\right) s_{2}+\left(s_{1}+t_{1} \sqrt{2}\right) t_{2} \sqrt{2} \\
& =s_{1} s_{2}+t_{1} s_{2} \sqrt{2}+s_{1} t_{2} \sqrt{2}+2 t_{1} t_{2} \\
& =s_{1} s_{2}+t_{1} s_{2} \sqrt{2}+2 t_{1} t_{2}+s_{1} t_{2} \sqrt{2} \\
& =s_{1} s_{2}+2 t_{1} t_{2}+t_{1} s_{2} \sqrt{2}+s_{1} t_{2} \sqrt{2} \\
& =\left(s_{1} s_{2}+2 t_{1} t_{2}\right)+\left(t_{1} s_{2}+s_{1} t_{2}\right) \sqrt{2} \\
& =s+t \sqrt{2} .
\end{aligned}
$$

Since there exist $s, t \in \mathbb{Q}$ such that $x_{1} x_{2}=s+t \sqrt{2}$, then $x_{1} x_{2} \in K$, as desired.

Proof. We prove 3.
Suppose $x \in K$ and $x \neq 0$.
Since $x \in K$, then there exist $s, t \in \mathbb{Q}$ such that $x=s+t \sqrt{2}$.
We first prove $x=0$ iff $s=0$ and $t=0$.
Suppose $s=0$ and $t=0$.
Then $x=0+0 \sqrt{2}=0$.
Conversely, suppose $x=0$.
Then $0=s+t \sqrt{2}$, so $-s=t \sqrt{2}$.
Suppose $t \neq 0$.
Then $\frac{-s}{t}=\sqrt{2}$.
Since $s, t \in \mathbb{Q}$ and $t \neq 0$, then $\frac{s}{t} \in \mathbb{Q}$, so $\frac{-s}{t} \in \mathbb{Q}$.
Hence, $\sqrt{2} \in \mathbb{Q}$, so $\sqrt{2}$ is rational.
But, this contradicts the fact that $\sqrt{2}$ is irrational.
Thus, $t=0$, so $-s=0 \sqrt{2}=0$.
Hence, $s=0$.
Therefore, if $x=0$, then $s=0$ and $t=0$.
Since $x \neq 0$, then either $s \neq 0$ or $t \neq 0$.
Thus, either $s \neq 0$ and $t=0$ or $s=0$ and $t \neq 0$ or $s \neq 0$ and $t \neq 0$.
We consider these cases separately.
Case 1: Suppose $s \neq 0$ and $t=0$.
Let $s^{\prime}=\frac{1}{s}$ and $t^{\prime}=t$.
Since $s \in \mathbb{Q}$ and $s \neq 0$, then $s^{\prime} \in \mathbb{Q}$.
Since $t \in \mathbb{Q}$, then $t^{\prime} \in \mathbb{Q}$.
Since $x \neq 0$, then

$$
\begin{aligned}
\frac{1}{x} & =\frac{1}{s+t \sqrt{2}} \\
& =\frac{1}{s+0 \sqrt{2}} \\
& =\frac{1}{s} \\
& =\frac{1}{s}+0 \\
& =\frac{1}{s}+0 \sqrt{2} \\
& =s^{\prime}+t^{\prime} \sqrt{2}
\end{aligned}
$$

Since there exist $s^{\prime}, t^{\prime} \in \mathbb{Q}$ such that $\frac{1}{x}=s^{\prime}+t^{\prime} \sqrt{2}$, then $x^{\prime} \in K$.
Case 2: Suppose $s=0$ and $t \neq 0$.
Let $s^{\prime}=s$ and $t^{\prime}=\frac{1}{2 t}$.
Since $s \in \mathbb{Q}$, then $s^{\prime} \in \mathbb{Q}$.
Since $t \in \mathbb{Q}$ and $t \neq 0$, then $2 t \in \mathbb{Q}$ and $2 t \neq 0$, so $t^{\prime} \in \mathbb{Q}$.
Since $x \neq 0$, then

$$
\begin{aligned}
\frac{1}{x} & =\frac{1}{s+t \sqrt{2}} \\
& =\frac{1}{0+t \sqrt{2}} \\
& =\frac{1}{t \sqrt{2}} \\
& =\frac{1}{t \sqrt{2}} \cdot 1 \\
& =\frac{1}{t \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \\
& =\frac{\sqrt{2}}{2 t} \\
& =0+\frac{\sqrt{2}}{2 t} \\
& =s^{\prime}+\frac{1}{2 t} \sqrt{2} \\
& =s^{\prime}+t^{\prime} \sqrt{2}
\end{aligned}
$$

Since there exist $s^{\prime}, t^{\prime} \in \mathbb{Q}$ such that $\frac{1}{x}=s^{\prime}+t^{\prime} \sqrt{2}$, then $x^{\prime} \in K$.
Case 3: Suppose $s \neq 0$ and $t \neq 0$.
Let $s^{\prime}=\frac{s}{s^{2}-2 t^{2}}$ and $t^{\prime}=\frac{-t}{s^{2}-2 t^{2}}$.
We first prove $s^{2}-2 t^{2} \neq 0$.
Suppose for the sake of contradiction $s^{2}-2 t^{2}=0$.

Then $s^{2}=2 t^{2}$.
Since $t \neq 0$, then $t^{2} \neq 0$, so $2=\frac{s^{2}}{t^{2}}=\left(\frac{s}{t}\right)^{2}$.
Since $s, t \in \mathbb{Q}$ and $t \neq 0$, then $\frac{s}{t} \in \mathbb{Q}$.
Thus, there is a rational number whose square is 2 .
This contradicts the fact that there is no rational number whose square is 2 .
Therefore, $s^{2}-2 t^{2} \neq 0$.
Since $s, t \in \mathbb{Q}$, then $s^{2}-2 t^{2} \in \mathbb{Q}$ and $-t \in \mathbb{Q}$, so $s^{\prime}, t^{\prime} \in \mathbb{Q}$.
We prove $s-t \sqrt{2} \neq 0$.
Suppose for the sake of contradiction $s-t \sqrt{2}=0$.
Then $s=t \sqrt{2}$.
Since $t \neq 0$, then $\frac{s}{t}=\sqrt{2}$.
Since $s, t \in \mathbb{Q}$ and $t \neq 0$, then $\frac{s}{t} \in \mathbb{Q}$.
Thus, $\sqrt{2}$ is rational, a contradiction.
Therefore $s-t \sqrt{2} \neq 0$.
Since $x \neq 0$, then

$$
\begin{aligned}
\frac{1}{x} & =\frac{1}{s+t \sqrt{2}} \\
& =\frac{1}{s+t \sqrt{2}} \cdot 1 \\
& =\frac{1}{s+t \sqrt{2}} \cdot \frac{s-t \sqrt{2}}{s-t \sqrt{2}} \\
& =\frac{s-t \sqrt{2}}{s^{2}-2 t^{2}} \\
& =\frac{s}{s^{2}-2 t^{2}}-\frac{t \sqrt{2}}{s^{2}-2 t^{2}} \\
& =s^{\prime}+t^{\prime} \sqrt{2}
\end{aligned}
$$

Since there exist $s^{\prime}, t^{\prime} \in \mathbb{Q}$ such that $\frac{1}{x}=s^{\prime}+t^{\prime} \sqrt{2}$, then $x^{\prime} \in K$. Therefore, in all cases, $x^{\prime} \in K$, as desired.

