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Exercise 1. For every x ∈ R, if x > 0, then x2 > 0.

Proof. Let x ∈ R such that x > 0.
Since x > 0, then x > 0 and x > 0.
Since R is an ordered field and x > 0 and x > 0, then x2 = xx > 0, so

x2 > 0.

Exercise 2. Show that the statement (∀x, y ∈ R)[(x > 1 → y > 2) → x− y 6∈
(0, 3)] is false.

Proof. Let p(x, y) be the predicate defined over R × R such that p(x, y) : (x >
1→ y > 2)→ x− y 6∈ (0, 3).

Observe that

(∀x, y ∈ R)(x > 1→ y > 2)→ x− y 6∈ (0, 3) ⇔ (∀x, y ∈ R)(x ≤ 1 ∨ y > 2)→ x− y 6∈ (0, 3).

Thus, the negation of the statement is: there exists x, y ∈ R such that either
x ≤ 1 or y > 2 and x− y ∈ (0, 3).

So, to prove the statement is false, we must prove there exists x, y ∈ R such
that either x ≤ 1 or y > 2 and the difference x− y is in the open interval (0, 3).

Let x = 4 and y = 2.5.
Since 2.5 > 2, then 4 ≤ 1 or 2.5 > 2 is true.
Observe that

0 < 1.5 < 3 ⇔ 0 < 4− 2.5 < 3

⇔ 0 < x− y < 3

⇔ x− y ∈ (0, 3).

Therefore, the statement (∀x, y ∈ R)[(x > 1 → y > 2) → x − y 6∈ (0, 3)] is
false.

Exercise 3. Let x, y ∈ R.
If xy = 0, then x = 0 or y = 0.

Solution. The hypothesis is: xy = 0.
The conclusion is: x = 0 ∨ y = 0.
Thus, we have a statement of the form P → Q ∨R.



We know that P → Q ∨R⇔ (P ∧ ¬Q)→ R.
Thus, we assume x 6= 0, in addition to xy = 0.
We must prove y = 0.
Since x 6= 0, then x has a multiplicative inverse, x−1 ∈ R such that xx−1 = 1.
Thus, we can multiply x−1 with xy to get x−1(xy) = x−10, so (x−1x)y =

x−10 = 0.
Thus, 1y = 0, so y = 0.
To write up a correct proof, we write up in a transitive format, so we need

to reverse the steps above in the proof.

Proof. Suppose xy = 0 and x 6= 0.
We must prove y = 0.
Since x is nonzero, then the multiplicative inverse x−1 exists, so x−1x = 1.
Observe that

y = 1 · y
= (x−1x)y

= x−1(xy)

= x−1(0)

= 0, as desired.

Exercise 4. Let a ∈ R.
If a · a = a, then either a = 0 or a = 1.

Proof. We prove by contrapositive.
Suppose a · a = a and a 6= 0.
We must prove a = 1.
Since a2 = a · a = a, then a2 − a = 0, so a(a− 1) = 0.
Hence, either a = 0 or a− 1 = 0.
Since a 6= 0, then a− 1 = 0, so a = 1, as desired.

Exercise 5. reciprocal of a product equals product of the reciprocals
Let a, b ∈ R.
If a 6= 0 and b 6= 0, then 1

ab = 1
a ·

1
b .

Proof. Suppose a 6= 0 and b 6= 0.
Then ab ∈ R and ab 6= 0.
Hence, there exists a unique real number 1

ab such that (ab)( 1
ab ) = ( 1

ab )(ab) =
1.

Since a 6= 0, then there is a unique real number 1
a such that a · 1a = 1

a ·a = 1.
Since b 6= 0, then there is a unique real number 1

b such that b · 1b = 1
b · b = 1.

Hence, 1
a ·

1
b ∈ R and
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(ab)(
1

a
· 1

b
) = (

1

a
· 1

b
)(ab)

= (
1

a
· 1

b
)(ba)

=
1

a
· (1

b
· b) · a

=
1

a
· 1 · a

=
1

a
· a

= 1

Since 1
ab is unique, then this implies 1

ab = 1
a ·

1
b , as desired.

Ordered Fields

Exercise 6. Let x, y ∈ R such that xy = 10 and x > 5.
Then y < 2.

Proof. Since x > 5, then 2x > 2 · 5 = 10 = xy, so 2x > xy.
Since x > 5 > 0, then x > 0.
Since 2x > xy and x > 0, then 2x

x > xy
x , so 2 > y.

Therefore, y < 2, as desired.

Exercise 7. Let x, y ∈ R.
If xy = 6 and x > 2, then y < 3.

Proof. Suppose xy = 6 and x > 2.
Since x > 2 > 0, then x > 0.
Since xy = 6 > 0, then xy > 0.
Since xy > 0 and x > 0, then xy

x > 0
x , so y > 0.

Observe that

x > 2 ⇒ xy > 2y

⇔ 6 > 2y

⇔ 2 · 3 > 2y

⇔ 3 > y

Since x > 2 and x > 2 implies 3 > y, then 3 > y, so y < 3, as desired.

Lemma 8. Let a, b, c ∈ R and c > 0.
If a > b+ c, then a > b.

Proof. Suppose a > b+ c.
Since c > 0, then b+ c > b.
Since a > b+ c and b+ c > b, then a > b.
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Proposition 9. Let a, b, c, d ∈ R.
If a ≤ b and c ≤ d, then a+ c ≤ b+ d.

Proof. Suppose a ≤ b and c ≤ d.
Then either a < b or a = b and either c < d or c = d.
Thus, either a < b and c < d or a < b and c = d or a = b and c < d or a = b

and c = d.
We consider these cases separately.
Case 1: Suppose a < b and c < d.
Then a+ c < b+ d.
Case 2: Suppose a < b and c = d.
Then a+ c < b+ c = b+ d.
Case 3: Suppose a = b and c < d.
Then a+ c = b+ c < b+ d.
Case 4: Suppose a = b and c = d.
Then a+ c = b+ c = b+ d.
Thus, in all cases, a+ c ≤ b+ d.

Corollary 10. Let ak and bk be real numbers such that ak ≤ bk for every
k ∈ Z+.

Then
∑n
k=1 ak ≤

∑n
k=1 bk for all positive integers n.

Proof. We prove by induction on n.
Let S = {n ∈ Z+ :

∑n
k=1 ak ≤

∑n
k=1 bk}.

Then
∑1
k=1 ak = a1 ≤ b1 =

∑1
k=1 bk.

Since 1 ∈ Z+ and
∑1
k=1 ak ≤

∑1
k=1 bk, then 1 ∈ S.

Let m ∈ S.
Then m ∈ Z+ and

∑m
k=1 ak ≤

∑m
k=1 bk.

Since m ∈ Z+, then m+ 1 ∈ Z+, so am+1 ≤ bm+1.
Observe that

m+1∑
k=1

ak =

m∑
k=1

ak + am+1

≤
m∑
k=1

bk + am+1

≤
m∑
k=1

bk + bm+1

=

m+1∑
k=1

bk.

Since m+ 1 ∈ Z+ and
∑m+1
k=1 ak ≤

∑m+1
k=1 bk, then m+ 1 ∈ S.

Since m ∈ S implies m+ 1 ∈ S, then by PMI, S = Z+.
Therefore,

∑n
k=1 ak ≤

∑n
k=1 bk for every n ∈ Z+.
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Exercise 11. Let a, b, c, d ∈ R.
If a < b and c ≤ d, then a+ c < b+ d.

Proof. Suppose a < b and c ≤ d.
Since c ≤ d, then either c < d or c = d.
We consider these cases separately.
Case 1: Suppose c < d.
Since a < b and c < d, then a+ c < b+ d.
Case 2: Suppose c = d.
Since a < b, then a+ c < b+ c, so a+ c < b+ d.

Exercise 12. Show that the statement (∀x ∈ R)(x ≤ 0) ∨ (x2 > 2) ∨ (x3 > 3)
is false.

Proof. To prove the statement is false, we must prove (∃x ∈ R)(x > 0) ∧ (x2 ≤
2) ∧ (x3 ≤ 3).

Let x = 1.
Observe that 1 > 0 and 12 = 1 < 2 ≤ 2 and 13 = 1 < 3 ≤ 3.

Exercise 13. Show that the statement (∃m,n ∈ Z)(n ≥ 5→ m ≤ 4)∧(m+n ≤
9) is true.

Proof. The statement is equivalent to (∃m,n ∈ Z)(n < 5∨m ≤ 4)∧(m+n ≤ 9).
Let m = 1 and n = 2.
Then m and n are integers and 2 < 5 and 1 < 4 ≤ 4 and m + n = 1 + 2 =

3 < 9 ≤ 9.

Exercise 14. Let a, b, c, d be elements of an ordered field F .
If a < b and c < d, then ad+ bc < ac+ bd.

Proof. Suppose a < b and c < d.
Since c < d, then d > c, so d− c > 0.
Since a < b and d− c > 0, then a(d− c) < b(d− c).
Hence, ad− ac < bd− bc.
Observe that

ad− ac+ ac < bd− bc+ ac

ad+ 0 < bd− bc+ ac

ad < bd+ ac− bc
ad+ bc < bd+ ac− bc+ bc

ad+ bc < bd+ ac+ 0

ad+ bc < bd+ ac

ad+ bc < ac+ bd.

Therefore, ad+ bc < ac+ bd.

Exercise 15. Let x ∈ R.
If 0 ≤ x ≤ 2, then −x3 + 4x+ 1 > 0.
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Proof. Suppose 0 ≤ x ≤ 2.
Then 0 ≤ x and x ≤ 2.
Observe that−x3+4x+1 = x(−x2+4)+1 = x(4−x2)+1 = x(2−x)(2+x)+1.
Since x ≤ 2, then 2− x ≥ 0.
Since x ≥ 0, then 2 + x ≥ 2 > 0, so 2 + x > 0.
Since x ≥ 0 and 2− x ≥ 0 and 2 + x > 0, then x(2− x)(2 + x) ≥ 0.
Thus, x(2− x)(2 + x) + 1 ≥ 1 > 0, so x(2− x)(2 + x) + 1 > 0.
Therefore, −x3 + 4x+ 1 > 0.

Exercise 16. Let a, b, x, y be positive elements of an ordered field F .
If x

y <
a
b , then x

y <
x+a
y+b <

a
b .

Proof. Suppose x
y <

a
b .

Since y > 0 and b > 0, then y + b > 0.
Hence, xy <

a
b implies xb < ya, so xy + xb < xy + ya and xb+ ab < ya+ ab.

Thus, x(y+ b) < y(x+a) and (x+a)b < (y+ b)a, so x
y <

x+a
y+b and x+a

y+b <
a
b .

Therefore, x
y <

x+a
y+b <

a
b .

Exercise 17. Let a, b, c, d ∈ R.
If 0 < a < b and 0 ≤ c ≤ d, then 0 ≤ ac ≤ bd.

Proof. Suppose 0 < a < b and 0 ≤ c ≤ d.
Since 0 < a < b, then 0 < a and a < b, so 0 < b.
Since 0 ≤ c ≤ d, then 0 ≤ c and c ≤ d.
Since 0 ≤ c and a > 0, then 0 = a0 ≤ ac, so 0 ≤ ac.
Since 0 ≤ c and c ≤ d, then either 0 < c and c < d or 0 < c and c = d or

0 = c and c < d or 0 = c and c = d.
We consider these cases separately.
Case 1: Suppose 0 < c and c < d.
Then 0 < c < d.
Since 0 < a < b and 0 < c < d, then 0 < ac < bd, so ac < bd.
Case 2: Suppose 0 < c and c = d.
Since a < b and c > 0, then ac < bc = bd, so ac < bd.
Case 3: Suppose 0 = c and c < d.
Then 0 < d.
Since b > 0 and d > 0, then bd > 0.
Since ac = a0 = 0 < bd, then ac < bd.
Case 4: Suppose 0 = c and c = d.
Then ac = a0 = 0 = b0 = bc = bd, so ac = bd.
Thus, in all cases, either ac < bd or ac = bd, so ac ≤ bd.
Therefore, 0 ≤ ac and ac ≤ bd, so 0 ≤ ac ≤ bd, as desired.

Exercise 18. Let a, b ∈ R.
If 0 ≤ a < b, then a2 ≤ ab < b2.
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Proof. Suppose 0 ≤ a < b.
Then 0 ≤ a and a < b, so 0 < b.
Since a < b and b > 0, then ab < b2.
Since a ≥ 0, then either a > 0 or a = 0.
We consider these cases separately.
Case 1: Suppose a > 0.
Since a < b and a > 0, then a2 < ab.
Case 2: Suppose a = 0.
Then a2 = 02 = 0 = 0b = ab.
Thus, in either case, either a2 < ab or a2 = ab, so a2 ≤ ab.
Since a2 ≤ ab and ab < b2, then a2 ≤ ab < b2, as desired.

Exercise 19. Prove x2 + x+ 1 > 0 for all x ∈ R.

Proof. Let x ∈ R.
Then x+ 1

2 ∈ R, so (x+ 1
2 )2 ≥ 0.

Hence, 0 ≤ (x+ 1
2 )2 = x2 + x+ 1

4 , so 0 ≤ x2 + x+ 1
4 .

Therefore 0 < 3
4 ≤ x

2 + x+ 1, so 0 < x2 + x+ 1.

Exercise 20. Let r ∈ R with 0 < r < 1.
Then 0 < rn < 1 for all n ∈ N.

Proof. We prove by induction on n.
Let S = {n ∈ N : 0 < rn < 1}.
Since 1 ∈ N and 0 < r1 = r < 1, then 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and 0 < rk < 1.
Since 0 < r < 1 and 0 < rk < 1, then 0 < rrk < 1 · 1, so 0 < rk+1 < 1.
Since k + 1 ∈ N and 0 < rk+1 < 1, then k + 1 ∈ S.
Thus, k ∈ S implies k + 1 ∈ S.
By the principle of mathematical induction, 0 < rn < 1 for all n ∈ N, as

desired.

Proposition 21. Let a, b ∈ R with a > 0.
Then an < bn for all n ∈ N iff a < b .

Proof. We first prove if an < bn for all n ∈ N, then a < b by contrapositive.
Suppose a ≥ b.
Then a1 = a ≥ b = b1, so a1 ≥ b1.
Since 1 ∈ N and a1 ≥ b1, then there is a natural number n such that an ≥ bn,

as desired.

Proof. We next prove if a < b, then an < bn for all n ∈ N.
Suppose a < b.
Since b > a and a > 0, then b > 0.
We must prove an < bn for all n ∈ N.
Let p(n) : an < bn be a predicate defined over N.
Basis:
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Since a < b, then a1 < b1, so the statement p(1) is true.
Induction:
Let k ∈ N such that p(k) is true.
Then ak < bk.
Since k ∈ N, then k > 0.
Since b > 0 and k > 0, then bk > 0.
Since ak < bk and a > 0 and a < b, then

ak+1 = aka

< bka

< bkb

= bk+1.

Therefore, ak+1 < bk+1, so p(k + 1) is true.
Hence, p(k) implies p(k + 1) for all k ∈ N.
Since p(1) is true and p(k) implies p(k+ 1) for all k ∈ N, then by induction,

p(n) is true for all n ∈ N.
Therefore, an < bn for all n ∈ N, as desired.

Proposition 22. Let c ∈ R.
If c > 1, then cn > c for all natural numbers n > 1.

Proof. Suppose c > 1.
To prove cn > c for all natural numbers n > 1, let S = {n ∈ N : cn > c∧n >

1}.
We prove by induction on n.

Since c > 1 and 1 > 0, then c > 0, so c2 > c.
Since 2 ∈ N and c2 > c and 2 > 1, then 2 ∈ S.

Suppose k ∈ S.
Then k ∈ N and ck > c and k > 1.
Since ck > c and c > 1, then ck > 1.
Since c > 1 and 1 > 0, then c > 0.
Thus, ck · c > 1 · c, so ck+1 > c.
Since k ∈ N, then k + 1 ∈ N.
Since k > 1 and 1 > 0, then k > 0, so k + 1 > 1.
Since k + 1 ∈ N and ck+1 > c and k + 1 > 1, then k + 1 ∈ S.
Hence, k ∈ S implies k + 1 ∈ S, so k ∈ S implies k + 1 ∈ S for all k ∈ S.
Since 2 ∈ S and k ∈ S implies k + 1 ∈ S for all k ∈ S, then by PMI, cn > c

for all natural numbers n > 1.

Proposition 23. Let c ∈ R.
If 0 < c < 1, then cn < c for all natural numbers n > 1.
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Proof. Suppose 0 < c < 1.
Then 0 < c and c < 1.
To prove cn < c for all natural numbers n > 1, let S = {n ∈ N : cn < c∧n >

1}.
We prove by induction on n.

Since c < 1 and c > 0, then c · c < 1 · c, so c2 < c.
Since 2 ∈ N and c2 < c and 2 > 1, then 2 ∈ S.

Suppose k ∈ S.
Then k ∈ N and ck < c and k > 1.
Since ck < c and c < 1, then ck < 1.
Since c > 0, then ck · c < 1 · c, so ck+1 < c.
Since k ∈ N, then k + 1 ∈ N.
Since k > 1 and 1 > 0, then k > 0, so k + 1 > 1.
Since k + 1 ∈ N and ck+1 < c and k + 1 > 1, then k + 1 ∈ S.
Hence, k ∈ S implies k + 1 ∈ S, so k ∈ S implies k + 1 ∈ S for all k ∈ S.
Since 2 ∈ S and k ∈ S implies k + 1 ∈ S for all k ∈ S, then by PMI, cn < c

for all natural numbers n > 1.

Lemma 24. Let c ∈ R with c > 1.
Then cn ≥ c for all n ∈ N.

Proof. We prove cn ≥ c for all n ∈ N by induction on n.
Let S = {n ∈ N : cn ≥ c}.
Since 1 ∈ N and c1 = c, then 1 ∈ S.

Suppose k ∈ S.
Then k ∈ N and ck ≥ c.
Since c > 1 > 0, then c > 0.
Since k ∈ N, then k + 1 ∈ N.
Since ck ≥ c > 1, then ck > 1.
Thus, ck+1 = ck · c > 1 · c = c.
Since k + 1 ∈ N and ck+1 > c, then k + 1 ∈ S.
Therefore, by PMI, cn ≥ c for all n ∈ N.

Proposition 25. Let c ∈ R with c > 1 and m,n ∈ N.
Then cm > cn iff m > n.

Proof. We prove if m > n, then cm > cn.
Suppose m > n.
Then m− n > 0.
Since m,n ∈ N and N ⊂ Z, then m,n ∈ Z, so m− n ∈ Z.
Since m− n ∈ Z and m− n > 0, then m− n ∈ Z+, so m− n ∈ N.
Since c > 1 and n ∈ N, then by the previous lemma, cn ≥ c.
Since cn ≥ c > 1 > 0, then cn > 0.
Since c > 1 and m− n ∈ N, then by the previous lemma, cm−n ≥ c.
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Since cm−n ≥ c > 1, then cm−n > 1, so cm

cn > 1.
Since cn > 0, then cm > cn.
Therefore, if m > n, then cm > cn.

Conversely, we prove if cm > cn, then m > n.
Suppose cm > cn.
Suppose m ≤ n.
Then n ≥ m, so either n > m or n = m.
If n = m, then cn = cm.
If n > m, then cn > cm.
Hence, either cn > cm or cn = cm, so cn ≥ cm.
Thus, we have cm > cn and cm ≤ cn, a violation of trichotomy.
Therefore, m < n, as desired.

Proposition 26. Bernoulli’s inequality
Let x ∈ R with x > −1.
Then (1 + x)n ≥ 1 + nx for all n ∈ N.

Proof. Let S = {n ∈ N : (1 + x)n ≥ 1 + nx}.
We prove using mathematical induction(weak).
Basis:
Let n = 1.
Then (1 + x)1 = 1 + x = 1 + 1x.
Since 1 ∈ N and (1 + x)1 = 1 + 1x, then 1 ∈ S.
Induction:
Let k ∈ S.
Then k ∈ N and (1 + x)k ≥ 1 + kx.
Since k ∈ N, then k + 1 ∈ N and k > 0.
Since x > −1, then 1 + x > 0.
Observe that

(1 + x)k+1 = (1 + x)k(1 + x)

≥ (1 + kx)(1 + x)

= 1 + x+ kx+ kx2

= 1 + kx+ x+ kx2

= 1 + (k + 1)x+ kx2.

Thus, (1 + x)k+1 ≥ 1 + (k + 1)x+ kx2.
Since x2 ≥ 0 and k > 0, then kx2 ≥ 0.
Thus, 1 + (k + 1)x+ kx2 ≥ 1 + (k + 1)x+ 0 = 1 + (k + 1)x.
Since (1 +x)k+1 ≥ 1 + (k+ 1)x+ kx2 and 1 + (k+ 1)x+ kx2 ≥ 1 + (k+ 1)x,

then (1 + x)k+1 ≥ 1 + (k + 1)x.
Since k + 1 ∈ N and (1 + x)k+1 ≥ 1 + (k + 1)x, then k + 1 ∈ S, so k ∈ S

implies k + 1 ∈ S.
Hence, k ∈ S implies k + 1 ∈ S for all k ∈ N.
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Since 1 ∈ S and k ∈ S implies k+ 1 ∈ S for all k ∈ N, then by PMI, S = N,
so (1 + x)n ≥ 1 + nx for all n ∈ N.

Exercise 27. Let n ∈ N.
Then 20 + 21 + 22 + 23 + ...+ 2n = 2n+1 − 1.

Proof. Let S = 20 + 21 + 22 + 23 + ...+ 2n.
We must prove S = 2n+1 − 1.

Observe that 2S = 21+22+23+...+2n+2n+1 and S−1 = 21+22+23+...+2n.
Thus, 2S = (21 + 22 + 23 + ...+ 2n) + 2n+1 = (S − 1) + 2n+1.
Hence, S = 2S − S = (S − 1) + 2n+1 − S = −1 + 2n+1 = 2n+1 − 1.
Therefore, S = 2n+1 − 1, as desired.

Proposition 28. Let x ∈ R.
Then xn − 1 = (x− 1)

∑n−1
k=0 x

k for all n ∈ Z+.

Proof. We prove xn − 1 = (x− 1)
∑n−1
k=0 x

k by induction on n.

Let S = {n ∈ Z+ : xn − 1 = (x− 1)(
∑n−1
k=0 x

k)}.
Basis:
Observe that x1− 1 = x− 1 = (x− 1)(1) = (x− 1)(x0) = (x− 1)(

∑1−1
k=0 x

k).
Hence, 1 ∈ S.
Induction:
Suppose m ∈ S.
Then m ∈ Z+ and xm − 1 = (x− 1)(

∑m−1
k=0 x

k).
Observe that

(x− 1)(

m∑
k=0

xk) = (x− 1)[

m−1∑
k=0

xk + xm]

= (x− 1)

m−1∑
k=0

xk + (x− 1)xm

= (xm − 1) + (xm+1 − xm)

= xm+1 − 1.

Since m+ 1 ∈ Z+ and xm+1 − 1 = (x− 1)(
∑m
k=0 x

k), then m+ 1 ∈ S.
Hence, m ∈ S implies m+ 1 ∈ S, so by PMI, S = Z+.
Therefore, xn − 1 = (x− 1)

∑n−1
k=0 x

k for all n ∈ Z+.

Corollary 29. Let x ∈ R with x 6= 1.

Then
∑n
k=0 x

k = xn+1−1
x−1 for all n ∈ Z+.

Proof. Let n ∈ Z+ be given.
Then xn − 1 = (x− 1)

∑n−1
k=0 x

k.

Since x 6= 1, then x− 1 6= 0, so we divide to obtain xn−1
x−1 =

∑n−1
k=0 x

k.
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Observe that

n∑
k=0

xk =

n−1∑
k=0

xk + xn

=
xn − 1

x− 1
+ xn

=
xn − 1 + xn(x− 1)

x− 1

=
xn − 1 + xn+1 − xn

x− 1

=
xn+1 − 1

x− 1
.

Therefore,
∑n
k=0 x

k = xn+1−1
x−1 .

Proposition 30. Difference of powers
Let a, b ∈ R∗.
Then an − bn = (a− b)

∑n−1
k=0 a

kbn−1−k for all n ∈ N.

Proof. We prove by induction on n.
Let S = {n ∈ N : an − bn = (a− b)

∑n−1
k=0 a

kbn−1−k}.
Basis:
Since 1 ∈ N and a1 − b1 = a− b = (a− b)(1) = (a− b)(ab)0 = (a− b)a0b0 =

(a− b)
∑1−1
k=0 a

kb1−1−k, then 1 ∈ S.
Induction:
Suppose m ∈ S.
Then m ∈ N and am − bm = (a− b)

∑m−1
k=0 a

kbm−1−k.
Since m ∈ N, then m+ 1 ∈ N.
Observe that

am+1 − bm+1 = am+1 − abm + abm − bm+1

= a(am − bm) + bm(a− b)

= a(a− b)
m−1∑
k=0

akbm−1−k + bm(a− b)

= (a− b)[a
m−1∑
k=0

akbm−1−k + bm]

= (a− b)[
m−1∑
k=0

ak+1bm−1−k + bm]

= (a− b)[(a1bm−1 + a2bm−2 + a3bm−3 + ...+ amb0) + a0bm]

= (a− b)
m∑
k=0

akbm−k.

12



Since m+ 1 ∈ N and am+1 − bm+1 = (a− b)
∑m
k=0 a

kbm−k, then m+ 1 ∈ S.
Thus, m ∈ S implies m+ 1 ∈ S.
Therefore, by the principle of mathematical induction, an − bn = (a −

b)
∑n−1
k=0 a

kbn−1−k for all n ∈ N, as desired.

Exercise 31. Let x, y ∈ R.
If xy = 10 and |x| > 2, then |y| ≤ 5.

Proof. We prove by contradiction.
Suppose xy = 10 and |x| > 2 and |y| > 5.
Since |x| > 2 and |y| > 5, then |x| · |y| > 2 · 5, so |xy| > 10.
Thus, |10| > 10, so 10 > 10, a contradiction.
Therefore, if xy = 10 and |x| > 2, then |y| ≤ 5.

Exercise 32. Let x, y ∈ R.
If xy ≤ 9 and x > 3, then y < 3.

Proof. Suppose xy ≤ 9 and x > 3.
Since x > 3 > 0, then x > 0.
Thus, 3x > 3 · 3 = 9 ≥ xy, so 3x > xy.
Hence, 3 > y, so y < 3.

Proof. We prove by contradiction.
Suppose xy ≤ 9 and x > 3 and y ≥ 3.
Since x > 3 and y ≥ 3, then xy > 9.
But, this contradicts the fact that xy ≤ 9.
Therefore, if xy ≤ 9 and x > 3, then y < 3.

Exercise 33. Let S = {x ∈ R : x2 − 4x+ 5 ≤ 10}.
Then S = [−1, 5].

Proof. Since 12 − 4(1) + 5 = 1− 4 + 5 = 2 < 10, then 1 ∈ S, so S 6= ∅.

We first prove S ⊂ [−1, 5].
Let x ∈ S.
Then x ∈ R and x2 − 4x+ 5 ≤ 10, so x2 − 4x− 5 ≤ 0.
Hence, (x− 5)(x+ 1) ≤ 0, so either (x− 5)(x+ 1) < 0 or (x− 5)(x+ 1) = 0.
We consider these cases separately.
Case 1: Suppose (x− 5)(x+ 1) < 0.
Then either x − 5 > 0 and x + 1 < 0 or x − 5 < 0 and x + 1 > 0, so either

x > 5 and x < −1, or x < 5 and x > −1.
Since x cannot be both less than −1 and greater than 5, then x < 5 and

x > −1, so −1 < x < 5.
Hence, x ∈ (−1, 5).
Case 2: Suppose (x− 5)(x+ 1) = 0.
Then either x− 5 = 0 or x+ 1 = 0, so either x = 5 or x = −1.
Hence, x ∈ {−1, 5}.
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Both cases show that either x ∈ (−1, 5) or x ∈ {−1, 5}, so x ∈ (−1, 5) ∪
{−1, 5}.

Therefore, x ∈ [−1, 5].
Since x ∈ S implies x ∈ [−1, 5], then S ⊂ [−1, 5].

We next prove [−1, 5] ⊂ S.
Let y ∈ [−1, 5].
Then −1 ≤ y ≤ 5, so −1 ≤ y and y ≤ 5.
Hence, 0 ≤ y + 1 and y − 5 ≤ 0.
Since y + 1 ≥ 0 and y − 5 ≤ 0, then (y + 1)(y − 5) ≤ 0, so y2 − 4y − 5 ≤ 0.
Thus, y2 − 4y + 5 ≤ 10, so y ∈ S.
Therefore, if y ∈ [−1, 5], then y ∈ S, so [−1, 5] ⊂ S.
Since S ⊂ [−1, 5] and [−1, 5] ⊂ S, then S = [−1, 5], as desired.

Exercise 34. Let S = {x ∈ R : | xx−2 | < 4}.
Then S = (−∞, 85 ) ∪ ( 8

3 ,∞).

Proof. Let T = (−∞, 85 ) ∪ ( 8
3 ,∞).

We must prove S = T .
Since | 3

3−2 | = |
3
1 | = |3| = 3 < 4, then 3 ∈ S, so S 6= ∅.

We first prove S ⊂ T .
Let x ∈ S.
Then x ∈ R and | xx−2 | < 4, so −4 < x

x−2 < 4.
Since x

x−2 ∈ R and division by zero is undefined in R, then x − 2 6= 0, so
x 6= 2.

Thus, either x > 2 or x < 2.
We consider these cases separately.
Case 1: Suppose x > 2.
Then x− 2 > 0.
Observe that

−4 <
x

x− 2
< 4 ⇒ −4(x− 2) < x < 4(x− 2)

⇔ −4x+ 8 < x < 4x− 8

⇔ −5x+ 8 < 0 < 3x− 8

⇔ −5x+ 8 < 0 and 0 < 3x− 8

⇔ 8 < 5x and 8 < 3x

⇔ 8

5
< x and

8

3
< x

Thus, −4 < x
x−2 < 4 implies 8

5 < x and 8
3 < x.

Since −4 < x
x−2 < 4, then we conclude 8

5 < x and 8
3 < x, so x > 8

5 and

x > 8
3 .

Therefore, x ∈ ( 8
5 ,∞) and x ∈ ( 8

3 ,∞).
Hence, x ∈ ( 8

5 ,∞) ∩ ( 8
3 ,∞) = (8

3 ,∞).
Case 2: Suppose x < 2.
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Then x− 2 < 0.
Observe that

−4 <
x

x− 2
< 4 ⇒ −4(x− 2) > x > 4(x− 2)

⇔ −4x+ 8 > x > 4x− 8

⇔ −5x+ 8 > 0 > 3x− 8

⇔ −5x+ 8 > 0 and 0 > 3x− 8

⇔ 8 > 5x and 8 > 3x

⇔ 8

5
> x and

8

3
> x

Thus, −4 < x
x−2 < 4 implies 8

5 > x and 8
3 > x.

Since −4 < x
x−2 < 4, then we conclude 8

5 > x and 8
3 > x, so x < 8

5 and

x < 8
3 .

Therefore, x ∈ (−∞, 85 ) and x ∈ (−∞, 83 ), so x ∈ (−∞, 85 ) ∩ (−∞, 83 ) =
(−∞, 85 ).

Both cases show that either x ∈ (−∞, 85 ) or x ∈ ( 8
3 ,∞), so x ∈ (−∞, 85 ) ∪

( 8
3 ,∞) = T .

Therefore, x ∈ S implies x ∈ T , so S ⊂ T .

We next prove T ⊂ S.
Let y ∈ T .
Then either y ∈ (−∞, 85 ) or y ∈ ( 8

3 ,∞).
We consider these cases separately.
Case 1: Suppose y ∈ ( 8

3 ,∞).
Then y > 8

3 .
Since y > 8

3 > 0, then y > 0.
Since y > 8

3 > 2, then y > 2, so y − 2 > 0.
Observe that

8

3
< y ⇔ 8 < 3y

⇔ y + 8 < 4y

⇔ y < 4y − 8

⇔ y < 4(y − 2)

⇒ y

y − 2
< 4

⇒ |y|
|y − 2|

< 4

⇔ | y

y − 2
| < 4

Since 8
3 < y and 8

3 < y implies | yy−2 | < 4, then we conclude | yy−2 | < 4.
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Since y ∈ R and | yy−2 | < 4, then y ∈ S.

Case 2: Suppose y ∈ (−∞, 85 ).
Then y < 8

5 .
Since y < 8

5 and 8
5 <

8
3 , then y < 8

3 .
Since y < 8

5 and 8
5 < 2, then y < 2, so y − 2 < 0.

Observe that

8

5
> y and

8

3
> y ⇔ 8 > 5y and 8 > 3y

⇔ 8− 5y > 0 and 0 > 3y − 8

⇔ 8− 5y > 0 > 3y − 8

⇔ 8− 4y > y > 4y − 8

⇔ −4(y − 2) > y > 4(y − 2)

⇒ −4 <
y

y − 2
< 4

⇔ | y

y − 2
| < 4

Thus, 8
5 > y and 8

3 > y implies | yy−2 | < 4.

Since 8
5 > y and 8

3 > y, then we conclude | yy−2 | < 4.

Since y ∈ R and | yy−2 | < 4, then y ∈ S.

In all cases, y ∈ S.
Thus, if y ∈ T , then y ∈ S, so T ⊂ S.
Since S ⊂ T and T ⊂ S, then S = T , as desired.

Exercise 35. Let S = {x ∈ R : 7
x−3 > x+ 3 > 0}.

Then S = (3, 4).

Solution. Let x ∈ S.
Then x ∈ R and 7

x−3 > x+ 3 > 0.
Since x− 3 6= 0, then either x− 3 > 0 or x− 3 < 0.
Assume x− 3 > 0.
Then 7 > (x+ 3)(x− 3) > 0, so 7 > x2 − 9 > 0.
Hence, 16 > x2 > 9, so 9 < x2 < 16.
Thus, 3 < |x| < 4.
Since x− 3 > 0, then x > 3 > 0, so x > 0.
Thus, |x| = x, so 3 < x < 4.
Hence, x ∈ (3, 4).

Assume x− 3 < 0.
Then 7 < (x+ 3)(x− 3) < 0, so 7 < x2 − 9 < 0.
Hence, 16 < x2 < 9, so 16 < 9, a contradiction.
Therefore, x− 3 cannot be negative.
We conjecture that S = (3, 4).

Proof. To prove S = (3, 4), we prove S ⊂ (3, 4) and (3, 4) ⊂ S.
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We first prove S ⊂ (3, 4).
Since 7

3.5−3 = 7
.5 = 14 > 6.5 and 6.5 > 0, then 7

3.5−3 > 6.5 > 0, so
7

3.5−3 > 3.5 + 3 > 0.
Hence, 3.5 ∈ S, so S 6= ∅.
Let x ∈ S.
Then x ∈ R and 7

x−3 > x+ 3 > 0.
Suppose x− 3 = 0.
Then 7

0 > x+ 3 > 0, so 7
0 ∈ R.

But, division by zero is not defined, so x− 3 6= 0.
Thus, either x− 3 > 0 or x− 3 < 0.

Suppose x− 3 < 0.
Since 7

x−3 > x + 3 > 0 and x − 3 < 0, then 7 < (x + 3)(x − 3) < 0, so

7 < x2 − 9 < 0.
Hence, 16 < x2 < 9, so 16 < 9, a contradiction.
Therefore, x− 3 cannot be negative.

Thus, x− 3 > 0.
Since 7

x−3 > x + 3 > 0 and x − 3 > 0, then 7 > (x + 3)(x − 3) > 0, so

7 > x2 − 9 > 0.
Hence, 16 > x2 > 9, so 9 < x2 < 16.
Thus, 3 < |x| < 4.
Since x− 3 > 0, then x > 3 > 0, so x > 0.
Thus, |x| = x, so 3 < x < 4.
Hence, x ∈ (3, 4).
Therefore, if x ∈ S, then x ∈ (3, 4), so S ⊂ (3, 4).

Proof. We prove (3, 4) ⊂ S.
Let y ∈ (3, 4).
Then y ∈ R and 3 < y < 4, so 3 < y and y < 4.
Since 3 < y, then y > 3, so y − 3 > 0.
Since 3 < y < 4, then 9 < y2 < 16, so 0 < y2 − 9 < 7.
Hence, 0 < (y + 3)(y − 3) < 7.
Since y − 3 > 0, then 0 < y + 3 < 7

y−3 .

Since y ∈ R and 7
y−3 > y + 3 > 0, then y ∈ S.

Therefore, (3, 4) ⊂ S.

Since S ⊂ (3, 4) and (3, 4) ⊂ S, then S = (3, 4).

Exercise 36. Let S = {x ∈ R+ : |x−4x | ≤ 2}.
Then S = [ 43 ,∞).

Proof. Since | 2−42 | = |
−2
2 | = | − 1| = 1 < 2 ≤ 2, then 2 ∈ S, so S 6= ∅.
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We first prove S ⊂ [ 43 ,∞).
Let x ∈ S.
Then x ∈ R+ and |x−4x | ≤ 2, so −2 ≤ x−4

x ≤ 2.
Since x ∈ R+, then x > 0, so −2x ≤ x− 4 ≤ 2x.
Hence, −3x ≤ −4 ≤ x, so −3x ≤ −4.
Thus, x ≥ 4

3 , so x ∈ [ 43 ,∞).
Therefore, S ⊂ [ 43 ,∞).

We next prove [ 43 ,∞) ⊂ S.
Let y ∈ [ 43 ,∞).
Then y ≥ 4

3 , so 3y ≥ 4.
Since y ≥ 4

3 > 0, then y > 0.
Hence, 3 ≥ 4

y .

Since y > 0, then 4
y > 0, so 3 ≥ 4

y > 0.

Thus, 0 < 4
y ≤ 3.

Observe that

0 <
4

y
≤ 3 ⇔ 0− 1 <

4

y
− 1 ≤ 3− 1

⇔ −1 <
4

y
− 1 ≤ 2

⇔ −2 < −1 <
4

y
− 1 ≤ 2

⇒ −2 <
4

y
− 1 ≤ 2

⇒ −2 ≤ 4

y
− 1 ≤ 2

⇔ |4
y
− 1| ≤ 2

⇔ |4− y
y
| ≤ 2

⇔ |y − 4

y
| ≤ 2.

Since 0 < 4
y ≤ 3 and 0 < 4

y ≤ 3 implies |y−4y | ≤ 2, then |y−4y | ≤ 2.

Since y > 0 and |y−4y | ≤ 2, then y ∈ S, so [ 43 ,∞) ⊂ S.

Since S ⊂ [ 43 ,∞) and [43 ,∞) ⊂ S, then S = [ 43 ,∞), as desired.

Exercise 37. Let S = {x ∈ R : |x+4
x | < 1}.

Then S = (−∞,−2).

Proof. We prove S ⊂ (−∞,−2).
Since |−3+4

−3 | = |
1
−3 | =

1
3 < 1, then 3 ∈ S, so s 6= ∅.

Let x ∈ S.

18



Then x ∈ R and |x+4
x | < 1.

Since x+4
x ∈ R and division by zero is undefined in R, then x cannot be zero.

Observe that

|x+ 4

x
| < 1 ⇔ |1 +

4

x
| < 1

⇔ −1 < 1 +
4

x
< 1

⇔ −2 <
4

x
< 0

⇔ −1

2
<

1

x
< 0.

Since |x+4
x | < 1 and |x+4

x | < 1 if and only if −12 < 1
x < 0, then −12 < 1

x < 0,
so −12 < 1

x and 1
x < 0.

Since 1
x < 0, then x < 0.

Since −12 < 1
x and x < 0, then −x2 > 1, so x < −2.

Hence, x ∈ (−∞,−2), so S ⊂ (−∞,−2).

We next prove (−∞,−2) ⊂ S.
Let y ∈ (−∞,−2).
Then y ∈ R and y < −2.
Since y < −2 < 0, then y < 0, so 1

y < 0.

Since y < −2 and y < 0, then 1 > −2
y , so −12 < 1

y .

Thus, −12 < 1
y and 1

y < 0, so −12 < 1
y < 0.

Observe that

−1

2
<

1

y
< 0 ⇔ −2 <

4

y
< 0

⇔ −1 < 1 +
4

y
< 1

⇔ |1 +
4

y
| < 1

⇔ |y + 4

y
| < 1.

Since −12 < 1
y < 0 and −12 < 1

y < 0 if and only if |y+4
y | < 1, then |y+4

y | < 1.

Since y ∈ R and |y+4
y | < 1, then y ∈ S.

Hence, y ∈ (−∞,−2) implies y ∈ S, so (−∞,−2) ⊂ S.
Since S ⊂ (−∞,−2) and (−∞,−2) ⊂ S, then S = (−∞,−2), as desired.

Exercise 38. Let S = {x ∈ R : 2x+1
x+2 < 1}.

Then S = (−2, 1).

Proof. Let x ∈ (−2, 1).
Then x ∈ R and −2 < x < 1, so −2 < x and x < 1.
Since x > −2, then x+ 2 > 0.
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Since x < 1 and x < 1 iff x+ 1 < 2 iff 2x+ 1 < x+ 2, then 2x+ 1 < x+ 2.
Since 2x+ 1 < x+ 2 and x+ 2 > 0, then 2x+1

x+2 < 1.

Since x ∈ R and 2x+1
x+2 < 1, then x ∈ S.

Thus, (−2, 1) ⊂ S.

Let y ∈ S.
Then y ∈ R and 2y+1

y+2 < 1, so 2y+1
y+2 − 1 < 0.

Thus, 2y+1−(y+2)
y+2 < 0, so y−1

y+2 < 0.
Hence, either y − 1 > 0 and y + 2 < 0 or y − 1 < 0 and y + 2 > 0.
Suppose y − 1 > 0 and y + 2 < 0.
Then y > 1 and y < −2.
Since y < −2 < 1, then y < 1.
Thus, y > 1 and y < 1, a contradiction.
Therefore, y − 1 < 0 and y + 2 > 0.
Hence, y < 1 and y > −2, so −2 < y < 1.
Thus, y ∈ (−2, 1), so S ⊂ (−2, 1).

Since S ⊂ (−2, 1) and (−2, 1) ⊂ S, then S = (−2, 1).

Exercise 39. Let S = {x ∈ R : x−1x−2 <
x+1
x+2}.

Then S = (−∞,−2) ∪ (0, 2).

Proof. To prove S = (−∞,−2) ∪ (0, 2), we prove S ⊂ (−∞,−2) ∪ (0, 2) and
(−∞,−2) ∪ (0, 2) ⊂ S.

We first prove S ⊂ (−∞,−2) ∪ (0, 2).
Since 1−1

1−2 = 0 < 2
3 = 1+1

1+2 , then 1 ∈ S, so S 6= ∅.
Let x ∈ S.
Then x ∈ R and x−1

x−2 <
x+1
x+2 .

Suppose x = 2.
Then 2−1

2−2 <
2+1
2+2 , so 1

0 <
3
4 .

Since division by 0 is undefined, then x 6= 2.
Suppose x = −2.
Then −2−1−2−2 <

−2+1
−2+2 , so 3

4 <
−1
0 .

Since division by 0 is undefined, then x 6= −2.
Since x 6= 2 and x 6= −2, then either x > 2 or −2 < x < 2 or x < −2.

Suppose x > 2.
Then x− 2 > 0.
Since x−1

x−2 <
x+1
x+2 and x− 2 > 0, then x− 1 < x+1

x+2 · (x− 2).
Since x > 2, then x+ 2 > 4 > 0, so x+ 2 > 0.
Thus, (x− 1)(x+ 2) < (x+ 1)(x− 2).
Hence, x2 + x− 2 < x2 − x− 2, so x < −x.
Therefore, 2x < 0, so x < 0.
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Thus, we have x < 0 and x > 2, a contradiction.
Hence, x cannot be greater than 2.
Thus, either −2 < x < 2 or x < −2.

Suppose −2 < x < 2.
Then −2 < x and x < 2, so 0 < x+ 2 and x− 2 < 0.

Since x−1
x−2 <

x+1
x+2 and x+ 2 > 0, then (x−1)(x+2)

x−2 < x+ 1.
Since x− 2 < 0, then (x− 1)(x+ 2) > (x+ 1)(x− 2).
Hence, x2 + x− 2 > x2 − x− 2, so x > −x.
Therefore, 2x > 0, so x > 0.
Since 0 < x and x < 2, then 0 < x < 2, so x ∈ (0, 2).
Since either −2 < x < 2 or x < −2 and if −2 < x < 2, then x ∈ (0, 2), then

either x ∈ (0, 2) or x < −2.
Hence, either x ∈ (0, 2) or x ∈ (−∞,−2), so x ∈ (0, 2) ∪ (−∞,−2).
Thus, if x ∈ S, then x ∈ (0, 2) ∪ (−∞,−2), so S ⊂ (0, 2) ∪ (−∞,−2).
Therefore, S ⊂ (−∞,−2) ∪ (0, 2).

Proof. We prove (−∞,−2) ∪ (0, 2) ⊂ S.
Let y ∈ (−∞,−2) ∪ (0, 2).
Then y ∈ R and either y < −2 or 0 < y < 2.
We consider these cases separately.
Case 1: Suppose y < −2.
Then y + 2 < 0.
Since y < −2 < 0, then y < 0, so −y > 0.
Since y < 0 and 0 < −y, then y < −y.
Thus, y + (y2 − 2) < −y + (y2 − 2), so (y − 1)(y + 2) < (y − 2)(y + 1).
Since y < −2 and −2 < 2, then y < 2, so y − 2 < 0.

We divide by negative y − 2 to get (y−1)(y+2)
y−2 > y + 1.

Since y + 2 < 0, then y−1
y−2 <

y+1
y+2 .

Since y ∈ R and y−1
y−2 <

y+1
y+2 , then y ∈ S.

Case 2: Suppose 0 < y < 2.
Then 0 < y and y < 2.
Since y > 0, then −y < 0.
Since −y < 0 and 0 < y, then −y < y.
Thus, −y + (y2 − 2) < y + (y2 − 2), so (y − 2)(y + 1) < (y − 1)(y + 2).
Since y < 2, then y − 2 < 0, so we divide by negative y − 2 to get y + 1 >

(y−1)(y+2)
y−2 .
Since y > 0 and 0 > −2, then y > −2, so y + 2 > 0.
We divide by positive y + 2 to get y+1

y+2 >
y−1
y−2 .

Hence, y−1
y−2 <

y+1
y+2 .

Since y ∈ R and y−1
y−2 <

y+1
y+2 , then y ∈ S.

Therefore, in all cases, y ∈ S.
Hence, (−∞,−2) ∪ (0, 2) ⊂ S.
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Since S ⊂ (−∞,−2)∪ (0, 2) and (−∞,−2)∪ (0, 2) ⊂ S, then S = (−∞,−2)∪
(0, 2).

Lemma 40. Let a, b ∈ R.
If a ≤ t for every real number t > b, then a ≤ b.

Proof. We prove by contrapositive.
Suppose a > b.
Let t = b+a

2 .

Since b < b+a
2 < a, then b < t < a, so b < t and t < a.

Thus, there exists t > b such that a > t, as desired.

Exercise 41. Let a and b be real numbers.
If a ≤ b+ ε for every ε > 0, then a ≤ b.

Solution. The hypothesis is (∀ε > 0)(a ≤ b+ ε) and the conclusion is a ≤ b.
Since the conclusion is simple and hypothesis is complex, we try proof by

contrapositive.
Thus, we assume a > b and must find ε > 0 such that a > b+ ε.
To find ε, let’s try working backwards.
Suppose a > b+ ε.
Then a− b > ε, so ε < a− b.
Thus, we want ε such that 0 < ε < a− b.
We see that any real number between 0 and a− b will work, so let’s conve-

niently choose ε = a−b
2 .

Proof. Suppose a ≤ b+ ε for every ε > 0.
Let ε > 0 be given.
Let t = b+ ε.
Then ε = t− b, so t− b > 0.
Thus, a ≤ b+ (t− b) = (t− b) + b = t, so a ≤ t.
Hence, a ≤ t for every t− b > 0, so a ≤ t for every t > b.
Therefore, by the previous lemma, we conclude a ≤ b, as desired.

Proof. We prove by contrapositive.
Suppose a > b.
Then a− b > 0, so a−b

2 > 0.

Let ε = a−b
2 .

Then ε > 0.
Since 1 > 1

2 and a− b > 0, then a− b > a−b
2 = ε, so a > b+ ε.

Therefore, there is some ε > 0 such that a > b+ ε, as desired.

Proof. We prove by contrapositive.
Suppose a > b.
Then a− b > 0, so a−b

2 > 0.

Let ε = a−b
2 .

Then ε > 0.
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Since a > b and

a > b ⇔ 2a > b+ a

⇔ 2a > 2b+ (a− b)

⇔ a > b+
a− b

2
⇔ a > b+ ε,

then a > b+ ε.
Therefore, there exists ε > 0 such that a > b+ ε, as desired.

Exercise 42. Let a ∈ R.
If 0 ≤ a < ε for every real ε > 0, then a = 0.

Proof. We prove by contradiction.
Suppose 0 ≤ a < ε for every real ε > 0 and a 6= 0.
Since 1 > 0, then 0 ≤ a < 1, so 0 ≤ a.
Since a ≥ 0 and a 6= 0, then a > 0.
Hence, 0 ≤ a < a, so a < a, a contradiction.
Thus, either 0 ≤ a < ε for every real ε > 0 is false or a = 0.
Therefore, 0 ≤ a < ε for every real ε > 0 implies a = 0, as desired.

Exercise 43. Let a, b ∈ R.

Then (a+b2 )2 ≤ a2+b2

2 .

Proof. Since a, b ∈ R, then a− b ∈ R, so (a− b)2 ∈ R.
Thus, (a− b)2 ≥ 0.
Observe that

(a− b)2 ≥ 0 ⇔ a2 − 2ab+ b2 ≥ 0

⇔ a2 + b2 ≥ 2ab

⇔ 2a2 + 2b2 ≥ a2 + 2ab+ b2

⇔ 2(a2 + b2) ≥ (a+ b)2

⇔ 2(a2 + b2)

4
≥ (a+ b)2

4

⇔ a2 + b2

2
≥ (

a+ b

2
)2.

Hence, a2+b2

2 ≥ (a+b2 )2, so (a+b2 )2 ≤ a2+b2

2 .

Exercise 44. At least one of the real numbers a1, a2, ..., an is greater than or
equal to the average of these numbers..

Solution. The statement to prove is shown below.
Let n ∈ Z+ and n ≥ 2.
Let a1, a2, ..., an ∈ R.

Then there exists k ∈ {1, 2, ..., n} such that ak ≥
∑n

i=1 ai
n .
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Proof. Let n ∈ Z+ and n ≥ 2.
Let a1, a2, ..., an ∈ R.

We prove there exists k ∈ {1, 2, ..., n} such that ak ≥
∑n

i=1 ai
n .

Since a1, a2, ..., an ∈ R and R is an ordered field, then we can order the
numbers so that a1 ≤ a2 ≤ ... ≤ an.

Let k = n.
Since n ∈ {1, 2, ..., n}, then k ∈ {1, 2, ..., n}.
Since a1 ≤ a2 ≤ ... ≤ an, then a1 ≤ an and a2 ≤ an and ..., an ≤ an.
Adding these n inequalities, we obtain a1+a2+ ...+an ≤ an+an+ ...+an =

nan.
Observe that

n∑
i=1

ai = a1 + a2 + ...+ an

≤ nan.

Since n ≥ 2 > 0, then n > 0, so n 6= 0.

Hence, we divide by n to obtain
∑n

i=1 ai
n ≤ an = ak.

Therefore, there exists k ∈ {1, 2, ..., n} such that ak ≥
∑n

i=1 ai
n , as desired.

Exercise 45. (∀x, y ∈ R)(x < y → x3 < y3).

Proof. Let x, y ∈ R such that x < y.
Then 0 < y − x, so y − x > 0.
Either x ≥ 0 or x < 0.
We consider these cases separately.
Case 1: Suppose x ≥ 0.
Then 0 ≤ x < y, so 0 < y.
Hence, y > 0, so y2 > 0.
Since x ≥ 0, then x2 ≥ 0.
Since x ≥ 0 and y > 0, then xy ≥ 0.
Adding these inequalities, we obtain y2 + xy + x2 > 0.
Since y−x > 0 and y2+xy+x2 > 0, then y3−x3 = (y−x)(y2+xy+x2) > 0,

so y3 − x3 > 0.
Therefore, y3 > x3, so x3 < y3.
Case 2: Suppose x < 0.
Either y ≥ 0 or y < 0.
We consider these cases separately.
Case 2a: Suppose y ≥ 0.
Then y3 ≥ 0.
Since x < 0, then x3 < 0, so x3 < 0 ≤ y3.
Therefore, x3 < y3.
Case 2b: Suppose y < 0.
Then x < y < 0, so x < 0.
Since x < 0, then x2 > 0.
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Since y < 0, then y2 > 0.
Since x < 0 and y < 0, then xy > 0.
Adding these inequalities, we obtain y2 + xy + x2 > 0.
Since y−x > 0 and y2+xy+x2 > 0, then y3−x3 = (y−x)(y2+xy+x2) > 0,

so y3 − x3 > 0.
Therefore, y3 > x3, so x3 < y3.

Exercise 46. Let a, b ∈ R∗.
If a < 1

a < b < 1
b , then a < −1.

Proof. Suppose a < 1
a < b < 1

b .
If a > 1, then a2 > a > 1 > 0, so a2 > 1.
Hence, a > 1

a , which contradicts a < 1
a .

Therefore, a ≤ 1.

If a > 0, then 0 < a ≤ 1, so 0 < 1 ≤ 1
a .

Since 1 ≤ 1
a < b, then 1 < b, so b > 1 > 0.

Since 0 < a < 1
b and b > 0, then 0 < ab < 1, so ab < 1.

Since 1
a < b and a > 0, then 1 < ab, so ab > 1, which contradicts ab < 1.

Hence, a ≤ 0.

Since a 6= 0, then this implies a < 0.

Suppose a ≥ −1.
Then −1 ≤ a < 0, so −a ≥ a2 > 0.
Since a < 1

a < 0 and a < 0, then a2 > 1 > 0.
Since −a ≥ a2 and a2 > 1, then −a > 1, so a < −1.
But, this contradicts a ≥ −1.
Therefore, a < −1, as desired.

Absolute value in an ordered field

Exercise 47. Find a constant M such that | 2x
2+3x+1
2x−1 | ≤M for all x satisfying

2 ≤ x ≤ 3.

Solution. Let x ∈ R such that 2 ≤ x ≤ 3.
Then 2 ≤ x and x ≤ 3.
Since x ≥ 2 > 0, then x > 0.
Since x ≤ 3 and x > 0, then 0 < |x| = x ≤ 3.
Since x ≥ 2 and x > 0, then |x| = x ≥ 2.

Since |2x2 + 3x+ 1| ≤ |2x2|+ |3x|+ |1| = 2|x2|+ 3|x|+ 1 = 2|x|2 + 3|x|+ 1,
then |2x2 + 3x+ 1| ≤ 2|x|2 + 3|x|+ 1.

Since 0 < |x| ≤ 3, then 2|x|2 + 3|x|+ 1 ≤ 2 · 32 + 3 · 3 + 1 = 28.
Since |2x2 + 3x+ 1| ≤ 2|x|2 + 3|x|+ 1 ≤ 28, then |2x2 + 3x+ 1| ≤ 28.
Since x > 0, then 2x2 + 3x+ 1 > 0, so 0 < |2x2 + 3x+ 1| ≤ 28.
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Since |2x− 1| ≥ |2x| − |1| = 2|x| − 1, then |2x− 1| ≥ 2|x| − 1.
Since |x| ≥ 2, then 2|x| − 1 ≥ 2 · 2− 1 = 3.
Since |2x− 1| ≥ 2|x| − 1 ≥ 3, then |2x− 1| ≥ 3.
Since 0 < 3 ≤ |2x− 1|, then 0 < 1

|2x−1| ≤
1
3 .

Since 0 < |2x2 + 3x+ 1| ≤ 28 and 0 < 1
|2x−1| ≤

1
3 , then 0 < |2x2+3x+1|

|2x−1| ≤ 28
3 ,

so | 2x
2+3x+1
2x−1 | ≤ 28

3 = M .

Exercise 48. Let S = {x ∈ R : | xx+1 | ≤ 1}.
Then S = [−12 ,∞).

Solution. Suppose x ∈ R and | xx+1 | ≤ 1.
Then −1 ≤ x

x+1 ≤ 1.
Since division by zero is not defined, then x+ 1 6= 0, so either x+ 1 > 0 or

x+ 1 < 0.
Assume x+ 1 > 0.
Then −(x+ 1) ≤ x ≤ x+ 1, so −x− 1 ≤ x ≤ x+ 1.
Thus, −x− 1 ≤ x and x ≤ x+ 1, so −1 ≤ 2x and 0 ≤ 1.
Hence, −12 ≤ x, so x ≥ −12 .
Now, assume x+ 1 < 0.
Then −(x+ 1) ≥ x ≥ x+ 1, so −(x+ 1) ≥ x and x ≥ x+ 1.
Thus, x ≥ x+ 1, so 0 ≥ 1, a contradiction.
Hence, x+ 1 cannot be negative.
Therefore, x ≥ −12 , so x ∈ [−12 ,∞).
We conjecture that S = [−12 ,∞).

Proof. To prove S = [−12 ,∞), we prove S ⊂ [−12 ,∞) and [−12 ,∞) ⊂ S.
We first prove S ⊂ [−12 ,∞).
Since | 0

0+1 | = 0 < 1, then 0 ∈ S, so S is not empty.
Let x ∈ S.
Then x ∈ R and | xx+1 | ≤ 1, so −1 ≤ x

x+1 ≤ 1.
Suppose x+ 1 = 0.
Then |x0 | ≤ 1, so x

0 ∈ R.
But, division by zero is not defined, so x+ 1 6= 0.
Thus, either x+ 1 > 0 or x+ 1 < 0.

Suppose x+ 1 < 0.
Since −1 ≤ x

x+1 ≤ 1 and x + 1 < 0, then −(x + 1) ≥ x ≥ x + 1, so
−x− 1 ≥ x ≥ x+ 1.

Hence, −x− 1 ≥ x and x ≥ x+ 1, so −1 ≥ 2x and 0 ≥ 1.
Thus, 0 ≥ 1, a contradiction.
Therefore, x+ 1 cannot be negative.
Hence, x+ 1 > 0.
Since −1 ≤ x

x+1 ≤ 1 and x + 1 > 0, then −(x + 1) ≤ x ≤ x + 1, so
−x− 1 ≤ x ≤ x+ 1.
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Hence, −x− 1 ≤ x and x ≤ x+ 1, so −1 ≤ 2x and 0 ≤ 1.
Thus, −1 ≤ 2x, so 2x ≥ −1.
Therefore, x ≥ −12 , so x ∈ [−12 ,∞).
Consequently, if x ∈ S, then x ∈ [−12 ,∞), so S ⊂ [−12 ,∞).

Proof. We next prove [−12 ,∞) ⊂ S.
Let y ∈ [−12 ,∞).
Then y ≥ −12 .
Thus, y + 1 ≥ 1

2 > 0, so y + 1 > 0.
Hence, |y + 1| = y + 1 > 0.
Either y ≥ 0 or y < 0.
We consider these cases separately.
Case 1: Suppose y ≥ 0.
Then |y| = y.
Since 1 > 0, then y + 1 > y.

Since y + 1 > 0, then 1 > y
y+1 = |y|

|y+1| = | yy+1 |, so 1 > | yy+1 |.
Thus, | yy+1 | < 1.
Case 2: Suppose y < 0.
Then |y| = −y.
Since y ≥ −12 , then −2y ≤ 1, so −y ≤ y + 1.
Thus, |y| ≤ |y + 1|.
Since |y + 1| > 0, then |y|

|y+1| ≤ 1, so | yy+1 | ≤ 1.

Therefore, in all cases, | yy+1 | ≤ 1, so y ∈ S.

Thus, if y ∈ [−12 ,∞), then y ∈ S, so [−12 ,∞) ⊂ S.

Since S ⊂ [−12 ,∞) and [−12 ,∞) ⊂ S, then S = [−12 ,∞), as desired.

Exercise 49. Let a, b ∈ R.
If 0 ≤ a < b, then 0 ≤ a2 < b2.

Proof. Suppose 0 ≤ a < b.
Then 0 ≤ a and a < b.
Since a ≥ 0, then either a > 0 or a = 0.
We consider these cases separately.
Case 1: Suppose a = 0.
Since a < b, then 0 < b.
Since b > 0, then b2 > 0.
Since 0 = a = 02 = a2 < b2, then 0 = a2 < b2.
Case 2: Suppose a > 0.
Since 0 < a and a < b, then 0 < a < b, so 0 < a2 < b2.
Therefore, in all cases, 0 ≤ a2 < b2.

Exercise 50. Let B = {x ∈ R : |x− 1| < |x|}.
Then B = ( 1

2 ,∞).

27



Proof. Let x ∈ B.
Then x ∈ R and |x− 1| < |x|.
Since 0 ≤ |x− 1| < |x|, then |x− 1|2 < |x|2.
Since x2 − 2x+ 1 = (x− 1)2 = |x− 1|2 < |x|2 = x2, then x2 − 2x+ 1 < x2,

so −2x+ 1 < 0.
Hence, 1 < 2x, so 1

2 < x.
Thus, x > 1

2 , so x ∈ ( 1
2 ,∞).

Therefore, B ⊂ ( 1
2 ,∞).

Let x ∈ ( 1
2 ,∞).

Then x > 1
2 , so either 1

2 < x < 1 or x ≥ 1.
We consider these cases separately.
Case 1: Suppose x ≥ 1.
Then x− 1 ≥ 0.
Since x ≥ 1 > 0, then x > 0.
Since −1 < 0, then x− 1 < x.
Hence, |x− 1| = x− 1 < x = |x|.
Case 2: Suppose 1

2 < x < 1.
Then 1

2 < x and x < 1.
Since x > 1

2 > 0, then x > 0.
Since x < 1, then x− 1 < 0.
Since 1

2 < x, then 1 < 2x, so 1− x < x.
Thus, |x− 1| = 1− x < x = |x|.
In all cases, |x− 1| < |x|, so x ∈ B.
Therefore, ( 1

2 ,∞) ⊂ B.

Since B ⊂ ( 1
2 ,∞) and (1

2 ,∞) ⊂ B, then B = ( 1
2 ,∞).

Exercise 51. Let F be an ordered field.
Then |x− y| ≤ |x|+ |y| for all x, y ∈ F .

Proof. Let x, y ∈ F .
Then

|x− y| = |x+ (−y)|
≤ |x|+ | − y|
= |x|+ |y|.

Therefore, |x− y| ≤ |x|+ |y|.

Exercise 52. Let a, x be elements of an ordered field F .
If a ≥ 0 and x ≤ a and −x ≤ a, then |x| ≤ a.

Proof. Suppose a ≥ 0 and x ≤ a and −x ≤ a.
Either x ≥ 0 or x < 0.
We consider these cases separately.
Case 1: Suppose x ≥ 0.
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Then |x| = x ≤ a, so |x| ≤ a.
Case 2: Suppose x < 0.
Then |x| = −x ≤ a, so |x| ≤ a.

Exercise 53. Let F be an ordered field.
Let x, y, z ∈ F .
Then d(x, y) = d(x− z, y − z).

Proof. Observe that

d(x, y) = |x− y|
= |x− y − z + z|
= |x− z − y + z|
= |(x− z)− (y − z)|
= d(x− z, y − z).

Exercise 54. Let x, y, z ∈ R with x ≤ z.
Then x ≤ y ≤ z iff |x− y|+ |y − z| = |x− z|.

Proof. Suppose x ≤ y ≤ z.
Then x ≤ y and y ≤ z and x ≤ z, so x− y ≤ 0 and y− z ≤ 0 and x− z ≤ 0.
Thus,

|x− y|+ |y − z| = −(x− y)− (y − z)
= −x+ y − y + z

= −x+ z

= −(x− z)
= |x− z|.

Proof. Conversely, suppose |x− y|+ |y − z| = |x− z|.
We must prove x ≤ y and y ≤ z.
Suppose x > y.
Then y < x.
Since y < x and x ≤ z, then y < x ≤ z, so |y − x|+ |x− z| = |y − z|.
Hence, |x− y| = |y − x| = |y − z| − |x− z|.
Since |x− y|+ |y − z| = |x− z|, then |x− y| = |x− z| − |y − z|.
Adding these equations we obtain 2|x− y| = 0, so |x− y| = 0.
Thus, x− y = 0, so x = y.
But, this contradicts the fact that x > y.
Therefore, x ≤ y.
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Suppose y > z.
Then z < y.
Since x ≤ z and z < y, then x ≤ z < y, so |x− z|+ |z − y| = |x− y|.
Hence, |y − z| = |z − y| = |x− y| − |x− z|.
Since |x− y|+ |y − z| = |x− z|, then |y − z| = |x− z| − |x− y|.
Adding these equations we obtain 2|y − z| = 0, so |y − z| = 0.
Thus, y − z = 0, so y = z.
But, this contradicts the fact that y > z.
Therefore, y ≤ z.
Since x ≤ y and y ≤ z, then x ≤ y ≤ z.

Exercise 55. Let x ∈ R.
Then |x| = max{x,−x}.

Proof. Let S = {x,−x}.
We must prove |x| = maxS.
Either x ≥ 0 or x < 0.
We consider these cases separately.
Case 1: Suppose x ≥ 0.
Then −x ≤ 0.
Hence, −x ≤ 0 ≤ x, so −x ≤ x.
Since x ∈ S and −x ≤ x and x ≤ x, then maxS = x = |x|.
Case 2: Suppose x < 0.
Then −x > 0.
Hence, x < 0 < −x, so x < −x.
Thus, x ≤ −x.
Since −x ∈ S and x ≤ −x and −x ≤ −x, then maxS = −x = |x|.
Therefore, in all cases, maxS = |x|, as desired.

Exercise 56. Let F be an ordered field.
Let a, b ∈ F .
If a and b are both non-negative or both negative, then |a+ b| = |a|+ |b|.

Proof. Suppose a and b are both non-negative or both negative.
Then either a and b are both non-negative or a and b are both negative.
We consider these cases separately.
Case 1: Suppose a and b are both non-negative.
Then a ≥ 0 and b ≥ 0.
Hence, a+ b ≥ 0.
Therefore, |a+ b| = a+ b = |a|+ |b|, as desired.
Case 2: Suppose a and b are both negative.
Then a < 0 and b < 0.
Hence, a+ b < 0.
Therefore, |a+ b| = −(a+ b) = −a+ (−b) = |a|+ |b|, as desired.

Exercise 57. Let F be an ordered field.
Let a, b ∈ F .
If |a+ b| = |a|+ |b|, then ab ≥ 0.
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Proof. Suppose |a+ b| = |a|+ |b|.
Then |a+ b|2 = (|a|+ |b|)2.
Thus,

0 = (|a|+ |b|)2 − |a+ b|2

= |a|2 + 2|a||b|+ |b|2 − (a+ b)2

= a2 + 2|ab|+ b2 − (a2 + 2ab+ b2)

= a2 + 2|ab|+ b2 − a2 − 2ab− b2

= 2|ab| − 2ab

= 2(|ab| − ab).

Since 2(|ab| − ab) = 0, then |ab| − ab = 0, so |ab| = ab.
Either ab ≥ 0 or ab < 0.

Suppose for the sake of contradiction ab < 0.
Then |ab| = ab < 0, so |ab| < 0.
But, this contradicts the fact that |ab| ≥ 0.
Therefore, ab ≥ 0.

Exercise 58. Let ε > 0.
Let a, x ∈ R.
Then |x− a| < ε iff a− ε < x < a+ ε.

Proof. For any real number r and k > 0, |r| < k iff −k < r < k.
Since x− a ∈ R and ε > 0, then |x− a| < ε iff −ε < x− a < ε.
Therefore, |x− a| < ε iff a− ε < x < a+ ε, as desired.

Exercise 59. Prove |x− z| ≥ |x| − |z| and |x+ y + z| ≤ |x|+ |y|+ |z|.

Proof. To prove |x− z| ≥ |x| − |z|, we let x and z be arbitrary real numbers.
Observe that |(x− z) + z| ≤ |x− z|+ |z|, by the triangle inequality.
Hence, |x+ (−z) + z| ≤ |x− z|+ |z|, so |x+ 0| ≤ |x− z|+ |z|.
Thus, |x| ≤ |x− z|+ |z|, so |x| − |z| ≤ |x− z|.
Therefore, |x− z| ≥ |x| − |z|, as desired.
To prove |x+ y + z| ≤ |x|+ |y|+ |z|, we let x, y, z ∈ R be arbitrary.
Then |(x+ y) + z| ≤ |x+ y|+ |z|, by the triangle inequality.
Hence, |(x+ y) + z| − |z| ≤ |x+ y|.
By the triangle inequality, |x+ y| ≤ |x|+ |y|.
Since |(x+ y) + z| − |z| ≤ |x+ y| and |x+ y| ≤ |x|+ |y|, then by transitivity

of ≤, we conclude that |(x+ y) + z| − |z| ≤ |x|+ |y|.
Therefore, |(x+ y) + z| ≤ |x|+ |y|+ |z|.
Hence, |x+ y + z| ≤ |x|+ |y|+ |z|, as desired.
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Boundedness of sets in an ordered field

Exercise 60. In R sup(−∞, 2] = 2.

Proof. Let S = (−∞, 2] = {x ∈ R : x ≤ 2}.
To prove supS = 2, we must prove 2 is an upper bound of S and 2 is the

least upper bound of S.

We prove 2 is an upper bound of S.
Let x ∈ S.
Then x ≤ 2, so x ≤ 2 for all x ∈ S.
Therefore, 2 is an upper bound of S.

To prove 2 is the least upper bound of S, let r ∈ R such that r < 2.
Since 2 ∈ S and 2 > r, then r is not an upper bound of S.
Since r is arbitrary, then every r less than 2 is not an upper bound of S.
Therefore, 2 is the least upper bound of S, so supS = 2.

Exercise 61. 1 = inf(N).

Proof. We must prove 1 is the greatest lower bound of N in R.
Let n ∈ N.
Then n ≥ 1, so 1 ≤ n.
Thus, 1 ≤ n for all n ∈ N.
Therefore, 1 is a lower bound of N in R.
Let ε > 0 be given.
To prove 1 is the greatest lower bound, we must prove there exists n ∈ N

such that n < 1 + ε.
Take n = 1.
Then n = 1 ∈ N.
We prove n < 1 + ε.
Observe that

0 < ε ⇔ 1 < 1 + ε

⇒ n < 1 + ε.

Therefore, n < 1 + ε, as desired.

Exercise 62. Let a, b ∈ R with a < b.
Then b = lub[a, b].

Proof. Let x ∈ [a, b].
Then x ∈ R and a ≤ x ≤ b.
Hence, x ≤ b.
Thus, x ≤ b for all x ∈ [a, b].
Therefore, b is an upper bound of [a, b].
Let ε > 0 be given.
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To prove b is the least upper bound, we must prove there exists y ∈ [a, b]
such that y > b− ε.

Take y = b.
Since b ∈ [a, b], then y ∈ [a, b].
Observe that

ε > 0 ⇔ ε > b− b
⇔ ε+ b > b

⇔ b > b− ε
⇒ y > b− ε.

Therefore, y > b− ε, as desired.

Exercise 63. Let a ∈ R.
Then a = glb(a,∞).

Proof. Let x ∈ (a,∞).
Then x ∈ R and a < x.
Hence, a ≤ x.
Thus, a ≤ x for all x ∈ (a,∞).
Therefore, a is a lower bound of (a,∞).
Let ε > 0 be given.
To prove a is the greatest lower bound, we must prove there exists y ∈ (a,∞)

such that y < a+ ε.
Take y = a+ ε

2 .
We prove y ∈ (a,∞).
Since ε > 0, then ε

2 > 0, so a+ ε
2 > a.

Hence, y > a, so y ∈ (a,∞), as desired.
We prove y < a+ ε.
Since 1

2 < 1 and ε > 0, then ε
2 < ε.

Hence, a+ ε
2 < a+ ε.

Thus, y < a+ ε, as desired.

Exercise 64. Let S = (3, 4) ∪ {6} in R.
Then 3 = inf S and 6 = supS.

Proof. We must prove 3 is the greatest lower bound of S in R and 6 is the least
upper bound of S in R.

We prove 3 is the greatest lower bound of S in R.
Let x ∈ S.
Then either x ∈ (3, 4) or x ∈ {6}.
We consider these cases separately.
Case 1: Suppose x ∈ (3, 4).
Then 3 < x < 4, so 3 < x.
Hence, 3 ≤ x.
Case 2: Suppose x ∈ {6}.
Then x = 6.
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Since 3 < 6 = x, then 3 < x, so 3 ≤ x.
Hence, in all cases, 3 ≤ x.
Thus, 3 ≤ x for all x ∈ S.
Therefore, 3 is a lower bound of S in R.
Let ε > 0 be given.
To prove 3 is the greatest lower bound, we must prove there exists s ∈ S

such that s < 3 + ε.
Let k = min{ 12 ,

ε
2}.

Then k ≤ 1
2 and k ≤ ε

2 .
Let s = 3 + k.
To prove s ∈ S, we prove 3 + k ∈ (3, 4).
Thus, we must prove 3 < 3 + k and 3 + k < 4.
Since ε > 0, then ε

2 > 0.
Since 1

2 > 0 and ε
2 > 0, then min{ 12 ,

ε
2} > 0.

Therefore, k > 0.
Hence, 0 < k, so 3 < 3 + k, as desired.
Since k ≤ 1

2 and 1
2 < 1, then k < 1.

Hence, 3 + k < 4, as desired.
Therefore, s ∈ S.
We prove s < 3 + ε.
Since 1

2 < 1 and ε > 0, then ε
2 < ε.

Observe that

s = 3 + k

≤ 3 +
ε

2
< 3 + ε.

Therefore, s < 3 + ε, as desired.

Proof. We prove 6 is the least upper bound of S in R.
Let x ∈ S.
Then either x ∈ (3, 4) or x ∈ {6}.
We consider these cases separately.
Case 1: Suppose x ∈ (3, 4).
Then 3 < x < 4, so x < 4.
Since x < 4 < 6, then x < 6.
Case 2: Suppose x ∈ {6}.
Then x = 6.
Hence, in all cases, either x < 6 or x = 6, so x ≤ 6.
Thus, x ≤ 6 for all x ∈ S.
Therefore, 6 is an upper bound of S in R.
Let ε > 0 be given.
To prove 6 is the least upper bound, we must prove there exists s ∈ S such

that s > 6− ε.
Take s = 6.
Then s = 6 ∈ S.
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We prove s > 6− ε.
Observe that

ε > 0 ⇔ ε > 6− 6

⇔ 6 + ε > 6

⇔ 6 > 6− ε
⇒ s > 6− ε.

Therefore, s > 6− ε, as desired.

Exercise 65. Let S = {x ∈ R : x ≥ 0}.
Then
1. There is no upper bound of S.
2. 0 is a lower bound of S.
3. inf S = 0.

Proof. We prove 1.
To prove there is no upper bound of S, we prove for every real B there exists

x ∈ S such that x > B.
Let B ∈ R be arbitrary.
Let T = {0, B}.
Let x = maxT + 1.
Since maxT ≥ 0 and 1 > 0, then maxT + 1 > 0, so x > 0.
Thus, x ∈ S.
Since maxT ≥ B and 1 > 0, then maxT + 1 > B, so x > B.
Therefore, there exists x ∈ S such that x > B, as desired.

Proof. We prove 2.
To prove 0 is a lower bound of S, we prove for every x ∈ S we have 0 ≤ x.
Let x ∈ S be given.
Then x ≥ 0, so 0 ≤ x for all x ∈ S.
Therefore, 0 is a lower bound of S.

Proof. We prove 3.
To prove inf S = 0, we prove 0 is a lower bound of S and every real number

r > 0 is not a lower bound of S.
Let r > 0 be arbitrary.
We prove r is not a lower bound of S.
Let x = r

2 .
Since r > 0, then r

2 > 0, so x > 0.
Thus, x ∈ S.
Since r > 0, then 2r > r, so r > r

2 .
Hence, r > x.
Therefore, there exists x ∈ S such that x < r, so r is not a lower bound of

S.
Consequently, every real number r > 0 is not a lower bound of S.
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Since 0 is a lower bound of S and every real number r > 0 is not a lower
bound of S, then 0 is the greatest lower bound of S, so 0 = inf S.

Exercise 66. Let R+ = {x ∈ R : x > 0}.
Then
1. There is no upper bound of R+, so supR+ does not exist.
2. 0 is a lower bound of R+.
3. inf R+ = 0.

Proof. We prove 1.
To prove there is no upper bound of R+, we prove for every real B there

exists x ∈ R+ such that x > B.
Let B ∈ R be arbitrary.
Let T = {0, B}.
Let x = maxT + 1.
Since maxT ≥ 0 and 1 > 0, then maxT + 1 > 0, so x > 0.
Thus, x ∈ R+.
Since maxT ≥ B and 1 > 0, then maxT + 1 > B, so x > B.
Therefore, there exists x ∈ R+ such that x > B, as desired.

Proof. We prove 2.
To prove 0 is a lower bound of R+, we prove for every x ∈ R+ we have 0 ≤ x.
Let x ∈ R+ be given.
Then x ≥ 0, so 0 ≤ x for all x ∈ R+.
Therefore, 0 is a lower bound of R+.

Proof. We prove 3.
To prove inf R+ = 0, we prove 0 is a lower bound of R+ and every real

number r > 0 is not a lower bound of R+.
Let r > 0 be arbitrary.
We prove r is not a lower bound of R+.
Let x = r

2 .
Since r > 0, then r

2 > 0, so x > 0.
Thus, x ∈ R+.
Since r > 0, then 2r > r, so r > r

2 .
Hence, r > x.
Therefore, there exists x ∈ R+ such that x < r, so r is not a lower bound of

R+.
Consequently, every real number r > 0 is not a lower bound of R+.

Since 0 is a lower bound of R+ and every real number r > 0 is not a lower
bound of S, then 0 is the greatest lower bound of R+, so 0 = inf R+.

Lemma 67. For every natural number n, |(−1)n| = 1.
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Proof. We prove by induction on n.
Let S = {n ∈ N : |(−1)n| = 1}.
Since 1 ∈ N and | − 11| = | − 1| = 1, then 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and |(−1)k| = 1.
Since k ∈ N, then k + 1 ∈ N.
Observe that |(−1)k+1| = |(−1)k(−1)| = |(−1)k| · | − 1| = 1 · 1 = 1.
Since k + 1 ∈ N and |(−1)k+1| = 1, then k + 1 ∈ S.
Thus, k ∈ S implies k + 1 ∈ S.
By the principle of mathematical induction, |(−1)n| = 1 for all n ∈ N.

Lemma 68. Let n ∈ N.
1. If n is even, then (−1)n = 1.
2. If n is odd, then (−1)n = −1.

Proof. We prove 1.
Suppose n is even.
Then n = 2k for some integer k.
Thus, (−1)n = (−1)2k = [(−1)2]k = 1k = 1.

Proof. We prove 2.
Suppose n is odd.
Then n = 2k + 1 for some integer k.
Since 2k is even, then (−1)n = (−1)2k+1 = (−1)2k · (−1)1 = 1 · (−1) =

−1.

Exercise 69. Let S = {1− (−1)n
n : n ∈ N}.

Then
1. supS = 2.
2. inf S = 1

2 .

Proof. We prove 1.
We first prove 2 is an upper bound of S.

Since 2 = 1 + 1 = 1− (−1) = 1− −1
1

1 , then 2 ∈ S, so S 6= ∅.
Let x ∈ S.
Then there exists n ∈ N such that x = 1− (−1)n

n .
Since n ∈ N, then n ≥ 1, so 1 ≥ 1

n .
Hence, 2 ≥ 1 + 1

n .
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Observe that

|x| = |1− (−1)n

n
|

= |1 +
(−1)n

−n
|

≤ |1|+ | (−1)n

−n
|

= 1 +
|(−1)n|
| − n|

= 1 +
1

n
≤ 2.

Thus, |x| ≤ 2, so −2 ≤ x ≤ 2.
Hence, x ≤ 2, so 2 is an upper bound of S.
To prove 2 is the least upper bound of S, we prove every real number r < 2

is not an upper bound of S.
Let r < 2 be an arbitrary real number.
Since 2 ∈ S and 2 > r, then r is not an upper bound of S.
Thus, every real number r < 2 is not an upper bound of S.
Since 2 is an upper bound of S and every real number r < 2 is not an upper

bound of S, then 2 is the least upper bound of S, so 2 = supS.

Proof. We prove 2.
To prove 1

2 = inf S, we prove 1
2 is a lower bound of S and we prove for every

real number r > 1
2 , r is not a lower bound of S.

We first prove 1
2 is a lower bound of S.

Let x ∈ S.
Then there exists n ∈ N such that x = 1− (−1)n

n .
Since n ∈ N, then either n is even or n is odd.
We consider these cases separately.
Case 1: Suppose n is even.
Then n ≥ 2 and (−1)n = 1.
Observe that

n ≥ 2 ⇔ 1

2
≥ 1

n

⇔ 1

2
≥ (−1)n

n

⇔ 1 ≥ 1

2
+

(−1)n

n

⇔ 1− (−1)n

n
≥ 1

2

⇔ x ≥ 1

2
.
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Thus, x ≥ 1
2 , so 1

2 ≤ x.
Case 2: Suppose n is odd.
Then (−1)n = −1.
Since n ∈ N, then n > 0, so 1

n > 0.

Since 1
2 < 1 and 0 < 1

n , then 1
2 < 1 + 1

n = 1− (−1)n
n .

Thus, 1
2 < 1− (−1)n

n , so 1
2 < x.

Hence, in either case, 1
2 ≤ x, so 1

2 is a lower bound of S.

Let r be an arbitrary real number such that r > 1
2 .

To prove r is not a lower bound of S, we must prove there exists x ∈ S such
that x < r.

Since 2 ∈ N, then 1− (−1)2
2 = 1− 1

2 = 1
2 ∈ S.

Thus, there exists 1
2 ∈ S such that 1

2 < r.
Hence, r is not a lower bound of S, so every real number r > 1

2 is not a lower
bound of S.

Since 1
2 is a lower bound of S and every real number r > 1

2 is not a lower
bound of S, then 1

2 is the greatest lower bound of S, so 1
2 = inf S.

Exercise 70. Compute sup and inf of the set {x ∈ R : |2x+ π| <
√

2}.

Solution. Let S = {x ∈ R : |2x+ π| <
√

2}.
Since |2(−1) + π| = π − 2 <

√
2, then −1 ∈ S.

Hence, S is not empty.

We prove S = (π+
√
2

−2 , π−
√
2

−2 ).
Observe that

x ∈ (
π +
√

2

−2
,
π −
√

2

−2
) ⇔ π +

√
2

−2
< x <

π −
√

2

−2

⇔ π +
√

2

−1
< 2x <

π −
√

2

−1

⇔ −π −
√

2 < 2x < −π +
√

2

⇔ −
√

2 < 2x+ π <
√

2

⇔ |2x+ π| <
√

2

⇔ x ∈ S.

Therefore, (π+
√
2

−2 , π−
√
2

−2 ) = S.

Therefore, supS = π−
√
2

−2 and inf S = π+
√
2

−2 .

Exercise 71. Let S ⊂ R.
Let r ∈ R.
Then r = sup(S) iff (∀x ∈ S)(x ≤ r) and (∀ε > 0)(∃s ∈ S)(r − ε < s).

Proof. We first prove if (∀x ∈ S)(x ≤ r) and (∀ε > 0)(∃s ∈ S)(r − ε < s), then
r = sup(S).

Suppose (∀x ∈ S)(x ≤ r) and (∀ε > 0)(∃s ∈ S)(r − ε < s).
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Since x ≤ r for all x ∈ S, then r is an upper bound of S.
Let M be an arbitrary real number less than r.
We prove M is not an upper bound of S.
Since M < r, then r −M > 0.
Hence, there exists s ∈ S such that r − (r −M) < s.
Thus, there exists s ∈ S such that M < s.
Since there exists s ∈ S such that s > M , then M is not an upper bound of

S.
Therefore, every real number M < r is not an upper bound of S.
Since r is an upper bound of S and every real number M < r is not an upper

bound of S, then r is the least upper bound of S, so r = supS.

Conversely, we prove if r = sup(S), then (∀x ∈ S)(x ≤ r) and (∀ε > 0)(∃s ∈
S)(r − ε < s).

Suppose r = sup(S).
Then r is the least upper bound of S, so r is an upper bound of S and any

real number M < r is not an upper bound of S.
Since r ∈ R and r is an upper bound of S, then (∀x ∈ S)(x ≤ r).
Let ε > 0 be given.
Then ε > r − r, so r > r − ε.
Since any real number M less than r is not an upper bound of S, then in

particular, r − ε is not an upper bound of S.
Hence, there exists s ∈ S such that s > r − ε.
Therefore, for every ε > 0, there exists s ∈ S such that r − ε < s, so

(∀ε > 0)(∃s ∈ S)(r − ε < s).

Exercise 72. Let S ⊂ R be nonempty.
Let t, u ∈ R.
Then u is an upper bound of S iff t > u implies t 6∈ S.

Proof. We prove if u is an upper bound of S, then t > u implies t 6∈ S.
Suppose u is an upper bound of S.
Then if t ∈ S, then t ≤ u.
Hence, if t > u, then t 6∈ S.

Conversely, we prove if t > u implies t 6∈ S, then u is an upper bound of S.
Suppose t > u implies t 6∈ S.
Then if t ∈ S, then t ≤ u.
Since S 6= ∅, let x ∈ S.
Then x ≤ u.
Thus, x ≤ u for all x ∈ S, so u is an upper bound of S.

Exercise 73. Let a ∈ R.
Let S = {s ∈ Q : s < a}.
Then supS = a.
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Proof. Let s ∈ S.
Then s ∈ Q and s < a.
Thus, s < a for all s ∈ S, so a is an upper bound of S.

Let b ∈ R such that b < a.
Since Q is dense in R, then there exists q ∈ Q such that b < q < a, so b < q

and q < a.
Since q ∈ Q and q < a, then q ∈ S.
Since q ∈ S and q > b, then b is not an upper bound of S.
Hence, every real number b less than a is not an upper bound of S.
Therefore, a = supS.

Exercise 74. Let S ⊂ R such that B ∈ S and B is an upper bound of S.
Then B = supS.

Proof. Since B is an upper bound of S, then S has at least one upper bound in
R.

Let M be an arbitrary upper bound of S in R.
Since B ∈ S and M is an upper bound of S, then B ≤M .
Thus, B ≤M for any upper bound M of S.
Since B is an upper bound of S and B ≤M any upper bound M of S, then

B is the least upper bound of S.
Therefore, B = supS.

Lemma 75. Let S ⊂ R.
If supS exists, then every real number r > supS is an upper bound of S.

Proof. Suppose supS exists.
Let r be an arbitrary real number such that r > supS.
Since supS exists, then S 6= ∅.
Let x ∈ S.
Since supS is an upper bound of S, then x ≤ supS.
Since x ≤ supS and supS < r, then x < r.
Thus, x < r for all x ∈ S, so r is an upper bound of S.

Exercise 76. Let S ⊂ R such that supS exists. Then
1. supS − 1

n is not an upper bound of S for all n ∈ N.
2. supS + 1

n is an upper bound of S for all n ∈ N.

Proof. We prove 1.
Let n ∈ N be arbitrary.
Then n > 0, so 1

n > 0.
Thus, 1

n > supS − supS, so supS + 1
n > supS.

Hence, supS > supS − 1
n .

Since supS is the least upper bound of S, then for every real number r <
supS, r is not an upper bound of S.

Since supS− 1
n < supS, then we conclude supS− 1

n is not an upper bound
of S.
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Proof. We prove 2.
Let n ∈ N be arbitrary.
Then n > 0, so 1

n > 0.
Thus, supS + 1

n > supS.
Since supS exists, then every real number r > supS is an upper bound of

S.
Since supS + 1

n > supS, then we conclude supS + 1
n is an upper bound of

S.

Exercise 77. Let S be a subset of an ordered field F .
If b ∈ F and b is an upper bound for S, then supS ≤ b.

Proof. Suppose b ∈ F and b is an upper bound for S.
Since supS is the least upper bound of S, then for every b ∈ F such that

b < supS, b is not an upper bound of S.
Thus, if b ∈ F and b < supS, then b is not an upper bound of S.
Hence, if b ∈ F and b is an upper bound of S, then b ≥ supS.
Since b ∈ F and b is an upper bound of S, then we conclude b ≥ supS, so

supS ≤ b.

Exercise 78. Let A and B be subsets of an ordered field F .
If A is unbounded above in F and (∀x ∈ A)(∃y ∈ B)(x ≤ y), then B is

unbounded above in F .

Proof. Suppose A is unbounded above in F and (∀x ∈ A)(∃y ∈ B)(x ≤ y).
Let b ∈ F be arbitrary.
Since A is unbounded above in F , then there exists x ∈ A such that x > b.
Since x ∈ A, then there exists y ∈ B such that x ≤ y.
Thus, b < x ≤ y, so b < y.
Hence, there exists y ∈ B such that y > b.
Therefore, B is unbounded above in F .

Exercise 79. Let S = { n
√
n : n ∈ N}.

Compute maxS,minS, supS, inf S, if they exist.

Solution. We prove maxS = 3
√

3.
Since 3 ∈ N, then 3

√
3 ∈ S.

We prove 3
√

3 is an upper bound of S.
Let x ∈ S.
Then x ∈ R and there exists n ∈ N such that x = n

√
n.

To prove 3
√

3 is an upper bound of S, we must prove x ≤ 3
√

3.
Suppose for the sake of contradiction that x > 3

√
3.

Then n
√
n > 3
√

3, so n
1
n > 3

1
3 .

Since n
1
n > 3

1
3 > 0 and 3n ∈ N, then (n

1
n )3n > (3

1
3 )3n, so n3 > 3n.

Thus, there exists n ∈ N such that n3 > 3n.
Since n ∈ N, then either n = 1 or n = 2 or n = 3 or n > 3.
Since 1 = 13 < 31 = 3, then n 6= 1.
Since 8 = 23 < 32 = 9, then n 6= 2.
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Since 33 6> 33, then n 6= 3.
Hence, n cannot be 1 or 2 or 3.
We prove n3 < 3n for all natural numbers n > 3 by induction on n.
Define predicate p(n) : n3 < 3n for all natural numbers n > 3.
Since 64 = 43 < 34 = 81, then p(4) is true.
Suppose n > 3 such that p(n) is true.
Then n3 < 3n.
To prove p(n+ 1), we must prove (n+ 1)3 < 3n+1.
Since n > 3, then 2n > 6, so 2n− 3 > 3.
Since n > 3 and 2n− 3 > 3, then n(2n− 3) > 3 · 3, so 2n2 − 3n > 9 > 4.
Hence, 2n2 − 3n > 4, so 2n2 − 3n− 3 > 1.
Since n > 1 and 2n2 − 3n − 3 > 1, then n(2n2 − 3n − 3) > 1 · 1, so

2n3 − 3n2 − 3n > 1.
Thus, 2n3 > 3n2 + 3n+ 1, so 3n3 > n3 + 3n2 + 3n+ 1 = (n+ 1)3.
Hence, 3n3 > (n+ 1)3, so (n+ 1)3 < 3n3.
Since n3 < 3n, then 3n3 < 3n+1.
Thus, (n+ 1)3 < 3n3 and 3n3 < 3n+1, so (n+ 1)3 < 3n+1.
Therefore, p(n+ 1) is true, as desired.
Hence, by induction, n3 < 3n for all n > 3.
Thus, n3 6> 3n for all n > 3.
Therefore, n cannot be greater than 3.
Thus, there is no n ∈ N such that n3 > 3n.
Therefore, x ≤ 3

√
3.

Hence 3
√

3 is an upper bound of S.
Since 3

√
3 ∈ S and 3

√
3 is an upper bound of S, then 3

√
3 = maxS = supS.

We prove minS = 1.
Since 1 ∈ N and 1 = 1

1
n , then 1 ∈ S.

We prove 1 is a lower bound of S.
Let y ∈ S.
Then y ∈ R and there exists n ∈ N such that y = n

√
n.

To prove 1 is a lower bound of S, we must prove 1 ≤ y.
Suppose for the sake of contradiction that 1 > y.
Then 1 > n

√
n.

Since n > 0, then n
√
n > 0.

Since 1 > n
√
n > 0 and n ∈ N, then 1n > ( n

√
n)n.

Hence, 1 > n, so n < 1.
But, n ∈ N, so n ≥ 1.
Thus, we have n < 1 and n ≥ 1, a violation of trichotomy.
Therefore, 1 ≤ y, so 1 is a lower bound of S.
Since 1 ∈ S and 1 is a lower bound of S, then 1 = minS = inf S.

Exercise 80. Let S be a set of positive real numbers.
Let T = {x2 : x ∈ S}.
If supS exists, then supT = (supS)2.
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Proof. We first prove (supS)2 is an upper bound of T .
Since supS exists, then S 6= ∅.
Let x ∈ S.
Then x2 ∈ T , so T 6= ∅.
Let t ∈ T be arbitrary.
Then t = s2 for some s ∈ S.
Since s ∈ S, then s > 0.
Since s ∈ S and supS is an upper bound of S, then s ≤ supS.
Thus, 0 < s ≤ supS, so 0 < s2 = t ≤ (supS)2 and 0 < supS.
Hence, t ≤ (supS)2, so (supS)2 is an upper bound of T .

We next prove (supS)2 is the least upper bound of T .
Let ε > 0 be given.
Since supS > 0, then ε

2 supS > 0.
Since supS is the least upper bound of S, then there exists x ∈ S such that

x > supS − ε
2 supS .

Hence, ε
2 supS > supS − x.

Since x ∈ S, then x > 0.
Since x ∈ S and supS is an upper bound of S, then x ≤ supS.
Thus, 0 < x ≤ supS.
Therefore, 0 < 2x ≤ supS + x ≤ 2 supS and 0 ≤ supS − x.
Hence, 0 < supS + x ≤ 2 supS and 0 ≤ supS − x < ε

2 supS , so (supS +

x)(supS − x) < ε.
Consequently, (supS)2 − x2 < ε, so (supS)2 − ε < x2.
Let t = x2.
Since x ∈ S, then t ∈ T , so (supS)2 − ε < t.
Therefore, t > (supS)2 − ε, as desired.

Exercise 81. Let A ⊂ R.
Let B = {x2 : x ∈ A}.
1. If supA and supB exist, then supB ≥ (supA)2.
2. If inf A and inf B exist, then inf B ≤ (inf A)2.

Proof. We prove 1.
We prove if supA and supB exist, then supB ≥ (supA)2.
Suppose supA and supB exist in R.
Either supA ≥ 0 or supA < 0.
We consider these cases separately.
Case 1: Suppose supA ≤ 0.
Since supA exists, then A is not empty.
Let x ∈ A.
Since supA is an upper bound of A, then x ≤ supA.
Thus, x ≤ supA ≤ 0, so −x ≥ − supA ≥ 0.
Hence, 0 ≤ − supA ≤ −x, so 0 ≤ (supA)2 ≤ x2.
Thus, (supA)2 ≤ x2.
Since x2 ∈ B and supB is an upper bound of B, then x2 ≤ supB.
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Hence, (supA)2 ≤ x2 ≤ supB, so (supA)2 ≤ supB.
Therefore, supB ≥ (supA)2, as desired.
Case 2: Suppose supA > 0.
Since supA exists, then A is not empty.
Let x ∈ A.
Then x2 ∈ B.
Since supB is an upper bound of B, then x2 ≤ supB.
Since x2 ≥ 0 and x2 ≤ supB, then 0 ≤ x2 ≤ supB, so 0 ≤ supB.
Suppose for the sake of contradiction supB < (supA)2.
Then 0 ≤ supB < (supA)2.
Hence, 0 ≤

√
supB < supA, so

√
supB < supA.

Thus, supA−
√

supB > 0.
Since supA is the least upper bound of A, then there exists a ∈ A such that

a > supA− (supA−
√

supB).
Hence, there exists a2 ∈ B such that a >

√
supB.

Since a >
√

supB ≥ 0, then a2 > supB.
Therefore, there exists a2 ∈ B such that a2 > supB.
But, this contradicts the fact that supB is an upper bound of B.
Therefore, supB ≥ (supA)2, as desired.

Proof. We prove 2.
We prove if inf A and inf B exist, then inf B ≤ (inf A)2.
Suppose inf A and inf B exist in R.
Suppose for the sake of contradiction inf B > (inf A)2.
Either inf A ≥ 0 or inf A < 0.
We consider these cases separately.
Case 1: Suppose inf A < 0.
Then − inf A > 0.
Thus, 0 < (inf A)2 < inf B, so 0 < inf B.
Hence,

√
inf B > 0.

Since
√

inf B > 0 and − inf A > 0, then
√

inf B − inf A > 0.
Since inf A is the greatest lower bound of A, then there exists a ∈ A such

that a < inf A+ (
√

inf B − inf A).
Thus, there exists a ∈ A such that a <

√
inf B.

Either a ≥ 0 or a < 0.
Suppose a ≥ 0.
Then 0 ≤ a <

√
inf B.

Hence, 0 ≤ a2 < inf B.
Therefore, there exists a2 ∈ B such that a2 < inf B.
Suppose a < 0.
Since inf A is a lower bound of A and a ∈ A, then inf A ≤ a.
Hence, inf A ≤ a < 0, so − inf A ≥ −a > 0.
Thus, 0 < −a ≤ − inf A, so 0 < a2 ≤ (inf A)2.
Therefore, 0 < a2 ≤ (inf A)2 < inf B, so 0 < a2 < inf B.
Hence, there exists a2 ∈ B such that a2 < inf B.
In either case, there exists a2 ∈ B such that a2 < inf B.
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But, this contradicts the fact that inf B is a lower bound of B.
Case 2: Suppose inf A ≥ 0.
Then 0 ≤ (inf A)2 < inf B, so 0 ≤ inf A <

√
inf B.

Thus, inf A <
√

inf B, so
√

inf B − inf A > 0.
Since inf A is the greatest lower bound of A, then there exists a ∈ A such

that a < inf A+ (
√

inf B − inf A).
Hence, there exists a2 ∈ B such that a <

√
inf B.

Since inf A is a lower bound of A and a ∈ A, then inf A ≤ a.
Thus, 0 ≤ inf A ≤ a <

√
inf B, so 0 ≤ a <

√
inf B.

Hence, 0 ≤ a2 < inf B, so a2 < inf B.
Therefore, there exists a2 ∈ B such that a2 < inf B.
But, this contradicts the fact that inf B is a lower bound of B.
Since a contradiction arises in all cases, then inf B ≤ (inf A)2, as desired.

Exercise 82. Let S ⊂ R.
Here is a definition of least upper bound of S.
A real number u is called a least upper bound of S iff
1. (∀x ∈ S)(x ≤ u).
2. (∀ε > 0)(∃y ∈ S)(y > u− ε).
Using the above definition of least upper bound of S, prove that there is at

most one least upper bound of S.

Solution. This is a more elegant solution.
The statement there is at most one least upper bound of S means that
if x and y are upper bounds of S, then x = y.
Define predicate: A(x) : x is a least upper bound of S over domain of

discourse R.
Then the statement meansA(x)∧A(y)⇒ x = y, so we must prove (∀x)(∀y)(A(x)∧

A(y)→ x = y).
To prove (∀x)(∀y)(A(x)∧A(y)→ x = y), we assume arbitrary a, b ∈ R such

that A(a) ∧A(b).
We must prove a = b.
To prove a = b, assume a 6= b and use proof by contradiction.
Since a 6= b, then either a < b or a > b.
Without loss of generality, we may assume a < b.
How can we derive the desired contradiction?
We must use the fact that a and b are lubs of S.
Thus we have:
1. (∀x ∈ S)(x ≤ a)
2. (∀ε > 0)(∃y ∈ S)(y > a− ε)
3. (∀x ∈ S)(x ≤ b)
4. (∀ε > 0)(∃y ∈ S)(y > b− ε)
To derive a contradiction among the 4 statements, we need to find a suitable

ε > 0.
How should we choose ε?
Since a < b, then 0 < b− a, so b− a > 0.
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Let’s try ε = b− a.
Can we derive a contradiction?
We consider the 4 facts given and see if any logical contradictions arise.
Since ε > 0 is a particular object, by universal elimination, (∃y ∈ S)(y >

a− ε) and (∃y ∈ S)(y > b− ε).
By existential elimination, let y1, y2 be some elements of S.
Then y1 > a− ε and y2 > b− ε.
Hence, y1 > a− (b− a), so y1 > 2a− b and y2 > b− (b− a), so y2 > a.
By universal elimination, since (∀x ∈ S)(x ≤ a) and y2 ∈ S, then y2 ≤ a.
Thus, we have y2 > a and y2 ≤ a.
Since y2 ∈ S and S ⊂ R, then y2 ∈ R.
Hence, we have a violation of trichotomy of R.
Thus, a cannot be less than b, so it cannot be that a 6= b.
Therefore, a = b, as desired.

Proof. Let S be a subset of R.
Assume arbitrary real numbers a and b such that a and b are least upper

bounds of S.
To prove a = b, suppose for the sake of contradiction that a 6= b.
Since a 6= b, then either a < b or a > b.
Without loss of generality, we may assume a < b.
Since a and b are least upper bounds of S, then each element of S is less

than or equal to a and for each positive real ε, there corresponds x ∈ S such
that x > b− ε.

Let ε = b− a.
Since a < b, then b > a, so b− a > 0.
Hence, ε > 0.
Thus, there is x ∈ S such that x > b− ε.
Since x > b− (b− a), then x > a.
Since x ∈ S, then x ≤ a.
Hence, x > a and x ≤ a.
Thus, we have a violation of trichotomy of R.
Consequently, a cannot be less than b, so it cannot be that a 6= b.
Therefore, a = b, as desired.

Exercise 83. Let A and B be subsets of R such that (∀a ∈ A)(∃b ∈ B)(a ≤ b).
If supA and supB exist, then supA ≤ supB.

Proof. Suppose supA and supB exist.
Since supA exists, then A 6= ∅.
Let a ∈ A be given.
Then there exists b ∈ B such that a ≤ b.
Since b ∈ B and supB is an upper bound of B, then b ≤ supB.
Thus, a ≤ b ≤ supB, so a ≤ supB.
Hence, supB is an upper bound of A.
Since supA is the least upper bound of A and supB is an upper bound of

A, then supA ≤ supB.
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Exercise 84. Let A and B be subsets of R such that (∀a ∈ A)(∀b ∈ B)(a ≤ b).
If supA and inf B exist, then supA ≤ inf B.

Proof. Suppose supA and inf B exist.
Since inf B exists, then B 6= ∅.
Let b ∈ B.
Then a ≤ b for all a ∈ A, so b is an upper bound of A.
Since supA is the least upper bound of A, then supA ≤ b.
Since b is arbitrary, then supA ≤ b for all b ∈ B, so supA is a lower bound

of B.
Since inf B is the greatest lower bound of B, then supA ≤ inf B.

Proposition 85. Let A and B be subsets of R such that (∀a ∈ A)(∀b ∈ B)(a ≤
b).

If supA and supB exist, then supA ≤ supB.

Proof. Suppose supA and supB exist.
Since supB exists, then B 6= ∅, so there exists b ∈ B.
Thus, a ≤ b for all a ∈ A, so b is an upper bound of A.
Since supA is the least upper bound of A, then supA ≤ b.
Since b ∈ B and supB is an upper bound of B, then b ≤ supB.
Therefore, supA ≤ b ≤ supB, so supA ≤ supB.

Exercise 86. Let A and B be nonempty sets of real numbers.
Let δ(A,B) = inf{|a− b| : a ∈ A, b ∈ B}.
We call δ(A,B) the distance betweens sets A and B.
1. Let A = N and B = R− N. What is δ(A,B)?
2. If A and B are finite sets, what does δ(A,B) represent?

Solution. We compute δ(A,B) when A = N and B = R− N.
Let S = {|a− b| : a ∈ A, b ∈ B}.
Then δ(A,B) = inf S.
Since A and B are not empty, then there is at least one element in A and B.
Let x ∈ S.
Then there exists a ∈ A and b ∈ B such that x = |a− b|.
Since a ∈ A and A = N ⊂ R, then a ∈ R.
Since b ∈ B and B = R− N, then b ∈ R and b 6∈ N.
Since a ∈ R and b ∈ R, then a− b ∈ R, so |a− b| ∈ R.
Since |x| ≥ 0 for any x ∈ R, then |a− b| ≥ 0.
Hence, x ≥ 0, so 0 ≤ x.
Therefore, 0 is a lower bound of S.
We prove 0 = inf S.
Let ε > 0.
To prove 0 is the greatest lower bound of S, we must prove there exists s ∈ S

such that s < ε.
Either ε > 1 or ε = 1 or ε < 1.
We consider these cases separately.

48



Case 1: Suppose ε > 1.
Then 1 < ε.
Since 0 ∈ R and 0 6∈ N, then 0 ∈ B.
Since 1 ∈ A and 0 ∈ B, then |1− 0| = 1 ∈ S.
Thus, there exists 1 ∈ S such that 1 < ε.
Case 2: Suppose ε = 1.
Since 1

2 ∈ R and 1
2 6∈ N, then 1

2 ∈ B.
Since 1 ∈ A and 1

2 ∈ B, then |1− 1
2 | =

1
2 ∈ S.

Thus, there exists 1
2 ∈ S such that 1

2 < 1 = ε.
Case 3: Suppose ε < 1.
Then 0 < ε < 1.
Hence, ε

2 ∈ R and 0 < ε
2 < 1.

Suppose 1− ε
2 ∈ N.

Then there exists n ∈ N such that n = 1− ε
2 .

Hence, 2n = 2− ε, so ε = 2− 2n.
Since n ∈ N and N ⊂ Z, then n ∈ Z.
Thus, 2− 2n ∈ Z, so ε ∈ Z.
But, 0 < ε < 1, so ε 6∈ Z.
Therefore, 1− ε

2 6∈ N.
Since 1− ε

2 ∈ R and 1− ε
2 6∈ N, then 1− ε

2 ∈ B.
Since ε > 0 and 1 ∈ A and 1− ε

2 ∈ B, then |1− (1− ε
2 )| = ε

2 ∈ S.
Since ε > 0 and 1

2 < 1, then ε
2 < ε.

Thus, there exists ε
2 ∈ S such that ε

2 < ε.
Therefore, in all cases, there exists s ∈ S such that s < ε, as desired.
Hence, 0 = inf S.
Therefore, δ(A,B) = inf S = 0.

We answer 2.
We try various examples of A and B as nonempty finite sets.
It turns out that δ(A,B) represents the distance of the element in A that is

closest to an element of B.
In addition, since A and B are finite sets, then so is S.

Exercise 87. Let X = Y = (0, 1).
Let h : X × Y → R be a function defined by h(x, y) = 2x+ y.
1. If f(x) = sup{h(x, y) : y ∈ Y } for each x ∈ X, then f(x) = 2x + 1 and

inf{f(x) : x ∈ X} = 1.
2. If g(y) = inf{h(x, y) : x ∈ X} for each y ∈ Y , then g(y) = y and

sup{g(y) : y ∈ Y } = 1.

Proof. We prove 1.
Let x ∈ X be given.
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Then

f(x) = sup{h(x, y) : y ∈ Y }
= sup{2x+ y : y ∈ Y }
= 2x+ supY

= 2x+ sup(0, 1)

= 2x+ 1.

Observe that

inf{f(x) : x ∈ X} = inf{2x+ 1 : x ∈ X}
= inf{1 + 2x : x ∈ X}
= 1 + inf{2x : x ∈ X}
= 1 + 2 inf X

= 1 + 2 inf(0, 1)

= 1 + 2 · 0
= 1.

Proof. We prove 2.
Let y ∈ Y be given.
Then

g(y) = inf{h(x, y) : x ∈ X}
= inf{2x+ y : x ∈ X}
= inf{y + 2x : x ∈ X}
= y + inf{2x : x ∈ X}
= y + 2 inf X

= y + 2 inf(0, 1)

= y + 2 · 0
= y.

Observe that

sup{g(y) : y ∈ Y } = sup{y : y ∈ Y }
= supY

= sup(0, 1)

= 1.

50



Exercise 88. Let X = Y = (0, 1).
Let h : X × Y → R be a function defined by

h(x, y) =

{
0 if x < y

1 if x ≥ y.

1. If f(x) = sup{h(x, y) : y ∈ Y } for each x ∈ X, then f(x) = 1.
2. If g(y) = inf{h(x, y) : x ∈ X} for each y ∈ Y , then g(y) = 0.

Proof. We prove 1.
Suppose f(x) = sup{h(x, y) : y ∈ Y } for each x ∈ X.
Let x ∈ X be arbitrary.
Then x ∈ (0, 1), so 0 < x < 1.
Hence, 0 < x and x < 1.
Let S = {h(x, y) : y ∈ Y }.

We prove 0 ∈ S.
Let y = x+1

2 .
Since −1 < 0 < x < 1, then −1 < x < 1, so 0 < x+ 1 < 2.
Thus, 0 < x+1

2 < 1, so 0 < y < 1.
Hence, y ∈ (0, 1), so y ∈ Y .
Since x < 1, then 2x < x+ 1, so x < x+1

2 .
Thus, x < y.
Since y ∈ Y and x < y, then h(x, y) = 0, so 0 ∈ S.

We prove 1 ∈ S.
Let y′ = x

2 .
Since 0 < x < 1 < 2, then 0 < x < 2, so 0 < x

2 < 1.
Thus, 0 < y′ < 1, so y′ ∈ (0, 1).
Therefore, y′ ∈ Y .
Since 0 < x, then x < 2x, so x

2 < x.
Thus, y′ < x.
Since y′ ∈ Y and x > y′, then h(x, y′) = 1, so 1 ∈ S.

Since 0 ∈ S and 1 ∈ S, then {0, 1} ⊂ S.

We prove S ⊂ {0, 1}.
Suppose s ∈ S.
Then there exists t ∈ Y such that s = h(x, t).
Since t ∈ Y and Y ⊂ R, then t ∈ R, so either t > x or t ≤ x.
We consider these cases separately.
Case 1: Suppose t > x.
Since t ∈ Y and x < t, then s = h(x, t) = 0.
Case 2: Suppose t ≤ x.
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Since t ∈ Y and x ≥ t, then s = h(x, t) = 1.
Thus, either s = 0 or s = 1, so either s ∈ {0} or s ∈ {1}.
Hence, s ∈ {0} ∪ {1}, so s ∈ {0, 1}.
Therefore, if s ∈ S, then s ∈ {0, 1}, so S ⊂ {0, 1}.

Since S ⊂ {0, 1} and {0, 1} ⊂ S, then S = {0, 1}.
Therefore,

f(x) = sup{h(x, y) : y ∈ Y }
= supS

= sup{0, 1}
= 1.

Thus, f(x) = 1 for all x ∈ X.

Proof. We prove 2.
Suppose g(y) = inf{h(x, y) : x ∈ X} for each y ∈ Y .
Let y ∈ Y be arbitrary.
Then y ∈ (0, 1), so 0 < y < 1.
Hence, 0 < y and y < 1.
Let S = {h(x, y) : x ∈ X}.

We prove 0 ∈ S.
Let x = y

2 .
Since 0 < y < 1 < 2, then 0 < y < 2, so 0 < y

2 < 1.
Thus, 0 < x < 1, so x ∈ (0, 1).
Hence, x ∈ X.
Since 0 < y, then y < 2y, so y

2 < y.
Thus, x < y.
Since x ∈ X and x < y, then h(x, y) = 0, so 0 ∈ S.

We prove 1 ∈ S.
Let x′ = y+1

2 .
Since −1 < 0 < y < 1, then −1 < y < 1, so 0 < y + 1 < 2.
Thus, 0 < y+1

2 < 1, so x′ ∈ (0, 1).
Therefore, x′ ∈ X.
Since y < 1, then 2y < y + 1, so y < y+1

2 .
Thus, y < x′.
Since x′ ∈ X and x′ > y, then h(x′, y) = 1, so 1 ∈ S.

Since 0 ∈ S and 1 ∈ S, then {0, 1} ⊂ S.
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We prove S ⊂ {0, 1}.
Suppose s ∈ S.
Then there exists t ∈ X such that s = h(t, y).
Since t ∈ X and X ⊂ R, then t ∈ R, so either t > y or t ≤ y.
We consider these cases separately.
Case 1: Suppose t > y.
Since t ∈ X and t > y, then s = h(t, y) = 1.
Case 2: Suppose t ≤ y.
Since t ∈ X and t ≤ y, then s = h(t, y) = 0.
Thus, either s = 0 or s = 1, so either s ∈ {0} or s ∈ {1}.
Hence, s ∈ {0} ∪ {1}, so s ∈ {0, 1}.
Therefore, if s ∈ S, then s ∈ {0, 1}, so S ⊂ {0, 1}.

Since S ⊂ {0, 1} and {0, 1} ⊂ S, then S = {0, 1}.
Therefore,

g(y) = inf{h(x, y) : x ∈ X}
= inf S

= inf{0, 1}
= 0.

Thus, g(y) = 0 for all y ∈ Y .

Complete ordered fields

Exercise 89. Analyze boundedness of Q.

Solution.

Exercise 90. Analyze boundedness of R.

Solution. To prove there is no upper bound of R, we prove for every r ∈ R
there exists x ∈ R such that x > r.

Let r ∈ R be arbitrary.
Let x = r + 1.
Then x ∈ R by closure of R under addition.
Since 1 > 0, then r + 1 > r.
Hence, x > r.
Thus, there exists a real number greater than r.
Therefore, R is unbounded above, so there is no upper bound of R.
Since there is no upper bound of R, then there can be no greatest element

of R.
Therefore, maxR does not exist.
Since there is no upper bound of R, then there can be no least upper bound

of R.
Therefore, supR does not exist.
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To prove there is no lower bound of R, we prove for every r ∈ R there exists
x ∈ R such that x < r.

Let r ∈ R.
Let x = r − 1.
Then x ∈ R by closure of R under subtraction.
Since 1 > 0, then −1 < 0, so r − 1 < r.
Hence, x < r.
Thus, there exists a real number less than r.
Therefore, R is unbounded below, so there is no lower bound of R.
Since there is no lower bound of R, then there can be no least element of R.
Therefore, minR does not exist.
Since there is no lower bound of R, then there can be no greatest lower

bound of R.
Therefore, inf R does not exist.

Exercise 91. N is unbounded above in R
For every real number x, there exists a natural number n such that n > x.

Proof. To prove N is unbounded above in R, we must prove there is no upper
bound of N in R.

We prove by contradiction.
Suppose there is an upper bound of N in R.
Then N is bounded above in R.
Since 1 ∈ N, then N is not empty.
Since N ⊂ R, then N is a subset of R.
Thus, N is a nonempty subset of R that is bounded above in R.
Hence, by the completeness of R, N has a least upper bound in R.
Let b be the least upper bound of N in R.
Then b ∈ R and b is an upper bound of N.
Since b− 1 < b, then b− 1 is not an upper bound of N.
Hence, there exists n ∈ N such that n > b− 1.
Thus, n+ 1 > b.
Therefore, there exists n+ 1 ∈ N such that n+ 1 > b.
This contradicts the fact that b is an upper bound of N.
Therefore, there is no upper bound of N in R.

Exercise 92. Let E 6= ∅.
Let f : E → R be a function with bounded range.
Let a ∈ R.
1. Then sup{a+ f(x) : x ∈ E} = a+ sup{f(x) : x ∈ E}.
2. Then inf{a+ f(x) : x ∈ E} = a+ inf{f(x) : x ∈ E}.

Proof. Let f(E) = {f(x) : x ∈ E}.
Since E 6= ∅, let x ∈ E.
Then f(x) ∈ f(E), so f(E) 6= ∅.
Since the range of f is bounded, then f(E) is bounded, so f(E) is bounded

above and below in R.
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Since f(E) is not empty and bounded above in R, then by completeness of
R, sup f(E) exists.

Since f(E) is not empty and bounded below in R, then by completeness of
R, inf f(E) exists.

Let a+ f(E) = {a+ f(x) : x ∈ E}.
We must prove sup(a+f(E)) = a+sup f(E) and inf(a+f(E)) = a+inf f(E).
Since sup f(E) exists, then sup(a+ f(E)) = a+ sup(f(E)).
Since inf f(E) exists, then inf(a+ f(E)) = a+ inf(f(E)).

Exercise 93. Let E 6= ∅.
Let f : E → R be a function with bounded range.
Let g : E → R be a function with bounded range.
1. Then sup{f(x) + g(x) : x ∈ E} ≤ sup{f(x) : x ∈ E}+ sup{g(x) : x ∈ E}.
2. Then inf{f(x) : x ∈ E}+ inf{g(x) : x ∈ E} ≤ inf{f(x) + g(x) : x ∈ E}.

Proof. Let f(E) = {f(x) : x ∈ E}.
Since the range of f is bounded, then f(E) is bounded, so f(E) is bounded

above and below in R.
Let g(E) = {g(x) : x ∈ E}.
Since the range of g is bounded, then g(E) is bounded, so g(E) is bounded

above and below in R.
Let f(E) + g(E) = {f(x) + g(x) : x ∈ E}.
Since E 6= ∅, let x ∈ E.
Then f(x) ∈ f(E) and g(x) ∈ g(E), so f(x) + g(x) ∈ f(E) + g(E).
Since f(x) ∈ f(E), then f(E) 6= ∅.
Since g(x) ∈ g(E), then g(E) 6= ∅.
Since f(x) + g(x) ∈ f(E) + g(E), then f(E) + g(E) 6= ∅.
Since f(E) 6= ∅ and f(E) is bounded above in R, then by completeness of

R, sup f(E) exists.
Since g(E) 6= ∅ and g(E) is bounded above in R, then by completeness of R,

sup g(E) exists.
Since f(x) ∈ f(E) and sup f(E) is an upper bound of f(E), then f(x) ≤

sup f(E).
Since g(x) ∈ g(E) and sup g(E) is an upper bound of g(E), then g(x) ≤

sup g(E).
Hence, f(x) + g(x) ≤ sup f(E) + sup g(E).
Thus, sup f(E)+sup g(E) is an upper bound of f(E)+g(E), so f(E)+g(E)

is bounded above in R.
Since f(E) + g(E) 6= ∅ and f(E) + g(E) is bounded above in R, then by

completeness of R, sup(f(E) + g(E)) exists.
Since sup(f(E)+g(E)) is the least upper bound of f(E)+g(E) and sup f(E)+

sup g(E) is an upper bound of f(E)+g(E), then sup(f(E)+g(E)) ≤ sup f(E)+
sup g(E), as desired.

55



Since f(E) 6= ∅ and f(E) is bounded below in R, then by completeness of R,
inf f(E) exists.

Since g(E) 6= ∅ and g(E) is bounded below in R, then by completeness of R,
inf g(E) exists.

Since f(x) ∈ f(E) and inf f(E) is a lower bound of f(E), then inf f(E) ≤
f(x).

Since g(x) ∈ g(E) and inf g(E) is a lower bound of g(E), then inf g(E) ≤
g(x).

Hence, inf f(E) + inf g(E) ≤ f(x) + g(x).
Thus, inf f(E) + inf g(E) is a lower bound of f(E) + g(E), so f(E) + g(E)

is bounded below in R.
Since f(E) + g(E) 6= ∅ and f(E) + g(E) is bounded below in R, then by

completeness of R, inf(f(E) + g(E)) exists.
Since inf(f(E) + g(E)) is the greatest lower bound of f(E) + g(E) and

inf f(E) + inf g(E) is a lower bound of f(E) + g(E), then inf f(E) + inf g(E) ≤
inf(f(E) + g(E)), as desired.

Archimedean ordered fields

Exercise 94. Prove sup{1− 1
n : n ∈ N} = 1.

Proof. Let A = {1}.
Then supA = 1.
Let B = { 1n : n ∈ N}.
Let A−B = {1− 1

n : n ∈ N}.
We must prove sup(A−B) = 1.
Since inf{ 1n : n ∈ N} = 0, then inf B = 0.
Therefore, sup(A−B) = supA− inf B = 1− 0 = 1.

Proof. Let S = {1− 1
n : n ∈ N}.

We must prove 1 = supS.

We first prove 1 is an upper bound of S.
Since 1 ∈ N and 1− 1

1 = 1− 1 = 0, then 0 ∈ S, so S 6= ∅.
Let x ∈ S.
Then there exists n ∈ N such that x = 1− 1

n .
Since n ∈ N, then n > 0, so 1

n > 0.
Thus, 1

n > 1− 1, so 1 + 1
n > 1.

Hence, 1 > 1− 1
n , so 1 > x.

Thus, x < 1 for all x ∈ S, so 1 is an upper bound of S.

To prove 1 is the least upper bound of S, we prove for every ε > 0, there
exists x ∈ S such that x > 1− ε.

Let ε > 0 be given.
By the Archimedean property of R, there exists n ∈ N such that 1

n < ε.
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Thus, −1n > −ε, so 1− 1
n > 1− ε.

Let x = 1− 1
n .

Then x ∈ S and x > 1− ε.
Therefore, 1 is the least upper bound of S, so 1 = supS.

Exercise 95. Let S = { 1n −
1
m : m,n ∈ N}.

Then supS = 1 and inf S = −1.

Proof. Let A = { 1n : n ∈ N}.
Then supA = 1 and inf A = 0.
Let B = { 1

m : m ∈ N}.
Then supB = 1 and inf B = 0.
Let A−B = { 1n −

1
m : m,n ∈ N}.

We must prove sup(A−B) = 1 and inf(A−B) = −1.
Observe that sup(A−B) = supA− inf B = 1− 0 = 1.
Since sup(B−A) = supB− inf A = 1−0 = 1, then inf(A−B) = − sup(B−

A) = −1.

Proof. Since 1 ∈ N and 1
1 −

1
1 = 1− 1 = 0, then 0 ∈ S, so S 6= ∅.

Let x ∈ S.
Then there exist m,n ∈ N such that x = 1

n −
1
m .

Since m,n ∈ N, then m ≥ 1 > 0 and n ≥ 1 > 0, so m ≥ 1 and n ≥ 1 and
m > 0 and n > 0.

Since 1 ≤ m and m > 0, then 1
m ≤ 1.

Since m > 0, then 1
m > 0.

Thus, 0 < 1
m ≤ 1.

Since 1 ≤ n and n > 0, then 1
n ≤ 1.

Since n > 0, then 1
n > 0.

Thus, 0 < 1
n ≤ 1.

Since 0 < 1
n ≤ 1 and 0 < 1

m ≤ 1, then by a previous exercise, we have
| 1n −

1
m | ≤ 1− 0 = 1, so |x| ≤ 1.

Hence, −1 ≤ x ≤ 1, so −1 ≤ x and x ≤ 1.
Thus, −1 ≤ x and x ≤ 1 for all x ∈ S, so −1 ≤ x for all x ∈ S and x ≤ 1 for

all x ∈ S.
Since x ≤ 1 for all x ∈ S, then 1 is an upper bound of S.
Since −1 ≤ x for all x ∈ S, then −1 is a lower bound of S.

To prove 1 is the least upper bound of S, let ε > 0 be given.
We must prove there exists x ∈ S such that x > 1− ε.
Since ε > 0, then by the Archimedean property of R, there exists m ∈ N

such that 1
m < ε.

Let x = 1− 1
m .

Since 1 ∈ N and m ∈ N and 1
1 −

1
m = 1− 1

m = x, then x ∈ S.
Since 1

m < ε, then −1m > −ε, so 1− 1
m > 1− ε.

Thus, x > 1− ε.
Since 1 is an upper bound of S and for every ε > 0, there exists x ∈ S such

that x > 1− ε, then 1 is the least upper bound of S, so 1 = supS.
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To prove −1 is the greatest lower bound of S, let ε > 0 be given.
We must prove there exists x ∈ S such that x < −1 + ε.
Since ε > 0, then by the Archimedean property of R, there exists n ∈ N such

that 1
n < ε.

Let x = 1
n − 1.

Since 1 ∈ N and n ∈ N and 1
n −

1
1 = 1

n − 1 = x, then x ∈ S.
Since 1

n < ε, then 1
n − 1 < ε− 1, so x < ε− 1.

Thus, x < −1 + ε.
Since −1 is a lower bound of S and for every ε > 0, there exists x ∈ S such

that x < −1 + ε, then −1 is the greatest lower bound of S, so −1 = inf S.

Exercise 96. Let S ⊂ R.
Let B ∈ R.
If B − 1

n is not an upper bound of S for all n ∈ N and B + 1
n is an upper

bound of S for all n ∈ N, then B = supS.

Proof. Suppose that B− 1
n is not an upper bound of S for all n ∈ N and B+ 1

n
is an upper bound of S for all n ∈ N.

We must prove B = supS.
Since 1 ∈ N, then B − 1

1 = B − 1 is not an upper bound of S.
Hence, there exists s ∈ S such that s > B − 1.
Suppose s > B.
Then s−B > 0.
By the Archimedean property of R, there exists n ∈ N such that 1

n < s−B,
so B + 1

n < s.
Since n ∈ N, then B + 1

n is an upper bound of S.
But, s ∈ S and s > B+ 1

n contradicts the fact that B+ 1
n is an upper bound

of S.
Hence, there does not exist s ∈ S such that s > B.
Therefore, for every s ∈ S, we have s ≤ B, so B is an upper bound of S.

To prove B is the least upper bound of S, let ε > 0 be given.
We must prove there exists x ∈ S such that x > B − ε.
Since ε > 0, then by the Archimedean property of R, there exists m ∈ N

such that 1
m < ε.

Hence, −1m > −ε, so B − 1
m > B − ε.

Since m ∈ N, then B − 1
m is not an upper bound of S.

Thus, there exists x ∈ S such that x > B − 1
m .

Since x > B − 1
m and B − 1

m > B − ε, then x > B − ε.
Therefore, for every ε > 0 there exists x ∈ S such that x > B − ε.
Since B is an upper bound of S and for every ε > 0 there exists x ∈ S such

that x > B − ε, then B = supS.

Exercise 97. For every rational number ε > 0, there exists a nonnegative
rational number x such that x2 < 2 < (x+ ε)2.
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Proof. Let ε > 0 be rational.
Suppose for the sake of contradiction there does not exist a nonnegative

rational number x such that x2 < 2 < (x+ ε)2.
Then for every nonnegative rational number x, if x2 < 2, then (x+ ε)2 ≤ 2.
Let x be a nonnegative rational number such that x2 < 2.
Then (x+ ε)2 ≤ 2.
Since x, ε ∈ Q, then x+ ε ∈ Q, so (x+ ε)2 ∈ Q.
Since there is no rational number whose square is two, then (x+ ε)2 6= 2, so

(x+ ε)2 < 2.
Therefore, for every nonnegative rational number x, if x2 < 2, then (x+ε)2 <

2.
Thus, for x = 0, we have 02 = 0 < 2, so (0 + ε)2 < 2.
Hence, ε2 < 2.

We prove (nε)2 < 2 for all n ∈ N by induction on n.
Basis:
Since (1ε)2 = ε2 < 2, then the statement holds for n = 1.
Induction:
Let k ∈ N such that (kε)2 < 2.
Since kε ∈ Q and kε > 0 and (kε)2 < 2, then (kε+ ε)2 < 2.
Thus, ((k + 1)ε)2 < 2.
Therefore, by PMI, (nε)2 < 2 for all n ∈ N.

Since 2
ε ∈ R and N is unbounded in R, then there exists N ∈ N such that

N > 2
ε .

Thus, Nε > 2, so (Nε)2 > 4 > 2.
Hence, (Nε)2 > 2.
Therefore, there exists N ∈ N such that (Nε)2 > 2.
This contradicts the statement (nε)2 < 2 for all n ∈ N.
Thus, there does exist a nonnegative rational number x such that x2 < 2 <

(x+ ε)2, as desired.

Exercise 98. Given the statement (∀ε > 0)(∃n ∈ N)( 1
n < ε), prove that N has

no upper bound in R.

Proof. To prove N has no upper bound in R, we must prove for each r ∈ R there
exists n ∈ N such that n > r.

Let r ∈ R.
Then either r > 0 or r ≤ 0.
We consider these cases separately.
Case 1: Suppose r ≤ 0.
Since 1 > 0 and 0 ≥ r, then 1 > r.
Therefore, 1 is a natural number and 1 > r, as desired.
Case 2: Suppose r > 0.
Then 1

r > 0.
Thus, there exists n ∈ N such that 1

n <
1
r .
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Since 1
n <

1
r , then 1

r −
1
n > 0, so n−r

rn > 0.
Since n and r are positive, then rn is positive.
We multiply by rn to get n− r > 0.
Thus, n > r.
Therefore, there is a natural number n such that n > r, as desired.

Exercise 99. Assume N has no upper bound in R.
Prove:
1. (∀r ∈ R)(∃n ∈ N)(n > r).
2. (∀a ∈ R, b > 0)(∃n ∈ N)(nb > a).
3. (∀ε > 0)(∃n ∈ N)( 1

n < ε).

Proof. Since N has no upper bound in R, then the statement there is r ∈ R such
that n ≤ r for all n ∈ N is false.

Therefore, the statement for all r ∈ R there is n ∈ N such that n > r is true.
Let a ∈ R and b > 0.
We must prove there is a natural number n such that nb > a.
Since a ∈ R and b ∈ R and b 6= 0, then a

b ∈ R.
Hence, there is a natural number n such that n > a

b .
Since b > 0, then nb > a.
Therefore, there is a natural number n for which nb > a, as desired.
Let ε > 0.
Then 1

ε > 0.
We must prove there is a natural number n such that 1

n < ε.
Since 1

ε ∈ R, then there is a natural number n such that n > 1
ε .

Since n > 1
ε and ε > 0, then nε > 1.

Since n > 0, then ε > 1
n .

Therefore, there is a natural number n for which 1
n < ε, as desired.

Exercise 100. Analyze boundedness of N.

Solution. By the Archimedean property of N in R the set N has no upper
bound in R.

Since there is no upper bound of N, then there can be no greatest element
of N in R.

Therefore, maxN does not exist in R.
Since there is no upper bound of N in R, then there can be no least upper

bound of N in R.
Therefore, supN does not exist in R.
Since 1 ∈ N and 1 ≤ n for all n ∈ N, then 1 is the least element of N.
Hence, minN = 1.
The set N has many lower bounds in R.
For example, −3 is a lower bound of N.
Let n ∈ N.
Then n ≥ 1.
Since −3 ≤ 1 and 1 ≤ n, then −3 ≤ n.
Hence, since −3 ≤ n for all n ∈ N.
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Therefore, −3 is a lower bound of N.
We prove inf N = 1.
Since 1 ≤ n for all n ∈ N, then 1 is a lower bound of N in R.
Let ε > 0 be given.
To prove 1 is the greatest lower bound, we must find n ∈ N such that

n < 1 + ε.
Take n = 1.
Clearly, n ∈ N.
Since 0 < ε, then 1 < 1 + ε.
Hence, n < 1 + ε, as desired.
Therefore, 1 = inf N.

Exercise 101. Analyze boundedness of Z.

Solution. The set of integers Z is unbounded above in R.
To prove Z has no upper bound in R, we prove for all r ∈ R there exists

n ∈ Z such that n > r.
Let r ∈ R.
By the Archimedean property of R, there exists n ∈ N such that n > r.
Since n ∈ N and N ⊂ Z, then n ∈ Z.
Hence, there exists an integer n greater than r.
Therefore, Z has no upper bound in R, so Z is unbounded above in R.
Since there is no upper bound of Z, then there can be no greatest element

of Z.
Therefore, maxZ does not exist in R.
Since there is no upper bound of Z in R, then there can be no least upper

bound of Z in R.
Therefore, supZ does not exist in R.
To prove Z has no lower bound in R, we prove for every r ∈ R there exists

n ∈ Z such that n < r.
Let r ∈ R.
Either r ≥ 0 or r < 0.
We consider these cases separately.
Case 1: Suppose r ≥ 0.
Since −1 is an integer and −1 < 0 ≤ r, then −1 < r.
Hence, there exists an integer less than r.
Case 2: Suppose r < 0.
Then −r > 0.
Since −r ∈ R, then by the Archimedean property, there exists n ∈ N such

that n > −r.
We multiply by −1 to get −n < r.
Since n ∈ N and N ⊂ Z, then n ∈ Z.
Hence, −n ∈ Z.
Thus, there exists an integer less than r.
Hence, in all cases, there exists an integer less than r.
Therefore, there is no lower bound of Z in R.
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Since there is no lower bound of Z in R, then there can be no least element
of Z.

Therefore, minZ does not exist in R.
Since there is no lower bound of Z in R, then there can be no greatest lower

bound of Z in R.
Therefore, inf Z does not exist in R.

Exercise 102. There is no smallest positive rational number.

Proof. We prove by contradiction.
Suppose there is a smallest positive rational number.
Let m be a smallest positive rational number.
Then m ∈ Q and m > 0 and m ≤ q for every positive rational number q.
Since m ∈ Q, then m

2 ∈ Q.
Since m > 0, then m

2 > 0.
Since m

2 ∈ Q and m
2 > 0, then m

2 is a positive rational number.
Since 0 < m, then m < 2m, so m

2 < m.
Thus, there exists a positive rational number m

2 such that m > m
2 .

This contradicts the fact that m ≤ q for every positive rational number q.
Therefore, there is no smallest positive rational number.

Exercise 103. There is no smallest positive real number.

Solution. If s is a smallest positive real number, then half of s is even smaller.
This implies s cannot be the smallest positive real number.

Proof. Suppose there is a smallest positive real number.
Then there exists a positive real number s such that s ≤ x for all x ∈ R.
Since s is a positive real number, then s ∈ R and s > 0.
Since 0 < s, then s < 2s, so s

2 < s.
Since s ∈ R, then s

2 ∈ R.
Hence, there exists s

2 ∈ R such that s > s
2 .

This contradicts the fact that s ≤ x for all x ∈ R.
Therefore, there is no smallest positive real number.

Exercise 104. Disprove the assertion that there is a positive real number that
is smaller than all positive rational numbers.

Solution. The assertion states there exists a real number r > 0 such that r < q
for all q ∈ Q+.

In symbols this is:
(∃r > 0)(∀q ∈ Q+)(r < q).
The negation is:
(∀r > 0)(∃q ∈ Q+)(r ≥ q).
Therefore, to disprove the assertion we must prove its negation.
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Proof. Suppose there is a positive real number that is smaller than all positive
rational numbers.

Let r be some positive real number that is smaller than all positive rational
numbers.

Then r ∈ R and r > 0 and r < q for all positive rational q.
Since r > 0, then 1

r > 0, so by the Archimedean property of R, there is
n ∈ N such that n > 1

r .
Hence, r > 1

n , so 1
n is a positive rational number such that r > 1

n .
This contradicts the fact that r is smaller than all positive rational numbers.
Therefore, there is no positive real number that is smaller than all positive

rational numbers.

Proof. Let r be a positive real number.
To disprove the assertion, we must prove there exists q ∈ Q+ such that r ≥ q.
Since r > 0, then by the Archimedean property of R, there exists n ∈ N such

that 1
n < r.

Since 1
n < r, then 1

n ≤ r, so r ≥ 1
n .

Since 1
n is a positive rational number, let q = 1

n .
Then r ≥ q, as desired.

Lemma 105. For all n ∈ N, 2n > n.

Proof. We prove by induction on n.
Let S = {n ∈ N : 2n > n}.
Basis:
Since 1 ∈ N and 21 = 2 > 1, then 1 ∈ S.
Induction:
Suppose k ∈ S.
Then k ∈ N and 2k > k.
Since k ∈ N, then k ≥ 1 and k + 1 ∈ N.
Since 2k+1 = 2k · 2 > 2k = k + k ≥ k + 1, then 2k+1 > k + 1.
Since k + 1 ∈ N and 2k+1 > k + 1, then k + 1 ∈ S.
Thus, by induction, k ∈ S implies k + 1 ∈ S, so S = N.
Therefore, 2n > n for all n ∈ N.

Exercise 106. Let x > 0.
Then there exists n ∈ N such that 2n > 1

x .

Proof. Since x > 0, then 1
x > 0.

By the Archimedean property of R, there exists n ∈ N such that n > 1
x .

Since 2n > n for all n ∈ N, then 2n > n.
Thus, we have 2n > n > 1

x , so 2n > 1
x .

Therefore, there exists n ∈ N such that 2n > 1
x .

Exercise 107. Let ε > 0.
Let x, y ∈ R such that x < y.
Then there exists q ∈ Q such that x < qε < y.
(Therefore, the set {qε : q ∈ Q} is dense in R).
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Proof. Since x < y and ε > 0, then x
ε <

y
ε .

Since Q is dense in R, then there exists q ∈ Q such that x
ε < q < y

ε .
Since ε > 0, then x < qε < y.
Therefore, there exists q ∈ Q such that x < qε < y.

Exercise 108. Let t ∈ R and t 6= 0.
Let S = {qt : q ∈ Q}.
Then S is dense in R.

Proof. To prove S is dense in R, let a, b ∈ R with a < b.
We must prove there exists s ∈ S such that a < s < b.
Since t 6= 0, then either t > 0 or t < 0.
We consider these two cases separately.
Case 1: Suppose t > 0.
Since a < b, then a

t <
b
t .

Since Q is dense in R, then there exists q ∈ Q such that a
t < q < b

t , so
a < qt < b.

Let s = qt.
Since q ∈ Q, then s ∈ S, so a < s < b.
Hence, there exists s ∈ S such that a < s < b.
Case 2: Suppose t < 0.
Then −t > 0.
Since a < b, then a

−t <
b
−t .

Since Q is dense in R, then there exists q ∈ Q such that a
−t < q < b

−t , so
a < −qt < b.

Let s = −qt.
Since q ∈ Q, then −q ∈ Q, so s ∈ S.
Thus, a < s < b.
Hence, there exists s ∈ S such that a < s < b.
Therefore, in all cases, there exists s ∈ S such that a < s < b, as desired.

Existence of square roots in R
Exercise 109. Let x, y ∈ R.

If 0 ≤ x < y, then 0 ≤
√
x <
√
y.

Proof. Suppose 0 ≤ x < y.
Then 0 ≤ x and x < y.
Since x ≥ 0, then either x > 0 or x = 0.
We consider these cases separately.
Case 1: Suppose x > 0.
Since 0 < x and x < y, then 0 < x < y.
Hence, 0 <

√
x <
√
y.

Case 2: Suppose x = 0.
Since y > x and x = 0, then y > 0, so

√
y > 0.

Since
√
x =
√

0 = 0 and 0 <
√
y, then

√
x = 0 <

√
y.

Therefore, 0 =
√
x <
√
y.
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Exercise 110. Let a, b ∈ R.
If 0 < a < b, then a <

√
ab < b.

Proof. Suppose 0 < a < b.
Then 0 < a and a < b, so 0 < b.
Since a > 0 and b > 0, then ab > 0.
Since a < b an b > 0, then ab < b2.
Thus, 0 < ab and ab < b2, so 0 < ab < b2.
Therefore, 0 <

√
ab <

√
b2 = |b| = b, so 0 <

√
ab < b, as desired.

Exercise 111. another proof of triangle inequality
Let a, b ∈ R.
Then |a+ b| ≤ |a|+ |b|.

Proof. Since ab ≤ |ab| = |a||b|, then 2ab ≤ 2|a||b|.
Since 0 ≤ (a+ b)2 = a2 + 2ab+ b2 ≤ a2 + 2|a||b|+ b2 = |a|2 + 2|a||b|+ |b|2 =

(|a|+ |b|)2, then 0 ≤ (a+ b)2 ≤ (|a|+ |b|)2, so 0 ≤ |a+ b| ≤ ||a|+ |b|| = |a|+ |b|.
Therefore, |a+ b| ≤ |a|+ |b|.

Lemma 112. Let a, b ∈ R.
Then 2ab ≤ a2 + b2 and ab ≤ (a+b2 )2.

Furthermore, if a = b, then 2ab = a2 + b2 and ab = (a+b2 )2.

Proof. We first prove 2ab ≤ a2 + b2.
Since 0 ≤ (a− b)2 = a2 − 2ab+ b2, then 2ab ≤ a2 + b2.
Suppose a = b.
Then 2ab = 2a2 = a2 + a2 = a2 + b2.
We next prove ab ≤ (a+b2 )2.

Since 2ab ≤ a2 + b2, then 4ab ≤ a2 + 2ab + b2 = (a + b)2, so ab ≤ (a+b)2

4 =

(a+b2 )2.
Suppose a = b.
Then ab = a2 = ( 2a

2 )2 = (a+a2 )2 = (a+b2 )2.

Proposition 113. arithmetic-geometric mean inequality
Let a, b ∈ R.
If a ≥ 0 and b ≥ 0, then

√
ab ≤ a+b

2 .

Furthermore, if a = b, then
√
ab = a+b

2 .

Proof. Suppose a ≥ 0 and b ≥ 0.
Then

√
a ≥ 0 and

√
b ≥ 0, so (

√
a−
√
b)2 ≥ 0.

Thus, 0 ≤ (
√
a −
√
b)2 = (

√
a)2 − 2

√
a
√
b + (

√
b)2 = a − 2

√
ab + b, so

0 ≤ a− 2
√
ab+ b.

Hence, 2
√
ab ≤ a+ b, so

√
ab ≤ a+b

2 .
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Suppose a = b.
Then

√
ab =

√
a2 = |a| = a = 2a

2 = a+a
2 = a+b

2 .

Proof. Here is an alternate proof based on the previous lemma.
Since a ≥ 0 and b ≥ 0, then ab ≥ 0 and a+ b ≥ 0.

Thus, 0 ≤ ab ≤ (a+b2 )2, so
√
ab ≤ |a+b2 | =

|a+b|
2 = a+b

2 .

Corollary 114. Let a, b ∈ R.
If a > 0 and b > 0, then 2ab

a+b ≤
√
ab.

Furthermore, if a = b, then 2ab
a+b =

√
ab.

Solution. We call the expression 2ab
a+b the harmonic mean of a and b.

Thus, if a > 0 and b > 0, then 2ab
a+b ≤

√
ab ≤ a+b

2 .
Therefore, for any positive real numbers a and b, the harmonic mean is

smaller than the geometric mean which is smaller than the arithmetic mean of
a and b.

Proof. Suppose a > 0 and b > 0.
Then a+ b > 0 and ab > 0, so

√
ab > 0.

Hence, 2
√
ab

a+b > 0.

Since
√
ab ≤ a+b

2 , then 2ab
a+b = 2(

√
ab)2

a+b = 2
√
ab

a+b ·
√
ab ≤ 2

√
ab

a+b ·
a+b
2 =

√
ab.

Suppose a = b.

Then 2ab
a+b = 2a2

2a = a = (
√
a)2 =

√
a
√
a =
√
aa =

√
ab.

Exercise 115. Given 400 meters of fence, the largest rectangular area that can
fence in from three sides along a straight river using the river as the fourth side
is 100 x 200 meters.

Proof. Let the rectangular fence be composed of two smaller equal sized rect-
angular pieces such that each rectangular piece of the fence has length l and
width w.

Then the dimension of the rectangular fence is 2l by w.
The perimeter of the fence is 400 = 2l + 2w = 2(l + w), so 200 = l + w.
Since l > 0 and w > 0, then by AGM, 0 <

√
lw ≤ l+w

2 , so lw ≤ ( l+w2 )2.
The maximum area occurs when each smaller rectangle piece is a square, so

l = w.
Thus, the maximum area is lw = ww = w2 = ( l+w2 )2 = ( 200

2 )2 = 1002, so
w2 = 1002.

Hence, w = 100 and l = 100.
Therefore, the fence has dimensions 200 by 100.

Exercise 116. Let c ∈ R with c > 0.
Then the function given by f(x) = x(c− x) is maximized when x = c

2 .
Suppose a > 0.
What value of x will maximize x(c− ax)?
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Proof. Let f : [0, c]→ R be the function defined by f(x) = x(c− x).
To prove f is maximized when x = c

2 , we must prove f(x) ≤ f( c2 ) for every
x ∈ domf .

Let x ∈ domf = [0, c].
Then 0 ≤ x ≤ c, so 0 ≤ x and x ≤ c.
Since x ≤ c, then 0 ≤ c− x.

Since x ≥ 0 and c− x ≥ 0, then by AGM,
√
x(c− x) ≤ x+(c−x)

2 = c
2 .

Since 0 ≤
√
x(c− x) ≤ c

2 , then f(x) = x(c− x) ≤ ( c2 )2 = c
2 ·

c
2 = c

2 (c− c
2 ) =

f( c2 ), so f(x) ≤ f( c2 ), as desired.

Solution. Suppose a > 0.
Let g be a real valued function defined by g(x) = x(c− ax).
We must find a value of x that will maximize g.
Observe that g(x) = xc− ax2 = ax( ca − x).
Let h be a real valued function defined by h(x) = x( ca − x).
Then g(x) = a · h(x).
Since a is a constant scalar, then g is maximized when h is maximized.

Since a > 0 and c > 0, then c
a > 0, so h is maximized when x = c/a

2 = c
2a .

Therefore, g is maximized when x = c
2a .

Exercise 117. Let x, y, z ∈ R such that x ≥ 0 and y ≥ 0 and z ≥ 0 and
y + z ≥ 2.

Then (x+ y + z)2 ≥ 4x+ 4yz.

Proof. Since y ≥ 0 and z ≥ 0, then by AGM,
√
yz ≤ y+z

2 .

Since 0 ≤ √yz ≤ y+z
2 , then yz ≤ (y+z)2

4 , so 4yz ≤ (y + z)2.
Hence, (y + z)2 ≥ 4yz.
Since y + z ≥ 2 and x ≥ 0, then 2x(y + z) ≥ 4x.
Since x2 ≥ 0, then x2 + 2x(y + z) ≥ 4x.
Observe that

(x+ y + z)2 = [x+ (y + z)]2

= x2 + 2x(y + z) + (y + z)2

≥ x2 + 2x(y + z) + 4yz

≥ 4x+ 4yz.

Therefore, (x+ y + z)2 ≥ 4x+ 4yz.

Exercise 118. Let x, y, u, v ∈ R.
Then (xu+ yv)2 ≤ (x2 + y2)(u2 + v2).

Proof. Since (xv)2 ≥ 0 and (yu)2 ≥ 0, then by AGM, |xuyv| = |xvyu| =√
(xvyu)2 =

√
(xv)2(yu)2 ≤ (xv)2+(yu)2

2 , so 2|xuyv| ≤ (xv)2 + (yu)2.
Hence, (xu)2 + 2|xuyv|+ (yv)2 ≤ (xu)2 + (xv)2 + (yu)2 + (yv)2, so |xu|2 +

2|xuyv|+ |yv|2 ≤ x2u2 + x2v2 + y2u2 + y2v2.
Thus, (|xu|+ |yv|)2 ≤ (x2 + y2)(u2 + v2).
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Since 0 ≤ |xu+yv| ≤ |xu|+|yv|, then (xu+yv)2 = |xu+yv|2 ≤ (|xu|+|yv|)2.
Since (xu + yv)2 ≤ (|xu| + |yv|)2 and (|xu| + |yv|)2 ≤ (x2 + y2)(u2 + v2),

then (xu+ yv)2 ≤ (x2 + y2)(u2 + v2), as desired.

Proposition 119. generalized arithmetic-geometric mean inequality
Let n ∈ Z+.
Let a1, a2, ..., an ∈ R+.
Then n

√
a1a2 · · · an ≤ 1

n

∑n
k=1 ak.

Proof. We prove by induction on n.

Exercise 120. If x is irrational, then x+ y is irrational for all y ∈ Q.

Proof. We prove by contrapositive.
Suppose there exists y ∈ Q such that x+ y is rational.
Since x+ y is rational, then x+ y ∈ Q.
Since Q is closed under subtraction and x+y ∈ Q and y ∈ Q, then (x+y)−

y ∈ Q.
Therefore, x ∈ Q, so x is rational, as desired.

Exercise 121. The number
√

3 is irrational.

Proof. Suppose for the sake of contradiction that
√

3 is not irrational.
Then

√
3 is rational, so there are integers a and b for which

√
3 =

a

b
. (1)

Let this fraction be reduced to lowest terms.
This means, in particular, that a and b are not both multiples of 3, for if

they were, the fraction could be further reduced by factoring the 3’s from the
numerator and denominator and canceling.

Since 3 = (ab )2 = a2

b2 , then a2 = 3b2, so a2 is a multiple of 3.
Thus, 3 divides a2.
Since 3|a2 and 3 is prime, then by Euclid’s lemma, 3|a, so a is a multiple of

3.
Hence, a = 3k for some integer k.
Thus, 3b2 = (3k)2 = 9k2, so b2 = 3k2.
Therefore, b2 is a multiple of 3, so 3|b2.
Since 3|b2 and 3 is prime, then by Euclid’s lemma, 3|b, so b is a multiple of

3.
Hence, a and b are both multiples of 3 which contradicts the assumption a

and b are not both multiples of 3.
Therefore,

√
3 is irrational.

Proof. Suppose for the sake of contradiction that
√

3 is not irrational.
Then

√
3 is rational, so there are integers a and b for which

√
3 =

a

b
. (2)
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Let this fraction be reduced to lowest terms.
This means, in particular, that a and b are not both even, for if they were,

the fraction could be further reduced by factoring the 2’s from the numerator
and denominator and canceling.

Squaring both sides of Equation 2 we get

a2 = 3b2. (3)

Either b is even or b is odd.
We consider these two cases separately.
Case 1: Suppose b is even.
Since a and b are not both even and b is even, then it immediately follows

that a is odd.
Since b is even, then there is an integer c for which b = 2c.
Substituting this into Equation 3 we get a2 = 3(2c)2 = 12c2 = 2(6c2).
Thus a2 is even, and therefore a is even.
But we previously deduced that a is odd, so we now have a contradiction a

is even and a is odd.
Thus b cannot be even.
Case 2: Suppose b is odd.
Then there is an integer c for which b = 2c+ 1.
Substituting this into Equation 3 we get a2 = 3(2c+ 1)2 = 3(4c2 + 4c+ 1) =

12c2 + 12c+ 3 = 2(6c2 + 6c+ 1) + 1.
Therefore a2 is odd, and consequently a is odd.
This implies there is an integer d for which a = 2d+ 1.
Substituting into Equation 3 we get

(2d+ 1)2 = 3(2c+ 1)2

4d2 + 4d+ 1 = 3(4c2 + 4c+ 1)

4d2 + 4d+ 1 = 12c2 + 12c+ 3

4d2 + 4d− 12c2 − 12c = 2

2d2 + 2d− 6c2 − 6c = 1

2(d2 + d− 3c2 − 3c) = 1

Since d2 + d − 3c2 − 3c ∈ Z then the last equation means that 1 is even, a
contradiction.

Both cases show that a contradiction results when we assume that
√

3 is
rational. Thus

√
3 must be irrational.

Exercise 122. The number 3
√

2 is irrational.

Proof. We prove by contradiction.
Suppose 3

√
2 is rational.

Then there exist integers a, b with b 6= 0 such that 3
√

2 = a
b .

We may assume a
b is in lowest terms; that is, we assume gcd(a, b) = 1.
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Observe that (ab )3 = 2, so a3 = 2b3.
Since b3 ∈ Z and a3 = 2b3, then a3 is even.
Thus, a is even, so there exists an integer k such that a = 2k.
Thus, 2b3 = (2k)3 = 8k3, so b3 = 4k3 = 2(2k3).
Since 2k3 ∈ Z and b3 = 2(2k3), then b3 is even.
Thus, b is even, so there exists an integer m such that b = 2m.
Since a = 2k and b = 2m, then 2|a and 2|b, so 2 is a common divisor of a

and b.
By definition of gcd, any common divisor of a and b divides gcd(a, b).
Hence, 2|1, a contradiction.
Therefore, 3

√
2 is irrational.

Proof. Suppose 3
√

2 is rational.
Then there are integers a and b for which 3

√
2 = a

b .
Let this fraction be fully reduced. In particular, this means a and b are not

both even, for if they were, the fraction could be further reduced by factoring
the 2’s from the numerator and denominator and canceling.

Cubing gives 2 = a3

b3 and therefore a3 = 2b3.
Thus a3 is even. It follows that a is even since we proved proposition (which

implies that its contrapositive is true, namely, that if x3 is even, then x is even).
Since a is even and a and b are not both even, then it follows that b is not

even, ie, b is odd.
Since a is even, then there is some integer c for which a = 2c.
Then (2c)3 = 2b3. Dividing by 2 gives 4c3 = b3.
Since 4c3 = 2(2c3) then b3 is even and it follows that b is even.
But we previously deduced that b is odd.
Thus we have a contradiction that b is even and b is odd.

Exercise 123. The number 3
√

3 is irrational.

Proof. We prove by contradiction.
Suppose 3

√
3 is not irrational.

Then 3
√

3 is rational, so there exist integers m and n with n 6= 0 such that
m
n = 3

√
3.

Assume m
n is in lowest terms, so that gcd(m,n) = 1.

Since m
n = 3

√
3, then m3 = 3n3.

Since n3 ∈ Z and m3 = 3n3, then 3|m3.
Since 3 is prime and 3|m ·m ·m, then by corollary to Euclid’s lemma, 3|m.
Thus, there exists an integer k such that m = 3k, so 3n3 = m3 = (3k)3 =

27k3, so n3 = 9k3.
Since k3 is an integer and n3 = 9k3, then 9|n3.
Since 3|9 and 9|n3, then by transitivity of the divides relation, 3|n3.
Since 3 is prime and 3|n · n · n, then by corollary to Euclid’s lemma, 3|n.
Since 3|m and 3|n, then 3 is a common divisor of m and n.
Since 1 is the greatest common divisor of m and n, then any positive integer

that is a common divisor of m and n must be less than or equal to 1.
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Since 3 is a positive common divisor of m and n, then 3 ≤ 1, a contradiction.
Therefore, 3

√
3 is rational.

Exercise 124. For any real number x, either
√

2 + x or
√

2− x is irrational.

Proof. Suppose for the sake of contradiction that there is a real number x such
that

√
2 + x is rational and

√
2− x is rational.

Thus,
√

2 + x ∈ Q and
√

2− x ∈ Q.
By closure of Q under addition, we have (

√
2+x)+(

√
2−x) ∈ Q, so 2

√
2 ∈ Q.

Since 2 is rational and
√

2 is irrational, then the product 2
√

2 is irrational,
so 2
√

2 6∈ Q.
Hence, we have 2

√
2 ∈ Q and 2

√
2 6∈ Q, a contradiction.

Therefore, there is no real number x such that
√

2+x is rational and
√

2−x
is rational.

Thus, for every real number x, either
√

2 + x or
√

2 − x is irrational, as
desired.

We ask under what conditions is the square root of a natural number a
rational number?

Exercise 125. Let n be a positive integer.
Then

√
n ∈ Q iff n is a perfect square.

Proof. Suppose
√
n ∈ Q.

Since n > 0, then there exist positive integers a and b such that
√
n = a

b .
We may assume a

b is reduced to lowest terms; i.e. a and b have no common
factor greater than 1.

Thus, a and b are relatively prime, so gcd(a, b) = 1.
Hence, gcd(b, a) = 1.

Since
√
n = a

b , then n = (ab )2 = a2

b2 , so nb2 = a2.
Since a2 = nb2 = nbb = bnb = b(nb) and nb ∈ Z, then b|a2.
Since b|a2 and gcd(b, a) = 1, then b|a, so there exists an integer k such that

a = bk.
Since b > 0, then b 6= 0, so a

b = k.
Therefore, n = k2, so n is a perfect square, as desired.

Proof. Conversely, we prove if n is a perfect square, then
√
n ∈ Q.

Suppose n is a perfect square.
Then there exists an integer k such that n = k2.
Thus,

√
n =
√
k2 = |k|.

Since k ∈ Z, then |k| ∈ Z.
Since Z ⊂ Q, then |k| ∈ Q.
Therefore,

√
n ∈ Q, as desired.

Therefore,
√
n 6∈ Q iff n is not a perfect square.

Hence,
√
n is irrational iff n is not a perfect square.

Exercise 126. The number
√

6 is irrational.
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Proof. Suppose for the sake of contradiction that
√

6 is not irrational.
Then

√
6 is rational, so there are integers a and b for which

√
6 = a

b .
Let this fraction be reduced to lowest terms which means that a and b have

no common factors > 1.
In particular, a and b are not both even, for if they were, then 2’s could be

factored out of the numerator and denominator and canceled.
Squaring both sides we get 6 = (ab )2 which implies a2 = 6b2.
Since 6b2 = 2(3b2) we know that a2 must be even. We immediately conclude

that a must also be even since we previously proved this.
Since a and b are not both even and a is even, then b must be odd.
Since a is even, then there is an integer c for which a = 2c.
Substituting this into the equation a2 = 2(3b2) and dividing by 2 gives

2c2 = 3b2.
Hence 3b2 must be even. Since 3b2 is even and 3 is odd, then it follows that

b2 must be even since we proved this.
Since b2 is even, we immediately deduce that b is even.
But previously we deduced that b is odd.
Thus we have the contradiction that b is even and b is odd.

Exercise 127. The number
√

2 +
√

3 is irrational.

Proof. We prove by contradiction.
Suppose

√
2 +
√

3 is rational.
Then there exists q ∈ Q such that

√
2 +
√

3 = q.
Hence, q2 = (

√
2 +
√

3)2 = 2 + 2
√

2
√

3 + 3 = 2
√

6 + 5, so q2 − 5 = 2
√

6.

Thus,
√

6 = q2−5
2 .

Since q ∈ Q, then q2−5
2 ∈ Q, so

√
6 is rational.

But, this contradicts the fact that
√

6 is irrational.
Therefore,

√
2 +
√

3 is irrational.

Exercise 128. The number 3
√

2− 1 is irrational.

Proof. Since 3 is a nonzero rational and
√

2 is irrational, then the product 3
√

2
is irrational.

Since −1 is rational and 3
√

2 is irrational, then the sum −1+3
√

2 = 3
√

2−1
is irrational.

Exercise 129. If r is irrational, then
√
r is irrational.

Proof. We prove by contrapositive.
Suppose

√
r is rational.

Then
√
r = m

n for some integers m and n.

Since r = (
√
r)2 = (mn )2 = m2

n2 and m2 and n2 are integers, then r is rational,
as desired.

Proposition 130. Every nonzero rational number can be expressed as a product
of two irrational numbers.
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Proof. This proposition can be reworded as follows:
If r is a nonzero rational number, then r is a product of two irrational

numbers.
Suppose r is a nonzero rational number.
Then r = a

b for nonzero integers a and b.
Also, r can be written as a product of two numbers as follows

r =
√

2 · r√
2
.

Since we know
√

2 is irrational(we previously proved this fact), we must
prove that r/

√
2 is also irrational.

To show this, assume for the sake of contradiction that r/
√

2 is rational.
This means

r√
2

=
c

d

for nonzero integers c and d, so

√
2 = r

d

c
.

But we know r = a/b, so combining this with the above equation we get

√
2 = r

d

c
=
a

b

d

c
=
ad

bc
.

This means
√

2 is rational (since ad and bc are nonzero integers), which is a
contradiction because we know

√
2 is irrational.

Therefore r/
√

2 is irrational.
Consequently r =

√
2 · r/

√
2 is a product of two irrational numbers.

Exercise 131. There are two irrational numbers a and b such that ab is rational.

Solution. Let a, b be any arbitrary irrational numbers.
Define predicate P (a, b) : ab is rational.
We must find concrete values for a, b with a 6= b such that P (a, b) is true.
By law of excluded middle we know P (a, b) ∨ ¬P (a, b)⇔ T (no third possi-

bility exists).
We know

√
2 is irrational.

If we think about various ways to combine
√

2 to become 2, that would
help.

Proof. Observe that
√

2 is irrational.

Consider the number (
√

2)
√
2.

By the law of excluded middle either (
√

2)
√
2 is rational or (

√
2)
√
2 is irra-

tional.
We must prove (

√
2)
√
2 is rational.

Suppose (
√

2)
√
2 is rational.
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Then we are done and a =
√

2 and b =
√

2.
Suppose (

√
2)
√
2 is irrational.

Let a =
√

2
√
2

and b =
√

2.

Then ab = (
√

2
√
2
)
√
2 =
√

2
√
2
√
2

= (
√

2)2 = 2 and 2 is rational.
The proof is complete.

Exercise 132. Let f : N→ R be defined by f(1) = 2 and f(n) =
√

3 + f(n− 1)
for all n ≥ 2.

Then f(n) < 2.4 for all n ∈ N.

Proof. Let S = {n ∈ N : f(n) < 2.4}.
To prove f(n) < 2.4 for all n ∈ N, we prove S = N by induction on n.
Since 1 ∈ N and f(1) = 2 < 2.4, then 1 ∈ S.
Basis:
Since 5 < 5.76 = 2.42, then

√
5 < 2.4.

Since 2 ∈ N and f(2) =
√

3 + f(1) =
√

3 + 2 =
√

5 < 2.4, then 2 ∈ S.
Induction:
Let k ∈ N with k ≥ 2 such that k ∈ S.
Since k ∈ N, then k + 1 ∈ N.
Since k ∈ S, then f(k) < 2.4, so 3 + f(k) < 5.4.
Since 5.4 < 5.76 = 2.42, then

√
5.4 < 2.4.

Since k ≥ 2, then k + 1 ≥ 3 > 2, so k + 1 > 2.
Thus, f(k + 1) =

√
3 + f(k) <

√
5.4 < 2.4.

Since k + 1 ∈ N and f(k + 1) < 2.4, then k + 1 ∈ S.
Hence, k ∈ S implies k + 1 ∈ S, so by induction S = N.
Therefore, f(n) < 2.4 for all n ∈ N.

Exercise 133. For all n ∈ N with n ≥ 2,
∑n
k=1

1√
k
>
√
n.

Proof. Let p(n) be the predicate
∑n
k=1

1√
k
>
√
n defined over N.

To prove p(n) is true for all n ≥ 2, we prove by induction on n.
Basis:
Since

√
2 > 1, then

√
2 + 1 > 2, so

√
2+1√
2
> 2√

2
.

Hence, 1 + 1√
2
>
√

2.

Since
∑2
k=1

1√
k

= 1√
1

+ 1√
2

= 1 + 1√
2
>
√

2, then p(2) is true.

Induction:
Let m ∈ N with m ≥ 2 such that p(m) is true.
Then

∑m
k=1

1√
k
>
√
m.

To prove p(m+ 1) is true, we must prove
∑m+1
k=1

1√
k
>
√
m+ 1.

We first prove
√
m+ 1√

m+1
>
√
m+ 1.

Since m ≥ 2 > 0, then m > 0, so m2 +m > m2 > 0.
Hence, m(m+ 1) > m2 > 0, so

√
m(m+ 1) > m > 0.

Thus,
√
m(m+ 1) > m, so 0 > m−

√
m(m+ 1).
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Hence, 1 > m+ 1−
√
m(m+ 1) =

√
m+ 1(

√
m+ 1−

√
m).

Therefore, 1 >
√
m+ 1(

√
m+ 1−

√
m).

Since
√
m+ 1 > 0, then 1√

m+1
>
√
m+ 1−

√
m.

Thus,
√
m+ 1√

m+1
>
√
m+ 1.

Observe that

m+1∑
k=1

1√
k

=

m∑
k=1

1√
k

+
1√
m+ 1

>
√
m+

1√
m+ 1

>
√
m+ 1.

Since m+ 1 ∈ N and
∑m+1
k=1

1√
k
>
√
m+ 1, then p(m+ 1) is true.

Therefore, p(m) implies p(m+ 1), so by PMI,
∑n
k=1

1√
k
>
√
n for all n ∈ N,

as desired.

Exercise 134. Let K = {s+ t
√

2 : s, t ∈ Q}.
1. If x1, x2 ∈ K, then x1 + x2 ∈ K. (closure under addition)
2. If x1, x2 ∈ K, then x1x2 ∈ K. (closure under multiplication)
3. If x ∈ K and x 6= 0, then 1

x ∈ K. (multiplicative inverse exists for nonzero
elements of K )

This shows that K is a subfield of R and lies between Q and R.

Proof. We prove 1.
Suppose x1, x2 ∈ K.
Then there exist s1, t1 ∈ Q such that x1 = s1+t1

√
2 and there exist s2, t2 ∈ Q

such that x2 = s2 + t2
√

2.
Let s = s1 + s2 and let t = t1 + t2.
Since s1, s2 ∈ Q and Q is closed under addition, then s ∈ Q.
Since t1, t2 ∈ Q and Q is closed under addition, then t ∈ Q.
Thus,

x1 + x2 = (s1 + t1
√

2) + (s2 + t2
√

2)

= s1 + (t1
√

2 + s2) + t2
√

2

= s1 + (s2 + t1
√

2) + t2
√

2

= (s1 + s2) + (t1
√

2 + t2
√

2)

= (s1 + s2) + (t1 + t2)
√

2

= s+ t
√

2.

Since there exist s, t ∈ Q such that x1 + x2 = s+ t
√

2, then x1 + x2 ∈ K, as
desired.

Proof. We prove 2.
Suppose x1, x2 ∈ K.
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Then there exist s1, t1 ∈ Q such that x1 = s1+t1
√

2 and there exist s2, t2 ∈ Q
such that x2 = s2 + t2

√
2.

Let s = s1s2 + 2t1t2 and let t = t1s2 + s1t2.
Since s1, s2, t1, t2 ∈ Q and Q is closed under addition and multiplication,

then s, t ∈ Q.
Thus,

x1x2 = (s1 + t1
√

2)(s2 + t2
√

2)

= (s1 + t1
√

2)s2 + (s1 + t1
√

2)t2
√

2

= s1s2 + t1s2
√

2 + s1t2
√

2 + 2t1t2

= s1s2 + t1s2
√

2 + 2t1t2 + s1t2
√

2

= s1s2 + 2t1t2 + t1s2
√

2 + s1t2
√

2

= (s1s2 + 2t1t2) + (t1s2 + s1t2)
√

2

= s+ t
√

2.

Since there exist s, t ∈ Q such that x1x2 = s + t
√

2, then x1x2 ∈ K, as
desired.

Proof. We prove 3.
Suppose x ∈ K and x 6= 0.
Since x ∈ K, then there exist s, t ∈ Q such that x = s+ t

√
2.

We first prove x = 0 iff s = 0 and t = 0.
Suppose s = 0 and t = 0.
Then x = 0 + 0

√
2 = 0.

Conversely, suppose x = 0.
Then 0 = s+ t

√
2, so −s = t

√
2.

Suppose t 6= 0.
Then −st =

√
2.

Since s, t ∈ Q and t 6= 0, then s
t ∈ Q, so −st ∈ Q.

Hence,
√

2 ∈ Q, so
√

2 is rational.
But, this contradicts the fact that

√
2 is irrational.

Thus, t = 0, so −s = 0
√

2 = 0.
Hence, s = 0.
Therefore, if x = 0, then s = 0 and t = 0.

Since x 6= 0, then either s 6= 0 or t 6= 0.
Thus, either s 6= 0 and t = 0 or s = 0 and t 6= 0 or s 6= 0 and t 6= 0.
We consider these cases separately.
Case 1: Suppose s 6= 0 and t = 0.
Let s′ = 1

s and t′ = t.
Since s ∈ Q and s 6= 0, then s′ ∈ Q.
Since t ∈ Q, then t′ ∈ Q.
Since x 6= 0, then
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1

x
=

1

s+ t
√

2

=
1

s+ 0
√

2

=
1

s

=
1

s
+ 0

=
1

s
+ 0
√

2

= s′ + t′
√

2.

Since there exist s′, t′ ∈ Q such that 1
x = s′ + t′

√
2, then x′ ∈ K.

Case 2: Suppose s = 0 and t 6= 0.
Let s′ = s and t′ = 1

2t .
Since s ∈ Q, then s′ ∈ Q.
Since t ∈ Q and t 6= 0, then 2t ∈ Q and 2t 6= 0, so t′ ∈ Q.
Since x 6= 0, then

1

x
=

1

s+ t
√

2

=
1

0 + t
√

2

=
1

t
√

2

=
1

t
√

2
· 1

=
1

t
√

2
·
√

2√
2

=

√
2

2t

= 0 +

√
2

2t

= s′ +
1

2t

√
2

= s′ + t′
√

2.

Since there exist s′, t′ ∈ Q such that 1
x = s′ + t′

√
2, then x′ ∈ K.

Case 3: Suppose s 6= 0 and t 6= 0.
Let s′ = s

s2−2t2 and t′ = −t
s2−2t2 .

We first prove s2 − 2t2 6= 0.
Suppose for the sake of contradiction s2 − 2t2 = 0.
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Then s2 = 2t2.
Since t 6= 0, then t2 6= 0, so 2 = s2

t2 = ( st )
2.

Since s, t ∈ Q and t 6= 0, then s
t ∈ Q.

Thus, there is a rational number whose square is 2.
This contradicts the fact that there is no rational number whose square is 2.
Therefore, s2 − 2t2 6= 0.
Since s, t ∈ Q, then s2 − 2t2 ∈ Q and −t ∈ Q, so s′, t′ ∈ Q.
We prove s− t

√
2 6= 0.

Suppose for the sake of contradiction s− t
√

2 = 0.
Then s = t

√
2.

Since t 6= 0, then s
t =
√

2.
Since s, t ∈ Q and t 6= 0, then s

t ∈ Q.

Thus,
√

2 is rational, a contradiction.
Therefore s− t

√
2 6= 0.

Since x 6= 0, then

1

x
=

1

s+ t
√

2

=
1

s+ t
√

2
· 1

=
1

s+ t
√

2
· s− t

√
2

s− t
√

2

=
s− t

√
2

s2 − 2t2

=
s

s2 − 2t2
− t

√
2

s2 − 2t2

= s′ + t′
√

2.

Since there exist s′, t′ ∈ Q such that 1
x = s′ + t′

√
2, then x′ ∈ K.

Therefore, in all cases, x′ ∈ K, as desired.
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