Real Number System Exercises

Jason Sass

July 16, 2023

Exercise 1. For every $x \in \mathbb{R}$, if x > 0, then $x^2 > 0$.

Proof. Let $x \in \mathbb{R}$ such that x > 0.

Since x > 0, then x > 0 and x > 0.

Since \mathbb{R} is an ordered field and x > 0 and x > 0, then $x^2 = xx > 0$, so $x^2 > 0$.

Exercise 2. Show that the statement $(\forall x, y \in \mathbb{R})[(x > 1 \rightarrow y > 2) \rightarrow x - y \notin (0,3)]$ is false.

Proof. Let p(x, y) be the predicate defined over $\mathbb{R} \times \mathbb{R}$ such that $p(x, y) : (x > 1 \rightarrow y > 2) \rightarrow x - y \notin (0, 3)$. Observe that

 $(\forall x,y\in\mathbb{R})(x>1\rightarrow y>2)\rightarrow x-y\not\in(0,3) \quad \Leftrightarrow \quad (\forall x,y\in\mathbb{R})(x\leq 1\lor y>2)\rightarrow x-y\not\in(0,3).$

Thus, the negation of the statement is: there exists $x, y \in \mathbb{R}$ such that either $x \leq 1$ or y > 2 and $x - y \in (0, 3)$.

So, to prove the statement is false, we must prove there exists $x, y \in \mathbb{R}$ such that either $x \leq 1$ or y > 2 and the difference x - y is in the open interval (0,3). Let x = 4 and y = 2.5.

Since 2.5 > 2, then $4 \le 1$ or 2.5 > 2 is true. Observe that

$$\begin{array}{rcl} 0<1.5<3 &\Leftrightarrow & 0<4-2.5<3\\ &\Leftrightarrow & 0$$

Therefore, the statement $(\forall x, y \in \mathbb{R})[(x > 1 \rightarrow y > 2) \rightarrow x - y \notin (0, 3)]$ is false. \Box

Exercise 3. Let $x, y \in \mathbb{R}$. If xy = 0, then x = 0 or y = 0.

Solution. The hypothesis is: xy = 0.

The conclusion is: $x = 0 \lor y = 0$.

Thus, we have a statement of the form $P \to Q \lor R$.

We know that $P \to Q \lor R \Leftrightarrow (P \land \neg Q) \to R$. Thus, we assume $x \neq 0$, in addition to xy = 0. We must prove y = 0. Since $x \neq 0$, then x has a multiplicative inverse, $x^{-1} \in \mathbb{R}$ such that $xx^{-1} = 1$. Thus, we can multiply x^{-1} with xy to get $x^{-1}(xy) = x^{-1}0$, so $(x^{-1}x)y = x^{-1}0 = 0$.

Thus, 1y = 0, so y = 0.

To write up a correct proof, we write up in a transitive format, so we need to reverse the steps above in the proof. $\hfill \Box$

Proof. Suppose xy = 0 and $x \neq 0$.

We must prove y = 0.

Since x is nonzero, then the multiplicative inverse x^{-1} exists, so $x^{-1}x = 1$. Observe that

$$y = 1 \cdot y$$

= $(x^{-1}x)y$
= $x^{-1}(xy)$
= $x^{-1}(0)$
= 0, as desired

Exercise 4. Let $a \in \mathbb{R}$.

If $a \cdot a = a$, then either a = 0 or a = 1.

Proof. We prove by contrapositive. Suppose $a \cdot a = a$ and $a \neq 0$. We must prove a = 1. Since $a^2 = a \cdot a = a$, then $a^2 - a = 0$, so a(a - 1) = 0. Hence, either a = 0 or a - 1 = 0. Since $a \neq 0$, then a - 1 = 0, so a = 1, as desired.

Exercise 5. reciprocal of a product equals product of the reciprocals Let $a, b \in \mathbb{R}$.

If $a \neq 0$ and $b \neq 0$, then $\frac{1}{ab} = \frac{1}{a} \cdot \frac{1}{b}$.

Proof. Suppose $a \neq 0$ and $b \neq 0$.

1.

Then $ab \in \mathbb{R}$ and $ab \neq 0$.

Hence, there exists a unique real number $\frac{1}{ab}$ such that $(ab)(\frac{1}{ab}) = (\frac{1}{ab})(ab) =$

Since $a \neq 0$, then there is a unique real number $\frac{1}{q}$ such that $a \cdot \frac{1}{q} = \frac{1}{q} \cdot a = 1$. Since $b \neq 0$, then there is a unique real number $\frac{1}{b}$ such that $b \cdot \frac{1}{b} = \frac{1}{b} \cdot b = 1$. Hence, $\frac{1}{a} \cdot \frac{1}{b} \in \mathbb{R}$ and

$$(ab)\left(\frac{1}{a} \cdot \frac{1}{b}\right) = \left(\frac{1}{a} \cdot \frac{1}{b}\right)(ab)$$
$$= \left(\frac{1}{a} \cdot \frac{1}{b}\right)(ba)$$
$$= \frac{1}{a} \cdot \left(\frac{1}{b} \cdot b\right) \cdot a$$
$$= \frac{1}{a} \cdot 1 \cdot a$$
$$= \frac{1}{a} \cdot a$$
$$= 1$$

Since $\frac{1}{ab}$ is unique, then this implies $\frac{1}{ab} = \frac{1}{a} \cdot \frac{1}{b}$, as desired.

Ordered Fields

Exercise 6. Let $x, y \in \mathbb{R}$ such that xy = 10 and x > 5. Then y < 2. *Proof.* Since x > 5, then $2x > 2 \cdot 5 = 10 = xy$, so 2x > xy. Since x > 5 > 0, then x > 0. Since 2x > xy and x > 0, then $\frac{2x}{x} > \frac{xy}{x}$, so 2 > y. Therefore, y < 2, as desired. **Exercise 7.** Let $x, y \in \mathbb{R}$. If xy = 6 and x > 2, then y < 3. *Proof.* Suppose xy = 6 and x > 2. Since x > 2 > 0, then x > 0. Since xy = 6 > 0, then xy > 0. Since xy > 0 and x > 0, then $\frac{xy}{x} > \frac{0}{x}$, so y > 0. Observe that $x > 2 \Rightarrow xy > 2y$ $\Leftrightarrow \quad 6>2y$ $\Leftrightarrow 2 \cdot 3 > 2y$ $\Leftrightarrow 3 > y$ Since x > 2 and x > 2 implies 3 > y, then 3 > y, so y < 3, as desired. **Lemma 8.** Let $a, b, c \in \mathbb{R}$ and c > 0. If a > b + c, then a > b.

Proof. Suppose a > b + c. Since c > 0, then b + c > b. Since a > b + c and b + c > b, then a > b.

3

Proposition 9. Let $a, b, c, d \in \mathbb{R}$. If $a \leq b$ and $c \leq d$, then $a + c \leq b + d$. *Proof.* Suppose $a \leq b$ and $c \leq d$. Then either a < b or a = b and either c < d or c = d. Thus, either a < b and c < d or a < b and c = d or a = b and c < d or a = band c = d. We consider these cases separately. Case 1: Suppose a < b and c < d. Then a + c < b + d. Case 2: Suppose a < b and c = d. Then a + c < b + c = b + d. Case 3: Suppose a = b and c < d. Then a + c = b + c < b + d. Case 4: Suppose a = b and c = d. Then a + c = b + c = b + d. Thus, in all cases, $a + c \leq b + d$.

Corollary 10. Let a_k and b_k be real numbers such that $a_k \leq b_k$ for every $k \in \mathbb{Z}^+$.

Then $\sum_{k=1}^{n} a_k \leq \sum_{k=1}^{n} b_k$ for all positive integers n.

Proof. We prove by induction on n. Let $S = \{n \in \mathbb{Z}^+ : \sum_{k=1}^n a_k \leq \sum_{k=1}^n b_k\}$. Then $\sum_{k=1}^1 a_k = a_1 \leq b_1 = \sum_{k=1}^1 b_k$. Since $1 \in \mathbb{Z}^+$ and $\sum_{k=1}^1 a_k \leq \sum_{k=1}^1 b_k$, then $1 \in S$. Let $m \in S$. Then $m \in \mathbb{Z}^+$ and $\sum_{k=1}^m a_k \leq \sum_{k=1}^m b_k$. Since $m \in \mathbb{Z}^+$, then $m + 1 \in \mathbb{Z}^+$, so $a_{m+1} \leq b_{m+1}$. Observe that

$$\sum_{k=1}^{m+1} a_k = \sum_{k=1}^m a_k + a_{m+1}$$

$$\leq \sum_{k=1}^m b_k + a_{m+1}$$

$$\leq \sum_{k=1}^m b_k + b_{m+1}$$

$$= \sum_{k=1}^{m+1} b_k.$$

Since $m + 1 \in \mathbb{Z}^+$ and $\sum_{k=1}^{m+1} a_k \leq \sum_{k=1}^{m+1} b_k$, then $m + 1 \in S$. Since $m \in S$ implies $m + 1 \in S$, then by PMI, $S = \mathbb{Z}^+$. Therefore, $\sum_{k=1}^n a_k \leq \sum_{k=1}^n b_k$ for every $n \in \mathbb{Z}^+$.

Exercise 11. Let $a, b, c, d \in \mathbb{R}$. If a < b and $c \leq d$, then a + c < b + d.

Proof. Suppose a < b and $c \le d$. Since $c \le d$, then either c < d or c = d. We consider these cases separately. **Case 1:** Suppose c < d. Since a < b and c < d, then a + c < b + d. **Case 2:** Suppose c = d. Since a < b, then a + c < b + c, so a + c < b + d.

Exercise 12. Show that the statement $(\forall x \in \mathbb{R})(x \le 0) \lor (x^2 > 2) \lor (x^3 > 3)$ is false.

Proof. To prove the statement is false, we must prove $(\exists x \in \mathbb{R})(x > 0) \land (x^2 \le 2) \land (x^3 \le 3)$. Let x = 1.

Observe that 1 > 0 and $1^2 = 1 < 2 \le 2$ and $1^3 = 1 < 3 \le 3$.

Exercise 13. Show that the statement $(\exists m, n \in \mathbb{Z})(n \ge 5 \rightarrow m \le 4) \land (m+n \le 9)$ is true.

Proof. The statement is equivalent to $(\exists m, n \in \mathbb{Z})(n < 5 \lor m \le 4) \land (m+n \le 9)$. Let m = 1 and n = 2. Then m and n are integers and 2 < 5 and $1 < 4 \le 4$ and m + n = 1 + 2 =

 $3 < 9 \le 9.$

Exercise 14. Let a, b, c, d be elements of an ordered field F. If a < b and c < d, then ad + bc < ac + bd.

 $\begin{array}{l} \textit{Proof. Suppose } a < b \text{ and } c < d. \\ \textit{Since } c < d, \textit{then } d > c, \textit{ so } d - c > 0. \\ \textit{Since } a < b \textit{ and } d - c > 0, \textit{then } a(d - c) < b(d - c). \\ \textit{Hence, } ad - ac < bd - bc. \\ \textit{Observe that} \end{array}$

$$ad - ac + ac < bd - bc + ac$$

$$ad + 0 < bd - bc + ac$$

$$ad + 0 < bd + ac - bc$$

$$ad + bc < bd + ac - bc + bc$$

$$ad + bc < bd + ac + 0$$

$$ad + bc < bd + ac$$

$$ad + bc < bd + ac$$

$$ad + bc < ac + bd.$$

Therefore, ad + bc < ac + bd.

Exercise 15. Let $x \in \mathbb{R}$. If $0 \le x \le 2$, then $-x^3 + 4x + 1 > 0$. *Proof.* Suppose $0 \le x \le 2$. Then $0 \leq x$ and $x \leq 2$. Observe that $-x^3 + 4x + 1 = x(-x^2 + 4) + 1 = x(4-x^2) + 1 = x(2-x)(2+x) + 1$. Since $x \leq 2$, then $2 - x \geq 0$. Since $x \ge 0$, then $2 + x \ge 2 > 0$, so 2 + x > 0. Since $x \ge 0$ and $2 - x \ge 0$ and 2 + x > 0, then $x(2 - x)(2 + x) \ge 0$. Thus, $x(2-x)(2+x) + 1 \ge 1 > 0$, so x(2-x)(2+x) + 1 > 0. Therefore, $-x^3 + 4x + 1 > 0$. **Exercise 16.** Let a, b, x, y be positive elements of an ordered field F. If $\frac{x}{y} < \frac{a}{b}$, then $\frac{x}{y} < \frac{x+a}{y+b} < \frac{a}{b}$. Proof. Suppose $\frac{x}{y} < \frac{a}{b}$. Since y > 0 and b > 0, then y + b > 0. Hence, $\frac{x}{y} < \frac{a}{b}$ implies xb < ya, so xy + xb < xy + ya and xb + ab < ya + ab. Thus, x(y+b) < y(x+a) and (x+a)b < (y+b)a, so $\frac{x}{y} < \frac{x+a}{y+b}$ and $\frac{x+a}{y+b} < \frac{a}{b}$. Therefore, $\frac{x}{y} < \frac{x+a}{y+b} < \frac{a}{b}$. **Exercise 17.** Let $a, b, c, d \in \mathbb{R}$. If 0 < a < b and $0 \le c \le d$, then $0 \le ac \le bd$. *Proof.* Suppose 0 < a < b and $0 \le c \le d$. Since 0 < a < b, then 0 < a and a < b, so 0 < b. Since $0 \le c \le d$, then $0 \le c$ and $c \le d$. Since $0 \le c$ and a > 0, then $0 = a0 \le ac$, so $0 \le ac$. Since $0 \leq c$ and $c \leq d$, then either 0 < c and c < d or 0 < c and c = d or 0 = c and c < d or 0 = c and c = d. We consider these cases separately. Case 1: Suppose 0 < c and c < d. Then 0 < c < d. Since 0 < a < b and 0 < c < d, then 0 < ac < bd, so ac < bd. Case 2: Suppose 0 < c and c = d. Since a < b and c > 0, then ac < bc = bd, so ac < bd. Case 3: Suppose 0 = c and c < d. Then 0 < d. Since b > 0 and d > 0, then bd > 0. Since ac = a0 = 0 < bd, then ac < bd. Case 4: Suppose 0 = c and c = d. Then ac = a0 = 0 = b0 = bc = bd, so ac = bd. Thus, in all cases, either ac < bd or ac = bd, so ac < bd. Therefore, $0 \leq ac$ and $ac \leq bd$, so $0 \leq ac \leq bd$, as desired. **Exercise 18.** Let $a, b \in \mathbb{R}$.

If $0 \le a < b$, then $a^2 \le ab < b^2$.

Proof. Suppose $0 \le a < b$. Then $0 \le a$ and a < b, so 0 < b. Since a < b and b > 0, then $ab < b^2$. Since $a \ge 0$, then either a > 0 or a = 0. We consider these cases separately. Case 1: Suppose a > 0. Since a < b and a > 0, then $a^2 < ab$. Case 2: Suppose a = 0. Then $a^2 = 0^2 = 0 = 0b = ab$. Thus, in either case, either $a^2 < ab$ or $a^2 = ab$, so $a^2 \leq ab$. Since $a^2 \leq ab$ and $ab < b^2$, then $a^2 \leq ab < b^2$, as desired. **Exercise 19.** Prove $x^2 + x + 1 > 0$ for all $x \in \mathbb{R}$. *Proof.* Let $x \in \mathbb{R}$. Then $x + \frac{1}{2} \in \mathbb{R}$, so $(x + \frac{1}{2})^2 \ge 0$. Hence, $0 \le (x + \frac{1}{2})^2 = x^2 + x + \frac{1}{4}$, so $0 \le x^2 + x + \frac{1}{4}$. Therefore $0 < \frac{3}{4} \le x^2 + x + 1$, so $0 < x^2 + x + 1$. **Exercise 20.** Let $r \in \mathbb{R}$ with 0 < r < 1. Then $0 < r^n < 1$ for all $n \in \mathbb{N}$. *Proof.* We prove by induction on n. Let $S = \{ n \in \mathbb{N} : 0 < r^n < 1 \}.$ Since $1 \in \mathbb{N}$ and $0 < r^1 = r < 1$, then $1 \in S$. Suppose $k \in S$. Then $k \in \mathbb{N}$ and $0 < r^k < 1$. Since 0 < r < 1 and $0 < r^k < 1$, then $0 < rr^k < 1 \cdot 1$, so $0 < r^{k+1} < 1$. Since $k + 1 \in \mathbb{N}$ and $0 < r^{k+1} < 1$, then $k + 1 \in S$. Thus, $k \in S$ implies $k + 1 \in S$. By the principle of mathematical induction, $0 < r^n < 1$ for all $n \in \mathbb{N}$, as desired. \square **Proposition 21.** Let $a, b \in \mathbb{R}$ with a > 0. Then $a^n < b^n$ for all $n \in \mathbb{N}$ iff a < b. *Proof.* We first prove if $a^n < b^n$ for all $n \in \mathbb{N}$, then a < b by contrapositive. Suppose $a \ge b$. Then $a^1 = a \ge b = b^1$, so $a^1 \ge b^1$. Since $1 \in \mathbb{N}$ and $a^1 \ge b^1$, then there is a natural number n such that $a^n \ge b^n$, as desired. *Proof.* We next prove if a < b, then $a^n < b^n$ for all $n \in \mathbb{N}$. Suppose a < b. Since b > a and a > 0, then b > 0.

We must prove $a^n < b^n$ for all $n \in \mathbb{N}$. Let $p(n) : a^n < b^n$ be a predicate defined over \mathbb{N} . Basis: Since a < b, then $a^1 < b^1$, so the statement p(1) is true. **Induction:** Let $k \in \mathbb{N}$ such that p(k) is true. Then $a^k < b^k$. Since $k \in \mathbb{N}$, then k > 0. Since b > 0 and k > 0, then $b^k > 0$. Since $a^k < b^k$ and a > 0 and a < b, then

$$a^{k+1} = a^k a$$

 $< b^k a$
 $< b^k b$
 $= b^{k+1}$

Therefore, $a^{k+1} < b^{k+1}$, so p(k+1) is true.

Hence, p(k) implies p(k+1) for all $k \in \mathbb{N}$.

Since p(1) is true and p(k) implies p(k+1) for all $k \in \mathbb{N}$, then by induction, p(n) is true for all $n \in \mathbb{N}$.

Therefore, $a^n < b^n$ for all $n \in \mathbb{N}$, as desired.

Proposition 22. Let $c \in \mathbb{R}$.

If c > 1, then $c^n > c$ for all natural numbers n > 1.

Proof. Suppose c > 1.

To prove $c^n > c$ for all natural numbers n > 1, let $S = \{n \in \mathbb{N} : c^n > c \wedge n > 1\}$.

We prove by induction on n.

Since c > 1 and 1 > 0, then c > 0, so $c^2 > c$. Since $2 \in \mathbb{N}$ and $c^2 > c$ and 2 > 1, then $2 \in S$.

Suppose $k \in S$. Then $k \in \mathbb{N}$ and $c^k > c$ and k > 1. Since $c^k > c$ and c > 1, then $c^k > 1$. Since c > 1 and 1 > 0, then c > 0. Thus, $c^k \cdot c > 1 \cdot c$, so $c^{k+1} > c$. Since $k \in \mathbb{N}$, then $k + 1 \in \mathbb{N}$. Since k > 1 and 1 > 0, then k > 0, so k + 1 > 1. Since $k + 1 \in \mathbb{N}$ and $c^{k+1} > c$ and k + 1 > 1, then $k + 1 \in S$. Hence, $k \in S$ implies $k + 1 \in S$, so $k \in S$ implies $k + 1 \in S$ for all $k \in S$. Since $2 \in S$ and $k \in S$ implies $k + 1 \in S$ for all $k \in S$, then by PMI, $c^n > c$ for all natural numbers n > 1.

Proposition 23. Let $c \in \mathbb{R}$.

If 0 < c < 1, then $c^n < c$ for all natural numbers n > 1.

Proof. Suppose 0 < c < 1. Then 0 < c and c < 1. To prove $c^n < c$ for all natural numbers n > 1, let $S = \{n \in \mathbb{N} : c^n < c \land n > n > 1\}$ $1\}.$ We prove by induction on n. Since c < 1 and c > 0, then $c \cdot c < 1 \cdot c$, so $c^2 < c$. Since $2 \in \mathbb{N}$ and $c^2 < c$ and 2 > 1, then $2 \in S$. Suppose $k \in S$. Then $k \in \mathbb{N}$ and $c^k < c$ and k > 1. Since $c^k < c$ and c < 1, then $c^k < 1$. Since c > 0, then $c^k \cdot c < 1 \cdot c$, so $c^{k+1} < c$. Since $k \in \mathbb{N}$, then $k + 1 \in \mathbb{N}$. Since k > 1 and 1 > 0, then k > 0, so k + 1 > 1. Since $k + 1 \in \mathbb{N}$ and $c^{k+1} < c$ and k + 1 > 1, then $k + 1 \in S$. Hence, $k \in S$ implies $k + 1 \in S$, so $k \in S$ implies $k + 1 \in S$ for all $k \in S$. Since $2 \in S$ and $k \in S$ implies $k + 1 \in S$ for all $k \in S$, then by PMI, $c^n < c$ for all natural numbers n > 1. Lemma 24. Let $c \in \mathbb{R}$ with c > 1. Then $c^n > c$ for all $n \in \mathbb{N}$. *Proof.* We prove $c^n \ge c$ for all $n \in \mathbb{N}$ by induction on n. Let $S = \{n \in \mathbb{N} : c^n \ge c\}.$ Since $1 \in \mathbb{N}$ and $c^1 = c$, then $1 \in S$. Suppose $k \in S$. Then $k \in \mathbb{N}$ and $c^k \geq c$. Since c > 1 > 0, then c > 0. Since $k \in \mathbb{N}$, then $k + 1 \in \mathbb{N}$. Since $c^k \ge c > 1$, then $c^k > 1$. Thus, $c^{k+1} = c^k \cdot c > 1 \cdot c = c$. Since $k + 1 \in \mathbb{N}$ and $c^{k+1} > c$, then $k + 1 \in S$. Therefore, by PMI, $c^n \ge c$ for all $n \in \mathbb{N}$. **Proposition 25.** Let $c \in \mathbb{R}$ with c > 1 and $m, n \in \mathbb{N}$. Then $c^m > c^n$ iff m > n. *Proof.* We prove if m > n, then $c^m > c^n$. Suppose m > n. Then m - n > 0. Since $m, n \in \mathbb{N}$ and $\mathbb{N} \subset \mathbb{Z}$, then $m, n \in \mathbb{Z}$, so $m - n \in \mathbb{Z}$. Since $m - n \in \mathbb{Z}$ and m - n > 0, then $m - n \in \mathbb{Z}^+$, so $m - n \in \mathbb{N}$. Since c > 1 and $n \in \mathbb{N}$, then by the previous lemma, $c^n > c$. Since $c^n > c > 1 > 0$, then $c^n > 0$. Since c > 1 and $m - n \in \mathbb{N}$, then by the previous lemma, $c^{m-n} \ge c$.

Since $c^{m-n} \ge c > 1$, then $c^{m-n} > 1$, so $\frac{c^m}{c^n} > 1$. Since $c^n > 0$, then $c^m > c^n$. Therefore, if m > n, then $c^m > c^n$.

Conversely, we prove if $c^m > c^n$, then m > n. Suppose $c^m > c^n$. Suppose $m \le n$. Then $n \ge m$, so either n > m or n = m. If n = m, then $c^n = c^m$. If n > m, then $c^n > c^m$. Hence, either $c^n > c^m$ or $c^n = c^m$, so $c^n \ge c^m$. Thus, we have $c^m > c^n$ and $c^m \le c^n$, a violation of trichotomy. Therefore, m < n, as desired.

Proposition 26. Bernoulli's inequality

Let $x \in \mathbb{R}$ with x > -1. Then $(1+x)^n \ge 1 + nx$ for all $n \in \mathbb{N}$.

Proof. Let $S = \{n \in \mathbb{N} : (1+x)^n \ge 1+nx\}$. We prove using mathematical induction(weak). **Basis:** Let n = 1. Then $(1+x)^1 = 1+x = 1+1x$. Since $1 \in \mathbb{N}$ and $(1+x)^1 = 1+1x$, then $1 \in S$. **Induction:** Let $k \in S$. Then $k \in \mathbb{N}$ and $(1+x)^k \ge 1+kx$. Since $k \in \mathbb{N}$, then $k+1 \in \mathbb{N}$ and k > 0. Since x > -1, then 1+x > 0. Observe that

$$(1+x)^{k+1} = (1+x)^k (1+x)$$

$$\geq (1+kx)(1+x)$$

$$= 1+x+kx+kx^2$$

$$= 1+kx+x+kx^2$$

$$= 1+(k+1)x+kx^2$$

Thus, $(1+x)^{k+1} \ge 1 + (k+1)x + kx^2$. Since $x^2 \ge 0$ and k > 0, then $kx^2 \ge 0$. Thus, $1 + (k+1)x + kx^2 \ge 1 + (k+1)x + 0 = 1 + (k+1)x$. Since $(1+x)^{k+1} \ge 1 + (k+1)x + kx^2$ and $1 + (k+1)x + kx^2 \ge 1 + (k+1)x$, then $(1+x)^{k+1} \ge 1 + (k+1)x$. Since $k+1 \in \mathbb{N}$ and $(1+x)^{k+1} \ge 1 + (k+1)x$, then $k+1 \in S$, so $k \in S$

implies $k + 1 \in S$.

Hence, $k \in S$ implies $k + 1 \in S$ for all $k \in \mathbb{N}$.

Since $1 \in S$ and $k \in S$ implies $k + 1 \in S$ for all $k \in \mathbb{N}$, then by PMI, $S = \mathbb{N}$, so $(1 + x)^n \ge 1 + nx$ for all $n \in \mathbb{N}$.

Exercise 27. Let $n \in \mathbb{N}$. Then $2^0 + 2^1 + 2^2 + 2^3 + \ldots + 2^n = 2^{n+1} - 1$.

Proof. Let $S = 2^0 + 2^1 + 2^2 + 2^3 + \dots + 2^n$. We must prove $S = 2^{n+1} - 1$.

Observe that $2S = 2^1 + 2^2 + 2^3 + \ldots + 2^n + 2^{n+1}$ and $S - 1 = 2^1 + 2^2 + 2^3 + \ldots + 2^n$. Thus, $2S = (2^1 + 2^2 + 2^3 + \ldots + 2^n) + 2^{n+1} = (S - 1) + 2^{n+1}$. Hence, $S = 2S - S = (S - 1) + 2^{n+1} - S = -1 + 2^{n+1} = 2^{n+1} - 1$. Therefore, $S = 2^{n+1} - 1$, as desired.

Proposition 28. Let $x \in \mathbb{R}$. Then $x^n - 1 = (x - 1) \sum_{k=0}^{n-1} x^k$ for all $n \in \mathbb{Z}^+$.

Proof. We prove $x^n - 1 = (x - 1) \sum_{k=0}^{n-1} x^k$ by induction on n. Let $S = \{n \in \mathbb{Z}^+ : x^n - 1 = (x - 1)(\sum_{k=0}^{n-1} x^k)\}$. Basis: Observe that $x^1 - 1 = x - 1 = (x - 1)(1) = (x - 1)(x^0) = (x - 1)(\sum_{k=0}^{1-1} x^k)$. Hence, $1 \in S$. Induction: Suppose $m \in S$. Then $m \in \mathbb{Z}^+$ and $x^m - 1 = (x - 1)(\sum_{k=0}^{m-1} x^k)$. Observe that

$$(x-1)(\sum_{k=0}^{m} x^{k}) = (x-1)[\sum_{k=0}^{m-1} x^{k} + x^{m}]$$

= $(x-1)\sum_{k=0}^{m-1} x^{k} + (x-1)x^{m}$
= $(x^{m}-1) + (x^{m+1}-x^{m})$
= $x^{m+1} - 1.$

Since $m + 1 \in \mathbb{Z}^+$ and $x^{m+1} - 1 = (x - 1)(\sum_{k=0}^m x^k)$, then $m + 1 \in S$. Hence, $m \in S$ implies $m + 1 \in S$, so by PMI, $S = \mathbb{Z}^+$. Therefore, $x^n - 1 = (x - 1)\sum_{k=0}^{n-1} x^k$ for all $n \in \mathbb{Z}^+$.

Corollary 29. Let $x \in \mathbb{R}$ with $x \neq 1$. Then $\sum_{k=0}^{n} x^k = \frac{x^{n+1}-1}{x-1}$ for all $n \in \mathbb{Z}^+$.

Proof. Let $n \in \mathbb{Z}^+$ be given.

Then $x^n - 1 = (x - 1) \sum_{k=0}^{n-1} x^k$. Since $x \neq 1$, then $x - 1 \neq 0$, so we divide to obtain $\frac{x^n - 1}{x - 1} = \sum_{k=0}^{n-1} x^k$. Observe that

$$\sum_{k=0}^{n} x^{k} = \sum_{k=0}^{n-1} x^{k} + x^{n}$$
$$= \frac{x^{n} - 1}{x - 1} + x^{n}$$
$$= \frac{x^{n} - 1 + x^{n}(x - 1)}{x - 1}$$
$$= \frac{x^{n} - 1 + x^{n+1} - x^{n}}{x - 1}$$
$$= \frac{x^{n+1} - 1}{x - 1}.$$

Therefore, $\sum_{k=0}^{n} x^{k} = \frac{x^{n+1}-1}{x-1}$.

Proposition 30. Difference of powers

Let $a, b \in \mathbb{R}^*$. Then $a^n - b^n = (a - b) \sum_{k=0}^{n-1} a^k b^{n-1-k}$ for all $n \in \mathbb{N}$.

Proof. We prove by induction on n. Let $S = \{n \in \mathbb{N} : a^n - b^n = (a - b) \sum_{k=0}^{n-1} a^k b^{n-1-k} \}$. Basis: Since $1 \in \mathbb{N}$ and $a^1 - b^1 = a - b = (a - b)(1) = (a - b)(ab)^0 = (a - b)a^0b^0 = (a - b) \sum_{k=0}^{1-1} a^k b^{1-1-k}$, then $1 \in S$. Induction: Suppose $m \in S$. Then $m \in \mathbb{N}$ and $a^m - b^m = (a - b) \sum_{k=0}^{m-1} a^k b^{m-1-k}$. Since $m \in \mathbb{N}$, then $m + 1 \in \mathbb{N}$. Observe that $a^{m+1} - b^{m+1} = a^{m+1} - ab^m + ab^m - b^{m+1}$

$$= a(a^{m} - b^{m}) + b^{m}(a - b)$$

$$= a(a - b) \sum_{k=0}^{m-1} a^{k} b^{m-1-k} + b^{m}(a - b)$$

$$= (a - b)[a \sum_{k=0}^{m-1} a^{k} b^{m-1-k} + b^{m}]$$

$$= (a - b)[\sum_{k=0}^{m-1} a^{k+1} b^{m-1-k} + b^{m}]$$

$$= (a - b)[(a^{1} b^{m-1} + a^{2} b^{m-2} + a^{3} b^{m-3} + \dots + a^{m} b^{0}) + a^{0} b^{m}]$$

$$= (a - b) \sum_{k=0}^{m} a^{k} b^{m-k}.$$

Since $m + 1 \in \mathbb{N}$ and $a^{m+1} - b^{m+1} = (a - b) \sum_{k=0}^{m} a^k b^{m-k}$, then $m + 1 \in S$. Thus, $m \in S$ implies $m + 1 \in S$. Therefore, by the principle of mathematical induction, $a^n - b^n = (a - b^n)^n = (a - b^n)^n$ b) $\sum_{k=0}^{n-1} a^k b^{n-1-k}$ for all $n \in \mathbb{N}$, as desired. **Exercise 31.** Let $x, y \in \mathbb{R}$. If xy = 10 and |x| > 2, then $|y| \le 5$. *Proof.* We prove by contradiction. Suppose xy = 10 and |x| > 2 and |y| > 5. Since |x| > 2 and |y| > 5, then $|x| \cdot |y| > 2 \cdot 5$, so |xy| > 10. Thus, |10| > 10, so 10 > 10, a contradiction. Therefore, if xy = 10 and |x| > 2, then $|y| \le 5$. **Exercise 32.** Let $x, y \in \mathbb{R}$. If $xy \leq 9$ and x > 3, then y < 3. *Proof.* Suppose xy < 9 and x > 3. Since x > 3 > 0, then x > 0. Thus, $3x > 3 \cdot 3 = 9 \ge xy$, so 3x > xy. Hence, 3 > y, so y < 3. *Proof.* We prove by contradiction. Suppose xy < 9 and x > 3 and y > 3. Since x > 3 and $y \ge 3$, then xy > 9. But, this contradicts the fact that $xy \leq 9$. Therefore, if $xy \leq 9$ and x > 3, then y < 3. **Exercise 33.** Let $S = \{x \in \mathbb{R} : x^2 - 4x + 5 \le 10\}.$ Then S = [-1, 5]. *Proof.* Since $1^2 - 4(1) + 5 = 1 - 4 + 5 = 2 < 10$, then $1 \in S$, so $S \neq \emptyset$. We first prove $S \subset [-1, 5]$. Let $x \in S$. Then $x \in \mathbb{R}$ and $x^2 - 4x + 5 \le 10$, so $x^2 - 4x - 5 \le 0$. Hence, $(x-5)(x+1) \le 0$, so either (x-5)(x+1) < 0 or (x-5)(x+1) = 0. We consider these cases separately. **Case 1:** Suppose (x - 5)(x + 1) < 0. Then either x - 5 > 0 and x + 1 < 0 or x - 5 < 0 and x + 1 > 0, so either x > 5 and x < -1, or x < 5 and x > -1. Since x cannot be both less than -1 and greater than 5, then x < 5 and x > -1, so -1 < x < 5. Hence, $x \in (-1, 5)$. **Case 2:** Suppose (x - 5)(x + 1) = 0. Then either x - 5 = 0 or x + 1 = 0, so either x = 5 or x = -1. Hence, $x \in \{-1, 5\}$.

Both cases show that either $x \in (-1,5)$ or $x \in \{-1,5\}$, so $x \in (-1,5) \cup$ $\{-1,5\}.$ Therefore, $x \in [-1, 5]$. Since $x \in S$ implies $x \in [-1, 5]$, then $S \subset [-1, 5]$. We next prove $[-1, 5] \subset S$. Let $y \in [-1, 5]$. Then $-1 \le y \le 5$, so $-1 \le y$ and $y \le 5$. Hence, $0 \le y+1$ and $y-5 \le 0$. Since $y + 1 \ge 0$ and $y - 5 \le 0$, then $(y + 1)(y - 5) \le 0$, so $y^2 - 4y - 5 \le 0$. Thus, $y^2 - 4y + 5 \le 10$, so $y \in S$. Therefore, if $y \in [-1, 5]$, then $y \in S$, so $[-1, 5] \subset S$. Since $S \subset [-1, 5]$ and $[-1, 5] \subset S$, then S = [-1, 5], as desired. **Exercise 34.** Let $S = \{x \in \mathbb{R} : |\frac{x}{x-2}| < 4\}.$ Then $S = (-\infty, \frac{8}{5}) \cup (\frac{8}{3}, \infty).$ *Proof.* Let $T = (-\infty, \frac{8}{5}) \cup (\frac{8}{3}, \infty)$. We must prove S = T. Since $\left|\frac{3}{3-2}\right| = \left|\frac{3}{1}\right| = |3| = 3 < 4$, then $3 \in S$, so $S \neq \emptyset$. We first prove $S \subset T$. Let $x \in S$. Then $x \in \mathbb{R}$ and $\left|\frac{x}{x-2}\right| < 4$, so $-4 < \frac{x}{x-2} < 4$. Since $\frac{x}{x-2} \in \mathbb{R}$ and division by zero is undefined in \mathbb{R} , then $x - 2 \neq 0$, so $x \neq 2$. Thus, either x > 2 or x < 2. We consider these cases separately. Case 1: Suppose x > 2. Then x - 2 > 0. Observe that $-4 < \frac{x}{x-2} < 4 \quad \Rightarrow \quad -4(x-2) < x < 4(x-2)$ $\Leftrightarrow -4x + 8 < x < 4x - 8$ $\Leftrightarrow -5x + 8 < 0 < 3x - 8$ $\Leftrightarrow -5x + 8 < 0 \text{ and } 0 < 3x - 8$ $\Leftrightarrow \quad 8 < 5x \text{ and } 8 < 3x$ $\Leftrightarrow \frac{8}{5} < x \text{ and } \frac{8}{3} < x$ Thus, $-4 < \frac{x}{x-2} < 4$ implies $\frac{8}{5} < x$ and $\frac{8}{3} < x$. Since $-4 < \frac{x}{x-2} < 4$, then we conclude $\frac{8}{5} < x$ and $\frac{8}{3} < x$, so $x > \frac{8}{5}$ and $x > \frac{8}{3}$. Therefore, $x \in (\frac{8}{5}, \infty)$ and $x \in (\frac{8}{3}, \infty)$. Hence, $x \in (\frac{8}{5}, \infty) \cap (\frac{8}{3}, \infty) = (\frac{8}{3}, \infty)$.

Case 2: Suppose x < 2.

Then x - 2 < 0. Observe that

$$-4 < \frac{x}{x-2} < 4 \quad \Rightarrow \quad -4(x-2) > x > 4(x-2)$$

$$\Leftrightarrow \quad -4x+8 > x > 4x-8$$

$$\Leftrightarrow \quad -5x+8 > 0 > 3x-8$$

$$\Leftrightarrow \quad -5x+8 > 0 \text{ and } 0 > 3x-8$$

$$\Leftrightarrow \quad 8 > 5x \text{ and } 8 > 3x$$

$$\Leftrightarrow \quad \frac{8}{5} > x \text{ and } \frac{8}{3} > x$$

Thus, $-4 < \frac{x}{x-2} < 4$ implies $\frac{8}{5} > x$ and $\frac{8}{3} > x$. Since $-4 < \frac{x}{x-2} < 4$, then we conclude $\frac{8}{5} > x$ and $\frac{8}{3} > x$, so $x < \frac{8}{5}$ and $x < \frac{8}{3}$. Therefore, $x \in (-\infty, \frac{8}{5})$ and $x \in (-\infty, \frac{8}{3})$, so $x \in (-\infty, \frac{8}{5}) \cap (-\infty, \frac{8}{3}) = (-\infty, \frac{8}{5})$.

Both cases show that either $x \in (-\infty, \frac{8}{5})$ or $x \in (\frac{8}{3}, \infty)$, so $x \in (-\infty, \frac{8}{5}) \cup (\frac{8}{3}, \infty) = T$.

Therefore, $x \in S$ implies $x \in T$, so $S \subset T$.

We next prove $T \subset S$. Let $y \in T$. Then either $y \in (-\infty, \frac{8}{5})$ or $y \in (\frac{8}{3}, \infty)$. We consider these cases separately. **Case 1:** Suppose $y \in (\frac{8}{3}, \infty)$. Then $y > \frac{8}{3}$. Since $y > \frac{8}{3} > 0$, then y > 0. Since $y > \frac{8}{3} > 2$, then y > 2, so y - 2 > 0. Observe that

$$\begin{array}{rcl} \displaystyle\frac{8}{3} < y &\Leftrightarrow& 8 < 3y \\ &\Leftrightarrow& y+8 < 4y \\ &\Leftrightarrow& y < 4y-8 \\ &\Leftrightarrow& y < 4(y-2) \\ &\Rightarrow& \displaystyle\frac{y}{y-2} < 4 \\ &\Rightarrow& \displaystyle\frac{|y|}{|y-2|} < 4 \\ &\Leftrightarrow& |\displaystyle\frac{y}{y-2}| < 4 \end{array}$$

Since $\frac{8}{3} < y$ and $\frac{8}{3} < y$ implies $\left|\frac{y}{y-2}\right| < 4$, then we conclude $\left|\frac{y}{y-2}\right| < 4$.

Since $y \in \mathbb{R}$ and $\left|\frac{y}{y-2}\right| < 4$, then $y \in S$. Case 2: Suppose $y \in (-\infty, \frac{8}{5})$. Then $y < \frac{8}{5}$. Since $y < \frac{8}{5}$ and $\frac{8}{5} < \frac{8}{3}$, then $y < \frac{8}{3}$. Since $y < \frac{8}{5}$ and $\frac{8}{5} < 2$, then y < 2, so y - 2 < 0. Observe that $\frac{8}{5} > y \text{ and } \frac{8}{3} > y \quad \Leftrightarrow \quad 8 > 5y \text{ and } 8 > 3y$ \Leftrightarrow 8-5y>0 and 0>3y-8 $\Leftrightarrow 8-5y > 0 > 3y-8$ $\Leftrightarrow 8-4y > y > 4y - 8$ $\Leftrightarrow -4(y-2) > y > 4(y-2)$ $\Rightarrow -4 < \frac{y}{y-2} < 4$ $\Leftrightarrow |\frac{y}{u-2}| < 4$ Thus, $\frac{8}{5} > y$ and $\frac{8}{3} > y$ implies $\left|\frac{y}{y-2}\right| < 4$. Since $\frac{8}{5} > y$ and $\frac{8}{3} > y$, then we conclude $\left|\frac{y}{y-2}\right| < 4$. Since $y \in \mathbb{R}$ and $|\frac{y}{y-2}| < 4$, then $y \in S$. In all cases, $y \in S$. Thus, if $y \in T$, then $y \in S$, so $T \subset S$. Since $S \subset T$ and $T \subset S$, then S = T, as desired. **Exercise 35.** Let $S = \{x \in \mathbb{R} : \frac{7}{x-3} > x+3 > 0\}.$ Then S = (3, 4). Solution. Let $x \in S$. Then $x \in \mathbb{R}$ and $\frac{7}{x-3} > x+3 > 0$. Since $x-3 \neq 0$, then either x-3 > 0 or x-3 < 0. Assume x - 3 > 0. Then 7 > (x+3)(x-3) > 0, so $7 > x^2 - 9 > 0$. Hence, $16 > x^2 > 9$, so $9 < x^2 < 16$. Thus, 3 < |x| < 4. Since x - 3 > 0, then x > 3 > 0, so x > 0. Thus, |x| = x, so 3 < x < 4. Hence, $x \in (3, 4)$. Assume x - 3 < 0. Then 7 < (x+3)(x-3) < 0, so $7 < x^2 - 9 < 0$. Hence, $16 < x^2 < 9$, so 16 < 9, a contradiction. Therefore, x - 3 cannot be negative.

We conjecture that S = (3, 4).

We first prove $S \subset (3, 4)$. Since $\frac{7}{3.5-3} = \frac{7}{.5} = 14 > 6.5$ and 6.5 > 0, then $\frac{7}{3.5-3} > 6.5 > 0$, so $\frac{7}{3.5-3} > 3.5 + 3 > 0.$ Hence, $3.5 \in S$, so $S \neq \emptyset$. Let $x \in S$. Then $x \in \mathbb{R}$ and $\frac{7}{x-3} > x+3 > 0$. Suppose x-3=0. Then $\frac{7}{0} > x + 3 > 0$, so $\frac{7}{0} \in \mathbb{R}$. But, division by zero is not defined, so $x - 3 \neq 0$. Thus, either x - 3 > 0 or x - 3 < 0. Suppose x - 3 < 0. Since $\frac{7}{x-3} > x+3 > 0$ and x-3 < 0, then 7 < (x+3)(x-3) < 0, so $7 < x^2 - 9 < 0.$ Hence, $16 < x^2 < 9$, so 16 < 9, a contradiction. Therefore, x - 3 cannot be negative. Thus, x - 3 > 0. Since $\frac{7}{x-3} > x+3 > 0$ and x-3 > 0, then 7 > (x+3)(x-3) > 0, so $7 > x^2 - 9 > 0.$ Hence, $16 > x^2 > 9$, so $9 < x^2 < 16$. Thus, 3 < |x| < 4. Since x - 3 > 0, then x > 3 > 0, so x > 0. Thus, |x| = x, so 3 < x < 4. Hence, $x \in (3, 4)$. Therefore, if $x \in S$, then $x \in (3, 4)$, so $S \subset (3, 4)$. *Proof.* We prove $(3, 4) \subset S$. Let $y \in (3, 4)$. Then $y \in \mathbb{R}$ and 3 < y < 4, so 3 < y and y < 4. Since 3 < y, then y > 3, so y - 3 > 0. Since 3 < y < 4, then $9 < y^2 < 16$, so $0 < y^2 - 9 < 7$. Hence, 0 < (y+3)(y-3) < 7. Since y - 3 > 0, then $0 < y + 3 < \frac{7}{y - 3}$. Since $y \in \mathbb{R}$ and $\frac{7}{y-3} > y+3 > 0$, then $y \in S$. Therefore, $(3,4) \subset S$. Since $S \subset (3, 4)$ and $(3, 4) \subset S$, then S = (3, 4). **Exercise 36.** Let $S = \{x \in \mathbb{R}^+ : |\frac{x-4}{x}| \le 2\}.$ Then $S = \left[\frac{4}{3}, \infty\right)$. *Proof.* Since $|\frac{2-4}{2}| = |\frac{-2}{2}| = |-1| = 1 < 2 \le 2$, then $2 \in S$, so $S \ne \emptyset$.

We first prove $S \subset \left[\frac{4}{3}, \infty\right)$. Let $x \in S$. Then $x \in \mathbb{R}^+$ and $\left|\frac{x-4}{x}\right| \leq 2$, so $-2 \leq \frac{x-4}{x} \leq 2$. Since $x \in \mathbb{R}^+$, then x > 0, so $-2x \leq x - 4 \leq 2x$. Hence, $-3x \leq -4 \leq x$, so $-3x \leq -4$. Thus, $x \geq \frac{4}{3}$, so $x \in \left[\frac{4}{3}, \infty\right)$. Therefore, $S \subset \left[\frac{4}{3}, \infty\right)$.

We next prove $\left[\frac{4}{3}, \infty\right) \subset S$. Let $y \in \left[\frac{4}{3}, \infty\right)$. Then $y \geq \frac{4}{3}$, so $3y \geq 4$. Since $y \geq \frac{4}{3} > 0$, then y > 0. Hence, $3 \geq \frac{4}{y}$. Since y > 0, then $\frac{4}{y} > 0$, so $3 \geq \frac{4}{y} > 0$. Thus, $0 < \frac{4}{y} \leq 3$. Observe that

$$\begin{aligned} 0 < \frac{4}{y} \leq 3 & \Leftrightarrow & 0 - 1 < \frac{4}{y} - 1 \leq 3 - 1 \\ \Leftrightarrow & -1 < \frac{4}{y} - 1 \leq 2 \\ \Leftrightarrow & -2 < -1 < \frac{4}{y} - 1 \leq 2 \\ \Rightarrow & -2 < \frac{4}{y} - 1 \leq 2 \\ \Rightarrow & -2 \leq \frac{4}{y} - 1 \leq 2 \\ \Rightarrow & -2 \leq \frac{4}{y} - 1 \leq 2 \\ \Leftrightarrow & |\frac{4}{y} - 1| \leq 2 \\ \Leftrightarrow & |\frac{4 - y}{y}| \leq 2 \\ \Leftrightarrow & |\frac{y - 4}{y}| \leq 2. \end{aligned}$$

Since $0 < \frac{4}{y} \le 3$ and $0 < \frac{4}{y} \le 3$ implies $|\frac{y-4}{y}| \le 2$, then $|\frac{y-4}{y}| \le 2$. Since y > 0 and $|\frac{y-4}{y}| \le 2$, then $y \in S$, so $[\frac{4}{3}, \infty) \subset S$.

Since $S \subset [\frac{4}{3}, \infty)$ and $[\frac{4}{3}, \infty) \subset S$, then $S = [\frac{4}{3}, \infty)$, as desired.

- **Exercise 37.** Let $S = \{x \in \mathbb{R} : |\frac{x+4}{x}| < 1\}$. Then $S = (-\infty, -2)$.
- *Proof.* We prove $S \subset (-\infty, -2)$. Since $\left|\frac{-3+4}{-3}\right| = \left|\frac{1}{-3}\right| = \frac{1}{3} < 1$, then $3 \in S$, so $s \neq \emptyset$. Let $x \in S$.

Then $x \in \mathbb{R}$ and $|\frac{x+4}{x}| < 1$. Since $\frac{x+4}{x} \in \mathbb{R}$ and division by zero is undefined in \mathbb{R} , then x cannot be zero. Observe that

$$\begin{split} |\frac{x+4}{x}| < 1 & \Leftrightarrow \quad |1+\frac{4}{x}| < 1 \\ & \Leftrightarrow \quad -1 < 1+\frac{4}{x} < 1 \\ & \Leftrightarrow \quad -2 < \frac{4}{x} < 0 \\ & \Leftrightarrow \quad \frac{-1}{2} < \frac{1}{x} < 0. \end{split}$$

 $\begin{array}{l} \text{Since } |\frac{x+4}{x}| < 1 \text{ and } |\frac{x+4}{x}| < 1 \text{ if and only if } \frac{-1}{2} < \frac{1}{x} < 0, \text{ then } \frac{-1}{2} < \frac{1}{x} < 0, \\ \text{so } \frac{-1}{2} < \frac{1}{x} \text{ and } \frac{1}{x} < 0. \\ \text{Since } \frac{1}{x} < 0, \text{ then } x < 0. \\ \text{Since } \frac{-1}{2} < \frac{1}{x} \text{ and } x < 0, \text{ then } \frac{-x}{2} > 1, \text{ so } x < -2. \\ \text{Hence, } x \in (-\infty, -2), \text{ so } S \subset (-\infty, -2). \end{array}$

We next prove $(-\infty, -2) \subset S$. Let $y \in (-\infty, -2)$. Then $y \in \mathbb{R}$ and y < -2. Since y < -2 < 0, then y < 0, so $\frac{1}{y} < 0$. Since y < -2 and y < 0, then $1 > \frac{-2}{y}$, so $\frac{-1}{2} < \frac{1}{y}$. Thus, $\frac{-1}{2} < \frac{1}{y}$ and $\frac{1}{y} < 0$, so $\frac{-1}{2} < \frac{1}{y} < 0$. Observe that

$$\begin{aligned} \frac{-1}{2} < \frac{1}{y} < 0 & \Leftrightarrow & -2 < \frac{4}{y} < 0 \\ & \Leftrightarrow & -1 < 1 + \frac{4}{y} < 1 \\ & \Leftrightarrow & |1 + \frac{4}{y}| < 1 \\ & \Leftrightarrow & |\frac{y+4}{y}| < 1. \end{aligned}$$

Since $\frac{-1}{2} < \frac{1}{y} < 0$ and $\frac{-1}{2} < \frac{1}{y} < 0$ if and only if $|\frac{y+4}{y}| < 1$, then $|\frac{y+4}{y}| < 1$. Since $y \in \mathbb{R}$ and $|\frac{y+4}{y}| < 1$, then $y \in S$. Hence, $y \in (-\infty, -2)$ implies $y \in S$, so $(-\infty, -2) \subset S$. Since $S \subset (-\infty, -2)$ and $(-\infty, -2) \subset S$, then $S = (-\infty, -2)$, as desired. \Box

Exercise 38. Let $S = \{x \in \mathbb{R} : \frac{2x+1}{x+2} < 1\}.$ Then S = (-2, 1).

Proof. Let $x \in (-2, 1)$. Then $x \in \mathbb{R}$ and -2 < x < 1, so -2 < x and x < 1. Since x > -2, then x + 2 > 0.

Since 2x + 1 < x + 2 and x + 2 > 0, then $\frac{2x+1}{x+2} < 1$. Since $x \in \mathbb{R}$ and $\frac{2x+1}{x+2} < 1$, then $x \in S$. Thus, $(-2, 1) \subset S$. Let $y \in S$. Then $y \in \mathbb{R}$ and $\frac{2y+1}{y+2} < 1$, so $\frac{2y+1}{y+2} - 1 < 0$. Thus, $\frac{2y+1-(y+2)}{y+2} < 0$, so $\frac{y-1}{y+2} < 0$. Hence, either y - 1 > 0 and y + 2 < 0 or y - 1 < 0 and y + 2 > 0. Suppose y - 1 > 0 and y + 2 < 0. Then y > 1 and y < -2. Since y < -2 < 1, then y < 1. Thus, y > 1 and y < 1, a contradiction. Therefore, y - 1 < 0 and y + 2 > 0. Hence, y < 1 and y > -2, so -2 < y < 1. Thus, $y \in (-2, 1)$, so $S \subset (-2, 1)$. Since $S \subset (-2, 1)$ and $(-2, 1) \subset S$, then S = (-2, 1). **Exercise 39.** Let $S = \{x \in \mathbb{R} : \frac{x-1}{x-2} < \frac{x+1}{x+2}\}$. Then $S = (-\infty, -2) \cup (0, 2)$. *Proof.* To prove $S = (-\infty, -2) \cup (0, 2)$, we prove $S \subset (-\infty, -2) \cup (0, 2)$ and $(-\infty, -2) \cup (0, 2) \subset S.$ We first prove $S \subset (-\infty, -2) \cup (0, 2)$. Since $\frac{1-1}{1-2} = 0 < \frac{2}{3} = \frac{1+1}{1+2}$, then $1 \in S$, so $S \neq \emptyset$. Let $x \in S$. Then $x \in \mathbb{R}$ and $\frac{x-1}{x-2} < \frac{x+1}{x+2}$. Suppose x = 2. Then $\frac{2-1}{2-2} < \frac{2+1}{2+2}$, so $\frac{1}{0} < \frac{3}{4}$. Since division by 0 is undefined, then $x \neq 2$. Suppose x = -2. Then $\frac{-2-1}{-2-2} < \frac{-2+1}{-2+2}$, so $\frac{3}{4} < \frac{-1}{0}$. Since division by 0 is undefined, then $x \neq -2$. Since $x \neq 2$ and $x \neq -2$, then either x > 2 or -2 < x < 2 or x < -2. Suppose x > 2. Then x - 2 > 0. Since $\frac{x-1}{x-2} < \frac{x+1}{x+2}$ and x-2 > 0, then $x-1 < \frac{x+1}{x+2} \cdot (x-2)$. Since x > 2, then x+2 > 4 > 0, so x+2 > 0. Thus, (x-1)(x+2) < (x+1)(x-2). Hence, $x^2 + x - 2 < x^2 - x - 2$, so x < -x. Therefore, 2x < 0, so x < 0.

Since x < 1 and x < 1 iff x + 1 < 2 iff 2x + 1 < x + 2, then 2x + 1 < x + 2.

Thus, we have x < 0 and x > 2, a contradiction. Hence, x cannot be greater than 2. Thus, either -2 < x < 2 or x < -2. Suppose -2 < x < 2. Then -2 < x and x < 2, so 0 < x + 2 and x - 2 < 0. Since $\frac{x-1}{x-2} < \frac{x+1}{x+2}$ and x+2 > 0, then $\frac{(x-1)(x+2)}{x-2} < x+1$. Since x-2 < 0, then (x-1)(x+2) > (x+1)(x-2). Hence, $x^2 + x - 2 > x^2 - x - 2$, so x > -x. Therefore, 2x > 0, so x > 0. Since 0 < x and x < 2, then 0 < x < 2, so $x \in (0, 2)$. Since either -2 < x < 2 or x < -2 and if -2 < x < 2, then $x \in (0,2)$, then either $x \in (0, 2)$ or x < -2. Hence, either $x \in (0, 2)$ or $x \in (-\infty, -2)$, so $x \in (0, 2) \cup (-\infty, -2)$. Thus, if $x \in S$, then $x \in (0, 2) \cup (-\infty, -2)$, so $S \subset (0, 2) \cup (-\infty, -2)$. Therefore, $S \subset (-\infty, -2) \cup (0, 2)$. *Proof.* We prove $(-\infty, -2) \cup (0, 2) \subset S$. Let $y \in (-\infty, -2) \cup (0, 2)$. Then $y \in \mathbb{R}$ and either y < -2 or 0 < y < 2. We consider these cases separately. Case 1: Suppose y < -2. Then y + 2 < 0. Since y < -2 < 0, then y < 0, so -y > 0. Since y < 0 and 0 < -y, then y < -y. Thus, $y + (y^2 - 2) < -y + (y^2 - 2)$, so (y - 1)(y + 2) < (y - 2)(y + 1). Since y < -2 and -2 < 2, then y < 2, so y - 2 < 0. We divide by negative y - 2 to get $\frac{(y-1)(y+2)}{y-2} > y + 1$. Since y + 2 < 0, then $\frac{y-1}{y-2} < \frac{y+1}{y+2}$. Since $y \in \mathbb{R}$ and $\frac{y-1}{y-2} < \frac{y+1}{y+2}$, then $y \in S$. **Case 2:** Suppose 0 < y < 2. Then 0 < y and y < 2. Since y > 0, then -y < 0. Since -y < 0 and 0 < y, then -y < y. Thus, $-y + (y^2 - 2) < y + (y^2 - 2)$, so (y - 2)(y + 1) < (y - 1)(y + 2). Since y < 2, then y - 2 < 0, so we divide by negative y - 2 to get y + 1 > 0 $\begin{array}{c} \underbrace{(y-1)(y+2)}{y-2},\\ \text{Since } y > 0 \text{ and } 0 > -2, \text{ then } y > -2, \text{ so } y+2 > 0.\\ \text{We divide by positive } y+2 \text{ to get } \frac{y+1}{y+2} > \frac{y-1}{y-2}. \end{array}$ Hence, $\frac{y-1}{y-2} < \frac{y+1}{y+2}$. Since $y \in \mathbb{R}$ and $\frac{y-1}{y-2} < \frac{y+1}{y+2}$, then $y \in S$. Therefore, in all cases, $y \in S$. Hence, $(-\infty, -2) \cup (0, 2) \subset S$.

Since $S \subset (-\infty, -2) \cup (0, 2)$ and $(-\infty, -2) \cup (0, 2) \subset S$, then $S = (-\infty, -2) \cup (0, 2)$.

Lemma 40. Let $a, b \in \mathbb{R}$. If $a \leq t$ for every real number t > b, then $a \leq b$.

Proof. We prove by contrapositive. Suppose a > b. Let $t = \frac{b+a}{2}$. Since $b < \frac{b+a}{2} < a$, then b < t < a, so b < t and t < a. Thus, there exists t > b such that a > t, as desired.

Exercise 41. Let *a* and *b* be real numbers. If $a \le b + \epsilon$ for every $\epsilon > 0$, then $a \le b$.

Solution. The hypothesis is $(\forall \epsilon > 0)(a \le b + \epsilon)$ and the conclusion is $a \le b$. Since the conclusion is simple and hypothesis is complex, we try proof by contrapositive.

Thus, we assume a > b and must find $\epsilon > 0$ such that $a > b + \epsilon$. To find ϵ , let's try working backwards. Suppose $a > b + \epsilon$. Then $a - b > \epsilon$, so $\epsilon < a - b$. Thus, we want ϵ such that $0 < \epsilon < a - b$. We see that any real number between 0 and a - b will work, so let's conveniently choose $\epsilon = \frac{a-b}{2}$.

 $\begin{array}{l} Proof. \ \text{Suppose } a \leq b + \epsilon \ \text{for every } \epsilon > 0. \\ \text{Let } \epsilon > 0 \ \text{be given.} \\ \text{Let } t = b + \epsilon. \\ \text{Then } \epsilon = t - b, \ \text{so } t - b > 0. \\ \text{Thus, } a \leq b + (t - b) = (t - b) + b = t, \ \text{so } a \leq t. \\ \text{Hence, } a \leq t \ \text{for every } t - b > 0, \ \text{so } a \leq t \ \text{for every } t > b. \\ \text{Therefore, by the previous lemma, we conclude } a \leq b, \ \text{as desired.} \end{array}$

Proof. We prove by contrapositive.

Suppose a > b. Then a - b > 0, so $\frac{a-b}{2} > 0$. Let $\epsilon = \frac{a-b}{2}$. Then $\epsilon > 0$. Since $1 > \frac{1}{2}$ and a - b > 0, then $a - b > \frac{a-b}{2} = \epsilon$, so $a > b + \epsilon$. Therefore, there is some $\epsilon > 0$ such that $a > b + \epsilon$, as desired.

Proof. We prove by contrapositive. Suppose a > b. Then a - b > 0, so $\frac{a-b}{2} > 0$. Let $\epsilon = \frac{a-b}{2}$. Then $\epsilon > 0$. Since a > b and

$$\begin{array}{rcl} a > b & \Leftrightarrow & 2a > b + a \\ & \Leftrightarrow & 2a > 2b + (a - b) \\ & \Leftrightarrow & a > b + \frac{a - b}{2} \\ & \Leftrightarrow & a > b + \epsilon, \end{array}$$

then $a > b + \epsilon$.

Therefore, there exists $\epsilon > 0$ such that $a > b + \epsilon$, as desired.

Exercise 42. Let $a \in \mathbb{R}$.

If $0 \le a < \epsilon$ for every real $\epsilon > 0$, then a = 0.

Proof. We prove by contradiction.

Suppose $0 \le a < \epsilon$ for every real $\epsilon > 0$ and $a \ne 0$. Since 1 > 0, then $0 \le a < 1$, so $0 \le a$. Since $a \ge 0$ and $a \ne 0$, then a > 0. Hence, $0 \le a < a$, so a < a, a contradiction. Thus, either $0 \le a < \epsilon$ for every real $\epsilon > 0$ is false or a = 0. Therefore, $0 \le a < \epsilon$ for every real $\epsilon > 0$ implies a = 0, as desired.

Exercise 43. Let $a, b \in \mathbb{R}$. Then $\left(\frac{a+b}{2}\right)^2 \leq \frac{a^2+b^2}{2}$.

Proof. Since $a, b \in \mathbb{R}$, then $a - b \in \mathbb{R}$, so $(a - b)^2 \in \mathbb{R}$. Thus, $(a - b)^2 \ge 0$. Observe that

$$\begin{aligned} (a-b)^2 \ge 0 &\Leftrightarrow a^2 - 2ab + b^2 \ge 0 \\ &\Leftrightarrow a^2 + b^2 \ge 2ab \\ &\Leftrightarrow 2a^2 + 2b^2 \ge a^2 + 2ab + b^2 \\ &\Leftrightarrow 2(a^2 + b^2) \ge (a+b)^2 \\ &\Leftrightarrow \frac{2(a^2 + b^2)}{4} \ge \frac{(a+b)^2}{4} \\ &\Leftrightarrow \frac{a^2 + b^2}{2} \ge (\frac{a+b}{2})^2. \end{aligned}$$

Hence,
$$\frac{a^2 + b^2}{2} \ge (\frac{a+b}{2})^2$$
, so $(\frac{a+b}{2})^2 \le \frac{a^2 + b^2}{2}$.

Exercise 44. At least one of the real numbers $a_1, a_2, ..., a_n$ is greater than or equal to the average of these numbers.

Solution. The statement to prove is shown below.

Let $n \in \mathbb{Z}^+$ and $n \geq 2$. Let $a_1, a_2, ..., a_n \in \mathbb{R}$. Then there exists $k \in \{1, 2, ..., n\}$ such that $a_k \geq \frac{\sum_{i=1}^n a_i}{n}$. *Proof.* Let $n \in \mathbb{Z}^+$ and $n \geq 2$.

Let $a_1, a_2, \dots, a_n \in \mathbb{R}$.

We prove there exists $k \in \{1, 2, ..., n\}$ such that $a_k \geq \frac{\sum_{i=1}^n a_i}{n}$. Since $a_1, a_2, ..., a_n \in \mathbb{R}$ and \mathbb{R} is an ordered field, then we can order the numbers so that $a_1 \leq a_2 \leq \ldots \leq a_n$.

Let k = n.

Since $n \in \{1, 2, ..., n\}$, then $k \in \{1, 2, ..., n\}$.

Since $a_1 \leq a_2 \leq ... \leq a_n$, then $a_1 \leq a_n$ and $a_2 \leq a_n$ and $..., a_n \leq a_n$. Adding these n inequalities, we obtain $a_1 + a_2 + \ldots + a_n \leq a_n + a_n + \ldots + a_n =$

 na_n . Observe that

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + \dots + a_n$$
$$\leq na_n.$$

Since $n \ge 2 > 0$, then n > 0, so $n \ne 0$. Hence, we divide by n to obtain $\frac{\sum_{i=1}^{n} a_i}{n} \le a_n = a_k$. Therefore, there exists $k \in \{1, 2, ..., n\}$ such that $a_k \geq \frac{\sum_{i=1}^n a_i}{n}$, as desired.

Exercise 45. $(\forall x, y \in \mathbb{R})(x < y \rightarrow x^3 < y^3).$

Proof. Let $x, y \in \mathbb{R}$ such that x < y. Then 0 < y - x, so y - x > 0. Either $x \ge 0$ or x < 0. We consider these cases separately. Case 1: Suppose $x \ge 0$. Then $0 \le x < y$, so 0 < y. Hence, y > 0, so $y^2 > 0$. Since $x \ge 0$, then $x^2 \ge 0$. Since $x \ge 0$ and y > 0, then $xy \ge 0$. Adding these inequalities, we obtain $y^2 + xy + x^2 > 0$. Since y - x > 0 and $y^2 + xy + x^2 > 0$, then $y^3 - x^3 = (y - x)(y^2 + xy + x^2) > 0$, so $y^3 - x^3 > 0$. Therefore, $y^3 > x^3$, so $x^3 < y^3$. Case 2: Suppose x < 0. Either $y \ge 0$ or y < 0. We consider these cases separately. Case 2a: Suppose $y \ge 0$. Then $y^3 \ge 0$. Since x < 0, then $x^3 < 0$, so $x^3 < 0 \le y^3$. Therefore, $x^3 < y^3$. Case 2b: Suppose y < 0. Then x < y < 0, so x < 0. Since x < 0, then $x^2 > 0$.

Since y < 0, then $y^2 > 0$. Since x < 0 and y < 0, then xy > 0. Adding these inequalities, we obtain $y^2 + xy + x^2 > 0$. Since y - x > 0 and $y^2 + xy + x^2 > 0$, then $y^3 - x^3 = (y - x)(y^2 + xy + x^2) > 0$, so $y^3 - x^3 > 0$. Therefore, $y^3 > x^3$, so $x^3 < y^3$.

Exercise 46. Let $a, b \in \mathbb{R}^*$. If $a < \frac{1}{a} < b < \frac{1}{b}$, then a < -1.

 $\begin{array}{l} \textit{Proof. Suppose } a < \frac{1}{a} < b < \frac{1}{b}.\\ \text{If } a > 1, \text{ then } a^2 > a > 1 > 0, \text{ so } a^2 > 1.\\ \text{Hence, } a > \frac{1}{a}, \text{ which contradicts } a < \frac{1}{a}.\\ \text{Therefore, } a \leq 1. \end{array}$

If a > 0, then $0 < a \le 1$, so $0 < 1 \le \frac{1}{a}$. Since $1 \le \frac{1}{a} < b$, then 1 < b, so b > 1 > 0. Since $0 < a < \frac{1}{b}$ and b > 0, then 0 < ab < 1, so ab < 1. Since $\frac{1}{a} < b$ and a > 0, then 1 < ab, so ab > 1, which contradicts ab < 1. Hence, $a \le 0$.

Since $a \neq 0$, then this implies a < 0.

Suppose $a \ge -1$. Then $-1 \le a < 0$, so $-a \ge a^2 > 0$. Since $a < \frac{1}{a} < 0$ and a < 0, then $a^2 > 1 > 0$. Since $-a \ge a^2$ and $a^2 > 1$, then -a > 1, so a < -1. But, this contradicts $a \ge -1$. Therefore, a < -1, as desired.

Absolute value in an ordered field

Exercise 47. Find a constant M such that $\left|\frac{2x^2+3x+1}{2x-1}\right| \leq M$ for all x satisfying $2 \leq x \leq 3$.

Solution. Let $x \in \mathbb{R}$ such that $2 \le x \le 3$. Then $2 \le x$ and $x \le 3$. Since $x \ge 2 > 0$, then x > 0. Since $x \le 3$ and x > 0, then $0 < |x| = x \le 3$. Since $x \ge 2$ and x > 0, then $|x| = x \ge 2$.

Since $|2x^2 + 3x + 1| \le |2x^2| + |3x| + |1| = 2|x^2| + 3|x| + 1 = 2|x|^2 + 3|x| + 1$, then $|2x^2 + 3x + 1| \le 2|x|^2 + 3|x| + 1$. Since $0 < |x| \le 3$, then $2|x|^2 + 3|x| + 1 \le 2 \cdot 3^2 + 3 \cdot 3 + 1 = 28$. Since $|2x^2 + 3x + 1| \le 2|x|^2 + 3|x| + 1 \le 28$, then $|2x^2 + 3x + 1| \le 28$. Since x > 0, then $2x^2 + 3x + 1 > 0$, so $0 < |2x^2 + 3x + 1| \le 28$.

Since $|2x - 1| \ge |2x| - |1| = 2|x| - 1$, then $|2x - 1| \ge 2|x| - 1$. Since $|x| \ge 2$, then $2|x| - 1 \ge 2 \cdot 2 - 1 = 3$. Since $|2x - 1| \ge 2|x| - 1 \ge 3$, then $|2x - 1| \ge 3$. Since $0 < 3 \le |2x - 1|$, then $0 < \frac{1}{|2x - 1|} \le \frac{1}{3}$. Since $0 < |2x^2 + 3x + 1| \le 28$ and $0 < \frac{1}{|2x-1|} \le \frac{1}{3}$, then $0 < \frac{|2x^2 + 3x + 1|}{|2x-1|} \le \frac{28}{3}$, so $\left|\frac{2x^2+3x+1}{2x-1}\right| \le \frac{28}{3} = M.$ **Exercise 48.** Let $S = \{x \in \mathbb{R} : |\frac{x}{x+1}| \le 1\}.$ Then $S = \left[\frac{-1}{2}, \infty\right)$. **Solution.** Suppose $x \in \mathbb{R}$ and $\left|\frac{x}{x+1}\right| \leq 1$. Then $-1 \le \frac{x}{x+1} \le 1$. Since division by zero is not defined, then $x + 1 \neq 0$, so either x + 1 > 0 or x + 1 < 0.Assume x + 1 > 0. Then $-(x+1) \le x \le x+1$, so $-x-1 \le x \le x+1$. Thus, $-x - 1 \le x$ and $x \le x + 1$, so $-1 \le 2x$ and $0 \le 1$. Hence, $\frac{-1}{2} \le x$, so $x \ge \frac{-1}{2}$. Now, assume x + 1 < 0Then $-(x+1) \ge x \ge x+1$, so $-(x+1) \ge x$ and $x \ge x+1$. Thus, $x \ge x + 1$, so $0 \ge 1$, a contradiction. Hence, x + 1 cannot be negative. Therefore, $x \ge \frac{-1}{2}$, so $x \in [\frac{-1}{2}, \infty)$. We conjecture that $S = [\frac{-1}{2}, \infty)$. *Proof.* To prove $S = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \infty$, we prove $S \subset \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \infty$) and $\begin{bmatrix} -1 \\ 2 \end{bmatrix}, \infty) \subset S$. We first prove $S \subset \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \infty$). Since $|\frac{0}{0+1}| = 0 < 1$, then $0 \in S$, so S is not empty. Let $m \in S$. Let $x \in S$. Then $x \in \mathbb{R}$ and $\left|\frac{x}{x+1}\right| \le 1$, so $-1 \le \frac{x}{x+1} \le 1$. Suppose x + 1 = 0. Then $\left|\frac{x}{0}\right| \leq 1$, so $\frac{x}{0} \in \mathbb{R}$. But, division by zero is not defined, so $x + 1 \neq 0$. Thus, either x + 1 > 0 or x + 1 < 0. Suppose x + 1 < 0. Since $-1 \le \frac{x}{x+1} \le 1$ and x+1 < 0, then $-(x+1) \ge x \ge x+1$, so $-x-1 \ge x \ge x+1$. Hence, $-x - 1 \ge x$ and $x \ge x + 1$, so $-1 \ge 2x$ and $0 \ge 1$. Thus, $0 \ge 1$, a contradiction. Therefore, x + 1 cannot be negative. Hence, x + 1 > 0. Since $-1 \le \frac{x}{x+1} \le 1$ and x+1 > 0, then $-(x+1) \le x \le x+1$, so $-x-1 \le x \le x+1$.

Hence, $-x - 1 \le x$ and $x \le x + 1$, so $-1 \le 2x$ and $0 \le 1$. Thus, $-1 \leq 2x$, so $2x \geq -1$. Therefore, $x \geq \frac{-1}{2}$, so $x \in [\frac{-1}{2}, \infty)$. Consequently, if $x \in S$, then $x \in [\frac{-1}{2}, \infty)$, so $S \subset [\frac{-1}{2}, \infty)$. *Proof.* We next prove $\left[\frac{-1}{2},\infty\right) \subset S$. Let $y \in [\frac{-1}{2}, \infty)$. Then $y \ge \frac{-1}{2}$. Thus, $y + 1 \ge \frac{1}{2} > 0$, so y + 1 > 0. Hence, |y+1| = y+1 > 0. Either $y \ge 0$ or y < 0. We consider these cases separately. Case 1: Suppose $y \ge 0$. Then |y| = y. Since 1 > 0, then y + 1 > y. Since y + 1 > 0, then $1 > \frac{y}{y+1} = \frac{|y|}{|y+1|} = |\frac{y}{y+1}|$, so $1 > |\frac{y}{y+1}|$. Thus, $\left|\frac{y}{y+1}\right| < 1$. Case 2: Suppose y < 0. Then |y| = -y. Since $y \ge \frac{-1}{2}$, then $-2y \le 1$, so $-y \le y+1$. Thus, $|y| \le |y+1|$. Since |y+1| > 0, then $\frac{|y|}{|y+1|} \le 1$, so $|\frac{y}{y+1}| \le 1$. Therefore, in all cases, $|\frac{y}{y+1}| \le 1$, so $y \in S$. Thus, if $y \in \left[\frac{-1}{2}, \infty\right)$, then $y \in S$, so $\left[\frac{-1}{2}, \infty\right) \subset S$. Since $S \subset \left[\frac{-1}{2}, \infty\right)$ and $\left[\frac{-1}{2}, \infty\right) \subset S$, then $S = \left[\frac{-1}{2}, \infty\right)$, as desired. **Exercise 49.** Let $a, b \in \mathbb{R}$. If $0 \le a < b$, then $0 \le a^2 < b^2$. *Proof.* Suppose $0 \le a < b$. Then $0 \leq a$ and a < b. Since $a \ge 0$, then either a > 0 or a = 0. We consider these cases separately. Case 1: Suppose a = 0. Since a < b, then 0 < b. Since b > 0, then $b^2 > 0$. Since $0 = a = 0^2 = a^2 < b^2$, then $0 = a^2 < b^2$. Case 2: Suppose a > 0. Since 0 < a and a < b, then 0 < a < b, so $0 < a^2 < b^2$. Therefore, in all cases, $0 \le a^2 < b^2$. **Exercise 50.** Let $B = \{x \in \mathbb{R} : |x - 1| < |x|\}.$

Then
$$B = (\frac{1}{2}, \infty)$$
.

Proof. Let $x \in B$. Then $x \in \mathbb{R}$ and |x - 1| < |x|. Since $0 \le |x-1| < |x|$, then $|x-1|^2 < |x|^2$. Since $x^2 - 2x + 1 = (x-1)^2 = |x-1|^2 < |x|^2 = x^2$, then $x^2 - 2x + 1 < x^2$, so -2x + 1 < 0. $\begin{array}{l} \text{Hence, } 1 < 2x, \text{ so } \frac{1}{2} < x.\\ \text{Thus, } x > \frac{1}{2}, \text{ so } x \in (\frac{1}{2}, \infty).\\ \text{Therefore, } B \subset (\frac{1}{2}, \infty). \end{array}$ Let $x \in (\frac{1}{2}, \infty)$. Then $x \ge \frac{1}{2}$, so either $\frac{1}{2} < x < 1$ or $x \ge 1$. We consider these cases separately. Case 1: Suppose $x \ge 1$. Then $x - 1 \ge 0$. Since $x \ge 1 > 0$, then x > 0. Since -1 < 0, then x - 1 < x. Hence, |x - 1| = x - 1 < x = |x|. **Case 2:** Suppose $\frac{1}{2} < x < 1$. Then $\frac{1}{2} < x$ and x < 1. Since $x > \frac{1}{2} > 0$, then x > 0. Since $x < \overline{1}$, then x - 1 < 0. Since $\frac{1}{2} < x$, then 1 < 2x, so 1 - x < x. Thus, |x - 1| = 1 - x < x = |x|. In all cases, |x - 1| < |x|, so $x \in B$. Therefore, $(\frac{1}{2}, \infty) \subset B$. Since $B \subset (\frac{1}{2}, \infty)$ and $(\frac{1}{2}, \infty) \subset B$, then $B = (\frac{1}{2}, \infty)$. **Exercise 51.** Let F be an ordered field. Then $|x - y| \le |x| + |y|$ for all $x, y \in F$. *Proof.* Let $x, y \in F$. Then |x - y| = |x + (-y)| $\leq |x| + |-y|$ = |x| + |y|.Therefore, $|x - y| \le |x| + |y|$. **Exercise 52.** Let a, x be elements of an ordered field F. If $a \ge 0$ and $x \le a$ and $-x \le a$, then $|x| \le a$. *Proof.* Suppose $a \ge 0$ and $x \le a$ and $-x \le a$. Either $x \ge 0$ or x < 0. We consider these cases separately.

Case 1: Suppose $x \ge 0$.

Then $|x| = x \le a$, so $|x| \le a$. **Case 2:** Suppose x < 0. Then $|x| = -x \le a$, so $|x| \le a$.

Exercise 53. Let F be an ordered field. Let $x, y, z \in F$. Then d(x, y) = d(x - z, y - z).

Proof. Observe that

$$\begin{array}{rcl} d(x,y) & = & |x-y| \\ & = & |x-y-z+z| \\ & = & |x-z-y+z| \\ & = & |(x-z)-(y-z)| \\ & = & d(x-z,y-z). \end{array}$$

Exercise 54. Let $x, y, z \in \mathbb{R}$ with $x \leq z$. Then $x \leq y \leq z$ iff |x - y| + |y - z| = |x - z|.

Proof. Suppose $x \leq y \leq z$.

Then $x \leq y$ and $y \leq z$ and $x \leq z$, so $x - y \leq 0$ and $y - z \leq 0$ and $x - z \leq 0$. Thus,

$$\begin{aligned} |x - y| + |y - z| &= -(x - y) - (y - z) \\ &= -x + y - y + z \\ &= -x + z \\ &= -(x - z) \\ &= |x - z|. \end{aligned}$$

Proof. Conversely, suppose |x - y| + |y - z| = |x - z|. We must prove $x \le y$ and $y \le z$. Suppose x > y. Then y < x. Since y < x and $x \le z$, then $y < x \le z$, so |y - x| + |x - z| = |y - z|. Hence, |x - y| = |y - x| = |y - z| - |x - z|. Since |x - y| + |y - z| = |x - z|, then |x - y| = |x - z| - |y - z|. Adding these equations we obtain 2|x - y| = 0, so |x - y| = 0. Thus, x - y = 0, so x = y. But, this contradicts the fact that x > y. Therefore, $x \le y$.

Suppose y > z. Then z < y. Since $x \leq z$ and z < y, then $x \leq z < y$, so |x - z| + |z - y| = |x - y|. Hence, |y - z| = |z - y| = |x - y| - |x - z|. Since |x - y| + |y - z| = |x - z|, then |y - z| = |x - z| - |x - y|. Adding these equations we obtain 2|y - z| = 0, so |y - z| = 0. Thus, y - z = 0, so y = z. But, this contradicts the fact that y > z. Therefore, $y \leq z$. Since $x \leq y$ and $y \leq z$, then $x \leq y \leq z$. **Exercise 55.** Let $x \in \mathbb{R}$. Then $|x| = \max\{x, -x\}.$ *Proof.* Let $S = \{x, -x\}.$ We must prove $|x| = \max S$. Either $x \ge 0$ or x < 0. We consider these cases separately. Case 1: Suppose $x \ge 0$. Then $-x \leq 0$. Hence, $-x \le 0 \le x$, so $-x \le x$. Since $x \in S$ and $-x \leq x$ and $x \leq x$, then max S = x = |x|. Case 2: Suppose x < 0. Then -x > 0. Hence, x < 0 < -x, so x < -x. Thus, $x \leq -x$. Since $-x \in S$ and $x \leq -x$ and $-x \leq -x$, then max S = -x = |x|. Therefore, in all cases, $\max S = |x|$, as desired. **Exercise 56.** Let F be an ordered field. Let $a, b \in F$. If a and b are both non-negative or both negative, then |a + b| = |a| + |b|. *Proof.* Suppose a and b are both non-negative or both negative. Then either a and b are both non-negative or a and b are both negative. We consider these cases separately. **Case 1:** Suppose *a* and *b* are both non-negative. Then $a \ge 0$ and $b \ge 0$. Hence, $a + b \ge 0$. Therefore, |a + b| = a + b = |a| + |b|, as desired. **Case 2:** Suppose *a* and *b* are both negative. Then a < 0 and b < 0. Hence, a + b < 0. Therefore, |a + b| = -(a + b) = -a + (-b) = |a| + |b|, as desired. **Exercise 57.** Let F be an ordered field. Let $a, b \in F$. If |a + b| = |a| + |b|, then $ab \ge 0$.

Proof. Suppose |a + b| = |a| + |b|. Then $|a + b|^2 = (|a| + |b|)^2$. Thus. $0 = (|a| + |b|)^2 - |a + b|^2$ $= |a|^2 + 2|a||b| + |b|^2 - (a+b)^2$ $= a^{2} + 2|ab| + b^{2} - (a^{2} + 2ab + b^{2})$ $= a^2 + 2|ab| + b^2 - a^2 - 2ab - b^2$ = 2|ab| - 2ab= 2(|ab| - ab).Since 2(|ab| - ab) = 0, then |ab| - ab = 0, so |ab| = ab. Either $ab \ge 0$ or ab < 0. Suppose for the sake of contradiction ab < 0. Then |ab| = ab < 0, so |ab| < 0. But, this contradicts the fact that $|ab| \ge 0$. Therefore, ab > 0. **Exercise 58.** Let $\epsilon > 0$. Let $a, x \in \mathbb{R}$. Then $|x - a| < \epsilon$ iff $a - \epsilon < x < a + \epsilon$. *Proof.* For any real number r and k > 0, |r| < k iff -k < r < k. Since $x - a \in \mathbb{R}$ and $\epsilon > 0$, then $|x - a| < \epsilon$ iff $-\epsilon < x - a < \epsilon$. Therefore, $|x - a| < \epsilon$ iff $a - \epsilon < x < a + \epsilon$, as desired. **Exercise 59.** Prove $|x - z| \ge |x| - |z|$ and $|x + y + z| \le |x| + |y| + |z|$. *Proof.* To prove $|x - z| \ge |x| - |z|$, we let x and z be arbitrary real numbers. Observe that $|(x-z)+z| \leq |x-z|+|z|$, by the triangle inequality. Hence, $|x + (-z) + z| \le |x - z| + |z|$, so $|x + 0| \le |x - z| + |z|$. Thus, $|x| \le |x - z| + |z|$, so $|x| - |z| \le |x - z|$. Therefore, $|x - z| \ge |x| - |z|$, as desired. To prove $|x + y + z| \leq |x| + |y| + |z|$, we let $x, y, z \in \mathbb{R}$ be arbitrary. Then $|(x+y)+z| \leq |x+y|+|z|$, by the triangle inequality. Hence, $|(x + y) + z| - |z| \le |x + y|$. By the triangle inequality, $|x + y| \le |x| + |y|$. Since $|(x+y)+z|-|z| \le |x+y|$ and $|x+y| \le |x|+|y|$, then by transitivity of \leq , we conclude that $|(x+y)+z|-|z| \leq |x|+|y|$. Therefore, $|(x + y) + z| \le |x| + |y| + |z|$.

Hence, $|x + y + z| \le |x| + |y| + |z|$, as desired.

Boundedness of sets in an ordered field

Exercise 60. In $\mathbb{R} \sup(-\infty, 2] = 2$.

Proof. Let $S = (-\infty, 2] = \{x \in \mathbb{R} : x \le 2\}.$

To prove $\sup S = 2$, we must prove 2 is an upper bound of S and 2 is the least upper bound of S.

We prove 2 is an upper bound of S. Let $x \in S$. Then $x \leq 2$, so $x \leq 2$ for all $x \in S$. Therefore, 2 is an upper bound of S.

To prove 2 is the least upper bound of S, let $r \in \mathbb{R}$ such that r < 2. Since $2 \in S$ and 2 > r, then r is not an upper bound of S. Since r is arbitrary, then every r less than 2 is not an upper bound of S. Therefore, 2 is the least upper bound of S, so $\sup S = 2$.

Exercise 61. $1 = inf(\mathbb{N})$.

 $\begin{array}{l} \textit{Proof.} \mbox{ We must prove 1 is the greatest lower bound of \mathbb{N} in \mathbb{R}.}\\ \mbox{Let } n \in \mathbb{N}.}\\ \mbox{Then } n \geq 1, \mbox{ so } 1 \leq n.\\ \mbox{Thus, } 1 \leq n \mbox{ for all } n \in \mathbb{N}.}\\ \mbox{Therefore, 1 is a lower bound of \mathbb{N} in \mathbb{R}.}\\ \mbox{Let } \epsilon > 0 \mbox{ be given}.\\ \mbox{To prove 1 is the greatest lower bound, we must prove there exists } n \in \mathbb{N}\\ \mbox{such that } n < 1 + \epsilon.\\ \mbox{Take } n = 1.\\ \mbox{Then } n = 1 \in \mathbb{N}.}\\ \mbox{We prove } n < 1 + \epsilon.\\ \mbox{Observe that} \end{array}$

 $\begin{array}{rll} 0 < \epsilon & \Leftrightarrow & 1 < 1 + \epsilon \\ & \Rightarrow & n < 1 + \epsilon. \end{array}$

Therefore, $n < 1 + \epsilon$, as desired.

Exercise 62. Let $a, b \in \mathbb{R}$ with a < b. Then b = lub[a, b].

Proof. Let $x \in [a, b]$. Then $x \in \mathbb{R}$ and $a \le x \le b$. Hence, $x \le b$. Thus, $x \le b$ for all $x \in [a, b]$. Therefore, b is an upper bound of [a, b]. Let $\epsilon > 0$ be given.

To prove b is the least upper bound, we must prove there exists $y \in [a, b]$ such that $y > b - \epsilon$.

Take y = b. Since $b \in [a, b]$, then $y \in [a, b]$. Observe that

$$\begin{split} \epsilon > 0 & \Leftrightarrow \quad \epsilon > b - b \\ & \Leftrightarrow \quad \epsilon + b > b \\ & \Leftrightarrow \quad b > b - \epsilon \\ & \Rightarrow \quad y > b - \epsilon. \end{split}$$

Therefore, $y > b - \epsilon$, as desired.

Exercise 63. Let $a \in \mathbb{R}$. Then $a = glb(a, \infty)$. *Proof.* Let $x \in (a, \infty)$. Then $x \in \mathbb{R}$ and a < x. Hence, $a \leq x$. Thus, $a \leq x$ for all $x \in (a, \infty)$. Therefore, a is a lower bound of (a, ∞) . Let $\epsilon > 0$ be given. To prove a is the greatest lower bound, we must prove there exists $y \in (a, \infty)$ such that $y < a + \epsilon$. Take $y = a + \frac{\epsilon}{2}$. We prove $y \in \tilde{(a, \infty)}$. Since $\epsilon > 0$, then $\frac{\epsilon}{2} > 0$, so $a + \frac{\epsilon}{2} > a$. Hence, y > a, so $y \in (a, \infty)$, as desired. We prove $y < a + \epsilon$. Since $\frac{1}{2} < 1$ and $\epsilon > 0$, then $\frac{\epsilon}{2} < \epsilon$. Hence, $a + \frac{\epsilon}{2} < a + \epsilon$. Thus, $y < a + \epsilon$, as desired. **Exercise 64.** Let $S = (3, 4) \cup \{6\}$ in \mathbb{R} . Then $3 = \inf S$ and $6 = \sup S$.

Proof. We must prove 3 is the greatest lower bound of S in \mathbb{R} and 6 is the least upper bound of S in \mathbb{R} . We prove 3 is the greatest lower bound of S in \mathbb{R} . Let $x \in S$.

Then either $x \in (3, 4)$ or $x \in \{6\}$. We consider these cases separately. **Case 1:** Suppose $x \in (3, 4)$. Then 3 < x < 4, so 3 < x. Hence, $3 \le x$. **Case 2:** Suppose $x \in \{6\}$. Then x = 6.

Since 3 < 6 = x, then 3 < x, so $3 \le x$. Hence, in all cases, $3 \leq x$. Thus, $3 \leq x$ for all $x \in S$. Therefore, 3 is a lower bound of S in \mathbb{R} . Let $\epsilon > 0$ be given. To prove 3 is the greatest lower bound, we must prove there exists $s \in S$ such that $s < 3 + \epsilon$. Let $k = \min\{\frac{1}{2}, \frac{\epsilon}{2}\}.$ Then $k \leq \frac{1}{2}$ and $k \leq \frac{\epsilon}{2}$. Let s = 3 + k. To prove $s \in S$, we prove $3 + k \in (3, 4)$. Thus, we must prove 3 < 3 + k and 3 + k < 4. Since $\epsilon > 0$, then $\frac{\epsilon}{2} > 0$. Since $\frac{1}{2} > 0$ and $\frac{\epsilon}{2} > 0$, then $\min\{\frac{1}{2}, \frac{\epsilon}{2}\} > 0$. Therefore, k > 0. Hence, 0 < k, so 3 < 3 + k, as desired. Since $k \leq \frac{1}{2}$ and $\frac{1}{2} < 1$, then k < 1. Hence, 3 + k < 4, as desired. Therefore, $s \in S$. We prove $s < 3 + \epsilon$. Since $\frac{1}{2} < 1$ and $\epsilon > 0$, then $\frac{\epsilon}{2} < \epsilon$. Observe that

$$s = 3+k$$

$$\leq 3+\frac{\epsilon}{2}$$

$$< 3+\epsilon.$$

Therefore, $s < 3 + \epsilon$, as desired.

Proof. We prove 6 is the least upper bound of S in \mathbb{R} . Let $x \in S$. Then either $x \in (3, 4)$ or $x \in \{6\}$. We consider these cases separately. Case 1: Suppose $x \in (3, 4)$. Then 3 < x < 4, so x < 4. Since x < 4 < 6, then x < 6. Case 2: Suppose $x \in \{6\}$. Then x = 6. Hence, in all cases, either x < 6 or x = 6, so $x \le 6$. Thus, $x \leq 6$ for all $x \in S$. Therefore, 6 is an upper bound of S in \mathbb{R} . Let $\epsilon > 0$ be given. To prove 6 is the least upper bound, we must prove there exists $s \in S$ such that $s > 6 - \epsilon$. Take s = 6. Then $s = 6 \in S$.

We prove $s > 6 - \epsilon$. Observe that

$$\begin{split} \epsilon > 0 & \Leftrightarrow \quad \epsilon > 6 - 6 \\ & \Leftrightarrow \quad 6 + \epsilon > 6 \\ & \Leftrightarrow \quad 6 > 6 - \epsilon \\ & \Rightarrow \quad s > 6 - \epsilon. \end{split}$$

Therefore, $s > 6 - \epsilon$, as desired.

Exercise 65. Let $S = \{x \in \mathbb{R} : x \ge 0\}$.

Then

1. There is no upper bound of S.

2. 0 is a lower bound of S.

3. $\inf S = 0$.

Proof. We prove 1.

To prove there is no upper bound of S, we prove for every real B there exists $x \in S$ such that x > B.

Let $B \in \mathbb{R}$ be arbitrary. Let $T = \{0, B\}$. Let $x = \max T + 1$. Since $\max T \ge 0$ and 1 > 0, then $\max T + 1 > 0$, so x > 0. Thus, $x \in S$. Since $\max T \ge B$ and 1 > 0, then $\max T + 1 > B$, so x > B. Therefore, there exists $x \in S$ such that x > B, as desired.

Proof. We prove 2.

To prove 0 is a lower bound of S, we prove for every $x \in S$ we have $0 \le x$. Let $x \in S$ be given. Then $x \ge 0$, so $0 \le x$ for all $x \in S$.

Therefore, 0 is a lower bound of S.

Proof. We prove 3.

To prove $\inf S = 0$, we prove 0 is a lower bound of S and every real number r > 0 is not a lower bound of S.

```
Let r > 0 be arbitrary.

We prove r is not a lower bound of S.

Let x = \frac{r}{2}.

Since r > 0, then \frac{r}{2} > 0, so x > 0.

Thus, x \in S.

Since r > 0, then 2r > r, so r > \frac{r}{2}.

Hence, r > x.

Therefore, there exists x \in S such that x < r, so r is not a lower bound of
```

S.

Consequently, every real number r > 0 is not a lower bound of S.

Since 0 is a lower bound of S and every real number r > 0 is not a lower bound of S, then 0 is the greatest lower bound of S, so $0 = \inf S$.

Exercise 66. Let $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}.$

Then

1. There is no upper bound of \mathbb{R}^+ , so sup \mathbb{R}^+ does not exist.

2. 0 is a lower bound of \mathbb{R}^+ .

3. $\inf \mathbb{R}^+ = 0.$

Proof. We prove 1.

To prove there is no upper bound of \mathbb{R}^+ , we prove for every real B there exists $x \in \mathbb{R}^+$ such that x > B.

Let $B \in \mathbb{R}$ be arbitrary. Let $T = \{0, B\}$. Let $x = \max T + 1$. Since $\max T \ge 0$ and 1 > 0, then $\max T + 1 > 0$, so x > 0. Thus, $x \in \mathbb{R}^+$. Since $\max T \ge B$ and 1 > 0, then $\max T + 1 > B$, so x > B. Therefore, there exists $x \in \mathbb{R}^+$ such that x > B, as desired.

Proof. We prove 2.

To prove 0 is a lower bound of \mathbb{R}^+ , we prove for every $x \in \mathbb{R}^+$ we have $0 \le x$. Let $x \in \mathbb{R}^+$ be given. Then $x \ge 0$, so $0 \le x$ for all $x \in \mathbb{R}^+$. Therefore, 0 is a lower bound of \mathbb{R}^+ .

Proof. We prove 3.

To prove $\inf \mathbb{R}^+ = 0$, we prove 0 is a lower bound of \mathbb{R}^+ and every real number r > 0 is not a lower bound of \mathbb{R}^+ .

Let r > 0 be arbitrary. We prove r is not a lower bound of \mathbb{R}^+ . Let $x = \frac{r}{2}$. Since r > 0, then $\frac{r}{2} > 0$, so x > 0. Thus, $x \in \mathbb{R}^+$. Since r > 0, then 2r > r, so $r > \frac{r}{2}$. Hence, r > x. Therefore, there exists $x \in \mathbb{R}^+$ such that x < r, so r is not a lower bound of

 $\mathbb{R}^+.$

Consequently, every real number r > 0 is not a lower bound of \mathbb{R}^+ .

Since 0 is a lower bound of \mathbb{R}^+ and every real number r > 0 is not a lower bound of S, then 0 is the greatest lower bound of \mathbb{R}^+ , so $0 = \inf \mathbb{R}^+$. \Box

Lemma 67. For every natural number n, $|(-1)^n| = 1$.

Proof. We prove by induction on n. Let $S = \{n \in \mathbb{N} : |(-1)^n| = 1\}.$ Since $1 \in \mathbb{N}$ and $|-1^1| = |-1| = 1$, then $1 \in S$. Suppose $k \in S$. Then $k \in \mathbb{N}$ and $|(-1)^k| = 1$. Since $k \in \mathbb{N}$, then $k + 1 \in \mathbb{N}$. Observe that $|(-1)^{k+1}| = |(-1)^k(-1)| = |(-1)^k| \cdot |-1| = 1 \cdot 1 = 1$. Since $k+1 \in \mathbb{N}$ and $|(-1)^{k+1}| = 1$, then $k+1 \in S$. Thus, $k \in S$ implies $k + 1 \in S$. By the principle of mathematical induction, $|(-1)^n| = 1$ for all $n \in \mathbb{N}$. Lemma 68. Let $n \in \mathbb{N}$. 1. If *n* is even, then $(-1)^n = 1$. 2. If n is odd, then $(-1)^n = -1$. Proof. We prove 1. Suppose n is even. Then n = 2k for some integer k. Thus, $(-1)^n = (-1)^{2k} = [(-1)^2]^k = 1^k = 1.$ Proof. We prove 2. Suppose n is odd. Then n = 2k + 1 for some integer k. Since 2k is even, then $(-1)^n = (-1)^{2k+1} = (-1)^{2k} \cdot (-1)^1 = 1 \cdot (-1) = 1$ -1.**Exercise 69.** Let $S = \{1 - \frac{(-1)^n}{n} : n \in \mathbb{N}\}.$ Then 1. $\sup S = 2$. 2. $\inf S = \frac{1}{2}$. Proof. We prove 1. We first prove 2 is an upper bound of S. Since $2 = 1 + 1 = 1 - (-1) = 1 - \frac{-1^1}{1}$, then $2 \in S$, so $S \neq \emptyset$. Let $x \in S$. Then there exists $n \in \mathbb{N}$ such that $x = 1 - \frac{(-1)^n}{n}$. Since $n \in \mathbb{N}$, then $n \ge 1$, so $1 \ge \frac{1}{n}$. Hence, $2 \ge 1 + \frac{1}{n}$.

Observe that

$$\begin{aligned} |x| &= |1 - \frac{(-1)^n}{n}| \\ &= |1 + \frac{(-1)^n}{-n}| \\ &\leq |1| + |\frac{(-1)^n}{-n}| \\ &= 1 + \frac{|(-1)^n|}{|-n|} \\ &= 1 + \frac{1}{n} \\ &\leq 2. \end{aligned}$$

Thus, $|x| \leq 2$, so $-2 \leq x \leq 2$.

Hence, $x \leq 2$, so 2 is an upper bound of S.

To prove 2 is the least upper bound of S, we prove every real number r < 2 is not an upper bound of S.

Let r < 2 be an arbitrary real number.

Since $2 \in S$ and 2 > r, then r is not an upper bound of S.

Thus, every real number r < 2 is not an upper bound of S.

Since 2 is an upper bound of S and every real number r < 2 is not an upper bound of S, then 2 is the least upper bound of S, so $2 = \sup S$.

Proof. We prove 2.

To prove $\frac{1}{2} = \inf S$, we prove $\frac{1}{2}$ is a lower bound of S and we prove for every real number $r > \frac{1}{2}$, r is not a lower bound of S.

We first prove $\frac{1}{2}$ is a lower bound of S. Let $x \in S$. Then there exists $n \in \mathbb{N}$ such that $x = 1 - \frac{(-1)^n}{n}$. Since $n \in \mathbb{N}$, then either n is even or n is odd. We consider these cases separately. **Case 1:** Suppose n is even. Then $n \ge 2$ and $(-1)^n = 1$. Observe that

$$\begin{split} n \geq 2 \quad \Leftrightarrow \quad \frac{1}{2} \geq \frac{1}{n} \\ \Leftrightarrow \quad \frac{1}{2} \geq \frac{(-1)^n}{n} \\ \Leftrightarrow \quad 1 \geq \frac{1}{2} + \frac{(-1)^n}{n} \\ \Leftrightarrow \quad 1 - \frac{(-1)^n}{n} \geq \frac{1}{2} \\ \Leftrightarrow \quad x \geq \frac{1}{2}. \end{split}$$

Thus, $x \ge \frac{1}{2}$, so $\frac{1}{2} \le x$. Case 2: Suppose *n* is odd. Then $(-1)^n = -1$. Since $n \in \mathbb{N}$, then n > 0, so $\frac{1}{n} > 0$. Since $\frac{1}{2} < 1$ and $0 < \frac{1}{n}$, then $\frac{1}{2} < 1 + \frac{1}{n} = 1 - \frac{(-1)^n}{n}$. Thus, $\frac{1}{2} < 1 - \frac{(-1)^n}{n}$, so $\frac{1}{2} < x$. Hence, in either case, $\frac{1}{2} \le x$, so $\frac{1}{2}$ is a lower bound of S.

Let r be an arbitrary real number such that $r > \frac{1}{2}$.

To prove r is not a lower bound of S, we must prove there exists $x \in S$ such that x < r.

Since $2 \in \mathbb{N}$, then $1 - \frac{(-1)^2}{2} = 1 - \frac{1}{2} = \frac{1}{2} \in S$. Thus, there exists $\frac{1}{2} \in S$ such that $\frac{1}{2} < r$. Hence, r is not a lower bound of S, so every real number $r > \frac{1}{2}$ is not a lower bound of S.

Since $\frac{1}{2}$ is a lower bound of S and every real number $r > \frac{1}{2}$ is not a lower bound of S, then $\frac{1}{2}$ is the greatest lower bound of S, so $\frac{1}{2} = \inf S$.

Exercise 70. Compute sup and inf of the set $\{x \in \mathbb{R} : |2x + \pi| < \sqrt{2}\}$.

Solution. Let $S = \{x \in \mathbb{R} : |2x + \pi| < \sqrt{2}\}.$ Since $|2(-1) + \pi| = \pi - 2 < \sqrt{2}$, then $-1 \in S$. Hence, S is not empty. We prove $S = (\frac{\pi + \sqrt{2}}{-2}, \frac{\pi - \sqrt{2}}{-2}).$

Observe that

$$\begin{aligned} x \in (\frac{\pi + \sqrt{2}}{-2}, \frac{\pi - \sqrt{2}}{-2}) & \Leftrightarrow \quad \frac{\pi + \sqrt{2}}{-2} < x < \frac{\pi - \sqrt{2}}{-2} \\ & \Leftrightarrow \quad \frac{\pi + \sqrt{2}}{-1} < 2x < \frac{\pi - \sqrt{2}}{-1} \\ & \Leftrightarrow \quad -\pi - \sqrt{2} < 2x < -\pi + \sqrt{2} \\ & \Leftrightarrow \quad -\sqrt{2} < 2x + \pi < \sqrt{2} \\ & \Leftrightarrow \quad |2x + \pi| < \sqrt{2} \\ & \Leftrightarrow \quad x \in S. \end{aligned}$$

Therefore, $\left(\frac{\pi+\sqrt{2}}{-2}, \frac{\pi-\sqrt{2}}{-2}\right) = S.$ Therefore, $\sup S = \frac{\pi-\sqrt{2}}{-2}$ and $\inf S = \frac{\pi+\sqrt{2}}{-2}.$

Exercise 71. Let $S \subset \mathbb{R}$.

Let $r \in \mathbb{R}$.

Then $r = \sup(S)$ iff $(\forall x \in S)(x \le r)$ and $(\forall \epsilon > 0)(\exists s \in S)(r - \epsilon < s)$.

Proof. We first prove if $(\forall x \in S)(x \leq r)$ and $(\forall \epsilon > 0)(\exists s \in S)(r - \epsilon < s)$, then $r = \sup(S).$

Suppose $(\forall x \in S)(x \le r)$ and $(\forall \epsilon > 0)(\exists s \in S)(r - \epsilon < s)$.

Since $x \leq r$ for all $x \in S$, then r is an upper bound of S. Let M be an arbitrary real number less than r. We prove M is not an upper bound of S. Since M < r, then r - M > 0. Hence, there exists $s \in S$ such that r - (r - M) < s. Thus, there exists $s \in S$ such that M < s. Since there exists $s \in S$ such that s > M, then M is not an upper bound of S.

Therefore, every real number M < r is not an upper bound of S.

Since r is an upper bound of S and every real number M < r is not an upper bound of S, then r is the least upper bound of S, so $r = \sup S$.

Conversely, we prove if $r = \sup(S)$, then $(\forall x \in S)(x \leq r)$ and $(\forall \epsilon > 0)(\exists s \in S)(r - \epsilon < s)$.

Suppose $r = \sup(S)$.

Then r is the least upper bound of S, so r is an upper bound of S and any real number M < r is not an upper bound of S.

Since $r \in \mathbb{R}$ and r is an upper bound of S, then $(\forall x \in S)(x \leq r)$.

Let
$$\epsilon > 0$$
 be given.

Then $\epsilon > r - r$, so $r > r - \epsilon$.

Since any real number M less than r is not an upper bound of S, then in particular, $r - \epsilon$ is not an upper bound of S.

Hence, there exists $s \in S$ such that $s > r - \epsilon$.

Therefore, for every $\epsilon > 0$, there exists $s \in S$ such that $r - \epsilon < s$, so $(\forall \epsilon > 0)(\exists s \in S)(r - \epsilon < s)$.

Exercise 72. Let $S \subset \mathbb{R}$ be nonempty. Let $t, u \in \mathbb{R}$. Then u is an upper bound of S iff t > u implies $t \notin S$.

Proof. We prove if u is an upper bound of S, then t > u implies $t \notin S$. Suppose u is an upper bound of S. Then if $t \in S$, then $t \leq u$. Hence, if t > u, then $t \notin S$.

Conversely, we prove if t > u implies $t \notin S$, then u is an upper bound of S. Suppose t > u implies $t \notin S$. Then if $t \in S$, then $t \leq u$. Since $S \neq \emptyset$, let $x \in S$. Then $x \leq u$. Thus, $x \leq u$ for all $x \in S$, so u is an upper bound of S.

Exercise 73. Let $a \in \mathbb{R}$. Let $S = \{s \in \mathbb{Q} : s < a\}$.

Then $\sup S = a$.

Proof. Let $s \in S$. Then $s \in \mathbb{Q}$ and s < a. Thus, s < a for all $s \in S$, so a is an upper bound of S. Let $b \in \mathbb{R}$ such that b < a. Since \mathbb{Q} is dense in \mathbb{R} , then there exists $q \in \mathbb{Q}$ such that b < q < a, so b < qand q < a. Since $q \in \mathbb{Q}$ and q < a, then $q \in S$. Since $q \in S$ and q > b, then b is not an upper bound of S. Hence, every real number b less than a is not an upper bound of S. Therefore, $a = \sup S$. **Exercise 74.** Let $S \subset \mathbb{R}$ such that $B \in S$ and B is an upper bound of S. Then $B = \sup S$. *Proof.* Since B is an upper bound of S, then S has at least one upper bound in $\mathbb{R}.$ Let M be an arbitrary upper bound of S in \mathbb{R} . Since $B \in S$ and M is an upper bound of S, then $B \leq M$. Thus, $B \leq M$ for any upper bound M of S. Since B is an upper bound of S and $B \leq M$ any upper bound M of S, then B is the least upper bound of S. Therefore, $B = \sup S$. Lemma 75. Let $S \subset \mathbb{R}$. If $\sup S$ exists, then every real number $r > \sup S$ is an upper bound of S. *Proof.* Suppose $\sup S$ exists. Let r be an arbitrary real number such that $r > \sup S$. Since sup S exists, then $S \neq \emptyset$. Let $x \in S$. Since $\sup S$ is an upper bound of S, then $x \leq \sup S$. Since $x \leq \sup S$ and $\sup S < r$, then x < r. Thus, x < r for all $x \in S$, so r is an upper bound of S. **Exercise 76.** Let $S \subset \mathbb{R}$ such that $\sup S$ exists. Then 1. $\sup S - \frac{1}{n}$ is not an upper bound of S for all $n \in \mathbb{N}$. 2. $\sup S + \frac{1}{n}$ is an upper bound of S for all $n \in \mathbb{N}$. Proof. We prove 1. Let $n \in \mathbb{N}$ be arbitrary. Then n > 0, so $\frac{1}{n} > 0$. Thus, $\frac{1}{n} > \sup S - \sup S$, so $\sup S + \frac{1}{n} > \sup S$. Hence, $\sup S > \sup S - \frac{1}{n}$. Since $\sup S$ is the least upper bound of S, then for every real number r < r $\sup S, r$ is not an upper bound of S. Since $\sup S - \frac{1}{n} < \sup S$, then we conclude $\sup S - \frac{1}{n}$ is not an upper bound

of S.

Proof. We prove 2.

Let $n \in \mathbb{N}$ be arbitrary.

Then n > 0, so $\frac{1}{n} > 0$. Thus, $\sup S + \frac{1}{n} > \sup S$.

Since $\sup S$ exists, then every real number $r > \sup S$ is an upper bound of S.

Since $\sup S + \frac{1}{n} > \sup S$, then we conclude $\sup S + \frac{1}{n}$ is an upper bound of S.

Exercise 77. Let S be a subset of an ordered field F.

If $b \in F$ and b is an upper bound for S, then $\sup S \leq b$.

Proof. Suppose $b \in F$ and b is an upper bound for S.

Since $\sup S$ is the least upper bound of S, then for every $b \in F$ such that $b < \sup S, b$ is not an upper bound of S.

Thus, if $b \in F$ and $b < \sup S$, then b is not an upper bound of S.

Hence, if $b \in F$ and b is an upper bound of S, then $b \ge \sup S$.

Since $b \in F$ and b is an upper bound of S, then we conclude $b \ge \sup S$, so $\sup S \leq b.$

Exercise 78. Let A and B be subsets of an ordered field F.

If A is unbounded above in F and $(\forall x \in A)(\exists y \in B)(x \leq y)$, then B is unbounded above in F.

Proof. Suppose A is unbounded above in F and $(\forall x \in A)(\exists y \in B)(x < y)$. Let $b \in F$ be arbitrary. Since A is unbounded above in F, then there exists $x \in A$ such that x > b. Since $x \in A$, then there exists $y \in B$ such that $x \leq y$. Thus, $b < x \leq y$, so b < y. Hence, there exists $y \in B$ such that y > b. Therefore, B is unbounded above in F.

Exercise 79. Let $S = \{\sqrt[n]{n} : n \in \mathbb{N}\}.$ Compute $\max S$, $\min S$, $\sup S$, $\inf S$, if they exist.

Solution. We prove $\max S = \sqrt[3]{3}$. Since $3 \in \mathbb{N}$, then $\sqrt[3]{3} \in S$. We prove $\sqrt[3]{3}$ is an upper bound of S. Let $x \in S$. Then $x \in \mathbb{R}$ and there exists $n \in \mathbb{N}$ such that $x = \sqrt[n]{n}$. To prove $\sqrt[3]{3}$ is an upper bound of S, we must prove $x \leq \sqrt[3]{3}$. Suppose for the sake of contradiction that $x > \sqrt[3]{3}$. Then $\sqrt[n]{n} > \sqrt[3]{3}$, so $n^{\frac{1}{n}} > 3^{\frac{1}{3}}$. Since $n^{\frac{1}{n}} > 3^{\frac{1}{3}} > 0$ and $3n \in \mathbb{N}$, then $(n^{\frac{1}{n}})^{3n} > (3^{\frac{1}{3}})^{3n}$, so $n^3 > 3^n$. Thus, there exists $n \in \mathbb{N}$ such that $n^3 > 3^n$. Since $n \in \mathbb{N}$, then either n = 1 or n = 2 or n = 3 or n > 3. Since $1 = 1^3 < 3^1 = 3$, then $n \neq 1$. Since $8 = 2^3 < 3^2 = 9$, then $n \neq 2$.

Since $3^3 \not> 3^3$, then $n \neq 3$. Hence, n cannot be 1 or 2 or 3. We prove $n^3 < 3^n$ for all natural numbers n > 3 by induction on n. Define predicate $p(n): n^3 < 3^n$ for all natural numbers n > 3. Since $64 = 4^3 < 3^4 = 81$, then p(4) is true. Suppose n > 3 such that p(n) is true. Then $n^3 < 3^n$. To prove p(n+1), we must prove $(n+1)^3 < 3^{n+1}$. Since n > 3, then 2n > 6, so 2n - 3 > 3. Since n > 3 and 2n - 3 > 3, then $n(2n - 3) > 3 \cdot 3$, so $2n^2 - 3n > 9 > 4$. Hence, $2n^2 - 3n > 4$, so $2n^2 - 3n - 3 > 1$. Since n > 1 and $2n^2 - 3n - 3 > 1$, then $n(2n^2 - 3n - 3) > 1 \cdot 1$, so $2n^3 - 3n^2 - 3n > 1.$ Thus, $2n^3 > 3n^2 + 3n + 1$, so $3n^3 > n^3 + 3n^2 + 3n + 1 = (n+1)^3$. Hence, $3n^3 > (n+1)^3$, so $(n+1)^3 < 3n^3$. Since $n^3 < 3^n$, then $3n^3 < 3^{n+1}$. Thus, $(n+1)^3 < 3n^3$ and $3n^3 < 3^{n+1}$, so $(n+1)^3 < 3^{n+1}$. Therefore, p(n+1) is true, as desired. Hence, by induction, $n^3 < 3^n$ for all n > 3. Thus, $n^3 \not> 3^n$ for all n > 3. Therefore, n cannot be greater than 3. Thus, there is no $n \in \mathbb{N}$ such that $n^3 > 3^n$. Therefore, $x \leq \sqrt[3]{3}$. Hence $\sqrt[3]{3}$ is an upper bound of S. Since $\sqrt[3]{3} \in S$ and $\sqrt[3]{3}$ is an upper bound of S, then $\sqrt[3]{3} = \max S = \sup S$. We prove $\min S = 1$. Since $1 \in \mathbb{N}$ and $1 = 1^{\frac{1}{n}}$, then $1 \in S$. We prove 1 is a lower bound of S. Let $y \in S$. Then $y \in \mathbb{R}$ and there exists $n \in \mathbb{N}$ such that $y = \sqrt[n]{n}$. To prove 1 is a lower bound of S, we must prove $1 \leq y$. Suppose for the sake of contradiction that 1 > y. Then $1 > \sqrt[n]{n}$. Since n > 0, then $\sqrt[n]{n} > 0$. Since $1 > \sqrt[n]{n} > 0$ and $n \in \mathbb{N}$, then $1^n > (\sqrt[n]{n})^n$. Hence, 1 > n, so n < 1. But, $n \in \mathbb{N}$, so $n \ge 1$. Thus, we have n < 1 and $n \ge 1$, a violation of trichotomy. Therefore, $1 \leq y$, so 1 is a lower bound of S. Since $1 \in S$ and 1 is a lower bound of S, then $1 = \min S = \inf S$. **Exercise 80.** Let S be a set of positive real numbers. Let $T = \{x^2 : x \in S\}.$

If sup S exists, then sup $T = (\sup S)^2$.

Proof. We first prove $(\sup S)^2$ is an upper bound of T. Since $\sup S$ exists, then $S \neq \emptyset$. Let $x \in S$. Then $x^2 \in T$, so $T \neq \emptyset$. Let $t \in T$ be arbitrary. Then $t = s^2$ for some $s \in S$. Since $s \in S$, then s > 0. Since $s \in S$ and $\sup S$ is an upper bound of S, then $s \leq \sup S$. Thus, $0 < s \le \sup S$, so $0 < s^2 = t \le (\sup S)^2$ and $0 < \sup S$. Hence, $t \leq (\sup S)^2$, so $(\sup S)^2$ is an upper bound of T. We next prove $(\sup S)^2$ is the least upper bound of T. Let $\epsilon > 0$ be given. Since $\sup S > 0$, then $\frac{\epsilon}{2 \sup S} > 0$. Since $\sup S$ is the least upper bound of S, then there exists $x \in S$ such that $\begin{array}{l} x > \sup S - \frac{\epsilon}{2 \sup S}.\\ \text{Hence, } \frac{\epsilon}{2 \sup S} > \sup S - x.\\ \text{Since } x \in S, \text{ then } x > 0. \end{array}$ Since $x \in S$ and $\sup S$ is an upper bound of S, then $x \leq \sup S$. Thus, $0 < x \leq \sup S$. Therefore, $0 < 2x \le \sup S + x \le 2 \sup S$ and $0 \le \sup S - x$. Hence, $0 < \sup S + x \le 2 \sup S$ and $0 \le \sup S - x < \frac{\epsilon}{2 \sup S}$, so $(\sup S + x) \le 2 \sup S - x < \frac{\epsilon}{2 \sup S}$. $x)(\sup S - x) < \epsilon.$ Consequently, $(\sup S)^2 - x^2 < \epsilon$, so $(\sup S)^2 - \epsilon < x^2$. Let $t = x^2$. Since $x \in S$, then $t \in T$, so $(\sup S)^2 - \epsilon < t$. Therefore, $t > (\sup S)^2 - \epsilon$, as desired. **Exercise 81.** Let $A \subset \mathbb{R}$. Let $B = \{x^2 : x \in A\}.$ 1. If sup A and sup B exist, then sup $B \ge (\sup A)^2$. 2. If $\inf A$ and $\inf B$ exist, then $\inf B < (\inf A)^2$. *Proof.* We prove 1. We prove if $\sup A$ and $\sup B$ exist, then $\sup B \ge (\sup A)^2$. Suppose $\sup A$ and $\sup B$ exist in \mathbb{R} . Either $\sup A \ge 0$ or $\sup A < 0$. We consider these cases separately. Case 1: Suppose $\sup A < 0$. Since $\sup A$ exists, then A is not empty. Let $x \in A$. Since $\sup A$ is an upper bound of A, then $x < \sup A$. Thus, $x \leq \sup A \leq 0$, so $-x \geq -\sup A \geq 0$. Hence, $0 < -\sup A < -x$, so $0 < (\sup A)^2 < x^2$. Thus, $(\sup A)^2 \le x^2$. Since $x^2 \in B$ and $\sup B$ is an upper bound of B, then $x^2 \leq \sup B$.

Hence, $(\sup A)^2 \le x^2 \le \sup B$, so $(\sup A)^2 \le \sup B$. Therefore, $\sup B \ge (\sup A)^2$, as desired. Case 2: Suppose $\sup A > 0$. Since $\sup A$ exists, then A is not empty. Let $x \in A$. Then $x^2 \in B$. Since $\sup B$ is an upper bound of B, then $x^2 \leq \sup B$. Since $x^2 \ge 0$ and $x^2 \le \sup B$, then $0 \le x^2 \le \sup B$, so $0 \le \sup B$. Suppose for the sake of contradiction $\sup B < (\sup A)^2$. Then $0 \leq \sup B < (\sup A)^2$. Hence, $0 \leq \sqrt{\sup B} < \sup A$, so $\sqrt{\sup B} < \sup A$. Thus, $\sup A - \sqrt{\sup B} > 0$. Since sup A is the least upper bound of A, then there exists $a \in A$ such that $a > \sup A - (\sup A - \sqrt{\sup B}).$ Hence, there exists $a^2 \in B$ such that $a > \sqrt{\sup B}$. Since $a > \sqrt{\sup B} > 0$, then $a^2 > \sup B$. Therefore, there exists $a^2 \in B$ such that $a^2 > \sup B$. But, this contradicts the fact that $\sup B$ is an upper bound of B. Therefore, $\sup B \ge (\sup A)^2$, as desired. *Proof.* We prove 2. We prove if $\inf A$ and $\inf B$ exist, then $\inf B \leq (\inf A)^2$. Suppose $\inf A$ and $\inf B$ exist in \mathbb{R} . Suppose for the sake of contradiction $\inf B > (\inf A)^2$. Either $\inf A > 0$ or $\inf A < 0$. We consider these cases separately. Case 1: Suppose $\inf A < 0$. Then $-\inf A > 0$. Thus, $0 < (\inf A)^2 < \inf B$, so $0 < \inf B$. Hence, $\sqrt{\inf B} > 0$. Since $\sqrt{\inf B} > 0$ and $-\inf A > 0$, then $\sqrt{\inf B} - \inf A > 0$. Since $\inf A$ is the greatest lower bound of A, then there exists $a \in A$ such that $a < \inf A + (\sqrt{\inf B} - \inf A)$. Thus, there exists $a \in A$ such that $a < \sqrt{\inf B}$. Either $a \ge 0$ or a < 0. Suppose $a \ge 0$. Then $0 \le a < \sqrt{\inf B}$. Hence, $0 < a^2 < \inf B$. Therefore, there exists $a^2 \in B$ such that $a^2 < \inf B$. Suppose a < 0. Since $\inf A$ is a lower bound of A and $a \in A$, then $\inf A \leq a$. Hence, $\inf A \le a < 0$, so $-\inf A \ge -a > 0$. Thus, $0 < -\overline{a} \leq -\inf A$, so $0 < \overline{a^2} \leq (\inf A)^2$. Therefore, $0 < a^2 \leq (\inf A)^2 < \inf B$, so $0 < a^2 < \inf B$. Hence, there exists $a^2 \in B$ such that $a^2 < \inf B$.

But, this contradicts the fact that $\inf B$ is a lower bound of B. **Case 2:** Suppose $\inf A \ge 0$. Then $0 \le (\inf A)^2 < \inf B$, so $0 \le \inf A < \sqrt{\inf B}$. Thus, $\inf A < \sqrt{\inf B}$, so $\sqrt{\inf B} - \inf A > 0$. Since $\inf A$ is the greatest lower bound of A, then there exists $a \in A$ such that $a < \inf A + (\sqrt{\inf B} - \inf A)$. Hence, there exists $a^2 \in B$ such that $a < \sqrt{\inf B}$. Since $\inf A$ is a lower bound of A and $a \in A$, then $\inf A \le a$. Thus, $0 \le \inf A \le a < \sqrt{\inf B}$, so $0 \le a < \sqrt{\inf B}$. Hence, $0 \le a^2 < \inf B$, so $a^2 < \inf B$. Therefore, there exists $a^2 \in B$ such that $a^2 < \inf B$. But, this contradicts the fact that $\inf B$ is a lower bound of B. Since a contradiction arises in all cases, then $\inf B \le (\inf A)^2$, as desired. \Box

Exercise 82. Let $S \subset \mathbb{R}$.

Here is a definition of least upper bound of S.

A real number u is called a least upper bound of S iff

1. $(\forall x \in S)(x \le u)$.

2. $(\forall \epsilon > 0) (\exists y \in S) (y > u - \epsilon).$

Using the above definition of least upper bound of S, prove that there is at most one least upper bound of S.

Solution. This is a more elegant solution.

The statement there is at most one least upper bound of S means that

if x and y are upper bounds of S, then x = y.

Define predicate: A(x) : x is a least upper bound of S over domain of discourse \mathbb{R} .

Then the statement means $A(x) \wedge A(y) \Rightarrow x = y$, so we must prove $(\forall x)(\forall y)(A(x) \wedge A(y) \rightarrow x = y)$.

To prove $(\forall x)(\forall y)(A(x) \land A(y) \rightarrow x = y)$, we assume arbitrary $a, b \in \mathbb{R}$ such that $A(a) \land A(b)$.

We must prove a = b.

To prove a = b, assume $a \neq b$ and use proof by contradiction.

Since $a \neq b$, then either a < b or a > b.

Without loss of generality, we may assume a < b.

How can we derive the desired contradiction?

We must use the fact that a and b are lubs of S.

Thus we have:

1.
$$(\forall x \in S)(x \le a)$$

2.
$$(\forall \epsilon > 0) (\exists y \in S) (y > a - \epsilon)$$

3.
$$(\forall x \in S)(x \leq b)$$

4.
$$(\forall \epsilon > 0) (\exists y \in S) (y > b - \epsilon)$$

To derive a contradiction among the 4 statements, we need to find a suitable $\epsilon > 0.$

How should we choose ϵ ?

Since a < b, then 0 < b - a, so b - a > 0.

Let's try $\epsilon = b - a$. Can we derive a contradiction? We consider the 4 facts given and see if any logical contradictions arise. Since $\epsilon > 0$ is a particular object, by universal elimination, $(\exists y \in S)(y > a - \epsilon)$ and $(\exists y \in S)(y > b - \epsilon)$. By existential elimination, let y_1, y_2 be some elements of S. Then $y_1 > a - \epsilon$ and $y_2 > b - \epsilon$. Hence, $y_1 > a - (b - a)$, so $y_1 > 2a - b$ and $y_2 > b - (b - a)$, so $y_2 > a$. By universal elimination, since $(\forall x \in S)(x \le a)$ and $y_2 \in S$, then $y_2 \le a$. Thus, we have $y_2 > a$ and $y_2 \le a$. Since $y_2 \in S$ and $S \subset \mathbb{R}$, then $y_2 \in \mathbb{R}$. Hence, we have a violation of trichotomy of \mathbb{R} . Thus, a cannot be less than b, so it cannot be that $a \ne b$. Therefore, a = b, as desired.

Proof. Let S be a subset of \mathbb{R} .

Assume arbitrary real numbers a and b such that a and b are least upper bounds of S.

To prove a = b, suppose for the sake of contradiction that $a \neq b$.

Since $a \neq b$, then either a < b or a > b.

Without loss of generality, we may assume a < b.

Since a and b are least upper bounds of S, then each element of S is less than or equal to a and for each positive real ϵ , there corresponds $x \in S$ such that $x > b - \epsilon$.

Let $\epsilon = b - a$. Since a < b, then b > a, so b - a > 0. Hence, $\epsilon > 0$. Thus, there is $x \in S$ such that $x > b - \epsilon$. Since x > b - (b - a), then x > a. Since $x \in S$, then $x \leq a$. Hence, x > a and $x \leq a$. Thus, we have a violation of trichotomy of \mathbb{R} . Consequently, a cannot be less than b, so it cannot be that $a \neq b$. Therefore, a = b, as desired.

Exercise 83. Let A and B be subsets of \mathbb{R} such that $(\forall a \in A)(\exists b \in B)(a \leq b)$. If $\sup A$ and $\sup B$ exist, then $\sup A \leq \sup B$.

Proof. Suppose sup A and sup B exist. Since sup A exists, then $A \neq \emptyset$. Let a ∈ A be given. Then there exists b ∈ B such that a ≤ b. Since b ∈ B and sup B is an upper bound of B, then b ≤ sup B. Thus, a ≤ b ≤ sup B, so a ≤ sup B. Hence, sup B is an upper bound of A. Since sup A is the least upper bound of A and sup B is an upper bound of A, then sup A ≤ sup B. **Exercise 84.** Let A and B be subsets of \mathbb{R} such that $(\forall a \in A)(\forall b \in B)(a \leq b)$. If sup A and $\inf B$ exist, then $\sup A \leq \inf B$.

Proof. Suppose $\sup A$ and $\inf B$ exist.

Since $\inf B$ exists, then $B \neq \emptyset$. Let $b \in B$. Then $a \leq b$ for all $a \in A$, so b is an upper bound of A. Since $\sup A$ is the least upper bound of A, then $\sup A < b$. Since b is arbitrary, then $\sup A \leq b$ for all $b \in B$, so $\sup A$ is a lower bound of B.

Since $\inf B$ is the greatest lower bound of B, then $\sup A \leq \inf B$.

Proposition 85. Let A and B be subsets of \mathbb{R} such that $(\forall a \in A)(\forall b \in B)(a \leq A)$ *b*).

If $\sup A$ and $\sup B$ exist, then $\sup A \leq \sup B$.

Proof. Suppose $\sup A$ and $\sup B$ exist.

Since sup B exists, then $B \neq \emptyset$, so there exists $b \in B$. Thus, $a \leq b$ for all $a \in A$, so b is an upper bound of A. Since $\sup A$ is the least upper bound of A, then $\sup A \leq b$. Since $b \in B$ and $\sup B$ is an upper bound of B, then $b \leq \sup B$. Therefore, $\sup A \leq b \leq \sup B$, so $\sup A \leq \sup B$.

Exercise 86. Let A and B be nonempty sets of real numbers. Let $\delta(A, B) = \inf\{|a - b| : a \in A, b \in B\}.$ We call $\delta(A, B)$ the distance between sets A and B. 1. Let $A = \mathbb{N}$ and $B = \mathbb{R} - \mathbb{N}$. What is $\delta(A, B)$? 2. If A and B are finite sets, what does $\delta(A, B)$ represent?

Solution. We compute $\delta(A, B)$ when $A = \mathbb{N}$ and $B = \mathbb{R} - \mathbb{N}$. Let $S = \{ |a - b| : a \in A, b \in B \}.$ Then $\delta(A, B) = \inf S$. Since A and B are not empty, then there is at least one element in A and B. Let $x \in S$. Then there exists $a \in A$ and $b \in B$ such that x = |a - b|. Since $a \in A$ and $A = \mathbb{N} \subset \mathbb{R}$, then $a \in \mathbb{R}$. Since $b \in B$ and $B = \mathbb{R} - \mathbb{N}$, then $b \in \mathbb{R}$ and $b \notin \mathbb{N}$. Since $a \in \mathbb{R}$ and $b \in \mathbb{R}$, then $a - b \in \mathbb{R}$, so $|a - b| \in \mathbb{R}$. Since $|x| \ge 0$ for any $x \in \mathbb{R}$, then $|a - b| \ge 0$. Hence, x > 0, so 0 < x. Therefore, 0 is a lower bound of S. We prove $0 = \inf S$. Let $\epsilon > 0$. To prove 0 is the greatest lower bound of S, we must prove there exists $s \in S$ such that $s < \epsilon$. Either $\epsilon > 1$ or $\epsilon = 1$ or $\epsilon < 1$. We consider these cases separately.

Case 1: Suppose $\epsilon > 1$. Then $1 < \epsilon$. Since $0 \in \mathbb{R}$ and $0 \notin \mathbb{N}$, then $0 \in B$. Since $1 \in A$ and $0 \in B$, then $|1 - 0| = 1 \in S$. Thus, there exists $1 \in S$ such that $1 < \epsilon$. Case 2: Suppose $\epsilon = 1$. Since $\frac{1}{2} \in \mathbb{R}$ and $\frac{1}{2} \notin \mathbb{N}$, then $\frac{1}{2} \in B$. Since $1 \in A$ and $\frac{1}{2} \in B$, then $|1 - \frac{1}{2}| = \frac{1}{2} \in S$. Thus, there exists $\frac{1}{2} \in S$ such that $\frac{1}{2} < 1 = \epsilon$. Case 3: Suppose $\epsilon < 1$. Then $0 < \epsilon < 1$. Hence, $\frac{\epsilon}{2} \in \mathbb{R}$ and $0 < \frac{\epsilon}{2} < 1$. Suppose $1 - \frac{\epsilon}{2} \in \mathbb{N}$. Then there exists $n \in \mathbb{N}$ such that $n = 1 - \frac{\epsilon}{2}$. Hence, $2n = 2 - \epsilon$, so $\epsilon = 2 - 2n$. Since $n \in \mathbb{N}$ and $\mathbb{N} \subset \mathbb{Z}$, then $n \in \mathbb{Z}$. Thus, $2 - 2n \in \mathbb{Z}$, so $\epsilon \in \mathbb{Z}$. But, $0 < \epsilon < 1$, so $\epsilon \notin \mathbb{Z}$. Therefore, $1 - \frac{\epsilon}{2} \notin \mathbb{N}$. Since $1 - \frac{\epsilon}{2} \in \mathbb{R}$ and $1 - \frac{\epsilon}{2} \notin \mathbb{N}$, then $1 - \frac{\epsilon}{2} \in B$. Since $\epsilon > 0$ and $1 \in A$ and $1 - \frac{\epsilon}{2} \in B$, then $|1 - (1 - \frac{\epsilon}{2})| = \frac{\epsilon}{2} \in S$. Since $\epsilon > 0$ and $\frac{1}{2} < 1$, then $\frac{\epsilon}{2} < \epsilon$. Thus, there exists $\frac{\epsilon}{2} \in S$ such that $\frac{\epsilon}{2} < \epsilon$. Therefore, in all cases, there exists $s \in S$ such that $s < \epsilon$, as desired. Hence, $0 = \inf S$. Therefore, $\delta(A, B) = \inf S = 0.$

We answer 2.

We try various examples of A and B as nonempty finite sets.

It turns out that $\delta(A, B)$ represents the distance of the element in A that is closest to an element of B.

In addition, since A and B are finite sets, then so is S.

Exercise 87. Let X = Y = (0, 1).

Let $h: X \times Y \to \mathbb{R}$ be a function defined by h(x, y) = 2x + y.

1. If $f(x) = \sup\{h(x, y) : y \in Y\}$ for each $x \in X$, then f(x) = 2x + 1 and $\inf\{f(x) : x \in X\} = 1$.

2. If $g(y) = \inf\{h(x, y) : x \in X\}$ for each $y \in Y$, then g(y) = y and $\sup\{g(y) : y \in Y\} = 1$.

Proof. We prove 1.

Let $x \in X$ be given.

Then

$$f(x) = \sup\{h(x, y) : y \in Y\} \\ = \sup\{2x + y : y \in Y\} \\ = 2x + \sup Y \\ = 2x + \sup(0, 1) \\ = 2x + 1.$$

Observe that

$$\inf\{f(x): x \in X\} = \inf\{2x + 1: x \in X\}$$
$$= \inf\{1 + 2x: x \in X\}$$
$$= 1 + \inf\{2x: x \in X\}$$
$$= 1 + 2\inf X$$
$$= 1 + 2\inf (0, 1)$$
$$= 1 + 2 \cdot 0$$
$$= 1.$$

Proof. We prove 2. Let $y \in Y$ be given. Then

$$g(y) = \inf\{h(x, y) : x \in X\} \\ = \inf\{2x + y : x \in X\} \\ = \inf\{y + 2x : x \in X\} \\ = y + \inf\{2x : x \in X\} \\ = y + 2\inf\{2x : x \in X\} \\ = y + 2\inf\{0, 1\} \\ = y + 2 \cdot 0 \\ = y.$$

Observe that

$$\sup\{g(y): y \in Y\} = \sup\{y: y \in Y\}$$
$$= \sup Y$$
$$= \sup(0, 1)$$
$$= 1.$$

Exercise 88. Let X = Y = (0, 1).

Let $h: X \times Y \to \mathbb{R}$ be a function defined by

$$h(x,y) = \begin{cases} 0 & \text{if } x < y\\ 1 & \text{if } x \ge y. \end{cases}$$

1. If $f(x) = \sup\{h(x, y) : y \in Y\}$ for each $x \in X$, then f(x) = 1. 2. If $g(y) = \inf\{h(x, y) : x \in X\}$ for each $y \in Y$, then g(y) = 0.

Proof. We prove 1.

Suppose $f(x) = \sup\{h(x, y) : y \in Y\}$ for each $x \in X$. Let $x \in X$ be arbitrary. Then $x \in (0, 1)$, so 0 < x < 1. Hence, 0 < x and x < 1. Let $S = \{h(x, y) : y \in Y\}$.

We prove $0 \in S$. Let $y = \frac{x+1}{2}$. Since -1 < 0 < x < 1, then -1 < x < 1, so 0 < x + 1 < 2. Thus, $0 < \frac{x+1}{2} < 1$, so 0 < y < 1. Hence, $y \in (0, 1)$, so $y \in Y$. Since x < 1, then 2x < x + 1, so $x < \frac{x+1}{2}$. Thus, x < y. Since $y \in Y$ and x < y, then h(x, y) = 0, so $0 \in S$.

We prove $1 \in S$. Let $y' = \frac{x}{2}$. Since 0 < x < 1 < 2, then 0 < x < 2, so $0 < \frac{x}{2} < 1$. Thus, 0 < y' < 1, so $y' \in (0, 1)$. Therefore, $y' \in Y$. Since 0 < x, then x < 2x, so $\frac{x}{2} < x$. Thus, y' < x. Since $y' \in Y$ and x > y', then h(x, y') = 1, so $1 \in S$.

Since $0 \in S$ and $1 \in S$, then $\{0, 1\} \subset S$.

We prove $S \subset \{0, 1\}$. Suppose $s \in S$. Then there exists $t \in Y$ such that s = h(x, t). Since $t \in Y$ and $Y \subset \mathbb{R}$, then $t \in \mathbb{R}$, so either t > x or $t \le x$. We consider these cases separately. **Case 1:** Suppose t > x. Since $t \in Y$ and x < t, then s = h(x, t) = 0. **Case 2:** Suppose $t \le x$. Since $t \in Y$ and $x \ge t$, then s = h(x, t) = 1. Thus, either s = 0 or s = 1, so either $s \in \{0\}$ or $s \in \{1\}$. Hence, $s \in \{0\} \cup \{1\}$, so $s \in \{0, 1\}$. Therefore, if $s \in S$, then $s \in \{0, 1\}$, so $S \subset \{0, 1\}$.

Since $S \subset \{0,1\}$ and $\{0,1\} \subset S$, then $S = \{0,1\}$. Therefore,

$$f(x) = \sup\{h(x, y) : y \in Y\}$$

= sup S
= sup {0, 1}
= 1.

Thus, f(x) = 1 for all $x \in X$.

```
Proof. We prove 2.

Suppose g(y) = \inf\{h(x, y) : x \in X\} for each y \in Y.

Let y \in Y be arbitrary.

Then y \in (0, 1), so 0 < y < 1.

Hence, 0 < y and y < 1.

Let S = \{h(x, y) : x \in X\}.
```

```
We prove 0 \in S.
Let x = \frac{y}{2}.
Since 0 < y < 1 < 2, then 0 < y < 2, so 0 < \frac{y}{2} < 1.
Thus, 0 < x < 1, so x \in (0, 1).
Hence, x \in X.
Since 0 < y, then y < 2y, so \frac{y}{2} < y.
Thus, x < y.
Since x \in X and x < y, then h(x, y) = 0, so 0 \in S.
```

```
We prove 1 \in S.
Let x' = \frac{y+1}{2}.
Since -1 < 0 < y < 1, then -1 < y < 1, so 0 < y + 1 < 2.
Thus, 0 < \frac{y+1}{2} < 1, so x' \in (0, 1).
Therefore, x' \in X.
Since y < 1, then 2y < y + 1, so y < \frac{y+1}{2}.
Thus, y < x'.
Since x' \in X and x' > y, then h(x', y) = 1, so 1 \in S.
```

Since $0 \in S$ and $1 \in S$, then $\{0, 1\} \subset S$.

We prove $S \subset \{0, 1\}$. Suppose $s \in S$. Then there exists $t \in X$ such that s = h(t, y). Since $t \in X$ and $X \subset \mathbb{R}$, then $t \in \mathbb{R}$, so either t > y or $t \leq y$. We consider these cases separately. **Case 1:** Suppose t > y. Since $t \in X$ and t > y, then s = h(t, y) = 1. **Case 2:** Suppose $t \leq y$. Since $t \in X$ and $t \leq y$, then s = h(t, y) = 0. Thus, either s = 0 or s = 1, so either $s \in \{0\}$ or $s \in \{1\}$. Hence, $s \in \{0\} \cup \{1\}$, so $s \in \{0, 1\}$. Therefore, if $s \in S$, then $s \in \{0, 1\}$, so $S \subset \{0, 1\}$.

Since $S \subset \{0,1\}$ and $\{0,1\} \subset S$, then $S = \{0,1\}$. Therefore,

$$g(y) = \inf \{h(x, y) : x \in X\} \\ = \inf S \\ = \inf \{0, 1\} \\ = 0.$$

Thus, g(y) = 0 for all $y \in Y$.

Complete ordered fields

Exercise 89. Analyze boundedness of \mathbb{Q} .

Solution.

Exercise 90. Analyze boundedness of \mathbb{R} .

Solution. To prove there is no upper bound of \mathbb{R} , we prove for every $r \in \mathbb{R}$ there exists $x \in \mathbb{R}$ such that x > r.

Let $r \in \mathbb{R}$ be arbitrary. Let x = r + 1. Then $x \in \mathbb{R}$ by closure of \mathbb{R} under addition. Since 1 > 0, then r + 1 > r. Hence, x > r. Thus, there exists a real number greater than r. Therefore, \mathbb{R} is unbounded above, so there is no upper bound of \mathbb{R} . Since there is no upper bound of \mathbb{R} , then there can be no greatest element of \mathbb{R} . Therefore, max \mathbb{R} does not exist.

Since there is no upper bound of $\mathbb R,$ then there can be no least upper bound of $\mathbb R.$

Therefore, $\sup \mathbb{R}$ does not exist.

To prove there is no lower bound of \mathbb{R} , we prove for every $r \in \mathbb{R}$ there exists $x \in \mathbb{R}$ such that x < r.

Let $r \in \mathbb{R}$. Let x = r - 1. Then $x \in \mathbb{R}$ by closure of \mathbb{R} under subtraction. Since 1 > 0, then -1 < 0, so r - 1 < r.

Hence, x < r.

Thus, there exists a real number less than r.

Therefore, \mathbb{R} is unbounded below, so there is no lower bound of \mathbb{R} .

Since there is no lower bound of \mathbb{R} , then there can be no least element of \mathbb{R} . Therefore, min \mathbb{R} does not exist.

Since there is no lower bound of \mathbb{R} , then there can be no greatest lower bound of \mathbb{R} .

Therefore, $\inf \mathbb{R}$ does not exist.

Exercise 91. \mathbb{N} is unbounded above in \mathbb{R}

For every real number x, there exists a natural number n such that n > x.

Proof. To prove \mathbb{N} is unbounded above in \mathbb{R} , we must prove there is no upper bound of \mathbb{N} in \mathbb{R} .

We prove by contradiction. Suppose there is an upper bound of \mathbb{N} in \mathbb{R} . Then \mathbb{N} is bounded above in \mathbb{R} . Since $1 \in \mathbb{N}$, then \mathbb{N} is not empty. Since $\mathbb{N} \subset \mathbb{R}$, then \mathbb{N} is a subset of \mathbb{R} . Thus, \mathbb{N} is a nonempty subset of \mathbb{R} that is bounded above in \mathbb{R} . Hence, by the completeness of \mathbb{R} , \mathbb{N} has a least upper bound in \mathbb{R} . Let b be the least upper bound of \mathbb{N} in \mathbb{R} . Then $b \in \mathbb{R}$ and b is an upper bound of N. Since b - 1 < b, then b - 1 is not an upper bound of \mathbb{N} . Hence, there exists $n \in \mathbb{N}$ such that n > b - 1. Thus, n+1 > b. Therefore, there exists $n + 1 \in \mathbb{N}$ such that n + 1 > b. This contradicts the fact that b is an upper bound of \mathbb{N} . Therefore, there is no upper bound of \mathbb{N} in \mathbb{R} . **Exercise 92.** Let $E \neq \emptyset$. Let $f: E \to \mathbb{R}$ be a function with bounded range. Let $a \in \mathbb{R}$. 1. Then $\sup\{a + f(x) : x \in E\} = a + \sup\{f(x) : x \in E\}.$ 2. Then $\inf\{a + f(x) : x \in E\} = a + \inf\{f(x) : x \in E\}.$

Proof. Let $f(E) = \{f(x) : x \in E\}.$

Since $E \neq \emptyset$, let $x \in E$. Then $f(x) \in f(E)$, so $f(E) \neq \emptyset$.

Since the range of f is bounded, then f(E) is bounded, so f(E) is bounded above and below in \mathbb{R} .

Since f(E) is not empty and bounded above in \mathbb{R} , then by completeness of \mathbb{R} , sup f(E) exists.

Since f(E) is not empty and bounded below in \mathbb{R} , then by completeness of \mathbb{R} , inf f(E) exists.

Let $a + f(E) = \{a + f(x) : x \in E\}.$

We must prove $\sup(a+f(E)) = a + \sup f(E)$ and $\inf(a+f(E)) = a + \inf f(E)$. Since $\sup f(E)$ exists, then $\sup(a + f(E)) = a + \sup(f(E))$. Since $\inf f(E)$ exists, then $\inf(a + f(E)) = a + \inf(f(E))$.

Exercise 93. Let $E \neq \emptyset$.

Let $f: E \to \mathbb{R}$ be a function with bounded range.

Let $g: E \to \mathbb{R}$ be a function with bounded range.

1. Then $\sup\{f(x) + g(x) : x \in E\} \le \sup\{f(x) : x \in E\} + \sup\{g(x) : x \in E\}.$

2. Then $\inf\{f(x) : x \in E\} + \inf\{g(x) : x \in E\} \le \inf\{f(x) + g(x) : x \in E\}.$

Proof. Let $f(E) = \{f(x) : x \in E\}.$

Since the range of f is bounded, then f(E) is bounded, so f(E) is bounded above and below in \mathbb{R} .

Let $g(E) = \{g(x) : x \in E\}.$

Since the range of g is bounded, then g(E) is bounded, so g(E) is bounded above and below in \mathbb{R} .

Let $f(E) + g(E) = \{f(x) + g(x) : x \in E\}.$

Since $E \neq \emptyset$, let $x \in E$.

Then $f(x) \in f(E)$ and $g(x) \in g(E)$, so $f(x) + g(x) \in f(E) + g(E)$.

Since $f(x) \in f(E)$, then $f(E) \neq \emptyset$.

Since $g(x) \in g(E)$, then $g(E) \neq \emptyset$.

Since $f(x) + g(x) \in f(E) + g(E)$, then $f(E) + g(E) \neq \emptyset$.

Since $f(E) \neq \emptyset$ and f(E) is bounded above in \mathbb{R} , then by completeness of \mathbb{R} , sup f(E) exists.

Since $g(E) \neq \emptyset$ and g(E) is bounded above in \mathbb{R} , then by completeness of \mathbb{R} , sup g(E) exists.

Since $f(x) \in f(E)$ and $\sup f(E)$ is an upper bound of f(E), then $f(x) \leq \sup f(E)$.

Since $g(x) \in g(E)$ and $\sup g(E)$ is an upper bound of g(E), then $g(x) \leq \sup g(E)$.

Hence, $f(x) + g(x) \le \sup f(E) + \sup g(E)$.

Thus, $\sup f(E) + \sup g(E)$ is an upper bound of f(E) + g(E), so f(E) + g(E) is bounded above in \mathbb{R} .

Since $f(E) + g(E) \neq \emptyset$ and f(E) + g(E) is bounded above in \mathbb{R} , then by completeness of \mathbb{R} , $\sup(f(E) + g(E))$ exists.

Since $\sup(f(E)+g(E))$ is the least upper bound of f(E)+g(E) and $\sup f(E)+\sup g(E)$ is an upper bound of f(E)+g(E), then $\sup(f(E)+g(E)) \leq \sup f(E)+\sup g(E)$, as desired.

Since $f(E) \neq \emptyset$ and f(E) is bounded below in \mathbb{R} , then by completeness of \mathbb{R} , inf f(E) exists.

Since $g(E) \neq \emptyset$ and g(E) is bounded below in \mathbb{R} , then by completeness of \mathbb{R} , inf g(E) exists.

Since $f(x) \in f(E)$ and $\inf f(E)$ is a lower bound of f(E), then $\inf f(E) \leq f(x)$.

Since $g(x) \in g(E)$ and $\inf g(E)$ is a lower bound of g(E), then $\inf g(E) \leq g(x)$.

Hence, $\inf f(E) + \inf g(E) \le f(x) + g(x)$.

Thus, $\inf f(E) + \inf g(E)$ is a lower bound of f(E) + g(E), so f(E) + g(E) is bounded below in \mathbb{R} .

Since $f(E) + g(E) \neq \emptyset$ and f(E) + g(E) is bounded below in \mathbb{R} , then by completeness of \mathbb{R} , $\inf(f(E) + g(E))$ exists.

Since $\inf(f(E) + g(E))$ is the greatest lower bound of f(E) + g(E) and $\inf f(E) + \inf g(E)$ is a lower bound of f(E) + g(E), then $\inf f(E) + \inf g(E) \leq \inf(f(E) + g(E))$, as desired.

Archimedean ordered fields

Exercise 94. Prove $\sup\{1 - \frac{1}{n} : n \in \mathbb{N}\} = 1$. *Proof.* Let $A = \{1\}$. Then $\sup A = 1$. Let $B = \{\frac{1}{n} : n \in \mathbb{N}\}$. Let $A - B = \{1 - \frac{1}{n} : n \in \mathbb{N}\}$. We must prove $\sup(A - B) = 1$. Since $\inf\{\frac{1}{n} : n \in \mathbb{N}\} = 0$, then $\inf B = 0$. Therefore, $\sup(A - B) = \sup A - \inf B = 1 - 0 = 1$. *Proof.* Let $S = \{1 - \frac{1}{n} : n \in \mathbb{N}\}$. We must prove $1 = \sup S$. We first prove 1 is an upper bound of S.

Since $1 \in \mathbb{N}$ and $1 - \frac{1}{1} = 1 - 1 = 0$, then $0 \in S$, so $S \neq \emptyset$. Let $x \in S$. Then there exists $n \in \mathbb{N}$ such that $x = 1 - \frac{1}{n}$. Since $n \in \mathbb{N}$, then n > 0, so $\frac{1}{n} > 0$. Thus, $\frac{1}{n} > 1 - 1$, so $1 + \frac{1}{n} > 1$. Hence, $1 > 1 - \frac{1}{n}$, so 1 > x. Thus, x < 1 for all $x \in S$, so 1 is an upper bound of S.

To prove 1 is the least upper bound of S, we prove for every $\epsilon > 0$, there exists $x \in S$ such that $x > 1 - \epsilon$.

Let $\epsilon > 0$ be given. By the Archimedean property of \mathbb{R} , there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < \epsilon$.

Thus, $\frac{-1}{n} > -\epsilon$, so $1 - \frac{1}{n} > 1 - \epsilon$. Let $x = 1 - \frac{1}{n}$. Then $x \in S$ and $x > 1 - \epsilon$. Therefore, 1 is the least upper bound of S, so $1 = \sup S$. **Exercise 95.** Let $S = \{\frac{1}{n} - \frac{1}{m} : m, n \in \mathbb{N}\}$. Then $\sup S = 1$ and $\inf S = -1$. Proof. Let $A = \{\frac{1}{n} : n \in \mathbb{N}\}$. Then $\sup A = 1$ and $\inf A = 0$. Let $B = \{\frac{1}{m} : m \in \mathbb{N}\}.$ Then $\sup B = 1$ and $\inf B = 0$. Let $A - B = \{\frac{1}{n} - \frac{1}{m} : m, n \in \mathbb{N}\}.$ We must prove $\sup(A - B) = 1$ and $\inf(A - B) = -1$. Observe that $\sup(A - B) = \sup A - \inf B = 1 - 0 = 1$. Since $\sup(B-A) = \sup B - \inf A = 1 - 0 = 1$, then $\inf(A-B) = -\sup(B - A)$ A) = -1.*Proof.* Since $1 \in \mathbb{N}$ and $\frac{1}{1} - \frac{1}{1} = 1 - 1 = 0$, then $0 \in S$, so $S \neq \emptyset$. Let $x \in S$. Then there exist $m, n \in \mathbb{N}$ such that $x = \frac{1}{n} - \frac{1}{m}$. Since $m, n \in \mathbb{N}$, then $m \ge 1 > 0$ and $n \ge 1 > 0$, so $m \ge 1$ and $n \ge 1$ and m > 0 and n > 0. Since $1 \le m$ and m > 0, then $\frac{1}{m} \le 1$. Since m > 0, then $\frac{1}{m} > 0$. Thus, $0 < \frac{1}{m} \le 1$. Since $1 \le n$ and n > 0, then $\frac{1}{n} \le 1$. Since n > 0, then $\frac{1}{n} > 0$. Thus, $0 < \frac{1}{n} \le 1$. Since $0 < \frac{1}{n} \le 1$ and $0 < \frac{1}{m} \le 1$, then by a previous exercise, we have $|\frac{1}{n} - \frac{1}{m}| \le 1 - 0 = 1$, so $|x| \le 1$. Hence, $-1 \le x \le 1$, so $-1 \le x$ and $x \le 1$. Thus, $-1 \le x$ and $x \le 1$ for all $x \in S$, so $-1 \le x$ for all $x \in S$ and $x \le 1$ for all $x \in S$. Since $x \leq 1$ for all $x \in S$, then 1 is an upper bound of S. Since $-1 \leq x$ for all $x \in S$, then -1 is a lower bound of S. To prove 1 is the least upper bound of S, let $\epsilon > 0$ be given. We must prove there exists $x \in S$ such that $x > 1 - \epsilon$. Since $\epsilon > 0$, then by the Archimedean property of \mathbb{R} , there exists $m \in \mathbb{N}$ such that $\frac{1}{m} < \epsilon$. Let $x = 1 - \frac{1}{m}$. Since $1 \in \mathbb{N}$ and $m \in \mathbb{N}$ and $\frac{1}{1} - \frac{1}{m} = 1 - \frac{1}{m} = x$, then $x \in S$. Since $\frac{1}{m} < \epsilon$, then $\frac{-1}{m} > -\epsilon$, so $1 - \frac{1}{m} > 1 - \epsilon$. Thus, $x > 1 - \epsilon$. Since 1 is an upper bound of S and for every $\epsilon > 0$, there exists $x \in S$ such

that $x > 1 - \epsilon$, then 1 is the least upper bound of S, so $1 = \sup S$.

To prove -1 is the greatest lower bound of S, let $\epsilon > 0$ be given.

We must prove there exists $x \in S$ such that $x < -1 + \epsilon$.

Since $\epsilon > 0$, then by the Archimedean property of \mathbb{R} , there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < \epsilon$. Let $x = \frac{1}{n} - 1$.

Since $1 \in \mathbb{N}$ and $n \in \mathbb{N}$ and $\frac{1}{n} - \frac{1}{1} = \frac{1}{n} - 1 = x$, then $x \in S$. Since $\frac{1}{n} < \epsilon$, then $\frac{1}{n} - 1 < \epsilon - 1$, so $x < \epsilon - 1$.

Thus,
$$x < -1 + \epsilon$$
.

Since -1 is a lower bound of S and for every $\epsilon > 0$, there exists $x \in S$ such that $x < -1 + \epsilon$, then -1 is the greatest lower bound of S, so $-1 = \inf S$.

Exercise 96. Let $S \subset \mathbb{R}$.

Let $B \in \mathbb{R}$.

If $B - \frac{1}{n}$ is not an upper bound of S for all $n \in \mathbb{N}$ and $B + \frac{1}{n}$ is an upper bound of S for all $n \in \mathbb{N}$, then $B = \sup S$.

Proof. Suppose that $B - \frac{1}{n}$ is not an upper bound of S for all $n \in \mathbb{N}$ and $B + \frac{1}{n}$ is an upper bound of S for all $n \in \mathbb{N}$.

We must prove $B = \sup S$.

Since $1 \in \mathbb{N}$, then $B - \frac{1}{1} = B - 1$ is not an upper bound of S.

Hence, there exists $s \in S$ such that s > B - 1.

Suppose s > B.

Then s - B > 0.

By the Archimedean property of \mathbb{R} , there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < s - B$, so $B + \frac{1}{n} < s$.

Since $n \in \mathbb{N}$, then $B + \frac{1}{n}$ is an upper bound of S. But, $s \in S$ and $s > B + \frac{1}{n}$ contradicts the fact that $B + \frac{1}{n}$ is an upper bound of S.

Hence, there does not exist $s \in S$ such that s > B.

Therefore, for every $s \in S$, we have $s \leq B$, so B is an upper bound of S.

To prove B is the least upper bound of S, let $\epsilon > 0$ be given.

We must prove there exists $x \in S$ such that $x > B - \epsilon$.

Since $\epsilon > 0$, then by the Archimedean property of \mathbb{R} , there exists $m \in \mathbb{N}$ Since $\epsilon > 0$, then s_j and $\frac{1}{m} < \epsilon$. such that $\frac{1}{m} < \epsilon$. Hence, $\frac{-1}{m} > -\epsilon$, so $B - \frac{1}{m} > B - \epsilon$. Since $m \in \mathbb{N}$, then $B - \frac{1}{m}$ is not an upper bound of S. Thus, there exists $x \in S$ such that $x > B - \frac{1}{m}$. Since $x > B - \frac{1}{m}$ and $B - \frac{1}{m} > B - \epsilon$, then $x > B - \epsilon$. The force for every $\epsilon > 0$ there exists $x \in S$ such that ϵ

Therefore, for every $\epsilon > 0$ there exists $x \in S$ such that $x > B - \epsilon$.

Since B is an upper bound of S and for every $\epsilon > 0$ there exists $x \in S$ such that $x > B - \epsilon$, then $B = \sup S$.

Exercise 97. For every rational number $\epsilon > 0$, there exists a nonnegative rational number x such that $x^2 < 2 < (x + \epsilon)^2$.

Proof. Let $\epsilon > 0$ be rational.

Suppose for the sake of contradiction there does not exist a nonnegative rational number x such that $x^2 < 2 < (x + \epsilon)^2$.

Then for every nonnegative rational number x, if $x^2 < 2$, then $(x + \epsilon)^2 \le 2$. Let x be a nonnegative rational number such that $x^2 < 2$. Then $(x + \epsilon)^2 \le 2$. Since $x, \epsilon \in \mathbb{Q}$, then $x + \epsilon \in \mathbb{Q}$, so $(x + \epsilon)^2 \in \mathbb{Q}$. Since there is no rational number whose square is two, then $(x + \epsilon)^2 \ne 2$, so $(x + \epsilon)^2 < 2$. Therefore, for every nonnegative rational number x, if $x^2 < 2$, then $(x + \epsilon)^2 < 2$. Thus, for x = 0, we have $0^2 = 0 < 2$, so $(0 + \epsilon)^2 < 2$. Hence, $\epsilon^2 < 2$.

We prove $(n\epsilon)^2 < 2$ for all $n \in \mathbb{N}$ by induction on n. **Basis:** Since $(1\epsilon)^2 = \epsilon^2 < 2$, then the statement holds for n = 1. **Induction:** Let $k \in \mathbb{N}$ such that $(k\epsilon)^2 < 2$. Since $k\epsilon \in \mathbb{Q}$ and $k\epsilon > 0$ and $(k\epsilon)^2 < 2$, then $(k\epsilon + \epsilon)^2 < 2$. Thus, $((k+1)\epsilon)^2 < 2$. Therefore, by PMI, $(n\epsilon)^2 < 2$ for all $n \in \mathbb{N}$.

Since $\frac{2}{\epsilon} \in \mathbb{R}$ and \mathbb{N} is unbounded in \mathbb{R} , then there exists $N \in \mathbb{N}$ such that $N > \frac{2}{\epsilon}$.

Thus, $N\epsilon > 2$, so $(N\epsilon)^2 > 4 > 2$. Hence, $(N\epsilon)^2 > 2$. Therefore, there exists $N \in \mathbb{N}$ such that $(N\epsilon)^2 > 2$. This contradicts the statement $(n\epsilon)^2 < 2$ for all $n \in \mathbb{N}$. Thus, there does exist a nonnegative rational number x such that $x^2 < 2 < (x + \epsilon)^2$, as desired.

Exercise 98. Given the statement $(\forall \epsilon > 0)(\exists n \in \mathbb{N})(\frac{1}{n} < \epsilon)$, prove that \mathbb{N} has no upper bound in \mathbb{R} .

Proof. To prove N has no upper bound in \mathbb{R} , we must prove for each $r \in \mathbb{R}$ there exists $n \in \mathbb{N}$ such that n > r. Let $r \in \mathbb{R}$. Then either r > 0 or $r \leq 0$. We consider these cases separately. **Case 1:** Suppose $r \leq 0$. Since 1 > 0 and $0 \geq r$, then 1 > r. Therefore, 1 is a natural number and 1 > r, as desired. **Case 2:** Suppose r > 0. Then $\frac{1}{r} > 0$. Thus, there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < \frac{1}{r}$. Since $\frac{1}{n} < \frac{1}{r}$, then $\frac{1}{r} - \frac{1}{n} > 0$, so $\frac{n-r}{rn} > 0$. Since *n* and *r* are positive, then *rn* is positive. We multiply by *rn* to get n - r > 0. Thus, n > r. Therefore, there is a natural number *n* such that n > r, as desired.

Exercise 99. Assume \mathbb{N} has no upper bound in \mathbb{R} .

Prove: 1. $(\forall r \in \mathbb{R})(\exists n \in \mathbb{N})(n > r).$ 2. $(\forall a \in \mathbb{R}, b > 0)(\exists n \in \mathbb{N})(nb > a).$

3. $(\forall \epsilon > 0)(\exists n \in \mathbb{N})(\frac{1}{n} < \epsilon).$

Proof. Since \mathbb{N} has no upper bound in \mathbb{R} , then the statement there is $r \in \mathbb{R}$ such that $n \leq r$ for all $n \in \mathbb{N}$ is false.

Therefore, the statement for all $r \in \mathbb{R}$ there is $n \in \mathbb{N}$ such that n > r is true. Let $a \in \mathbb{R}$ and b > 0. We must prove there is a natural number n such that nb > a. Since $a \in \mathbb{R}$ and $b \in \mathbb{R}$ and $b \neq 0$, then $\frac{a}{b} \in \mathbb{R}$. Hence, there is a natural number n such that $n > \frac{a}{b}$. Since b > 0, then nb > a. Therefore, there is a natural number n for which nb > a, as desired. Let $\epsilon > 0$. Then $\frac{1}{\epsilon} > 0$. We must prove there is a natural number n such that $\frac{1}{n} < \epsilon$. Since $\frac{1}{\epsilon} \in \mathbb{R}$, then there is a natural number n such that $n > \frac{1}{\epsilon}$. Since $n > \frac{1}{\epsilon}$ and $\epsilon > 0$, then $n\epsilon > 1$. Since n > 0, then $\epsilon > \frac{1}{n}$. Therefore, there is a natural number n for which $\frac{1}{n} < \epsilon$, as desired.

Exercise 100. Analyze boundedness of \mathbb{N} .

Solution. By the Archimedean property of \mathbb{N} in \mathbb{R} the set \mathbb{N} has no upper bound in \mathbb{R} .

Since there is no upper bound of \mathbb{N} , then there can be no greatest element of \mathbb{N} in \mathbb{R} .

Therefore, $\max \mathbb{N}$ does not exist in \mathbb{R} .

Since there is no upper bound of \mathbb{N} in \mathbb{R} , then there can be no least upper bound of \mathbb{N} in \mathbb{R} .

Therefore, $\sup \mathbb{N}$ does not exist in \mathbb{R} .

Since $1 \in \mathbb{N}$ and $1 \leq n$ for all $n \in \mathbb{N}$, then 1 is the least element of \mathbb{N} . Hence, $\min \mathbb{N} = 1$. The set \mathbb{N} has many lower bounds in \mathbb{R} . For example, -3 is a lower bound of \mathbb{N} . Let $n \in \mathbb{N}$. Then $n \geq 1$. Since $-3 \leq 1$ and $1 \leq n$, then $-3 \leq n$.

Hence, since $-3 \leq n$ for all $n \in \mathbb{N}$.

Therefore, -3 is a lower bound of \mathbb{N} . We prove $\inf \mathbb{N} = 1$. Since $1 \leq n$ for all $n \in \mathbb{N}$, then 1 is a lower bound of \mathbb{N} in \mathbb{R} . Let $\epsilon > 0$ be given. To prove 1 is the greatest lower bound, we must find $n \in \mathbb{N}$ such that $n < 1 + \epsilon$. Take n = 1. Clearly, $n \in \mathbb{N}$. Since $0 < \epsilon$, then $1 < 1 + \epsilon$. Hence, $n < 1 + \epsilon$, as desired. Therefore, $1 = \inf \mathbb{N}$. **Exercise 101.** Analyze boundedness of \mathbb{Z} . **Solution.** The set of integers \mathbb{Z} is unbounded above in \mathbb{R} . To prove \mathbb{Z} has no upper bound in \mathbb{R} , we prove for all $r \in \mathbb{R}$ there exists $n \in \mathbb{Z}$ such that n > r. Let $r \in \mathbb{R}$. By the Archimedean property of \mathbb{R} , there exists $n \in \mathbb{N}$ such that n > r. Since $n \in \mathbb{N}$ and $\mathbb{N} \subset \mathbb{Z}$, then $n \in \mathbb{Z}$. Hence, there exists an integer n greater than r. Therefore, \mathbb{Z} has no upper bound in \mathbb{R} , so \mathbb{Z} is unbounded above in \mathbb{R} . Since there is no upper bound of \mathbb{Z} , then there can be no greatest element of \mathbb{Z} . Therefore, $\max \mathbb{Z}$ does not exist in \mathbb{R} . Since there is no upper bound of \mathbb{Z} in \mathbb{R} , then there can be no least upper bound of \mathbb{Z} in \mathbb{R} . Therefore, $\sup \mathbb{Z}$ does not exist in \mathbb{R} . To prove \mathbb{Z} has no lower bound in \mathbb{R} , we prove for every $r \in \mathbb{R}$ there exists

 $n \in \mathbb{Z}$ such that n < r. Let $r \in \mathbb{R}$. Either r > 0 or r < 0. We consider these cases separately. Case 1: Suppose r > 0. Since -1 is an integer and -1 < 0 < r, then -1 < r. Hence, there exists an integer less than r. Case 2: Suppose r < 0. Then -r > 0. Since $-r \in \mathbb{R}$, then by the Archimedean property, there exists $n \in \mathbb{N}$ such that n > -r. We multiply by -1 to get -n < r. Since $n \in \mathbb{N}$ and $\mathbb{N} \subset \mathbb{Z}$, then $n \in \mathbb{Z}$. Hence, $-n \in \mathbb{Z}$. Thus, there exists an integer less than r. Hence, in all cases, there exists an integer less than r. Therefore, there is no lower bound of \mathbb{Z} in \mathbb{R} .

Since there is no lower bound of \mathbb{Z} in \mathbb{R} , then there can be no least element of \mathbb{Z} .

Therefore, $\min \mathbb{Z}$ does not exist in \mathbb{R} .

Since there is no lower bound of \mathbb{Z} in \mathbb{R} , then there can be no greatest lower bound of \mathbb{Z} in \mathbb{R} .

Therefore, $\inf \mathbb{Z}$ does not exist in \mathbb{R} .

Exercise 102. There is no smallest positive rational number.

Proof. We prove by contradiction.

Suppose there is a smallest positive rational number. Let m be a smallest positive rational number. Then $m \in \mathbb{Q}$ and m > 0 and $m \le q$ for every positive rational number q. Since $m \in \mathbb{Q}$, then $\frac{m}{2} \in \mathbb{Q}$. Since m > 0, then $\frac{m}{2} > 0$. Since $\frac{m}{2} \in \mathbb{Q}$ and $\frac{m}{2} > 0$, then $\frac{m}{2}$ is a positive rational number. Since 0 < m, then m < 2m, so $\frac{m}{2} < m$. Thus, there exists a positive rational number $\frac{m}{2}$ such that $m > \frac{m}{2}$. This contradicts the fact that $m \le q$ for every positive rational number q. Therefore, there is no smallest positive rational number.

Exercise 103. There is no smallest positive real number.

Solution. If *s* is a smallest positive real number, then half of *s* is even smaller. This implies *s* cannot be the smallest positive real number. \Box

Proof. Suppose there is a smallest positive real number. Then there exists a positive real number s such that $s \leq x$ for all $x \in \mathbb{R}$. Since s is a positive real number, then $s \in \mathbb{R}$ and s > 0. Since 0 < s, then s < 2s, so $\frac{s}{2} < s$. Since $s \in \mathbb{R}$, then $\frac{s}{2} \in \mathbb{R}$. Hence, there exists $\frac{s}{2} \in \mathbb{R}$ such that $s > \frac{s}{2}$. This contradicts the fact that $s \leq x$ for all $x \in \mathbb{R}$. Therefore, there is no smallest positive real number.

Exercise 104. Disprove the assertion that there is a positive real number that is smaller than all positive rational numbers.

Solution. The assertion states there exists a real number r > 0 such that r < q for all $q \in \mathbb{Q}^+$.

In symbols this is: $(\exists r > 0)(\forall q \in \mathbb{Q}^+)(r < q).$ The negation is: $(\forall r > 0)(\exists q \in \mathbb{Q}^+)(r \ge q).$ Therefore, to disprove the assertion we must prove its negation. *Proof.* Suppose there is a positive real number that is smaller than all positive rational numbers.

Let r be some positive real number that is smaller than all positive rational numbers.

Then $r \in \mathbb{R}$ and r > 0 and r < q for all positive rational q.

Since r > 0, then $\frac{1}{r} > 0$, so by the Archimedean property of \mathbb{R} , there is $n \in \mathbb{N}$ such that $n > \frac{1}{r}$.

Hence, $r > \frac{1}{n}$, so $\frac{1}{n}$ is a positive rational number such that $r > \frac{1}{n}$.

This contradicts the fact that r is smaller than all positive rational numbers. Therefore, there is no positive real number that is smaller than all positive rational numbers.

Proof. Let r be a positive real number.

To disprove the assertion, we must prove there exists $q \in \mathbb{Q}^+$ such that $r \ge q$. Since r > 0, then by the Archimedean property of \mathbb{R} , there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < r$.

that $\frac{1}{n} < r$. Since $\frac{1}{n} < r$, then $\frac{1}{n} \le r$, so $r \ge \frac{1}{n}$. Since $\frac{1}{n}$ is a positive rational number, let $q = \frac{1}{n}$. Then $r \ge q$, as desired.

Lemma 105. For all $n \in \mathbb{N}$, $2^n > n$.

Proof. We prove by induction on n. Let $S = \{n \in \mathbb{N} : 2^n > n\}$. **Basis:** Since $1 \in \mathbb{N}$ and $2^1 = 2 > 1$, then $1 \in S$. **Induction:** Suppose $k \in S$. Then $k \in \mathbb{N}$ and $2^k > k$. Since $k \in \mathbb{N}$, then $k \ge 1$ and $k + 1 \in \mathbb{N}$. Since $2^{k+1} = 2^k \cdot 2 > 2k = k + k \ge k + 1$, then $2^{k+1} > k + 1$. Since $k + 1 \in \mathbb{N}$ and $2^{k+1} > k + 1$, then $k + 1 \in S$. Thus, by induction, $k \in S$ implies $k + 1 \in S$, so $S = \mathbb{N}$. Therefore, $2^n > n$ for all $n \in \mathbb{N}$.

Exercise 106. Let x > 0.

Then there exists $n \in \mathbb{N}$ such that $2^n > \frac{1}{x}$.

Proof. Since x > 0, then $\frac{1}{x} > 0$. By the Archimedean property of \mathbb{R} , there exists $n \in \mathbb{N}$ such that $n > \frac{1}{x}$. Since $2^n > n$ for all $n \in \mathbb{N}$, then $2^n > n$. Thus, we have $2^n > n > \frac{1}{x}$, so $2^n > \frac{1}{x}$. Therefore, there exists $n \in \mathbb{N}$ such that $2^n > \frac{1}{x}$.

Exercise 107. Let
$$\epsilon > 0$$
.

Let $x, y \in \mathbb{R}$ such that x < y. Then there exists $q \in \mathbb{Q}$ such that $x < q\epsilon < y$. (Therefore, the set $\{q\epsilon : q \in \mathbb{Q}\}$ is dense in \mathbb{R}). *Proof.* Since x < y and $\epsilon > 0$, then $\frac{x}{\epsilon} < \frac{y}{\epsilon}$. Since \mathbb{Q} is dense in \mathbb{R} , then there exists $q \in \mathbb{Q}$ such that $\frac{x}{\epsilon} < q < \frac{y}{\epsilon}$. Since $\epsilon > 0$, then $x < q\epsilon < y$. Therefore, there exists $q \in \mathbb{Q}$ such that $x < q\epsilon < y$. **Exercise 108.** Let $t \in \mathbb{R}$ and $t \neq 0$. Let $S = \{qt : q \in \mathbb{Q}\}.$ Then S is dense in \mathbb{R} . *Proof.* To prove S is dense in \mathbb{R} , let $a, b \in \mathbb{R}$ with a < b. We must prove there exists $s \in S$ such that a < s < b. Since $t \neq 0$, then either t > 0 or t < 0. We consider these two cases separately. Case 1: Suppose t > 0. Since a < b, then $\frac{a}{t} < \frac{b}{t}$. Since \mathbb{Q} is dense in \mathbb{R} , then there exists $q \in \mathbb{Q}$ such that $\frac{a}{t} < q < \frac{b}{t}$, so a < qt < b.Let s = qt. Since $q \in \mathbb{Q}$, then $s \in S$, so a < s < b. Hence, there exists $s \in S$ such that a < s < b. Case 2: Suppose t < 0. Then -t > 0. Since a < b, then $\frac{a}{-t} < \frac{b}{-t}$. Since \mathbb{Q} is dense in \mathbb{R} , then there exists $q \in \mathbb{Q}$ such that $\frac{a}{-t} < q < \frac{b}{-t}$, so a < -qt < b. Let s = -qt. Since $q \in \mathbb{Q}$, then $-q \in \mathbb{Q}$, so $s \in S$. Thus, a < s < b. Hence, there exists $s \in S$ such that a < s < b. Therefore, in all cases, there exists $s \in S$ such that a < s < b, as desired. \Box

Existence of square roots in \mathbb{R}

Exercise 109. Let $x, y \in \mathbb{R}$. If $0 \le x < y$, then $0 \le \sqrt{x} < \sqrt{y}$.

Proof. Suppose $0 \le x < y$. Then $0 \le x$ and x < y. Since $x \ge 0$, then either x > 0 or x = 0. We consider these cases separately. **Case 1:** Suppose x > 0. Since 0 < x and x < y, then 0 < x < y. Hence, $0 < \sqrt{x} < \sqrt{y}$. **Case 2:** Suppose x = 0. Since y > x and x = 0, then y > 0, so $\sqrt{y} > 0$. Since $\sqrt{x} = \sqrt{0} = 0$ and $0 < \sqrt{y}$, then $\sqrt{x} = 0 < \sqrt{y}$. Therefore, $0 = \sqrt{x} < \sqrt{y}$.

Exercise 110. Let $a, b \in \mathbb{R}$. If 0 < a < b, then $a < \sqrt{ab} < b$. *Proof.* Suppose 0 < a < b. Then 0 < a and a < b, so 0 < b. Since a > 0 and b > 0, then ab > 0. Since a < b an b > 0, then $ab < b^2$. Thus, 0 < ab and $ab < b^2$, so $0 < ab < b^2$. Therefore, $0 < \sqrt{ab} < \sqrt{b^2} = |b| = b$, so $0 < \sqrt{ab} < b$, as desired. Exercise 111. another proof of triangle inequality Let $a, b \in \mathbb{R}$. Then $|a + b| \le |a| + |b|$. $\begin{array}{l} \textit{Proof. Since } ab \leq |ab| = |a||b|, \, \text{then } 2ab \leq 2|a||b|.\\ \text{Since } 0 \leq (a+b)^2 = a^2 + 2ab + b^2 \leq a^2 + 2|a||b| + b^2 = |a|^2 + 2|a||b| + |b|^2 = (|a|+|b|)^2, \, \text{then } 0 \leq (a+b)^2 \leq (|a|+|b|)^2, \, \text{so } 0 \leq |a+b| \leq ||a|+|b|| = |a|+|b|. \end{array}$ Therefore, $|a+b| \le |a|+|b|$. Lemma 112. Let $a, b \in \mathbb{R}$. Then $2ab \le a^2 + b^2$ and $ab \le (\frac{a+b}{2})^2$. Furthermore, if a = b, then $2ab = a^2 + b^2$ and $ab = (\frac{a+b}{2})^2$. Proof. We first prove $2ab \le a^2 + b^2$. Since $0 \le (a-b)^2 = a^2 - 2ab + b^2$, then $2ab \le a^2 + b^2$. Suppose a = b. Then $2ab = 2a^2 = a^2 + a^2 = a^2 + b^2$. We next prove $ab \leq (\frac{a+b}{2})^2$. Since $2ab \le a^2 + b^2$, then $4ab \le a^2 + 2ab + b^2 = (a+b)^2$, so $ab \le \frac{(a+b)^2}{4} = ab^2$ $(\frac{a+b}{2})^2.$ Suppose a = b. Then $ab = a^2 = (\frac{2a}{2})^2 = (\frac{a+a}{2})^2 = (\frac{a+b}{2})^2$. Proposition 113. arithmetic-geometric mean inequality Let $a, b \in \mathbb{R}$. If $a \ge 0$ and $b \ge 0$, then $\sqrt{ab} \le \frac{a+b}{2}$. Furthermore, if a = b, then $\sqrt{ab} = \frac{a+b}{2}$. *Proof.* Suppose $a \ge 0$ and $b \ge 0$. Then $\sqrt{a} \ge 0$ and $\sqrt{b} \ge 0$, so $(\sqrt{a} - \sqrt{b})^2 \ge 0$. Thus, $0 \le (\sqrt{a} - \sqrt{b})^2 = (\sqrt{a})^2 - 2\sqrt{a}\sqrt{b} + (\sqrt{b})^2 = a - 2\sqrt{ab} + b$, so $0 \le a - 2\sqrt{ab} + b.$ Hence, $2\sqrt{ab} \le a+b$, so $\sqrt{ab} \le \frac{a+b}{2}$.

Suppose a = b

Then
$$\sqrt{ab} = \sqrt{a^2} = |a| = a = \frac{2a}{2} = \frac{a+a}{2} = \frac{a+b}{2}$$
.

Proof. Here is an alternate proof based on the previous lemma.

Since $a \ge 0$ and $b \ge 0$, then $ab \ge 0$ and $a + b \ge 0$.

Thus, $0 \le ab \le (\frac{a+b}{2})^2$, so $\sqrt{ab} \le |\frac{a+b}{2}| = \frac{|a+b|}{2} = \frac{a+b}{2}$.

Corollary 114. Let $a, b \in \mathbb{R}$. If a > 0 and b > 0, then $\frac{2ab}{a+b} \le \sqrt{ab}$. Furthermore, if a = b, then $\frac{2ab}{a+b} = \sqrt{ab}$.

Solution. We call the expression $\frac{2ab}{a+b}$ the **harmonic mean of** a **and** b. Thus, if a > 0 and b > 0, then $\frac{2ab}{a+b} \le \sqrt{ab} \le \frac{a+b}{2}$. Therefore, for any positive real numbers a and b, the harmonic mean is

smaller than the geometric mean which is smaller than the arithmetic mean of a and b.

Proof. Suppose a > 0 and b > 0.

Then $a + \underline{b} > 0$ and ab > 0, so $\sqrt{ab} > 0$. Hence, $\frac{2\sqrt{ab}}{a+b} > 0$. Since $\sqrt{ab} \leq \frac{a+b}{2}$, then $\frac{2ab}{a+b} = \frac{2(\sqrt{ab})^2}{a+b} = \frac{2\sqrt{ab}}{a+b} \cdot \sqrt{ab} \leq \frac{2\sqrt{ab}}{a+b} \cdot \frac{a+b}{2} = \sqrt{ab}$. Suppose a = b. Then $\frac{2ab}{a+b} = \frac{2a^2}{2a} = a = (\sqrt{a})^2 = \sqrt{a}\sqrt{a} = \sqrt{aa} = \sqrt{ab}.$

Exercise 115. Given 400 meters of fence, the largest rectangular area that can fence in from three sides along a straight river using the river as the fourth side is $100 \ge 200$ meters.

Proof. Let the rectangular fence be composed of two smaller equal sized rectangular pieces such that each rectangular piece of the fence has length l and width w.

Then the dimension of the rectangular fence is 2l by w.

The perimeter of the fence is 400 = 2l + 2w = 2(l+w), so 200 = l+w. Since l > 0 and w > 0, then by AGM, $0 < \sqrt{lw} \le \frac{l+w}{2}$, so $lw \le (\frac{l+w}{2})^2$.

The maximum area occurs when each smaller rectangle piece is a square, so l = w.

Thus, the maximum area is $lw = ww = w^2 = (\frac{l+w}{2})^2 = (\frac{200}{2})^2 = 100^2$, so $w^2 = 100^2$.

Hence, w = 100 and l = 100.

Therefore, the fence has dimensions 200 by 100.

Exercise 116. Let $c \in \mathbb{R}$ with c > 0.

Then the function given by f(x) = x(c-x) is maximized when $x = \frac{c}{2}$. Suppose a > 0.

What value of x will maximize x(c-ax)?

Proof. Let $f: [0, c] \to \mathbb{R}$ be the function defined by f(x) = x(c - x). To prove f is maximized when $x = \frac{c}{2}$, we must prove $f(x) \leq f(\frac{c}{2})$ for every

 $x \in dom f.$ Let $x \in dom f = [0, c]$. Then $0 \le x \le c$, so $0 \le x$ and $x \le c$. Since $x \leq c$, then $0 \leq c - x$. Since $x \ge 0$ and $c - x \ge 0$, then by AGM, $\sqrt{x(c-x)} \le \frac{x+(c-x)}{2} = \frac{c}{2}$. Since $0 \le \sqrt{x(c-x)} \le \frac{c}{2}$, then $f(x) = x(c-x) \le (\frac{c}{2})^2 = \frac{c}{2} \cdot \frac{c}{2} = \frac{c}{2}(c-\frac{c}{2}) = \frac{c}{2}(c-\frac{c}{2})$ $f(\frac{c}{2})$, so $f(x) \leq f(\frac{c}{2})$, as desired.

Solution. Suppose a > 0.

Let g be a real valued function defined by g(x) = x(c - ax). We must find a value of x that will maximize g. Observe that $g(x) = xc - ax^2 = ax(\frac{c}{a} - x).$ Let *h* be a real valued function defined by $h(x) = x(\frac{c}{a} - x)$. Then $q(x) = a \cdot h(x)$. Since a is a constant scalar, then q is maximized when h is maximized. Since a > 0 and c > 0, then $\frac{c}{a} > 0$, so h is maximized when $x = \frac{c/a}{2} = \frac{c}{2a}$. Therefore, g is maximized when $x = \frac{c}{2a}$.

Exercise 117. Let $x, y, z \in \mathbb{R}$ such that $x \ge 0$ and $y \ge 0$ and $z \ge 0$ and $y+z \ge 2.$ Then (

Then
$$(x + y + z)^2 \ge 4x + 4yz$$
.

Proof. Since $y \ge 0$ and $z \ge 0$, then by AGM, $\sqrt{yz} \le \frac{y+z}{2}$.

Since $0 \le \sqrt{yz} \le \frac{y+z}{2}$, then $yz \le \frac{(y+z)^2}{4}$, so $4yz \le (y+z)^2$. Hence, $(y+z)^2 \ge 4yz$. Since $y + z \ge 2$ and $x \ge 0$, then $2x(y + z) \ge 4x$. Since $x^2 \ge 0$, then $x^2 + 2x(y + z) \ge 4x$. Observe that

$$(x + y + z)^{2} = [x + (y + z)]^{2}$$

= $x^{2} + 2x(y + z) + (y + z)^{2}$
 $\geq x^{2} + 2x(y + z) + 4yz$
 $\geq 4x + 4yz.$

Therefore, $(x + y + z)^2 > 4x + 4yz$.

Exercise 118. Let $x, y, u, v \in \mathbb{R}$. Then $(xu + yv)^2 \le (x^2 + y^2)(u^2 + v^2)$.

Proof. Since $(xv)^2 \ge 0$ and $(yu)^2 \ge 0$, then by AGM, |xuyv| = |xvyu| =
$$\begin{split} \sqrt{(xvyu)^2} &= \sqrt{(xv)^2(yu)^2} \le \frac{(xv)^2 + (yu)^2}{2}, \text{ so } 2|xuyv| \le (xv)^2 + (yu)^2.\\ \text{Hence, } (xu)^2 + 2|xuyv| + (yv)^2 \le (xu)^2 + (xv)^2 + (yu)^2 + (yv)^2, \text{ so } |xu|^2 + 2|xuyv| + |yv|^2 \le x^2u^2 + x^2v^2 + y^2u^2 + y^2v^2. \end{split}$$
Thus, $(|xu| + |yv|)^2 \le (x^2 + y^2)(u^2 + v^2).$

Since $0 \le |xu+yv| \le |xu|+|yv|$, then $(xu+yv)^2 = |xu+yv|^2 \le (|xu|+|yv|)^2$. Since $(xu+yv)^2 \le (|xu|+|yv|)^2$ and $(|xu|+|yv|)^2 \le (x^2+y^2)(u^2+v^2)$, then $(xu+yv)^2 \le (x^2+y^2)(u^2+v^2)$, as desired.

Proposition 119. generalized arithmetic-geometric mean inequality

Let $n \in \mathbb{Z}^+$. Let $a_1, a_2, ..., a_n \in \mathbb{R}^+$. Then $\sqrt[n]{a_1 a_2 \cdots a_n} \leq \frac{1}{n} \sum_{k=1}^n a_k$.

Proof. We prove by induction on n.

Exercise 120. If x is irrational, then x + y is irrational for all $y \in \mathbb{Q}$.

Proof. We prove by contrapositive.

Suppose there exists $y \in \mathbb{Q}$ such that x + y is rational. Since x + y is rational, then $x + y \in \mathbb{Q}$. Since \mathbb{Q} is closed under subtraction and $x + y \in \mathbb{Q}$ and $y \in \mathbb{Q}$, then $(x + y) - y \in \mathbb{Q}$.

Therefore, $x \in \mathbb{Q}$, so x is rational, as desired. \Box

Exercise 121. The number $\sqrt{3}$ is irrational.

Proof. Suppose for the sake of contradiction that $\sqrt{3}$ is not irrational.

Then $\sqrt{3}$ is rational, so there are integers a and b for which

$$\sqrt{3} = \frac{a}{b}.\tag{1}$$

Let this fraction be reduced to lowest terms.

This means, in particular, that a and b are not both multiples of 3, for if they were, the fraction could be further reduced by factoring the 3's from the numerator and denominator and canceling.

Since $3 = (\frac{a}{b})^2 = \frac{a^2}{b^2}$, then $a^2 = 3b^2$, so a^2 is a multiple of 3. Thus, 3 divides a^2 .

Since $3|a^2$ and 3 is prime, then by Euclid's lemma, 3|a, so a is a multiple of 3.

Hence, a = 3k for some integer k. Thus, $3b^2 = (3k)^2 = 9k^2$, so $b^2 = 3k^2$. Therefore, b^2 is a multiple of 3, so $3|b^2$.

Since $3|b^2$ and 3 is prime, then by Euclid's lemma, 3|b, so b is a multiple of 3.

Hence, a and b are both multiples of 3 which contradicts the assumption a and b are not both multiples of 3.

Therefore, $\sqrt{3}$ is irrational.

Proof. Suppose for the sake of contradiction that $\sqrt{3}$ is not irrational.

Then $\sqrt{3}$ is rational, so there are integers a and b for which

$$\sqrt{3} = \frac{a}{b}.\tag{2}$$

Let this fraction be reduced to lowest terms.

This means, in particular, that a and b are not both even, for if they were, the fraction could be further reduced by factoring the 2's from the numerator and denominator and canceling.

Squaring both sides of Equation 2 we get

$$a^2 = 3b^2. aga{3}$$

Either b is even or b is odd.

We consider these two cases separately.

Case 1: Suppose b is even.

Since a and b are not both even and b is even, then it immediately follows that a is odd.

Since b is even, then there is an integer c for which b = 2c.

Substituting this into Equation 3 we get $a^2 = 3(2c)^2 = 12c^2 = 2(6c^2)$.

Thus a^2 is even, and therefore *a* is even.

But we previously deduced that a is odd, so we now have a contradiction a is even and a is odd.

Thus b cannot be even.

Case 2: Suppose b is odd.

Then there is an integer c for which b = 2c + 1.

Substituting this into Equation 3 we get $a^2 = 3(2c+1)^2 = 3(4c^2+4c+1) = 12c^2 + 12c + 3 = 2(6c^2+6c+1) + 1.$

Therefore a^2 is odd, and consequently a is odd.

This implies there is an integer d for which a = 2d + 1. Substituting into Equation 3 we get

$$(2d+1)^2 = 3(2c+1)^2$$

$$4d^2 + 4d + 1 = 3(4c^2 + 4c + 1)$$

$$4d^2 + 4d + 1 = 12c^2 + 12c + 3$$

$$4d^2 + 4d - 12c^2 - 12c = 2$$

$$2d^2 + 2d - 6c^2 - 6c = 1$$

$$2(d^2 + d - 3c^2 - 3c) = 1$$

Since $d^2 + d - 3c^2 - 3c \in \mathbb{Z}$ then the last equation means that 1 is even, a contradiction.

Both cases show that a contradiction results when we assume that $\sqrt{3}$ is rational. Thus $\sqrt{3}$ must be irrational.

Exercise 122. The number $\sqrt[3]{2}$ is irrational.

Proof. We prove by contradiction.

Suppose $\sqrt[3]{2}$ is rational.

Then there exist integers a, b with $b \neq 0$ such that $\sqrt[3]{2} = \frac{a}{b}$.

We may assume $\frac{a}{b}$ is in lowest terms; that is, we assume gcd(a, b) = 1.

Observe that $(\frac{a}{b})^3 = 2$, so $a^3 = 2b^3$. Since $b^3 \in \mathbb{Z}$ and $a^3 = 2b^3$, then a^3 is even. Thus, a is even, so there exists an integer k such that a = 2k. Thus, $2b^3 = (2k)^3 = 8k^3$, so $b^3 = 4k^3 = 2(2k^3)$. Since $2k^3 \in \mathbb{Z}$ and $b^3 = 2(2k^3)$, then b^3 is even. Thus, b is even, so there exists an integer m such that b = 2m. Since a = 2k and b = 2m, then 2|a and 2|b, so 2 is a common divisor of a and b.

By definition of gcd, any common divisor of a and b divides gcd(a, b). Hence, 2|1, a contradiction. Therefore, $\sqrt[3]{2}$ is irrational.

Proof. Suppose $\sqrt[3]{2}$ is rational.

Then there are integers a and b for which $\sqrt[3]{2} = \frac{a}{b}$.

Let this fraction be fully reduced. In particular, this means a and b are not both even, for if they were, the fraction could be further reduced by factoring the 2's from the numerator and denominator and canceling.

Cubing gives $2 = \frac{a^3}{b^3}$ and therefore $a^3 = 2b^3$.

Thus a^3 is even. It follows that a is even since we proved proposition (which implies that its contrapositive is true, namely, that if x^3 is even, then x is even).

Since a is even and a and b are not both even, then it follows that b is not even, ie, b is odd.

Since a is even, then there is some integer c for which a = 2c. Then $(2c)^3 = 2b^3$. Dividing by 2 gives $4c^3 = b^3$. Since $4c^3 = 2(2c^3)$ then b^3 is even and it follows that b is even. But we previously deduced that b is odd.

Thus we have a contradiction that b is even and b is odd.

Exercise 123. The number $\sqrt[3]{3}$ is irrational.

Proof. We prove by contradiction.

Suppose $\sqrt[3]{3}$ is not irrational.

Then $\sqrt[3]{3}$ is rational, so there exist integers m and n with $n \neq 0$ such that $\frac{m}{n} = \sqrt[3]{3}.$

Assume $\frac{m}{n}$ is in lowest terms, so that gcd(m, n) = 1.

Since $\frac{m}{n} = \sqrt[3]{3}$, then $m^3 = 3n^3$. Since $n^3 \in \mathbb{Z}$ and $m^3 = 3n^3$, then $3|m^3$.

Since 3 is prime and $3|m \cdot m \cdot m$, then by corollary to Euclid's lemma, 3|m. Thus, there exists an integer k such that m = 3k, so $3n^3 = m^3 = (3k)^3 =$ $27k^3$, so $n^3 = 9k^3$.

Since k^3 is an integer and $n^3 = 9k^3$, then $9|n^3$.

Since 3|9 and 9| n^3 , then by transitivity of the divides relation, $3|n^3$.

Since 3 is prime and $3|n \cdot n \cdot n$, then by corollary to Euclid's lemma, 3|n.

Since 3|m and 3|n, then 3 is a common divisor of m and n.

Since 1 is the greatest common divisor of m and n, then any positive integer that is a common divisor of m and n must be less than or equal to 1.

Since 3 is a positive common divisor of m and n, then $3 \leq 1$, a contradiction. Therefore, $\sqrt[3]{3}$ is rational.

Exercise 124. For any real number x, either $\sqrt{2} + x$ or $\sqrt{2} - x$ is irrational.

Proof. Suppose for the sake of contradiction that there is a real number x such that $\sqrt{2} + x$ is rational and $\sqrt{2} - x$ is rational.

Thus, $\sqrt{2} + x \in \mathbb{Q}$ and $\sqrt{2} - x \in \mathbb{Q}$.

By closure of \mathbb{Q} under addition, we have $(\sqrt{2}+x)+(\sqrt{2}-x) \in \mathbb{Q}$, so $2\sqrt{2} \in \mathbb{Q}$. Since 2 is rational and $\sqrt{2}$ is irrational, then the product $2\sqrt{2}$ is irrational, so $2\sqrt{2} \notin \mathbb{O}$.

Hence, we have $2\sqrt{2} \in \mathbb{Q}$ and $2\sqrt{2} \notin \mathbb{Q}$, a contradiction.

Therefore, there is no real number x such that $\sqrt{2} + x$ is rational and $\sqrt{2} - x$ is rational.

Thus, for every real number x, either $\sqrt{2} + x$ or $\sqrt{2} - x$ is irrational, as desired.

We ask under what conditions is the square root of a natural number a rational number?

Exercise 125. Let n be a positive integer.

Then $\sqrt{n} \in \mathbb{Q}$ iff *n* is a perfect square.

Proof. Suppose $\sqrt{n} \in \mathbb{Q}$.

Since n > 0, then there exist positive integers a and b such that $\sqrt{n} = \frac{a}{b}$. We may assume $\frac{a}{b}$ is reduced to lowest terms; i.e. a and b have no common factor greater than 1.

Thus, a and b are relatively prime, so gcd(a, b) = 1. Hence, gcd(b, a) = 1. Since $\sqrt{n} = \frac{a}{b}$, then $n = (\frac{a}{b})^2 = \frac{a^2}{b^2}$, so $nb^2 = a^2$. Since $a^2 = nb^2 = nbb = bnb = b(nb)$ and $nb \in \mathbb{Z}$, then $b|a^2$. Since $b|a^2$ and gcd(b,a) = 1, then b|a, so there exists an integer k such that a = bk. Since b > 0, then $b \neq 0$, so $\frac{a}{b} = k$. Therefore, $n = k^2$, so n is a perfect square, as desired.

Proof. Conversely, we prove if n is a perfect square, then $\sqrt{n} \in \mathbb{Q}$. Suppose n is a perfect square. Then there exists an integer k such that $n = k^2$. Thus, $\sqrt{n} = \sqrt{k^2} = |k|$. Since $k \in \mathbb{Z}$, then $|k| \in \mathbb{Z}$. Since $\mathbb{Z} \subset \mathbb{Q}$, then $|k| \in \mathbb{Q}$. Therefore, $\sqrt{n} \in \mathbb{Q}$, as desired.

Therefore, $\sqrt{n} \notin \mathbb{Q}$ iff n is not a perfect square. Hence, \sqrt{n} is irrational iff n is not a perfect square.

Exercise 126. The number $\sqrt{6}$ is irrational.

Proof. Suppose for the sake of contradiction that $\sqrt{6}$ is not irrational.

Then $\sqrt{6}$ is rational, so there are integers a and b for which $\sqrt{6} = \frac{a}{b}$.

Let this fraction be reduced to lowest terms which means that a and b have no common factors > 1.

In particular, a and b are not both even, for if they were, then 2's could be factored out of the numerator and denominator and canceled.

Squaring both sides we get $6 = (\frac{a}{b})^2$ which implies $a^2 = 6b^2$. Since $6b^2 = 2(3b^2)$ we know that a^2 must be even. We immediately conclude that a must also be even since we previously proved this.

Since a and b are not both even and a is even, then b must be odd.

Since a is even, then there is an integer c for which a = 2c.

Substituting this into the equation $a^2 = 2(3b^2)$ and dividing by 2 gives $2c^2 = 3b^2$.

Hence $3b^2$ must be even. Since $3b^2$ is even and 3 is odd, then it follows that b^2 must be even since we proved this.

Since b^2 is even, we immediately deduce that b is even. But previously we deduced that b is odd.

Thus we have the contradiction that b is even and b is odd.

Exercise 127. The number $\sqrt{2} + \sqrt{3}$ is irrational.

Proof. We prove by contradiction.

Suppose $\sqrt{2} + \sqrt{3}$ is rational. Then there exists $q \in \mathbb{Q}$ such that $\sqrt{2} + \sqrt{3} = q$. Hence, $q^2 = (\sqrt{2} + \sqrt{3})^2 = 2 + 2\sqrt{2}\sqrt{3} + 3 = 2\sqrt{6} + 5$, so $q^2 - 5 = 2\sqrt{6}$. Thus, $\sqrt{6} = \frac{q^2 - 5}{2}$. Since $q \in \mathbb{Q}$, then $\frac{q^2-5}{2} \in \mathbb{Q}$, so $\sqrt{6}$ is rational. But, this contradicts the fact that $\sqrt{6}$ is irrational. Therefore, $\sqrt{2} + \sqrt{3}$ is irrational.

Exercise 128. The number $3\sqrt{2} - 1$ is irrational.

Proof. Since 3 is a nonzero rational and $\sqrt{2}$ is irrational, then the product $3\sqrt{2}$ is irrational.

Since -1 is rational and $3\sqrt{2}$ is irrational, then the sum $-1+3\sqrt{2}=3\sqrt{2}-1$ is irrational.

Exercise 129. If r is irrational, then \sqrt{r} is irrational.

Proof. We prove by contrapositive.

Suppose \sqrt{r} is rational. Then $\sqrt{r} = \frac{m}{n}$ for some integers m and n. Since $r = (\sqrt{r})^2 = (\frac{m}{n})^2 = \frac{m^2}{n^2}$ and m^2 and n^2 are integers, then r is rational,

as desired.

Proposition 130. Every nonzero rational number can be expressed as a product of two irrational numbers.

Proof. This proposition can be reworded as follows:

If r is a nonzero rational number, then r is a product of two irrational numbers.

Suppose r is a nonzero rational number.

Then $r = \frac{a}{b}$ for nonzero integers a and b.

Also, r can be written as a product of two numbers as follows

$$r = \sqrt{2} \cdot \frac{r}{\sqrt{2}}.$$

Since we know $\sqrt{2}$ is irrational (we previously proved this fact), we must prove that $r/\sqrt{2}$ is also irrational.

To show this, assume for the sake of contradiction that $r/\sqrt{2}$ is rational.

This means

$$\frac{r}{\sqrt{2}} = \frac{c}{d}$$

for nonzero integers c and d, so

$$\sqrt{2} = r\frac{d}{c}.$$

But we know r = a/b, so combining this with the above equation we get

$$\sqrt{2} = r\frac{d}{c} = \frac{a}{b}\frac{d}{c} = \frac{ad}{bc}.$$

This means $\sqrt{2}$ is rational (since *ad* and *bc* are nonzero integers), which is a contradiction because we know $\sqrt{2}$ is irrational.

Therefore $r/\sqrt{2}$ is irrational.

Consequently $r = \sqrt{2} \cdot r/\sqrt{2}$ is a product of two irrational numbers. \Box

Exercise 131. There are two irrational numbers a and b such that a^b is rational.

Solution. Let a, b be any arbitrary irrational numbers.

Define predicate $P(a, b) : a^b$ is rational.

We must find concrete values for a, b with $a \neq b$ such that P(a, b) is true.

By law of excluded middle we know $P(a, b) \lor \neg P(a, b) \Leftrightarrow T$ (no third possibility exists).

We know $\sqrt{2}$ is irrational.

If we think about various ways to combine $\sqrt{2}$ to become 2, that would help.

Proof. Observe that $\sqrt{2}$ is irrational.

Consider the number $(\sqrt{2})^{\sqrt{2}}$.

By the law of excluded middle either $(\sqrt{2})^{\sqrt{2}}$ is rational or $(\sqrt{2})^{\sqrt{2}}$ is irrational.

We must prove $(\sqrt{2})^{\sqrt{2}}$ is rational.

Suppose $(\sqrt{2})^{\sqrt{2}}$ is rational.

Then we are done and $a = \sqrt{2}$ and $b = \sqrt{2}$. Suppose $(\sqrt{2})^{\sqrt{2}}$ is irrational. Let $a = \sqrt{2}^{\sqrt{2}}$ and $b = \sqrt{2}$. Then $a^b = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}\sqrt{2}} = (\sqrt{2})^2 = 2$ and 2 is rational. The proof is complete. **Exercise 132.** Let $f : \mathbb{N} \to \mathbb{R}$ be defined by f(1) = 2 and $f(n) = \sqrt{3 + f(n-1)}$ for all $n \geq 2$. Then f(n) < 2.4 for all $n \in \mathbb{N}$. *Proof.* Let $S = \{n \in \mathbb{N} : f(n) < 2.4\}.$ To prove f(n) < 2.4 for all $n \in \mathbb{N}$, we prove $S = \mathbb{N}$ by induction on n. Since $1 \in \mathbb{N}$ and f(1) = 2 < 2.4, then $1 \in S$. **Basis:** Since $5 < 5.76 = 2.4^2$, then $\sqrt{5} < 2.4$. Since $2 \in \mathbb{N}$ and $f(2) = \sqrt{3+f(1)} = \sqrt{3+2} = \sqrt{5} < 2.4$, then $2 \in S$. Induction: Let $k \in \mathbb{N}$ with $k \geq 2$ such that $k \in S$. Since $k \in \mathbb{N}$, then $k + 1 \in \mathbb{N}$. Since $k \in S$, then f(k) < 2.4, so 3 + f(k) < 5.4. Since $5.4 < 5.76 = 2.4^2$, then $\sqrt{5.4} < 2.4$. Since $k \ge 2$, then $k + 1 \ge 3 > 2$, so k + 1 > 2. Thus, $f(k+1) = \sqrt{3+f(k)} < \sqrt{5.4} < 2.4$. Since $k + 1 \in \mathbb{N}$ and f(k + 1) < 2.4, then $k + 1 \in S$. Hence, $k \in S$ implies $k + 1 \in S$, so by induction $S = \mathbb{N}$. Therefore, f(n) < 2.4 for all $n \in \mathbb{N}$. **Exercise 133.** For all $n \in \mathbb{N}$ with $n \ge 2$, $\sum_{k=1}^{n} \frac{1}{\sqrt{k}} > \sqrt{n}$.

Proof. Let p(n) be the predicate $\sum_{k=1}^{n} \frac{1}{\sqrt{k}} > \sqrt{n}$ defined over N. To prove p(n) is true for all $n \ge 2$, we prove by induction on n. **Basis**: Since $\sqrt{2} > 1$, then $\sqrt{2} + 1 > 2$, so $\frac{\sqrt{2}+1}{\sqrt{2}} > \frac{2}{\sqrt{2}}$. Hence, $1 + \frac{1}{\sqrt{2}} > \sqrt{2}$. Since $\sum_{k=1}^{2} \frac{\sqrt{2}}{\sqrt{k}} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} = 1 + \frac{1}{\sqrt{2}} > \sqrt{2}$, then p(2) is true. Induction: Let $m \in \mathbb{N}$ with $m \ge 2$ such that p(m) is true. Then $\sum_{k=1}^{m} \frac{1}{\sqrt{k}} > \sqrt{m}$. To prove p(m+1) is true, we must prove $\sum_{k=1}^{m+1} \frac{1}{\sqrt{k}} > \sqrt{m+1}$. We first prove $\sqrt{m} + \frac{1}{\sqrt{m+1}} > \sqrt{m+1}$.

Since $m \ge 2 > 0$, then m > 0, so $m^2 + m > m^2 > 0$. Hence, $m(m+1) > m^2 > 0$, so $\sqrt{m(m+1)} > m > 0$. Thus, $\sqrt{m(m+1)} > m$, so $0 > m - \sqrt{m(m+1)}$.

Hence, $1 > m + 1 - \sqrt{m(m+1)} = \sqrt{m+1}(\sqrt{m+1} - \sqrt{m})$. Therefore, $1 > \sqrt{m+1}(\sqrt{m+1} - \sqrt{m})$. Since $\sqrt{m+1} > 0$, then $\frac{1}{\sqrt{m+1}} > \sqrt{m+1} - \sqrt{m}$. Thus, $\sqrt{m} + \frac{1}{\sqrt{m+1}} > \sqrt{m+1}$. Observe that

$$\sum_{k=1}^{m+1} \frac{1}{\sqrt{k}} = \sum_{k=1}^{m} \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{m+1}}$$

> $\sqrt{m} + \frac{1}{\sqrt{m+1}}$
> $\sqrt{m+1}$.

Since $m + 1 \in \mathbb{N}$ and $\sum_{k=1}^{m+1} \frac{1}{\sqrt{k}} > \sqrt{m+1}$, then p(m+1) is true.

Therefore, p(m) implies p(m+1), so by PMI, $\sum_{k=1}^{n} \frac{1}{\sqrt{k}} > \sqrt{n}$ for all $n \in \mathbb{N}$, as desired.

Exercise 134. Let $K = \{s + t\sqrt{2} : s, t \in \mathbb{Q}\}.$

1. If $x_1, x_2 \in K$, then $x_1 + x_2 \in K$. (closure under addition)

2. If $x_1, x_2 \in K$, then $x_1 x_2 \in K$. (closure under multiplication)

3. If $x \in K$ and $x \neq 0$, then $\frac{1}{x} \in K$. (multiplicative inverse exists for nonzero elements of K)

This shows that K is a subfield of \mathbb{R} and lies between \mathbb{Q} and \mathbb{R} .

Proof. We prove 1.

Suppose $x_1, x_2 \in K$.

Then there exist $s_1, t_1 \in \mathbb{Q}$ such that $x_1 = s_1 + t_1\sqrt{2}$ and there exist $s_2, t_2 \in \mathbb{Q}$ such that $x_2 = s_2 + t_2\sqrt{2}$.

Let $s = s_1 + s_2$ and let $t = t_1 + t_2$.

Since $s_1, s_2 \in \mathbb{Q}$ and \mathbb{Q} is closed under addition, then $s \in \mathbb{Q}$. Since $t_1, t_2 \in \mathbb{Q}$ and \mathbb{Q} is closed under addition, then $t \in \mathbb{Q}$. Thus,

$$\begin{aligned} x_1 + x_2 &= (s_1 + t_1\sqrt{2}) + (s_2 + t_2\sqrt{2}) \\ &= s_1 + (t_1\sqrt{2} + s_2) + t_2\sqrt{2} \\ &= s_1 + (s_2 + t_1\sqrt{2}) + t_2\sqrt{2} \\ &= (s_1 + s_2) + (t_1\sqrt{2} + t_2\sqrt{2}) \\ &= (s_1 + s_2) + (t_1 + t_2)\sqrt{2} \\ &= s + t\sqrt{2}. \end{aligned}$$

Since there exist $s, t \in \mathbb{Q}$ such that $x_1 + x_2 = s + t\sqrt{2}$, then $x_1 + x_2 \in K$, as desired.

Proof. We prove 2. Suppose $x_1, x_2 \in K$. Then there exist $s_1, t_1 \in \mathbb{Q}$ such that $x_1 = s_1 + t_1 \sqrt{2}$ and there exist $s_2, t_2 \in \mathbb{Q}$ such that $x_2 = s_2 + t_2 \sqrt{2}$.

Let $s = s_1 s_2 + 2t_1 t_2$ and let $t = t_1 s_2 + s_1 t_2$.

Since $s_1, s_2, t_1, t_2 \in \mathbb{Q}$ and \mathbb{Q} is closed under addition and multiplication, then $s, t \in \mathbb{Q}$.

Thus,

$$\begin{aligned} x_1 x_2 &= (s_1 + t_1 \sqrt{2})(s_2 + t_2 \sqrt{2}) \\ &= (s_1 + t_1 \sqrt{2})s_2 + (s_1 + t_1 \sqrt{2})t_2 \sqrt{2} \\ &= s_1 s_2 + t_1 s_2 \sqrt{2} + s_1 t_2 \sqrt{2} + 2t_1 t_2 \\ &= s_1 s_2 + t_1 s_2 \sqrt{2} + 2t_1 t_2 + s_1 t_2 \sqrt{2} \\ &= s_1 s_2 + 2t_1 t_2 + t_1 s_2 \sqrt{2} + s_1 t_2 \sqrt{2} \\ &= (s_1 s_2 + 2t_1 t_2) + (t_1 s_2 + s_1 t_2) \sqrt{2} \\ &= s + t \sqrt{2}. \end{aligned}$$

Since there exist $s, t \in \mathbb{Q}$ such that $x_1x_2 = s + t\sqrt{2}$, then $x_1x_2 \in K$, as desired.

Proof. We prove 3.

Suppose $x \in K$ and $x \neq 0$. Since $x \in K$, then there exist $s, t \in \mathbb{Q}$ such that $x = s + t\sqrt{2}$.

We first prove x = 0 iff s = 0 and t = 0. Suppose s = 0 and t = 0. Then $x = 0 + 0\sqrt{2} = 0$. Conversely, suppose x = 0. Then $0 = s + t\sqrt{2}$, so $-s = t\sqrt{2}$. Suppose $t \neq 0$. Then $\frac{-s}{t} = \sqrt{2}$. Since $s, t \in \mathbb{Q}$ and $t \neq 0$, then $\frac{s}{t} \in \mathbb{Q}$, so $\frac{-s}{t} \in \mathbb{Q}$. Hence, $\sqrt{2} \in \mathbb{Q}$, so $\sqrt{2}$ is rational. But, this contradicts the fact that $\sqrt{2}$ is irrational. Thus, t = 0, so $-s = 0\sqrt{2} = 0$. Hence, s = 0. Therefore, if x = 0, then s = 0 and t = 0.

Since $x \neq 0$, then either $s \neq 0$ or $t \neq 0$. Thus, either $s \neq 0$ and t = 0 or s = 0 and $t \neq 0$ or $s \neq 0$ and $t \neq 0$. We consider these cases separately. **Case 1:** Suppose $s \neq 0$ and t = 0. Let $s' = \frac{1}{s}$ and t' = t. Since $s \in \mathbb{Q}$ and $s \neq 0$, then $s' \in \mathbb{Q}$. Since $t \in \mathbb{Q}$, then $t' \in \mathbb{Q}$. Since $x \neq 0$, then

$$\begin{array}{rcl} \displaystyle\frac{1}{x} & = & \displaystyle\frac{1}{s+t\sqrt{2}} \\ & = & \displaystyle\frac{1}{s+0\sqrt{2}} \\ & = & \displaystyle\frac{1}{s} \\ & = & \displaystyle\frac{1}{s} + 0 \\ & = & \displaystyle\frac{1}{s} + 0\sqrt{2} \\ & = & \displaystyle\frac{1}{s} + 0\sqrt{2} \\ & = & \displaystyle\frac{s'+t'\sqrt{2}}. \end{array}$$

Since there exist $s', t' \in \mathbb{Q}$ such that $\frac{1}{x} = s' + t'\sqrt{2}$, then $x' \in K$. **Case 2:** Suppose s = 0 and $t \neq 0$. Let s' = s and $t' = \frac{1}{2t}$. Since $s \in \mathbb{Q}$, then $s' \in \mathbb{Q}$. Since $t \in \mathbb{Q}$ and $t \neq 0$, then $2t \in \mathbb{Q}$ and $2t \neq 0$, so $t' \in \mathbb{Q}$. Since $x \neq 0$, then

$$\begin{aligned} \frac{1}{x} &= \frac{1}{s+t\sqrt{2}} \\ &= \frac{1}{0+t\sqrt{2}} \\ &= \frac{1}{t\sqrt{2}} \\ &= \frac{1}{t\sqrt{2}} \cdot 1 \\ &= \frac{1}{t\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \\ &= \frac{\sqrt{2}}{2t} \\ &= 0 + \frac{\sqrt{2}}{2t} \\ &= s' + \frac{1}{2t}\sqrt{2} \\ &= s' + t'\sqrt{2}. \end{aligned}$$

Since there exist $s', t' \in \mathbb{Q}$ such that $\frac{1}{x} = s' + t'\sqrt{2}$, then $x' \in K$. **Case 3:** Suppose $s \neq 0$ and $t \neq 0$. Let $s' = \frac{s}{s^2 - 2t^2}$ and $t' = \frac{-t}{s^2 - 2t^2}$. We first prove $s^2 - 2t^2 \neq 0$. Suppose for the sake of contradiction $s^2 - 2t^2 = 0$. Then $s^2 = 2t^2$. Since $t \neq 0$, then $t^2 \neq 0$, so $2 = \frac{s^2}{t^2} = (\frac{s}{t})^2$. Since $s, t \in \mathbb{Q}$ and $t \neq 0$, then $\frac{s}{t} \in \mathbb{Q}$. Thus, there is a rational number whose square is 2. This contradicts the fact that there is no rational number whose square is 2. Therefore, $s^2 - 2t^2 \neq 0$. Since $s, t \in \mathbb{Q}$, then $s^2 - 2t^2 \in \mathbb{Q}$ and $-t \in \mathbb{Q}$, so $s', t' \in \mathbb{Q}$. We prove $s - t\sqrt{2} \neq 0$. Suppose for the sake of contradiction $s - t\sqrt{2} = 0$. Then $s = t\sqrt{2}$. Since $t \neq 0$, then $\frac{s}{t} = \sqrt{2}$. Since $s, t \in \mathbb{Q}$ and $t \neq 0$, then $\frac{s}{t} \in \mathbb{Q}$. Thus, $\sqrt{2}$ is rational, a contradiction. Therefore $s - t\sqrt{2} \neq 0$. Since $x \neq 0$, then

$$\frac{1}{x} = \frac{1}{s+t\sqrt{2}}$$
$$= \frac{1}{s+t\sqrt{2}} \cdot 1$$
$$= \frac{1}{s+t\sqrt{2}} \cdot \frac{s-t\sqrt{2}}{s-t\sqrt{2}}$$
$$= \frac{s-t\sqrt{2}}{s^2-2t^2}$$
$$= \frac{s}{s^2-2t^2} - \frac{t\sqrt{2}}{s^2-2t^2}$$
$$= s'+t'\sqrt{2}.$$

Since there exist $s', t' \in \mathbb{Q}$ such that $\frac{1}{x} = s' + t'\sqrt{2}$, then $x' \in K$. Therefore, in all cases, $x' \in K$, as desired.