Real Number System Notes

Jason Sass

July 16, 2023

Sets of Numbers

$\mathbb{N}=$ set of all natural numbers $=\{1,2,3, \ldots\}$
$\mathbb{Z}=$ set of all integers $=\{0,1,-1,2,-2,3,-3, \ldots\}$
$\mathbb{Q}=\left\{\frac{m}{n}: m, n \in \mathbb{Z} \wedge n \neq 0\right\}=$ set of all rational numbers
$\mathbb{R}=$ set of all real numbers
$\mathbb{R}^{*}=\{x \in \mathbb{R}: x \neq 0\}=(-\infty, 0) \cup(0, \infty)=$ set of all nonzero real numbers
$\mathbb{R}^{+}=\{x \in \mathbb{R}: x>0\}=(0, \infty)=$ set of all positive real numbers
$\mathbb{R}_{+}=\{x \in \mathbb{R}: x \geq 0\}=[0, \infty)=[0, \infty[=$ set of all nonnegative real numbers
Number system relationships
$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.

Construction of \mathbb{Q}

Proposition 1. Let \sim be a relation defined for all $(a, b),(c, d) \in \mathbb{Z} \times \mathbb{Z}^{*}$ by $(a, b) \sim(c, d)$ iff $a d=b c$.

Then \sim is an equivalence relation over $\mathbb{Z} \times \mathbb{Z}^{*}$.
Let $(m, n),(p, q),(r, s) \in \mathbb{Z} \times \mathbb{Z}^{*}$.
Then $m, n, p, q, r, s \in \mathbb{Z}$ and $n, q, s \neq 0$ and

1. reflexive $(m, n) \sim(m, n)$.
2. symmetric if $(m, n) \sim(p, q)$ then $(p, q) \sim(m, n)$.
3. transitive if $(m, n) \sim(p, q)$ and $(p, q) \sim(r, s)$, then $(m, n) \sim(r, s)$.

Definition 2. rational number
Let $(m, n) \in \mathbb{Z} \times \mathbb{Z}^{*}$.
Then $m \in \mathbb{Z}$ and $n \in \mathbb{Z}$ and $n \neq 0$.
The equivalence class of (m, n), denoted $\frac{m}{n}$, is the set of all ordered pairs of integers to which (m, n) is equivalent.

Therefore $\frac{m}{n}=\left\{(p, q) \in \mathbb{Z} \times \mathbb{Z}^{*}:(m, n) \sim(p, q)\right\}$.

$$
\begin{aligned}
\frac{m}{n} & =\left\{(p, q) \in \mathbb{Z} \times \mathbb{Z}^{*}:(m, n) \sim(p, q)\right\} \\
& =\left\{(p, q) \in \mathbb{Z} \times \mathbb{Z}^{*}: m q=n p\right\} \\
& =\{(p, q) \in \mathbb{Z} \times \mathbb{Z}: m q=n p \wedge n, q \neq 0\} .
\end{aligned}
$$

$\frac{m}{n}$ is called a rational number (ie, fraction).
Since \sim is an equivalence relation, then $\frac{a}{b}=\frac{c}{d}$ iff $(a, b) \sim(c, d)$.
Therefore, $\frac{a}{b}=\frac{c}{d}$ iff $(a, b) \sim(c, d)$ iff $a d=b c$ and $b, d \neq 0$.
Example 3. $\frac{1}{2}=\left\{(p, q) \in \mathbb{Z} \times \mathbb{Z}^{*}:(1,2) \sim(p, q)\right\}=\left\{(p, q) \in \mathbb{Z} \times \mathbb{Z}^{*}: q=2 p\right\}$.
Since $4=2 * 2$, then $(2,4) \in \frac{1}{2}$.
Since $6=2 * 3$, then $(3,6) \in \frac{1}{2}$.
Since $8=2 * 4$, then $(4,8) \in \frac{1}{2}$.
Since $-2=2 *(-1)$, then $(-1,-2) \in \frac{1}{2}$.
Since $-4=2 *(-2)$, then $(-2,-4) \in \frac{1}{2}$.
Therefore, $\frac{1}{2}=\frac{2}{4}=\frac{3}{6}=\frac{4}{8}=\frac{-1}{-2}=\frac{-2}{-4}$.
Since \sim is an equivalence relation defined over the set $\mathbb{Z} \times \mathbb{Z}^{*}$, then the set of all equivalence classes of \sim, called the quotient set of $\mathbb{Z} \times \mathbb{Z}^{*}$ by \sim, is $\frac{\mathbb{Z} \times \mathbb{Z}^{*}}{\sim}$, which we denote by \mathbb{Q}.

Definition 4. rational numbers \mathbb{Q}
The collection of all equivalence classes $\frac{m}{n}$ is the set of rational numbers \mathbb{Q}.
Therefore, $\mathbb{Q}=\left\{\frac{m}{n}: m, n \in \mathbb{Z} \wedge n \neq 0\right\}$ where $\frac{m}{n}$ is the class of ordered pairs (p, q) in $\mathbb{Z} \times \mathbb{Z}$ such that $(m, n) \sim(p, q)$ iff $m q=n p$ and $n, q \neq 0$.

We want to define addition of fractions so that if $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ and $(c, d) \sim$ $\left(c^{\prime}, d^{\prime}\right)$, then the sum should be the same.

Hence, we want $\frac{a}{b}+\frac{c}{d}=\frac{a^{\prime}}{b^{\prime}}+\frac{c^{\prime}}{d^{\prime}}$ regardless of the particular class representatives chosen.

For example, since $\frac{1}{2}=\frac{2}{4}$ and $\frac{3}{5}=\frac{6}{10}$, we want $\frac{1}{2}+\frac{3}{5}=\frac{2}{4}+\frac{6}{10}$.
Therefore, any definition of addition in \mathbb{Q} must be defined to be independent of a particular representative of the equivalence class.

Therefore, we want addition to be well defined.

Definition 5. addition over \mathbb{Q}

Let $+: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q}$ be a relation defined by $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$ for all $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$.
Proposition 6. Addition is a binary operation on \mathbb{Q}.
Therefore, addition over \mathbb{Q} is well defined.
$\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$ means $(a, b)+(c, d)=(a d+b c, b d)$.
Theorem 7. algebraic properties of addition over \mathbb{Q}

1. $\frac{m}{n}+\left(\frac{p}{q}+\frac{r}{s}\right)=\left(\frac{m}{n}+\frac{p}{q}\right)+\frac{r}{s}$ for all $\frac{m}{n}, \frac{p}{q}, \frac{r}{s} \in \mathbb{Q}$. (associative)
2. $\frac{m}{n}+\frac{p}{q}=\frac{p}{q}+\frac{m}{n}$ for all $\frac{m}{n}, \frac{p}{q} \in \mathbb{Q}$. (commutative)
3. $\frac{m}{n}+0=0+\frac{m}{n}=\frac{m}{n}$ for all $\frac{m}{n} \in \mathbb{Q}$. (additive identity)
4. $\frac{m}{n}+\frac{-m}{n}=\frac{-m}{n}+\frac{m}{n}=0$ for all $\frac{m}{n} \in \mathbb{Q}$. (additive inverses)

We want to define multiplication of fractions so that if $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ and $(c, d) \sim\left(c^{\prime}, d^{\prime}\right)$, then the product should be the same.

Hence, we want $\frac{a}{b} \cdot \frac{c}{d}=\frac{a^{\prime}}{b^{\prime}} \cdot \frac{c^{\prime}}{d^{\prime}}$ regardless of the particular class representatives chosen.

For example, since $\frac{1}{2}=\frac{2}{4}$ and $\frac{3}{5}=\frac{6}{10}$, we want $\frac{1}{2} \cdot \frac{3}{5}=\frac{2}{4} \cdot \frac{6}{10}$.
Therefore, any definition of multiplication in \mathbb{Q} must be defined to be independent of a particular representative of the equivalence class.

Therefore, we want multiplication to be well defined.

Definition 8. multiplication over \mathbb{Q}

Let $\cdot: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q}$ be a relation defined by $\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}$ for all $\frac{a}{b}, \frac{c}{d} \in \mathbb{Q}$.
Proposition 9. Multiplication is a binary operation on \mathbb{Q}.
Therefore, multiplication over \mathbb{Q} is well defined.
$\frac{a}{b} \frac{c}{d}=\frac{a c}{b d}$ means $(a, b)(c, d)=(a c, b d)$.

Theorem 10. algebraic properties of multiplication over \mathbb{Q}

1. $\frac{m}{n} \cdot\left(\frac{p}{q} \cdot \frac{r}{s}\right)=\left(\frac{m}{n} \cdot \frac{p}{q}\right) \cdot \frac{r}{s}$ for all $\frac{m}{n}, \frac{p}{q}, \frac{r}{s} \in \mathbb{Q}$. (associative)
2. $\frac{m}{n} \cdot \frac{p}{q}=\frac{p}{q} \cdot \frac{m}{n}$ for all $\frac{m}{n}, \frac{p}{q} \in \mathbb{Q}$. (commutative)
3. $\frac{m}{n} \cdot 1=1 \cdot \frac{m}{n}=\frac{m}{n}$ for all $\frac{m}{n} \in \mathbb{Q}$. (multiplicative identity)
4. $\frac{m}{n} \cdot 0=0 \cdot \frac{m}{n}=0$ for all $\frac{m}{n} \in \mathbb{Q}$.
5. $\frac{m}{n} \cdot\left(\frac{p}{q}+\frac{r}{s}\right)^{n}=\frac{m}{n} \cdot \frac{p}{q}+\frac{m}{n} \cdot \frac{r}{s}$ for all $\frac{m}{n}, \frac{p}{q}, \frac{r}{s} \in \mathbb{Q}$. (left distributive)
6. $\left(\frac{m}{n}+\frac{p}{q}\right) \cdot \frac{r}{s}=\frac{m}{n} \cdot \frac{r}{s}+\frac{p}{q} \cdot \frac{r}{s}$ for all $\frac{m}{n}, \frac{p}{q}, \frac{r}{s} \in \mathbb{Q}$. (right distributive)

Proposition 11. \mathbb{Q} extends \mathbb{Z}.
Let $\mathbb{Q}=\left\{\frac{m}{n}: n \neq 0\right\}$ where $\frac{m}{n}$ is the class of ordered pairs (p, q) in $\mathbb{Z} \times \mathbb{Z}$ such that $(p, q) \sim(m, n)$ iff $p n=q m$ and $q, n \neq 0$.
\mathbb{Q} extends \mathbb{Z}.
Let $S=\left\{\frac{n}{1}: n \in \mathbb{Z}\right\}$.
Then $S \subset \mathbb{Q}$ and S is a subring of \mathbb{Q} and \mathbb{Z} is isomorphic to S.
Hence, \mathbb{Q} contains a copy of \mathbb{Z}, so \mathbb{Z} is embedded in \mathbb{Q}.
Therefore, \mathbb{Q} extends \mathbb{Z}.

Ordered Fields

Definition 12. ordered field

An ordered field (F, P) is a field $(F,+, \cdot)$ and nonempty subset P of F such that the following axioms hold:

OF1. P is closed under addition defined over F.
$(\forall a, b \in P)(a+b \in P)$.
OF2. P is closed under multiplication defined over F.
$(\forall a, b \in P)(a b \in P)$.
OF3. Trichotomy.
For every $a \in F$ exactly one of the following statements is true:
i. $a \in P$.
ii. $a=0$.
iii. $-a \in P$.

The subset P is the positive part of F.
An element a of F is positive iff $a \in P$.
An element a of F is negative iff $-a \in P$.
OF1 implies the sum of two positive elements is positive.
OF2 implies the product of two positive elements is positive.
OF3 implies $0 \notin P$.
Example 13. ($\mathbb{C},+, \cdot)$ is not an ordered field.
Proof. Suppose $(\mathbb{C},+, \cdot)$ is an ordered field.
Then there is a subset P of positive elements of \mathbb{C} and $1 \in P$.
Since $i \in \mathbb{C}$ and $i \neq 0$, then $i^{2} \in P$.
Since $i^{2}=-1$, then $-1 \in P$.
Hence, we have $1 \in P$ and $-1 \in P$, a violation of trichotomy.
Therefore, $(\mathbb{C},+, \cdot)$ is not an ordered field.
Example 14. $\left(\mathbb{Z}_{5},+, \cdot\right)$ is not an ordered field.
Proof. Suppose $\left(\mathbb{Z}_{5},+, \cdot\right)$ is an ordered field.
Then the subset P of positive elements of \mathbb{Z}_{5} is closed under addition.
Since $[1] \in P$, then $5 *[1]=[1]+[1]+[1]+[1]+[1] \in P$.
Since $5 \cdot[1]=[0]$, then $[0] \in P$.
But $[0] \notin P$ in an ordered field.
Therefore, $\left(\mathbb{Z}_{5},+, \cdot\right)$ is not an ordered field.

Definition 15. positive and negative rational number

A number $q \in \mathbb{Q}$ is said to be a positive rational number iff there exist $a, b \in \mathbb{Z}^{+}$such that $q=\frac{a}{b}$.

A number $q \in \mathbb{Q}$ is said to be a negative rational number iff $-q$ is positive.
Proposition 16. Positivity of \mathbb{Q} is well defined.
Let $\frac{m}{n}, \frac{m^{\prime}}{n^{\prime}} \in \mathbb{Q}$.
Then $m, n \in \mathbb{Z}$ and $n \neq 0$ and $m^{\prime}, n^{\prime} \in \mathbb{Z}$ and $n^{\prime} \neq 0$.
Therefore, if $(m, n) \sim\left(m^{\prime}, n^{\prime}\right)$, then $\frac{m}{n}$ is positive iff $\frac{m^{\prime}}{n^{\prime}}$ is positive.
Proposition 17. $(\mathbb{Q},+, \cdot)$ is an ordered field.
Let \mathbb{Q}^{+}be the positive subset of the ordered field $(\mathbb{Q},+, \cdot)$.
Then $\mathbb{Q}^{+}=\left\{\frac{a}{b} \in \mathbb{Q}: a, b \in \mathbb{Z}^{+}\right\}$, so $\mathbb{Q}^{+} \subset \mathbb{Q}$.
The set \mathbb{Q}^{+}is the set of all positive rational numbers.
Proposition 18. Let F be an ordered field with positive subset P. Then

1. $1 \in P$.
2. if $x \in P$, then $x^{-1} \in P$.
3. if $x, y \in P$, then $\frac{x}{y} \in P$.
4. if $x \in F$ and $x \neq 0$, then $x^{2} \in P$.
5. if $x \in P$, then $n x \in P$ for all $n \in \mathbb{N}$.

Definition 19. relation $<$ over an ordered field
Let F be an ordered field with positive subset P.
Define a relation "is less than", denoted $<$, on F by $a<b$ iff $b-a \in P$ for all $a, b \in F$.

Define a relation "is greater than", denoted $>$, on F by $a>b$ iff $b<a$ for all $a, b \in F$.

We denote the ordered field F with relation $<$ defined over F by $(F,+, \cdot,<)$.
Example 20. Let \mathbb{Q}^{+}be the set of all positive rational numbers.
Define the relation $<$ on \mathbb{Q} by $a<b$ iff $b-a \in \mathbb{Q}^{+}$for all $a, b, \in \mathbb{Q}$.
Define the relation $>$ on \mathbb{Q} by $a>b$ iff $b<a$ for all $a, b \in \mathbb{Q}$.
Then $(\mathbb{Q},+, \cdot,<)$ denotes the ordered field $(\mathbb{Q},+, \cdot)$ with the relation $<$ defined over \mathbb{Q}.

Proposition 21. Let F be an ordered field with positive subset P. Then for all $a, b \in F$

1. $a>0$ iff $a \in P$.
2. $a<0$ iff $-a \in P$.
3. $a<b$ iff $b-a>0$.

Let F be an ordered field with positive subset P.
Since $1 \in P$ and $1>0$ iff $1 \in P$, then $1>0$.
Therefore, $1>0$ in any ordered field.

Let $x \in F$.
Since $x \in P$ iff $x>0$, then x is positive iff $x>0$.
Since $-x \in P$ iff $x<0$, then x is negative iff $x<0$.
Let $F^{+}=\{x \in F: x$ is positive $\}=\{x \in F: x>0\}$.
Let $F^{-}=\{x \in F: x$ is negative $\}=\{x \in F: x<0\}$.
Let $F^{*}=\{x \in F: x \neq 0\}=F^{+} \cup F^{-}$.
Thus, if $x \in F^{*}$ then either x is positive or x is negative.
The set $\left\{F^{+}, F^{-},\{0\}\right\}$ is a partition of F.
Therefore, $F=F^{*} \cup\{0\}=F^{+} \cup\{0\} \cup F^{-}$.
Let $x \in F$.
Then either x is positive or x is zero or x is negative.
Therefore an element of an ordered field is either positive or zero or negative.

Let $a, b \in F$.
Then $a<b$ iff $b-a \in F^{+}$iff $b-a>0$ iff $b-a$ is positive.

Let $x \in F$.
Since $x>0$ iff $x \in F^{+}$iff $-(-x) \in F^{+}$iff $-x<0$, then $x>0$ iff $-x<0$.
Therefore, $x>0$ iff $-x<0$.
Hence, x is positive iff $-x$ is negative.
Since $1>0$ and $1>0$ iff $-1<0$, then $-1<0$.
Therefore, $-1<0$ in any ordered field.

Let F be an ordered field.
Let F^{+}be the set of all positive elements of F.
Then $F^{+}=\{x \in F: x>0\}$.
Since $1 \in F$ and $1>0$, then $1 \in F^{+}$.
Let $x \in F$.
If $x \in F^{+}$, then $x^{-1} \in F^{+}$.
Thus, if $x>0$, then $x^{-1}=\frac{1}{x}>0$.
Therefore, in an ordered field, if x is positive, then its reciprocal $\frac{1}{x}$ is positive.
If $x, y \in F^{+}$, then $\frac{x}{y} \in F^{+}$.
Thus, if $x>0$ and $y>0$, then $\frac{x}{y}>0$.
Therefore, in an ordered field, if x is positive and y is positive, then the ratio $\frac{x}{y}$ is positive.

If $x \in F$ and $x \neq 0$, then $x^{2} \in F^{+}$.
Thus, if $x \neq 0$, then $x^{2}>0$.
Therefore, in an ordered field, if x is nonzero, then its square x^{2} is positive.
If $x \in F^{+}$, then $n x \in F^{+}$for all $n \in \mathbb{N}$.
Thus, if $x>0$, then $n x>0$ for all $n \in \mathbb{N}$.
Therefore, in an ordered field, if x is positive, then every positive integer multiple of x is positive.

Moreover, if $x>0$, then $0<x<2 x<3 x<4 x<5 x<\ldots$.
Lemma 22. Let $(F,+, \cdot,<)$ be an ordered field with $a, b \in F$.
If $a>0$ and $b<0$, then $a b<0$.

Proposition 23. positivity of a product in an ordered field

Let $(F,+, \cdot,<)$ be an ordered field with $a, b \in F$. Then

1. $a b>0$ iff either $a>0$ and $b>0$ or $a<0$ and $b<0$.
2. $a b<0$ iff either $a>0$ and $b<0$ or $a<0$ and $b>0$.

Let F be an ordered field with $a, b \in F$. Then

1. $a b$ is positive iff a and b are either both positive or both negative.
2. $a b$ is negative iff either a is positive and b is negative or a is negative and b is positive.
$(+)(+)=+$
$(+)(-)=-$
$(-)(+)=-$
$(-)(-)=+$
Therefore, $a b$ is positive iff a and b have the same sign and $a b$ is negative iff a and b have opposite signs.

Corollary 24. Let $(F,+, \cdot,<)$ be an ordered field.
Let $a, b \in F$.
Then $\frac{a}{b}>0$ iff $a b>0$.
Arithmetic Properties
In $\mathbb{Z}, m<n$ iff $n-m$ is positive. ie, in the set $\{1,2,3,4,5, \ldots\}$.
In $\mathbb{Z} \times \mathbb{Z},(a, b)<(c, d)$ iff $a<c$ or $(a=c \wedge b<d)$.
This is dictionary order.
Theorem 25. ordered fields satisfy transitivity and trichotomy laws
Let $(F,+, \cdot,<)$ be an ordered field. Then

1. $a<a$ is false for all $a \in F$. (Therefore, $<i s$ not reflexive.)
2. For all $a, b, c \in F$, if $a<b$ and $b<c$, then $a<c$. ($<$ is transitive)
3. For every $a \in F$, exactly one of the following is true (trichotomy):
i. $a>0$
ii. $a=0$
iii. $a<0$
4. For every $a, b \in F$, exactly one of the following is true (trichotomy):
i. $a>b$
ii. $a=b$
iii. $a<b$

Corollary 26. Let $(F,+, \cdot,<)$ be an ordered field.
Let $a, b \in F$.
If $0<a<b$, then $0<\frac{1}{b}<\frac{1}{a}$.

Theorem 27. order is preserved by the field operations in an ordered

 fieldLet $(F,+, \cdot,<)$ be an ordered field.
Let $a, b, c, d \in F$.

1. If $a<b$, then $a+c<b+c$. (preserves order for addition)
2. If $a<b$, then $a-c<b-c$. (preserves order for subtraction)
3. If $a<b$ and $c>0$, then $a c<b c$. (preserves order for multiplication by a positive element)
4. If $a<b$ and $c<0$, then $a c>b c$. (reverses order for multiplication by a negative element)
5. If $a<b$ and $c>0$, then $\frac{a}{c}<\frac{b}{c}$. (preserves order for division by a positive element)

Proposition 28. Let $(F,+, \cdot,<)$ be an ordered field.
Let $a, b, c, d \in F$.

1. If $a<b$ and $c<d$, then $a+c<b+d$. (adding inequalities is valid)
2. If $0<a<b$ and $0<c<d$, then $0<a c<b d$.

Proposition 29. Let $(F,+, \cdot,<)$ be an ordered field.
Let $\frac{a}{b}, \frac{c}{d} \in F$ with $b, d>0$.
Then $\frac{a}{b}<\frac{c}{d}$ iff $a d<b c$.
Definition 30. Let $(F,+, \cdot,<)$ be an ordered field.
Let $a, b, c \in F$.
We say that b is between a and c iff $a<b$ and $b<c$ and we write $a<b<c$.

Theorem 31. density of ordered fields

Between any two distinct elements of an ordered field is a third element.
Let F be an ordered field with $a, b \in F$ such that $a<b$.
Then there exists $c \in F$ such that $a<c<b$.

Let F be an ordered field with $a, b \in F$.
If $a<b$, then $a<\frac{a+b}{2}<b$.
Example 32. density of \mathbb{Q}
Since $(\mathbb{Q},+, \cdot,<)$ is an ordered field, then between any two distinct rational numbers is another rational number.

Therefore, if $a, b \in \mathbb{Q}$ and $a<b$, then there exists $q \in \mathbb{Q}$ such that $a<q<b$.

Corollary 33. ordered fields are infinite

An ordered field contains an infinite number of elements.
Example 34. \mathbb{Q} is infinite
Since $(\mathbb{Q},+, \cdot,<)$ is an ordered field, then \mathbb{Q} contains an infinite number of elements.

Therefore, there are infinitely many rational numbers.
Definition 35. relation \leq over an ordered field
Let $(F,+, \cdot,<)$ be an ordered field.
Define a relation "is less than or equal to", denoted \leq, on F by $a \leq b$ iff either $a<b$ or $a=b$ for all $a, b \in F$.

Define a relation "is greater than or equal to", denoted \geq, on F by $a \geq b$ iff $b \leq a$ for all $a, b \in F$.

We denote the ordered field $(F,+, \cdot,<)$ with relation \leq defined over F by $(F,+, \cdot, \leq)$.

Example 36. Let $(\mathbb{Q},+, \cdot,<)$ be the ordered field of rational numbers.
Define the relation \leq on \mathbb{Q} by $a \leq b$ iff either $a<b$ or $a=b$ for all $a, b \in \mathbb{Q}$.
Define the relation \geq on \mathbb{Q} by $a \geq b$ iff $b \leq a$ for all $a, b \in \mathbb{Q}$.
Then $(\mathbb{Q},+, \cdot, \leq)$ denotes the ordered field $(\mathbb{Q},+, \cdot,<)$ with the relation \leq defined over \mathbb{Q}.

Theorem 37. ordered fields are totally ordered
Let $(F,+, \cdot, \leq)$ be an ordered field. Then

1. \leq is a partial order over F. Therefore, (F, \leq) is a poset.
2. \leq is a total order over F.

Therefore, for any elements a, b, c of an ordered field F

1. Reflexive: $a \leq a$.
2. Antisymmetric: if $a \leq b$ and $b \leq a$, then $a=b$.
3. Transitive: if $a \leq b$ and $b \leq c$, then $a \leq c$.
4. Comparable: for every $a, b \in F$, either $a \leq b$ or $b \leq a$.

Any total order is a linear chain, so an ordered field is a linear chain.
Proposition 38. Let $(F,+, \cdot, \leq)$ be an ordered field. Then

1. $x^{2}=0$ iff $x=0$.
2. $x^{2}>0$ iff $x \neq 0$.
3. $x^{2} \geq 0$ for all $x \in F$.

Since $1 \neq 0$ in every ordered field, then $1^{2}>0$.
Therefore, $1>0$ in every ordered field.

Absolute value in an ordered field

The absolute value of an element in an ordered field measures size(magnitude).

Definition 39. absolute value in an ordered field

Let F be an ordered field.
Let $x \in F$.
The absolute value of x, denoted $|x|$, is defined by the rule

$$
|x|= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}
$$

The absolute value in an ordered field F is a function from F to F.
Observe that $|0|=0$.
Since $1>0$, then $|1|=1$.
Lemma 40. Let F be an ordered field. Let $x \in F$.

1. If $x<0$, then $\frac{1}{x}<0$.
2. If $x \neq 0$, then $\left|\frac{1}{x}\right|=\frac{1}{|x|}$.

Theorem 41. arithmetic operations and absolute value
Let F be an ordered field. For all $a, b \in F$

1. $|a b|=|a||b|$.
2. if $b \neq 0$, then $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$.
3. $|a|^{2}=a^{2}$.
4. if $a \neq 0$, then $\left|a^{n}\right|=|a|^{n}$ for all $n \in \mathbb{Z}$.

Theorem 42. properties of the absolute value function
Let $(F,+, \cdot, \leq)$ be an ordered field.
Let $a, k \in F$ and $k>0$. Then

1. $|a| \geq 0$.
2. $|a|=0$ iff $a=0$.
3. $|-a|=|a|$.
4. $-|a| \leq a \leq|a|$.
5. $|a|<k$ iff $-k<a<k$.
6. $|a|>k$ iff $a>k$ or $a<-k$.
7. $|a|=k$ iff $a=k$ or $a=-k$.

Theorem 43. triangle inequality
Let $(F,+, \cdot, \leq)$ be an ordered field.
Let $a, b \in F$. Then $|a+b| \leq|a|+|b|$.
This statement indicates that the length of a side of a triangle is less than the sum of the lengths of the other two sides.

Corollary 44. Let $(F,+, \cdot, \leq)$ be an ordered field. Then

1. $|a-b| \geq|a|-|b|$ and $|a-b| \geq|b|-|a|$ for all $a, b \in F$.
2. $||a|-|b|| \leq|a-b| \leq|a|+|b|$ for all $a, b \in F$.

Let F be an ordered field.
Then $|a-b| \geq|a|-|b|$ and $|a-b| \geq|b|-|a|$ for all $a, b \in F$.
This statement indicates that the length of a side of a triangle is greater than the difference of the lengths of the other two sides.

Corollary 45. generalized triangle inequality

Let $(F,+, \cdot, \leq)$ be an ordered field.
Let $n \in \mathbb{N}$.
Let $x_{1}, x_{2}, \ldots, x_{n} \in F$. Then
$\left|x_{1}+x_{2}+\ldots+x_{n}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|$.

Ordered field properties of \mathbb{R}

We assume there exists a complete ordered field and call it \mathbb{R}.
Axiom 46. $(\mathbb{R},+, \cdot, \leq)$ is a complete ordered field.
The set of real numbers \mathbb{R} with the operations of addition and multiplication and the relation \leq defined over \mathbb{R} is defined to be a complete ordered field.

Therefore, $(\mathbb{R},+, \cdot, \leq)$ is defined to be a complete ordered field.

Since $(\mathbb{R},+, \cdot, \leq)$ is a field, then the field axioms hold for \mathbb{R}.

Field axioms of $(\mathbb{R},+, \cdot, \leq)$
A1. $x+y \in \mathbb{R}$ for all $x, y \in \mathbb{R}$. (closure under addition)
A2. $(x+y)+z=x+(y+z)$ for all $x, y, z \in \mathbb{R}$. (addition is associative)
A3. $x+y=y+x$ for all $x, y \in \mathbb{R}$. (addition is commutative)
A4. $(\exists 0 \in \mathbb{R})(\forall x \in \mathbb{R})(0+x=x+0=x)$. (existence of additive identity)
A5. $(\forall x \in \mathbb{R})(\exists-x \in \mathbb{R})(x+(-x)=-x+x=0)$. (existence of additive inverses)

M1. $x y \in \mathbb{R}$ for all $x, y \in \mathbb{R}$. (closure under multiplication)
M2. $(x y) z=x(y z)$ for all $x, y, z \in \mathbb{R}$. (multiplication is associative)
M3. $x y=y x$ for all $x, y \in \mathbb{R}$. (multiplication is commutative)
M4. $(\exists 1 \in \mathbb{R})(\forall x \in \mathbb{R})(1 \cdot x=x \cdot 1=x)$. (existence of multiplicative identity)
M5. $\left(\forall x \in \mathbb{R}^{*}\right)\left(\exists x^{-1} \in \mathbb{R}\right)\left(x x^{-1}=x^{-1} x=1\right)$. (existence of multiplicative inverses)

D1. $x(y+z)=x y+x z$ for all $x, y, z \in \mathbb{R}$. (multiplication is left distributive over addition)

D2. $(y+z) x=y x+z x$ for all $x, y, z \in \mathbb{R}$. (multiplication is right distributive over addition)

F1. $1 \neq 0$. (multiplicative identity is distinct from additive identity)
The additive identity of \mathbb{R} is 0 .
The additive inverse of $x \in \mathbb{R}$ is $-x$.
The multiplicative identity of \mathbb{R} is 1 .
The multiplicative inverse of $x \in \mathbb{R}^{*}$ is $\frac{1}{x} \in \mathbb{R}^{*}$.

Since $(\mathbb{R},+, \cdot, \leq)$ is a field, then \mathbb{R} is an integral domain.
Therefore, $x y=0$ iff $x=0$ or $y=0$ for all $x, y \in \mathbb{R}$.
Equivalently, $x y \neq 0$ iff $x \neq 0$ and $y \neq 0$ for all $x, y \in \mathbb{R}$.
Therefore, the product of any two nonzero elements of \mathbb{R} is nonzero.

Since $(\mathbb{R},+, \cdot, \leq)$ is a field, then \mathbb{R} satisfies the multiplicative cancellation laws.

Therefore, if $x z=y z$ and $z \neq 0$, then $x=y$ for all $x, y, z \in \mathbb{R}$.

Since $(\mathbb{R},+, \cdot), \leq)$ is an ordered field, then there exists a nonempty subset \mathbb{R}^{+} of \mathbb{R} such that

OF1. \mathbb{R}^{+}is closed under addition. $\left(\forall a, b \in \mathbb{R}^{+}\right)\left(a+b \in \mathbb{R}^{+}\right)$.
OF2. \mathbb{R}^{+}is closed under multiplication. $\left(\forall a, b \in \mathbb{R}^{+}\right)\left(a b \in \mathbb{R}^{+}\right)$.
OF3. For every $r \in \mathbb{R}^{+}$exactly one of the following is true:
i. $r \in \mathbb{R}^{+}$
ii. $r=0$
iii. $-r \in \mathbb{R}^{+}$.

Definition 47. Let \mathbb{R}^{+}be the set of all positive real numbers.
Define the relation $<$ on \mathbb{R} by $a<b$ iff $b-a \in \mathbb{R}^{+}$for all $a, b, \in \mathbb{R}$.
Define the relation $>$ on \mathbb{R} by $a>b$ iff $b<a$ for all $a, b \in \mathbb{R}$.
Then $(\mathbb{R},+, \cdot,<)$ denotes the ordered field $(\mathbb{R},+, \cdot)$ with the relation $<$ defined over \mathbb{R}.

Definition 48. Let $(\mathbb{R},+, \cdot,<)$ be the ordered field of real numbers.
Define the relation \leq on \mathbb{R} by $a \leq b$ iff either $a<b$ or $a=b$ for all $a, b \in \mathbb{R}$.
Define the relation \geq on \mathbb{R} by $a \geq b$ iff $b \leq a$ for all $a, b \in \mathbb{R}$.
Then $(\mathbb{R},+, \cdot, \leq)$ denotes the ordered field $(\mathbb{R},+, \cdot,<)$ with the relation \leq defined over \mathbb{R}.

Definition 49. sign of a real number

Let $x \in \mathbb{R}$.
x is nonzero iff $x \neq 0$.
x is positive iff $x>0$.
x is negative iff $x<0$.
x is non-negative iff $x \geq 0$.
x is non-positive iff $x \leq 0$.
$\mathbb{R}^{+}=\{x \in \mathbb{R}: x$ is positive $\}=\{x \in \mathbb{R}: x>0\}=(0, \infty)$.
$\mathbb{R}^{-}=\{x \in \mathbb{R}: x$ is negative $\}=\{x \in \mathbb{R}: x<0\}=(-\infty, 0)$.
$\mathbb{R}^{*}=\{x \in \mathbb{R}: x \neq 0\}=\mathbb{R}^{+} \cup \mathbb{R}^{-}=(0, \infty) \cup(-\infty, 0)$.
Thus, if $x \in \mathbb{R}^{*}$ then either x is positive or x is negative.
$\left\{\mathbb{R}^{+}, \mathbb{R}^{-},\{0\}\right\}$ is a partition of \mathbb{R}.
$\left\{\mathbb{R}^{+}, \mathbb{R}^{-}\right\}$is a partition of \mathbb{R}^{*}.
Therefore, $\mathbb{R}=\mathbb{R}^{*} \cup\{0\}=\mathbb{R}^{+} \cup\{0\} \cup \mathbb{R}^{-}$.
Hence, an element $x \in \mathbb{R}$ is either positive or zero or negative.
Therefore, every real number is either positive, zero, or negative.
Since $(\mathbb{R},+, \cdot, \leq)$ is an ordered field, the following are true:

1. If $x, y \in \mathbb{R}^{+}$, then $x+y \in \mathbb{R}^{+}$. (\mathbb{R}^{+}is closed under +)
2. If $x, y \in \mathbb{R}^{+}$, then $x y \in \mathbb{R}^{+}$. (\mathbb{R}^{+}is closed under \cdot)
3. For every $x, y \in \mathbb{R}$, exactly one of the following is true (trichotomy):
$x>y, x=y, x<y$.
4. If $x<y$ and $y<z$, then $x<z$. ($<$ is transitive)
5. If $x<y$, then $x+z<y+z$. (preserves order for addition)
6. If $x<y$ and $z>0$, then $x z<y z$. (preserves order for multiplication by a positive element)

Example 50. density of \mathbb{R}

Since $(\mathbb{R},+, \cdot, \leq)$ is an ordered field, then between any two distinct real numbers is another real number.

Therefore, if $a, b \in \mathbb{R}$ and $a<b$, then there exists $r \in \mathbb{R}$ such that $a<r<b$.

Example 51. \mathbb{R} is infinite

Since $(\mathbb{R},+, \cdot, \leq)$ is an ordered field, then \mathbb{R} contains an infinite number of elements.

Therefore, there are infinitely many real numbers.

Since $(\mathbb{R},+, \cdot, \leq)$ is an ordered field, then \leq is a total order on \mathbb{R}.
Therefore, (\mathbb{R}, \leq) is a total order, so (\mathbb{R}, \leq) is a poset.
Since \leq is a total order over \mathbb{R}, then the following are true:

1. $(\forall x \in \mathbb{R})(x \leq x)$ (reflexive)
2. $(\forall x, y \in \mathbb{R})([x \leq y \wedge y \leq x) \rightarrow(x=y)]$ (anti-symmetric)
3. $(\forall x, y, z \in \mathbb{R})(x \leq y \wedge y \leq z \rightarrow x \leq z)$ (transitive)
4. $(\forall x, y \in \mathbb{R})(x \leq y \vee y \leq x)$. (comparable)

Since \leq is a total order on \mathbb{R}, then (\mathbb{R}, \leq) is a linearly ordered set.

Since \mathbb{R} is complete, then the Hasse diagram is a straight line with no holes, i.e., the real number line.

Therefore, $(\mathbb{R},+, \cdot, \leq)$ is a complete linearly ordered field.

Boundedness of sets in an ordered field

Definition 52. upper bound of a subset of an ordered field Let F be an ordered field.
Let $S \subset F$.
An element $b \in F$ is an upper bound of S in F iff $(\forall x \in S)(x \leq b)$.
The set S is bounded above in F iff S has an upper bound in F.
Therefore, S is bounded above in F iff $(\exists b \in F)(\forall x \in S)(x \leq b)$.
The statement ' S has an upper bound in F ' means: $(\exists b \in F)(\forall x \in S)(x \leq$ b).

Observe that

$$
\begin{aligned}
\neg(\exists b \in F)(\forall x \in S)(x \leq b) & \Leftrightarrow(\forall b \in F)(\exists x \in S)(x \not \leq b) \\
& \Leftrightarrow \quad(\forall b \in F)(\exists x \in S)(x>b) .
\end{aligned}
$$

Therefore, the statement ' S has no upper bound in F ' means:
$(\forall b \in F)(\exists x \in S)(x>b)$.
Therefore S has no upper bound in F iff for each $b \in F$ there is some $x \in S$ such that $x>b$.

An element $b \in F$ is not an upper bound for S iff there exists $x \in S$ such that $x>b$.

Definition 53. lower bound of a subset of an ordered field

Let F be an ordered field.
Let $S \subset F$.
An element $b \in F$ is a lower bound of S in F iff $(\forall x \in S)(b \leq x)$.
The set S is bounded below in F iff S has a lower bound in F.
Therefore, S is bounded below in F iff $(\exists b \in F)(\forall x \in S)(b \leq x)$.
The statement ' S has a lower bound in F ' means: $(\exists b \in F)(\forall x \in S)(b \leq x)$.
Observe that

$$
\begin{aligned}
\neg(\exists b \in F)(\forall x \in S)(b \leq x) & \Leftrightarrow \quad(\forall b \in F)(\exists x \in S)(b \not \leq x) \\
& \Leftrightarrow \quad(\forall b \in F)(\exists x \in S)(b>x) .
\end{aligned}
$$

Therefore, the statement ' S has no lower bound in F ' means:
$(\forall b \in F)(\exists x \in S)(x<b)$.
Therefore S has no lower bound in F iff for each $b \in F$ there is some $x \in S$ such that $x<b$.

An element $b \in F$ is not a lower bound for S iff there exists $x \in S$ such that $x<b$.

Definition 54. bounded subset of an ordered field
Let F be an ordered field.
Let $S \subset F$.
The set S is bounded in F iff there exists $b \in F$ such that $|x| \leq b$ for all $x \in S$.

The set S is unbounded in F iff S is not bounded in F.
In symbols, S is bounded in F iff $(\exists b \in F)(\forall x \in S)(|x| \leq b)$.
Therefore, S is unbounded in F iff $(\forall b \in F)(\exists x \in S)(|x|>b)$.

Let S be a subset of an ordered field F.
Suppose S is bounded in F.
Then there exists $B \in F$ such that $|x| \leq B$ for all $x \in S$.
Let $x \in S$.
Then $|x| \leq B$.
Since $|x| \geq 0$ and $B+1>B$, then $0 \leq|x| \leq B<B+1$.
Hence, $|x|<B+1$ and $0<B+1$.
Therefore, there exists $B+1>0$ such that $|x|<B+1$ for all $x \in S$.
Let $b=B+1$.
Then there exists $b>0$ such that $|x|<b$ for all $x \in S$.
Hence, if a set S is bounded in an ordered field F, then there exists $b>0$ such that $|x|<b$ for all $x \in S$.

Therefore, if a set S is bounded in an ordered field F, then there exists $b>0$ such that $-b<x<b$ for all $x \in S$.

Theorem 55. A subset S of an ordered field F is bounded in F iff S is bounded above and below in F.

Let $S \subset \mathbb{R}$.
Then S is bounded in \mathbb{R} iff S is bounded above and below in \mathbb{R}.
Therefore, S is bounded in \mathbb{R} iff S has an upper and lower bound in \mathbb{R}.
Observe that

$$
\begin{aligned}
(\exists m \in \mathbb{R})(\forall x \in S)(m \leq x) \wedge(\exists M \in \mathbb{R})(\forall x \in S)(x \leq M) & \Rightarrow \\
(\exists m \in \mathbb{R})(\exists M \in \mathbb{R})[(\forall x \in S)(m \leq x) \wedge(\forall x \in S)(x \leq M)] & \Rightarrow \\
(\exists m \in \mathbb{R})(\exists M \in \mathbb{R})[(\forall x \in S)(m \leq x \wedge x \leq M)] & \Rightarrow \\
(\exists m \in \mathbb{R})(\exists M \in \mathbb{R})[(\forall x \in S)(m \leq x \leq M)] &
\end{aligned}
$$

Therefore, S is bounded in \mathbb{R} iff there exist $m, M \in \mathbb{R}$ such that $m \leq x \leq M$ for all $x \in S$.

Since S is bounded in \mathbb{R} iff S is bounded above and below in \mathbb{R}, then
S is not bounded in \mathbb{R} iff S is not bounded above in \mathbb{R} or S is not bounded below in \mathbb{R}.

Therefore, S is unbounded in \mathbb{R} iff either S has no upper bound in \mathbb{R} or S has no lower bound in \mathbb{R}.

Proposition 56. Every element of an ordered field is an upper and lower bound of \emptyset.

Let F be an ordered field.
Let $x \in F$.
Then x is an upper and lower bound of \emptyset.
Therefore, \emptyset is bounded above and below in F.
Hence, \emptyset is bounded in F.
Example 57. Every rational number is an upper and lower bound for the empty set.

Therefore, \emptyset is bounded above and below in \mathbb{Q}.
Hence, \emptyset is bounded in \mathbb{Q}.
Example 58. Every real number is an upper and lower bound for the empty set.

Therefore, \emptyset is bounded above and below in \mathbb{R}.
Hence, \emptyset is bounded in \mathbb{R}.

Proposition 59. A subset of a bounded set is bounded.

Let A be a bounded subset of an ordered field F.
If $B \subset A$, then B is bounded in F.
Proposition 60. A union of bounded sets is bounded.
Let A and B be subsets of an ordered field F.
If A and B are bounded, then $A \cup B$ is bounded.
Definition 61. least upper bound of a subset of an ordered field
Let F be an ordered field and $S \subset F$.
Then $\beta \in F$ is a least upper bound for S in F iff β is the least element of the set of all upper bounds of S in F.

Therefore $\beta \in F$ is a least upper bound of S iff

1. β is an upper bound for S and
2. $\beta \leq M$ for every upper bound M of S.
$\beta \leq M$ for every upper bound M of S iff
no element of F less than β is an upper bound of S iff
every element of F less than β is not an upper bound of S iff
if $\gamma<\beta$, then γ is not an upper bound of S which means
if $\gamma<\beta$, then there exists $x \in S$ such that $x>\gamma$ which means
for every $\gamma<\beta$, there exists $x \in S$ such that $x>\gamma$ which means
for every $\beta-\gamma>0$, there exists $x \in S$ such that $x>\beta-(\beta-\gamma)$ which
means
for every $\epsilon>0$, there exists $x \in S$ such that $x>\beta-\epsilon$.
Therefore, $\beta=\operatorname{lub}(S)$ iff
3. $(\forall x \in S)(x \leq \beta)$. $(\beta$ is an upper bound of $S)$
4. $(\forall \epsilon>0)(\exists x \in S)(x>\beta-\epsilon)$. $(\beta-\epsilon$ is not an upper bound of $S)$.

Theorem 62. uniqueness of least upper bound in an ordered field
A least upper bound of a subset of an ordered field, if it exists, is unique.
Let S be a subset of an ordered field F.
The least upper bound (lub) of S is called the supremum and is denoted $\sup S$.

Therefore,

1. $(\forall x \in S)(x \leq \sup S)$. $(\sup S$ is an upper bound of $S)$
2. $(\forall \epsilon>0)(\exists x \in S)(x>\sup S-\epsilon)$. ($\sup S-\epsilon$ is not an upper bound of $S)$.

Example 63. $\sup (0,1)=1$.
Definition 64. greatest lower bound of a subset of an ordered field
Let F be an ordered field and $S \subset F$.
Then $\beta \in F$ is a greatest lower bound for S in F iff β is the greatest element of the set of all lower bounds of S in F.

Therefore $\beta \in F$ is a greatest lower bound of S iff

1. β is a lower bound for S and
2. $M \leq \beta$ for every lower bound M of S.
$M \leq \beta$ for every lower bound M of S iff
no element of F greater than β is a lower bound of S iff
every element of F greater than β is not a lower bound of S iff
if $\gamma>\beta$, then γ is not a lower bound of S which means
if $\gamma>\beta$, then there exists $x \in S$ such that $x<\gamma$ which means
for every $\gamma>\beta$, there exists $x \in S$ such that $x<\gamma$ which means
for every $\gamma-\beta>0$, there exists $x \in S$ such that $x<\beta+(\gamma-\beta)$ which means
for every $\epsilon>0$, there exists $x \in S$ such that $x<\beta+\epsilon$.
Therefore, $\beta=g l b(S)$ iff
3. $(\forall x \in S)(\beta \leq x)$. $(\beta$ is a lower bound of $S)$
4. $(\forall \epsilon>0)(\exists x \in S)(x<\beta+\epsilon)$. $(\beta+\epsilon$ is not a lower bound of $S)$.

Theorem 65. uniqueness of greatest lower bound in an ordered field A greatest lower bound of a subset of an ordered field, if it exists, is unique.
Let S be a subset of an ordered field F.
The greatest lower bound (glb) of S is called the infimum and is denoted $\inf S$.

Therefore,

1. $(\forall x \in S)(\inf S \leq x)$. (inf S is a lower bound of $S)$
2. $(\forall \epsilon>0)(\exists x \in S)(x<\inf S+\epsilon)$. $(\inf S+\epsilon$ is not a lower bound of $S)$

Example 66. $\inf (0,1)=0$.
Proposition 67. 1. There is no least upper bound of \emptyset in an ordered field.
2. There is no greatest lower bound of \emptyset in an ordered field.

Let F be an ordered field.
Then $\sup \emptyset$ does not exist in F and $\inf \emptyset$ does not exist in F.
Therefore, $\sup \emptyset$ does not exist in \mathbb{Q} and $\inf \emptyset$ does not exist in \mathbb{Q} and $\sup \emptyset$
does not exist in \mathbb{R} and $\inf \emptyset$ does not exist in \mathbb{R}.

Let $S \subset F$.
If $S=\emptyset$, then $\sup S$ does not exist, so if $\sup S$ exists, then $S \neq \emptyset$.
If $S=\emptyset$, then $\inf S$ does not exist, so if $\inf S$ exists, then $S \neq \emptyset$.
Theorem 68. approximation property of suprema and infima
Let S be a subset of an ordered field F.

1. If $\sup S$ exists, then $(\forall \epsilon>0)(\exists x \in S)(\sup S-\epsilon<x \leq \sup S)$.
2. If $\inf S$ exists, then $(\forall \epsilon>0)(\exists x \in S)(\inf S \leq x<\inf S+\epsilon)$.

If $\sup S$ exists, then there is some element of S arbitrarily close to $\sup S$.
If $\inf S$ exists, then there is some element of S arbitrarily close to $\inf S$.
Proposition 69. Let S be a subset of an ordered field F.
If $\sup S$ and $\inf S$ exist, then $\inf S \leq \sup S$.
Proposition 70. Let S be a subset of an ordered field F.
Let $-S=\{-s: s \in S\}$.

1. If $\inf S$ exists, then $\sup (-S)=-\inf S$.
2. If $\sup S$ exists, then $\inf (-S)=-\sup S$.

Lemma 71. Let S be a subset of an ordered field F.
Let $k \in F$.
Let $K=\{k\}$.
Let $k+S=\{k+s: s \in S\}$.
Let $K+S=\{k+s: k \in K, s \in S\}$. Then

1. $\sup K=k$.
2. $\inf K=k$.
3. $k+S=K+S$.

Proposition 72. additive property of suprema and infima
Let A and B be subsets of an ordered field F.
Let $A+B=\{a+b: a \in A, b \in B\}$.

1. If $\sup A$ and $\sup B$ exist, then $\sup (A+B)=\sup A+\sup B$.
2. If $\inf A$ and $\inf B$ exist, then $\inf (A+B)=\inf A+\inf B$.

Corollary 73. Let S be a subset of an ordered field F.
Let $k \in F$.
Let $k+S=\{k+s: s \in S\}$.

1. If $\sup S$ exists, then $\sup (k+S)=k+\sup S$.
2. If $\inf S$ exists, then $\inf (k+S)=k+\inf S$.

Corollary 74. Let A and B be subsets of an ordered field F.
Let $A-B=\{a-b: a \in A, b \in B\}$.
If $\sup A$ and $\inf B$ exist, then $\sup (A-B)=\sup A-\inf B$.
Proposition 75. comparison property of suprema and infima
Let A and B be subsets of an ordered field F such that $A \subset B$.

1. If $\sup A$ and $\sup B$ exist, then $\sup A \leq \sup B$.
2. If $\inf A$ and $\inf B$ exist, then $\inf B \leq \inf A$.

Proposition 76. scalar multiple property of suprema and infima
Let S be a subset of an ordered field F.
Let $k \in F$.
Let $k S=\{k s: s \in S\}$.

1. If $k>0$ and $\sup S$ exists, then $\sup (k S)=k \sup S$.
2. If $k>0$ and $\inf S$ exists, then $\inf (k S)=k \inf S$.
3. If $k<0$ and $\inf S$ exists, then $\sup (k S)=k \inf S$.
4. If $k<0$ and $\sup S$ exists, then $\inf (k S)=k \sup S$.

Proposition 77. sufficient conditions for existence of supremum and infimum in an ordered field

Let S be a subset of an ordered field F.

1. If $\max S$ exists, then $\sup S=\max S$.
2. If $\min S$ exists, then $\inf S=\min S$.

Proposition 78. Let S be a subset of an ordered field F.
Let $-S=\{-s: s \in S\}$.

1. If $\min S$ exists, then $\max (-S)=-\min S$.
2. If $\max S$ exists, then $\min (-S)=-\max S$.

Lemma 79. Let A and B be nonempty subsets of an ordered field F.
Then $u \in F$ is an upper bound of $A \cup B$ iff u is an upper bound of A and B.
Proposition 80. Let A and B be subsets of an ordered field F.
If $\sup A$ and $\sup B$ exist, then $\sup (A \cup B)=\max \{\sup A, \sup B\}$.
Let A and B be subsets of an ordered field F.
If $\max A$ and $\max B$ exist in F, then $\sup A=\max A$ and $\sup B=\max B$.
Thus, $\sup (A \cup B)=\max \{\max A, \max B\}$.
Lemma 81. Let A and B be subsets of an ordered field F.
If $\max A$ and $\max B$ exist in F, then $\max (A \cup B)=\max \{\max A, \max B\}$.
Theorem 82. Every nonempty finite subset of an ordered field has a maximum.
Let S be a nonempty finite subset of an ordered field F.
Then max S exists.
Since $S \subset F$ and $\max S$ exists, then $\sup S=\max S$.
Example 83. Every nonempty finite subset of \mathbb{R} has a maximum.

Complete ordered fields

Definition 84. complete ordered field
An ordered field F is complete iff every nonempty subset of F that is bounded above in F has a least upper bound in F. Otherwise, F is said to be incomplete.

Axiom 85. \mathbb{R} is Dedekind complete.

Every nonempty subset of \mathbb{R} that is bounded above in \mathbb{R} has a least upper bound in \mathbb{R}.

Let S be a nonempty subset of \mathbb{R} that is bounded above in \mathbb{R}.
Then S has a least upper bound in \mathbb{R}.
Therefore $\sup S$ is the least upper bound of S in \mathbb{R}.
Hence $\sup S \in \mathbb{R}$ and

1. $(\forall x \in S)(x \leq \sup S)$.
2. If b is any upper bound of S, then $\sup S \leq b$.

Equivalently,

1. $(\forall x \in S)(x \leq \sup S)$.
2. $(\forall \epsilon>0)(\exists x \in S)(x>\sup S-\epsilon)$.

Theorem 86. greatest lower bound property in a complete ordered field
Every nonempty subset of a complete ordered field F that is bounded below in F has a greatest lower bound in F.

Example 87. Every nonempty set of real numbers that is bounded below in \mathbb{R} has a greatest lower bound in \mathbb{R}.

Let S be a nonempty subset of \mathbb{R} that is bounded below in \mathbb{R}.
Then S has a greatest lower bound in \mathbb{R}.
Therefore $\inf S$ is the greatest lower bound of S in \mathbb{R}.
Hence $\inf S \in \mathbb{R}$ and

1. $(\forall x \in S)(\inf S \leq x)$.
2. If b is any lower bound of S, then $b \leq \inf S$.

Equivalently,

1. $(\forall x \in S)(\inf S \leq x)$.
2. $(\forall \epsilon>0)(\exists x \in S)(x<\inf S+\epsilon)$.

Proposition 88. There is no rational number x such that $x^{2}=2$.
Example 89. \mathbb{Q} is not a complete ordered field.
The set $\left\{q \in \mathbb{Q}: q^{2}<2\right\}$ is bounded above in \mathbb{Q}, but does not have a least upper bound in \mathbb{Q}.

Therefore, \mathbb{Q} is not a complete ordered field.
Since \mathbb{Q} is not complete, then the Hasse diagram of \mathbb{Q} is linear with 'holes'.
Thus, \mathbb{Q} is incomplete and the number line for \mathbb{Q} has holes, while \mathbb{R} is complete and the number line for \mathbb{R} does not have any holes.

Rework this section.
Proposition 90. Let A and B be subsets of \mathbb{R} such that $\sup A$ and $\sup B$ exist in \mathbb{R}.

If $A \cap B \neq \emptyset$, then $\sup (A \cap B) \leq \min \{\sup A, \sup B\}$.
Moreover, if A and B are bounded intervals such that $A \cap B \neq \emptyset$, then $\sup (A \cap B)=\min \{\sup A, \sup B\}$.

Archimedean ordered fields

Definition 91. Archimedean ordered field
An ordered field F is Archimedean ordered iff $(\forall a \in F, b>0)(\exists n \in$ $\mathbb{N})(n b>a)$.

Let F be an Archimedean ordered field.
Then regardless of how small b is and how large a is, a sufficient number of repeated additions of b to itself will exceed a.

Equivalently, an ordered field F is Archimedean ordered iff $(\forall a \in F, b>$ $0)(\exists n \in \mathbb{N})\left(n>\frac{a}{b}\right)$.
Theorem 92. Archimedean property of \mathbb{Q}
The field $(\mathbb{Q},+, \cdot, \leq)$ is Archimedean ordered.
Therefore, for all $q \in \mathbb{Q}, \epsilon>0$ there exists $n \in \mathbb{N}$ such that $n \epsilon>q$.
Theorem 93. Archimedean property of \mathbb{R}
A complete ordered field is necessarily Archimedean ordered.
Since $(\mathbb{R},+, \cdot, \leq)$ is a complete ordered field, then $(\mathbb{R},+, \cdot, \leq)$ is Archimedean ordered.

Therefore, for all $x \in \mathbb{R}, \epsilon>0$ there exists $n \in \mathbb{N}$ such that $n \epsilon>x$.
Theorem 94. \mathbb{N} is unbounded in an Archimedean ordered field.
Let F be an Archimedean ordered field.
Then for every $x \in F$, there exists $n \in \mathbb{N}$ such that $n>x$.
Since $(\mathbb{R},+, \cdot, \leq)$ is Archimedean ordered, then for every real number x, there exists a natural number n such that $n>x$.

In symbols, $(\forall x \in \mathbb{R})(\exists n \in \mathbb{N})(n>x)$.
Therefore, \mathbb{N} is unbounded in \mathbb{R}.
Proposition 95. Let F be an Archimedean ordered field.
For every positive $\epsilon \in F$, there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<\epsilon$.
Since \mathbb{R} is Archimedean ordered, then for every positive real ϵ, there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<\epsilon$.

In symbols, $(\forall \epsilon>0)(\exists n \in \mathbb{N})\left(\frac{1}{n}<\epsilon\right)$.
Example 96. Let $S=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$.
Then $\max S=\sup S=1$ and $\min S$ does not exist and $\inf S=0$.
Lemma 97. Each real number lies between two consecutive integers
For each real number x there is a unique integer n such that $n \leq x<n+1$.
In symbols, $(\forall x \in \mathbb{R})(\exists!n \in \mathbb{Z})(n \leq x<n+1)$.
Let $x \in \mathbb{R}$.
Then there is a unique integer n such that $n \leq x<n+1$.

Theorem 98. \mathbb{Q} is dense in \mathbb{R}
For every $a, b \in \mathbb{R}$ with $a<b$, there exists $q \in \mathbb{Q}$ such that $a<q<b$.
Therefore, between any two distinct real numbers is a rational number.
Hence, if $a<b$, then there exists $q \in \mathbb{Q}$ in the open interval (a, b).
Therefore, there is a rational number in every nonempty open interval.
Corollary 99. between any two distinct real numbers is a nonzero rational number

For every $a, b \in \mathbb{R}$ with $a<b$, there exists $q \in \mathbb{Q}$ such that $q \neq 0$ and $a<q<b$.

Existence of square roots in \mathbb{R}

Definition 100. square root of a real number
Let $r \in \mathbb{R}$.
A square root of r is a real number x such that $x^{2}=r$.
Proposition 101. A square root of a negative real number does not exist in \mathbb{R}.
Proposition 102. Zero is the unique square root of 0 .
Lemma 103. Let F be an ordered field.
Let $a, b \in F$.
If $0<a<b$, then $0<a^{2}<a b<b^{2}$.
Lemma 104. Let F be an ordered field.
Let $a \in F$.
If $|a|<\epsilon$ for all $\epsilon>0$, then $a=0$.
Theorem 105. existence and uniqueness of positive square roots
Let $r \in \mathbb{R}$.
A unique positive square root of r exists in \mathbb{R} iff $r>0$.
Definition 106. nonnegative square root of a real number
Let $x \in \mathbb{R}$ such that $x \geq 0$.
The nonnegative square root of x is denoted \sqrt{x}.
Therefore, $\sqrt{x} \geq 0$ and $(\sqrt{x})^{2}=x$.
Let $x \in \mathbb{R}$.
Then $\sqrt{x}>0$ iff $x>0$.
Proposition 107. Let $x \in \mathbb{R}$.
Then $\sqrt{x} \in \mathbb{R}$ iff $x \geq 0$.
Proposition 108. Let $x \in \mathbb{R}$.
Then $\sqrt{x} \geq 0$ iff $x \geq 0$.

Let $x \in \mathbb{R}$.
If $x>0$, then $\sqrt{x}>0$ and $-\sqrt{x}<0$ and $(\sqrt{x})^{2}=x$ and $(-\sqrt{x})^{2}=x$.
Proposition 109. Let $a, b \in \mathbb{R}$ with $a \geq 0$ and $b \geq 0$.
Then $\sqrt{a}=\sqrt{b}$ iff $a=b$.
Proposition 110. Let $a, b \in \mathbb{R}$.
If $a \geq 0$ and $b \geq 0$, then $\sqrt{a b}=\sqrt{a} \sqrt{b}$.
Proposition 111. Let $x \in \mathbb{R}$. Then

1. $\sqrt{x}=0$ iff $x=0$.
2. $\sqrt{x^{2}}=|x|$.

Let $x \in \mathbb{R}$.
Since $\sqrt{x}=0$ iff $x=0$, then $\sqrt{0}=0$.
Since $\sqrt{x^{2}}=|x|$, then either $\sqrt{x^{2}}=x$ or $\sqrt{x^{2}}=-x$.
Lemma 112. Let $x \in \mathbb{R}$.
If $x>0$, then $\sqrt{\frac{1}{x}}=\frac{1}{\sqrt{x}}$.
Proposition 113. Let $a, b \in \mathbb{R}$.
If $a \geq 0$ and $b>0$, then $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$.
Lemma 114. Let $a, b \in \mathbb{R}$.
If $0<a \leq b$, then $0<a^{2} \leq b^{2}$.
Proposition 115. Let $a, b \in \mathbb{R}$.
Then $0<a<b$ iff $0<\sqrt{a}<\sqrt{b}$.
Corollary 116. Let $x \in \mathbb{R}$.

1. If $0<x<1$, then $0<x^{2}<x<\sqrt{x}<1$.
2. If $x>1$, then $1<\sqrt{x}<x<x^{2}$.

Definition 117. irrational number
A real number that is not rational is said to be irrational.
Let $r \in \mathbb{R}$ such that r is not rational.
Then $r \notin \mathbb{Q}$, so r is irrational.
Example 118. If $S=\left\{q \in \mathbb{Q}: q^{2}<2\right\}$, then $\sup S=\sqrt{2}$ in \mathbb{R}.
Thus, there exists $x \in \mathbb{R}$ such that $x^{2}=2$ and $x=\sqrt{2}$.
Since there is no rational x such that $x^{2}=2$, then $x \notin \mathbb{Q}$, so $\sqrt{2} \notin \mathbb{Q}$.
Therefore, $\sqrt{2}$ is irrational.
The set $\mathbb{R}-\mathbb{Q}$ is called the set of irrational numbers.
Proposition 119. the additive inverse of an irrational number is irrational

Let $a \in \mathbb{R}$.
If a is irrational, then $-a$ is irrational.

Proposition 120. the sum of a rational and irrational number is irrational

Let $a, b \in \mathbb{R}$.
If a is rational and b is irrational, then $a+b$ is irrational.
Proposition 121. the reciprocal of an irrational number is irrational Let $a \in \mathbb{R}$.
If a is irrational, then $\frac{1}{a}$ is irrational.
Proposition 122. the product of a nonzero rational and irrational number is irrational

Let $a, b \in \mathbb{R}$.
If a is a nonzero rational and b is irrational, then $a b$ is irrational.
Corollary 123. the quotient of a nonzero rational and irrational number is irrational

Let $a, b \in \mathbb{R}$.
If a is a nonzero rational and b is irrational, then $\frac{a}{b}$ is irrational.
Proposition 124. $\mathbb{R}-\mathbb{Q}$ is dense in \mathbb{Q}
For every $a, b \in \mathbb{Q}$ with $a<b$, there exists $r \in \mathbb{R}-\mathbb{Q}$ such that $a<r<b$.
Therefore, between any two distinct rational numbers is an irrational number.

If $a, b \in \mathbb{Q}$ and $a<b$, then $a<a+\frac{b-a}{2} \sqrt{2}<b$.
Proposition 125. $\mathbb{R}-\mathbb{Q}$ is dense in \mathbb{R}
For every $a, b \in \mathbb{R}$ with $a<b$, there exists $r \in \mathbb{R}-\mathbb{Q}$ such that $a<r<b$.
Therefore, between any two distinct real numbers is an irrational number.

