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Sets of Numbers

N = set of all natural numbers = {1, 2, 3, ...}
Z = set of all integers = {0, 1,−1, 2,−2, 3,−3, ...}
Q = {mn : m,n ∈ Z ∧ n 6= 0} = set of all rational numbers
R = set of all real numbers
R∗ = {x ∈ R : x 6= 0} = (−∞, 0) ∪ (0,∞) = set of all nonzero real numbers
R+ = {x ∈ R : x > 0} = (0,∞) = set of all positive real numbers
R+ = {x ∈ R : x ≥ 0} = [0,∞) = [0,∞[= set of all nonnegative real numbers

Number system relationships
N ⊂ Z ⊂ Q ⊂ R.

Construction of Q
Proposition 1. Let ∼ be a relation defined for all (a, b), (c, d) ∈ Z × Z∗ by
(a, b) ∼ (c, d) iff ad = bc.

Then ∼ is an equivalence relation over Z× Z∗.
Let (m,n), (p, q), (r, s) ∈ Z× Z∗.
Then m,n, p, q, r, s ∈ Z and n, q, s 6= 0 and
1. reflexive (m,n) ∼ (m,n).
2. symmetric if (m,n) ∼ (p, q) then (p, q) ∼ (m,n).
3. transitive if (m,n) ∼ (p, q) and (p, q) ∼ (r, s), then (m,n) ∼ (r, s).

Definition 2. rational number
Let (m,n) ∈ Z× Z∗.
Then m ∈ Z and n ∈ Z and n 6= 0.
The equivalence class of (m,n), denoted m

n , is the set of all ordered pairs
of integers to which (m,n) is equivalent.

Therefore m
n = {(p, q) ∈ Z× Z∗ : (m,n) ∼ (p, q)}.
m

n
= {(p, q) ∈ Z× Z∗ : (m,n) ∼ (p, q)}

= {(p, q) ∈ Z× Z∗ : mq = np}
= {(p, q) ∈ Z× Z : mq = np ∧ n, q 6= 0}.



m
n is called a rational number (ie, fraction).

Since ∼ is an equivalence relation, then a
b = c

d iff (a, b) ∼ (c, d).

Therefore, a
b = c

d iff (a, b) ∼ (c, d) iff ad = bc and b, d 6= 0.

Example 3. 1
2 = {(p, q) ∈ Z×Z∗ : (1, 2) ∼ (p, q)} = {(p, q) ∈ Z×Z∗ : q = 2p}.

Since 4 = 2 ∗ 2, then (2, 4) ∈ 1
2 .

Since 6 = 2 ∗ 3, then (3, 6) ∈ 1
2 .

Since 8 = 2 ∗ 4, then (4, 8) ∈ 1
2 .

Since −2 = 2 ∗ (−1), then (−1,−2) ∈ 1
2 .

Since −4 = 2 ∗ (−2), then (−2,−4) ∈ 1
2 .

Therefore, 1
2 = 2

4 = 3
6 = 4

8 = −1
−2 = −2

−4 .

Since ∼ is an equivalence relation defined over the set Z× Z∗, then the set
of all equivalence classes of ∼, called the quotient set of Z× Z∗ by ∼, is Z×Z∗

∼ ,
which we denote by Q.

Definition 4. rational numbers Q
The collection of all equivalence classes m

n is the set of rational numbers Q.

Therefore, Q = {mn : m,n ∈ Z∧n 6= 0} where m
n is the class of ordered pairs

(p, q) in Z× Z such that (m,n) ∼ (p, q) iff mq = np and n, q 6= 0.

We want to define addition of fractions so that if (a, b) ∼ (a′, b′) and (c, d) ∼
(c′, d′), then the sum should be the same.

Hence, we want a
b + c

d = a′

b′ + c′

d′ regardless of the particular class represen-
tatives chosen.

For example, since 1
2 = 2

4 and 3
5 = 6

10 , we want 1
2 + 3

5 = 2
4 + 6

10 .
Therefore, any definition of addition in Q must be defined to be independent

of a particular representative of the equivalence class.
Therefore, we want addition to be well defined.

Definition 5. addition over Q
Let + : Q×Q→ Q be a relation defined by a

b + c
d = ad+bc

bd for all a
b ,

c
d ∈ Q.

Proposition 6. Addition is a binary operation on Q.

Therefore, addition over Q is well defined.
a
b + c

d = ad+bc
bd means (a, b) + (c, d) = (ad+ bc, bd).

Theorem 7. algebraic properties of addition over Q
1. m

n + (p
q + r

s ) = (m
n + p

q ) + r
s for all m

n ,
p
q ,

r
s ∈ Q. (associative)

2. m
n + p

q = p
q + m

n for all m
n ,

p
q ∈ Q. (commutative)

3. m
n + 0 = 0 + m

n = m
n for all m

n ∈ Q. (additive identity)
4. m

n + −m
n = −m

n + m
n = 0 for all m

n ∈ Q. (additive inverses)

2



We want to define multiplication of fractions so that if (a, b) ∼ (a′, b′) and
(c, d) ∼ (c′, d′), then the product should be the same.

Hence, we want a
b ·

c
d = a′

b′ ·
c′

d′ regardless of the particular class representatives
chosen.

For example, since 1
2 = 2

4 and 3
5 = 6

10 , we want 1
2 ·

3
5 = 2

4 ·
6
10 .

Therefore, any definition of multiplication in Q must be defined to be inde-
pendent of a particular representative of the equivalence class.

Therefore, we want multiplication to be well defined.

Definition 8. multiplication over Q
Let · : Q×Q→ Q be a relation defined by a

b ·
c
d = ac

bd for all a
b ,

c
d ∈ Q.

Proposition 9. Multiplication is a binary operation on Q.

Therefore, multiplication over Q is well defined.
a
b
c
d = ac

bd means (a, b)(c, d) = (ac, bd).

Theorem 10. algebraic properties of multiplication over Q
1. m

n · (
p
q ·

r
s ) = (m

n ·
p
q ) · rs for all m

n ,
p
q ,

r
s ∈ Q. (associative)

2. m
n ·

p
q = p

q ·
m
n for all m

n ,
p
q ∈ Q. (commutative)

3. m
n · 1 = 1 · mn = m

n for all m
n ∈ Q. (multiplicative identity)

4. m
n · 0 = 0 · mn = 0 for all m

n ∈ Q.
5. m

n · (
p
q + r

s ) = m
n ·

p
q + m

n ·
r
s for all m

n ,
p
q ,

r
s ∈ Q. (left distributive)

6. (m
n + p

q ) · rs = m
n ·

r
s + p

q ·
r
s for all m

n ,
p
q ,

r
s ∈ Q. (right distributive)

Proposition 11. Q extends Z.
Let Q = {mn : n 6= 0} where m

n is the class of ordered pairs (p, q) in Z × Z
such that (p, q) ∼ (m,n) iff pn = qm and q, n 6= 0.

Q extends Z.

Let S = {n1 : n ∈ Z}.
Then S ⊂ Q and S is a subring of Q and Z is isomorphic to S.
Hence, Q contains a copy of Z, so Z is embedded in Q.
Therefore, Q extends Z.

Ordered Fields

Definition 12. ordered field
An ordered field (F, P ) is a field (F,+, ·) and nonempty subset P of F

such that the following axioms hold:
OF1. P is closed under addition defined over F .
(∀a, b ∈ P )(a+ b ∈ P ).
OF2. P is closed under multiplication defined over F .
(∀a, b ∈ P )(ab ∈ P ).
OF3. Trichotomy.
For every a ∈ F exactly one of the following statements is true:
i. a ∈ P .
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ii. a = 0.
iii. −a ∈ P .

The subset P is the positive part of F .
An element a of F is positive iff a ∈ P .
An element a of F is negative iff −a ∈ P .
OF1 implies the sum of two positive elements is positive.
OF2 implies the product of two positive elements is positive.
OF3 implies 0 6∈ P .

Example 13. (C,+, ·) is not an ordered field.

Proof. Suppose (C,+, ·) is an ordered field.
Then there is a subset P of positive elements of C and 1 ∈ P .
Since i ∈ C and i 6= 0, then i2 ∈ P .
Since i2 = −1, then −1 ∈ P .
Hence, we have 1 ∈ P and −1 ∈ P , a violation of trichotomy.
Therefore, (C,+, ·) is not an ordered field.

Example 14. (Z5,+, ·) is not an ordered field.

Proof. Suppose (Z5,+, ·) is an ordered field.
Then the subset P of positive elements of Z5 is closed under addition.
Since [1] ∈ P , then 5 ∗ [1] = [1] + [1] + [1] + [1] + [1] ∈ P .
Since 5 · [1] = [0], then [0] ∈ P .
But [0] 6∈ P in an ordered field.
Therefore, (Z5,+, ·) is not an ordered field.

Definition 15. positive and negative rational number
A number q ∈ Q is said to be a positive rational number iff there exist

a, b ∈ Z+ such that q = a
b .

A number q ∈ Q is said to be a negative rational number iff −q is
positive.

Proposition 16. Positivity of Q is well defined.

Let m
n ,

m′

n′ ∈ Q.
Then m,n ∈ Z and n 6= 0 and m′, n′ ∈ Z and n′ 6= 0.
Therefore, if (m,n) ∼ (m′, n′), then m

n is positive iff m′

n′ is positive.

Proposition 17. (Q,+, ·) is an ordered field.

Let Q+ be the positive subset of the ordered field (Q,+, ·).
Then Q+ = {ab ∈ Q : a, b ∈ Z+}, so Q+ ⊂ Q.
The set Q+ is the set of all positive rational numbers.

Proposition 18. Let F be an ordered field with positive subset P . Then
1. 1 ∈ P .
2. if x ∈ P , then x−1 ∈ P .
3. if x, y ∈ P , then x

y ∈ P .

4. if x ∈ F and x 6= 0, then x2 ∈ P .
5. if x ∈ P , then nx ∈ P for all n ∈ N.
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Definition 19. relation < over an ordered field
Let F be an ordered field with positive subset P .
Define a relation “is less than”, denoted <, on F by a < b iff b− a ∈ P for

all a, b ∈ F .
Define a relation “is greater than”, denoted >, on F by a > b iff b < a for

all a, b ∈ F .
We denote the ordered field F with relation < defined over F by (F,+, ·, <).

Example 20. Let Q+ be the set of all positive rational numbers.
Define the relation < on Q by a < b iff b− a ∈ Q+ for all a, b,∈ Q.
Define the relation > on Q by a > b iff b < a for all a, b ∈ Q.
Then (Q,+, ·, <) denotes the ordered field (Q,+, ·) with the relation < de-

fined over Q.

Proposition 21. Let F be an ordered field with positive subset P . Then for all
a, b ∈ F

1. a > 0 iff a ∈ P .
2. a < 0 iff −a ∈ P .
3. a < b iff b− a > 0.

Let F be an ordered field with positive subset P .
Since 1 ∈ P and 1 > 0 iff 1 ∈ P , then 1 > 0.
Therefore, 1 > 0 in any ordered field.

Let x ∈ F .
Since x ∈ P iff x > 0, then x is positive iff x > 0.
Since −x ∈ P iff x < 0, then x is negative iff x < 0.

Let F+ = {x ∈ F : x is positive } = {x ∈ F : x > 0}.
Let F− = {x ∈ F : x is negative } = {x ∈ F : x < 0}.
Let F ∗ = {x ∈ F : x 6= 0} = F+ ∪ F−.
Thus, if x ∈ F ∗ then either x is positive or x is negative.
The set {F+, F−, {0}} is a partition of F .
Therefore, F = F ∗ ∪ {0} = F+ ∪ {0} ∪ F−.
Let x ∈ F .
Then either x is positive or x is zero or x is negative.
Therefore an element of an ordered field is either positive or zero or negative.

Let a, b ∈ F .
Then a < b iff b− a ∈ F+ iff b− a > 0 iff b− a is positive.
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Let x ∈ F .
Since x > 0 iff x ∈ F+ iff −(−x) ∈ F+ iff −x < 0, then x > 0 iff −x < 0.
Therefore, x > 0 iff −x < 0.
Hence, x is positive iff −x is negative.
Since 1 > 0 and 1 > 0 iff −1 < 0, then −1 < 0.
Therefore, −1 < 0 in any ordered field.

Let F be an ordered field.
Let F+ be the set of all positive elements of F .
Then F+ = {x ∈ F : x > 0}.
Since 1 ∈ F and 1 > 0, then 1 ∈ F+.
Let x ∈ F .
If x ∈ F+, then x−1 ∈ F+.
Thus, if x > 0, then x−1 = 1

x > 0.
Therefore, in an ordered field, if x is positive, then its reciprocal 1

x is positive.

If x, y ∈ F+, then x
y ∈ F

+.
Thus, if x > 0 and y > 0, then x

y > 0.
Therefore, in an ordered field, if x is positive and y is positive, then the ratio

x
y is positive.

If x ∈ F and x 6= 0, then x2 ∈ F+.
Thus, if x 6= 0, then x2 > 0.
Therefore, in an ordered field, if x is nonzero, then its square x2 is positive.

If x ∈ F+, then nx ∈ F+ for all n ∈ N.
Thus, if x > 0, then nx > 0 for all n ∈ N.
Therefore, in an ordered field, if x is positive, then every positive integer

multiple of x is positive.
Moreover, if x > 0, then 0 < x < 2x < 3x < 4x < 5x < ....

Lemma 22. Let (F,+, ·, <) be an ordered field with a, b ∈ F .
If a > 0 and b < 0, then ab < 0.

Proposition 23. positivity of a product in an ordered field
Let (F,+, ·, <) be an ordered field with a, b ∈ F . Then
1. ab > 0 iff either a > 0 and b > 0 or a < 0 and b < 0.
2. ab < 0 iff either a > 0 and b < 0 or a < 0 and b > 0.

Let F be an ordered field with a, b ∈ F . Then
1. ab is positive iff a and b are either both positive or both negative.
2. ab is negative iff either a is positive and b is negative or a is negative and

b is positive.
(+)(+) = +
(+)(−) = −
(−)(+) = −
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(−)(−) = +
Therefore, ab is positive iff a and b have the same sign and ab is negative iff

a and b have opposite signs.

Corollary 24. Let (F,+, ·, <) be an ordered field.
Let a, b ∈ F .
Then a

b > 0 iff ab > 0.

Arithmetic Properties
In Z, m < n iff n−m is positive. ie, in the set {1, 2, 3, 4, 5, ...}.
In Z× Z, (a, b) < (c, d) iff a < c or ( a = c ∧ b < d).
This is dictionary order.

Theorem 25. ordered fields satisfy transitivity and trichotomy laws
Let (F,+, ·, <) be an ordered field. Then
1. a < a is false for all a ∈ F . (Therefore, < is not reflexive.)
2. For all a, b, c ∈ F , if a < b and b < c, then a < c. (< is transitive)
3. For every a ∈ F , exactly one of the following is true (trichotomy):
i. a > 0
ii. a = 0
iii. a < 0
4. For every a, b ∈ F , exactly one of the following is true (trichotomy):
i. a > b
ii. a = b
iii. a < b

Corollary 26. Let (F,+, ·, <) be an ordered field.
Let a, b ∈ F .
If 0 < a < b, then 0 < 1

b <
1
a .

Theorem 27. order is preserved by the field operations in an ordered
field

Let (F,+, ·, <) be an ordered field.
Let a, b, c, d ∈ F .
1. If a < b, then a+ c < b+ c. (preserves order for addition)
2. If a < b, then a− c < b− c. (preserves order for subtraction)
3. If a < b and c > 0, then ac < bc. (preserves order for multiplication by a

positive element)
4. If a < b and c < 0, then ac > bc. (reverses order for multiplication by a

negative element)
5. If a < b and c > 0, then a

c <
b
c . (preserves order for division by a positive

element)

Proposition 28. Let (F,+, ·, <) be an ordered field.
Let a, b, c, d ∈ F .
1. If a < b and c < d, then a+ c < b+ d. (adding inequalities is valid)
2. If 0 < a < b and 0 < c < d, then 0 < ac < bd.
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Proposition 29. Let (F,+, ·, <) be an ordered field.
Let a

b ,
c
d ∈ F with b, d > 0.

Then a
b <

c
d iff ad < bc.

Definition 30. Let (F,+, ·, <) be an ordered field.
Let a, b, c ∈ F .
We say that b is between a and c iff a < b and b < c and we write a < b < c.

Theorem 31. density of ordered fields
Between any two distinct elements of an ordered field is a third element.

Let F be an ordered field with a, b ∈ F such that a < b.
Then there exists c ∈ F such that a < c < b.

Let F be an ordered field with a, b ∈ F .
If a < b, then a < a+b

2 < b.

Example 32. density of Q
Since (Q,+, ·, <) is an ordered field, then between any two distinct rational

numbers is another rational number.
Therefore, if a, b ∈ Q and a < b, then there exists q ∈ Q such that a < q < b.

Corollary 33. ordered fields are infinite
An ordered field contains an infinite number of elements.

Example 34. Q is infinite
Since (Q,+, ·, <) is an ordered field, then Q contains an infinite number of

elements.
Therefore, there are infinitely many rational numbers.

Definition 35. relation ≤ over an ordered field
Let (F,+, ·, <) be an ordered field.
Define a relation “is less than or equal to”, denoted ≤, on F by a ≤ b iff

either a < b or a = b for all a, b ∈ F .
Define a relation “is greater than or equal to”, denoted ≥, on F by a ≥ b iff

b ≤ a for all a, b ∈ F .
We denote the ordered field (F,+, ·, <) with relation ≤ defined over F by

(F,+, ·,≤).

Example 36. Let (Q,+, ·, <) be the ordered field of rational numbers.
Define the relation ≤ on Q by a ≤ b iff either a < b or a = b for all a, b ∈ Q.
Define the relation ≥ on Q by a ≥ b iff b ≤ a for all a, b ∈ Q.
Then (Q,+, ·,≤) denotes the ordered field (Q,+, ·, <) with the relation ≤

defined over Q.

Theorem 37. ordered fields are totally ordered
Let (F,+, ·,≤) be an ordered field. Then
1. ≤ is a partial order over F . Therefore, (F,≤) is a poset.
2. ≤ is a total order over F .
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Therefore, for any elements a, b, c of an ordered field F
1. Reflexive: a ≤ a.
2. Antisymmetric: if a ≤ b and b ≤ a, then a = b.
3. Transitive: if a ≤ b and b ≤ c, then a ≤ c.
4. Comparable: for every a, b ∈ F , either a ≤ b or b ≤ a.
Any total order is a linear chain, so an ordered field is a linear chain.

Proposition 38. Let (F,+, ·,≤) be an ordered field. Then
1. x2 = 0 iff x = 0.
2. x2 > 0 iff x 6= 0.
3. x2 ≥ 0 for all x ∈ F .

Since 1 6= 0 in every ordered field, then 12 > 0.
Therefore, 1 > 0 in every ordered field.

Absolute value in an ordered field

The absolute value of an element in an ordered field measures size(magnitude).

Definition 39. absolute value in an ordered field
Let F be an ordered field.
Let x ∈ F .
The absolute value of x, denoted |x|, is defined by the rule

|x| =

{
x if x ≥ 0

−x if x < 0

The absolute value in an ordered field F is a function from F to F .
Observe that |0| = 0.
Since 1 > 0, then |1| = 1.

Lemma 40. Let F be an ordered field. Let x ∈ F .
1. If x < 0, then 1

x < 0.
2. If x 6= 0, then | 1x | =

1
|x| .

Theorem 41. arithmetic operations and absolute value
Let F be an ordered field. For all a, b ∈ F
1. |ab| = |a||b|.
2. if b 6= 0, then |ab | =

|a|
|b| .

3. |a|2 = a2.
4. if a 6= 0, then |an| = |a|n for all n ∈ Z.

Theorem 42. properties of the absolute value function
Let (F,+, ·,≤) be an ordered field.
Let a, k ∈ F and k > 0. Then
1. |a| ≥ 0.
2. |a| = 0 iff a = 0.
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3. | − a| = |a|.
4. −|a| ≤ a ≤ |a|.
5. |a| < k iff −k < a < k.
6. |a| > k iff a > k or a < −k.
7. |a| = k iff a = k or a = −k.

Theorem 43. triangle inequality
Let (F,+, ·,≤) be an ordered field.
Let a, b ∈ F . Then |a+ b| ≤ |a|+ |b|.

This statement indicates that the length of a side of a triangle is less than
the sum of the lengths of the other two sides.

Corollary 44. Let (F,+, ·,≤) be an ordered field. Then
1. |a− b| ≥ |a| − |b| and |a− b| ≥ |b| − |a| for all a, b ∈ F .
2. ||a| − |b|| ≤ |a− b| ≤ |a|+ |b| for all a, b ∈ F .

Let F be an ordered field.
Then |a− b| ≥ |a| − |b| and |a− b| ≥ |b| − |a| for all a, b ∈ F .
This statement indicates that the length of a side of a triangle is greater

than the difference of the lengths of the other two sides.

Corollary 45. generalized triangle inequality
Let (F,+, ·,≤) be an ordered field.
Let n ∈ N.
Let x1, x2, ..., xn ∈ F . Then
|x1 + x2 + ...+ xn| ≤ |x1|+ |x2|+ ...+ |xn|.

Ordered field properties of R
We assume there exists a complete ordered field and call it R.

Axiom 46. (R,+, ·,≤) is a complete ordered field.
The set of real numbers R with the operations of addition and multiplication

and the relation ≤ defined over R is defined to be a complete ordered field.

Therefore, (R,+, ·,≤) is defined to be a complete ordered field.

Since (R,+, ·,≤) is a field, then the field axioms hold for R.

Field axioms of (R,+, ·,≤)
A1. x+ y ∈ R for all x, y ∈ R. (closure under addition)
A2. (x+ y) + z = x+ (y + z) for all x, y, z ∈ R. (addition is associative)
A3. x+ y = y + x for all x, y ∈ R. (addition is commutative)
A4. (∃0 ∈ R)(∀x ∈ R)(0 + x = x+ 0 = x). (existence of additive identity)
A5. (∀x ∈ R)(∃ − x ∈ R)(x + (−x) = −x + x = 0). (existence of additive

inverses)
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M1. xy ∈ R for all x, y ∈ R. (closure under multiplication)
M2. (xy)z = x(yz) for all x, y, z ∈ R. (multiplication is associative)
M3. xy = yx for all x, y ∈ R. (multiplication is commutative)
M4. (∃1 ∈ R)(∀x ∈ R)(1·x = x·1 = x). (existence of multiplicative identity)
M5. (∀x ∈ R∗)(∃x−1 ∈ R)(xx−1 = x−1x = 1). (existence of multiplicative

inverses)
D1. x(y+ z) = xy+ xz for all x, y, z ∈ R. (multiplication is left distributive

over addition)
D2. (y+z)x = yx+zx for all x, y, z ∈ R. (multiplication is right distributive

over addition)
F1. 1 6= 0. (multiplicative identity is distinct from additive identity)
The additive identity of R is 0.
The additive inverse of x ∈ R is −x.
The multiplicative identity of R is 1.
The multiplicative inverse of x ∈ R∗ is 1

x ∈ R∗.

Since (R,+, ·,≤) is a field, then R is an integral domain.
Therefore, xy = 0 iff x = 0 or y = 0 for all x, y ∈ R.
Equivalently, xy 6= 0 iff x 6= 0 and y 6= 0 for all x, y ∈ R.
Therefore, the product of any two nonzero elements of R is nonzero.

Since (R,+, ·,≤) is a field, then R satisfies the multiplicative cancellation
laws.

Therefore, if xz = yz and z 6= 0, then x = y for all x, y, z ∈ R.

Since (R,+, ·),≤) is an ordered field, then there exists a nonempty subset R+

of R such that
OF1. R+ is closed under addition. (∀a, b ∈ R+)(a+ b ∈ R+).
OF2. R+ is closed under multiplication. (∀a, b ∈ R+)(ab ∈ R+).
OF3. For every r ∈ R+ exactly one of the following is true:
i. r ∈ R+

ii. r = 0
iii. −r ∈ R+.

Definition 47. Let R+ be the set of all positive real numbers.
Define the relation < on R by a < b iff b− a ∈ R+ for all a, b,∈ R.
Define the relation > on R by a > b iff b < a for all a, b ∈ R.
Then (R,+, ·, <) denotes the ordered field (R,+, ·) with the relation < de-

fined over R.

Definition 48. Let (R,+, ·, <) be the ordered field of real numbers.
Define the relation ≤ on R by a ≤ b iff either a < b or a = b for all a, b ∈ R.
Define the relation ≥ on R by a ≥ b iff b ≤ a for all a, b ∈ R.
Then (R,+, ·,≤) denotes the ordered field (R,+, ·, <) with the relation ≤

defined over R.
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Definition 49. sign of a real number
Let x ∈ R.
x is nonzero iff x 6= 0.
x is positive iff x > 0.
x is negative iff x < 0.
x is non-negative iff x ≥ 0.
x is non-positive iff x ≤ 0.

R+ = {x ∈ R : x is positive } = {x ∈ R : x > 0} = (0,∞).
R− = {x ∈ R : x is negative } = {x ∈ R : x < 0} = (−∞, 0).
R∗ = {x ∈ R : x 6= 0} = R+ ∪ R− = (0,∞) ∪ (−∞, 0).
Thus, if x ∈ R∗ then either x is positive or x is negative.
{R+,R−, {0}} is a partition of R.
{R+,R−} is a partition of R∗.
Therefore, R = R∗ ∪ {0} = R+ ∪ {0} ∪ R−.
Hence, an element x ∈ R is either positive or zero or negative.
Therefore, every real number is either positive, zero, or negative.

Since (R,+, ·,≤) is an ordered field, the following are true:
1. If x, y ∈ R+, then x+ y ∈ R+. (R+ is closed under +)
2. If x, y ∈ R+, then xy ∈ R+. (R+ is closed under ·)
3. For every x, y ∈ R, exactly one of the following is true (trichotomy):
x > y, x = y, x < y.
4. If x < y and y < z, then x < z. (< is transitive)
5. If x < y, then x+ z < y + z. (preserves order for addition)
6. If x < y and z > 0, then xz < yz. (preserves order for multiplication by

a positive element)

Example 50. density of R
Since (R,+, ·,≤) is an ordered field, then between any two distinct real

numbers is another real number.
Therefore, if a, b ∈ R and a < b, then there exists r ∈ R such that a < r < b.

Example 51. R is infinite
Since (R,+, ·,≤) is an ordered field, then R contains an infinite number of

elements.
Therefore, there are infinitely many real numbers.

Since (R,+, ·,≤) is an ordered field, then ≤ is a total order on R.
Therefore, (R,≤) is a total order, so (R,≤) is a poset.
Since ≤ is a total order over R, then the following are true:
1. (∀x ∈ R)(x ≤ x) (reflexive)
2. (∀x, y ∈ R)([x ≤ y ∧ y ≤ x)→ (x = y)] (anti-symmetric)
3. (∀x, y, z ∈ R)(x ≤ y ∧ y ≤ z → x ≤ z) (transitive)
4. (∀x, y ∈ R)(x ≤ y ∨ y ≤ x). (comparable)
Since ≤ is a total order on R, then (R,≤) is a linearly ordered set.
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Since R is complete, then the Hasse diagram is a straight line with no holes,
i.e., the real number line.

Therefore, (R,+, ·,≤) is a complete linearly ordered field.

Boundedness of sets in an ordered field

Definition 52. upper bound of a subset of an ordered field
Let F be an ordered field.
Let S ⊂ F .
An element b ∈ F is an upper bound of S in F iff (∀x ∈ S)(x ≤ b).
The set S is bounded above in F iff S has an upper bound in F .

Therefore, S is bounded above in F iff (∃b ∈ F )(∀x ∈ S)(x ≤ b).
The statement ‘S has an upper bound in F ’ means: (∃b ∈ F )(∀x ∈ S)(x ≤

b).
Observe that

¬(∃b ∈ F )(∀x ∈ S)(x ≤ b) ⇔ (∀b ∈ F )(∃x ∈ S)(x 6≤ b)
⇔ (∀b ∈ F )(∃x ∈ S)(x > b).

Therefore, the statement ‘S has no upper bound in F ’ means:
(∀b ∈ F )(∃x ∈ S)(x > b).
Therefore S has no upper bound in F iff for each b ∈ F there is some x ∈ S

such that x > b.
An element b ∈ F is not an upper bound for S iff there exists x ∈ S such

that x > b.

Definition 53. lower bound of a subset of an ordered field
Let F be an ordered field.
Let S ⊂ F .
An element b ∈ F is a lower bound of S in F iff (∀x ∈ S)(b ≤ x).
The set S is bounded below in F iff S has a lower bound in F .

Therefore, S is bounded below in F iff (∃b ∈ F )(∀x ∈ S)(b ≤ x).
The statement ‘S has a lower bound in F ’ means: (∃b ∈ F )(∀x ∈ S)(b ≤ x).
Observe that

¬(∃b ∈ F )(∀x ∈ S)(b ≤ x) ⇔ (∀b ∈ F )(∃x ∈ S)(b 6≤ x)

⇔ (∀b ∈ F )(∃x ∈ S)(b > x).

Therefore, the statement ‘S has no lower bound in F ’ means:
(∀b ∈ F )(∃x ∈ S)(x < b).
Therefore S has no lower bound in F iff for each b ∈ F there is some x ∈ S

such that x < b.
An element b ∈ F is not a lower bound for S iff there exists x ∈ S such that

x < b.
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Definition 54. bounded subset of an ordered field
Let F be an ordered field.
Let S ⊂ F .
The set S is bounded in F iff there exists b ∈ F such that |x| ≤ b for all

x ∈ S.
The set S is unbounded in F iff S is not bounded in F .

In symbols, S is bounded in F iff (∃b ∈ F )(∀x ∈ S)(|x| ≤ b).
Therefore, S is unbounded in F iff (∀b ∈ F )(∃x ∈ S)(|x| > b).

Let S be a subset of an ordered field F .
Suppose S is bounded in F .
Then there exists B ∈ F such that |x| ≤ B for all x ∈ S.
Let x ∈ S.
Then |x| ≤ B.
Since |x| ≥ 0 and B + 1 > B, then 0 ≤ |x| ≤ B < B + 1.
Hence, |x| < B + 1 and 0 < B + 1.
Therefore, there exists B + 1 > 0 such that |x| < B + 1 for all x ∈ S.
Let b = B + 1.
Then there exists b > 0 such that |x| < b for all x ∈ S.
Hence, if a set S is bounded in an ordered field F , then there exists b > 0

such that |x| < b for all x ∈ S.
Therefore, if a set S is bounded in an ordered field F , then there exists b > 0

such that −b < x < b for all x ∈ S.

Theorem 55. A subset S of an ordered field F is bounded in F iff S is bounded
above and below in F .

Let S ⊂ R.
Then S is bounded in R iff S is bounded above and below in R.
Therefore, S is bounded in R iff S has an upper and lower bound in R.
Observe that

(∃m ∈ R)(∀x ∈ S)(m ≤ x) ∧ (∃M ∈ R)(∀x ∈ S)(x ≤M) ⇒
(∃m ∈ R)(∃M ∈ R)[(∀x ∈ S)(m ≤ x) ∧ (∀x ∈ S)(x ≤M)] ⇒

(∃m ∈ R)(∃M ∈ R)[(∀x ∈ S)(m ≤ x ∧ x ≤M)] ⇒
(∃m ∈ R)(∃M ∈ R)[(∀x ∈ S)(m ≤ x ≤M)].

Therefore, S is bounded in R iff there exist m,M ∈ R such that m ≤ x ≤ M
for all x ∈ S.

Since S is bounded in R iff S is bounded above and below in R, then
S is not bounded in R iff S is not bounded above in R or S is not bounded

below in R.
Therefore, S is unbounded in R iff either S has no upper bound in R or S

has no lower bound in R.
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Proposition 56. Every element of an ordered field is an upper and lower bound
of ∅.

Let F be an ordered field.
Let x ∈ F .
Then x is an upper and lower bound of ∅.
Therefore, ∅ is bounded above and below in F .
Hence, ∅ is bounded in F .

Example 57. Every rational number is an upper and lower bound for the
empty set.

Therefore, ∅ is bounded above and below in Q.
Hence, ∅ is bounded in Q.

Example 58. Every real number is an upper and lower bound for the empty
set.

Therefore, ∅ is bounded above and below in R.
Hence, ∅ is bounded in R.

Proposition 59. A subset of a bounded set is bounded.
Let A be a bounded subset of an ordered field F .
If B ⊂ A, then B is bounded in F .

Proposition 60. A union of bounded sets is bounded.
Let A and B be subsets of an ordered field F .
If A and B are bounded, then A ∪B is bounded.

Definition 61. least upper bound of a subset of an ordered field
Let F be an ordered field and S ⊂ F .
Then β ∈ F is a least upper bound for S in F iff β is the least element

of the set of all upper bounds of S in F .

Therefore β ∈ F is a least upper bound of S iff
1. β is an upper bound for S and
2. β ≤M for every upper bound M of S.
β ≤M for every upper bound M of S iff
no element of F less than β is an upper bound of S iff
every element of F less than β is not an upper bound of S iff
if γ < β, then γ is not an upper bound of S which means
if γ < β, then there exists x ∈ S such that x > γ which means
for every γ < β, there exists x ∈ S such that x > γ which means
for every β − γ > 0, there exists x ∈ S such that x > β − (β − γ) which

means
for every ε > 0, there exists x ∈ S such that x > β − ε.
Therefore, β = lub(S) iff
1. (∀x ∈ S)(x ≤ β). (β is an upper bound of S)
2. (∀ε > 0)(∃x ∈ S)(x > β − ε). (β − ε is not an upper bound of S).
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Theorem 62. uniqueness of least upper bound in an ordered field
A least upper bound of a subset of an ordered field, if it exists, is unique.

Let S be a subset of an ordered field F .
The least upper bound (lub) of S is called the supremum and is denoted

supS.
Therefore,
1. (∀x ∈ S)(x ≤ supS). (supS is an upper bound of S)
2. (∀ε > 0)(∃x ∈ S)(x > supS − ε). (supS − ε is not an upper bound of S).

Example 63. sup(0, 1) = 1.

Definition 64. greatest lower bound of a subset of an ordered field
Let F be an ordered field and S ⊂ F .
Then β ∈ F is a greatest lower bound for S in F iff β is the greatest

element of the set of all lower bounds of S in F .

Therefore β ∈ F is a greatest lower bound of S iff
1. β is a lower bound for S and
2. M ≤ β for every lower bound M of S.
M ≤ β for every lower bound M of S iff
no element of F greater than β is a lower bound of S iff
every element of F greater than β is not a lower bound of S iff
if γ > β, then γ is not a lower bound of S which means
if γ > β, then there exists x ∈ S such that x < γ which means
for every γ > β, there exists x ∈ S such that x < γ which means
for every γ − β > 0, there exists x ∈ S such that x < β + (γ − β) which

means
for every ε > 0, there exists x ∈ S such that x < β + ε.
Therefore, β = glb(S) iff
1. (∀x ∈ S)(β ≤ x). (β is a lower bound of S)
2. (∀ε > 0)(∃x ∈ S)(x < β + ε). (β + ε is not a lower bound of S).

Theorem 65. uniqueness of greatest lower bound in an ordered field
A greatest lower bound of a subset of an ordered field, if it exists, is unique.

Let S be a subset of an ordered field F .
The greatest lower bound (glb) of S is called the infimum and is de-

noted inf S.
Therefore,
1. (∀x ∈ S)(inf S ≤ x). (inf S is a lower bound of S)
2. (∀ε > 0)(∃x ∈ S)(x < inf S + ε). (inf S + ε is not a lower bound of S)

Example 66. inf(0, 1) = 0.

Proposition 67. 1. There is no least upper bound of ∅ in an ordered field.
2. There is no greatest lower bound of ∅ in an ordered field.

Let F be an ordered field.
Then sup ∅ does not exist in F and inf ∅ does not exist in F .
Therefore, sup ∅ does not exist in Q and inf ∅ does not exist in Q and sup ∅

does not exist in R and inf ∅ does not exist in R.
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Let S ⊂ F .
If S = ∅, then supS does not exist, so if supS exists, then S 6= ∅.
If S = ∅, then inf S does not exist, so if inf S exists, then S 6= ∅.

Theorem 68. approximation property of suprema and infima
Let S be a subset of an ordered field F .
1. If supS exists, then (∀ε > 0)(∃x ∈ S)(supS − ε < x ≤ supS).
2. If inf S exists, then (∀ε > 0)(∃x ∈ S)(inf S ≤ x < inf S + ε).

If supS exists, then there is some element of S arbitrarily close to supS.
If inf S exists, then there is some element of S arbitrarily close to inf S.

Proposition 69. Let S be a subset of an ordered field F .
If supS and inf S exist, then inf S ≤ supS.

Proposition 70. Let S be a subset of an ordered field F .
Let −S = {−s : s ∈ S}.
1. If inf S exists, then sup(−S) = − inf S.
2. If supS exists, then inf(−S) = − supS.

Lemma 71. Let S be a subset of an ordered field F .
Let k ∈ F .
Let K = {k}.
Let k + S = {k + s : s ∈ S}.
Let K + S = {k + s : k ∈ K, s ∈ S}. Then
1. supK = k.
2. inf K = k.
3. k + S = K + S.

Proposition 72. additive property of suprema and infima
Let A and B be subsets of an ordered field F .
Let A+B = {a+ b : a ∈ A, b ∈ B}.
1. If supA and supB exist, then sup(A+B) = supA+ supB.
2. If inf A and inf B exist, then inf(A+B) = inf A+ inf B.

Corollary 73. Let S be a subset of an ordered field F .
Let k ∈ F .
Let k + S = {k + s : s ∈ S}.
1. If supS exists, then sup(k + S) = k + supS.
2. If inf S exists, then inf(k + S) = k + inf S.

Corollary 74. Let A and B be subsets of an ordered field F .
Let A−B = {a− b : a ∈ A, b ∈ B}.
If supA and inf B exist, then sup(A−B) = supA− inf B.

Proposition 75. comparison property of suprema and infima
Let A and B be subsets of an ordered field F such that A ⊂ B.
1. If supA and supB exist, then supA ≤ supB.
2. If inf A and inf B exist, then inf B ≤ inf A.
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Proposition 76. scalar multiple property of suprema and infima
Let S be a subset of an ordered field F .
Let k ∈ F .
Let kS = {ks : s ∈ S}.
1. If k > 0 and supS exists, then sup(kS) = k supS.
2. If k > 0 and inf S exists, then inf(kS) = k inf S.
3. If k < 0 and inf S exists, then sup(kS) = k inf S.
4. If k < 0 and supS exists, then inf(kS) = k supS.

Proposition 77. sufficient conditions for existence of supremum and
infimum in an ordered field

Let S be a subset of an ordered field F .
1. If maxS exists, then supS = maxS.
2. If minS exists, then inf S = minS.

Proposition 78. Let S be a subset of an ordered field F .
Let −S = {−s : s ∈ S}.
1. If minS exists, then max(−S) = −minS.
2. If maxS exists, then min(−S) = −maxS.

Lemma 79. Let A and B be nonempty subsets of an ordered field F .
Then u ∈ F is an upper bound of A∪B iff u is an upper bound of A and B.

Proposition 80. Let A and B be subsets of an ordered field F .
If supA and supB exist, then sup(A ∪B) = max {supA, supB}.

Let A and B be subsets of an ordered field F .
If maxA and maxB exist in F , then supA = maxA and supB = maxB.
Thus, sup(A ∪B) = max{maxA,maxB}.

Lemma 81. Let A and B be subsets of an ordered field F .
If maxA and maxB exist in F , then max(A ∪B) = max {maxA,maxB}.

Theorem 82. Every nonempty finite subset of an ordered field has a maximum.

Let S be a nonempty finite subset of an ordered field F .
Then maxS exists.
Since S ⊂ F and maxS exists, then supS = maxS.

Example 83. Every nonempty finite subset of R has a maximum.

Complete ordered fields

Definition 84. complete ordered field
An ordered field F is complete iff every nonempty subset of F that is

bounded above in F has a least upper bound in F . Otherwise, F is said to be
incomplete.
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Axiom 85. R is Dedekind complete.
Every nonempty subset of R that is bounded above in R has a least upper

bound in R.

Let S be a nonempty subset of R that is bounded above in R.
Then S has a least upper bound in R.
Therefore supS is the least upper bound of S in R.
Hence supS ∈ R and
1. (∀x ∈ S)(x ≤ supS).
2. If b is any upper bound of S, then supS ≤ b.
Equivalently,
1. (∀x ∈ S)(x ≤ supS).
2. (∀ε > 0)(∃x ∈ S)(x > supS − ε).

Theorem 86. greatest lower bound property in a complete ordered field
Every nonempty subset of a complete ordered field F that is bounded below

in F has a greatest lower bound in F .

Example 87. Every nonempty set of real numbers that is bounded below in R
has a greatest lower bound in R.

Let S be a nonempty subset of R that is bounded below in R.
Then S has a greatest lower bound in R.
Therefore inf S is the greatest lower bound of S in R.
Hence inf S ∈ R and
1. (∀x ∈ S)(inf S ≤ x).
2. If b is any lower bound of S, then b ≤ inf S.
Equivalently,
1. (∀x ∈ S)(inf S ≤ x).
2. (∀ε > 0)(∃x ∈ S)(x < inf S + ε).

Proposition 88. There is no rational number x such that x2 = 2.

Example 89. Q is not a complete ordered field.
The set {q ∈ Q : q2 < 2} is bounded above in Q, but does not have a least

upper bound in Q.

Therefore, Q is not a complete ordered field.
Since Q is not complete, then the Hasse diagram of Q is linear with ‘holes’.
Thus, Q is incomplete and the number line for Q has holes, while R is

complete and the number line for R does not have any holes.
Rework this section.

Proposition 90. Let A and B be subsets of R such that supA and supB exist
in R.

If A ∩B 6= ∅, then sup(A ∩B) ≤ min {supA, supB}.
Moreover, if A and B are bounded intervals such that A ∩ B 6= ∅, then

sup(A ∩B) = min {supA, supB}.
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Archimedean ordered fields

Definition 91. Archimedean ordered field
An ordered field F is Archimedean ordered iff (∀a ∈ F, b > 0)(∃n ∈

N)(nb > a).

Let F be an Archimedean ordered field.
Then regardless of how small b is and how large a is, a sufficient number of

repeated additions of b to itself will exceed a.
Equivalently, an ordered field F is Archimedean ordered iff (∀a ∈ F, b >

0)(∃n ∈ N)(n > a
b ).

Theorem 92. Archimedean property of Q
The field (Q,+, ·,≤) is Archimedean ordered.

Therefore, for all q ∈ Q, ε > 0 there exists n ∈ N such that nε > q.

Theorem 93. Archimedean property of R
A complete ordered field is necessarily Archimedean ordered.

Since (R,+, ·,≤) is a complete ordered field, then (R,+, ·,≤) is Archimedean
ordered.

Therefore, for all x ∈ R, ε > 0 there exists n ∈ N such that nε > x.

Theorem 94. N is unbounded in an Archimedean ordered field.
Let F be an Archimedean ordered field.
Then for every x ∈ F , there exists n ∈ N such that n > x.

Since (R,+, ·,≤) is Archimedean ordered, then for every real number x, there
exists a natural number n such that n > x.

In symbols, (∀x ∈ R)(∃n ∈ N)(n > x).
Therefore, N is unbounded in R.

Proposition 95. Let F be an Archimedean ordered field.
For every positive ε ∈ F , there exists n ∈ N such that 1

n < ε.

Since R is Archimedean ordered, then for every positive real ε, there exists
n ∈ N such that 1

n < ε.
In symbols, (∀ε > 0)(∃n ∈ N)( 1

n < ε).

Example 96. Let S = { 1n : n ∈ N}.
Then maxS = supS = 1 and minS does not exist and inf S = 0.

Lemma 97. Each real number lies between two consecutive integers
For each real number x there is a unique integer n such that n ≤ x < n+ 1.

In symbols, (∀x ∈ R)(∃!n ∈ Z)(n ≤ x < n+ 1).
Let x ∈ R.
Then there is a unique integer n such that n ≤ x < n+ 1.
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Theorem 98. Q is dense in R
For every a, b ∈ R with a < b, there exists q ∈ Q such that a < q < b.

Therefore, between any two distinct real numbers is a rational number.
Hence, if a < b, then there exists q ∈ Q in the open interval (a, b).
Therefore, there is a rational number in every nonempty open interval.

Corollary 99. between any two distinct real numbers is a nonzero
rational number

For every a, b ∈ R with a < b, there exists q ∈ Q such that q 6= 0 and
a < q < b.

Existence of square roots in R
Definition 100. square root of a real number

Let r ∈ R.
A square root of r is a real number x such that x2 = r.

Proposition 101. A square root of a negative real number does not exist in R.

Proposition 102. Zero is the unique square root of 0.

Lemma 103. Let F be an ordered field.
Let a, b ∈ F .
If 0 < a < b, then 0 < a2 < ab < b2.

Lemma 104. Let F be an ordered field.
Let a ∈ F .
If |a| < ε for all ε > 0, then a = 0.

Theorem 105. existence and uniqueness of positive square roots
Let r ∈ R.
A unique positive square root of r exists in R iff r > 0.

Definition 106. nonnegative square root of a real number
Let x ∈ R such that x ≥ 0.
The nonnegative square root of x is denoted

√
x.

Therefore,
√
x ≥ 0 and (

√
x)2 = x.

Let x ∈ R.
Then

√
x > 0 iff x > 0.

Proposition 107. Let x ∈ R.
Then

√
x ∈ R iff x ≥ 0.

Proposition 108. Let x ∈ R.
Then

√
x ≥ 0 iff x ≥ 0.
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Let x ∈ R.
If x > 0, then

√
x > 0 and −

√
x < 0 and (

√
x)2 = x and (−

√
x)2 = x.

Proposition 109. Let a, b ∈ R with a ≥ 0 and b ≥ 0.
Then

√
a =
√
b iff a = b.

Proposition 110. Let a, b ∈ R.
If a ≥ 0 and b ≥ 0, then

√
ab =

√
a
√
b.

Proposition 111. Let x ∈ R. Then
1.
√
x = 0 iff x = 0.

2.
√
x2 = |x|.

Let x ∈ R.
Since

√
x = 0 iff x = 0, then

√
0 = 0.

Since
√
x2 = |x|, then either

√
x2 = x or

√
x2 = −x.

Lemma 112. Let x ∈ R.

If x > 0, then
√

1
x = 1√

x
.

Proposition 113. Let a, b ∈ R.

If a ≥ 0 and b > 0, then
√

a
b =

√
a√
b

.

Lemma 114. Let a, b ∈ R.
If 0 < a ≤ b, then 0 < a2 ≤ b2.

Proposition 115. Let a, b ∈ R.
Then 0 < a < b iff 0 <

√
a <
√
b.

Corollary 116. Let x ∈ R.
1. If 0 < x < 1, then 0 < x2 < x <

√
x < 1.

2. If x > 1, then 1 <
√
x < x < x2.

Definition 117. irrational number
A real number that is not rational is said to be irrational.

Let r ∈ R such that r is not rational.
Then r 6∈ Q, so r is irrational.

Example 118. If S = {q ∈ Q : q2 < 2}, then supS =
√

2 in R.
Thus, there exists x ∈ R such that x2 = 2 and x =

√
2.

Since there is no rational x such that x2 = 2, then x 6∈ Q, so
√

2 6∈ Q.
Therefore,

√
2 is irrational.

The set R−Q is called the set of irrational numbers.

Proposition 119. the additive inverse of an irrational number is ir-
rational

Let a ∈ R.
If a is irrational, then −a is irrational.
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Proposition 120. the sum of a rational and irrational number is
irrational

Let a, b ∈ R.
If a is rational and b is irrational, then a+ b is irrational.

Proposition 121. the reciprocal of an irrational number is irrational
Let a ∈ R.
If a is irrational, then 1

a is irrational.

Proposition 122. the product of a nonzero rational and irrational
number is irrational

Let a, b ∈ R.
If a is a nonzero rational and b is irrational, then ab is irrational.

Corollary 123. the quotient of a nonzero rational and irrational num-
ber is irrational

Let a, b ∈ R.
If a is a nonzero rational and b is irrational, then a

b is irrational.

Proposition 124. R−Q is dense in Q
For every a, b ∈ Q with a < b, there exists r ∈ R−Q such that a < r < b.

Therefore, between any two distinct rational numbers is an irrational num-
ber.

If a, b ∈ Q and a < b, then a < a+ b−a
2

√
2 < b.

Proposition 125. R−Q is dense in R
For every a, b ∈ R with a < b, there exists r ∈ R−Q such that a < r < b.

Therefore, between any two distinct real numbers is an irrational number.
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