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Topology of R
Theorem 1. properties of the distance function

Let F be an ordered field. For all x, y, z ∈ F
D1. d(x, y) ≥ 0.
D2. d(x, y) = 0 iff x = y.
D3. d(x, y) = d(y, x).
D4. d(x, y) ≤ d(x, z) + d(z, y).

Proof. We prove 1.
Let x, y ∈ F .
To prove d(x, y) ≥ 0, we must prove |x− y| ≥ 0.
Since x, y ∈ F , then x− y ∈ F , by closure of F under subtraction.
Since |a| ≥ 0 for all a ∈ F , then in particular, |x− y| ≥ 0.

Proof. We prove 2.
Let x, y ∈ F .
To prove d(x, y) = 0 iff x = y, we must prove |x− y| = 0 iff x = y.
Since x, y ∈ F , then x− y ∈ F .
Since |a| = 0 iff a = 0 for all a ∈ F , then in particular, |x − y| = 0 iff

x− y = 0.
Since x−y = 0 iff x = y, then this implies |x−y| = 0 iff x = y, as desired.

Proof. We prove 3.
Let x, y ∈ F .
To prove d(x, y) = d(y, x), we must prove |x− y| = |y − x|.
Since x, y ∈ F , then x− y ∈ F .
Observe that

|x− y| = | − (x− y)|
= | − x+ y|
= |y − x|.



Proof. We prove 4.
Let x, y, z ∈ F .
To prove d(x, y) ≤ d(x, z) + d(z, y), we must prove |x− y| ≤ |x− z|+ |z− y|.
Observe that

|x− y| = |x+ 0− y|
= |x+ (−z + z)− y|
= |(x− z) + (z − y)|
≤ |x− z|+ |z − y|.

Therefore, |x− y| ≤ |x− z|+ |z − y|, as desired.

Proposition 2. Let a, b ∈ R.
If a ≥ b, then (a, b) = ∅.
If a < b, then (a, b) 6= ∅.

Proof. Let a, b ∈ R.
Either a < b or a = b or a > b.
We consider these cases separately.
Case 1: Suppose a ≥ b.
We prove (a, b) = ∅ by contradiction.
Suppose (a, b) 6= ∅.
Then there is at least one element in (a, b).
Let x ∈ (a, b).
Then x ∈ R and a < x < b, so a < b.
Thus, we have a < b and a ≥ b, a violation of trichotomy.
Therefore, (a, b) = ∅, as desired.
Case 2: Suppose a < b.
We prove (a, b) 6= ∅.
By the density of R, between any two real numbers is another real number.
Since a, b ∈ R, then there exists c ∈ R such that a < c < b.
Therefore, c ∈ (a, b), so (a, b) 6= ∅, as desired.

Proposition 3. Let a, b ∈ R.
Then (a, b) ⊂ [a, b].

Proof. Either a < b or a = b or a > b.
We consider these cases separately.
Case 1: Suppose a ≥ b.
Then (a, b) = ∅.
Since the empty set is a subset of every set, then in particular, ∅ ⊂ [a, b].
Therefore, (a, b) ⊂ [a, b], as desired.
Case 2: Suppose a < b.
Then (a, b) 6= ∅, so there is at least one element in (a, b).
Let x ∈ (a, b).
Then x ∈ R and a < x < b, so a < x and x < b.
Since a < x, then either a < x or a = x, so a ≤ x.
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Since x < b, then either x < b or x = b, so x ≤ b.
Thus, a ≤ x and x ≤ b, so a ≤ x ≤ b.
Therefore, x ∈ [a, b], so (a, b) ⊂ [a, b], as desired.

Proposition 4. Let a, b ∈ R.
If a > b, then [a, b] = ∅.
If a = b, then [a, b] = {a}.
If a < b, then [a, b] 6= ∅.

Proof. Either a < b or a = b or a > b.
We consider these cases separately.
Case 1: Suppose a > b.
We prove [a, b] = ∅ by contradiction.
Suppose [a, b] 6= ∅.
Then there is at least one element in [a, b].
Let x ∈ [a, b].
Then x ∈ R and a ≤ x ≤ b, so a ≤ b.
Thus, we have a ≤ b and a > b, a violation of trichotomy.
Therefore, [a, b] = ∅, as desired.
Case 2: Suppose a = b.
Since a = a, then a ≤ a, so a ≤ a and a ≤ a.
Thus, a ≤ a ≤ a, so a ≤ a ≤ b.
Hence, a ∈ [a, b], so {a} ⊂ [a, b] and [a, b] 6= ∅.
Therefore, there is at least one element in [a, b].
Let x ∈ [a, b].
Then x ∈ R and a ≤ x ≤ b, so a ≤ x ≤ a.
Thus, a ≤ x and x ≤ a, so a = x.
Therefore, x ∈ {a}, so [a, b] ⊂ {a}.
Since [a, b] ⊂ {a} and {a} ⊂ [a, b], then [a, b] = {a}, as desired.
Case 3: Suppose a < b.
Then (a, b) 6= ∅.
Hence, there is at least one element x such that x ∈ (a, b).
Since x ∈ (a, b) and (a, b) ⊂ [a, b], then x ∈ [a, b].
Therefore, [a, b] 6= ∅, as desired.

Proposition 5. The distance between any two points in the interval
(a, b) is less than b− a.

Let a, b ∈ R.
Let x, y be any real numbers such that a < x < b and a < y < b.
Then |x− y| < b− a.

Proof. We must prove |x− y| < b− a.
Since a < x < b and a < y < b, then a < x and x < b and a < y and y < b.
Since x, y ∈ R, then x− y ∈ R.
Either x− y ≥ 0 or x− y < 0.
We consider these cases separately.
Case 1: Suppose x− y ≥ 0.
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Since a < y and x < b, then a+ x < y + b, so x− y < b− a.
Therefore, |x− y| = x− y < b− a.
Case 2: Suppose x− y < 0.
Since a < x and y < b, then a+ y < x+ b, so y − x < b− a.
Therefore, |x− y| = −(x− y) = −x+ y = y − x < b− a.
Hence, in all cases, |x− y| < b− a, as desired.

Corollary 6. Let a, b ∈ R with a < b.
Let x, y be any real numbers such that x ∈ [a, b] and y ∈ [a, b].
Then |x− y| ≤ b− a.

Proof. Since a < b, then b− a > 0.
Since x ∈ [a, b] and y ∈ [a, b], then a ≤ x ≤ b and a ≤ y ≤ b.
Thus, x = a or a < x < b or x = b and y = a or a < y < b or y = b.
Hence, either x = a and y = a or x = a and a < y < b or x = a and y = b

or a < x < b and y = a or a < x < b and a < y < b or a < x < b and y = b or
x = b and y = a or x = b and a < y < b or x = b and y = b.

We consider these cases separately.
Case 1: Suppose x = a and y = a.
Then |x− y| = |a− a| = 0 < b− a.
Case 2: Suppose x = a and a < y < b.
Since a < y < b, then a < y and y < b.
Since a < y, then y − a > 0.
Thus, |x− y| = |a− y| = |y − a| = y − a < b− a.
Case 3: Suppose x = a and y = b.
Then |x− y| = |a− b| = |b− a| = b− a.
Case 4: Suppose a < x < b and y = a.
Since a < x < b, then a < x and x < b.
Since a < x, then x− a > 0.
Thus, |x− y| = |x− a| = x− a < b− a.
Case 5: Suppose a < x < b and a < y < b.
Then |x− y| < b− a.
Case 6: Suppose a < x < b and y = b.
Since a < x < b, then a < x and x < b.
Since a < x, then −a > −x, so −x < −a.
Since x < b, then x− b < 0.
Thus, |x− y| = |x− b| = −(x− b) = −x+ b = b− x < b− a.
Case 7: Suppose x = b and y = a.
Then |x− y| = |b− a| = b− a.
Case 8: Suppose x = b and a < y < b.
Since a < y < b, then a < y and y < b.
Since a < y, then −a > −y, so −y < −a.
Since y < b, then y − b < 0.
Thus, |x− y| = |b− y| = |y − b| = −(y − b) = −y + b = b− y < b− a.
Case 9: Suppose x = b and y = b.
Then |x− y| = |b− b| = 0 < b− a.
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Therefore, in all cases, either |x− y| < b− a or |x− y| = b− a, so |x− y| ≤
b− a.

Proposition 7. Let I ⊂ R be an interval.
If a ∈ I and b ∈ I and a < b, then [a, b] ⊂ I.

Proof. Suppose a ∈ I and b ∈ I and a < b.
Since a ∈ I and I ⊂ R, then a ∈ R.
Since b ∈ I and I ⊂ R, then b ∈ R.
Since a < b, then by the density of R, there exists c ∈ R such that a < c < b,

so there exists c ∈ R such that c ∈ (a, b).
Since (a, b) ⊂ [a, b], then c ∈ [a, b].
To prove [a, b] ⊂ I, let x ∈ [a, b] be arbitrary.
Since [a, b] = {a} ∪ (a, b) ∪ {b}, then either x ∈ {a} or x ∈ (a, b) or x ∈ {b}.
We consider these cases separately.
Case 1: Suppose x ∈ {a}.
Then x = a.
Since a ∈ I, then x ∈ I.
Case 2: Suppose x ∈ {b}.
Then x = b.
Since b ∈ I, then x ∈ I.
Case 3: Suppose x ∈ (a, b).
Then a < x < b.
Since a ∈ I and b ∈ I and a < x < b and I is an interval, then x ∈ I.
Therefore, in all cases x ∈ I, so [a, b] ⊂ I.

Proposition 8. intersection of any two intervals is an interval
If I1 and I2 are intervals, then I1 ∩ I2 is an interval.

Proof. Let a, b, and c be arbitrary real numbers.
Suppose a ∈ I1 ∩ I2 and b ∈ I1 ∩ I2 and a < c < b.
Since a ∈ I1 ∩ I2, then a ∈ I1 and a ∈ I2.
Since b ∈ I1 ∩ I2, then b ∈ I1 and b ∈ I2.
Since I1 is an interval and a ∈ I1 and b ∈ I1 and a < c < b, then c ∈ I1.
Since I2 is an interval and a ∈ I2 and b ∈ I2 and a < c < b, then c ∈ I2.
Thus, c ∈ I1 and c ∈ I2, so c ∈ I1 ∩ I2.
Therefore, I1 ∩ I2 is an interval.

Proposition 9. intersection of a countable collection of intervals is an
interval

If {In : n ∈ Z+} is a collection of intervals, then ∩∞n=1In is an interval.

Solution. Let a, b, c be arbitrary real numbers.
To prove a, b ∈ ∩∞n=1In ∧ a < c < b → c ∈ ∩∞n=1In, we assume a, b ∈

∩∞n=1In ∧ a < c < b.
To prove c ∈ ∩∞n=1In, we must prove that (∀n ∈ Z+)(c ∈ In).

5



Proof. Let {In : n ∈ Z+} be a collection of intervals.
To prove ∩∞n=1In is an interval, let a, b, and c be arbitrary real numbers such

that a ∈ ∩∞n=1In and b ∈ ∩∞n=1In and a < c < b.
To prove c ∈ ∩∞n=1In, let k be an arbitrary positive integer.
We must prove c ∈ Ik.
Since a ∈ ∩∞n=1In, then a ∈ In for every n ∈ Z+.
In particular, a ∈ Ik.
Since b ∈ ∩∞n=1In, then b ∈ In for every n ∈ Z+.
In particular, b ∈ Ik.
Since Ik is an interval and a ∈ Ik and b ∈ Ik and a < c < b, then c ∈ Ik, as

desired.

Proposition 10. Let p ∈ R.
Let δ, ε ∈ R.
If 0 < δ ≤ ε, then N(p; δ) ⊂ N(p; ε).

Proof. Suppose 0 < δ ≤ ε.
Then 0 < δ and δ ≤ ε.
Since δ > 0, then p ∈ N(p; δ), so N(p; δ) 6= ∅.
Let x ∈ N(p; δ).
Then x ∈ R and d(x, p) < δ.
Since d(x, p) < δ and δ ≤ ε, then d(x, p) < ε, so x ∈ N(p; ε).
Therefore, N(p; δ) ⊂ N(p; ε).

Proposition 11. Every ε neighborhood of a point is a neighborhood of
the point.

Let p ∈ R.
Then N(p; ε) is a neighborhood of p for every ε > 0.

Proof. Let ε > 0 be given.
Since ε > 0 and N(p; ε) ⊂ N(p; ε), then N(p; ε) is a neighborhood of p.

Types of points in R
Proposition 12. Let A and B be sets.

If p is an interior point of A and A ⊂ B, then p is an interior point of B.

Proof. Suppose p is an interior point of A and A ⊂ B.
Since p is an interior point of A, then there exists ε > 0 such thatN(p; ε) ⊂ A.
Since A ⊂ B, then N(p; ε) ⊂ B.
Hence, there exists ε > 0 such that N(p; ε) ⊂ B.
Therefore, p is an interior point of B.

Lemma 13. Let A and B be sets.
If p is an accumulation point of A and A ⊂ B, then p is an accumulation

point of B.
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Proof. Suppose p is an accumulation point of A and A ⊂ B.
Let ε > 0 be given.
Since p is an accumulation point of A, then there exists x ∈ A such that

x ∈ N ′(p; ε).
Since x ∈ A and A ⊂ B, then x ∈ B.
Thus, there exists x ∈ B such that x ∈ N ′(p; ε).
Therefore, p is an accumulation point of B.

Proposition 14. Every point in an interval of at least two elements is
an accumulation point of the interval.

Let I ⊂ R be an interval with at least two elements.
If a ∈ I, then a is an accumulation point of I.

Proof. Let a ∈ I be arbitrary.
Since I has at least two elements, then there exists an element of I that is

distinct from a, so there exists b ∈ I such that b 6= a.
Thus, either b < a or b > a.
We consider these cases separately.
Case 1: Suppose b > a.
Then a < b.
To prove a is an accumulation point of I, let δ > 0 be given.
We must prove there exists p ∈ I such that p ∈ N ′(a; δ).
Let m = min{b, a+ δ}.
Then either m = b or m = a+ δ, and m ≤ b and m ≤ a+ δ.
Since a < b and a < a+ δ and either m = b or m = a+ δ, then a < m.
Let p be the midpoint of a and m.
Then p = a+m

2 .
Since a < a+m

2 < m, then a < p < m, so a − δ < a < p < m ≤ a + δ and
a < p < m ≤ b.

Since a < p < m ≤ b, then a < p < b.
Since a ∈ I and b ∈ I and a < p < b and I is an interval, then p ∈ I.
Since a− δ < a < p < m ≤ a+ δ, then a < p and a− δ < p < a+ δ.
Since a− δ < p < a+ δ, then p ∈ (a− δ, a+ δ) = N(a; δ), so p ∈ N(a; δ).
Since p > a, then p 6= a, so p ∈ N ′(a; δ).
Thus, there exists p ∈ I such that p ∈ N ′(a; δ), so a is an accumulation

point of I.
Case 2: Suppose b < a.
To prove a is an accumulation point of I, let δ > 0 be given.
We must prove there exists p ∈ I such that p ∈ N ′(a; δ).
Let m = max{b, a− δ}.
Then either m = b or m = a− δ, and b ≤ m and a− δ ≤ m.
Since b < a and a− δ < a and either m = b or m = a− δ, then m < a.
Let p be the midpoint of m and a.
Then p = m+a

2 .
Since m < m+a

2 < a, then m < p < a, so b ≤ m < p < a and a − δ ≤ m <
p < a < a+ δ.
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Since b ≤ m < p < a, then b < p < a.
Since b ∈ I and a ∈ I and b < p < a and I is an interval, then p ∈ I.
Since a− δ ≤ m < p < a < a+ δ, then a− δ < p < a+ δ and p < a.
Since a− δ < p < a+ δ, then p ∈ (a− δ, a+ δ) = N(a; δ), so p ∈ N(a; δ).
Since p < a, then p 6= a, so p ∈ N ′(a; δ).
Thus, there exists p ∈ I such that p ∈ N ′(a; δ), so a is an accumulation

point of I.
Therefore, in all cases, a is an accumulation point of I, as desired.

Proposition 15. Every interior point of a set S is an accumulation
point of S.

Let S be a set.
If p is an interior point of S, then p is an accumulation point of S.

Proof. Suppose p is an interior point of S.
Let ε > 0 be given.
Since p is an interior point of S, then there exists ε1 > 0 such that N(p; ε1) ⊂

S.
Let m = min{ε, ε1}.
Since ε > 0 and ε1 > 0, then m > 0.
Let x be the midpoint of p and p+m.
Then x = p+p+m

2 = p+ m
2 .

Since d(x, p) = |x − p| = |m2 | = m
2 < m ≤ ε1, then d(x, p) < ε1, so x ∈

N(p; ε1).
Since N(p; ε1) ⊂ S, then x ∈ S.
Since d(x, p) = |x− p| = |m2 | =

m
2 < m ≤ ε, then d(x, p) < ε, so x ∈ N(p; ε).

Since d(x, p) = |x− p| = |m2 | =
m
2 > 0, then d(x, p) > 0, so x 6= p.

Hence, there exists x ∈ S such that x ∈ N(p; ε) and x 6= p.
Therefore, p is an accumulation point of S.

Proposition 16. Every element of a nonempty set is either an accumulation
point or an isolated point.

Proof. Let S be a nonempty set.
Then there is at least one element of S.
Let p ∈ S.
To prove either p is an accumulation point or p is an isolated point of S, we

prove by contrapositive.
Suppose p is not an accumulation point of S.
Since p ∈ S and p is not an accumulation point of S, then p is an isolated

point of S, as desired.

Sets in R
Proposition 17. Let A ⊂ R and B ⊂ R.

If A ⊂ B, then A◦ ⊂ B◦.
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Proof. Suppose A ⊂ B.
Let A◦ be the interior of A.
Let B◦ be the interior of B.
Either A◦ = ∅ or A◦ 6= ∅.
We consider these cases separately.
Case 1: Suppose A◦ = ∅.
Since the empty set is a subset of every set, then in particular, ∅ ⊂ B◦.
Therefore, A◦ ⊂ B◦.
Case 2: Suppose A◦ 6= ∅.
Then there is at least one element in A◦.
Let x ∈ A◦.
Then x is an interior point of A, so there exists δ > 0 such that N(x; δ) ⊂ A.
Since N(x; δ) ⊂ A and A ⊂ B, then N(x; δ) ⊂ B.
Hence, there exists δ > 0 such that N(x; δ) ⊂ B.
Thus, x is an interior point of B, so x ∈ B◦.
Therefore, A◦ ⊂ B◦.
Thus, in all cases, A◦ ⊂ B◦, as desired.

Proposition 18. Let a, b ∈ R. Then
1. (a, b)◦ = (a, b).
2. [a, b]◦ = (a, b).

Proof. We prove 1.
Let (a, b)◦ be the interior of the open interval (a, b).
We must prove (a, b)◦ = (a, b).
Either a < b or a = b or a > b.
We consider these cases separately.
Case 1: Suppose a ≥ b.
Then (a, b) = ∅.
Therefore, (a, b)◦ = ∅◦ = ∅ = (a, b).
Case 2: Suppose a < b.
Since a < b, then (a, b) 6= ∅.
Since S◦ ⊂ S for every set S, then in particular, (a, b)◦ ⊂ (a, b).

We prove (a, b) ⊂ (a, b)◦.
Let x ∈ (a, b).
Then x ∈ R and a < x < b, so a < x and x < b.
Hence, x− a > 0 and b− x > 0.
Let δ = min{d(a, x), d(x, b)}.
Then δ ≤ d(a, x) and δ ≤ d(x, b).
Since d(a, x) = |a− x| = |x− a| = x− a > 0, then d(a, x) > 0.
Since d(x, b) = |x− b| = |b− x| = b− x > 0, then d(x, b) > 0.
Therefore, δ > 0.
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Let p ∈ N(x; δ).
Then p ∈ (x− δ, x+ δ), so x− δ < p < x+ δ.
Hence, x− δ < p and p < x+ δ.
Since δ ≤ d(a, x) and d(a, x) = x− a, then δ ≤ x− a, so a ≤ x− δ.
Since δ ≤ d(x, b) and d(x, b) = b− x, then δ ≤ b− x, so x+ δ ≤ b.
Since a ≤ x− δ and x− δ < p, then a < p.
Since p < x+ δ and x+ δ ≤ b, then p < b.
Thus, a < p < b, so p ∈ (a, b).
Hence, N(x; δ) ⊂ (a, b).
Since there exists δ > 0 such that N(x; δ) ⊂ (a, b), then x is an interior point

of (a, b).
Therefore, x ∈ (a, b)◦, so (a, b) ⊂ (a, b)◦.

Since (a, b)◦ ⊂ (a, b) and (a, b) ⊂ (a, b)◦, then (a, b)◦ = (a, b), as desired.

Proof. We prove 2.
Let [a, b]◦ be the interior of the closed interval [a, b].
We must prove [a, b]◦ = (a, b).
Either a < b or a = b or a > b.
We consider these cases separately.
Case 1: Suppose a > b.
Then (a, b) = ∅ = [a, b].
Therefore, [a, b]◦ = ∅◦ = ∅ = (a, b).
Case 2: Suppose a = b.
Then (a, b) = ∅ and [a, b] = {a}.
Therefore, [a, b]◦ = {a}◦ = ∅ = (a, b).
Case 3: Suppose a < b.

We prove (a, b) ⊂ [a, b]◦.
Since (a, b) ⊂ [a, b], then (a, b)◦ ⊂ [a, b]◦.
Therefore, (a, b) ⊂ [a, b]◦.

We prove [a, b]◦ ⊂ (a, b).
Either [a, b]◦ = ∅ or [a, b]◦ 6= ∅.
We consider these cases separately.
Case 3a: Suppose [a, b]◦ = ∅.
Since the empty set is a subset of every set, then in particular, ∅ ⊂ (a, b).
Therefore, [a, b]◦ ⊂ (a, b).
Case 3b: Suppose [a, b]◦ 6= ∅.
Then there is at least one element in [a, b]◦.
Let x ∈ [a, b]◦.
Then x is an interior point of [a, b].
For every nonempty set S, S◦ ⊂ S.
Since [a, b] 6= ∅, then [a, b]◦ ⊂ [a, b].
Since x ∈ [a, b]◦ and [a, b]◦ ⊂ [a, b], then x ∈ [a, b], so a ≤ x ≤ b.
Thus, a ≤ x and x ≤ b.
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We prove x 6= a by contradiction.
Suppose x = a.
Then a is an interior point of [a, b], so there exists δ > 0 such that N(a; δ) ⊂

[a, b].
Let p be the midpoint of a− δ and a.

Then p = (a−δ)+a
2 = a− δ

2 .

Since δ > 0, then δ
2 > 0, so δ − δ

2 > a− a.

Hence, a− δ
2 > a− δ, so p > a− δ.

Since δ > 0, then 3δ
2 > 0, so δ + δ

2 > a− a.

Hence, a+ δ > a− δ
2 , so a+ δ > p.

Thus, a− δ < p < a+ δ, so p ∈ N(a; δ).
Since δ

2 > 0, then δ
2 > a− a, so a > a− δ

2 .
Hence, a > p, so p < a.
Thus, p 6∈ [a, b].
Since p ∈ N(a; δ) and p 6∈ [a, b], then a is not an interior point of [a, b].
This contradicts the assumption that a is an interior point of [a, b].
Therefore, x 6= a.

We prove x 6= b by contradiction.
Suppose x = b.
Then b is an interior point of [a, b], so there exists δ > 0 such that N(b; δ) ⊂

[a, b].
Let p be the midpoint of b and b+ δ.

Then p = b+(b+δ)
2 = b+ δ

2 .

Since δ > 0, then 3δ
2 > 0, so δ + δ

2 > b− b.
Hence, b+ δ

2 > b− δ, so p > b− δ.
Since δ > 0, then δ

2 > 0, so δ − δ
2 > b− b.

Hence, b+ δ > b+ δ
2 , so b+ δ > p.

Thus, b− δ < p < b+ δ, so p ∈ N(b; δ).
Since δ

2 > 0, then δ
2 > b− b, so b+ δ

2 > b.
Hence, p > b, so p 6∈ [a, b].
Since p ∈ N(b; δ) and p 6∈ [a, b], then b is not an interior point of [a, b].
This contradicts the assumption that b is an interior point of [a, b].
Therefore, x 6= b.

Since a ≤ x ≤ b and x 6= a and x 6= b, then a < x < b, so x ∈ (a, b).
Therefore, [a, b]◦ ⊂ (a, b).
Thus, in all cases, [a, b]◦ ⊂ (a, b).

Since [a, b]◦ ⊂ (a, b) and (a, b) ⊂ [a, b]◦, then [a, b]◦ = (a, b), as desired.

Proposition 19. Let A ⊂ R.
Then A◦◦ = A◦.
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Proof. Let A◦ be the interior of A.
Let A◦◦ be the interior of A◦.
We must prove A◦◦ = A◦.
Either A◦ = ∅ or A◦ 6= ∅.
We consider these cases separately.
Case 1: Suppose A◦ = ∅.
Then A◦◦ = ∅◦ = ∅ = A◦, as desired.
Case 2: Suppose A◦ 6= ∅.
For every nonempty set S, S◦ ⊂ S.
Since A◦ 6= ∅, then A◦◦ ⊂ A◦.

We prove A◦ ⊂ A◦◦.
Since A◦ 6= ∅, then there is at least one element in A◦.
Let x ∈ A◦.
Then x is an interior point of A, so there exists δ > 0 such that N(x; δ) ⊂ A.
Let p ∈ N(x; δ).
Then N(x; δ)◦ = (x− δ, x+ δ)◦ = (x− δ, x+ δ) = N(x; δ), so p ∈ N(x; δ)◦.
Since N(x; δ) ⊂ A, then N(x; δ)◦ ⊂ A◦.
Hence, p ∈ A◦, so N(x; δ) ⊂ A◦.
Therefore, there exists δ > 0 such that N(x; δ) ⊂ A◦, so x is an interior

point of A◦.
Thus, x ∈ A◦◦, so A◦ ⊂ A◦◦.
Since A◦◦ ⊂ A◦ and A◦ ⊂ A◦◦, then A◦◦ = A◦, as desired.

Proposition 20. Let A ⊂ R and B ⊂ R.
Then (A ∩B)◦ = A◦ ∩B◦.

Proof. Let A◦ be the interior of A.
Let B◦ be the interior of B.
Let (A ∩B)◦ be the interior of A ∩B.
We must prove (A ∩B)◦ = A◦ ∩B◦.

We prove (A ∩B)◦ ⊂ A◦ ∩B◦.
Let x ∈ (A ∩B)◦.
Since A ∩B ⊂ A, then (A ∩B)◦ ⊂ A◦, so x ∈ A◦.
Since A ∩B ⊂ B, then (A ∩B)◦ ⊂ B◦, so x ∈ B◦.
Therefore, x ∈ A◦ ∩B◦, so (A ∩B)◦ ⊂ A◦ ∩B◦.

We prove A◦ ∩B◦ ⊂ (A ∩B)◦.
Let x ∈ A◦ ∩B◦.
Then x ∈ A◦ and x ∈ B◦.
Since x ∈ A◦, then x is an interior point of A, so there exists δ1 > 0 such

that N(x; δ1) ⊂ A.
Since x ∈ B◦, then x is an interior point of B, so there exists δ2 > 0 such

that N(x; δ2) ⊂ B.
Let δ = min{δ1, δ2}.
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Since δ1 > 0 and δ2 > 0, then δ > 0.
Let p ∈ N(x; δ).
Since 0 < δ ≤ δ1, then N(x; δ) ⊂ N(x; δ1).
Since p ∈ N(x; δ) and N(x; δ) ⊂ N(x; δ1) ⊂ A, then p ∈ A.
Since 0 < δ ≤ δ2, then N(x; δ) ⊂ N(x; δ2).
Since p ∈ N(x; δ) and N(x; δ) ⊂ N(x; δ2) ⊂ B, then p ∈ B.
Thus, p ∈ A ∩B, so N(x; δ) ⊂ A ∩B.
Since there exists δ > 0 such that N(x; δ) ⊂ A ∩ B, then x is an interior

point of A ∩B, so x ∈ (A ∩B)◦.
Therefore, A◦ ∩B◦ ⊂ (A ∩B)◦.

Since (A∩B)◦ ⊂ A◦∩B◦ and A◦∩B◦ ⊂ (A∩B)◦, then (A∩B)◦ = A◦∩B◦,
as desired.

Proposition 21. Let A ⊂ R and B ⊂ R.
Then (A ∪B)◦ ⊃ A◦ ∪B◦.

Proof. Let A◦ be the interior of A.
Let B◦ be the interior of B.
Let (A ∪B)◦ be the interior of A ∪B.
We must prove A◦ ∪B◦ ⊂ (A ∪B)◦.

Let x ∈ A◦ ∪B◦.
Then either x ∈ A◦ or x ∈ B◦.
We consider these cases separately.
Case 1: Suppose x ∈ A◦.
Then x is an interior point of A, so there exists δ > 0 such that N(x; δ) ⊂ A.
Since N(x; δ) ⊂ A and A ⊂ A ∪B, then N(x; δ) ⊂ A ∪B.
Therefore, x is an interior point of A ∪B, so x ∈ (A ∪B)◦.
Case 2: Suppose x ∈ B◦.
Then x is an interior point of B, so there exists δ > 0 such that N(x; δ) ⊂ B.
Since N(x; δ) ⊂ B and B ⊂ A ∪B, then N(x; δ) ⊂ A ∪B.
Therefore, x is an interior point of A ∪B, so x ∈ (A ∪B)◦.
Hence, in all cases, x ∈ (A ∪B)◦, so A◦ ∪B◦ ⊂ (A ∪B)◦, as desired.

Proposition 22. A set S is open iff S◦ = S.

Proof. Let S be a set.
Let S◦ be the interior of S.
Then S◦ = {x : x is an interior point of S}.
We prove if S is open, then S◦ = S.
Suppose S is open.
Then if x ∈ S, then x is an interior point of S.
Thus, if x ∈ S, then x ∈ S◦.
Hence, S ⊂ S◦.
Since the interior of a set is a subset of the set, then S◦ ⊂ S.
Thus, S◦ ⊂ S and S ⊂ S◦, so S◦ = S.
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Proof. Conversely, we prove if S◦ = S, then S is open.
Suppose S◦ = S.
Then S◦ ⊂ S and S ⊂ S◦, so S ⊂ S◦.
Hence, if x ∈ S, then x ∈ S◦.
Thus, if x ∈ S, then x is an interior point of S.
Therefore, S is open.

Proposition 23. Let A ⊂ R and B ⊂ R.
1. If A is open and B is open, then A ∪B is open.
2. If A is open and B is open, then A ∩B is open.

Proof. We prove 1.
Suppose A is open and B is open.
Either A ∪B = ∅ or A ∪B 6= ∅.
We consider these cases separately.
Case 1: Suppose A ∪B = ∅.
Since the empty set is open, then A ∪B is open.
Case 2: Suppose A ∪B 6= ∅.
Then there is at least one element of A ∪B.
Let x ∈ A ∪B.
Then either x ∈ A or x ∈ B.
We consider these cases separately.
Case 2a: Suppose x ∈ A.
Since A is open, then x is an interior point of A, so there exists δ1 > 0 such

that N(x; δ1) ⊂ A.
Since A ⊂ A ∪B, then N(x; δ1) ⊂ A ∪B.
Thus, x is an interior point of A ∪B.
Case 2b: Suppose x ∈ B.
Since B is open, then x is an interior point of B, so there exists δ2 > 0 such

that N(x; δ2) ⊂ B.
Since B ⊂ A ∪B, then N(x; δ2) ⊂ A ∪B.
Thus, x is an interior point of A ∪B.
Therefore, in either case, x is an interior point of A∪B, so A∪B is open.

Proof. We prove 2.
Suppose A is open and B is open.
Either A ∩B = ∅ or A ∩B 6= ∅.
We consider these cases separately.
Case 1: Suppose A ∩B = ∅.
Since the empty set is open, then A ∩B is open.
Case 2: Suppose A ∩B 6= ∅.
Then there is at least one element of A ∩B.
Let x ∈ A ∩B.
Then x ∈ A and x ∈ B.
Since x ∈ A and A is open, then x is an interior point of A, so there exists

δ1 > 0 such that N(x; δ1) ⊂ A.
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Since x ∈ B and B is open, then x is an interior point of B, so there exists
δ2 > 0 such that N(x; δ2) ⊂ B.

Let δ = min{δ1, δ2}.
Then either δ = δ1 or δ = δ2, and δ ≤ δ1 and δ ≤ δ2.
Since δ1 > 0 and δ2 > 0 and either δ = δ1 or δ = δ2, then δ > 0.
Since N(x; δ) 6= ∅, let p ∈ N(x; δ).
Then d(p, x) < δ.
Since d(p, x) < δ and δ ≤ δ1, then d(p, x) < δ1, so p ∈ N(x; δ1).
Since N(x; δ1) ⊂ A, then p ∈ A.
Since d(p, x) < δ and δ ≤ δ2, then d(p, x) < δ2, so p ∈ N(x; δ2).
Since N(x; δ2) ⊂ B, then p ∈ B.
Hence, p ∈ A ∩B, so N(x; δ) ⊂ A ∩B.
Thus, there exists δ > 0 such that N(x; δ) ⊂ A∩B, so x is an interior point

of A ∩B.
Therefore, A ∩B is open.

Theorem 24. topological properties of open sets in R
1. The union of any collection of open sets in R is open.
2. The intersection of any finite collection of open sets in R is open.

Proof. We prove 1.
Let F be an arbitrary collection of open sets in R.
We must prove ∪F is open.
Either ∪F = ∅ or ∪F 6= ∅.
We consider these cases separately.
Case 1: Suppose ∪F = ∅.
Since the empty set is open, then ∪F is open.
Case 2: Suppose ∪F 6= ∅.
Then there is at least one element of ∪F .
Let x ∈ ∪F .
Then there exists S ∈ F such that x ∈ S.
Since S ∈ F , then S is an open set in R.
Since S is open and x ∈ S, then x is an interior point of S.
Hence, there exists δ > 0 such that N(x; δ) ⊂ S.
Since S ∈ F , then S ⊂ ∪F .
Since N(x; δ) ⊂ S and S ⊂ ∪F , then N(x; δ) ⊂ ∪F .
Hence, there exists δ > 0 such that N(x; δ) ⊂ ∪F , so x is an interior point

of ∪F .
Therefore, ∪F is open.
Thus, in all cases, ∪F is open, as desired.

Proof. We prove 2.
Let F be an arbitrary finite collection of open sets in R.
We must prove ∩F is open.
Since F is a finite set, then F contains exactly n elements for some nonneg-

ative integer n.
Thus, either n = 0 or n = 1 or n > 1.
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We consider these cases separately.
Case 1: Suppose n = 0.
Then F contains zero elements, so F = ∅.
Thus, ∩F = ∩∅ = ∅.
Since the empty set is open, then ∩F is open.
Case 2: Suppose n = 1.
Then F contains exactly one element.
Thus, there exists F1 such that F = {F1}.
Since F1 ∈ F , then F1 is an open set in R.
Hence, ∩F = F1 is open.
Case 3: Suppose n > 1.
Then n ≥ 2, so F = {F1, F2, ..., Fn} and Fi is an open set in R for each

i = 1, 2, ..., n.
We must prove for each natural number n ≥ 2, if F1, F2, ..., Fn are all open

sets in R, then F1 ∩ F2 ∩ ... ∩ Fn is open.
We prove by induction on n.
Basis: Let n = 2.
Suppose F1 and F2 are open sets.
Since the intersection of any two open sets is open, then F1 ∩ F2 is open.
Induction:
Let k ∈ N such that k ≥ 2.
Suppose the statement ‘if the sets S1, S2, ..., Sk are open sets in R, then

S1 ∩ S2 ∩ ... ∩ Sk is open’ is true.
We must prove ‘if the sets S1, S2, ..., Sk, Sk+1 are open sets in R, then S1 ∩

S2 ∩ ... ∩ Sk+1 is open’.
Assume the sets S1, S2, ..., Sk, Sk+1 are open sets in R.
Since the sets S1, S2, ..., Sk are open, then by the induction hypothesis, the

set S1 ∩ S2 ∩ ... ∩ Sk is open.
Since the intersection of any two open sets is open and S1 ∩ S2 ∩ ... ∩ Sk is

open and Sk+1 is open, then the set (S1 ∩ S2 ∩ ... ∩ Sk) ∩ Sk+1 is open.
Hence, S1 ∩ S2 ∩ ... ∩ Sk ∩ Sk+1 is open.
Therefore, by PMI, for all natural numbers n ≥ 2, if the sets S1, S2, ..., Sn

are open sets in R, then the intersection S1∩S2∩ ...∩Sn is open, as desired.

Corollary 25. R is a topological space
Let τ be the set of all open subsets of R. Then
T1. ∅ ∈ τ and R ∈ τ .
T2. The union of any collection of sets in τ is in τ .
T3. The intersection of any finite collection of sets in τ is in τ .

Proof. Let τ be the set of all open subsets of R.
Then τ = {S : S is an open subset of R}.

We prove T1.
Since ∅ ⊂ R and ∅ is open, then ∅ ∈ τ .
Since R ⊂ R and R is open, then R ∈ τ .
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Proof. We prove T2.
Let S be a collection of sets in τ .
Then S is a collection of open subsets of R, so S ⊂ τ .
Let ∪S be the union of the elements of S.
Either ∪S = ∅ or ∪S 6= ∅.
We consider these cases separately.
Case 1: Suppose ∪S = ∅.
Since ∅ ∈ τ , then ∪S ∈ τ .
Case 2: Suppose ∪S 6= ∅.
Then there is at least one element of ∪S.
Let x ∈ ∪S.
Then there exists X ∈ S such that x ∈ X.
Since X ∈ S and S ⊂ τ , then X ∈ τ , so X is an open subset of R.
Thus, X ⊂ R.
Since x ∈ X and X ⊂ R, then x ∈ R.
Thus, ∪S ⊂ R.
Since the union of any collection of open sets in R is open and S is a collection

of open sets in R, then ∪S is open.
Thus, ∪S is an open subset of R, so ∪S ∈ τ .
Therefore, in all cases, ∪S ∈ τ , as desired.

Proof.

We prove T3.
Let S be a finite collection of sets in τ .
Then S is a finite collection of open subsets of R.
Since S is a collection of open subsets of R, then S ⊂ τ .
Let ∩S be the intersection of the elements of S.
Either ∩S = ∅ or ∩S 6= ∅.
We consider these cases separately.
Case 1: Suppose ∩S = ∅.
Since ∅ ∈ τ , then ∩S ∈ τ .
Case 2: Suppose ∩S 6= ∅.
Then there is at least one element of ∩S.
Let x ∈ ∩S.
Then x ∈ X for each X ∈ S.
Let X ∈ S.
Then x ∈ X.
Since X ∈ S and S ⊂ τ , then X ∈ τ , so X is an open subset of R.
Thus, X ⊂ R.
Since x ∈ X and X ⊂ R, then x ∈ R.
Thus, ∩S ⊂ R.
Since the intersection of any finite collection of open sets in R is open and

S is a finite collection of open sets in R, then ∩S is open.
Thus, ∩S is an open subset of R, so ∩S ∈ τ .
Therefore, in all cases, ∩S ∈ τ , as desired.
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Theorem 26. characterization of open sets in R
A nonempty subset of R is open iff it is a union of bounded open intervals.

Proof. Let S be a nonempty subset of R.
We prove if S is a union of bounded open intervals, then S is open.
Let F be a family of bounded open intervals in R.
Suppose S = ∪F .
Since F is a collection of bounded open intervals and every bounded open

interval is open, then F is a collection of open sets in R.
Therefore, ∪F is open, so S is open, as desired.

Conversely, we prove if S is open, then S is a union of bounded open intervals.
Suppose S is open.
Then every point in S is an interior point of S.
Hence, for every x ∈ S, there exists δ > 0 such that N(x; δ) ⊂ S.
Let F be a family of δ neighborhoods centered at x of radius δ for each

x ∈ S.
Since N(x; δ) = (x− δ, x+ δ) for each x ∈ S, then every δ neighborhood is

a bounded open interval.
Thus, F is a collection {Ix : x ∈ S} of bounded open intervals and the

bounded open interval Ix is a subset of S for each x ∈ S.
Hence, F = {Ix : x ∈ S} and Ix ⊂ S for each x ∈ S.
By a previous proposition, if I is an index set and B is a set and Ai ⊂ B for

all i ∈ I, then ∪i∈IAi ⊂ B.
In particular, since S is an index set and Ix ⊂ S for all x ∈ S, then ∪x∈SIx ⊂

S.
Therefore, ∪F ⊂ S.

Since S is not empty, then there is at least one point in S.
Let y ∈ S.
Then Iy ⊂ S.
Since Iy is an δ neighborhood of y, then y ∈ Iy.
Let s = y.
Since y ∈ S, then s ∈ S.
Since y ∈ Iy, then y ∈ Is.
Hence, there exists s ∈ S such that y ∈ Is, so y ∈ ∪x∈SIx.
Thus, y ∈ ∪F , so S ⊂ ∪F .

Since S ⊂ ∪F and ∪F ⊂ S, then S = ∪F .
Therefore, S is a union of bounded open intervals, as desired.

Proposition 27. A set with no accumulation points is closed.

Proof. Let S be a set with no accumulation points.
Then no point is an accumulation point of S, so there is no x such that x is

an accumulation point of S.
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Hence, for every x, x is not an accumulation point of S.
Thus, for every x, if x 6∈ S, then x is not an accumulation point of S.
Therefore, for every x, if x is an accumulation point of S, then x ∈ S.
Hence, S is closed.

Proposition 28. Let S ⊂ R.
1. If S is non empty, closed, and bounded above in R, then maxS exists.
2. If S is non empty, closed, and bounded below in R, then minS exists.

Proof. We prove 1.
Suppose S is non empty, closed, and bounded above in R.
Since S 6= ∅ and S is bounded above in R, then by the completeness of R,

supS exists.
Let ε > 0 be given.
Since supS is the least upper bound of S, then there exists x ∈ S such that

x > supS − ε.
Since x ∈ S and supS is an upper bound of S, then x ≤ supS, so either

x < supS or x = supS.
We consider these cases separately.
Case 1: Suppose x = supS.
Since x ∈ S, then supS ∈ S.
Case 2: Suppose x < supS.
Then x 6= supS.
Since supS − ε < x < supS < supS + ε, then supS − ε < x < supS + ε, so

x ∈ (supS − ε, supS + ε).
Hence, x ∈ N(supS; ε).
Since x 6= supS, then x ∈ N ′(supS; ε).
Thus, x ∈ N ′(supS; ε) ∩ S, so N ′(supS; ε) ∩ S 6= ∅.
Therefore, supS is an accumulation point of S.
Since S is closed, then every accumulation point of S is an element of S, so

supS ∈ S.
Thus, in all cases, supS ∈ S.
Since supS is an upper bound of S and supS ∈ S, then supS = maxS, so

maxS exists.

Proof. We prove 2.
Suppose S is non empty, closed, and bounded below in R.
Since S 6= ∅ and S is bounded below in R, then by the completeness of R,

inf S exists.
Let ε > 0 be given.
Since inf S is the greatest lower bound of S, then there exists x ∈ S such

that x < inf S + ε.
Since x ∈ S and inf S is a lower bound of S, then inf S ≤ x, so either

inf S < x or inf S = x.
We consider these cases separately.
Case 1: Suppose inf S = x.
Since x ∈ S, then inf S ∈ S.
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Case 2: Suppose inf S < x.
Then x > inf S, so x 6= inf S.
Since inf S − ε < inf S < x < inf S + ε, then inf S − ε < x < inf S + ε, so

x ∈ (inf S − ε, inf S + ε).
Hence, x ∈ N(inf S; ε).
Since x 6= inf S, then x ∈ N ′(inf S; ε).
Thus, x ∈ N ′(inf S; ε) ∩ S, so N ′(inf S; ε) ∩ S 6= ∅.
Therefore, inf S is an accumulation point of S.
Since S is closed, then every accumulation point of S is an element of S, so

inf S ∈ S.
Thus, in all cases, inf S ∈ S.
Since inf S is a lower bound of S and inf S ∈ S, then inf S = minS, so minS

exists.

Theorem 29. Let S ⊂ R.
Then S is open iff R− S is closed.

Proof. We prove if S is open, then R− S is closed.
Either there is some accumulation point of the set R− S or there is not.
We consider these cases separately.
Case 1: Suppose there is no accumulation point of R− S.
Then R− S is a set with no accumulation points.
Since a set with no accumulation points is closed, then R− S is closed.
Thus, the conditional ‘if S is open, then R− S is closed’ is trivially true.
Case 2: Suppose there is some accumulation point of R− S.
Suppose S is open.
Since there is some accumulation point of R − S, then there is at least one

accumulation point of R− S.
Let x be an arbitrary accumulation point of R− S.
Suppose for the sake of contradiction x ∈ S.
Since S ⊂ R, then x ∈ R.
Since S is open and x ∈ S, then x is an interior point of S, so there exists

δ > 0 such that N(x; δ) ⊂ S.
Since x is an accumulation point of R − S and δ > 0, then there exists

p ∈ (R− S) such that p ∈ N ′(x; δ).
Since p ∈ N ′(x; δ) and N ′(x; δ) ⊂ N(x; δ), then p ∈ N(x; δ).
Since N(x; δ) ⊂ S, then p ∈ S.
Since p ∈ R− S, then p ∈ R and p 6∈ S.
Thus, we have p ∈ S and p 6∈ S, a contradiction.
Therefore, x 6∈ S.
Since x ∈ R and x 6∈ S, then x ∈ (R− S), so R− S is closed.
Hence, if S is open, then R− S is closed.
Thus, in either case, the implication ‘if S is open, then R − S is closed’ is

true.
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Proof. Conversely, we prove if R− S is closed, then S is open.
Either S = ∅ or S 6= ∅.
We consider these cases separately.
Case 1: Suppose S = ∅.
Since the empty set is open, then S is open.
Therefore, the conditional ‘if R−S is closed, then S is open’ is trivially true.
Case 2: Suppose S 6= ∅.
Suppose R− S is closed.
Since S 6= ∅, then there is at least one element of S.
Let x ∈ S.
Since R − S is closed, then if x is an accumulation point of R − S, then

x ∈ (R− S).
Hence, if x 6∈ (R− S), then x is not an accumulation point of R− S.
Since x ∈ S, then x 6∈ (R− S), so x is not an accumulation point of R− S.
Thus, there exists δ > 0 such that N ′(x; δ) ∩ (R− S) = ∅.
Since N(x; δ) 6= ∅, let p ∈ N(x; δ).
Since N(x; δ) ⊂ R, then p ∈ R.
Either p = x or p 6= x.
We consider these cases separately.
Case 2a: Suppose p = x.
Since x ∈ S, then p ∈ S.
Case 2a: Suppose p 6= x.
Then p ∈ N ′(x; δ).
Suppose p 6∈ S.
Since p ∈ R and p 6∈ S, then p ∈ (R− S).
Thus, p ∈ N ′(x; δ) ∩ (R− S).
This contradicts the fact that N ′(x; δ) ∩ (R− S) = ∅.
Thus, p ∈ S.
Hence, in all cases, p ∈ S.
Consequently, if p ∈ N(x; δ), then p ∈ S, so N(x; δ) ⊂ S.
Thus, there exists δ > 0 such that N(x; δ) ⊂ S, so x is an interior point of

S.
Therefore, if x ∈ S, then x is an interior point of S, so S is open.
Hence, if R− S is closed, then S is open.
Thus, in either case, the implication ‘if R − S is closed, then S is open’ is

true.

Theorem 30. Heine-Borel covering theorem
Every open covering of a closed and bounded set S in R contains a finite

subcovering of S.

Proof. Let S be a closed and bounded set of real numbers.
Either S = ∅ or S 6= ∅.
We consider these cases separately.
Case 1: Suppose S = ∅.
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Since the empty set is compact, then every open covering of ∅ contains a
finite subcovering of ∅.

Case 2: Suppose S 6= ∅.
Let F be an arbitrary open covering of S.
Then S ⊂ ∪F and each set in F is open.
To prove F contains a finite subcovering of S, we prove there exists a finite

subset of F that covers S.
Define the set Sx = {s ∈ S : s ≤ x} for each x ∈ R.
Let B = {x ∈ R : some finite subset of F covers Sx}.
Since S is bounded, then S is bounded above and below in R.
Since S ⊂ R and S 6= ∅ and S is closed and bounded above in R, then maxS

exists.
Since S ⊂ R and S 6= ∅ and S is closed and bounded below in R, then minS

exists.
Thus, SminS = {s ∈ S : s ≤ minS} = {minS}.
Since minS ∈ S and S ⊂ ∪F , then minS ∈ ∪F , so there exists A ∈ F such

that minS ∈ A.
Since minS ∈ A, then {minS} ⊂ A.
Let G = {A}.
Then SminS = {minS} ⊂ A = ∪G, so SminS ⊂ ∪G.
Thus, G covers SminS .
Since G ⊂ F and G is a finite set, then G is a finite subset of F that covers

SminS .
Therefore, minS ∈ B, so B 6= ∅.

We prove the set B is not bounded above in R by contradiction.
Suppose B is bounded above in R.
Since B ⊂ R and B 6= ∅ and B is bounded above in R, then by completeness

of R, supB exists.
Either supB ∈ S or supB 6∈ S.
We consider these cases separately.
Case 2a: Suppose supB ∈ S.
Since S ⊂ ∪F , then supB ∈ ∪F , so there exists F0 ∈ F such that supB ∈

F0.
Since F0 ∈ F , then F0 is an open set.
Since supB ∈ F0, then supB is an interior point of F0, so there exists δ > 0

such that N(supB; δ) ⊂ F0.
Since δ > 0 and supB is the least upper bound of B, then there exists b ∈ B

such that supB − δ < b < supB.
Why can we assume b < supB versus b ≤ supB? We need to prove this!!!!
Since b ∈ B, then some finite subset of F covers Sb.
Hence, there exists G = {F1, F2, ..., Fk} such that Fi ∈ F for each i and

Sb ⊂ ∪G.
Let t = supB + δ

2 .
Then t > supB and St = {s ∈ S : s ≤ t}.
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We prove G′ = {F0, F1, ..., Fk} covers St.
Since supB ∈ S and supB < t, then supB ∈ St, so St 6= ∅.
Let x ∈ St.
Then x ∈ S and x ≤ t.
Either x ≤ supB − δ or x > supB − δ.
We consider these cases separately.
Case 2a1: Suppose x ≤ supB − δ.
Since x ≤ supB − δ and supB − δ < b, then x < b.
Since x ∈ S and x < b, then x ∈ Sb.
Since Sb ⊂ ∪G, then x ∈ ∪G.
Case 2a2: Suppose x > supB − δ.
Since x ≤ t and t < supB + δ, then x < supB + δ.
Thus, supB − δ < x < supB + δ, so x ∈ (supB − δ, supB + δ).
Hence, x ∈ N(supB; δ).
Since N(supB; δ) ⊂ F0, then x ∈ F0.
Hence, either x ∈ F0 or x ∈ ∪G, so x ∈ F0 ∪ (∪G).
Thus, x ∈ F0 ∪ (F1 ∪ F2 ∪ ... ∪ Fk), so x ∈ ∪G′.
Therefore, St ⊂ ∪G′, so G′ is a covering for St.
Since G′ ⊂ F and G′ is a finite set, then G′ is a finite subset of F that covers

St, so t ∈ B.
Since supB is an upper bound of B and t ∈ B, then t ≤ supB.
Thus, we have t ≤ supB and t > supB, a contradiction.
Therefore, supB ∈ S is false.
Case 2b: Suppose supB 6∈ S.
Since S is closed, then supB is not an accumulation point of S.
Hence, there exists δ > 0 such that N ′(supB; δ) ∩ S = ∅.
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