Topology of \mathbb{R} Theory

Jason Sass

June 29, 2021

Topology of \mathbb{R}

Theorem 1. properties of the distance function
Let F be an ordered field. For all $x, y, z \in F$
D1. $d(x, y) \geq 0$.
D2. $d(x, y)=0$ iff $x=y$.
D3. $d(x, y)=d(y, x)$.
D4. $d(x, y) \leq d(x, z)+d(z, y)$.
Proof. We prove 1.
Let $x, y \in F$.
To prove $d(x, y) \geq 0$, we must prove $|x-y| \geq 0$.
Since $x, y \in F$, then $x-y \in F$, by closure of F under subtraction.
Since $|a| \geq 0$ for all $a \in F$, then in particular, $|x-y| \geq 0$.
Proof. We prove 2.
Let $x, y \in F$.
To prove $d(x, y)=0$ iff $x=y$, we must prove $|x-y|=0$ iff $x=y$.
Since $x, y \in F$, then $x-y \in F$.
Since $|a|=0$ iff $a=0$ for all $a \in F$, then in particular, $|x-y|=0$ iff $x-y=0$.

Since $x-y=0$ iff $x=y$, then this implies $|x-y|=0$ iff $x=y$, as desired.
Proof. We prove 3.
Let $x, y \in F$.
To prove $d(x, y)=d(y, x)$, we must prove $|x-y|=|y-x|$.
Since $x, y \in F$, then $x-y \in F$.
Observe that

$$
\begin{aligned}
|x-y| & =|-(x-y)| \\
& =|-x+y| \\
& =|y-x|
\end{aligned}
$$

Proof. We prove 4.
Let $x, y, z \in F$.
To prove $d(x, y) \leq d(x, z)+d(z, y)$, we must prove $|x-y| \leq|x-z|+|z-y|$.
Observe that

$$
\begin{aligned}
|x-y| & =|x+0-y| \\
& =|x+(-z+z)-y| \\
& =|(x-z)+(z-y)| \\
& \leq|x-z|+|z-y| .
\end{aligned}
$$

Therefore, $|x-y| \leq|x-z|+|z-y|$, as desired.
Proposition 2. Let $a, b \in \mathbb{R}$.
If $a \geq b$, then $(a, b)=\emptyset$.
If $a<b$, then $(a, b) \neq \emptyset$.
Proof. Let $a, b \in \mathbb{R}$.
Either $a<b$ or $a=b$ or $a>b$.
We consider these cases separately.
Case 1: Suppose $a \geq b$.
We prove $(a, b)=\emptyset$ by contradiction.
Suppose $(a, b) \neq \emptyset$.
Then there is at least one element in (a, b).
Let $x \in(a, b)$.
Then $x \in \mathbb{R}$ and $a<x<b$, so $a<b$.
Thus, we have $a<b$ and $a \geq b$, a violation of trichotomy.
Therefore, $(a, b)=\emptyset$, as desired.
Case 2: Suppose $a<b$.
We prove $(a, b) \neq \emptyset$.
By the density of \mathbb{R}, between any two real numbers is another real number.
Since $a, b \in \mathbb{R}$, then there exists $c \in \mathbb{R}$ such that $a<c<b$.
Therefore, $c \in(a, b)$, so $(a, b) \neq \emptyset$, as desired.
Proposition 3. Let $a, b \in \mathbb{R}$.
Then $(a, b) \subset[a, b]$.
Proof. Either $a<b$ or $a=b$ or $a>b$.
We consider these cases separately.
Case 1: Suppose $a \geq b$.
Then $(a, b)=\emptyset$.
Since the empty set is a subset of every set, then in particular, $\emptyset \subset[a, b]$.
Therefore, $(a, b) \subset[a, b]$, as desired.
Case 2: Suppose $a<b$.
Then $(a, b) \neq \emptyset$, so there is at least one element in (a, b).
Let $x \in(a, b)$.
Then $x \in \mathbb{R}$ and $a<x<b$, so $a<x$ and $x<b$.
Since $a<x$, then either $a<x$ or $a=x$, so $a \leq x$.

Since $x<b$, then either $x<b$ or $x=b$, so $x \leq b$.
Thus, $a \leq x$ and $x \leq b$, so $a \leq x \leq b$.
Therefore, $x \in[a, b]$, so $(a, b) \subset[a, b]$, as desired.
Proposition 4. Let $a, b \in \mathbb{R}$.
If $a>b$, then $[a, b]=\emptyset$.
If $a=b$, then $[a, b]=\{a\}$.
If $a<b$, then $[a, b] \neq \emptyset$.
Proof. Either $a<b$ or $a=b$ or $a>b$.
We consider these cases separately.
Case 1: Suppose $a>b$.
We prove $[a, b]=\emptyset$ by contradiction.
Suppose $[a, b] \neq \emptyset$.
Then there is at least one element in $[a, b]$.
Let $x \in[a, b]$.
Then $x \in \mathbb{R}$ and $a \leq x \leq b$, so $a \leq b$.
Thus, we have $a \leq b$ and $a>b$, a violation of trichotomy.
Therefore, $[a, b]=\emptyset$, as desired.
Case 2: Suppose $a=b$.
Since $a=a$, then $a \leq a$, so $a \leq a$ and $a \leq a$.
Thus, $a \leq a \leq a$, so $a \leq a \leq b$.
Hence, $a \in[a, b]$, so $\{a\} \subset[a, b]$ and $[a, b] \neq \emptyset$.
Therefore, there is at least one element in $[a, b]$.
Let $x \in[a, b]$.
Then $x \in \mathbb{R}$ and $a \leq x \leq b$, so $a \leq x \leq a$.
Thus, $a \leq x$ and $x \leq a$, so $a=x$.
Therefore, $x \in\{a\}$, so $[a, b] \subset\{a\}$.
Since $[a, b] \subset\{a\}$ and $\{a\} \subset[a, b]$, then $[a, b]=\{a\}$, as desired.
Case 3: Suppose $a<b$.
Then $(a, b) \neq \emptyset$.
Hence, there is at least one element x such that $x \in(a, b)$.
Since $x \in(a, b)$ and $(a, b) \subset[a, b]$, then $x \in[a, b]$.
Therefore, $[a, b] \neq \emptyset$, as desired.
Proposition 5. The distance between any two points in the interval (a, b) is less than $b-a$.

Let $a, b \in \mathbb{R}$.
Let x, y be any real numbers such that $a<x<b$ and $a<y<b$.
Then $|x-y|<b-a$.
Proof. We must prove $|x-y|<b-a$.
Since $a<x<b$ and $a<y<b$, then $a<x$ and $x<b$ and $a<y$ and $y<b$.
Since $x, y \in \mathbb{R}$, then $x-y \in \mathbb{R}$.
Either $x-y \geq 0$ or $x-y<0$.
We consider these cases separately.
Case 1: Suppose $x-y \geq 0$.

Since $a<y$ and $x<b$, then $a+x<y+b$, so $x-y<b-a$.
Therefore, $|x-y|=x-y<b-a$.
Case 2: Suppose $x-y<0$.
Since $a<x$ and $y<b$, then $a+y<x+b$, so $y-x<b-a$.
Therefore, $|x-y|=-(x-y)=-x+y=y-x<b-a$.
Hence, in all cases, $|x-y|<b-a$, as desired.
Corollary 6. Let $a, b \in \mathbb{R}$ with $a<b$.
Let x, y be any real numbers such that $x \in[a, b]$ and $y \in[a, b]$.
Then $|x-y| \leq b-a$.
Proof. Since $a<b$, then $b-a>0$.
Since $x \in[a, b]$ and $y \in[a, b]$, then $a \leq x \leq b$ and $a \leq y \leq b$.
Thus, $x=a$ or $a<x<b$ or $x=b$ and $y=a$ or $a<y<b$ or $y=b$.
Hence, either $x=a$ and $y=a$ or $x=a$ and $a<y<b$ or $x=a$ and $y=b$ or $a<x<b$ and $y=a$ or $a<x<b$ and $a<y<b$ or $a<x<b$ and $y=b$ or $x=b$ and $y=a$ or $x=b$ and $a<y<b$ or $x=b$ and $y=b$.

We consider these cases separately.
Case 1: Suppose $x=a$ and $y=a$.
Then $|x-y|=|a-a|=0<b-a$.
Case 2: Suppose $x=a$ and $a<y<b$.
Since $a<y<b$, then $a<y$ and $y<b$.
Since $a<y$, then $y-a>0$.
Thus, $|x-y|=|a-y|=|y-a|=y-a<b-a$.
Case 3: Suppose $x=a$ and $y=b$.
Then $|x-y|=|a-b|=|b-a|=b-a$.
Case 4: Suppose $a<x<b$ and $y=a$.
Since $a<x<b$, then $a<x$ and $x<b$.
Since $a<x$, then $x-a>0$.
Thus, $|x-y|=|x-a|=x-a<b-a$.
Case 5: Suppose $a<x<b$ and $a<y<b$.
Then $|x-y|<b-a$.
Case 6: Suppose $a<x<b$ and $y=b$.
Since $a<x<b$, then $a<x$ and $x<b$.
Since $a<x$, then $-a>-x$, so $-x<-a$.
Since $x<b$, then $x-b<0$.
Thus, $|x-y|=|x-b|=-(x-b)=-x+b=b-x<b-a$.
Case 7: Suppose $x=b$ and $y=a$.
Then $|x-y|=|b-a|=b-a$.
Case 8: Suppose $x=b$ and $a<y<b$.
Since $a<y<b$, then $a<y$ and $y<b$.
Since $a<y$, then $-a>-y$, so $-y<-a$.
Since $y<b$, then $y-b<0$.
Thus, $|x-y|=|b-y|=|y-b|=-(y-b)=-y+b=b-y<b-a$.
Case 9: Suppose $x=b$ and $y=b$.
Then $|x-y|=|b-b|=0<b-a$.

Therefore, in all cases, either $|x-y|<b-a$ or $|x-y|=b-a$, so $|x-y| \leq$ $b-a$.

Proposition 7. Let $I \subset \mathbb{R}$ be an interval.
If $a \in I$ and $b \in I$ and $a<b$, then $[a, b] \subset I$.
Proof. Suppose $a \in I$ and $b \in I$ and $a<b$.
Since $a \in I$ and $I \subset \mathbb{R}$, then $a \in \mathbb{R}$.
Since $b \in I$ and $I \subset \mathbb{R}$, then $b \in \mathbb{R}$.
Since $a<b$, then by the density of \mathbb{R}, there exists $c \in \mathbb{R}$ such that $a<c<b$, so there exists $c \in \mathbb{R}$ such that $c \in(a, b)$.

Since $(a, b) \subset[a, b]$, then $c \in[a, b]$.
To prove $[a, b] \subset I$, let $x \in[a, b]$ be arbitrary.
Since $[a, b]=\{a\} \cup(a, b) \cup\{b\}$, then either $x \in\{a\}$ or $x \in(a, b)$ or $x \in\{b\}$.
We consider these cases separately.
Case 1: Suppose $x \in\{a\}$.
Then $x=a$.
Since $a \in I$, then $x \in I$.
Case 2: Suppose $x \in\{b\}$.
Then $x=b$.
Since $b \in I$, then $x \in I$.
Case 3: Suppose $x \in(a, b)$.
Then $a<x<b$.
Since $a \in I$ and $b \in I$ and $a<x<b$ and I is an interval, then $x \in I$.
Therefore, in all cases $x \in I$, so $[a, b] \subset I$.
Proposition 8. intersection of any two intervals is an interval
If I_{1} and I_{2} are intervals, then $I_{1} \cap I_{2}$ is an interval.
Proof. Let a, b, and c be arbitrary real numbers.
Suppose $a \in I_{1} \cap I_{2}$ and $b \in I_{1} \cap I_{2}$ and $a<c<b$.
Since $a \in I_{1} \cap I_{2}$, then $a \in I_{1}$ and $a \in I_{2}$.
Since $b \in I_{1} \cap I_{2}$, then $b \in I_{1}$ and $b \in I_{2}$.
Since I_{1} is an interval and $a \in I_{1}$ and $b \in I_{1}$ and $a<c<b$, then $c \in I_{1}$.
Since I_{2} is an interval and $a \in I_{2}$ and $b \in I_{2}$ and $a<c<b$, then $c \in I_{2}$.
Thus, $c \in I_{1}$ and $c \in I_{2}$, so $c \in I_{1} \cap I_{2}$.
Therefore, $I_{1} \cap I_{2}$ is an interval.
Proposition 9. intersection of a countable collection of intervals is an interval

If $\left\{I_{n}: n \in \mathbb{Z}^{+}\right\}$is a collection of intervals, then $\cap_{n=1}^{\infty} I_{n}$ is an interval.
Solution. Let a, b, c be arbitrary real numbers.
To prove $a, b \in \cap_{n=1}^{\infty} I_{n} \wedge a<c<b \rightarrow c \in \cap_{n=1}^{\infty} I_{n}$, we assume $a, b \in$ $\cap_{n=1}^{\infty} I_{n} \wedge a<c<b$.

To prove $c \in \cap_{n=1}^{\infty} I_{n}$, we must prove that $\left(\forall n \in \mathbb{Z}^{+}\right)\left(c \in I_{n}\right)$.

Proof. Let $\left\{I_{n}: n \in \mathbb{Z}^{+}\right\}$be a collection of intervals.
To prove $\cap_{n=1}^{\infty} I_{n}$ is an interval, let a, b, and c be arbitrary real numbers such that $a \in \cap_{n=1}^{\infty} I_{n}$ and $b \in \cap_{n=1}^{\infty} I_{n}$ and $a<c<b$.

To prove $c \in \cap_{n=1}^{\infty} I_{n}$, let k be an arbitrary positive integer.
We must prove $c \in I_{k}$.
Since $a \in \cap_{n=1}^{\infty} I_{n}$, then $a \in I_{n}$ for every $n \in \mathbb{Z}^{+}$.
In particular, $a \in I_{k}$.
Since $b \in \cap_{n=1}^{\infty} I_{n}$, then $b \in I_{n}$ for every $n \in \mathbb{Z}^{+}$.
In particular, $b \in I_{k}$.
Since I_{k} is an interval and $a \in I_{k}$ and $b \in I_{k}$ and $a<c<b$, then $c \in I_{k}$, as desired.

Proposition 10. Let $p \in \mathbb{R}$.
Let $\delta, \epsilon \in \mathbb{R}$.
If $0<\delta \leq \epsilon$, then $N(p ; \delta) \subset N(p ; \epsilon)$.
Proof. Suppose $0<\delta \leq \epsilon$.
Then $0<\delta$ and $\delta \leq \epsilon$.
Since $\delta>0$, then $p \in N(p ; \delta)$, so $N(p ; \delta) \neq \emptyset$.
Let $x \in N(p ; \delta)$.
Then $x \in \mathbb{R}$ and $d(x, p)<\delta$.
Since $d(x, p)<\delta$ and $\delta \leq \epsilon$, then $d(x, p)<\epsilon$, so $x \in N(p ; \epsilon)$.
Therefore, $N(p ; \delta) \subset N(p ; \epsilon)$.
Proposition 11. Every ϵ neighborhood of a point is a neighborhood of the point.

Let $p \in \mathbb{R}$.
Then $N(p ; \epsilon)$ is a neighborhood of p for every $\epsilon>0$.
Proof. Let $\epsilon>0$ be given.
Since $\epsilon>0$ and $N(p ; \epsilon) \subset N(p ; \epsilon)$, then $N(p ; \epsilon)$ is a neighborhood of p.

Types of points in \mathbb{R}

Proposition 12. Let A and B be sets.
If p is an interior point of A and $A \subset B$, then p is an interior point of B.
Proof. Suppose p is an interior point of A and $A \subset B$.
Since p is an interior point of A, then there exists $\epsilon>0$ such that $N(p ; \epsilon) \subset A$. Since $A \subset B$, then $N(p ; \epsilon) \subset B$.
Hence, there exists $\epsilon>0$ such that $N(p ; \epsilon) \subset B$.
Therefore, p is an interior point of B.
Lemma 13. Let A and B be sets.
If p is an accumulation point of A and $A \subset B$, then p is an accumulation point of B.

Proof. Suppose p is an accumulation point of A and $A \subset B$.
Let $\epsilon>0$ be given.
Since p is an accumulation point of A, then there exists $x \in A$ such that $x \in N^{\prime}(p ; \epsilon)$.

Since $x \in A$ and $A \subset B$, then $x \in B$.
Thus, there exists $x \in B$ such that $x \in N^{\prime}(p ; \epsilon)$.
Therefore, p is an accumulation point of B.
Proposition 14. Every point in an interval of at least two elements is an accumulation point of the interval.

Let $I \subset \mathbb{R}$ be an interval with at least two elements.
If $a \in I$, then a is an accumulation point of I.
Proof. Let $a \in I$ be arbitrary.
Since I has at least two elements, then there exists an element of I that is distinct from a, so there exists $b \in I$ such that $b \neq a$.

Thus, either $b<a$ or $b>a$.
We consider these cases separately.
Case 1: Suppose $b>a$.
Then $a<b$.
To prove a is an accumulation point of I, let $\delta>0$ be given.
We must prove there exists $p \in I$ such that $p \in N^{\prime}(a ; \delta)$.
Let $m=\min \{b, a+\delta\}$.
Then either $m=b$ or $m=a+\delta$, and $m \leq b$ and $m \leq a+\delta$.
Since $a<b$ and $a<a+\delta$ and either $m=b$ or $m=a+\delta$, then $a<m$.
Let p be the midpoint of a and m.
Then $p=\frac{a+m}{2}$.
Since $a<\frac{a^{2}+m}{2}<m$, then $a<p<m$, so $a-\delta<a<p<m \leq a+\delta$ and $a<p<m \leq b$.

Since $a<p<m \leq b$, then $a<p<b$.
Since $a \in I$ and $b \in I$ and $a<p<b$ and I is an interval, then $p \in I$.
Since $a-\delta<a<p<m \leq a+\delta$, then $a<p$ and $a-\delta<p<a+\delta$.
Since $a-\delta<p<a+\delta$, then $p \in(a-\delta, a+\delta)=N(a ; \delta)$, so $p \in N(a ; \delta)$.
Since $p>a$, then $p \neq a$, so $p \in N^{\prime}(a ; \delta)$.
Thus, there exists $p \in I$ such that $p \in N^{\prime}(a ; \delta)$, so a is an accumulation point of I.

Case 2: Suppose $b<a$.
To prove a is an accumulation point of I, let $\delta>0$ be given.
We must prove there exists $p \in I$ such that $p \in N^{\prime}(a ; \delta)$.
Let $m=\max \{b, a-\delta\}$.
Then either $m=b$ or $m=a-\delta$, and $b \leq m$ and $a-\delta \leq m$.
Since $b<a$ and $a-\delta<a$ and either $m=b$ or $m=a-\delta$, then $m<a$.
Let p be the midpoint of m and a.
Then $p=\frac{m+a}{2}$.
Since $m<\frac{\stackrel{2}{m+a}}{2}<a$, then $m<p<a$, so $b \leq m<p<a$ and $a-\delta \leq m<$ $p<a<a+\delta$.

Since $b \leq m<p<a$, then $b<p<a$.
Since $b \in I$ and $a \in I$ and $b<p<a$ and I is an interval, then $p \in I$.
Since $a-\delta \leq m<p<a<a+\delta$, then $a-\delta<p<a+\delta$ and $p<a$.
Since $a-\delta<p<a+\delta$, then $p \in(a-\delta, a+\delta)=N(a ; \delta)$, so $p \in N(a ; \delta)$.
Since $p<a$, then $p \neq a$, so $p \in N^{\prime}(a ; \delta)$.
Thus, there exists $p \in I$ such that $p \in N^{\prime}(a ; \delta)$, so a is an accumulation point of I.

Therefore, in all cases, a is an accumulation point of I, as desired.
Proposition 15. Every interior point of a set S is an accumulation point of S.

Let S be a set.
If p is an interior point of S, then p is an accumulation point of S.
Proof. Suppose p is an interior point of S.
Let $\epsilon>0$ be given.
Since p is an interior point of S, then there exists $\epsilon_{1}>0$ such that $N\left(p ; \epsilon_{1}\right) \subset$ S.

Let $m=\min \left\{\epsilon, \epsilon_{1}\right\}$.
Since $\epsilon>0$ and $\epsilon_{1}>0$, then $m>0$.
Let x be the midpoint of p and $p+m$.
Then $x=\frac{p+p+m}{2}=p+\frac{m}{2}$.
Since $d(x, p)=|x-p|=\left|\frac{m}{2}\right|=\frac{m}{2}<m \leq \epsilon_{1}$, then $d(x, p)<\epsilon_{1}$, so $x \in$ $N\left(p ; \epsilon_{1}\right)$.

Since $N\left(p ; \epsilon_{1}\right) \subset S$, then $x \in S$.
Since $d(x, p)=|x-p|=\left|\frac{m}{2}\right|=\frac{m}{2}<m \leq \epsilon$, then $d(x, p)<\epsilon$, so $x \in N(p ; \epsilon)$.
Since $d(x, p)=|x-p|=\left|\frac{m}{2}\right|=\frac{m}{2}>0$, then $d(x, p)>0$, so $x \neq p$.
Hence, there exists $x \in S$ such that $x \in N(p ; \epsilon)$ and $x \neq p$.
Therefore, p is an accumulation point of S.
Proposition 16. Every element of a nonempty set is either an accumulation point or an isolated point.

Proof. Let S be a nonempty set.
Then there is at least one element of S.
Let $p \in S$.
To prove either p is an accumulation point or p is an isolated point of S, we prove by contrapositive.

Suppose p is not an accumulation point of S.
Since $p \in S$ and p is not an accumulation point of S, then p is an isolated point of S, as desired.

Sets in \mathbb{R}

Proposition 17. Let $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$.
If $A \subset B$, then $A^{\circ} \subset B^{\circ}$.

Proof. Suppose $A \subset B$.
Let A° be the interior of A.
Let B° be the interior of B.
Either $A^{\circ}=\emptyset$ or $A^{\circ} \neq \emptyset$.
We consider these cases separately.
Case 1: Suppose $A^{\circ}=\emptyset$.
Since the empty set is a subset of every set, then in particular, $\emptyset \subset B^{\circ}$.
Therefore, $A^{\circ} \subset B^{\circ}$.
Case 2: Suppose $A^{\circ} \neq \emptyset$.
Then there is at least one element in A°.
Let $x \in A^{\circ}$.
Then x is an interior point of A, so there exists $\delta>0$ such that $N(x ; \delta) \subset A$.
Since $N(x ; \delta) \subset A$ and $A \subset B$, then $N(x ; \delta) \subset B$.
Hence, there exists $\delta>0$ such that $N(x ; \delta) \subset B$.
Thus, x is an interior point of B, so $x \in B^{\circ}$.
Therefore, $A^{\circ} \subset B^{\circ}$.
Thus, in all cases, $A^{\circ} \subset B^{\circ}$, as desired.
Proposition 18. Let $a, b \in \mathbb{R}$. Then

1. $(a, b)^{\circ}=(a, b)$.
2. $[a, b]^{\circ}=(a, b)$.

Proof. We prove 1.
Let $(a, b)^{\circ}$ be the interior of the open interval (a, b).
We must prove $(a, b)^{\circ}=(a, b)$.
Either $a<b$ or $a=b$ or $a>b$.
We consider these cases separately.
Case 1: Suppose $a \geq b$.
Then $(a, b)=\emptyset$.
Therefore, $(a, b)^{\circ}=\emptyset^{\circ}=\emptyset=(a, b)$.
Case 2: Suppose $a<b$.
Since $a<b$, then $(a, b) \neq \emptyset$.
Since $S^{\circ} \subset S$ for every set S, then in particular, $(a, b)^{\circ} \subset(a, b)$.
We prove $(a, b) \subset(a, b)^{\circ}$.
Let $x \in(a, b)$.
Then $x \in \mathbb{R}$ and $a<x<b$, so $a<x$ and $x<b$.
Hence, $x-a>0$ and $b-x>0$.
Let $\delta=\min \{d(a, x), d(x, b)\}$.
Then $\delta \leq d(a, x)$ and $\delta \leq d(x, b)$.
Since $d(a, x)=|a-x|=|x-a|=x-a>0$, then $d(a, x)>0$.
Since $d(x, b)=|x-b|=|b-x|=b-x>0$, then $d(x, b)>0$.
Therefore, $\delta>0$.

Let $p \in N(x ; \delta)$.
Then $p \in(x-\delta, x+\delta)$, so $x-\delta<p<x+\delta$.
Hence, $x-\delta<p$ and $p<x+\delta$.
Since $\delta \leq d(a, x)$ and $d(a, x)=x-a$, then $\delta \leq x-a$, so $a \leq x-\delta$.
Since $\delta \leq d(x, b)$ and $d(x, b)=b-x$, then $\delta \leq b-x$, so $x+\delta \leq b$.
Since $a \leq x-\delta$ and $x-\delta<p$, then $a<p$.
Since $p<x+\delta$ and $x+\delta \leq b$, then $p<b$.
Thus, $a<p<b$, so $p \in(a, b)$.
Hence, $N(x ; \delta) \subset(a, b)$.
Since there exists $\delta>0$ such that $N(x ; \delta) \subset(a, b)$, then x is an interior point of (a, b).

Therefore, $x \in(a, b)^{\circ}$, so $(a, b) \subset(a, b)^{\circ}$.
Since $(a, b)^{\circ} \subset(a, b)$ and $(a, b) \subset(a, b)^{\circ}$, then $(a, b)^{\circ}=(a, b)$, as desired.
Proof. We prove 2.
Let $[a, b]^{\circ}$ be the interior of the closed interval $[a, b]$.
We must prove $[a, b]^{\circ}=(a, b)$.
Either $a<b$ or $a=b$ or $a>b$.
We consider these cases separately.
Case 1: Suppose $a>b$.
Then $(a, b)=\emptyset=[a, b]$.
Therefore, $[a, b]^{\circ}=\emptyset^{\circ}=\emptyset=(a, b)$.
Case 2: Suppose $a=b$.
Then $(a, b)=\emptyset$ and $[a, b]=\{a\}$.
Therefore, $[a, b]^{\circ}=\{a\}^{\circ}=\emptyset=(a, b)$.
Case 3: Suppose $a<b$.

We prove $(a, b) \subset[a, b]^{\circ}$.
Since $(a, b) \subset[a, b]$, then $(a, b)^{\circ} \subset[a, b]^{\circ}$.
Therefore, $(a, b) \subset[a, b]^{\circ}$.
We prove $[a, b]^{\circ} \subset(a, b)$.
Either $[a, b]^{\circ}=\emptyset$ or $[a, b]^{\circ} \neq \emptyset$.
We consider these cases separately.
Case 3a: Suppose $[a, b]^{\circ}=\emptyset$.
Since the empty set is a subset of every set, then in particular, $\emptyset \subset(a, b)$.
Therefore, $[a, b]^{\circ} \subset(a, b)$.
Case 3b: Suppose $[a, b]^{\circ} \neq \emptyset$.
Then there is at least one element in $[a, b]^{\circ}$.
Let $x \in[a, b]^{\circ}$.
Then x is an interior point of $[a, b]$.
For every nonempty set $S, S^{\circ} \subset S$.
Since $[a, b] \neq \emptyset$, then $[a, b]^{\circ} \subset[a, b]$.
Since $x \in[a, b]^{\circ}$ and $[a, b]^{\circ} \subset[a, b]$, then $x \in[a, b]$, so $a \leq x \leq b$.
Thus, $a \leq x$ and $x \leq b$.

We prove $x \neq a$ by contradiction.
Suppose $x=a$.
Then a is an interior point of $[a, b]$, so there exists $\delta>0$ such that $N(a ; \delta) \subset$ $[a, b]$.

Let p be the midpoint of $a-\delta$ and a.
Then $p=\frac{(a-\delta)+a}{2}=a-\frac{\delta}{2}$.
Since $\delta>0$, then $\frac{\delta}{2}>0$, so $\delta-\frac{\delta}{2}>a-a$.
Hence, $a-\frac{\delta}{2}>a-\delta$, so $p>a-\delta$.
Since $\delta>0$, then $\frac{3 \delta}{2}>0$, so $\delta+\frac{\delta}{2}>a-a$.
Hence, $a+\delta>a-\frac{\delta}{2}$, so $a+\delta>p$.
Thus, $a-\delta<p<a+\delta$, so $p \in N(a ; \delta)$.
Since $\frac{\delta}{2}>0$, then $\frac{\delta}{2}>a-a$, so $a>a-\frac{\delta}{2}$.
Hence, $a>p$, so $p<a$.
Thus, $p \notin[a, b]$.
Since $p \in N(a ; \delta)$ and $p \notin[a, b]$, then a is not an interior point of $[a, b]$.
This contradicts the assumption that a is an interior point of $[a, b]$.
Therefore, $x \neq a$.
We prove $x \neq b$ by contradiction.
Suppose $x=b$.
Then b is an interior point of $[a, b]$, so there exists $\delta>0$ such that $N(b ; \delta) \subset$ $[a, b]$.

Let p be the midpoint of b and $b+\delta$.
Then $p=\frac{b+(b+\delta)}{2}=b+\frac{\delta}{2}$.
Since $\delta>0$, then $\frac{3 \delta}{2}>0$, so $\delta+\frac{\delta}{2}>b-b$.
Hence, $b+\frac{\delta}{2}>b-\delta$, so $p>b-\delta$.
Since $\delta>0$, then $\frac{\delta}{2}>0$, so $\delta-\frac{\delta}{2}>b-b$.
Hence, $b+\delta>b+\frac{\delta}{2}$, so $b+\delta>p$.
Thus, $b-\delta<p<b+\delta$, so $p \in N(b ; \delta)$.
Since $\frac{\delta}{2}>0$, then $\frac{\delta}{2}>b-b$, so $b+\frac{\delta}{2}>b$.
Hence, $p>b$, so $p \notin[a, b]$.
Since $p \in N(b ; \delta)$ and $p \notin[a, b]$, then b is not an interior point of $[a, b]$.
This contradicts the assumption that b is an interior point of $[a, b]$.
Therefore, $x \neq b$.

Since $a \leq x \leq b$ and $x \neq a$ and $x \neq b$, then $a<x<b$, so $x \in(a, b)$.
Therefore, $[a, b]^{\circ} \subset(a, b)$.
Thus, in all cases, $[a, b]^{\circ} \subset(a, b)$.
Since $[a, b]^{\circ} \subset(a, b)$ and $(a, b) \subset[a, b]^{\circ}$, then $[a, b]^{\circ}=(a, b)$, as desired.
Proposition 19. Let $A \subset \mathbb{R}$.
Then $A^{\circ \circ}=A^{\circ}$.

Proof. Let A° be the interior of A.
Let $A^{\circ \circ}$ be the interior of A°.
We must prove $A^{\circ \circ}=A^{\circ}$.
Either $A^{\circ}=\emptyset$ or $A^{\circ} \neq \emptyset$.
We consider these cases separately.
Case 1: Suppose $A^{\circ}=\emptyset$.
Then $A^{\circ \circ}=\emptyset^{\circ}=\emptyset=A^{\circ}$, as desired.
Case 2: Suppose $A^{\circ} \neq \emptyset$.
For every nonempty set $S, S^{\circ} \subset S$.
Since $A^{\circ} \neq \emptyset$, then $A^{\circ \circ} \subset A^{\circ}$.

We prove $A^{\circ} \subset A^{\circ \circ}$.
Since $A^{\circ} \neq \emptyset$, then there is at least one element in A°.
Let $x \in A^{\circ}$.
Then x is an interior point of A, so there exists $\delta>0$ such that $N(x ; \delta) \subset A$. Let $p \in N(x ; \delta)$.
Then $N(x ; \delta)^{\circ}=(x-\delta, x+\delta)^{\circ}=(x-\delta, x+\delta)=N(x ; \delta)$, so $p \in N(x ; \delta)^{\circ}$. Since $N(x ; \delta) \subset A$, then $N(x ; \delta)^{\circ} \subset A^{\circ}$.
Hence, $p \in A^{\circ}$, so $N(x ; \delta) \subset A^{\circ}$.
Therefore, there exists $\delta>0$ such that $N(x ; \delta) \subset A^{\circ}$, so x is an interior point of A°.

Thus, $x \in A^{\circ \circ}$, so $A^{\circ} \subset A^{\circ \circ}$.
Since $A^{\circ \circ} \subset A^{\circ}$ and $A^{\circ} \subset A^{\circ \circ}$, then $A^{\circ \circ}=A^{\circ}$, as desired.
Proposition 20. Let $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$.
Then $(A \cap B)^{\circ}=A^{\circ} \cap B^{\circ}$.
Proof. Let A° be the interior of A.
Let B° be the interior of B.
Let $(A \cap B)^{\circ}$ be the interior of $A \cap B$.
We must prove $(A \cap B)^{\circ}=A^{\circ} \cap B^{\circ}$.

We prove $(A \cap B)^{\circ} \subset A^{\circ} \cap B^{\circ}$.
Let $x \in(A \cap B)^{\circ}$.
Since $A \cap B \subset A$, then $(A \cap B)^{\circ} \subset A^{\circ}$, so $x \in A^{\circ}$.
Since $A \cap B \subset B$, then $(A \cap B)^{\circ} \subset B^{\circ}$, so $x \in B^{\circ}$.
Therefore, $x \in A^{\circ} \cap B^{\circ}$, so $(A \cap B)^{\circ} \subset A^{\circ} \cap B^{\circ}$.

We prove $A^{\circ} \cap B^{\circ} \subset(A \cap B)^{\circ}$.
Let $x \in A^{\circ} \cap B^{\circ}$.
Then $x \in A^{\circ}$ and $x \in B^{\circ}$.
Since $x \in A^{\circ}$, then x is an interior point of A, so there exists $\delta_{1}>0$ such that $N\left(x ; \delta_{1}\right) \subset A$.

Since $x \in B^{\circ}$, then x is an interior point of B, so there exists $\delta_{2}>0$ such that $N\left(x ; \delta_{2}\right) \subset B$.

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$.

Since $\delta_{1}>0$ and $\delta_{2}>0$, then $\delta>0$.
Let $p \in N(x ; \delta)$.
Since $0<\delta \leq \delta_{1}$, then $N(x ; \delta) \subset N\left(x ; \delta_{1}\right)$.
Since $p \in N(x ; \delta)$ and $N(x ; \delta) \subset N\left(x ; \delta_{1}\right) \subset A$, then $p \in A$.
Since $0<\delta \leq \delta_{2}$, then $N(x ; \delta) \subset N\left(x ; \delta_{2}\right)$.
Since $p \in N(x ; \delta)$ and $N(x ; \delta) \subset N\left(x ; \delta_{2}\right) \subset B$, then $p \in B$.
Thus, $p \in A \cap B$, so $N(x ; \delta) \subset A \cap B$.
Since there exists $\delta>0$ such that $N(x ; \delta) \subset A \cap B$, then x is an interior point of $A \cap B$, so $x \in(A \cap B)^{\circ}$.

Therefore, $A^{\circ} \cap B^{\circ} \subset(A \cap B)^{\circ}$.
Since $(A \cap B)^{\circ} \subset A^{\circ} \cap B^{\circ}$ and $A^{\circ} \cap B^{\circ} \subset(A \cap B)^{\circ}$, then $(A \cap B)^{\circ}=A^{\circ} \cap B^{\circ}$, as desired.

Proposition 21. Let $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$.
Then $(A \cup B)^{\circ} \supset A^{\circ} \cup B^{\circ}$.
Proof. Let A° be the interior of A.
Let B° be the interior of B.
Let $(A \cup B)^{\circ}$ be the interior of $A \cup B$.
We must prove $A^{\circ} \cup B^{\circ} \subset(A \cup B)^{\circ}$.
Let $x \in A^{\circ} \cup B^{\circ}$.
Then either $x \in A^{\circ}$ or $x \in B^{\circ}$.
We consider these cases separately.
Case 1: Suppose $x \in A^{\circ}$.
Then x is an interior point of A, so there exists $\delta>0$ such that $N(x ; \delta) \subset A$.
Since $N(x ; \delta) \subset A$ and $A \subset A \cup B$, then $N(x ; \delta) \subset A \cup B$.
Therefore, x is an interior point of $A \cup B$, so $x \in(A \cup B)^{\circ}$.
Case 2: Suppose $x \in B^{\circ}$.
Then x is an interior point of B, so there exists $\delta>0$ such that $N(x ; \delta) \subset B$.
Since $N(x ; \delta) \subset B$ and $B \subset A \cup B$, then $N(x ; \delta) \subset A \cup B$.
Therefore, x is an interior point of $A \cup B$, so $x \in(A \cup B)^{\circ}$.
Hence, in all cases, $x \in(A \cup B)^{\circ}$, so $A^{\circ} \cup B^{\circ} \subset(A \cup B)^{\circ}$, as desired.
Proposition 22. A set S is open iff $S^{\circ}=S$.
Proof. Let S be a set.
Let S° be the interior of S.
Then $S^{\circ}=\{x: x$ is an interior point of $S\}$.
We prove if S is open, then $S^{\circ}=S$.
Suppose S is open.
Then if $x \in S$, then x is an interior point of S.
Thus, if $x \in S$, then $x \in S^{\circ}$.
Hence, $S \subset S^{\circ}$.
Since the interior of a set is a subset of the set, then $S^{\circ} \subset S$.
Thus, $S^{\circ} \subset S$ and $S \subset S^{\circ}$, so $S^{\circ}=S$.

Proof. Conversely, we prove if $S^{\circ}=S$, then S is open.
Suppose $S^{\circ}=S$.
Then $S^{\circ} \subset S$ and $S \subset S^{\circ}$, so $S \subset S^{\circ}$.
Hence, if $x \in S$, then $x \in S^{\circ}$.
Thus, if $x \in S$, then x is an interior point of S.
Therefore, S is open.
Proposition 23. Let $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$.

1. If A is open and B is open, then $A \cup B$ is open.
2. If A is open and B is open, then $A \cap B$ is open.

Proof. We prove 1.
Suppose A is open and B is open.
Either $A \cup B=\emptyset$ or $A \cup B \neq \emptyset$.
We consider these cases separately.
Case 1: Suppose $A \cup B=\emptyset$.
Since the empty set is open, then $A \cup B$ is open.
Case 2: Suppose $A \cup B \neq \emptyset$.
Then there is at least one element of $A \cup B$.
Let $x \in A \cup B$.
Then either $x \in A$ or $x \in B$.
We consider these cases separately.
Case 2a: Suppose $x \in A$.
Since A is open, then x is an interior point of A, so there exists $\delta_{1}>0$ such that $N\left(x ; \delta_{1}\right) \subset A$.

Since $A \subset A \cup B$, then $N\left(x ; \delta_{1}\right) \subset A \cup B$.
Thus, x is an interior point of $A \cup B$.
Case 2b: Suppose $x \in B$.
Since B is open, then x is an interior point of B, so there exists $\delta_{2}>0$ such that $N\left(x ; \delta_{2}\right) \subset B$.

Since $B \subset A \cup B$, then $N\left(x ; \delta_{2}\right) \subset A \cup B$.
Thus, x is an interior point of $A \cup B$.
Therefore, in either case, x is an interior point of $A \cup B$, so $A \cup B$ is open.
Proof. We prove 2.
Suppose A is open and B is open.
Either $A \cap B=\emptyset$ or $A \cap B \neq \emptyset$.
We consider these cases separately.
Case 1: Suppose $A \cap B=\emptyset$.
Since the empty set is open, then $A \cap B$ is open.
Case 2: Suppose $A \cap B \neq \emptyset$.
Then there is at least one element of $A \cap B$.
Let $x \in A \cap B$.
Then $x \in A$ and $x \in B$.
Since $x \in A$ and A is open, then x is an interior point of A, so there exists $\delta_{1}>0$ such that $N\left(x ; \delta_{1}\right) \subset A$.

Since $x \in B$ and B is open, then x is an interior point of B, so there exists $\delta_{2}>0$ such that $N\left(x ; \delta_{2}\right) \subset B$.

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$.
Then either $\delta=\delta_{1}$ or $\delta=\delta_{2}$, and $\delta \leq \delta_{1}$ and $\delta \leq \delta_{2}$.
Since $\delta_{1}>0$ and $\delta_{2}>0$ and either $\delta=\delta_{1}$ or $\delta=\delta_{2}$, then $\delta>0$.
Since $N(x ; \delta) \neq \emptyset$, let $p \in N(x ; \delta)$.
Then $d(p, x)<\delta$.
Since $d(p, x)<\delta$ and $\delta \leq \delta_{1}$, then $d(p, x)<\delta_{1}$, so $p \in N\left(x ; \delta_{1}\right)$.
Since $N\left(x ; \delta_{1}\right) \subset A$, then $p \in A$.
Since $d(p, x)<\delta$ and $\delta \leq \delta_{2}$, then $d(p, x)<\delta_{2}$, so $p \in N\left(x ; \delta_{2}\right)$.
Since $N\left(x ; \delta_{2}\right) \subset B$, then $p \in B$.
Hence, $p \in A \cap B$, so $N(x ; \delta) \subset A \cap B$.
Thus, there exists $\delta>0$ such that $N(x ; \delta) \subset A \cap B$, so x is an interior point of $A \cap B$.

Therefore, $A \cap B$ is open.
Theorem 24. topological properties of open sets in \mathbb{R}

1. The union of any collection of open sets in \mathbb{R} is open.
2. The intersection of any finite collection of open sets in \mathbb{R} is open.

Proof. We prove 1.
Let \mathcal{F} be an arbitrary collection of open sets in \mathbb{R}.
We must prove $\cup \mathcal{F}$ is open.
Either $\cup \mathcal{F}=\emptyset$ or $\cup \mathcal{F} \neq \emptyset$.
We consider these cases separately.
Case 1: Suppose $\cup \mathcal{F}=\emptyset$.
Since the empty set is open, then $\cup \mathcal{F}$ is open.
Case 2: Suppose $\cup \mathcal{F} \neq \emptyset$.
Then there is at least one element of $\cup \mathcal{F}$.
Let $x \in \cup \mathcal{F}$.
Then there exists $S \in \mathcal{F}$ such that $x \in S$.
Since $S \in \mathcal{F}$, then S is an open set in \mathbb{R}.
Since S is open and $x \in S$, then x is an interior point of S.
Hence, there exists $\delta>0$ such that $N(x ; \delta) \subset S$.
Since $S \in \mathcal{F}$, then $S \subset \cup \mathcal{F}$.
Since $N(x ; \delta) \subset S$ and $S \subset \cup \mathcal{F}$, then $N(x ; \delta) \subset \cup \mathcal{F}$.
Hence, there exists $\delta>0$ such that $N(x ; \delta) \subset \cup \mathcal{F}$, so x is an interior point of $\cup \mathcal{F}$.

Therefore, $\cup \mathcal{F}$ is open.
Thus, in all cases, $\cup \mathcal{F}$ is open, as desired.
Proof. We prove 2.
Let \mathcal{F} be an arbitrary finite collection of open sets in \mathbb{R}.
We must prove $\cap \mathcal{F}$ is open.
Since \mathcal{F} is a finite set, then \mathcal{F} contains exactly n elements for some nonnegative integer n.

Thus, either $n=0$ or $n=1$ or $n>1$.

We consider these cases separately.
Case 1: Suppose $n=0$.
Then \mathcal{F} contains zero elements, so $\mathcal{F}=\emptyset$.
Thus, $\cap \mathcal{F}=\cap \emptyset=\emptyset$.
Since the empty set is open, then $\cap \mathcal{F}$ is open.
Case 2: Suppose $n=1$.
Then \mathcal{F} contains exactly one element.
Thus, there exists F_{1} such that $\mathcal{F}=\left\{F_{1}\right\}$.
Since $F_{1} \in \mathcal{F}$, then F_{1} is an open set in \mathbb{R}.
Hence, $\cap \mathcal{F}=F_{1}$ is open.
Case 3: Suppose $n>1$.
Then $n \geq 2$, so $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{n}\right\}$ and F_{i} is an open set in \mathbb{R} for each $i=1,2, \ldots, n$.

We must prove for each natural number $n \geq 2$, if $F_{1}, F_{2}, \ldots, F_{n}$ are all open sets in \mathbb{R}, then $F_{1} \cap F_{2} \cap \ldots \cap F_{n}$ is open.

We prove by induction on n.
Basis: Let $n=2$.
Suppose F_{1} and F_{2} are open sets.
Since the intersection of any two open sets is open, then $F_{1} \cap F_{2}$ is open.

Induction:

Let $k \in \mathbb{N}$ such that $k \geq 2$.
Suppose the statement 'if the sets $S_{1}, S_{2}, \ldots, S_{k}$ are open sets in \mathbb{R}, then $S_{1} \cap S_{2} \cap \ldots \cap S_{k}$ is open' is true.

We must prove 'if the sets $S_{1}, S_{2}, \ldots, S_{k}, S_{k+1}$ are open sets in \mathbb{R}, then $S_{1} \cap$ $S_{2} \cap \ldots \cap S_{k+1}$ is open'.

Assume the sets $S_{1}, S_{2}, \ldots, S_{k}, S_{k+1}$ are open sets in \mathbb{R}.
Since the sets $S_{1}, S_{2}, \ldots, S_{k}$ are open, then by the induction hypothesis, the set $S_{1} \cap S_{2} \cap \ldots \cap S_{k}$ is open.

Since the intersection of any two open sets is open and $S_{1} \cap S_{2} \cap \ldots \cap S_{k}$ is open and S_{k+1} is open, then the set $\left(S_{1} \cap S_{2} \cap \ldots \cap S_{k}\right) \cap S_{k+1}$ is open.

Hence, $S_{1} \cap S_{2} \cap \ldots \cap S_{k} \cap S_{k+1}$ is open.
Therefore, by PMI, for all natural numbers $n \geq 2$, if the sets $S_{1}, S_{2}, \ldots, S_{n}$ are open sets in \mathbb{R}, then the intersection $S_{1} \cap S_{2} \cap \ldots \cap S_{n}$ is open, as desired.

Corollary 25. \mathbb{R} is a topological space
Let τ be the set of all open subsets of \mathbb{R}. Then
$T 1 . \emptyset \in \tau$ and $\mathbb{R} \in \tau$.
T2. The union of any collection of sets in τ is in τ.
T3. The intersection of any finite collection of sets in τ is in τ.
Proof. Let τ be the set of all open subsets of \mathbb{R}.
Then $\tau=\{S: S$ is an open subset of $\mathbb{R}\}$.
We prove T1.
Since $\emptyset \subset \mathbb{R}$ and \emptyset is open, then $\emptyset \in \tau$.
Since $\mathbb{R} \subset \mathbb{R}$ and \mathbb{R} is open, then $\mathbb{R} \in \tau$.

Proof. We prove T2.
Let S be a collection of sets in τ.
Then S is a collection of open subsets of \mathbb{R}, so $S \subset \tau$.
Let $\cup S$ be the union of the elements of S.
Either $\cup S=\emptyset$ or $\cup S \neq \emptyset$.
We consider these cases separately.
Case 1: Suppose $\cup S=\emptyset$.
Since $\emptyset \in \tau$, then $\cup S \in \tau$.
Case 2: Suppose $\cup S \neq \emptyset$.
Then there is at least one element of $\cup S$.
Let $x \in \cup S$.
Then there exists $X \in S$ such that $x \in X$.
Since $X \in S$ and $S \subset \tau$, then $X \in \tau$, so X is an open subset of \mathbb{R}.
Thus, $X \subset \mathbb{R}$.
Since $x \in X$ and $X \subset \mathbb{R}$, then $x \in \mathbb{R}$.
Thus, $\cup S \subset \mathbb{R}$.
Since the union of any collection of open sets in \mathbb{R} is open and S is a collection of open sets in \mathbb{R}, then $\cup S$ is open.

Thus, $\cup S$ is an open subset of \mathbb{R}, so $\cup S \in \tau$.
Therefore, in all cases, $\cup S \in \tau$, as desired.

Proof.

We prove T3.
Let S be a finite collection of sets in τ.
Then S is a finite collection of open subsets of \mathbb{R}.
Since S is a collection of open subsets of \mathbb{R}, then $S \subset \tau$.
Let $\cap S$ be the intersection of the elements of S.
Either $\cap S=\emptyset$ or $\cap S \neq \emptyset$.
We consider these cases separately.
Case 1: Suppose $\cap S=\emptyset$.
Since $\emptyset \in \tau$, then $\cap S \in \tau$.
Case 2: Suppose $\cap S \neq \emptyset$.
Then there is at least one element of $\cap S$.
Let $x \in \cap S$.
Then $x \in X$ for each $X \in S$.
Let $X \in S$.
Then $x \in X$.
Since $X \in S$ and $S \subset \tau$, then $X \in \tau$, so X is an open subset of \mathbb{R}.
Thus, $X \subset \mathbb{R}$.
Since $x \in X$ and $X \subset \mathbb{R}$, then $x \in \mathbb{R}$.
Thus, $\cap S \subset \mathbb{R}$.
Since the intersection of any finite collection of open sets in \mathbb{R} is open and S is a finite collection of open sets in \mathbb{R}, then $\cap S$ is open.

Thus, $\cap S$ is an open subset of \mathbb{R}, so $\cap S \in \tau$.
Therefore, in all cases, $\cap S \in \tau$, as desired.

Theorem 26. characterization of open sets in \mathbb{R}
A nonempty subset of \mathbb{R} is open iff it is a union of bounded open intervals.
Proof. Let S be a nonempty subset of \mathbb{R}.
We prove if S is a union of bounded open intervals, then S is open.
Let \mathcal{F} be a family of bounded open intervals in \mathbb{R}.
Suppose $S=\cup \mathcal{F}$.
Since \mathcal{F} is a collection of bounded open intervals and every bounded open interval is open, then \mathcal{F} is a collection of open sets in \mathbb{R}.

Therefore, $\cup \mathcal{F}$ is open, so S is open, as desired.

Conversely, we prove if S is open, then S is a union of bounded open intervals.
Suppose S is open.
Then every point in S is an interior point of S.
Hence, for every $x \in S$, there exists $\delta>0$ such that $N(x ; \delta) \subset S$.
Let \mathcal{F} be a family of δ neighborhoods centered at x of radius δ for each $x \in S$.

Since $N(x ; \delta)=(x-\delta, x+\delta)$ for each $x \in S$, then every δ neighborhood is a bounded open interval.

Thus, \mathcal{F} is a collection $\left\{I_{x}: x \in S\right\}$ of bounded open intervals and the bounded open interval I_{x} is a subset of S for each $x \in S$.

Hence, $\mathcal{F}=\left\{I_{x}: x \in S\right\}$ and $I_{x} \subset S$ for each $x \in S$.
By a previous proposition, if I is an index set and B is a set and $A_{i} \subset B$ for all $i \in I$, then $\cup_{i \in I} A_{i} \subset B$.

In particular, since S is an index set and $I_{x} \subset S$ for all $x \in S$, then $\cup_{x \in S} I_{x} \subset$ S.

Therefore, $\cup \mathcal{F} \subset S$.

Since S is not empty, then there is at least one point in S.
Let $y \in S$.
Then $I_{y} \subset S$.
Since I_{y} is an δ neighborhood of y, then $y \in I_{y}$.
Let $s=y$.
Since $y \in S$, then $s \in S$.
Since $y \in I_{y}$, then $y \in I_{s}$.
Hence, there exists $s \in S$ such that $y \in I_{s}$, so $y \in \cup_{x \in S} I_{x}$.
Thus, $y \in \cup \mathcal{F}$, so $S \subset \cup \mathcal{F}$.

Since $S \subset \cup \mathcal{F}$ and $\cup \mathcal{F} \subset S$, then $S=\cup \mathcal{F}$.
Therefore, S is a union of bounded open intervals, as desired.
Proposition 27. A set with no accumulation points is closed.
Proof. Let S be a set with no accumulation points.
Then no point is an accumulation point of S, so there is no x such that x is an accumulation point of S.

Hence, for every x, x is not an accumulation point of S.
Thus, for every x, if $x \notin S$, then x is not an accumulation point of S.
Therefore, for every x, if x is an accumulation point of S, then $x \in S$.
Hence, S is closed.
Proposition 28. Let $S \subset \mathbb{R}$.

1. If S is non empty, closed, and bounded above in \mathbb{R}, then $\max S$ exists.
2. If S is non empty, closed, and bounded below in \mathbb{R}, then $\min S$ exists.

Proof. We prove 1.
Suppose S is non empty, closed, and bounded above in \mathbb{R}.
Since $S \neq \emptyset$ and S is bounded above in \mathbb{R}, then by the completeness of \mathbb{R}, $\sup S$ exists.

Let $\epsilon>0$ be given.
Since $\sup S$ is the least upper bound of S, then there exists $x \in S$ such that $x>\sup S-\epsilon$.

Since $x \in S$ and $\sup S$ is an upper bound of S, then $x \leq \sup S$, so either $x<\sup S$ or $x=\sup S$.

We consider these cases separately.
Case 1: Suppose $x=\sup S$.
Since $x \in S$, then $\sup S \in S$.
Case 2: Suppose $x<\sup S$.
Then $x \neq \sup S$.
Since $\sup S-\epsilon<x<\sup S<\sup S+\epsilon$, then $\sup S-\epsilon<x<\sup S+\epsilon$, so $x \in(\sup S-\epsilon, \sup S+\epsilon)$.

Hence, $x \in N(\sup S ; \epsilon)$.
Since $x \neq \sup S$, then $x \in N^{\prime}(\sup S ; \epsilon)$.
Thus, $x \in N^{\prime}(\sup S ; \epsilon) \cap S$, so $N^{\prime}(\sup S ; \epsilon) \cap S \neq \emptyset$.
Therefore, $\sup S$ is an accumulation point of S.
Since S is closed, then every accumulation point of S is an element of S, so $\sup S \in S$.

Thus, in all cases, $\sup S \in S$.
Since $\sup S$ is an upper bound of S and $\sup S \in S$, then $\sup S=\max S$, so $\max S$ exists.

Proof. We prove 2.
Suppose S is non empty, closed, and bounded below in \mathbb{R}.
Since $S \neq \emptyset$ and S is bounded below in \mathbb{R}, then by the completeness of \mathbb{R}, inf S exists.

Let $\epsilon>0$ be given.
Since $\inf S$ is the greatest lower bound of S, then there exists $x \in S$ such that $x<\inf S+\epsilon$.

Since $x \in S$ and $\inf S$ is a lower bound of S, then $\inf S \leq x$, so either $\inf S<x$ or $\inf S=x$.

We consider these cases separately.
Case 1: Suppose $\inf S=\mathrm{x}$.
Since $x \in S$, then $\inf S \in S$.

Case 2: Suppose $\inf S<x$.
Then $x>\inf S$, so $x \neq \inf S$.
Since $\inf S-\epsilon<\inf S<x<\inf S+\epsilon$, then $\inf S-\epsilon<x<\inf S+\epsilon$, so $x \in(\inf S-\epsilon, \inf S+\epsilon)$.

Hence, $x \in N(\inf S ; \epsilon)$.
Since $x \neq \inf S$, then $x \in N^{\prime}(\inf S ; \epsilon)$.
Thus, $x \in N^{\prime}(\inf S ; \epsilon) \cap S$, so $N^{\prime}(\inf S ; \epsilon) \cap S \neq \emptyset$.
Therefore, $\inf S$ is an accumulation point of S.
Since S is closed, then every accumulation point of S is an element of S, so $\inf S \in S$.

Thus, in all cases, $\inf S \in S$.
Since $\inf S$ is a lower bound of S and $\inf S \in S$, then $\inf S=\min S$, so $\min S$ exists.

Theorem 29. Let $S \subset \mathbb{R}$.
Then S is open iff $\mathbb{R}-S$ is closed.
Proof. We prove if S is open, then $\mathbb{R}-S$ is closed.
Either there is some accumulation point of the set $\mathbb{R}-S$ or there is not.
We consider these cases separately.
Case 1: Suppose there is no accumulation point of $\mathbb{R}-S$.
Then $\mathbb{R}-S$ is a set with no accumulation points.
Since a set with no accumulation points is closed, then $\mathbb{R}-S$ is closed.
Thus, the conditional 'if S is open, then $\mathbb{R}-S$ is closed' is trivially true.
Case 2: Suppose there is some accumulation point of $\mathbb{R}-S$.
Suppose S is open.
Since there is some accumulation point of $\mathbb{R}-S$, then there is at least one accumulation point of $\mathbb{R}-S$.

Let x be an arbitrary accumulation point of $\mathbb{R}-S$.
Suppose for the sake of contradiction $x \in S$.
Since $S \subset \mathbb{R}$, then $x \in \mathbb{R}$.
Since S is open and $x \in S$, then x is an interior point of S, so there exists $\delta>0$ such that $N(x ; \delta) \subset S$.

Since x is an accumulation point of $\mathbb{R}-S$ and $\delta>0$, then there exists $p \in(\mathbb{R}-S)$ such that $p \in N^{\prime}(x ; \delta)$.

Since $p \in N^{\prime}(x ; \delta)$ and $N^{\prime}(x ; \delta) \subset N(x ; \delta)$, then $p \in N(x ; \delta)$.
Since $N(x ; \delta) \subset S$, then $p \in S$.
Since $p \in \mathbb{R}-S$, then $p \in \mathbb{R}$ and $p \notin S$.
Thus, we have $p \in S$ and $p \notin S$, a contradiction.
Therefore, $x \notin S$.
Since $x \in \mathbb{R}$ and $x \notin S$, then $x \in(\mathbb{R}-S)$, so $\mathbb{R}-S$ is closed.
Hence, if S is open, then $\mathbb{R}-S$ is closed.
Thus, in either case, the implication 'if S is open, then $\mathbb{R}-S$ is closed' is true.

Proof. Conversely, we prove if $\mathbb{R}-S$ is closed, then S is open.
Either $S=\emptyset$ or $S \neq \emptyset$.
We consider these cases separately.
Case 1: Suppose $S=\emptyset$.
Since the empty set is open, then S is open.
Therefore, the conditional 'if $\mathbb{R}-S$ is closed, then S is open' is trivially true.
Case 2: Suppose $S \neq \emptyset$.
Suppose $\mathbb{R}-S$ is closed.
Since $S \neq \emptyset$, then there is at least one element of S.
Let $x \in S$.
Since $\mathbb{R}-S$ is closed, then if x is an accumulation point of $\mathbb{R}-S$, then $x \in(\mathbb{R}-S)$.

Hence, if $x \notin(\mathbb{R}-S)$, then x is not an accumulation point of $\mathbb{R}-S$.
Since $x \in S$, then $x \notin(\mathbb{R}-S)$, so x is not an accumulation point of $\mathbb{R}-S$.
Thus, there exists $\delta>0$ such that $N^{\prime}(x ; \delta) \cap(\mathbb{R}-S)=\emptyset$.
Since $N(x ; \delta) \neq \emptyset$, let $p \in N(x ; \delta)$.
Since $N(x ; \delta) \subset \mathbb{R}$, then $p \in \mathbb{R}$.
Either $p=x$ or $p \neq x$.
We consider these cases separately.
Case 2a: Suppose $p=x$.
Since $x \in S$, then $p \in S$.
Case 2a: Suppose $p \neq x$.
Then $p \in N^{\prime}(x ; \delta)$.
Suppose $p \notin S$.
Since $p \in \mathbb{R}$ and $p \notin S$, then $p \in(\mathbb{R}-S)$.
Thus, $p \in N^{\prime}(x ; \delta) \cap(\mathbb{R}-S)$.
This contradicts the fact that $N^{\prime}(x ; \delta) \cap(\mathbb{R}-S)=\emptyset$.
Thus, $p \in S$.
Hence, in all cases, $p \in S$.
Consequently, if $p \in N(x ; \delta)$, then $p \in S$, so $N(x ; \delta) \subset S$.
Thus, there exists $\delta>0$ such that $N(x ; \delta) \subset S$, so x is an interior point of S.

Therefore, if $x \in S$, then x is an interior point of S, so S is open.
Hence, if $\mathbb{R}-S$ is closed, then S is open.
Thus, in either case, the implication 'if $\mathbb{R}-S$ is closed, then S is open' is true.

Theorem 30. Heine-Borel covering theorem

Every open covering of a closed and bounded set S in \mathbb{R} contains a finite subcovering of S.

Proof. Let S be a closed and bounded set of real numbers.
Either $S=\emptyset$ or $S \neq \emptyset$.
We consider these cases separately.
Case 1: Suppose $S=\emptyset$.

Since the empty set is compact, then every open covering of \emptyset contains a finite subcovering of \emptyset.

Case 2: Suppose $S \neq \emptyset$.
Let \mathcal{F} be an arbitrary open covering of S.
Then $S \subset \cup \mathcal{F}$ and each set in \mathcal{F} is open.
To prove \mathcal{F} contains a finite subcovering of S, we prove there exists a finite subset of \mathcal{F} that covers S.

Define the set $S_{x}=\{s \in S: s \leq x\}$ for each $x \in \mathbb{R}$.
Let $B=\left\{x \in \mathbb{R}\right.$: some finite subset of \mathcal{F} covers $\left.S_{x}\right\}$.
Since S is bounded, then S is bounded above and below in \mathbb{R}.
Since $S \subset \mathbb{R}$ and $S \neq \emptyset$ and S is closed and bounded above in \mathbb{R}, then max S exists.

Since $S \subset \mathbb{R}$ and $S \neq \emptyset$ and S is closed and bounded below in \mathbb{R}, then $\min S$ exists.

Thus, $S_{\min S}=\{s \in S: s \leq \min S\}=\{\min S\}$.
Since $\min S \in S$ and $S \subset \cup \mathcal{F}$, then $\min S \in \cup \mathcal{F}$, so there exists $A \in \mathcal{F}$ such that $\min S \in A$.

Since $\min S \in A$, then $\{\min S\} \subset A$.
Let $G=\{A\}$.
Then $S_{\min S}=\{\min S\} \subset A=\cup G$, so $S_{\min S} \subset \cup G$.
Thus, G covers $S_{\min S}$.
Since $G \subset \mathcal{F}$ and G is a finite set, then G is a finite subset of \mathcal{F} that covers $S_{\text {min } S}$.

Therefore, $\min S \in B$, so $B \neq \emptyset$.

We prove the set B is not bounded above in \mathbb{R} by contradiction.
Suppose B is bounded above in \mathbb{R}.
Since $B \subset \mathbb{R}$ and $B \neq \emptyset$ and B is bounded above in \mathbb{R}, then by completeness of $\mathbb{R}, \sup B$ exists.

Either $\sup B \in S$ or $\sup B \notin S$.
We consider these cases separately.
Case 2a: Suppose $\sup B \in S$.
Since $S \subset \cup \mathcal{F}$, then $\sup B \in \cup \mathcal{F}$, so there exists $F_{0} \in \mathcal{F}$ such that $\sup B \in$ F_{0}.

Since $F_{0} \in \mathcal{F}$, then F_{0} is an open set.
Since $\sup B \in F_{0}$, then $\sup B$ is an interior point of F_{0}, so there exists $\delta>0$ such that $N(\sup B ; \delta) \subset F_{0}$.

Since $\delta>0$ and $\sup B$ is the least upper bound of B, then there exists $b \in B$ such that $\sup B-\delta<b<\sup B$.

Why can we assume $b<\sup B$ versus $b \leq \sup B$? We need to prove this!!!!
Since $b \in B$, then some finite subset of \mathcal{F} covers S_{b}.
Hence, there exists $G=\left\{F_{1}, F_{2}, \ldots, F_{k}\right\}$ such that $F_{i} \in F$ for each i and $S_{b} \subset \cup G$.

Let $t=\sup B+\frac{\delta}{2}$.
Then $t>\sup B$ and $S_{t}=\{s \in S: s \leq t\}$.

We prove $G^{\prime}=\left\{F_{0}, F_{1}, \ldots, F_{k}\right\}$ covers S_{t}.
Since $\sup B \in S$ and $\sup B<t$, then $\sup B \in S_{t}$, so $S_{t} \neq \emptyset$.
Let $x \in S_{t}$.
Then $x \in S$ and $x \leq t$.
Either $x \leq \sup B-\delta$ or $x>\sup B-\delta$.
We consider these cases separately.
Case 2a1: Suppose $x \leq \sup B-\delta$.
Since $x \leq \sup B-\delta$ and $\sup B-\delta<b$, then $x<b$.
Since $x \in S$ and $x<b$, then $x \in S_{b}$.
Since $S_{b} \subset \cup G$, then $x \in \cup G$.
Case 2a2: Suppose $x>\sup B-\delta$.
Since $x \leq t$ and $t<\sup B+\delta$, then $x<\sup B+\delta$.
Thus, $\sup B-\delta<x<\sup B+\delta$, so $x \in(\sup B-\delta, \sup B+\delta)$.
Hence, $x \in N(\sup B ; \delta)$.
Since $N(\sup B ; \delta) \subset F_{0}$, then $x \in F_{0}$.
Hence, either $x \in F_{0}$ or $x \in \cup G$, so $x \in F_{0} \cup(\cup G)$.
Thus, $x \in F_{0} \cup\left(F_{1} \cup F_{2} \cup \ldots \cup F_{k}\right)$, so $x \in \cup G^{\prime}$.
Therefore, $S_{t} \subset \cup G^{\prime}$, so G^{\prime} is a covering for S_{t}.
Since $G^{\prime} \subset \mathcal{F}$ and G^{\prime} is a finite set, then G^{\prime} is a finite subset of \mathcal{F} that covers S_{t}, so $t \in B$.

Since $\sup B$ is an upper bound of B and $t \in B$, then $t \leq \sup B$.
Thus, we have $t \leq \sup B$ and $t>\sup B$, a contradiction.
Therefore, $\sup B \in S$ is false.
Case 2b: Suppose sup $B \notin S$.
Since S is closed, then $\sup B$ is not an accumulation point of S.
Hence, there exists $\delta>0$ such that $N^{\prime}(\sup B ; \delta) \cap S=\emptyset$.

