Topology of ${\mathbb R}$ Theory

Jason Sass

June 29, 2021

Topology of \mathbb{R}

Theorem 1. properties of the distance function Let F be an ordered field. For all $x, y, z \in F$ D1. $d(x, y) \ge 0$. D2. $d(x, y) = 0$ iff $x = y$. D3. $d(x, y) = d(y, x)$. D4. $d(x, y) \le d(x, z) + d(z, y)$.
Proof. We prove 1. Let $x, y \in F$. To prove $d(x, y) \ge 0$, we must prove $ x - y \ge 0$. Since $x, y \in F$, then $x - y \in F$, by closure of F under subtraction. Since $ a \ge 0$ for all $a \in F$, then in particular, $ x - y \ge 0$.
Proof. We prove 2. Let $x, y \in F$. To prove $d(x, y) = 0$ iff $x = y$, we must prove $ x - y = 0$ iff $x = y$. Since $x, y \in F$, then $x - y \in F$. Since $ a = 0$ iff $a = 0$ for all $a \in F$, then in particular, $ x - y = 0$ iff $x - y = 0$. Since $x - y = 0$ iff $x = y$, then this implies $ x - y = 0$ iff $x = y$, as desired. \Box
<i>Proof.</i> We prove 3. Let $x, y \in F$. To prove $d(x, y) = d(y, x)$, we must prove $ x - y = y - x $. Since $x, y \in F$, then $x - y \in F$. Observe that
$egin{array}{rcl} x-y &=& -(x-y) \ &=& -x+y \ &=& y-x . \end{array}$

Proof. We prove 4. Let $x,y,z\in F.$ To prove $d(x,y)\leq d(x,z)+d(z,y),$ we must prove $|x-y|\leq |x-z|+|z-y|.$ Observe that

$$\begin{aligned} |x - y| &= |x + 0 - y| \\ &= |x + (-z + z) - y| \\ &= |(x - z) + (z - y)| \\ &\leq |x - z| + |z - y|. \end{aligned}$$

Therefore, $|x - y| \le |x - z| + |z - y|$, as desired.

Proposition 2. Let $a, b \in \mathbb{R}$. If $a \ge b$, then $(a, b) = \emptyset$. If a < b, then $(a, b) \neq \emptyset$. *Proof.* Let $a, b \in \mathbb{R}$. Either a < b or a = b or a > b. We consider these cases separately. Case 1: Suppose $a \ge b$. We prove $(a, b) = \emptyset$ by contradiction. Suppose $(a, b) \neq \emptyset$. Then there is at least one element in (a, b). Let $x \in (a, b)$. Then $x \in \mathbb{R}$ and a < x < b, so a < b. Thus, we have a < b and $a \ge b$, a violation of trichotomy. Therefore, $(a, b) = \emptyset$, as desired. Case 2: Suppose a < b. We prove $(a, b) \neq \emptyset$. By the density of \mathbb{R} , between any two real numbers is another real number. Since $a, b \in \mathbb{R}$, then there exists $c \in \mathbb{R}$ such that a < c < b. Therefore, $c \in (a, b)$, so $(a, b) \neq \emptyset$, as desired. **Proposition 3.** Let $a, b \in \mathbb{R}$. Then $(a, b) \subset [a, b]$.

Proof. Either a < b or a = b or a > b. We consider these cases separately. **Case 1:** Suppose $a \ge b$. Then $(a, b) = \emptyset$. Since the empty set is a subset of every set, then in particular, $\emptyset \subset [a, b]$. Therefore, $(a, b) \subset [a, b]$, as desired. **Case 2:** Suppose a < b. Then $(a, b) \neq \emptyset$, so there is at least one element in (a, b). Let $x \in (a, b)$. Then $x \in \mathbb{R}$ and a < x < b, so a < x and x < b. Since a < x, then either a < x or a = x, so $a \le x$.

Since x < b, then either x < b or x = b, so $x \le b$. Thus, $a \leq x$ and $x \leq b$, so $a \leq x \leq b$. Therefore, $x \in [a, b]$, so $(a, b) \subset [a, b]$, as desired. **Proposition 4.** Let $a, b \in \mathbb{R}$. If a > b, then $[a, b] = \emptyset$. If a = b, then $[a, b] = \{a\}$. If a < b, then $[a, b] \neq \emptyset$. *Proof.* Either a < b or a = b or a > b. We consider these cases separately. Case 1: Suppose a > b. We prove $[a, b] = \emptyset$ by contradiction. Suppose $[a, b] \neq \emptyset$. Then there is at least one element in [a, b]. Let $x \in [a, b]$. Then $x \in \mathbb{R}$ and $a \leq x \leq b$, so $a \leq b$. Thus, we have $a \leq b$ and a > b, a violation of trichotomy. Therefore, $[a, b] = \emptyset$, as desired. Case 2: Suppose a = b. Since a = a, then $a \le a$, so $a \le a$ and $a \le a$. Thus, $a \leq a \leq a$, so $a \leq a \leq b$. Hence, $a \in [a, b]$, so $\{a\} \subset [a, b]$ and $[a, b] \neq \emptyset$. Therefore, there is at least one element in [a, b]. Let $x \in [a, b]$. Then $x \in \mathbb{R}$ and $a \leq x \leq b$, so $a \leq x \leq a$. Thus, $a \leq x$ and $x \leq a$, so a = x. Therefore, $x \in \{a\}$, so $[a, b] \subset \{a\}$. Since $[a, b] \subset \{a\}$ and $\{a\} \subset [a, b]$, then $[a, b] = \{a\}$, as desired. Case 3: Suppose a < b. Then $(a, b) \neq \emptyset$. Hence, there is at least one element x such that $x \in (a, b)$. Since $x \in (a, b)$ and $(a, b) \subset [a, b]$, then $x \in [a, b]$. Therefore, $[a, b] \neq \emptyset$, as desired.

Proposition 5. The distance between any two points in the interval (a, b) is less than b - a.

Let $a, b \in \mathbb{R}$. Let x, y be any real numbers such that a < x < b and a < y < b. Then |x - y| < b - a.

Proof. We must prove |x - y| < b - a. Since a < x < b and a < y < b, then a < x and x < b and a < y and y < b. Since $x, y \in \mathbb{R}$, then $x - y \in \mathbb{R}$. Either $x - y \ge 0$ or x - y < 0. We consider these cases separately. **Case 1:** Suppose $x - y \ge 0$.

Since a < y and x < b, then a + x < y + b, so x - y < b - a. Therefore, |x - y| = x - y < b - a. **Case 2:** Suppose x - y < 0. Since a < x and y < b, then a + y < x + b, so y - x < b - a. Therefore, |x - y| = -(x - y) = -x + y = y - x < b - a. Hence, in all cases, |x - y| < b - a, as desired.

Let x, y be any real numbers such that $x \in [a, b]$ and $y \in [a, b]$.

Corollary 6. Let $a, b \in \mathbb{R}$ with a < b.

```
Then |x-y| \leq b-a.
Proof. Since a < b, then b - a > 0.
   Since x \in [a, b] and y \in [a, b], then a \le x \le b and a \le y \le b.
   Thus, x = a or a < x < b or x = b and y = a or a < y < b or y = b.
   Hence, either x = a and y = a or x = a and a < y < b or x = a and y = b
or a < x < b and y = a or a < x < b and a < y < b or a < x < b and y = b or
x = b and y = a or x = b and a < y < b or x = b and y = b.
   We consider these cases separately.
   Case 1: Suppose x = a and y = a.
   Then |x - y| = |a - a| = 0 < b - a.
   Case 2: Suppose x = a and a < y < b.
   Since a < y < b, then a < y and y < b.
   Since a < y, then y - a > 0.
   Thus, |x - y| = |a - y| = |y - a| = y - a < b - a.
   Case 3: Suppose x = a and y = b.
   Then |x - y| = |a - b| = |b - a| = b - a.
   Case 4: Suppose a < x < b and y = a.
   Since a < x < b, then a < x and x < b.
   Since a < x, then x - a > 0.
   Thus, |x - y| = |x - a| = x - a < b - a.
   Case 5: Suppose a < x < b and a < y < b.
   Then |x - y| < b - a.
   Case 6: Suppose a < x < b and y = b.
   Since a < x < b, then a < x and x < b.
   Since a < x, then -a > -x, so -x < -a.
   Since x < b, then x - b < 0.
   Thus, |x - y| = |x - b| = -(x - b) = -x + b = b - x < b - a.
   Case 7: Suppose x = b and y = a.
   Then |x - y| = |b - a| = b - a.
   Case 8: Suppose x = b and a < y < b.
   Since a < y < b, then a < y and y < b.
   Since a < y, then -a > -y, so -y < -a.
   Since y < b, then y - b < 0.
   Thus, |x - y| = |b - y| = |y - b| = -(y - b) = -y + b = b - y < b - a.
   Case 9: Suppose x = b and y = b.
   Then |x - y| = |b - b| = 0 < b - a.
```

Therefore, in all cases, either |x - y| < b - a or |x - y| = b - a, so $|x - y| \le b - a$.

Proposition 7. Let $I \subset \mathbb{R}$ be an interval. If $a \in I$ and $b \in I$ and a < b, then $[a, b] \subset I$. *Proof.* Suppose $a \in I$ and $b \in I$ and a < b. Since $a \in I$ and $I \subset \mathbb{R}$, then $a \in \mathbb{R}$. Since $b \in I$ and $I \subset \mathbb{R}$, then $b \in \mathbb{R}$. Since a < b, then by the density of \mathbb{R} , there exists $c \in \mathbb{R}$ such that a < c < b, so there exists $c \in \mathbb{R}$ such that $c \in (a, b)$. Since $(a, b) \subset [a, b]$, then $c \in [a, b]$. To prove $[a, b] \subset I$, let $x \in [a, b]$ be arbitrary. Since $[a, b] = \{a\} \cup (a, b) \cup \{b\}$, then either $x \in \{a\}$ or $x \in (a, b)$ or $x \in \{b\}$. We consider these cases separately. Case 1: Suppose $x \in \{a\}$. Then x = a. Since $a \in I$, then $x \in I$. Case 2: Suppose $x \in \{b\}$. Then x = b. Since $b \in I$, then $x \in I$. **Case 3:** Suppose $x \in (a, b)$. Then a < x < b. Since $a \in I$ and $b \in I$ and a < x < b and I is an interval, then $x \in I$. Therefore, in all cases $x \in I$, so $[a, b] \subset I$.

Proposition 8. intersection of any two intervals is an interval

If I_1 and I_2 are intervals, then $I_1 \cap I_2$ is an interval.

 $\begin{array}{l} Proof. \ \text{Let } a, b, \ \text{and } c \ \text{be arbitrary real numbers.} \\ \text{Suppose } a \in I_1 \cap I_2 \ \text{and } b \in I_1 \cap I_2 \ \text{and } a < c < b. \\ \text{Since } a \in I_1 \cap I_2, \ \text{then } a \in I_1 \ \text{and } a \in I_2. \\ \text{Since } b \in I_1 \cap I_2, \ \text{then } b \in I_1 \ \text{and } b \in I_2. \\ \text{Since } I_1 \ \text{is an interval and } a \in I_1 \ \text{and } b \in I_2. \\ \text{Since } I_2 \ \text{is an interval and } a \in I_2 \ \text{and } b \in I_2 \ \text{and } a < c < b, \ \text{then } c \in I_1. \\ \text{Since } I_2 \ \text{is an interval and } a \in I_2 \ \text{and } b \in I_2 \ \text{and } a < c < b, \ \text{then } c \in I_2. \\ \text{Thus, } c \in I_1 \ \text{and } c \in I_2, \ \text{so } c \in I_1 \cap I_2. \\ \text{Therefore, } I_1 \cap I_2 \ \text{is an interval.} \end{array}$

Proposition 9. intersection of a countable collection of intervals is an interval

If $\{I_n : n \in \mathbb{Z}^+\}$ is a collection of intervals, then $\bigcap_{n=1}^{\infty} I_n$ is an interval.

Solution. Let a, b, c be arbitrary real numbers.

To prove $a, b \in \bigcap_{n=1}^{\infty} I_n \land a < c < b \rightarrow c \in \bigcap_{n=1}^{\infty} I_n$, we assume $a, b \in \bigcap_{n=1}^{\infty} I_n \land a < c < b$.

To prove $c \in \bigcap_{n=1}^{\infty} I_n$, we must prove that $(\forall n \in \mathbb{Z}^+) (c \in I_n)$.

Proof. Let $\{I_n : n \in \mathbb{Z}^+\}$ be a collection of intervals.

To prove $\bigcap_{n=1}^{\infty} I_n$ is an interval, let a, b, and c be arbitrary real numbers such that $a \in \bigcap_{n=1}^{\infty} I_n$ and $b \in \bigcap_{n=1}^{\infty} I_n$ and a < c < b.

To prove $c \in \bigcap_{n=1}^{\infty} I_n$, let k be an arbitrary positive integer. We must prove $c \in I_k$. Since $a \in \bigcap_{n=1}^{\infty} I_n$, then $a \in I_n$ for every $n \in \mathbb{Z}^+$. In particular, $a \in I_k$. Since $b \in \bigcap_{n=1}^{\infty} I_n$, then $b \in I_n$ for every $n \in \mathbb{Z}^+$. In particular, $b \in I_k$. Since I_k is an interval and $a \in I_k$ and $b \in I_k$ and a < c < b, then $c \in I_k$, as

Since I_k is an interval and $u \in I_k$ and $v \in I_k$ and u < c < v, then $c \in I_k$, as desired.

Proposition 10. Let $p \in \mathbb{R}$.

Let $\delta, \epsilon \in \mathbb{R}$. If $0 < \delta \leq \epsilon$, then $N(p; \delta) \subset N(p; \epsilon)$.

Proof. Suppose $0 < \delta \le \epsilon$. Then $0 < \delta$ and $\delta \le \epsilon$. Since $\delta > 0$, then $p \in N(p; \delta)$, so $N(p; \delta) \ne \emptyset$. Let $x \in N(p; \delta)$. Then $x \in \mathbb{R}$ and $d(x, p) < \delta$. Since $d(x, p) < \delta$ and $\delta \le \epsilon$, then $d(x, p) < \epsilon$, so $x \in N(p; \epsilon)$. Therefore, $N(p; \delta) \subset N(p; \epsilon)$.

Proposition 11. Every ϵ neighborhood of a point is a neighborhood of the point.

Let $p \in \mathbb{R}$. Then $N(p; \epsilon)$ is a neighborhood of p for every $\epsilon > 0$.

Proof. Let $\epsilon > 0$ be given. Since $\epsilon > 0$ and $N(p; \epsilon) \subset N(p; \epsilon)$, then $N(p; \epsilon)$ is a neighborhood of p. \Box

Types of points in \mathbb{R}

Proposition 12. Let A and B be sets. If p is an interior point of A and $A \subset B$, then p is an interior point of B.

Proof. Suppose p is an interior point of A and $A \subset B$. Since p is an interior point of A, then there exists $\epsilon > 0$ such that $N(p; \epsilon) \subset A$. Since $A \subset B$, then $N(p; \epsilon) \subset B$. Hence, there exists $\epsilon > 0$ such that $N(p; \epsilon) \subset B$. Therefore, p is an interior point of B.

Lemma 13. Let A and B be sets.

If p is an accumulation point of A and $A \subset B$, then p is an accumulation point of B.

Proof. Suppose p is an accumulation point of A and $A \subset B$.

Let $\epsilon > 0$ be given.

Since p is an accumulation point of A, then there exists $x \in A$ such that $x \in N'(p; \epsilon)$.

Since $x \in A$ and $A \subset B$, then $x \in B$. Thus, there exists $x \in B$ such that $x \in N'(p; \epsilon)$. Therefore, p is an accumulation point of B.

Proposition 14. Every point in an interval of at least two elements is an accumulation point of the interval.

Let $I \subset \mathbb{R}$ be an interval with at least two elements. If $a \in I$, then a is an accumulation point of I.

Proof. Let $a \in I$ be arbitrary.

Since I has at least two elements, then there exists an element of I that is distinct from a, so there exists $b \in I$ such that $b \neq a$.

Thus, either b < a or b > a. We consider these cases separately. Case 1: Suppose b > a. Then a < b. To prove a is an accumulation point of I, let $\delta > 0$ be given. We must prove there exists $p \in I$ such that $p \in N'(a; \delta)$. Let $m = \min\{b, a + \delta\}.$ Then either m = b or $m = a + \delta$, and $m \leq b$ and $m \leq a + \delta$. Since a < b and $a < a + \delta$ and either m = b or $m = a + \delta$, then a < m. Let p be the midpoint of a and m. Then $p = \frac{a+m}{2}$. Since $a < \frac{a+m}{2} < m$, then $a , so <math>a - \delta < a < p < m \le a + \delta$ and aSince a , then <math>a .Since $a \in I$ and $b \in I$ and a and <math>I is an interval, then $p \in I$. Since $a - \delta < a < p < m \le a + \delta$, then a < p and $a - \delta .$ Since $a - \delta , then <math>p \in (a - \delta, a + \delta) = N(a; \delta)$, so $p \in N(a; \delta)$. Since p > a, then $p \neq a$, so $p \in N'(a; \delta)$. Thus, there exists $p \in I$ such that $p \in N'(a; \delta)$, so a is an accumulation point of I. Case 2: Suppose b < a. To prove a is an accumulation point of I, let $\delta > 0$ be given. We must prove there exists $p \in I$ such that $p \in N'(a; \delta)$. Let $m = \max\{b, a - \delta\}$. Then either m = b or $m = a - \delta$, and b < m and $a - \delta < m$. Since b < a and $a - \delta < a$ and either m = b or $m = a - \delta$, then m < a. Let p be the midpoint of m and a. Then $p = \frac{m+a}{2}$. Since $m < \frac{m+a}{2} < a$, then $m , so <math>b \le m and <math>a - \delta \le m < c$ $p < a < a + \delta$.

Since $b \le m , then <math>b .$

Since $b \in I$ and $a \in I$ and b and <math>I is an interval, then $p \in I$.

Since $a - \delta \le m , then <math>a - \delta and <math>p < a$.

Since $a - \delta , then <math>p \in (a - \delta, a + \delta) = N(a; \delta)$, so $p \in N(a; \delta)$.

Since p < a, then $p \neq a$, so $p \in N'(a; \delta)$.

Thus, there exists $p \in I$ such that $p \in N'(a; \delta)$, so a is an accumulation point of I.

Therefore, in all cases, a is an accumulation point of I, as desired.

Proposition 15. Every interior point of a set S is an accumulation point of S.

Let S be a set.

If p is an interior point of S, then p is an accumulation point of S.

Proof. Suppose p is an interior point of S.

Let $\epsilon > 0$ be given.

Since p is an interior point of S, then there exists $\epsilon_1 > 0$ such that $N(p; \epsilon_1) \subset S$.

Let $m = \min\{\epsilon, \epsilon_1\}$. Since $\epsilon > 0$ and $\epsilon_1 > 0$, then m > 0. Let x be the midpoint of p and p + m. Then $x = \frac{p+p+m}{2} = p + \frac{m}{2}$. Since $d(x,p) = |x-p| = |\frac{m}{2}| = \frac{m}{2} < m \le \epsilon_1$, then $d(x,p) < \epsilon_1$, so $x \in N(p;\epsilon_1)$. Since $N(p;\epsilon_1) \subset S$, then $x \in S$. Since $d(x,p) = |x-p| = |\frac{m}{2}| = \frac{m}{2} < m \le \epsilon$, then $d(x,p) < \epsilon$, so $x \in N(p;\epsilon)$. Since $d(x,p) = |x-p| = |\frac{m}{2}| = \frac{m}{2} > 0$, then d(x,p) > 0, so $x \neq p$. Hence, there exists $x \in S$ such that $x \in N(p;\epsilon)$ and $x \neq p$. Therefore, p is an accumulation point of S.

Proposition 16. Every element of a nonempty set is either an accumulation point or an isolated point.

Proof. Let S be a nonempty set.

Then there is at least one element of S. Let $p \in S$.

To prove either p is an accumulation point or p is an isolated point of S, we prove by contrapositive.

Suppose p is not an accumulation point of S.

Since $p \in S$ and p is not an accumulation point of S, then p is an isolated point of S, as desired.

Sets in \mathbb{R}

Proposition 17. Let $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$. If $A \subset B$, then $A^{\circ} \subset B^{\circ}$.

Proof. Suppose $A \subset B$. Let A° be the interior of A. Let B° be the interior of B. Either $A^{\circ} = \emptyset$ or $A^{\circ} \neq \emptyset$. We consider these cases separately. **Case 1:** Suppose $A^{\circ} = \emptyset$. Since the empty set is a subset of every set, then in particular, $\emptyset \subset B^{\circ}$. Therefore, $A^{\circ} \subset B^{\circ}$. **Case 2:** Suppose $A^{\circ} \neq \emptyset$. Then there is at least one element in A° . Let $x \in A^{\circ}$. Then x is an interior point of A, so there exists $\delta > 0$ such that $N(x; \delta) \subset A$. Since $N(x; \delta) \subset A$ and $A \subset B$, then $N(x; \delta) \subset B$. Hence, there exists $\delta > 0$ such that $N(x; \delta) \subset B$. Thus, x is an interior point of B, so $x \in B^{\circ}$. Therefore, $A^{\circ} \subset B^{\circ}$. Thus, in all cases, $A^{\circ} \subset B^{\circ}$, as desired. **Proposition 18.** Let $a, b \in \mathbb{R}$. Then 1. $(a,b)^{\circ} = (a,b)$. 2. $[a,b]^{\circ} = (a,b).$ *Proof.* We prove 1. Let $(a, b)^{\circ}$ be the interior of the open interval (a, b). We must prove $(a, b)^{\circ} = (a, b)$. Either a < b or a = b or a > b. We consider these cases separately. Case 1: Suppose $a \ge b$. Then $(a, b) = \emptyset$. Therefore, $(a, b)^{\circ} = \emptyset^{\circ} = \emptyset = (a, b).$ Case 2: Suppose a < b. Since a < b, then $(a, b) \neq \emptyset$. Since $S^{\circ} \subset S$ for every set S, then in particular, $(a, b)^{\circ} \subset (a, b)$. We prove $(a, b) \subset (a, b)^{\circ}$. Let $x \in (a, b)$. Then $x \in \mathbb{R}$ and a < x < b, so a < x and x < b. Hence, x - a > 0 and b - x > 0. Let $\delta = \min\{d(a, x), d(x, b)\}.$ Then $\delta \leq d(a, x)$ and $\delta \leq d(x, b)$. Since d(a, x) = |a - x| = |x - a| = x - a > 0, then d(a, x) > 0. Since d(x, b) = |x - b| = |b - x| = b - x > 0, then d(x, b) > 0.

Therefore, $\delta > 0$.

Let $p \in N(x; \delta)$. Then $p \in (x - \delta, x + \delta)$, so $x - \delta .$ $Hence, <math>x - \delta < p$ and $p < x + \delta$. Since $\delta \le d(a, x)$ and d(a, x) = x - a, then $\delta \le x - a$, so $a \le x - \delta$. Since $\delta \le d(x, b)$ and d(x, b) = b - x, then $\delta \le b - x$, so $x + \delta \le b$. Since $a \le x - \delta$ and $x - \delta < p$, then a < p. Since $p < x + \delta$ and $x + \delta \le b$, then p < b. Thus, $a , so <math>p \in (a, b)$. Hence, $N(x; \delta) \subset (a, b)$. Since there exists $\delta > 0$ such that $N(x; \delta) \subset (a, b)$, then x is an interior point of (a, b). Therefore, $x \in (a, b)^{\circ}$, so $(a, b) \subset (a, b)^{\circ}$.

Since $(a,b)^{\circ} \subset (a,b)$ and $(a,b) \subset (a,b)^{\circ}$, then $(a,b)^{\circ} = (a,b)$, as desired. \Box

Proof. We prove 2.

Let $[a, b]^{\circ}$ be the interior of the closed interval [a, b]. We must prove $[a, b]^{\circ} = (a, b)$. Either a < b or a = b or a > b. We consider these cases separately. **Case 1:** Suppose a > b. Then $(a, b) = \emptyset = [a, b]$. Therefore, $[a, b]^{\circ} = \emptyset^{\circ} = \emptyset = (a, b)$. **Case 2:** Suppose a = b. Then $(a, b) = \emptyset$ and $[a, b] = \{a\}$. Therefore, $[a, b]^{\circ} = \{a\}^{\circ} = \emptyset = (a, b)$. **Case 3:** Suppose a < b.

We prove $(a,b) \subset [a,b]^{\circ}$. Since $(a,b) \subset [a,b]$, then $(a,b)^{\circ} \subset [a,b]^{\circ}$. Therefore, $(a,b) \subset [a,b]^{\circ}$.

We prove $[a, b]^{\circ} \subset (a, b)$. Either $[a, b]^{\circ} = \emptyset$ or $[a, b]^{\circ} \neq \emptyset$. We consider these cases separately. **Case 3a:** Suppose $[a, b]^{\circ} = \emptyset$. Since the empty set is a subset of every set, then in particular, $\emptyset \subset (a, b)$. Therefore, $[a, b]^{\circ} \subset (a, b)$. **Case 3b:** Suppose $[a, b]^{\circ} \neq \emptyset$. Then there is at least one element in $[a, b]^{\circ}$. Let $x \in [a, b]^{\circ}$. Then x is an interior point of [a, b]. For every nonempty set S, $S^{\circ} \subset S$. Since $[a, b] \neq \emptyset$, then $[a, b]^{\circ} \subset [a, b]$. Since $x \in [a, b]^{\circ}$ and $[a, b]^{\circ} \subset [a, b]$, then $x \in [a, b]$, so $a \leq x \leq b$. Thus, $a \leq x$ and $x \leq b$.

We prove $x \neq a$ by contradiction. Suppose x = a. Then a is an interior point of [a, b], so there exists $\delta > 0$ such that $N(a; \delta) \subset$ [a,b].Let p be the midpoint of $a - \delta$ and a. Then $p = \frac{(a-\delta)+a}{2} = a - \frac{\delta}{2}$. Since $\delta > 0$, then $\frac{\delta}{2} > 0$, so $\delta - \frac{\delta}{2} > a - a$. Hence, $a - \frac{\delta}{2} > a - \delta$, so $p > a - \delta$. Since $\delta > 0$, then $\frac{3\delta}{2} > 0$, so $\delta + \frac{\delta}{2} > a - a$. Hence, $a + \delta > a - \frac{\delta}{2}$, so $a + \delta > p$. Thus, $a - \delta , so <math>p \in N(a; \delta)$. Since $\frac{\delta}{2} > 0$, then $\frac{\delta}{2} > a - a$, so $a > a - \frac{\delta}{2}$. Hence, a > p, so p < a. Thus, $p \notin [a, b]$. Since $p \in N(a; \delta)$ and $p \notin [a, b]$, then a is not an interior point of [a, b]. This contradicts the assumption that a is an interior point of [a, b]. Therefore, $x \neq a$. We prove $x \neq b$ by contradiction. Suppose x = b. Then b is an interior point of [a, b], so there exists $\delta > 0$ such that $N(b; \delta) \subset$ [a,b].Let p be the midpoint of b and $b + \delta$. Then $p = \frac{b + (b + \delta)}{2} = b + \frac{\delta}{2}$.

Since $\delta > 0$, then $\frac{3\delta}{2} > 0$, so $\delta + \frac{\delta}{2} > b - b$. Hence, $b + \frac{\delta}{2} > b - \delta$, so $p > b - \delta$. Since $\delta > 0$, then $\frac{\delta}{2} > 0$, so $\delta - \frac{\delta}{2} > b - b$. Hence, $b + \delta > b + \frac{\delta}{2}$, so $b + \delta > p$. Thus, $b - \delta , so <math>p \in N(b; \delta)$. Since $\frac{\delta}{2} > 0$, then $\frac{\delta}{2} > b - b$, so $b + \frac{\delta}{2} > b$. Hence, p > b, so $p \notin [a, b]$. Since $p \in N(b; \delta)$ and $p \notin [a, b]$, then b is not an interior point of [a, b]. This contradicts the assumption that b is an interior point of [a, b]. Therefore, $x \neq b$.

Since $a \leq x \leq b$ and $x \neq a$ and $x \neq b$, then a < x < b, so $x \in (a, b)$. Therefore, $[a, b]^{\circ} \subset (a, b)$. Thus, in all cases, $[a, b]^{\circ} \subset (a, b)$.

Since $[a,b]^{\circ} \subset (a,b)$ and $(a,b) \subset [a,b]^{\circ}$, then $[a,b]^{\circ} = (a,b)$, as desired. \Box

Proposition 19. Let $A \subset \mathbb{R}$. Then $A^{\circ\circ} = A^{\circ}$.

Let $A^{\circ\circ}$ be the interior of A° . We must prove $A^{\circ\circ} = A^{\circ}$. Either $A^{\circ} = \emptyset$ or $A^{\circ} \neq \emptyset$. We consider these cases separately. **Case 1:** Suppose $A^{\circ} = \emptyset$. Then $A^{\circ\circ} = \emptyset^{\circ} = \emptyset = A^{\circ}$, as desired. **Case 2:** Suppose $A^{\circ} \neq \emptyset$. For every nonempty set $S, S^{\circ} \subset S$. Since $A^{\circ} \neq \emptyset$, then $A^{\circ \circ} \subset A^{\circ}$. We prove $A^{\circ} \subset A^{\circ \circ}$. Since $A^{\circ} \neq \emptyset$, then there is at least one element in A° . Let $x \in A^{\circ}$. Then x is an interior point of A, so there exists $\delta > 0$ such that $N(x; \delta) \subset A$. Let $p \in N(x; \delta)$. Then $N(x;\delta)^{\circ} = (x-\delta, x+\delta)^{\circ} = (x-\delta, x+\delta) = N(x;\delta)$, so $p \in N(x;\delta)^{\circ}$. Since $N(x; \delta) \subset A$, then $N(x; \delta)^{\circ} \subset A^{\circ}$. Hence, $p \in A^{\circ}$, so $N(x; \delta) \subset A^{\circ}$. Therefore, there exists $\delta > 0$ such that $N(x; \delta) \subset A^{\circ}$, so x is an interior point of A° . Thus, $x \in A^{\circ \circ}$, so $A^{\circ} \subset A^{\circ \circ}$. Since $A^{\circ\circ} \subset A^{\circ}$ and $A^{\circ} \subset A^{\circ\circ}$, then $A^{\circ\circ} = A^{\circ}$, as desired. **Proposition 20.** Let $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$. Then $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$. *Proof.* Let A° be the interior of A. Let B° be the interior of B. Let $(A \cap B)^{\circ}$ be the interior of $A \cap B$. We must prove $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$. We prove $(A \cap B)^{\circ} \subset A^{\circ} \cap B^{\circ}$. Let $x \in (A \cap B)^{\circ}$. Since $A \cap B \subset A$, then $(A \cap B)^{\circ} \subset A^{\circ}$, so $x \in A^{\circ}$. Since $A \cap B \subset B$, then $(A \cap B)^{\circ} \subset B^{\circ}$, so $x \in B^{\circ}$. Therefore, $x \in A^{\circ} \cap B^{\circ}$, so $(A \cap B)^{\circ} \subset A^{\circ} \cap B^{\circ}$. We prove $A^{\circ} \cap B^{\circ} \subset (A \cap B)^{\circ}$. Let $x \in A^{\circ} \cap B^{\circ}$. Then $x \in A^{\circ}$ and $x \in B^{\circ}$. Since $x \in A^{\circ}$, then x is an interior point of A, so there exists $\delta_1 > 0$ such that $N(x; \delta_1) \subset A$. Since $x \in B^{\circ}$, then x is an interior point of B, so there exists $\delta_2 > 0$ such that $N(x; \delta_2) \subset B$. Let $\delta = \min\{\delta_1, \delta_2\}.$

Proof. Let A° be the interior of A.

Since $\delta_1 > 0$ and $\delta_2 > 0$, then $\delta > 0$. Let $p \in N(x; \delta)$. Since $0 < \delta \le \delta_1$, then $N(x; \delta) \subset N(x; \delta_1)$. Since $p \in N(x; \delta)$ and $N(x; \delta) \subset N(x; \delta_1) \subset A$, then $p \in A$. Since $0 < \delta \le \delta_2$, then $N(x; \delta) \subset N(x; \delta_2)$. Since $p \in N(x; \delta)$ and $N(x; \delta) \subset N(x; \delta_2) \subset B$, then $p \in B$. Thus, $p \in A \cap B$, so $N(x; \delta) \subset A \cap B$. Since there exists $\delta > 0$ such that $N(x; \delta) \subset A \cap B$, then x is an interior point of $A \cap B$, so $x \in (A \cap B)^\circ$. Therefore, $A^\circ \cap B^\circ \subset (A \cap B)^\circ$.

Since $(A \cap B)^{\circ} \subset A^{\circ} \cap B^{\circ}$ and $A^{\circ} \cap B^{\circ} \subset (A \cap B)^{\circ}$, then $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$, as desired.

Proposition 21. Let $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$. Then $(A \cup B)^{\circ} \supset A^{\circ} \cup B^{\circ}$.

Proof. Let A° be the interior of A. Let B° be the interior of B. Let $(A \cup B)^{\circ}$ be the interior of $A \cup B$. We must prove $A^{\circ} \cup B^{\circ} \subset (A \cup B)^{\circ}$.

Let $x \in A^{\circ} \cup B^{\circ}$. Then either $x \in A^{\circ}$ or $x \in B^{\circ}$. We consider these cases separately. **Case 1:** Suppose $x \in A^{\circ}$. Then x is an interior point of A, so there exists $\delta > 0$ such that $N(x; \delta) \subset A$. Since $N(x; \delta) \subset A$ and $A \subset A \cup B$, then $N(x; \delta) \subset A \cup B$. Therefore, x is an interior point of $A \cup B$, so $x \in (A \cup B)^{\circ}$. **Case 2:** Suppose $x \in B^{\circ}$. Then x is an interior point of B, so there exists $\delta > 0$ such that $N(x; \delta) \subset B$. Since $N(x; \delta) \subset B$ and $B \subset A \cup B$, then $N(x; \delta) \subset A \cup B$. Therefore, x is an interior point of A, so $x \in (A \cup B)^{\circ}$. Therefore, x is an interior point of $A \cup B$, so $x \in (A \cup B)^{\circ}$. Hence, in all cases, $x \in (A \cup B)^{\circ}$, so $A^{\circ} \cup B^{\circ} \subset (A \cup B)^{\circ}$, as desired.

Proposition 22. A set S is open iff $S^{\circ} = S$.

Proof. Let S be a set. Let S° be the interior of S. Then $S^{\circ} = \{x : x \text{ is an interior point of } S\}$. We prove if S is open, then $S^{\circ} = S$. Suppose S is open. Then if $x \in S$, then x is an interior point of S. Thus, if $x \in S$, then $x \in S^{\circ}$. Hence, $S \subset S^{\circ}$. Since the interior of a set is a subset of the set, then $S^{\circ} \subset S$. Thus, $S^{\circ} \subset S$ and $S \subset S^{\circ}$, so $S^{\circ} = S$.

Proof. Conversely, we prove if $S^{\circ} = S$, then S is open. Suppose $S^{\circ} = S$. Then $S^{\circ} \subset S$ and $S \subset S^{\circ}$, so $S \subset S^{\circ}$. Hence, if $x \in S$, then $x \in S^{\circ}$. Thus, if $x \in S$, then x is an interior point of S. Therefore, S is open. **Proposition 23.** Let $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$. 1. If A is open and B is open, then $A \cup B$ is open. 2. If A is open and B is open, then $A \cap B$ is open. *Proof.* We prove 1. Suppose A is open and B is open. Either $A \cup B = \emptyset$ or $A \cup B \neq \emptyset$. We consider these cases separately. **Case 1:** Suppose $A \cup B = \emptyset$. Since the empty set is open, then $A \cup B$ is open. **Case 2:** Suppose $A \cup B \neq \emptyset$. Then there is at least one element of $A \cup B$. Let $x \in A \cup B$. Then either $x \in A$ or $x \in B$. We consider these cases separately. Case 2a: Suppose $x \in A$. Since A is open, then x is an interior point of A, so there exists $\delta_1 > 0$ such that $N(x; \delta_1) \subset A$. Since $A \subset A \cup B$, then $N(x; \delta_1) \subset A \cup B$. Thus, x is an interior point of $A \cup B$. Case 2b: Suppose $x \in B$. Since B is open, then x is an interior point of B, so there exists $\delta_2 > 0$ such that $N(x; \delta_2) \subset B$. Since $B \subset A \cup B$, then $N(x; \delta_2) \subset A \cup B$. Thus, x is an interior point of $A \cup B$. Therefore, in either case, x is an interior point of $A \cup B$, so $A \cup B$ is open. \Box *Proof.* We prove 2. Suppose A is open and B is open. Either $A \cap B = \emptyset$ or $A \cap B \neq \emptyset$. We consider these cases separately. **Case 1:** Suppose $A \cap B = \emptyset$. Since the empty set is open, then $A \cap B$ is open. **Case 2:** Suppose $A \cap B \neq \emptyset$. Then there is at least one element of $A \cap B$. Let $x \in A \cap B$. Then $x \in A$ and $x \in B$. Since $x \in A$ and A is open, then x is an interior point of A, so there exists

 $\delta_1 > 0$ such that $N(x; \delta_1) \subset A$.

Since $x \in B$ and B is open, then x is an interior point of B, so there exists $\delta_2 > 0$ such that $N(x; \delta_2) \subset B$. Let $\delta = \min\{\delta_1, \delta_2\}.$ Then either $\delta = \delta_1$ or $\delta = \delta_2$, and $\delta \leq \delta_1$ and $\delta \leq \delta_2$. Since $\delta_1 > 0$ and $\delta_2 > 0$ and either $\delta = \delta_1$ or $\delta = \delta_2$, then $\delta > 0$. Since $N(x; \delta) \neq \emptyset$, let $p \in N(x; \delta)$. Then $d(p, x) < \delta$. Since $d(p, x) < \delta$ and $\delta \leq \delta_1$, then $d(p, x) < \delta_1$, so $p \in N(x; \delta_1)$. Since $N(x; \delta_1) \subset A$, then $p \in A$. Since $d(p, x) < \delta$ and $\delta \leq \delta_2$, then $d(p, x) < \delta_2$, so $p \in N(x; \delta_2)$. Since $N(x; \delta_2) \subset B$, then $p \in B$. Hence, $p \in A \cap B$, so $N(x; \delta) \subset A \cap B$. Thus, there exists $\delta > 0$ such that $N(x; \delta) \subset A \cap B$, so x is an interior point of $A \cap B$. Therefore, $A \cap B$ is open.

Theorem 24. topological properties of open sets in \mathbb{R}

The union of any collection of open sets in R is open.
 The intersection of any finite collection of open sets in R is open.

Proof. We prove 1.

Let \mathcal{F} be an arbitrary collection of open sets in \mathbb{R} . We must prove $\cup \mathcal{F}$ is open. Either $\cup \mathcal{F} = \emptyset$ or $\cup \mathcal{F} \neq \emptyset$. We consider these cases separately. **Case 1:** Suppose $\cup \mathcal{F} = \emptyset$. Since the empty set is open, then $\cup \mathcal{F}$ is open. **Case 2:** Suppose $\cup \mathcal{F} \neq \emptyset$. Then there is at least one element of $\cup \mathcal{F}$. Let $x \in \cup \mathcal{F}$. Then there exists $S \in \mathcal{F}$ such that $x \in S$. Since $S \in \mathcal{F}$, then S is an open set in \mathbb{R} . Since S is open and $x \in S$, then x is an interior point of S. Hence, there exists $\delta > 0$ such that $N(x; \delta) \subset S$. Since $S \in \mathcal{F}$, then $S \subset \cup \mathcal{F}$. Since $N(x; \delta) \subset S$ and $S \subset \cup \mathcal{F}$, then $N(x; \delta) \subset \cup \mathcal{F}$. Hence, there exists $\delta > 0$ such that $N(x; \delta) \subset \cup \mathcal{F}$, so x is an interior point of $\cup \mathcal{F}$. Therefore, $\cup \mathcal{F}$ is open. Thus, in all cases, $\cup \mathcal{F}$ is open, as desired.

Proof. We prove 2.

Let \mathcal{F} be an arbitrary finite collection of open sets in \mathbb{R} . We must prove $\cap \mathcal{F}$ is open.

Since \mathcal{F} is a finite set, then \mathcal{F} contains exactly n elements for some nonnegative integer n.

Thus, either n = 0 or n = 1 or n > 1.

We consider these cases separately. Case 1: Suppose n = 0. Then \mathcal{F} contains zero elements, so $\mathcal{F} = \emptyset$. Thus, $\cap \mathcal{F} = \cap \emptyset = \emptyset$. Since the empty set is open, then $\cap \mathcal{F}$ is open. Case 2: Suppose n = 1. Then \mathcal{F} contains exactly one element. Thus, there exists F_1 such that $\mathcal{F} = \{F_1\}$. Since $F_1 \in \mathcal{F}$, then F_1 is an open set in \mathbb{R} . Hence, $\cap \mathcal{F} = F_1$ is open. Case 3: Suppose n > 1. Then $n \geq 2$, so $\mathcal{F} = \{F_1, F_2, ..., F_n\}$ and F_i is an open set in \mathbb{R} for each i = 1, 2, ..., n.We must prove for each natural number $n \geq 2$, if $F_1, F_2, ..., F_n$ are all open sets in \mathbb{R} , then $F_1 \cap F_2 \cap \ldots \cap F_n$ is open. We prove by induction on n. **Basis:** Let n = 2. Suppose F_1 and F_2 are open sets. Since the intersection of any two open sets is open, then $F_1 \cap F_2$ is open. Induction: Let $k \in \mathbb{N}$ such that $k \geq 2$. Suppose the statement 'if the sets $S_1, S_2, ..., S_k$ are open sets in \mathbb{R} , then $S_1 \cap S_2 \cap \ldots \cap S_k$ is open' is true. We must prove 'if the sets $S_1, S_2, ..., S_k, S_{k+1}$ are open sets in \mathbb{R} , then $S_1 \cap$ $S_2 \cap \ldots \cap S_{k+1}$ is open'. Assume the sets $S_1, S_2, ..., S_k, S_{k+1}$ are open sets in \mathbb{R} . Since the sets $S_1, S_2, ..., S_k$ are open, then by the induction hypothesis, the set $S_1 \cap S_2 \cap \ldots \cap S_k$ is open. Since the intersection of any two open sets is open and $S_1 \cap S_2 \cap ... \cap S_k$ is open and S_{k+1} is open, then the set $(S_1 \cap S_2 \cap ... \cap S_k) \cap S_{k+1}$ is open. Hence, $S_1 \cap S_2 \cap \ldots \cap S_k \cap S_{k+1}$ is open. Therefore, by PMI, for all natural numbers $n \geq 2$, if the sets $S_1, S_2, ..., S_n$ are open sets in \mathbb{R} , then the intersection $S_1 \cap S_2 \cap \ldots \cap S_n$ is open, as desired. \Box Corollary 25. \mathbb{R} is a topological space

Let τ be the set of all open subsets of \mathbb{R} . Then

T1. $\emptyset \in \tau$ and $\mathbb{R} \in \tau$.

T2. The union of any collection of sets in τ is in τ .

T3. The intersection of any finite collection of sets in τ is in τ .

Proof. Let τ be the set of all open subsets of \mathbb{R} . Then $\tau = \{S : S \text{ is an open subset of } \mathbb{R}\}.$

We prove T1.

Since $\emptyset \subset \mathbb{R}$ and \emptyset is open, then $\emptyset \in \tau$. Since $\mathbb{R} \subset \mathbb{R}$ and \mathbb{R} is open, then $\mathbb{R} \in \tau$.

```
Proof. We prove T2.
    Let S be a collection of sets in \tau.
    Then S is a collection of open subsets of \mathbb{R}, so S \subset \tau.
    Let \cup S be the union of the elements of S.
    Either \cup S = \emptyset or \cup S \neq \emptyset.
    We consider these cases separately.
    Case 1: Suppose \cup S = \emptyset.
    Since \emptyset \in \tau, then \cup S \in \tau.
    Case 2: Suppose \cup S \neq \emptyset.
    Then there is at least one element of \cup S.
    Let x \in \cup S.
    Then there exists X \in S such that x \in X.
    Since X \in S and S \subset \tau, then X \in \tau, so X is an open subset of \mathbb{R}.
    Thus, X \subset \mathbb{R}.
    Since x \in X and X \subset \mathbb{R}, then x \in \mathbb{R}.
    Thus, \cup S \subset \mathbb{R}.
    Since the union of any collection of open sets in \mathbb{R} is open and S is a collection
of open sets in \mathbb{R}, then \cup S is open.
    Thus, \cup S is an open subset of \mathbb{R}, so \cup S \in \tau.
```

Therefore, in all cases, $\cup S \in \tau$, as desired.

Proof.

We prove T3. Let S be a finite collection of sets in τ . Then S is a finite collection of open subsets of \mathbb{R} . Since S is a collection of open subsets of \mathbb{R} , then $S \subset \tau$. Let $\cap S$ be the intersection of the elements of S. Either $\cap S = \emptyset$ or $\cap S \neq \emptyset$. We consider these cases separately. **Case 1:** Suppose $\cap S = \emptyset$. Since $\emptyset \in \tau$, then $\cap S \in \tau$. **Case 2:** Suppose $\cap S \neq \emptyset$. Then there is at least one element of $\cap S$. Let $x \in \cap S$. Then $x \in X$ for each $X \in S$. Let $X \in S$. Then $x \in X$. Since $X \in S$ and $S \subset \tau$, then $X \in \tau$, so X is an open subset of \mathbb{R} . Thus, $X \subset \mathbb{R}$. Since $x \in X$ and $X \subset \mathbb{R}$, then $x \in \mathbb{R}$. Thus, $\cap S \subset \mathbb{R}$. Since the intersection of any finite collection of open sets in \mathbb{R} is open and

S is a finite collection of open sets in \mathbb{R} , then $\cap S$ is open. Thus, $\cap S$ is an open subset of \mathbb{R} , so $\cap S \in \tau$.

Therefore, in all cases, $\cap S \in \tau$, as desired.

Theorem 26. characterization of open sets in \mathbb{R}

A nonempty subset of \mathbb{R} is open iff it is a union of bounded open intervals.

Proof. Let S be a nonempty subset of \mathbb{R} .

We prove if S is a union of bounded open intervals, then S is open.

Let \mathcal{F} be a family of bounded open intervals in \mathbb{R} .

Suppose $S = \cup \mathcal{F}$.

Since \mathcal{F} is a collection of bounded open intervals and every bounded open interval is open, then \mathcal{F} is a collection of open sets in \mathbb{R} .

Therefore, $\cup \mathcal{F}$ is open, so S is open, as desired.

Conversely, we prove if S is open, then S is a union of bounded open intervals. Suppose S is open.

Then every point in S is an interior point of S.

Hence, for every $x \in S$, there exists $\delta > 0$ such that $N(x; \delta) \subset S$.

Let \mathcal{F} be a family of δ neighborhoods centered at x of radius δ for each $x \in S$.

Since $N(x; \delta) = (x - \delta, x + \delta)$ for each $x \in S$, then every δ neighborhood is a bounded open interval.

Thus, \mathcal{F} is a collection $\{I_x : x \in S\}$ of bounded open intervals and the bounded open interval I_x is a subset of S for each $x \in S$.

Hence, $\mathcal{F} = \{I_x : x \in S\}$ and $I_x \subset S$ for each $x \in S$.

By a previous proposition, if I is an index set and B is a set and $A_i \subset B$ for all $i \in I$, then $\bigcup_{i \in I} A_i \subset B$.

In particular, since S is an index set and $I_x \subset S$ for all $x \in S$, then $\bigcup_{x \in S} I_x \subset S$.

Therefore, $\cup \mathcal{F} \subset S$.

Since S is not empty, then there is at least one point in S. Let $y \in S$. Then $I_y \subset S$. Since I_y is an δ neighborhood of y, then $y \in I_y$. Let s = y. Since $y \in S$, then $s \in S$. Since $y \in I_y$, then $y \in I_s$. Hence, there exists $s \in S$ such that $y \in I_s$, so $y \in \bigcup_{x \in S} I_x$. Thus, $y \in \bigcup \mathcal{F}$, so $S \subset \bigcup \mathcal{F}$.

Since $S \subset \cup \mathcal{F}$ and $\cup \mathcal{F} \subset S$, then $S = \cup \mathcal{F}$. Therefore, S is a union of bounded open intervals, as desired.

Proposition 27. A set with no accumulation points is closed.

Proof. Let S be a set with no accumulation points.

Then no point is an accumulation point of S, so there is no x such that x is an accumulation point of S.

Hence, for every x, x is not an accumulation point of S.

Thus, for every x, if $x \notin S$, then x is not an accumulation point of S. Therefore, for every x, if x is an accumulation point of S, then $x \in S$. Hence, S is closed.

Proposition 28. Let $S \subset \mathbb{R}$.

If S is non empty, closed, and bounded above in ℝ, then max S exists.
 If S is non empty, closed, and bounded below in ℝ, then min S exists.

Proof. We prove 1.

Suppose S is non empty, closed, and bounded above in \mathbb{R} .

Since $S \neq \emptyset$ and S is bounded above in \mathbb{R} , then by the completeness of \mathbb{R} , sup S exists.

Let $\epsilon > 0$ be given.

Since sup S is the least upper bound of S, then there exists $x \in S$ such that $x > \sup S - \epsilon$.

Since $x \in S$ and $\sup S$ is an upper bound of S, then $x \leq \sup S$, so either $x < \sup S$ or $x = \sup S$.

We consider these cases separately.

Case 1: Suppose $x = \sup S$.

Since $x \in S$, then $\sup S \in S$.

Case 2: Suppose $x < \sup S$.

Then $x \neq \sup S$.

Since $\sup S - \epsilon < x < \sup S < \sup S + \epsilon$, then $\sup S - \epsilon < x < \sup S + \epsilon$, so $x \in (\sup S - \epsilon, \sup S + \epsilon)$.

Hence, $x \in N(\sup S; \epsilon)$.

Since $x \neq \sup S$, then $x \in N'(\sup S; \epsilon)$.

Thus, $x \in N'(\sup S; \epsilon) \cap S$, so $N'(\sup S; \epsilon) \cap S \neq \emptyset$.

Therefore, $\sup S$ is an accumulation point of S.

Since S is closed, then every accumulation point of S is an element of S, so $\sup S \in S$.

Thus, in all cases, $\sup S \in S$.

Since $\sup S$ is an upper bound of S and $\sup S \in S$, then $\sup S = \max S$, so $\max S$ exists.

Proof. We prove 2.

Suppose S is non empty, closed, and bounded below in \mathbb{R} .

Since $S \neq \emptyset$ and S is bounded below in \mathbb{R} , then by the completeness of \mathbb{R} , inf S exists.

Let $\epsilon > 0$ be given.

Since $\inf S$ is the greatest lower bound of S, then there exists $x \in S$ such that $x < \inf S + \epsilon$.

Since $x \in S$ and $\inf S$ is a lower bound of S, then $\inf S \leq x$, so either $\inf S < x$ or $\inf S = x$.

We consider these cases separately.

Case 1: Suppose $\inf S = x$.

Since $x \in S$, then $\inf S \in S$.

Case 2: Suppose $\inf S < x$. Then $x > \inf S$, so $x \neq \inf S$. Since $\inf S - \epsilon < \inf S < x < \inf S + \epsilon$, then $\inf S - \epsilon < x < \inf S + \epsilon$, so $x \in (\inf S - \epsilon, \inf S + \epsilon).$ Hence, $x \in N(\inf S; \epsilon)$. Since $x \neq \inf S$, then $x \in N'(\inf S; \epsilon)$. Thus, $x \in N'(\inf S; \epsilon) \cap S$, so $N'(\inf S; \epsilon) \cap S \neq \emptyset$. Therefore, $\inf S$ is an accumulation point of S. Since S is closed, then every accumulation point of S is an element of S, so $\inf S \in S.$ Thus, in all cases, $\inf S \in S$. Since $\inf S$ is a lower bound of S and $\inf S \in S$, then $\inf S = \min S$, so $\min S$ exists. **Theorem 29.** Let $S \subset \mathbb{R}$. Then S is open iff $\mathbb{R} - S$ is closed. *Proof.* We prove if S is open, then $\mathbb{R} - S$ is closed. Either there is some accumulation point of the set $\mathbb{R} - S$ or there is not. We consider these cases separately. **Case 1:** Suppose there is no accumulation point of $\mathbb{R} - S$. Then $\mathbb{R} - S$ is a set with no accumulation points. Since a set with no accumulation points is closed, then $\mathbb{R} - S$ is closed. Thus, the conditional 'if S is open, then $\mathbb{R} - S$ is closed' is trivially true. **Case 2:** Suppose there is some accumulation point of $\mathbb{R} - S$. Suppose S is open. Since there is some accumulation point of $\mathbb{R} - S$, then there is at least one accumulation point of $\mathbb{R} - S$. Let x be an arbitrary accumulation point of $\mathbb{R} - S$. Suppose for the sake of contradiction $x \in S$. Since $S \subset \mathbb{R}$, then $x \in \mathbb{R}$. Since S is open and $x \in S$, then x is an interior point of S, so there exists $\delta > 0$ such that $N(x; \delta) \subset S$. Since x is an accumulation point of $\mathbb{R} - S$ and $\delta > 0$, then there exists $p \in (\mathbb{R} - S)$ such that $p \in N'(x; \delta)$. Since $p \in N'(x; \delta)$ and $N'(x; \delta) \subset N(x; \delta)$, then $p \in N(x; \delta)$. Since $N(x; \delta) \subset S$, then $p \in S$. Since $p \in \mathbb{R} - S$, then $p \in \mathbb{R}$ and $p \notin S$. Thus, we have $p \in S$ and $p \notin S$, a contradiction. Therefore, $x \notin S$. Since $x \in \mathbb{R}$ and $x \notin S$, then $x \in (\mathbb{R} - S)$, so $\mathbb{R} - S$ is closed. Hence, if S is open, then $\mathbb{R} - S$ is closed. Thus, in either case, the implication 'if S is open, then $\mathbb{R} - S$ is closed' is

true.

```
Proof. Conversely, we prove if \mathbb{R} - S is closed, then S is open.
    Either S = \emptyset or S \neq \emptyset.
    We consider these cases separately.
    Case 1: Suppose S = \emptyset.
    Since the empty set is open, then S is open.
    Therefore, the conditional 'if \mathbb{R} - S is closed, then S is open' is trivially true.
    Case 2: Suppose S \neq \emptyset.
    Suppose \mathbb{R} - S is closed.
    Since S \neq \emptyset, then there is at least one element of S.
    Let x \in S.
    Since \mathbb{R} - S is closed, then if x is an accumulation point of \mathbb{R} - S, then
x \in (\mathbb{R} - S).
    Hence, if x \notin (\mathbb{R} - S), then x is not an accumulation point of \mathbb{R} - S.
    Since x \in S, then x \notin (\mathbb{R} - S), so x is not an accumulation point of \mathbb{R} - S.
    Thus, there exists \delta > 0 such that N'(x; \delta) \cap (\mathbb{R} - S) = \emptyset.
    Since N(x; \delta) \neq \emptyset, let p \in N(x; \delta).
    Since N(x; \delta) \subset \mathbb{R}, then p \in \mathbb{R}.
    Either p = x or p \neq x.
    We consider these cases separately.
    Case 2a: Suppose p = x.
    Since x \in S, then p \in S.
    Case 2a: Suppose p \neq x.
    Then p \in N'(x; \delta).
    Suppose p \notin S.
    Since p \in \mathbb{R} and p \notin S, then p \in (\mathbb{R} - S).
    Thus, p \in N'(x; \delta) \cap (\mathbb{R} - S).
    This contradicts the fact that N'(x; \delta) \cap (\mathbb{R} - S) = \emptyset.
    Thus, p \in S.
    Hence, in all cases, p \in S.
    Consequently, if p \in N(x; \delta), then p \in S, so N(x; \delta) \subset S.
    Thus, there exists \delta > 0 such that N(x; \delta) \subset S, so x is an interior point of
S.
    Therefore, if x \in S, then x is an interior point of S, so S is open.
    Hence, if \mathbb{R} - S is closed, then S is open.
```

Thus, in either case, the implication 'if $\mathbb{R} - S$ is closed, then S is open' is true.

Theorem 30. Heine-Borel covering theorem

Every open covering of a closed and bounded set S in \mathbb{R} contains a finite subcovering of S.

Proof. Let S be a closed and bounded set of real numbers. Either $S = \emptyset$ or $S \neq \emptyset$. We consider these cases separately. **Case 1:** Suppose $S = \emptyset$. Since the empty set is compact, then every open covering of \emptyset contains a finite subcovering of \emptyset .

Case 2: Suppose $S \neq \emptyset$.

Let \mathcal{F} be an arbitrary open covering of S.

Then $S \subset \cup \mathcal{F}$ and each set in \mathcal{F} is open.

To prove \mathcal{F} contains a finite subcovering of S, we prove there exists a finite subset of \mathcal{F} that covers S.

Define the set $S_x = \{s \in S : s \leq x\}$ for each $x \in \mathbb{R}$.

Let $B = \{x \in \mathbb{R} : \text{some finite subset of } \mathcal{F} \text{ covers } S_x\}.$

Since S is bounded, then S is bounded above and below in \mathbb{R} .

Since $S \subset \mathbb{R}$ and $S \neq \emptyset$ and S is closed and bounded above in \mathbb{R} , then max S exists.

Since $S \subset \mathbb{R}$ and $S \neq \emptyset$ and S is closed and bounded below in \mathbb{R} , then min S exists.

Thus, $S_{\min S} = \{s \in S : s \le \min S\} = \{\min S\}.$

Since min $S \in S$ and $S \subset \cup \mathcal{F}$, then min $S \in \cup \mathcal{F}$, so there exists $A \in \mathcal{F}$ such that min $S \in A$.

Since $\min S \in A$, then $\{\min S\} \subset A$.

Let $G = \{A\}$.

Then $S_{\min S} = {\min S} \subset A = \cup G$, so $S_{\min S} \subset \cup G$.

Thus, G covers $S_{\min S}$.

Since $G \subset \mathcal{F}$ and G is a finite set, then G is a finite subset of \mathcal{F} that covers $S_{\min S}$.

Therefore, $\min S \in B$, so $B \neq \emptyset$.

We prove the set B is not bounded above in \mathbb{R} by contradiction.

Suppose B is bounded above in \mathbb{R} .

Since $B \subset \mathbb{R}$ and $B \neq \emptyset$ and B is bounded above in \mathbb{R} , then by completeness of \mathbb{R} , sup B exists.

Either $\sup B \in S$ or $\sup B \notin S$.

We consider these cases separately.

Case 2a: Suppose $\sup B \in S$.

Since $S \subset \cup \mathcal{F}$, then $\sup B \in \cup \mathcal{F}$, so there exists $F_0 \in \mathcal{F}$ such that $\sup B \in F_0$.

Since $F_0 \in \mathcal{F}$, then F_0 is an open set.

Since sup $B \in F_0$, then sup B is an interior point of F_0 , so there exists $\delta > 0$ such that $N(\sup B; \delta) \subset F_0$.

Since $\delta > 0$ and $\sup B$ is the least upper bound of B, then there exists $b \in B$ such that $\sup B - \delta < b < \sup B$.

Why can we assume $b < \sup B$ versus $b \le \sup B$? We need to prove this!!!! Since $b \in B$, then some finite subset of \mathcal{F} covers S_b .

Hence, there exists $G = \{F_1, F_2, ..., F_k\}$ such that $F_i \in F$ for each i and $S_b \subset \cup G$.

Let $t = \sup B + \frac{\delta}{2}$.

Then $t > \sup B$ and $S_t = \{s \in S : s \leq t\}.$

We prove $G' = \{F_0, F_1, ..., F_k\}$ covers S_t . Since $\sup B \in S$ and $\sup B < t$, then $\sup B \in S_t$, so $S_t \neq \emptyset$. Let $x \in S_t$. Then $x \in S$ and $x \leq t$. Either $x \leq \sup B - \delta$ or $x > \sup B - \delta$. We consider these cases separately. Case 2a1: Suppose $x \leq \sup B - \delta$. Since $x \leq \sup B - \delta$ and $\sup B - \delta < b$, then x < b. Since $x \in S$ and x < b, then $x \in S_b$. Since $S_b \subset \cup G$, then $x \in \cup G$. Case 2a2: Suppose $x > \sup B - \delta$. Since $x \leq t$ and $t < \sup B + \delta$, then $x < \sup B + \delta$. Thus, $\sup B - \delta < x < \sup B + \delta$, so $x \in (\sup B - \delta, \sup B + \delta)$. Hence, $x \in N(\sup B; \delta)$. Since $N(\sup B; \delta) \subset F_0$, then $x \in F_0$. Hence, either $x \in F_0$ or $x \in \cup G$, so $x \in F_0 \cup (\cup G)$. Thus, $x \in F_0 \cup (F_1 \cup F_2 \cup \ldots \cup F_k)$, so $x \in \cup G'$. Therefore, $S_t \subset \cup G'$, so G' is a covering for S_t . Since $G' \subset \mathcal{F}$ and G' is a finite set, then G' is a finite subset of \mathcal{F} that covers S_t , so $t \in B$. Since $\sup B$ is an upper bound of B and $t \in B$, then $t \leq \sup B$. Thus, we have $t \leq \sup B$ and $t > \sup B$, a contradiction. Therefore, $\sup B \in S$ is false. **Case 2b:** Suppose $\sup B \notin S$. Since S is closed, then $\sup B$ is not an accumulation point of S. Hence, there exists $\delta > 0$ such that $N'(\sup B; \delta) \cap S = \emptyset$.