Topology of \mathbb{R} Exercises

Jason Sass

June 29, 2021

Topology of \mathbb{R}

Exercise 1. There are exactly two real numbers whose distance from the number 3 is 7 .

Proof. Let S be the set of all real numbers whose distance from 3 is 7 .
Then $S=\{x \in \mathbb{R}: d(x, 3)=7\}$.
We prove $S=\{-4,10\}$.
Let $x \in S$.
Then $x \in \mathbb{R}$ and $d(x, 3)=7$, so $|x-3|=7$.
Either $x-3 \geq 0$ or $x-3<0$.
We consider these cases separately.
Case 1: Suppose $x-3 \geq 0$.
Then $7=|x-3|=x-3$, so $7=x-3$.
Thus, $x=10$.
Case 2: Suppose $x-3<0$.
Then $7=|x-3|=-(x-3)=-x+3=3-x$, so $7=3-x$.
Thus, $x=-4$.
Hence, either $x=10$ or $x=-4$.
Therefore, $x \in\{-4,10\}$, so $S \subset\{-4,10\}$.

Let $y \in\{-4,10\}$.
Then either $y=-4$ or $y=10$.
We consider these cases separately.
Case 1: Suppose $y=-4$.
Since $-4 \in \mathbb{R}$ and $d(-4,3)=|-4-3|=|-7|=7$, then $y \in S$.
Case 2: Suppose $y=10$.
Since $10 \in \mathbb{R}$ and $d(10,3)=|10-3|=|7|=7$, then $y \in S$.
Hence, in all cases, $y \in S$, so $\{-4,10\} \subset S$.
Since $S \subset\{-4,10\}$ and $\{-4,10\} \subset S$, then $S=\{-4,10\}$.
Since -4 and 10 are the only real numbers whose distance from the number 3 is 7, then there are exactly two real numbers whose distance from the number 3 is 7 .

Exercise 2. Describe the set of all points in \mathbb{R} which are within 5 units of the number - 2 .

Proof. Let S be the set of all points in \mathbb{R} which are within 5 units of the number -2 .

Then $S=\{x \in \mathbb{R}: d(x,-2) \leq 5\}$.
We prove $S=[-7,3]$.
Let $x \in S$.
Then $x \in \mathbb{R}$ and $d(x,-2) \leq 5$, so $5 \geq d(x,-2)=|x-(-2)|=|x+2|$.
Hence, $5 \geq|x+2|$, so $|x+2| \leq 5$.
Thus, $-5 \leq x+2 \leq 5$, so $-7 \leq x \leq 3$.
Therefore, $x \in[-7,3]$, so $S \subset[-7,3]$.

Let $y \in[-7,3]$.
Then $-7 \leq y \leq 3$, so $-5 \leq y+2 \leq 5$.
Hence, $|y+2| \leq 5$, so $|y-(-2)| \leq 5$.
Thus, $d(y,-2) \leq 5$.
Since $y \in \mathbb{R}$ and $d(y,-2) \leq 5$, then $y \in S$, so $[-7,3] \subset S$.
Since $S \subset[-7,3]$ and $[-7,3] \subset S$, then $S=[-7,3]$.
Exercise 3. Describe the set of all real numbers whose distance from 4 is greater than 15.

Proof. Let S be the set of all real numbers whose distance from 4 is greater than 15.

Then $S=\{x \in \mathbb{R}: d(x, 4)>15\}$.
We prove $S=(-\infty,-11) \cup(19, \infty)$.
Let $x \in S$.
Then $x \in \mathbb{R}$ and $d(x, 4)>15$, so $|x-4|>15$.
Hence, either $x-4>15$ or $x-4<-15$, so either $x>19$ or $x<-11$.
Thus, either $x \in(19, \infty)$ or $x \in(-\infty,-11)$, so $x \in(19, \infty) \cup(-\infty,-11)$.
Therefore, $x \in(-\infty,-11) \cup(19, \infty)$, so $S \subset(-\infty,-11) \cup(19, \infty)$.
Let $y \in(-\infty,-11) \cup(19, \infty)$.
Then either $y \in(-\infty,-11)$ or $y \in(19, \infty)$, so either $y<-11$ or $y>19$.
Hence, either $y-4<-15$ or $y-4>15$, so either $y-4>15$ or $y-4<-15$.
Thus, $|y-4|>15$, so $d(y, 4)>15$.
Since $y \in \mathbb{R}$ and $d(y, 4)>15$, then $y \in S$, so $(-\infty,-11) \cup(19, \infty) \subset S$.
Since $S \subset(-\infty,-11) \cup(19, \infty)$ and $(-\infty,-11) \cup(19, \infty) \subset S$, then $S=$ $(-\infty,-11) \cup(19, \infty)$.

Exercise 4. If I_{1} and I_{2} are intervals such that $I_{1} \cap I_{2} \neq \emptyset$, then $I_{1} \cup I_{2}$ is an interval.

Solution.

Our hypothesis is I_{1} is an interval and I_{2} is an interval and $I_{1} \cap I_{2} \neq \emptyset$.

To prove our conclusion $I_{1} \cup I_{2}$ is an interval, we must prove ($\forall a, b, c \in$ $\mathbb{R})\left[a, b \in I_{1} \cup I_{2} \wedge a<c<b \rightarrow c \in I_{1} \cup I_{2}\right]$.

We let a, b, c be arbitrary real numbers.
To prove $c \in I_{1} \cup I_{2}$, we assume $a \in I_{1} \cup I_{2}$ and $b \in I_{1} \cup I_{2}$ and $a<c<b$.
We must prove either $c \in I_{1}$ or $c \in I_{2}$.
To prove $c \in I_{1}$ we must prove $a, b \in I_{1}$ and $a<c<b$.
To prove $c \in I_{2}$ we must prove $a, b \in I_{2}$ and $a<c<b$.
Since $a \in I_{1} \cup I_{2}$, then either $a \in I_{1}$ or $a \in I_{2}$.
Since $b \in I_{1} \cup I_{2}$, then either $b \in I_{1}$ or $b \in I_{2}$.
Hence, we have 4 cases to consider:

1. $a \in I_{1}, b \in I_{1}$.
2. $a \in I_{1}, b \in I_{2}$.
3. $a \in I_{2}, b \in I_{1}$.
4. $a \in I_{2}, b \in I_{2}$.

Proof. Let I_{1} and I_{2} be intervals such that $I_{1} \cap I_{2} \neq \emptyset$.
Let a, b, and c be arbitrary real numbers.
To prove $I_{1} \cup I_{2}$ is an interval, we assume $a \in I_{1} \cup I_{2}$ and $b \in I_{1} \cup I_{2}$ and $a<c<b$.

To prove $c \in I_{1} \cup I_{2}$, we must prove either $c \in I_{1}$ or $c \in I_{2}$.
Since $a \in I_{1} \cup I_{2}$, then either $a \in I_{1}$ or $a \in I_{2}$.
Since $b \in I_{1} \cup I_{2}$, then either $b \in I_{1}$ or $b \in I_{2}$.
There are 4 cases to consider.
Case 1: Suppose $a \in I_{1}$ and $b \in I_{1}$.
Since $a \in I_{1}$ and $b \in I_{1}$ and c is between a and b, and since I_{1} is an interval, then we conclude $c \in I_{1}$.

Case 2: Suppose $a \in I_{1}$ and $b \in I_{2}$.
Since $I_{1} \cap I_{2}$ is not empty, then there exists an element in $I_{1} \cap I_{2}$.
Let x be an arbitrary element of $I_{1} \cap I_{2}$.
Then $x \in I_{1}$ and $x \in I_{2}$.
By trichotomy, either $x<c$ or $x=c$ or $x>c$.
We consider these cases separately.
Case 2a: Suppose $x>c$.
Then $c<x$.
Since $a<c<b$, then $a<c$ and $c<b$.
Since $a<c$ and $c<x$, then $a<c<x$.
Since $a \in I_{1}$ and $x \in I_{1}$ and c is between a and x, and since I_{1} is an interval, then we conclude $c \in I_{1}$.

Case 2b: Suppose $x<c$.
Since $a<c<b$, then $a<c$ and $c<b$.
Since $x<c$ and $c<b$, then $x<c<b$.
Since $b \in I_{2}$ and $x \in I_{2}$ and c is between x and b, and since I_{2} is an interval, then we conclude $c \in I_{2}$.

Case 2c: Suppose $x=c$.
Since $x \in I_{1} \cap I_{2}$ and $I_{1} \cap I_{2} \subset I_{1} \cup I_{2}$, then $x \in I_{1} \cup I_{2}$.
Since $x=c$, then $c \in I_{1} \cup I_{2}$.

Hence, in all cases, either $c \in I_{1}$ or $c \in I_{2}$, so $c \in I_{1} \cup I_{2}$.
Case 3: Suppose $a \in I_{2}$ and $b \in I_{1}$.
The argument is the same as case 2 , with a and b reversed.
Case 4: Suppose $a \in I_{2}$ and $b \in I_{2}$.
The argument is the same as case 1 , with I_{2} instead of I_{1}.
Hence, in all 4 cases, c is contained in $I_{1} \cup I_{2}$, so $I_{1} \cup I_{2}$ is an interval, as desired.

Exercise 5. Let $a, b, a^{\prime}, b^{\prime} \in \mathbb{R}$ with $a<b$ and $a^{\prime}<b^{\prime}$.
Let $[a, b]$ and $\left[a^{\prime}, b^{\prime}\right]$ be closed intervals.
Then $[a, b] \subset\left[a^{\prime}, b^{\prime}\right]$ iff $a^{\prime} \leq a$ and $b \leq b^{\prime}$.
Proof. We first prove if $a^{\prime} \leq a$ and $b \leq b^{\prime}$, then $[a, b] \subset\left[a^{\prime}, b^{\prime}\right]$.
Suppose $a^{\prime} \leq a$ and $b \leq b^{\prime}$.
Since $a<b$, then $[a, b] \neq \emptyset$.
Let $x \in[a, b]$.
Then $a \leq x \leq b$, so $a \leq x$ and $x \leq b$.
Since $a^{\prime} \leq a$ and $a \leq x$, then $a^{\prime} \leq x$.
Since $x \leq b$ and $b \leq b^{\prime}$, then $x \leq b^{\prime}$.
Thus, $a^{\prime} \leq x$ and $x \leq b^{\prime}$, so $a^{\prime} \leq x \leq b^{\prime}$.
Therefore, $x \in\left[a^{\prime}, b^{\prime}\right]$, so $[a, b] \subset\left[a^{\prime}, b^{\prime}\right]$.
Proof. Conversely, we prove if $[a, b] \subset\left[a^{\prime}, b^{\prime}\right]$, then $a^{\prime} \leq a$ and $b \leq b^{\prime}$.
Suppose $[a, b] \subset\left[a^{\prime}, b^{\prime}\right]$.
Since $a \in[a, b]$ and $[a, b] \subset\left[a^{\prime}, b^{\prime}\right]$, then $a \in\left[a^{\prime}, b^{\prime}\right]$, so $a^{\prime} \leq a \leq b^{\prime}$.
Hence, $a^{\prime} \leq a$ and $a \leq b^{\prime}$, so $a^{\prime} \leq a$.
Since $b \in[a, b]$ and $[a, b] \subset\left[a^{\prime}, b^{\prime}\right]$, then $b \in\left[a^{\prime}, b^{\prime}\right]$, so $a^{\prime} \leq b \leq b^{\prime}$.
Hence, $a^{\prime} \leq b$ and $b \leq b^{\prime}$, so $b \leq b^{\prime}$.
Therefore, $a^{\prime} \leq a$ and $b \leq b^{\prime}$, as desired.
Exercise 6. Let S be a nonempty subset of \mathbb{R}.
Then S is bounded iff there is a closed bounded interval I such that $S \subset I$.
Proof. Suppose S is bounded.
Then S is bounded above and below in \mathbb{R}, so there exist real numbers a and b such that $a \leq x \leq b$ for all $x \in S$.

Let $I=[a, b]$.
Then I is a closed bounded interval.
Since S is nonempty, let $x \in S$.
Then $a \leq x \leq b$.
Since $x \in S$ and $S \subset \mathbb{R}$, then $x \in \mathbb{R}$.
Since $x \in \mathbb{R}$ and $a \leq x \leq b$, then $x \in I$, so $S \subset I$.
Therefore, there is a closed bounded interval I such that $S \subset I$.

Conversely, suppose there is a closed bounded interval I such that $S \subset I$.
Then there are real numbers a and b such that $I=[a, b]$.
Since S is not empty, let $x \in S$.
Since $S \subset I$, then $x \in I$, so $a \leq x \leq b$.
Hence, $a \leq x \leq b$ for all $x \in S$.
Thus, there exist real numbers a and b such that $a \leq x \leq b$ for all $x \in S$.
Therefore, S is bounded.
Exercise 7. Let S be a nonempty bounded subset of \mathbb{R}.
Let $I=[\inf S, \sup S]$.
Then $S \subset I$.
Proof. Since S is a bounded subset of \mathbb{R}, then S is bounded above and below in \mathbb{R}.

Since S is nonempty and bounded above in \mathbb{R}, then $\sup S$ exists.
Since S is nonempty and bounded below in \mathbb{R}, then $\inf S$ exists.
Let $I=[\inf S, \sup S]$.
Since S is not empty, let $x \in S$.
Since $\sup S$ is an upper bound of S, then $x \leq \sup S$.
Since $\inf S$ is a lower bound of S, then $\inf S \leq x$.
Thus, $\inf S \leq x \leq \sup S$, so $x \in[\inf S, \sup S]$.
Therefore, $x \in I$, so $S \subset I$.
Exercise 8. Let S be a nonempty bounded subset of \mathbb{R}.
Let $I=[\inf S, \sup S]$.
Let J be a closed bounded interval such that $S \subset J$.
Then $I \subset J$.
Proof. Since J is a closed bounded interval, then there exist real numbers a and b with $a<b$ such that $J=[a, b]$.

Since $S \neq \emptyset$, let $x \in S$.
Since $S \subset J$, then $x \in J$, so $x \in[a, b]$.
Hence, $a \leq x \leq b$, so $a \leq x$ and $x \leq b$.
Thus, $a \leq x$ and $x \leq b$ for all $x \in S$, so $a \leq x$ for all $x \in S$ and $x \leq b$ for all $x \in S$.

Consequently, a is a lower bound of S and b is an upper bound of S.
Since b is an upper bound of S and $\sup S$ is the least upper bound of S, then $\sup S \leq b$.

Since a is a lower bound of S and $\inf S$ is the greatest lower bound of S, then $a \leq \inf S$.

Let $y \in I$.
Then $\inf S \leq y \leq \sup S$, so $\inf S \leq y$ and $y \leq \sup S$.
Since $a \leq \inf S$ and $\inf S \leq y$ and $y \leq \sup S$ and $\sup S \leq b$, then $a \leq y \leq b$, so $y \in[a, b]$.

Therefore, $y \in J$, so $I \subset J$, as desired.

Exercise 9. Let $S_{n}=\left[0, \frac{1}{n}\right]$ for each $n \in \mathbb{N}$.
Then $\cap_{n=1}^{\infty} S_{n}=\{0\}$.
Solution. We can draw several of these intervals and observe that each of the intervals gets smaller, so the collection $\left\{S_{n}: n \in \mathbb{N}\right\}$ is a decreasing family of sets indexed by \mathbb{N}. It appears that the intersection of all these intervals is the singleton set $\{0\}$.

Proof. To prove $\{0\} \subset \cap_{n=1}^{\infty} S_{n}$, let $n \in \mathbb{N}$ be arbitrary.
Then $S_{n}=\left[0, \frac{1}{n}\right]$.
Since $n \in \mathbb{N}$, then $n>0$, so $\frac{1}{n}>0$.
Thus, $S_{n} \neq \emptyset$ and $0 \in S_{n}$.
Since n is arbitrary, then $0 \in S_{n}$ for each $n \in \mathbb{N}$.
Hence, $0 \in \cap_{n=1}^{\infty} S_{n}$, so $\{0\} \subset \cap_{n=1}^{\infty} S_{n}$.
To prove $\cap_{n=1}^{\infty} S_{n} \subset\{0\}$, let $x \in \cap_{n=1}^{\infty} S_{n}$.
Then $x \in S_{n}$ for each $n \in \mathbb{N}$.
Thus, $x \in S_{1}=[0,1]$, so $0 \leq x \leq 1$.
Hence, $0 \leq x$, so $x \geq 0$.
Therefore, either $x>0$ or $x=0$.
Suppose $x>0$.
Then by the Archimedean property of \mathbb{R}, there exists $m \in \mathbb{N}$ such that $\frac{1}{m}<x$.

Thus, $x \notin\left[0, \frac{1}{m}\right]$.
Hence, there exists $m \in \mathbb{N}$ such that $x \notin S_{m}$.
But, this contradicts the fact that $x \in S_{n}$ for every $n \in \mathbb{N}$.
Therefore, $x=0$, so $x \in\{0\}$.
Thus, $\cap_{n=1}^{\infty} S_{n} \subset\{0\}$.

Since $\cap_{n=1}^{\infty} S_{n} \subset\{0\}$ and $\{0\} \subset \cap_{n=1}^{\infty} S_{n}$, then $\cap_{n=1}^{\infty} S_{n}=\{0\}$.
Exercise 10. Let $S_{n}=\left(\frac{1}{n}, 1\right)$ for each $n \in \mathbb{N}$.
Then $\cup_{n=1}^{\infty} S_{n}=(0,1)$.
Solution. We can draw several of these intervals and observe that each of the intervals gets larger, so the collection $\left\{S_{n}: n \in \mathbb{N}\right\}$ is a increasing family of sets indexed by \mathbb{N}. It appears that the union of all these intervals is $(0,1)$.

Proof. To prove $\cup_{n=1}^{\infty} S_{n}=(0,1)$, we prove $\cup_{n=1}^{\infty} S_{n} \subset(0,1)$ and $(0,1) \subset$ $\cup_{n=1}^{\infty} S_{n}$.

We prove $\cup_{n=1}^{\infty} S_{n} \subset(0,1)$.
Let $x \in \cup_{n=1}^{\infty} S_{n}$.
Then there exists $n \in \mathbb{N}$ such that $x \in S_{n}$.
Thus, there exists $n \in \mathbb{N}$ such that $x \in \mathbb{R}$ and $\frac{1}{n}<x<1$.
Since $\frac{1}{n}<x<1$, then $\frac{1}{n}<x$ and $x<1$.
Since $n \in \mathbb{N}$, then $n>0$, so $n \neq 0$.
Since $n \in \mathbb{N}$ and $\mathbb{N} \subset \mathbb{R}$, then $n \in \mathbb{R}$.

Since $n \in \mathbb{R}$ and $n \neq 0$, then $\frac{1}{n} \in \mathbb{R}$.
Since $n>0$, then $\frac{1}{n}>0$, so $0<\frac{1}{n}$.
Since $0<\frac{1}{n}$ and $\frac{1}{n}<x$, then $0<x$.
Thus, $0<x$ and $x<1$, so $0<x<1$.
Since $x \in \mathbb{R}$ and $0<x<1$, then $x \in(0,1)$.
Hence, $x \in \cup_{n=1}^{\infty} S_{n}$ implies $x \in(0,1)$, so $\cup_{n=1}^{\infty} S_{n} \subset(0,1)$.
We prove $(0,1) \subset \cup_{n=1}^{\infty} S_{n}$.
Let $y \in(0,1)$.
Then $y \in \mathbb{R}$ and $0<y<1$, so $0<y$ and $y<1$.
To prove $y \in \cup_{n=1}^{\infty} S_{n}$, we must show there exists $k \in \mathbb{N}$ such that $y \in S_{k}$.
Since $0<y$, then $y>0$, so $y \neq 0$.
Since $y \in \mathbb{R}$ and $y \neq 0$, then $\frac{1}{y} \in \mathbb{R}$.
By the Archimedean property of \mathbb{R}, for every real number there corresponds a larger natural number.

Hence, there exists a natural number that is larger than the real number $\frac{1}{y}$.
Choose $k \in \mathbb{N}$ such that $k>\frac{1}{y}$.
Since $y>0$, we multiply by y to get $k y>1$.
Since $k \in \mathbb{N}$, then $k>0$, so we divide by k to get $y>\frac{1}{k}$.
Hence, $\frac{1}{k}<y$.
Since $\frac{1}{k}<y$ and $y<1$, then $\frac{1}{k}<y<1$.
Since $y \in \mathbb{R}$ and $\frac{1}{k}<y<1$, then $y \in\left(\frac{1}{k}, 1\right)$, so $y \in S_{k}$.
Thus, there exists $k \in \mathbb{N}$ such that $y \in S_{k}$, so $y \in \cup_{n=1}^{\infty} S_{n}$.
Therefore, $y \in(0,1)$ implies $y \in \cup_{n=1}^{\infty} S_{n}$, so $(0,1) \subset \cup_{n=1}^{\infty} S_{n}$.
Since $\cup_{n=1}^{\infty} S_{n} \subset(0,1)$ and $(0,1) \subset \cup_{n=1}^{\infty} S_{n}$, then $\cup_{n=1}^{\infty} S_{n}=(0,1)$.
Exercise 11. Let $S_{n}=\left(0, \frac{1}{n}\right)$ for each $n \in \mathbb{N}$.
Then $\cap_{n=1}^{\infty} S_{n}=\emptyset$.
Solution. We can draw several of these intervals and note that each of the intervals gets smaller, so $S=\left\{S_{n}: n \in \mathbb{N}\right\}$ is a decreasing family of sets indexed by \mathbb{N}. It appears that the intersection of all these intervals is empty.

Proof. We prove by contradiction.
Suppose $\cap_{n=1}^{\infty} S_{n} \neq \emptyset$.
Then there is an element in $\cap_{n=1}^{\infty} S_{n}$.
Let x be an element of $\cap_{n=1}^{\infty} S_{n}$.
Then $x \in S_{n}$ for every $n \in \mathbb{N}$.
Hence, $x \in \mathbb{R}$ and $0<x<\frac{1}{n}$ for every $n \in \mathbb{N}$, so $0<x$ and $x<\frac{1}{n}$ for every $n \in \mathbb{N}$.

Since $x \in \mathbb{R}$ and $x>0$, then $x \neq 0$.
Since $x \in \mathbb{R}$ and $x \neq 0$, then $\frac{1}{x} \in \mathbb{R}$.
By the Archimedean property of \mathbb{R}, there exists a natural number that is larger than the real number $\frac{1}{x}$.

Thus, there exists $k \in \mathbb{N}$ such that $k>\frac{1}{x}$.
Since $k \in \mathbb{N}$, then $x<\frac{1}{k}$ and $k>0$.
Consequently, $k x<1$.

Since $x>0$, then $k<\frac{1}{x}$.
Hence, we have $k>\frac{1}{x}$ and $k<\frac{1}{x}$, a contradiction.
Therefore, $\cap_{n=1}^{\infty} S_{n}=\emptyset$, as desired.
Exercise 12. What is $\cup_{n=1}^{\infty}\left(\mathbb{R}-\left(0, \frac{1}{n}\right)\right)$?
Solution. Observe that

$$
\begin{aligned}
\cup_{n=1}^{\infty}\left(\mathbb{R}-\left(0, \frac{1}{n}\right)\right) & =\mathbb{R}-\cap_{n=1}^{\infty}\left(0, \frac{1}{n}\right) \\
& =\mathbb{R}-\emptyset \\
& =\mathbb{R}
\end{aligned}
$$

Exercise 13. Compute $\cap_{n=1}^{\infty}\left(\frac{-1}{n}, 1+\frac{1}{n}\right)$.
Solution. Let $S=\left\{S_{n}: n \in \mathbb{N}\right\}$ be a family of intervals $S_{n}=\left(\frac{-1}{n}, 1+\frac{1}{n}\right)$ indexed by \mathbb{N}.

We must compute $\cap_{n=1}^{\infty} S_{n}$.
We sketch $S_{1}, S_{2}, S_{3}, S_{4}$ intervals and observe that $S_{1} \supset S_{2} \supset S_{3} \supset S_{4} \supset \ldots$, so S is a decreasing family of nested intervals.

Intuitively, we see that the interval $(0,1)$ is contained in the intersection of this family of intervals.

We need to check the endpoints 0 and 1 to determine if they are in this intersection.

We show that $0 \in \cap_{n=1}^{\infty} S_{n}$.
Let $n \in \mathbb{N}$.
Then $n>0$, so $\frac{1}{n}>0$.
Hence, $\frac{-1}{n}<0$.
Since $-1<0$ and $0<\frac{1}{n}$, then $-1<\frac{1}{n}$.
Thus, $0<1+\frac{1}{n}$.
Therefore, $\frac{-1}{n} \stackrel{n}{<} 0$ and $0<1+\frac{1}{n}$, so $\frac{-1}{n}<0<1+\frac{1}{n}$.
Hence, $0 \in\left(\frac{-1}{n}, 1+\frac{1}{n}\right)$, so $0 \in S_{n}$.
Since n is arbitrary, then $0 \in S_{n}$ for all $n \in \mathbb{N}$.
Therefore, $0 \in \cap_{n=1}^{\infty} S_{n}$.
Thus, the interval $[0,1)$ is contained in $\cap_{n=1}^{\infty} S_{n}$.
We show that $1 \in \cap_{n=1}^{\infty} S_{n}$.
Let $n \in \mathbb{N}$.
Then $n>0$, so $\frac{1}{n}>0$.
Hence, $\frac{-1}{n}<0$.
Since $\frac{-1}{n}<0$ and $0<1$, then $\frac{-1}{n}<1$.
Since $0<\frac{1}{n}$, then $1<1+\frac{1}{n}$.
Thus, $\frac{-1}{n}<1$ and $1<1+\frac{1}{n}$, so $\frac{-1}{n}<1<1+\frac{1}{n}$.
Hence, $1 \in\left(\frac{-1}{n}, 1+\frac{1}{n}\right)$, so $1 \in S_{n}$.
Since n is arbitrary, then $1 \in S_{n}$ for all $n \in \mathbb{N}$.
Therefore, $1 \in \cap_{n=1}^{\infty} S_{n}$.
Thus, the interval [0,1] is contained in $\cap_{n=1}^{\infty} S_{n}$.
We see that $\cap_{n=1}^{\infty} S_{n}=[0,1]$.

Proof. To prove $\cap_{n=1}^{\infty} S_{n}=[0,1]$, we prove $\cap_{n=1}^{\infty} S_{n} \subset[0,1]$ and $[0,1] \subset \cap_{n=1}^{\infty} S_{n}$.
We first prove $\cap_{n=1}^{\infty} S_{n} \subset[0,1]$.
Let $x \in \cap_{n=1}^{\infty} S_{n}$.
Then $x \in S_{n}$ for all $n \in \mathbb{N}$, so $x \in\left(\frac{-1}{n}, 1+\frac{1}{n}\right)$ for all $n \in \mathbb{N}$.
To prove $x \in[0,1]$, we must prove $x \in \mathbb{R}$ and $0 \leq x \leq 1$.
Let $n \in \mathbb{N}$.
Then $x \in\left(\frac{-1}{n}, 1+\frac{1}{n}\right)$, so $x \in \mathbb{R}$ and $\frac{-1}{n}<x<1+\frac{1}{n}$.
Thus, $\frac{-1}{n}<x$ and $x<1+\frac{1}{n}$.
Since $n \in \mathbb{N}$, then $n>0$.
Since $\frac{-1}{n}<x$, we multiply by n to get $-1<n x$.
Suppose $x<0$.
Then we divide by x to get $\frac{-1}{x}>n$.
Thus, $n<\frac{-1}{x}$, so $n \leq \frac{-1}{x}$.
Since $x<0$, then $x \neq 0$, so $\frac{1}{x} \in \mathbb{R}$.
Hence, $\frac{-1}{x} \in \mathbb{R}$.
Since n is arbitrary then $n \leq \frac{-1}{x}$ for all $n \in \mathbb{N}$.
Thus, the real number $\frac{-1}{x}$ is an upper bound for \mathbb{N} in \mathbb{R}, so \mathbb{N} has an upper bound in \mathbb{R}.

By the Archimedean property of \mathbb{R}, \mathbb{N} has no upper bound in \mathbb{R}.
Hence, we have \mathbb{N} has an upper bound in \mathbb{R} and \mathbb{N} has no upper bound in \mathbb{R}, a contradiction.

Therefore, x cannot be negative.
Hence, $x \geq 0$, so $0 \leq x$.
Suppose $x>1$.
Then $x-1>0$.
Since $x<1+\frac{1}{n}$, then $x-1<\frac{1}{n}$.
Since $n>0$, we multiply by n to get $n(x-1)<1$.
Since $x-1>0$, we divide by $x-1$ to get $n<\frac{1}{x-1}$, so $n \leq \frac{1}{x-1}$.
Since $x-1>0$, then $x-1 \neq 0$, so $\frac{1}{x-1} \in \mathbb{R}$.
Since n is arbitrary, then $n \leq \frac{1}{x-1}$ for all $n \in \mathbb{N}$.
Thus, the real number $\frac{1}{x-1}$ is an upper bound for \mathbb{N} in \mathbb{R}, so \mathbb{N} has an upper bound in \mathbb{R}.

By the Archimedean property of \mathbb{R}, \mathbb{N} has no upper bound in \mathbb{R}.
Hence, we have \mathbb{N} has an upper bound in \mathbb{R} and \mathbb{N} has no upper bound in \mathbb{R}, a contradiction.

Therefore, x cannot be greater than 1 .
Thus, $x \leq 1$.
Since $0 \leq x$ and $x \leq 1$, then $0 \leq x \leq 1$, so $x \in[0,1]$.
Therefore, $x \in \cap_{n=1}^{\infty} S_{n}$ implies $x \in[0,1]$, so $\cap_{n=1}^{\infty} S_{n} \subset[0,1]$.
We prove $[0,1] \subset \cap_{n=1}^{\infty} S_{n}$.
Let $y \in[0,1]$.
Then $y \in \mathbb{R}$ and $0 \leq y \leq 1$.
To prove $y \in \cap_{n=1}^{\infty} \bar{S}_{n}$, we must prove $y \in S_{n}$ for all $n \in \mathbb{N}$.
Thus, we must prove $y \in\left(\frac{-1}{n}, 1+\frac{1}{n}\right)$ for all $n \in \mathbb{N}$, so we must prove $y \in \mathbb{R}$ and $\frac{-1}{n}<y<1+\frac{1}{n}$ for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$.
Then $n>0$, so $\frac{1}{n}>0$, so $\frac{-1}{n}<0$.
Since $0 \leq y \leq 1$, then either $y=0$ or $y=1$ or $0<y<1$.
We consider these cases separately.
Case 1: Suppose $0<y<1$.
Then $0<y$ and $y<1$.
Since $\frac{-1}{n}<0$ and $0<y$, then $\frac{-1}{n}<y$.
Since $\frac{1^{n}}{n}>0$, then $0<\frac{1}{n}$, so $1<1+\frac{1}{n}$.
Since $y<1$ and $1<1+\frac{1}{n}$, then $y<1+\frac{1}{n}$.
Thus, $\frac{-1}{n}<y$ and $y<1+\frac{1}{n}$, so $\frac{-1}{n}<y<1+\frac{1}{n}$.
Case 2: Suppose $y=0$.
Since $\frac{-1}{n}<0$, then $\frac{-1}{n}<y$.
Since $-1<0$ and $0<\frac{1}{n}$, then $-1<\frac{1}{n}$.
Thus, $0<1+\frac{1}{n}$, so $y<1+\frac{1}{n}$.
Hence, $\frac{-1}{n}<y$ and $y<1+\frac{1}{n}$, so $\frac{-1}{n}<y<1+\frac{1}{n}$.
Case 3: Suppose $y=1$.
Since $\frac{-1}{n}<0$ and $0<1$, then $\frac{-1}{n}<1$, so $\frac{-1}{n}<y$.
Since $0<\frac{1}{n}$, then $1<1+\frac{1}{n}$, so $y<1+\frac{1}{n}$.
Hence, $\frac{-1}{n}<y$ and $y<1+\frac{1}{n}$, so $\frac{-1}{n}<y<1+\frac{1}{n}$.
Therefore, in all cases, $\frac{-1}{n}<y<1+\frac{1}{n}$.
Since $y \in \mathbb{R}$ and $\frac{-1}{n}<y^{n}<1+\frac{1}{n}$, then $y \in\left(\frac{-1}{n}, 1+\frac{1}{n}\right)$.
Since n is arbitrary, then $y \in\left(\frac{-1}{n}, 1+\frac{1}{n}\right)$ for all $n \in \mathbb{N}$, so $y \in S_{n}$ for all $n \in \mathbb{N}$.

Therefore, $y \in \cap_{n=1}^{\infty} S_{n}$.
Thus, $y \in[0,1]$ implies $y \in \cap_{n=1}^{\infty} S_{n}$, so $[0,1] \subset \cap_{n=1}^{\infty} S_{n}$.
Since $\cap_{n=1}^{\infty} S_{n} \subset[0,1]$ and $[0,1] \subset \cap_{n=1}^{\infty} S_{n}$, then $\cap_{n=1}^{\infty} S_{n}=[0,1]$.
Lemma 14. Let $r \in \mathbb{R}$.
If $r \leq \frac{1}{n}$ for all $n \in \mathbb{N}$, then $r \leq 0$.
Proof. We prove by contrapositive.
Suppose $r>0$.
Then, by the Archimedean property of \mathbb{R}, there exists $n \in \mathbb{N}$ such that $\frac{1}{n}<r$. Therefore, there exists $n \in \mathbb{N}$ such that $r>\frac{1}{n}$, as desired.

Exercise 15. Let $S_{n}=(n, \infty)$ for each $n \in \mathbb{N}$.
Then $\cap_{n=1}^{\infty} S_{n}=\emptyset$.
Proof. We prove by contradiction.
Suppose $\cap_{n=1}^{\infty} S_{n} \neq \emptyset$.
Then there exists $x \in \cap_{n=1}^{\infty} S_{n}$, so $x \in S_{n}$ for all $n \in \mathbb{N}$.
Hence, $x \in(n, \infty)$ for each $n \in \mathbb{N}$, so $x>n$ for each $n \in \mathbb{N}$.
Thus, there exists $x \in \mathbb{R}$ such that $n<x$ for each $n \in \mathbb{N}$, so x is an upper bound of \mathbb{N}.

Consequently, \mathbb{N} is bounded above in \mathbb{R}.
Since $0<n$ for all $n \in \mathbb{N}$, then 0 is a lower bound of \mathbb{N}, so \mathbb{N} is bounded below in \mathbb{R}.

Since \mathbb{N} is bounded above and below in \mathbb{R}, then \mathbb{N} is bounded in \mathbb{R}.
But, this contradict the Archimedean property that \mathbb{N} is unbounded in \mathbb{R}.
Therefore, $\cap_{n=1}^{\infty} S_{n}=\emptyset$.
Exercise 16. Compute $\bigcup_{n=1}^{\infty}\left(\mathbb{R}-\left[\frac{1}{n}, 2+\frac{1}{n}\right]\right)$.
Solution. We prove $\bigcup_{n=1}^{\infty}\left(\mathbb{R}-\left[\frac{1}{n}, 2+\frac{1}{n}\right]\right)=(-\infty, 1) \cup(2, \infty)$.
Proof. We first prove $\cap_{n=1}^{\infty}\left[\frac{1}{n}, 2+\frac{1}{n}\right]=[1,2]$.
Let $x \in \cap_{n=1}^{\infty}\left[\frac{1}{n}, 2+\frac{1}{n}\right]$.
Then $x \in\left[\frac{1}{n}, 2+\frac{1}{n}\right]$ for each $n \in \mathbb{N}$, so $\frac{1}{n} \leq x \leq 2+\frac{1}{n}$ for each $n \in \mathbb{N}$.
Hence, $\frac{1}{n} \leq x$ and $x \leq 2+\frac{1}{n}$ for each $n \in \mathbb{N}$, so $\frac{1}{n} \leq x$ for each $n \in \mathbb{N}$ and $x \leq 2+\frac{1}{n}$ for each $n \in \mathbb{N}$.

Since $\frac{1}{n} \leq x$ for each $n \in \mathbb{N}$, then for $n=1$, we have $\frac{1}{1} \leq x$, so $1 \leq x$.
Since $x \leq 2+\frac{1}{n}$ for each $n \in \mathbb{N}$, then $x-2 \leq \frac{1}{n}$ for each $n \in \mathbb{N}$.
By a previous lemma, if $r \leq \frac{1}{n}$ for each $n \in \mathbb{N}$, then $r \leq 0$.
Thus, $x-2 \leq 0$, so $x \leq 2$.
Since $1 \leq x$ and $x \leq 2$, then $1 \leq x \leq 2$, so $x \in[1,2]$.
Therefore, $\cap_{n=1}^{\infty}\left[\frac{1}{n}, 2+\frac{1}{n}\right] \subset[1,2]$.
Let $y \in[1,2]$.
Then $1 \leq y \leq 2$, so $1 \leq y$ and $y \leq 2$.
Since $y \leq 2$, then $y-2 \leq 0$.
Let $n \in \mathbb{N}$.
Then $n \geq 1>0$, so $n \geq 1$ and $n>0$.
Hence, $1 \geq \frac{1}{n}>0$, so $1 \geq \frac{1}{n}$ and $\frac{1}{n}>0$.
Since $\frac{1}{n} \leq 1$ and $1 \leq y$, then $\frac{1}{n} \leq y$.
Since $y-2 \leq 0$ and $0<\frac{1}{n}$, then $y-2<\frac{1}{n}$, so $y<2+\frac{1}{n}$.
Thus, $\frac{1}{n} \leq y$ and $y<2+\frac{1}{n}$, so $\frac{1}{n} \leq y<2+\frac{1}{n}$.
Hence, $y \in\left[\frac{1}{n}, 2+\frac{1}{n}\right]$.
Therefore, $y \in\left[\frac{1}{n}, 2+\frac{1}{n}\right]$ for all $n \in \mathbb{N}$, so $y \in \cap_{n=1}^{\infty}\left[\frac{1}{n}, 2+\frac{1}{n}\right]$.
Consequently, if $y \in[1,2]$, then $y \in \cap_{n=1}^{\infty}\left[\frac{1}{n}, 2+\frac{1}{n}\right]$, so $[1,2] \subset \cap_{n=1}^{\infty}\left[\frac{1}{n}, 2+\frac{1}{n}\right]$.
Since $\cap_{n=1}^{\infty}\left[\frac{1}{n}, 2+\frac{1}{n}\right] \subset[1,2]$ and $[1,2] \subset \cap_{n=1}^{\infty}\left[\frac{1}{n}, 2+\frac{1}{n}\right]$, then $\cap_{n=1}^{\infty}\left[\frac{1}{n}, 2+\frac{1}{n}\right]=$ $[1,2]$.

Observe that

$$
\begin{aligned}
\cup_{n=1}^{\infty}\left(\mathbb{R}-\left[\frac{1}{n}, 2+\frac{1}{n}\right]\right) & =\mathbb{R}-\cap_{n=1}^{\infty}\left[\frac{1}{n}, 2+\frac{1}{n}\right] \\
& =\mathbb{R}-[1,2] \\
& =(-\infty, 1) \cup(2, \infty)
\end{aligned}
$$

Exercise 17. Does there exist $\epsilon>0$ such that the ϵ neighborhood of $\frac{1}{3}$ contains both $\frac{1}{4}$ and $\frac{1}{2}$, but does not contain $\frac{17}{30}$?

Solution. We must find a positive real ϵ, if one exists, such that $\frac{1}{4} \in N\left(\frac{1}{3} ; \epsilon\right)$ and $\frac{1}{2} \in N\left(\frac{1}{3} ; \epsilon\right)$ and $\frac{17}{30} \notin N\left(\frac{1}{3} ; \epsilon\right)$.

We see that any $\epsilon \in\left(\frac{1}{6}, \frac{7}{30}\right]$ will work.
Let $\epsilon=\frac{1}{5}$.
Since $d\left(\frac{1}{4}, \frac{1}{3}\right)=\left|\frac{1}{4}-\frac{1}{3}\right|=\frac{1}{12}<\frac{1}{5}$, then $\frac{1}{4} \in N\left(\frac{1}{3} ; \frac{1}{5}\right)$.
Since $d\left(\frac{1}{2}, \frac{1}{3}\right)=\left|\frac{1}{2}-\frac{1}{3}\right|=\frac{1}{6}<\frac{1}{5}$, then $\frac{1}{2} \in N\left(\frac{1}{3} ; \frac{1}{5}\right)$.
Since $d\left(\frac{17}{30}, \frac{1}{3}\right)=\left|\frac{17}{30}-\frac{1}{3}\right|=\frac{7}{30}>\frac{1}{5}$, then $\frac{17}{30} \notin N\left(\frac{1}{3} ; \frac{1}{5}\right)$.
Exercise 18. The interval $[0,1]$ is a neighborhood of $\frac{2}{3}$.
Proof. To prove $[0,1]$ is a neighborhood of $\frac{2}{3}$, let $\epsilon=\frac{1}{6}$.
Then $N\left(\frac{2}{3} ; \frac{1}{6}\right)=\left(\frac{2}{3}-\frac{1}{6}, \frac{2}{3}+\frac{1}{6}\right)=\left(\frac{3}{6}, \frac{5}{6}\right) \subset[0,1]$, as desired.
Exercise 19. Does there exist $\epsilon>0$ such that the ϵ neighborhood of $\frac{1}{3}$ contains $\frac{11}{12}$, but does not contain either $\frac{1}{2}$ or $\frac{5}{8}$?

Solution.

Exercise 20. Let $a, b \in \mathbb{R}$.
If $a<b$, then there exists a bijective function from the interval (a, b) onto the interval $(0,1)$.

Proof. Suppose $a<b$.
Then $b-a>0$, so $b-a \neq 0$.
Let $f:(a, b) \rightarrow(0,1)$ be a function defined by $f(x)=\frac{x-a}{b-a}$ for all $x \in(a, b)$. We prove f is bijective.
Let $x_{1}, x_{2} \in(a, b)$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$.
Then $\frac{x_{1}-a}{b-a}=\frac{x_{2}-a}{b-a}$, so $x_{1}-a=x_{2}-a$.
Therefore, $x_{1}=x_{2}$, so f is injective.
Let $t \in(0,1)$.
Then $0<t<1$.
Since $b-a>0$, then $0<t(b-a)<b-a$.
Hence, $a<a+t(b-a)<b$.
Let $s=a+t(b-a)$.
Then $a<s<b$, so $s \in(a, b)$.
Observe that

$$
\begin{aligned}
f(s) & =f(a+t(b-a)) \\
& =\frac{[a+t(b-a)]-a}{b-a} \\
& =\frac{t(b-a)}{b-a} \\
& =t .
\end{aligned}
$$

Therefore, there exists $s \in(a, b)$ such that $f(s)=t$, so f is surjective.
Since f is injective and surjective, then f is bijective, as desired.
Exercise 21. Let x and y be distinct real numbers.
Then there is a neighborhood P of x and a neighborhood Q of y such that $P \cap Q=\emptyset$.

Proof. Since x and y are distinct real numbers, then $x, y \in \mathbb{R}$ and $x \neq y$, so either $x<y$ or $x>y$.

Without loss of generality, assume $x<y$.
Let $\delta=\frac{y-x}{2}$.
Since $x<y$, then $y-x>0$, so $\frac{y-x}{2}>0$.
Hence, $\delta>0$.
Let $P=(x-\delta, x+\delta)$ and $Q=(y-\delta, y+\delta)$.
Since $x-\delta<x+\delta$ and $y-\delta<y+\delta$, then P and Q are open intervals, so P is a δ neighborhood of x and Q is a δ neighborhood of y.

Thus, P is a neighborhood of x and Q is a neighborhood of y.

We prove $P \cap Q=\emptyset$ by contradiction.
Suppose $P \cap Q \neq \emptyset$.
Then there exists $p \in P \cap Q$, so $p \in P$ and $p \in Q$.
Since $p \in P$, then $p \in(x-\delta, x+\delta)$, so $x-\delta<p<x+\delta$.
Thus, $p<x+\delta$, so $p<x+\frac{y-x}{2}$.
Hence, $p<\frac{x+y}{2}$.
Since $p \in Q$, then $p \in(y-\delta, y+\delta)$, so $y-\delta<p<y+\delta$.
Hence, $y-\delta<p$, so $y-\frac{y-x}{2}<p$.
Thus, $y+\frac{x-y}{2}<p$, so $\frac{x+y}{2}<p$.
Hence, we have $p<\frac{x+y}{2}$ and $p>\frac{x+y}{2}$, a contradiction.
Therefore, $P \cap Q=\emptyset$, as desired.
Exercise 22. Let $x \in \mathbb{R}$ and $\epsilon>0$.
Then $N(x ; \epsilon)$ is a neighborhood of each of its members.
Proof. Let $y \in N(x ; \epsilon)$.
To prove $N(x ; \epsilon)$ is a neighborhood of y, we must prove there exists $\delta>0$ such that $N(y ; \delta) \subset N(x ; \epsilon)$.

Let $\delta=\min \{x+\epsilon-y, y-x+\epsilon\}$.
Then $\delta \leq x+\epsilon-y$ and $\delta \leq y-x+\epsilon$, and either $\delta=x+\epsilon-y$ and $\delta=y-x+\epsilon$.
Since $y \in N(x ; \epsilon)=(x-\epsilon, x+\epsilon)$, then $x-\epsilon<y<x+\epsilon$, so $x-\epsilon<y$ and $y<x+\epsilon$.

Thus, $0<y-x+\epsilon$ and $0<x+\epsilon-y$, so $\delta>0$.
To prove $N(y ; \delta) \subset N(x ; \epsilon)$, let $p \in N(y ; \delta)$.
Then $|p-y|<\delta$, so $-\delta<p-y<\delta$.
Hence, $y-\delta<p<y+\delta$, so $y-\delta<p$ and $p<y+\delta$.
Since $\delta \leq x+\epsilon-y$, then $y+\delta \leq x+\epsilon$.
Since $p<y+\delta$ and $y+\delta \leq x+\epsilon$, then $p<x+\epsilon$.

Since $\delta \leq y-x+\epsilon$, then $x-\epsilon \leq y-\delta$.
Since $x-\epsilon \leq y-\delta$ and $y-\delta<p$, then $x-\epsilon<p$.
Since $x-\epsilon<p$ and $p<x+\epsilon$, then $x-\epsilon<p<x+\epsilon$, so $p \in(x-\epsilon, x+\epsilon)=$ $N(x ; \epsilon)$, as desired.

Exercise 23. The interval $(0, \infty)$ is an open subset of \mathbb{R}.
Proof. Since $(0, \infty)=\{x \in \mathbb{R}: x>0\}$, then $(0, \infty) \subset \mathbb{R}$.
Let $x \in(0, \infty)$.
Then $x>0$.
Let $\epsilon=x$.
Then $\epsilon>0$ and $N(x ; \epsilon)=N(x ; x)=(x-x, x+x)=(0,2 x)$.
Let $p \in N(x ; \epsilon)$.
Then $p \in(0,2 x)$, so $0<p<2 x$.
Hence, $0<p$, so $p \in(0, \infty)$.
Thus, $N(x ; \epsilon) \subset(0, \infty)$.
Therefore, there exists $\epsilon>0$ such that $N(x ; \epsilon) \subset(0, \infty)$, so x is an interior point of $(0, \infty)$.

Hence, every point in $(0, \infty)$ is an interior point of $(0, \infty)$, so $(0, \infty)$ is open.

Exercise 24. Let A be a set and $B=\mathbb{R}-A$.
Then every interior point of A is not an accumulation point of B.
Proof. Let x be an arbitrary interior point of A.
Then there exists $\epsilon>0$ such that $N(x ; \epsilon) \subset A$.
We prove x is not an accumulation point of B by contradiction.
Suppose x is an accumulation point of B.
Since $\epsilon>0$, then $N^{\prime}(x ; \epsilon) \cap B \neq \emptyset$.
Hence, there exists p such that $p \in N^{\prime}(x ; \epsilon) \cap B$, so $p \in N^{\prime}(x ; \epsilon)$ and $p \in B$.
Since $p \in N^{\prime}(x ; \epsilon)$ and $N^{\prime}(x ; \epsilon) \subset N(x ; \epsilon) \subset A$, then $p \in A$.
Since $p \in B$, then $p \in \mathbb{R}$ and $p \notin A$.
Thus, we have $p \in A$ and $p \notin A$, a contradiction.
Therefore, x is not an accumulation point of B, as desired.
Exercise 25. Every real number is an accumulation point of irrational numbers.
Proof. Let $\mathbb{R}-\mathbb{Q}$ be the set of all irrational numbers.
Let x be an arbitrary real number.
We must prove x is an accumulation point of $\mathbb{R}-\mathbb{Q}$.
Let $\epsilon>0$.
Then $\epsilon>x-x$, so $x+\epsilon>x$ and $x>x-\epsilon$.
Between any two distinct real numbers is an irrational number.
Since $x, x+\epsilon \in \mathbb{R}$ and $x<x+\epsilon$, then there exists $r \in \mathbb{R}-\mathbb{Q}$ such that $x<r<x+\epsilon$.

Hence, $x-\epsilon<x<r<x+\epsilon$, so $x-\epsilon<r<x+\epsilon$.
Thus, $r \in(x-\epsilon, x+\epsilon)$, so $r \in N(x ; \epsilon)$.
Since $r>x$, then $r \neq x$, so $r \in N^{\prime}(x ; \epsilon)$.

Thus, $r \in N^{\prime}(x ; \epsilon) \cap(\mathbb{R}-\mathbb{Q})$, so x is an accumulation point of $\mathbb{R}-\mathbb{Q}$, as desired.

Exercise 26. Let S be a set of real numbers.
If there exists $\delta>0$ such that the distance between every distinct pair of elements of S is greater than δ, then S has no accumulation points.

Proof. Suppose there exists $\delta>0$ such that the distance between every distinct pair of elements of S is greater than δ.

Then for every $a, b \in S$ with $a \neq b$, then $d(a, b)=|a-b|>\delta$.
We prove S has no accumulation points by contradiction.
Suppose S has an accumulation point.
Then there exists x such that x is an accumulation point of S.
Since $\delta>0$, then $\frac{\delta}{2}>0$, so $N^{\prime}\left(x ; \frac{\delta}{2}\right) \cap S \neq \emptyset$.
Hence, there exists a point a such that $a \in N^{\prime}\left(x ; \frac{\delta}{2}\right) \cap S$, so $a \in N^{\prime}\left(x ; \frac{\delta}{2}\right)$ and $a \in S$.

Since $a \in N^{\prime}\left(x ; \frac{\delta}{2}\right)$, then $a \in N\left(x ; \frac{\delta}{2}\right)$, so $d(a, x)<\frac{\delta}{2}$.
Since $a \in N\left(x ; \frac{\delta}{2}\right)$ and $a \in S$, then $a \in N\left(x ; \frac{\delta}{2}\right) \cap S$.
Since x is an accumulation point of S and $\frac{\delta}{2}>0$, then the set $N\left(x ; \frac{\delta}{2}\right) \cap S$ is infinite.

Thus, there is at least one other point of the set $N\left(x ; \frac{\delta}{2}\right) \cap S$.
Therefore, there exists a point b such that $b \in N\left(x ; \frac{\delta}{2}\right) \cap S$ and $b \neq a$.
Hence, $b \in N\left(x ; \frac{\delta}{2}\right)$ and $b \in S$.
Since $b \in N\left(x ; \frac{\delta}{2}\right)$, then $d(x, b)<\frac{\delta}{2}$.
Since $d(a, x)<\frac{\delta}{2}$ and $d(x, b)<\frac{\delta}{2}$, then $d(a, x)+d(x, b)<\delta$.
By the triangle inequality we have $d(a, x)+d(x, b) \geq d(a, b)$.
Since $d(a, b) \leq d(a, x)+d(x, b)$ and $d(a, x)+d(x, b)<\delta$, then $d(a, b)<\delta$.
Since $a \in S$ and $b \in S$ and $a \neq b$, then $d(a, b)>\delta$.
Thus, we have a contradiction $d(a, b)<\delta$ and $d(a, b)>\delta$.
Therefore, S does not have an accumulation point.
Exercise 27. True or false?
If p is an accumulation point of a set A and a set B, then p is an accumulation point of $A \cap B$.

Proof. This is a false statement.
Here is a counterexample.
Let $A=[0, \infty)$ and $B=(-\infty, 0]$.
Then $A \cap B=\{0\}$.
Observe that 0 is an accumulation point of A and B.
Since $A \cap B$ is a finite set, then $A \cap B$ does not have an accumulation point, so 0 cannot be an accumulation point of $A \cap B$.

Exercise 28. Every interior point is an accumulation point, but not conversely.

Proof. Let S be a set of real numbers.
We must prove every interior point of S is an accumulation point of S.
Either $S=\emptyset$ or $S \neq \emptyset$.
We consider these cases separately.
Case 1: Suppose $S=\emptyset$.
Since there is no interior point of \emptyset, then for any x, x is not an interior point of \emptyset.

Hence, for any x, the conditional ' x is an interior point of \emptyset implies x is an accumulation point of \emptyset ' is vacuously true.

Therefore, every interior point of \emptyset is an accumulation point of \emptyset, so every interior point of S is an accumulation point of S.

Case 2: Suppose $S \neq \emptyset$.
Then there is at least one element of S.
Let $x \in S$ such that x is an interior point of S.
Then there exists $\delta>0$ such that $N(x ; \delta) \subset S$.
Let $\epsilon>0$ be given.
To prove x is an accumulation point of S, we must prove $N^{\prime}(x ; \epsilon) \cap S \neq \emptyset$.
Let $M=\min \{\delta, \epsilon\}$.
Then $M \leq \delta$ and $M \leq \epsilon$.
Since $\delta>0$ and $\epsilon>0$, then $M>0$, so $\frac{M}{2}>0$.
Since $\frac{1}{2}<1$ and $M>0$, then $\frac{M}{2}<M$.
Let $p=x+\frac{M}{2}$.
Then $p-x=\frac{M}{2}>0$, so $d(p, x)=|p-x|=p-x=\frac{M}{2}$.
Since $\frac{M}{2}<M \leq \delta$, then $d(p, x)<\delta$, so $p \in N(x ; \delta)$.
Since $N(x ; \delta) \subset S$, then $p \in S$.
Since $d(p, x)=\frac{M}{2}<M \leq \epsilon$, then $d(p, x)<\epsilon$, so $p \in N(x ; \epsilon)$.
Since $p-x>0$, then $p>x$, so $p \neq x$.
Hence, $p \in N^{\prime}(x ; \epsilon)$.
Therefore, $p \in N^{\prime}(x ; \epsilon) \cap S$, so $N^{\prime}(x ; \epsilon) \cap S \neq \emptyset$, as desired.
Proof. To disprove the converse, we must prove 'every accumulation point is an interior point' is false.

Hence, we must prove 'some accumulation point is not an interior point'.
Let $a, b \in \mathbb{R}$ with $a<b$.
Let (a, b) be the open interval.
Since $a<b$, then a is an accumulation point of (a, b).
Since $(a, b) \neq \emptyset$, then every interior point of (a, b) is an element of (a, b).
Hence, if x is an interior point of (a, b), then $x \in(a, b)$, so if $x \notin(a, b)$, then x is not an interior point of (a, b).

In particular, since $a \notin(a, b)$, then a is not an interior point of (a, b).
Therefore, a is an accumulation point of (a, b), but a is not an interior point of (a, b).

Exercise 29. Let S be a set of real numbers.
If $\sup S$ exists, then either $\sup S \in S$ or $\sup S$ is an accumulation point of S.

Proof. We prove by contrapositive.
Suppose $\sup S$ exists and sup $S \notin S$.
To prove $\sup S$ is an accumulation point of S, let $\epsilon>0$ be given.
We must prove there exists $x \in S$ such that $x \in N^{\prime}(\sup S ; \epsilon)$.
Since $\epsilon>0=\sup S-\sup S$, then $\epsilon>\sup S-\sup S$, so $\sup S>\sup S-\epsilon$.
Since $\sup S-\epsilon<\sup S$, then $\sup S-\epsilon$ is not an upper bound of S.
Hence, there exists $x \in S$ such that $x>\sup S-\epsilon$.
Since $\sup S$ is an upper bound of S and $x \in S$, then $x \leq \sup S$, so either $x<\sup S$ or $x=\sup S$.

Since $x \in S$ and $\sup S \notin S$, then $x \neq \sup S$.
Thus, $x<\sup S$, so $\sup S-x>0$.
Since $\sup S-\epsilon<x$, then $\sup S-x<\epsilon$.
Hence, $d(x, \sup S)=|x-\sup S|=|\sup S-x|=\sup S-x<\epsilon$, so $d(x, \sup S)<\epsilon$.

Thus, $x \in N(\sup S ; \epsilon)$.
Since $x \neq \sup S$, then $x \in N^{\prime}(\sup S ; \epsilon)$.
Therefore, there exists $x \in S$ such that $x \in N^{\prime}(\sup S ; \epsilon)$, as desired.
Exercise 30. Let S be a set of real numbers.
If $\inf S$ exists, then either $\inf S \in S$ or $\inf S$ is an accumulation point of S.
Proof. We prove by contrapositive.
Suppose $\inf S$ exists and $\inf S \notin S$.
To prove $\inf S$ is an accumulation point of S, let $\epsilon>0$ be given.
We must prove there exists $x \in S$ such that $x \in N^{\prime}(\inf S ; \epsilon)$.
Since $\epsilon>0=\inf S-\inf S$, then $\epsilon>\inf S-\inf S$, so $\inf S+\epsilon>\inf S$.
Since $\inf S+\epsilon>\inf S$, then $\inf S+\epsilon$ is not a lower bound of S.
Hence, there exists $x \in S$ such that $x<\inf S+\epsilon$.
Since $\inf S$ is a lower bound of S and $x \in S$, then $\inf S \leq x$, so either $\inf S<x$ or $\inf S=x$.

Since $x \in S$ and $\inf S \notin S$, then $x \neq \inf S$.
Thus, $\inf S<x$, so $x-\inf S>0$.
Since $x<\inf S+\epsilon$, then $x-\inf S<\epsilon$.
Hence, $d(x, \inf S)=|x-\inf S|=x-\inf S<\epsilon$, so $d(x, \inf S)<\epsilon$.
Thus, $x \in N(\inf S ; \epsilon)$.
Since $x \neq \inf S$, then $x \in N^{\prime}(\inf S ; \epsilon)$.
Therefore, there exists $x \in S$ such that $x \in N^{\prime}(\inf S ; \epsilon)$, as desired.
Exercise 31. Let $S \subset \mathbb{R}$ such that at least one point of accumulation of S exists.

Then for every $\epsilon>0$ there exist points $x, y \in S$ such that $0<|x-y|<\epsilon$.
Proof. Let $\epsilon>0$ be given.
Then $\frac{\epsilon}{2}>0$.
Since at least one accumulation point of S exists, let p be an accumulation point of S.

Then $N^{\prime}\left(p ; \frac{\epsilon}{2}\right) \cap S \neq \emptyset$, so there exists x such that $x \in N^{\prime}\left(p ; \frac{\epsilon}{2}\right) \cap S$.

Hence, $x \in N^{\prime}\left(p ; \frac{\epsilon}{2}\right)$ and $x \in S$.
Since $x \in N^{\prime}\left(p ; \frac{\epsilon}{2}\right)$ and $N^{\prime}\left(p ; \frac{\epsilon}{2}\right) \subset N\left(p ; \frac{\epsilon}{2}\right)$, then $x \in N\left(p ; \frac{\epsilon}{2}\right)$, so $x \in$ $N\left(p ; \frac{\epsilon}{2}\right) \cap S$.

Since p is an accumulation point of S and $\frac{\epsilon}{2}>0$, then the set $N\left(p ; \frac{\epsilon}{2}\right) \cap S$ is infinite.

Thus, there exists at least one other point of $N\left(p ; \frac{\epsilon}{2}\right) \cap S$.
Hence, there exists y such that $y \in N\left(p ; \frac{\epsilon}{2}\right) \cap S$ and $y \neq x$.
Since $y \in N\left(p ; \frac{\epsilon}{2}\right) \cap S$, then $y \in N\left(p ; \frac{\epsilon}{2}\right)$ and $y \in S$.
Since $x \in N\left(p ; \frac{\epsilon}{2}\right)$ and $y \in N\left(p ; \frac{\epsilon}{2}\right)$, then $d(p, x)<\frac{\epsilon}{2}$ and $d(p, y)<\frac{\epsilon}{2}$, so $|p-x|<\frac{\epsilon}{2}$ and $|p-y|<\frac{\epsilon}{2}$.

Since $x \neq y$, then $d(x, y)>0$, so $|x-y|>0$.
Observe that

$$
\begin{aligned}
|x-y| & =|(x-p)+(p-y)| \\
& \leq|x-p|+|p-y| \\
& =|p-x|+|p-y| \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon .
\end{aligned}
$$

Thus, $|x-y|<\epsilon$, so $0<|x-y|<\epsilon$, as desired.
Exercise 32. Let $\left(a_{n}\right)$ be a sequence of points such that $\lim _{n \rightarrow \infty} a_{n}=L$ for some real number L.

Let L be an interior point of a set S.
Then there is an integer N such that $a_{n} \in S$ for all $n>N$.
Proof. Since L is an interior point of S, then there exists $\epsilon>0$ such that $N(L ; \epsilon) \subset S$.

Since $\lim _{n \rightarrow \infty} a_{n}=L$, then there exists $N \in \mathbb{N}$ such that if $n>N$, then $\left|a_{n}-L\right|<\epsilon$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $\left|a_{n}-L\right|<\epsilon$, so $d\left(a_{n}, L\right)<\epsilon$.
Thus, $a_{n} \in N(L ; \epsilon)$.
Since $N(L ; \epsilon) \subset S$, then $a_{n} \in S$.
Hence, $a_{n} \in S$ for all integers $n>N$.
Therefore, there exists $N \in \mathbb{N}$ such that $a_{n} \in S$ for all integers $n>N$.
Exercise 33. Let $\left(x_{n}\right)$ be a sequence of real numbers such that $\lim _{n \rightarrow \infty} x_{n}=L$ for some real number L and $x_{n} \neq L$ for all $n \in \mathbb{N}$.

Then the set $\left\{x_{n}: n \in \mathbb{N}\right\}$ has exactly one accumulation point, L.
Proof. Let S be the range of the sequence $\left(x_{n}\right)$.
Then $S=\left\{x_{n}: n \in \mathbb{N}\right\}$.
We must prove L is the unique accumulation point of S.

Existence:

We prove L is an accumulation point of S.

Let $\epsilon>0$ be given.
Since $\lim _{n \rightarrow \infty} x_{n}=L$, then there exists $N \in \mathbb{N}$ such that if $n>N$, then $\left|x_{n}-L\right|<\epsilon$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $\left|x_{n}-L\right|<\epsilon$, so $d\left(x_{n}, L\right)<\epsilon$.
Hence, $x_{n} \in N(L ; \epsilon)$.
Since $n \in \mathbb{N}$, then $x_{n} \neq L$, so $x_{n} \in N^{\prime}(L ; \epsilon)$.
Since $n \in \mathbb{N}$, then $x_{n} \in S$, so $x_{n} \in N^{\prime}(L ; \epsilon) \cap S$.
Therefore, $N^{\prime}(L ; \epsilon) \cap S \neq \emptyset$, so L is an accumulation point of S.

Uniqueness:

Suppose x is an accumulation point of S.
We must prove $x=L$.
Let $\epsilon>0$ be given.
Then $\frac{\epsilon}{2}>0$.
Since x is an accumulation point of S, then $N^{\prime}\left(x ; \frac{\epsilon}{2}\right) \cap S \neq \emptyset$, so there exists p such that $p \in N^{\prime}\left(x ; \frac{\epsilon}{2}\right) \cap S$.

Hence, $p \in N^{\prime}\left(x ; \frac{\epsilon}{2}\right)$ and $p \in S$.
Since $p \in S$, then there exists $m \in \mathbb{N}$ such that $p=x_{m}$.
Thus, $x_{m} \in N^{\prime}\left(x ; \frac{\epsilon}{2}\right)$, so $x_{m} \in N\left(x ; \frac{\epsilon}{2}\right)$ and $x_{m} \neq x$.
Hence, $d\left(x, x_{m}\right)<\frac{\epsilon}{2}$, so $\left|x-x_{m}\right|<\frac{\epsilon}{2}$.
Since $\lim _{n \rightarrow \infty} x_{n}=L$ and $\frac{\epsilon}{2}>0$, then there exists $N \in \mathbb{N}$ such that if $n>N$, then $\left|x_{n}-L\right|<\frac{\epsilon}{2}$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $\left|x_{n}-L\right|<\frac{\epsilon}{2}$.
We're stuck!!!!!
Exercise 34. The interior of a set is open.
Proof. Let S be a set.
Let S° be the interior of S.
Then $S^{\circ}=\{x: x$ is an interior point of $S\}$.
We must prove S° is open.
Either $S^{\circ}=\emptyset$ or $S^{\circ} \neq \emptyset$.
We consider these cases separately.
Case 1: Suppose $S^{\circ}=\emptyset$.
Since the empty set is open, then S° is open.
Case 2: Suppose $S^{\circ} \neq \emptyset$.
Then there is at least one element of S°.
Let $x \in S^{\circ}$.
Then x is an interior point of S, so there exists $\epsilon>0$ such that $N(x ; \epsilon) \subset S$.
To prove S° is open, we must prove x is an interior point of S°.
Since $N(x ; \epsilon) \neq \emptyset$, then there is at least one element of $N(x ; \epsilon)$.
Let $p \in N(x ; \epsilon)$.
Then $p \in(x-\epsilon, x+\epsilon)$.

Since $(x-\epsilon, x+\epsilon)$ is an open interval and every point in an open interval is an interior point, then p is an interior point of $(x-\epsilon, x+\epsilon)$, so p is an interior point of $N(x ; \epsilon)$.

Hence, there exists $\delta>0$ such that $N(p ; \delta) \subset N(x ; \epsilon)$.
Since $N(x ; \epsilon) \subset S$, then $N(p ; \delta) \subset S$.
Thus, there exists $\delta>0$ such that $N(p ; \delta) \subset S$, so p is an interior point of S.

Hence, $p \in S^{\circ}$, so $N(x ; \epsilon) \subset S^{\circ}$.
Therefore, there exists $\epsilon>0$ such that $N(x ; \epsilon) \subset S^{\circ}$, so x is an interior point of S°, as desired

Exercise 35. Let S be a set.
If $S^{\prime}=\emptyset$, then S is closed.
Proof. Let S^{\prime} be the derived set of S.
Then $S^{\prime}=\{x: x$ is an accumulation point of $S\}$.
Suppose $S^{\prime}=\emptyset$.
Then there is no accumulation point of S.
Therefore, S is a set with no accumulation points, so S is closed.
Exercise 36. Let A and B be closed sets.
Then $A \cup B$ is closed and $A \cap B$ is closed.
Proof. We prove $A \cup B$ is closed.
Let x be an accumulation point of $A \cup B$.
Let $\epsilon>0$ be given.
Since x is an accumulation point of $A \cup B$, then $N^{\prime}(x ; \epsilon) \cap(A \cup B) \neq \emptyset$, so there exists p such that $p \in N^{\prime}(x ; \epsilon) \cap(A \cup B)$.

Hence, $p \in N^{\prime}(x ; \epsilon)$ and $p \in A \cup B$.
Since $p \in A \cup B$, then either $p \in A$ or $p \in B$.
We consider these cases separately.
Case 1: Suppose $p \in A$.
Since $p \in N^{\prime}(x ; \epsilon)$ and $p \in A$, then $p \in N^{\prime}(x ; \epsilon) \cap A$, so $N^{\prime}(x ; \epsilon) \cap A \neq \emptyset$.
Thus, x is an accumulation point of A.
Since A is closed, then $x \in A$.
Case 2: Suppose $p \in B$.
Since $p \in N^{\prime}(x ; \epsilon)$ and $p \in B$, then $p \in N^{\prime}(x ; \epsilon) \cap B$, so $N^{\prime}(x ; \epsilon) \cap B \neq \emptyset$.
Thus, x is an accumulation point of B.
Since B is closed, then $x \in B$.
Hence, either $x \in A$ or $x \in B$, so $x \in A \cup B$.
Therefore, $A \cup B$ is closed.
Proof. We prove $A \cap B$ is closed.
Let x be an accumulation point of $A \cap B$.
Let $\epsilon>0$ be given.
Since x is an accumulation point of $A \cap B$, then $N^{\prime}(x ; \epsilon) \cap(A \cap B) \neq \emptyset$, so there exists p such that $p \in N^{\prime}(x ; \epsilon) \cap(A \cap B)$.

Hence, $p \in N^{\prime}(x ; \epsilon)$ and $p \in A \cap B$.
Since $p \in A \cap B$, then $p \in A$ and $p \in B$.
Since $p \in N^{\prime}(x ; \epsilon)$ and $p \in A$, then $p \in N^{\prime}(x ; \epsilon) \cap A$, so $N^{\prime}(x ; \epsilon) \cap A \neq \emptyset$.
Thus, x is an accumulation point of A.
Since A is closed, then $x \in A$.
Since $p \in N^{\prime}(x ; \epsilon)$ and $p \in B$, then $p \in N^{\prime}(x ; \epsilon) \cap B$, so $N^{\prime}(x ; \epsilon) \cap B \neq \emptyset$.
Thus, x is an accumulation point of B.
Since B is closed, then $x \in B$.
Hence, $x \in A$ and $x \in B$, so $x \in A \cap B$.
Therefore, $A \cap B$ is closed.
Exercise 37. The derived set of a set is closed.
Proof. Let S be a set.
Let S^{\prime} be the derived set of S.
Then $S^{\prime}=\{x: x$ is an accumulation point of $S\}$.
Let $S^{\prime \prime}$ be the derived set of S^{\prime}.
Then $S^{\prime \prime}=\left\{x: x\right.$ is an accumulation point of $\left.S^{\prime}\right\}$.
We must prove S^{\prime} is closed.
Either $S^{\prime \prime}=\emptyset$ or $S^{\prime \prime} \neq \emptyset$.
We consider these cases separately.
Case 1: Suppose $S^{\prime \prime}=\emptyset$.
Then there is no accumulation point of S^{\prime}.
Therefore, S^{\prime} is a set with no accumulation points, so S^{\prime} is closed.
Case 2: Suppose $S^{\prime \prime} \neq \emptyset$.
Then there is at least one element of $S^{\prime \prime}$.
Let $x \in S^{\prime \prime}$.
Then x is an accumulation point of S^{\prime}.
To prove S^{\prime} is closed, we must prove $x \in S^{\prime}$, so we must prove x is an accumulation point of S.

Hence, we must prove $N^{\prime}(x ; \epsilon) \cap S \neq \emptyset$ for every $\epsilon>0$.
Let $\epsilon>0$ be given.
Since x is an accumulation point of S^{\prime}, then $N^{\prime}(x ; \epsilon) \cap S^{\prime} \neq \emptyset$.
Thus, there exists p such that $p \in N^{\prime}(x ; \epsilon) \cap S^{\prime}$, so $p \in N^{\prime}(x ; \epsilon)$ and $p \in S^{\prime}$.
Since $p \in N^{\prime}(x ; \epsilon)$, then $p \in N(x ; \epsilon)$ and $p \neq x$.
Since $p \neq x$, then either $p<x$ or $p>x$.
We consider these cases separately.
Case 2a: Suppose $p>x$.
Since $p \in N(x ; \epsilon)$, then $p \in(x-\epsilon, x+\epsilon)$, so $x-\epsilon<p<x+\epsilon$.
Hence, $p<x+\epsilon$.
Since $x<p$ and $p<x+\epsilon$, then $x<p<x+\epsilon$, so $p \in(x, x+\epsilon)$.
Since the open interval $(x, x+\epsilon)$ is open, then p is an interior point of $(x, x+\epsilon)$.

Thus, there exists $\delta>0$ such that $N(p ; \delta) \subset(x, x+\epsilon)$.
Since $p \in S^{\prime}$, then p is an accumulation point of S, so $N^{\prime}(p ; \delta) \cap S \neq \emptyset$.
Thus, there exists q such that $q \in N^{\prime}(p ; \delta) \cap S$, so $q \in N^{\prime}(p ; \delta)$ and $q \in S$.

Since $q \in N^{\prime}(p ; \delta)$, then $q \in N(p ; \delta)$.
Since $N(p ; \delta) \subset(x, x+\epsilon) \subset(x-\epsilon, x+\epsilon)$, then $q \in(x-\epsilon, x+\epsilon)$, so $q \in N(x ; \epsilon)$.
We prove $q \neq x$ by contradiction.
Suppose $q=x$.
Since $q \in N(p ; \delta)$ and $N(p ; \delta) \subset(x, x+\epsilon)$, then $q \in(x, x+\epsilon)$, so $x<q<x+\epsilon$.
Thus, $x<q$.
But, this contradicts the assumption $x=q$.
Hence, $q \neq x$.
Since $q \in N(x ; \epsilon)$ and $q \neq x$, then $q \in N^{\prime}(x ; \epsilon)$.
Thus, $q \in N^{\prime}(x ; \epsilon)$ and $q \in S$, so $q \in N^{\prime}(x ; \epsilon) \cap S$.
Therefore, $N^{\prime}(x ; \epsilon) \cap S \neq \emptyset$.
Case 2b: Suppose $p<x$.
Since $p \in N(x ; \epsilon)$, then $p \in(x-\epsilon, x+\epsilon)$, so $x-\epsilon<p<x+\epsilon$.
Hence, $x-\epsilon<p$.
Since $x-\epsilon<p$ and $p<x$, then $x-\epsilon<p<x$, so $p \in(x-\epsilon, x)$.
Since the open interval $(x-\epsilon, x)$ is open, then p is an interior point of $(x-\epsilon, x)$.

Thus, there exists $\delta>0$ such that $N(p ; \delta) \subset(x-\epsilon, x)$.
Since $p \in S^{\prime}$, then p is an accumulation point of S, so $N^{\prime}(p ; \delta) \cap S \neq \emptyset$.
Thus, there exists q such that $q \in N^{\prime}(p ; \delta) \cap S$, so $q \in N^{\prime}(p ; \delta)$ and $q \in S$.
Since $q \in N^{\prime}(p ; \delta)$, then $q \in N(p ; \delta)$.
Since $N(p ; \delta) \subset(x-\epsilon, x) \subset(x-\epsilon, x+\epsilon)$, then $q \in(x-\epsilon, x+\epsilon)$, so $q \in N(x ; \epsilon)$.
We prove $q \neq x$ by contradiction.
Suppose $q=x$.
Since $q \in N(p ; \delta)$ and $N(p ; \delta) \subset(x-\epsilon, x)$, then $q \in(x-\epsilon, x)$, so $x-\epsilon<q<x$.
Thus, $q<x$.
But, this contradicts the assumption $q=x$.
Hence, $q \neq x$.
Since $q \in N(x ; \epsilon)$ and $q \neq x$, then $q \in N^{\prime}(x ; \epsilon)$.
Thus, $q \in N^{\prime}(x ; \epsilon)$ and $q \in S$, so $q \in N^{\prime}(x ; \epsilon) \cap S$.
Therefore, $N^{\prime}(x ; \epsilon) \cap S \neq \emptyset$.
Thus, in either case, $N^{\prime}(x ; \epsilon) \cap S \neq \emptyset$, so x is an accumulation point of S, as desired.

Exercise 38. Let S be a set.
If S is closed and $a \in S$, then the set $\{x \in S: x \leq a\}$ is closed.
Proof. Suppose S is closed and $a \in S$.
Let $T=\{x \in S: x \leq a\}$.
Then $T \subset S$.
We must prove T is closed.
Either there is an accumulation point of T or there is not.
We consider these cases separately.
Case 1: Suppose there is no accumulation point of T.
Then T is a set with no accumulation points.
Since every set with no accumulation points is closed, then T is closed.

Case 2: Suppose there is some accumulation point of T.
Then there is at least one accumulation point of T.
Let x be an arbitrary accumulation point of T.
Since x is an accumulation point of T and $T \subset S$, then x is an accumulation point of S.

Since S is closed, then $x \in S$.
We prove $x \leq a$ by contradiction.
Suppose $x>a$.
Then $x-a>0$.
Since x is an accumulation point of T, then $N^{\prime}(x ; x-a) \cap T \neq \emptyset$, so there exists p such that $p \in N^{\prime}(x ; x-a) \cap T$.

Hence, $p \in N^{\prime}(x ; x-a)$ and $p \in T$.
Since $p \in N^{\prime}(x ; x-a)$, then $p \in N(x ; x-a)$, so $p \in(a, 2 x-a)$.
Thus, $a<p<2 x-a$, so $a<p$.
Since $p \in T$, then $p \leq a$.
Hence, we have $p \leq a$ and $p>a$, a violation of trichotomy.
Therefore, $x \leq a$.
Since $x \in S$ and $x \leq a$, then $x \in T$, so T is closed.
Exercise 39. Let $S_{1}=\left(-3, \frac{2}{3}\right)$.
Let $S_{2}=\left(-1, \frac{1}{2}\right)$.
Let $S_{3}=\left(0, \frac{1}{2}\right)$.
Let $S_{4}=\left(\frac{1}{3}, \frac{2}{3}\right)$.
Let $S_{5}=\left(\frac{1}{2}, 1\right)$.
Let $S_{6}=\left(\frac{9}{10}, 2\right)$.
Let $S_{7}=\left(\frac{2}{3}, \frac{3}{2}\right)$.
Let $\mathcal{F}=\left\{S_{k}: n \in \mathbb{N}, 1 \leq k \leq 7\right\}$.
Then
a. The collection of sets \mathcal{F} is a finite open covering of $[0,1]$.
b. The subcollection $\left\{S_{1}, S_{5}, S_{6}\right\}$ of \mathcal{F} is a subcover of $[0,1]$.
c. The subcollection $\left\{S_{1}, S_{2}, S_{3}, S_{7}\right\}$ of \mathcal{F} is not a cover of $[0,1]$.

Proof. We prove a.
Since $\cup_{\mathcal{F}}=\cup_{k=1}^{7} S_{k}=S_{1} \cup S_{2} \cup \ldots \cup S_{7}=(-3,2) \supset[0,1]$, then \mathcal{F} is a covering of $[0,1]$.

Since each open interval S_{k} of \mathcal{F} is an open set, then \mathcal{F} is an open covering of $[0,1]$.

Since \mathcal{F} is a finite set, then \mathcal{F} is a finite open covering of $[0,1]$.
Proof. We prove b.
Let $\mathcal{G}=\left\{S_{1}, S_{5}, S_{6}\right\}$.
Since $\cup_{\mathcal{G}}=S_{1} \cup S_{5} \cup S_{6}=(-3,2) \supset[0,1]$, then \mathcal{G} is a covering of [0, 1].
Since $\mathcal{G}=\left\{S_{1}, S_{5}, S_{6}\right\} \subset\left\{S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}, S_{7}\right\}=\mathcal{F}$, then \mathcal{G} is a subcovering of $[0,1]$.

Proof. We prove c.
Let $\mathcal{H}=\left\{S_{1}, S_{2}, S_{3}, S_{7}\right\}$.
Since $\frac{2}{3} \notin\left(-3, \frac{2}{3}\right)$ and $\frac{2}{3} \notin\left(\frac{2}{3}, \frac{3}{2}\right)$, then $\frac{2}{3} \notin\left(-3, \frac{2}{3}\right) \cup\left(\frac{2}{3}, \frac{3}{2}\right)$.
Since $\cup_{\mathcal{H}}=S_{1} \cup S_{2} \cup S_{3} \cup S_{7}=\left(-3, \frac{2}{3}\right) \cup\left(\frac{2}{3}, \frac{3}{2}\right)$, then $\frac{2}{3} \notin \cup_{\mathcal{H}}$.
Since $\frac{2}{3} \in[0,1]$, but $\frac{2}{3} \notin \cup_{\mathcal{H}}$, then $[0,1] \not \subset \mathcal{H}$, so \mathcal{H} is not a covering of $[0,1]$.

Exercise 40. Let $S=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$.
Let $\mathcal{F}=\left\{N\left(\frac{1}{n} ; \frac{1}{n(n+1)}\right): n \in \mathbb{N}\right\}$.
Then \mathcal{F} is an open covering of S.
Proof. We prove \mathcal{F} is a covering of S.
Since $1 \in \mathbb{N}$ and $\frac{1}{1}=1 \in S$, then $S \neq \emptyset$.
Let $x \in S$.
Then there exists $n \in \mathbb{N}$ such that $x=\frac{1}{n}$.
Since $n \in \mathbb{N}$, then $n>0$.
Since $n+1>n$ and $n>0$, then $n+1>0$.
Since $n>0$ and $n+1>0$, then $n(n+1)>0$, so $\frac{1}{n(n+1)}>0$.
Hence, $\frac{1}{n(n+1)}>\frac{1}{n}-\frac{1}{n}$, so $\frac{1}{n}+\frac{1}{n(n+1)}>\frac{1}{n}$ and $\frac{1}{n}>\frac{1}{n}-\frac{1}{n(n+1)}$.
Thus, $\frac{1}{n}-\frac{1}{n(n+1)}<\frac{1}{n}<\frac{1}{n}+\frac{1}{n(n+1)}$, so $\frac{1}{n} \in\left(\frac{1}{n}-\frac{1}{n(n+1)}, \frac{1}{n}+\frac{1}{n(n+1)}\right)$.
Therefore, $\frac{1}{n} \in N\left(\frac{1}{n} ; \frac{1}{n(n+1)}\right)$, so $x \in N\left(\frac{1}{n} ; \frac{1}{n(n+1)}\right)$.
Let $A=N\left(\frac{1}{n} ; \frac{1}{n(n+1)}\right)$.
Then $x \in A$.
Since $n \in \mathbb{N}$ and $A=N\left(\frac{1}{n} ; \frac{1}{n(n+1)}\right)$, then $A \in \mathcal{F}$.
Thus, there exists $A \in \mathcal{F}$ such that $x \in A$, so $x \in \cup \mathcal{F}$.
Therefore, $S \subset \cup \mathcal{F}$, so \mathcal{F} is a covering of S.
For each $n \in \mathbb{N}$, the set $N\left(\frac{1}{n} ; \frac{1}{n(n+1)}\right)$ is an open interval, so $N\left(\frac{1}{n} ; \frac{1}{n(n+1)}\right)$ is an open set.

Thus, $N\left(\frac{1}{n} ; \frac{1}{n(n+1)}\right)$ is an open set for each $n \in \mathbb{N}$, so each set in \mathcal{F} is open. Therefore, \mathcal{F} is an open covering of S.
Exercise 41. For each $a \in \mathbb{R}$, let $S_{a}=\left(a, a+\frac{1}{4}\right)$.
Let I be the index set $\left[0, \frac{3}{4}\right]$.
Let $\mathcal{F}=\left\{S_{a}: a \in I\right\}$.
Then
a. The collection of sets \mathcal{F} is an open covering of $(0,1)$.
b. The subcollection $\left\{S_{0}, S_{\frac{1}{8}}, S_{\frac{1}{4}}, S_{\frac{3}{8}}, S_{\frac{1}{2}}, S_{\frac{5}{8}}, S_{\frac{3}{4}}\right\}$ of \mathcal{F} is a finite subcover of $(0,1)$.
c. The interval $(0,1)$ is not compact.

Proof. We prove a.
To prove \mathcal{F} is a covering of the open unit interval $(0,1)$, we prove $(0,1) \subset \cup_{\mathcal{F}}$.
Let $x \in(0,1)$.
Then $0<x<1$, so $0<x$ and $x<1$.
We must prove there exists $S_{a} \in \mathcal{F}$ such that $x \in S_{a}$.
Let $m=\max \left\{0, x-\frac{1}{4}\right\}$.

Let $M=\min \left\{\frac{3}{4}, x\right\}$.
We first prove $m<M$.
Since either $m=0$ or $m=x-\frac{1}{4}$ and either $M=\frac{3}{4}$ or $M=x$, then either $m=0$ and $M=\frac{3}{4}$ or $m=0$ and $M=x$ or $m=x-\frac{1}{4}$ and $M=\frac{3}{4}$ or $m=x-\frac{1}{4}$ and $M=x$.

Thus, we have 4 cases to consider.
We consider these cases separately.
Case 1: Suppose $m=0$ and $M=\frac{3}{4}$.
Since $0<\frac{3}{4}$, then $m<M$.
Case 2: Suppose $m=0$ and $M=x$.
Since $0<x$, then $m<M$.
Case 3: Suppose $m=x-\frac{1}{4}$ and $M=\frac{3}{4}$.
Since $x<1$, then $x-\frac{1}{4}<\frac{3}{4}$, so $m<M$.
Case 4: Suppose $m=x-\frac{1}{4}$ and $M=x$.
Since $x-\frac{1}{4}<x$, then $m<M$.
Thus, in all cases, $m<M$.
Hence, then by density of \mathbb{R}, there exists $a \in \mathbb{R}$ such that $m<a<M$, so $m<a$ and $a<M$.

Since $0 \leq m$ and $m<a$, then $0<a$.
Since $a<M$ and $M \leq \frac{3}{4}$, then $a<\frac{3}{4}$.
Thus, $0<a<\frac{3}{4}$, so $a \in\left[0, \frac{3}{4}\right]=I$.
Hence, $S_{a} \in \mathcal{F}$.
Since $a<M$ and $M \leq x$, then $a<x$.
Since $x-\frac{1}{4} \leq m$ and $m<a$, then $x-\frac{1}{4}<a$, so $x<a+\frac{1}{4}$.
Thus, $a<x<a+\frac{1}{4}$, so $x \in\left(a, a+\frac{1}{4}\right)=S_{a}$.
Thus, there exists $S_{a} \in \mathcal{F}$ such that $x \in S_{a}$, so \mathcal{F} is a covering of $(0,1)$.
We prove each set in \mathcal{F} is open.
Since $S_{0}=\left(0, \frac{1}{4}\right) \in \mathcal{F}$, then $\mathcal{F} \neq \emptyset$.
Let S_{a} be an arbitrary set in \mathcal{F}.
Then $S_{a}=\left(a, a+\frac{1}{4}\right)$ for some real $a \in\left[0, \frac{3}{4}\right]$.
Since the open interval $\left(a, a+\frac{1}{4}\right)$ is open, then S_{a} is open.
Thus, every set in \mathcal{F} is open, so \mathcal{F} is an open covering of $(0,1)$.
Proof. We prove b.
Let $\mathcal{G}=\left\{S_{0}, S_{\frac{1}{8}}, S_{\frac{1}{4}}, S_{\frac{3}{8}}, S_{\frac{1}{2}}, S_{\frac{5}{8}}, S_{\frac{3}{4}}\right\}$.
We must prove \mathcal{G} is a finite subcover of $(0,1)$.
To prove $(0,1) \subset \cup_{\mathcal{G}}$, let $x \in(0,1)$.
Since $(0,1)=\left(0, \frac{1}{4}\right) \cup\left\{\frac{1}{4}\right\} \cup\left(\frac{1}{4}, \frac{1}{2}\right) \cup\left\{\frac{1}{2}\right\} \cup\left(\frac{1}{2}, \frac{3}{4}\right) \cup\left\{\frac{3}{4}\right\} \cup\left(\frac{3}{4}, 1\right)$, then either $x \in\left(0, \frac{1}{4}\right)$ or $x=\frac{1}{4}$ or $x \in\left(\frac{1}{4}, \frac{1}{2}\right)$ or $x=\frac{1}{2}$ or $x \in\left(\frac{1}{2}, \frac{3}{4}\right)$ or $x=\frac{3}{4}$ or $x \in\left(\frac{3}{4}, 1\right)$.

We consider these cases separately.
Case 1: Suppose $x \in\left(0, \frac{1}{4}\right)$.
Since $\left(0, \frac{1}{4}\right)=S_{0}$, then $x \in S_{0}$.
Since $S_{0} \subset \cup_{\mathcal{G}}$, then $x \in \cup_{\mathcal{G}}$.
Case 2: Suppose $x=\frac{1}{4}$.
Since $\frac{1}{8}<\frac{1}{4}<\frac{3}{8}$, then $\frac{1}{8}<x<\frac{3}{8}$, so $x \in\left(\frac{1}{8}, \frac{3}{8}\right)$.

Since $\left(\frac{1}{8}, \frac{3}{8}\right)=S_{\frac{1}{8}}$, then $x \in S_{\frac{1}{8}}$.
Since $S_{\frac{1}{8}} \subset \cup_{\mathcal{G}}$, then $x \in \cup_{\mathcal{G}}$.
Case 3: Suppose $x \in\left(\frac{1}{4}, \frac{1}{2}\right)$.
Since $\left(\frac{1}{4}, \frac{1}{2}\right)=S_{\frac{1}{4}}$, then $x \in S_{\frac{1}{4}}$.
Since $S_{\frac{1}{4}} \subset \cup_{\mathcal{G}}$, then $x \in \cup_{\mathcal{G}}$.
Case 4: Suppose $x=\frac{1}{2}$.
Since $\frac{3}{8}<\frac{1}{2}<\frac{5}{8}$, then $\frac{3}{8}<x<\frac{5}{8}$, so $x \in\left(\frac{3}{8}, \frac{5}{8}\right)$.
Since $\left(\frac{3}{8}, \frac{5}{8}\right)=\stackrel{8}{\frac{3}{8}}$, then $x \in S_{\frac{3}{8}}$.
Since $S_{\frac{3}{8}} \subset \cup_{\mathcal{G}}$, then $x \in \cup_{\mathcal{G}}$.
Case 5: Suppose $x \in\left(\frac{1}{2}, \frac{3}{4}\right)$.
Since $\left(\frac{1}{2}, \frac{3}{4}\right)=S_{\frac{1}{2}}$, then $x \in S_{\frac{1}{2}}$.
Since $S_{\frac{1}{2}} \subset \cup_{\mathcal{G}}$, then $x \in \cup_{\mathcal{G}}$.
Case 6: Suppose $x=\frac{3}{4}$.
Since $\frac{5}{8}<\frac{3}{4}<\frac{7}{8}$, then $\frac{5}{8}<x<\frac{7}{8}$, so $x \in\left(\frac{5}{8}, \frac{7}{8}\right)$.
Since $\left(\frac{5}{8}, \frac{7}{8}\right)=S_{\frac{5}{8}}$, then $x \in S_{\frac{5}{8}}$.
Since $S_{\frac{5}{8}} \subset \cup_{\mathcal{G}}$, then $x \in \cup_{\mathcal{G}}$.
Case 7: Suppose $x \in\left(\frac{3}{4}, 1\right)$.
Since $\left(\frac{3}{4}, 1\right)=S_{\frac{3}{4}}$, then $x \in S_{\frac{3}{4}}$.
Since $S_{\frac{3}{4}} \subset \cup_{\mathcal{G}}$, then $x \in \cup_{\mathcal{G}}$.
Thus, in all cases, $x \in \cup_{\mathcal{G}}$.
Hence, $(0,1) \subset \cup_{\mathcal{G}}$.
Since $(0,1) \subset \cup_{\mathcal{G}}$ and \mathcal{G} is a finite set and $\mathcal{G} \subset \mathcal{F}$, then \mathcal{G} is a finite subcover of $(0,1)$.

Proof. We prove c.
To prove $(0,1)$ is not compact,

