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Topology of R
Exercise 1. There are exactly two real numbers whose distance from the num-
ber 3 is 7.

Proof. Let S be the set of all real numbers whose distance from 3 is 7.
Then S = {x ∈ R : d(x, 3) = 7}.
We prove S = {−4, 10}.
Let x ∈ S.
Then x ∈ R and d(x, 3) = 7, so |x− 3| = 7.
Either x− 3 ≥ 0 or x− 3 < 0.
We consider these cases separately.
Case 1: Suppose x− 3 ≥ 0.
Then 7 = |x− 3| = x− 3, so 7 = x− 3.
Thus, x = 10.
Case 2: Suppose x− 3 < 0.
Then 7 = |x− 3| = −(x− 3) = −x+ 3 = 3− x, so 7 = 3− x.
Thus, x = −4.
Hence, either x = 10 or x = −4.
Therefore, x ∈ {−4, 10}, so S ⊂ {−4, 10}.

Let y ∈ {−4, 10}.
Then either y = −4 or y = 10.
We consider these cases separately.
Case 1: Suppose y = −4.
Since −4 ∈ R and d(−4, 3) = | − 4− 3| = | − 7| = 7, then y ∈ S.
Case 2: Suppose y = 10.
Since 10 ∈ R and d(10, 3) = |10− 3| = |7| = 7, then y ∈ S.
Hence, in all cases, y ∈ S, so {−4, 10} ⊂ S.
Since S ⊂ {−4, 10} and {−4, 10} ⊂ S, then S = {−4, 10}.
Since −4 and 10 are the only real numbers whose distance from the number

3 is 7, then there are exactly two real numbers whose distance from the number
3 is 7.



Exercise 2. Describe the set of all points in R which are within 5 units of the
number −2.

Proof. Let S be the set of all points in R which are within 5 units of the number
−2.

Then S = {x ∈ R : d(x,−2) ≤ 5}.
We prove S = [−7, 3].
Let x ∈ S.
Then x ∈ R and d(x,−2) ≤ 5, so 5 ≥ d(x,−2) = |x− (−2)| = |x+ 2|.
Hence, 5 ≥ |x+ 2|, so |x+ 2| ≤ 5.
Thus, −5 ≤ x+ 2 ≤ 5, so −7 ≤ x ≤ 3.
Therefore, x ∈ [−7, 3], so S ⊂ [−7, 3].

Let y ∈ [−7, 3].
Then −7 ≤ y ≤ 3, so −5 ≤ y + 2 ≤ 5.
Hence, |y + 2| ≤ 5, so |y − (−2)| ≤ 5.
Thus, d(y,−2) ≤ 5.
Since y ∈ R and d(y,−2) ≤ 5, then y ∈ S, so [−7, 3] ⊂ S.
Since S ⊂ [−7, 3] and [−7, 3] ⊂ S, then S = [−7, 3].

Exercise 3. Describe the set of all real numbers whose distance from 4 is greater
than 15.

Proof. Let S be the set of all real numbers whose distance from 4 is greater
than 15.

Then S = {x ∈ R : d(x, 4) > 15}.
We prove S = (−∞,−11) ∪ (19,∞).
Let x ∈ S.
Then x ∈ R and d(x, 4) > 15, so |x− 4| > 15.
Hence, either x− 4 > 15 or x− 4 < −15, so either x > 19 or x < −11.
Thus, either x ∈ (19,∞) or x ∈ (−∞,−11), so x ∈ (19,∞) ∪ (−∞,−11).
Therefore, x ∈ (−∞,−11) ∪ (19,∞), so S ⊂ (−∞,−11) ∪ (19,∞).

Let y ∈ (−∞,−11) ∪ (19,∞).
Then either y ∈ (−∞,−11) or y ∈ (19,∞), so either y < −11 or y > 19.
Hence, either y−4 < −15 or y−4 > 15, so either y−4 > 15 or y−4 < −15.
Thus, |y − 4| > 15, so d(y, 4) > 15.
Since y ∈ R and d(y, 4) > 15, then y ∈ S, so (−∞,−11) ∪ (19,∞) ⊂ S.
Since S ⊂ (−∞,−11) ∪ (19,∞) and (−∞,−11) ∪ (19,∞) ⊂ S, then S =

(−∞,−11) ∪ (19,∞).

Exercise 4. If I1 and I2 are intervals such that I1 ∩ I2 6= ∅, then I1 ∪ I2 is an
interval.

Solution.
Our hypothesis is I1 is an interval and I2 is an interval and I1 ∩ I2 6= ∅.
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To prove our conclusion I1 ∪ I2 is an interval, we must prove (∀a, b, c ∈
R)[a, b ∈ I1 ∪ I2 ∧ a < c < b→ c ∈ I1 ∪ I2].

We let a, b, c be arbitrary real numbers.
To prove c ∈ I1 ∪ I2, we assume a ∈ I1 ∪ I2 and b ∈ I1 ∪ I2 and a < c < b.
We must prove either c ∈ I1 or c ∈ I2.
To prove c ∈ I1 we must prove a, b ∈ I1 and a < c < b.
To prove c ∈ I2 we must prove a, b ∈ I2 and a < c < b.
Since a ∈ I1 ∪ I2, then either a ∈ I1 or a ∈ I2.
Since b ∈ I1 ∪ I2, then either b ∈ I1 or b ∈ I2.
Hence, we have 4 cases to consider:
1. a ∈ I1, b ∈ I1.
2. a ∈ I1, b ∈ I2.
3. a ∈ I2, b ∈ I1.
4. a ∈ I2, b ∈ I2.

Proof. Let I1 and I2 be intervals such that I1 ∩ I2 6= ∅.
Let a, b, and c be arbitrary real numbers.
To prove I1 ∪ I2 is an interval, we assume a ∈ I1 ∪ I2 and b ∈ I1 ∪ I2 and

a < c < b.
To prove c ∈ I1 ∪ I2, we must prove either c ∈ I1 or c ∈ I2.
Since a ∈ I1 ∪ I2, then either a ∈ I1 or a ∈ I2.
Since b ∈ I1 ∪ I2, then either b ∈ I1 or b ∈ I2.
There are 4 cases to consider.
Case 1: Suppose a ∈ I1 and b ∈ I1.
Since a ∈ I1 and b ∈ I1 and c is between a and b, and since I1 is an interval,

then we conclude c ∈ I1.
Case 2: Suppose a ∈ I1 and b ∈ I2.
Since I1 ∩ I2 is not empty, then there exists an element in I1 ∩ I2.
Let x be an arbitrary element of I1 ∩ I2.
Then x ∈ I1 and x ∈ I2.
By trichotomy, either x < c or x = c or x > c.
We consider these cases separately.
Case 2a: Suppose x > c.
Then c < x.
Since a < c < b, then a < c and c < b.
Since a < c and c < x, then a < c < x.
Since a ∈ I1 and x ∈ I1 and c is between a and x, and since I1 is an interval,

then we conclude c ∈ I1.
Case 2b: Suppose x < c.
Since a < c < b, then a < c and c < b.
Since x < c and c < b, then x < c < b.
Since b ∈ I2 and x ∈ I2 and c is between x and b, and since I2 is an interval,

then we conclude c ∈ I2.
Case 2c: Suppose x = c.
Since x ∈ I1 ∩ I2 and I1 ∩ I2 ⊂ I1 ∪ I2, then x ∈ I1 ∪ I2.
Since x = c, then c ∈ I1 ∪ I2.
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Hence, in all cases, either c ∈ I1 or c ∈ I2, so c ∈ I1 ∪ I2.
Case 3: Suppose a ∈ I2 and b ∈ I1.
The argument is the same as case 2, with a and b reversed.
Case 4: Suppose a ∈ I2 and b ∈ I2.
The argument is the same as case 1, with I2 instead of I1.
Hence, in all 4 cases, c is contained in I1 ∪ I2, so I1 ∪ I2 is an interval, as

desired.

Exercise 5. Let a, b, a′, b′ ∈ R with a < b and a′ < b′.
Let [a, b] and [a′, b′] be closed intervals.
Then [a, b] ⊂ [a′, b′] iff a′ ≤ a and b ≤ b′.

Proof. We first prove if a′ ≤ a and b ≤ b′, then [a, b] ⊂ [a′, b′].
Suppose a′ ≤ a and b ≤ b′.
Since a < b, then [a, b] 6= ∅.
Let x ∈ [a, b].
Then a ≤ x ≤ b, so a ≤ x and x ≤ b.
Since a′ ≤ a and a ≤ x, then a′ ≤ x.
Since x ≤ b and b ≤ b′, then x ≤ b′.
Thus, a′ ≤ x and x ≤ b′, so a′ ≤ x ≤ b′.
Therefore, x ∈ [a′, b′], so [a, b] ⊂ [a′, b′].

Proof. Conversely, we prove if [a, b] ⊂ [a′, b′], then a′ ≤ a and b ≤ b′.
Suppose [a, b] ⊂ [a′, b′].
Since a ∈ [a, b] and [a, b] ⊂ [a′, b′], then a ∈ [a′, b′], so a′ ≤ a ≤ b′.
Hence, a′ ≤ a and a ≤ b′, so a′ ≤ a.
Since b ∈ [a, b] and [a, b] ⊂ [a′, b′], then b ∈ [a′, b′], so a′ ≤ b ≤ b′.
Hence, a′ ≤ b and b ≤ b′, so b ≤ b′.
Therefore, a′ ≤ a and b ≤ b′, as desired.

Exercise 6. Let S be a nonempty subset of R.
Then S is bounded iff there is a closed bounded interval I such that S ⊂ I.

Proof. Suppose S is bounded.
Then S is bounded above and below in R, so there exist real numbers a and

b such that a ≤ x ≤ b for all x ∈ S.
Let I = [a, b].
Then I is a closed bounded interval.
Since S is nonempty, let x ∈ S.
Then a ≤ x ≤ b.
Since x ∈ S and S ⊂ R, then x ∈ R.
Since x ∈ R and a ≤ x ≤ b, then x ∈ I, so S ⊂ I.
Therefore, there is a closed bounded interval I such that S ⊂ I.
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Conversely, suppose there is a closed bounded interval I such that S ⊂ I.
Then there are real numbers a and b such that I = [a, b].
Since S is not empty, let x ∈ S.
Since S ⊂ I, then x ∈ I, so a ≤ x ≤ b.
Hence, a ≤ x ≤ b for all x ∈ S.
Thus, there exist real numbers a and b such that a ≤ x ≤ b for all x ∈ S.
Therefore, S is bounded.

Exercise 7. Let S be a nonempty bounded subset of R.
Let I = [inf S, supS].
Then S ⊂ I.

Proof. Since S is a bounded subset of R, then S is bounded above and below
in R.

Since S is nonempty and bounded above in R, then supS exists.
Since S is nonempty and bounded below in R, then inf S exists.
Let I = [inf S, supS].
Since S is not empty, let x ∈ S.
Since supS is an upper bound of S, then x ≤ supS.
Since inf S is a lower bound of S, then inf S ≤ x.
Thus, inf S ≤ x ≤ supS, so x ∈ [inf S, supS].
Therefore, x ∈ I, so S ⊂ I.

Exercise 8. Let S be a nonempty bounded subset of R.
Let I = [inf S, supS].
Let J be a closed bounded interval such that S ⊂ J .
Then I ⊂ J .

Proof. Since J is a closed bounded interval, then there exist real numbers a and
b with a < b such that J = [a, b].

Since S 6= ∅, let x ∈ S.
Since S ⊂ J , then x ∈ J , so x ∈ [a, b].
Hence, a ≤ x ≤ b, so a ≤ x and x ≤ b.
Thus, a ≤ x and x ≤ b for all x ∈ S, so a ≤ x for all x ∈ S and x ≤ b for all

x ∈ S.
Consequently, a is a lower bound of S and b is an upper bound of S.
Since b is an upper bound of S and supS is the least upper bound of S, then

supS ≤ b.
Since a is a lower bound of S and inf S is the greatest lower bound of S,

then a ≤ inf S.

Let y ∈ I.
Then inf S ≤ y ≤ supS, so inf S ≤ y and y ≤ supS.
Since a ≤ inf S and inf S ≤ y and y ≤ supS and supS ≤ b, then a ≤ y ≤ b,

so y ∈ [a, b].
Therefore, y ∈ J , so I ⊂ J , as desired.
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Exercise 9. Let Sn = [0, 1
n ] for each n ∈ N.

Then ∩∞n=1Sn = {0}.

Solution. We can draw several of these intervals and observe that each of the
intervals gets smaller, so the collection {Sn : n ∈ N} is a decreasing family of
sets indexed by N. It appears that the intersection of all these intervals is the
singleton set {0}.

Proof. To prove {0} ⊂ ∩∞n=1Sn, let n ∈ N be arbitrary.
Then Sn = [0, 1

n ].
Since n ∈ N, then n > 0, so 1

n > 0.
Thus, Sn 6= ∅ and 0 ∈ Sn.
Since n is arbitrary, then 0 ∈ Sn for each n ∈ N.
Hence, 0 ∈ ∩∞n=1Sn, so {0} ⊂ ∩∞n=1Sn.

To prove ∩∞n=1Sn ⊂ {0}, let x ∈ ∩∞n=1Sn.
Then x ∈ Sn for each n ∈ N.
Thus, x ∈ S1 = [0, 1], so 0 ≤ x ≤ 1.
Hence, 0 ≤ x, so x ≥ 0.
Therefore, either x > 0 or x = 0.
Suppose x > 0.
Then by the Archimedean property of R, there exists m ∈ N such that

1
m < x.

Thus, x 6∈ [0, 1
m ].

Hence, there exists m ∈ N such that x 6∈ Sm.
But, this contradicts the fact that x ∈ Sn for every n ∈ N.
Therefore, x = 0, so x ∈ {0}.
Thus, ∩∞n=1Sn ⊂ {0}.

Since ∩∞n=1Sn ⊂ {0} and {0} ⊂ ∩∞n=1Sn, then ∩∞n=1Sn = {0}.

Exercise 10. Let Sn = ( 1
n , 1) for each n ∈ N.

Then ∪∞n=1Sn = (0, 1).

Solution. We can draw several of these intervals and observe that each of the
intervals gets larger, so the collection {Sn : n ∈ N} is a increasing family of sets
indexed by N. It appears that the union of all these intervals is (0, 1).

Proof. To prove ∪∞n=1Sn = (0, 1), we prove ∪∞n=1Sn ⊂ (0, 1) and (0, 1) ⊂
∪∞n=1Sn.

We prove ∪∞n=1Sn ⊂ (0, 1).
Let x ∈ ∪∞n=1Sn.
Then there exists n ∈ N such that x ∈ Sn.
Thus, there exists n ∈ N such that x ∈ R and 1

n < x < 1.
Since 1

n < x < 1, then 1
n < x and x < 1.

Since n ∈ N, then n > 0, so n 6= 0.
Since n ∈ N and N ⊂ R, then n ∈ R.
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Since n ∈ R and n 6= 0, then 1
n ∈ R.

Since n > 0, then 1
n > 0, so 0 < 1

n .
Since 0 < 1

n and 1
n < x, then 0 < x.

Thus, 0 < x and x < 1, so 0 < x < 1.
Since x ∈ R and 0 < x < 1, then x ∈ (0, 1).
Hence, x ∈ ∪∞n=1Sn implies x ∈ (0, 1), so ∪∞n=1Sn ⊂ (0, 1).
We prove (0, 1) ⊂ ∪∞n=1Sn.
Let y ∈ (0, 1).
Then y ∈ R and 0 < y < 1, so 0 < y and y < 1.
To prove y ∈ ∪∞n=1Sn, we must show there exists k ∈ N such that y ∈ Sk.
Since 0 < y, then y > 0, so y 6= 0.
Since y ∈ R and y 6= 0, then 1

y ∈ R.
By the Archimedean property of R, for every real number there corresponds

a larger natural number.
Hence, there exists a natural number that is larger than the real number 1

y .

Choose k ∈ N such that k > 1
y .

Since y > 0, we multiply by y to get ky > 1.
Since k ∈ N, then k > 0, so we divide by k to get y > 1

k .
Hence, 1

k < y.
Since 1

k < y and y < 1, then 1
k < y < 1.

Since y ∈ R and 1
k < y < 1, then y ∈ ( 1

k , 1), so y ∈ Sk.
Thus, there exists k ∈ N such that y ∈ Sk, so y ∈ ∪∞n=1Sn.
Therefore, y ∈ (0, 1) implies y ∈ ∪∞n=1Sn, so (0, 1) ⊂ ∪∞n=1Sn.
Since ∪∞n=1Sn ⊂ (0, 1) and (0, 1) ⊂ ∪∞n=1Sn, then ∪∞n=1Sn = (0, 1).

Exercise 11. Let Sn = (0, 1
n ) for each n ∈ N.

Then ∩∞n=1Sn = ∅.

Solution. We can draw several of these intervals and note that each of the
intervals gets smaller, so S = {Sn : n ∈ N} is a decreasing family of sets indexed
by N. It appears that the intersection of all these intervals is empty.

Proof. We prove by contradiction.
Suppose ∩∞n=1Sn 6= ∅.
Then there is an element in ∩∞n=1Sn.
Let x be an element of ∩∞n=1Sn.
Then x ∈ Sn for every n ∈ N.
Hence, x ∈ R and 0 < x < 1

n for every n ∈ N, so 0 < x and x < 1
n for every

n ∈ N.
Since x ∈ R and x > 0, then x 6= 0.
Since x ∈ R and x 6= 0, then 1

x ∈ R.
By the Archimedean property of R, there exists a natural number that is

larger than the real number 1
x .

Thus, there exists k ∈ N such that k > 1
x .

Since k ∈ N, then x < 1
k and k > 0.

Consequently, kx < 1.
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Since x > 0, then k < 1
x .

Hence, we have k > 1
x and k < 1

x , a contradiction.
Therefore, ∩∞n=1Sn = ∅, as desired.

Exercise 12. What is ∪∞n=1(R− (0, 1
n ))?

Solution. Observe that

∪∞n=1(R− (0,
1

n
)) = R− ∩∞n=1(0,

1

n
)

= R− ∅
= R.

Exercise 13. Compute ∩∞n=1(−1n , 1 + 1
n ).

Solution. Let S = {Sn : n ∈ N} be a family of intervals Sn = (−1n , 1 + 1
n )

indexed by N .
We must compute ∩∞n=1Sn.
We sketch S1, S2, S3, S4 intervals and observe that S1 ⊃ S2 ⊃ S3 ⊃ S4 ⊃ ...,

so S is a decreasing family of nested intervals.
Intuitively, we see that the interval (0, 1) is contained in the intersection of

this family of intervals.
We need to check the endpoints 0 and 1 to determine if they are in this

intersection.
We show that 0 ∈ ∩∞n=1Sn.
Let n ∈ N.
Then n > 0, so 1

n > 0.
Hence, −1n < 0.
Since −1 < 0 and 0 < 1

n , then −1 < 1
n .

Thus, 0 < 1 + 1
n .

Therefore, −1n < 0 and 0 < 1 + 1
n , so −1n < 0 < 1 + 1

n .
Hence, 0 ∈ (−1n , 1 + 1

n ), so 0 ∈ Sn.
Since n is arbitrary, then 0 ∈ Sn for all n ∈ N.
Therefore, 0 ∈ ∩∞n=1Sn.
Thus, the interval [0, 1) is contained in ∩∞n=1Sn.
We show that 1 ∈ ∩∞n=1Sn.
Let n ∈ N.
Then n > 0, so 1

n > 0.
Hence, −1n < 0.
Since −1n < 0 and 0 < 1, then −1n < 1.
Since 0 < 1

n , then 1 < 1 + 1
n .

Thus, −1n < 1 and 1 < 1 + 1
n , so −1n < 1 < 1 + 1

n .
Hence, 1 ∈ (−1n , 1 + 1

n ), so 1 ∈ Sn.
Since n is arbitrary, then 1 ∈ Sn for all n ∈ N.
Therefore, 1 ∈ ∩∞n=1Sn.
Thus, the interval [0, 1] is contained in ∩∞n=1Sn.
We see that ∩∞n=1Sn = [0, 1].
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Proof. To prove ∩∞n=1Sn = [0, 1], we prove ∩∞n=1Sn ⊂ [0, 1] and [0, 1] ⊂ ∩∞n=1Sn.
We first prove ∩∞n=1Sn ⊂ [0, 1].
Let x ∈ ∩∞n=1Sn.
Then x ∈ Sn for all n ∈ N, so x ∈ (−1n , 1 + 1

n ) for all n ∈ N.
To prove x ∈ [0, 1], we must prove x ∈ R and 0 ≤ x ≤ 1.
Let n ∈ N.
Then x ∈ (−1n , 1 + 1

n ), so x ∈ R and −1n < x < 1 + 1
n .

Thus, −1n < x and x < 1 + 1
n .

Since n ∈ N, then n > 0.
Since −1n < x, we multiply by n to get −1 < nx.
Suppose x < 0.
Then we divide by x to get −1x > n.
Thus, n < −1

x , so n ≤ −1x .
Since x < 0, then x 6= 0, so 1

x ∈ R.
Hence, −1x ∈ R.
Since n is arbitrary then n ≤ −1x for all n ∈ N.
Thus, the real number −1x is an upper bound for N in R, so N has an upper

bound in R.
By the Archimedean property of R, N has no upper bound in R.
Hence, we have N has an upper bound in R and N has no upper bound in

R, a contradiction.
Therefore, x cannot be negative.
Hence, x ≥ 0, so 0 ≤ x.
Suppose x > 1.
Then x− 1 > 0.
Since x < 1 + 1

n , then x− 1 < 1
n .

Since n > 0, we multiply by n to get n(x− 1) < 1.
Since x− 1 > 0, we divide by x− 1 to get n < 1

x−1 , so n ≤ 1
x−1 .

Since x− 1 > 0, then x− 1 6= 0, so 1
x−1 ∈ R.

Since n is arbitrary, then n ≤ 1
x−1 for all n ∈ N.

Thus, the real number 1
x−1 is an upper bound for N in R, so N has an upper

bound in R.
By the Archimedean property of R, N has no upper bound in R.
Hence, we have N has an upper bound in R and N has no upper bound in

R, a contradiction.
Therefore, x cannot be greater than 1.
Thus, x ≤ 1.
Since 0 ≤ x and x ≤ 1, then 0 ≤ x ≤ 1, so x ∈ [0, 1].
Therefore, x ∈ ∩∞n=1Sn implies x ∈ [0, 1], so ∩∞n=1Sn ⊂ [0, 1].
We prove [0, 1] ⊂ ∩∞n=1Sn.
Let y ∈ [0, 1].
Then y ∈ R and 0 ≤ y ≤ 1.
To prove y ∈ ∩∞n=1Sn, we must prove y ∈ Sn for all n ∈ N.
Thus, we must prove y ∈ (−1n , 1 + 1

n ) for all n ∈ N, so we must prove y ∈ R
and −1n < y < 1 + 1

n for all n ∈ N.
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Let n ∈ N.
Then n > 0, so 1

n > 0, so −1n < 0.
Since 0 ≤ y ≤ 1, then either y = 0 or y = 1 or 0 < y < 1.
We consider these cases separately.
Case 1: Suppose 0 < y < 1.
Then 0 < y and y < 1.
Since −1n < 0 and 0 < y, then −1n < y.
Since 1

n > 0, then 0 < 1
n , so 1 < 1 + 1

n .
Since y < 1 and 1 < 1 + 1

n , then y < 1 + 1
n .

Thus, −1n < y and y < 1 + 1
n , so −1n < y < 1 + 1

n .
Case 2: Suppose y = 0.
Since −1n < 0, then −1n < y.
Since −1 < 0 and 0 < 1

n , then −1 < 1
n .

Thus, 0 < 1 + 1
n , so y < 1 + 1

n .
Hence, −1n < y and y < 1 + 1

n , so −1n < y < 1 + 1
n .

Case 3: Suppose y = 1.
Since −1n < 0 and 0 < 1, then −1n < 1, so −1n < y.
Since 0 < 1

n , then 1 < 1 + 1
n , so y < 1 + 1

n .
Hence, −1n < y and y < 1 + 1

n , so −1n < y < 1 + 1
n .

Therefore, in all cases, −1n < y < 1 + 1
n .

Since y ∈ R and −1n < y < 1 + 1
n , then y ∈ (−1n , 1 + 1

n ).
Since n is arbitrary, then y ∈ (−1n , 1 + 1

n ) for all n ∈ N, so y ∈ Sn for all
n ∈ N.

Therefore, y ∈ ∩∞n=1Sn.
Thus, y ∈ [0, 1] implies y ∈ ∩∞n=1Sn, so [0, 1] ⊂ ∩∞n=1Sn.
Since ∩∞n=1Sn ⊂ [0, 1] and [0, 1] ⊂ ∩∞n=1Sn, then ∩∞n=1Sn = [0, 1].

Lemma 14. Let r ∈ R.
If r ≤ 1

n for all n ∈ N, then r ≤ 0.

Proof. We prove by contrapositive.
Suppose r > 0.
Then, by the Archimedean property of R, there exists n ∈ N such that 1

n < r.
Therefore, there exists n ∈ N such that r > 1

n , as desired.

Exercise 15. Let Sn = (n,∞) for each n ∈ N.
Then ∩∞n=1Sn = ∅.

Proof. We prove by contradiction.
Suppose ∩∞n=1Sn 6= ∅.
Then there exists x ∈ ∩∞n=1Sn, so x ∈ Sn for all n ∈ N.
Hence, x ∈ (n,∞) for each n ∈ N, so x > n for each n ∈ N.
Thus, there exists x ∈ R such that n < x for each n ∈ N, so x is an upper

bound of N.
Consequently, N is bounded above in R.
Since 0 < n for all n ∈ N, then 0 is a lower bound of N, so N is bounded

below in R.
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Since N is bounded above and below in R, then N is bounded in R.
But, this contradict the Archimedean property that N is unbounded in R.
Therefore, ∩∞n=1Sn = ∅.

Exercise 16. Compute
⋃∞
n=1(R− [ 1n , 2 + 1

n ]).

Solution. We prove
⋃∞
n=1(R− [ 1n , 2 + 1

n ]) = (−∞, 1) ∪ (2,∞).

Proof. We first prove ∩∞n=1[ 1n , 2 + 1
n ] = [1, 2].

Let x ∈ ∩∞n=1[ 1n , 2 + 1
n ].

Then x ∈ [ 1n , 2 + 1
n ] for each n ∈ N, so 1

n ≤ x ≤ 2 + 1
n for each n ∈ N.

Hence, 1
n ≤ x and x ≤ 2 + 1

n for each n ∈ N, so 1
n ≤ x for each n ∈ N and

x ≤ 2 + 1
n for each n ∈ N.

Since 1
n ≤ x for each n ∈ N, then for n = 1, we have 1

1 ≤ x, so 1 ≤ x.
Since x ≤ 2 + 1

n for each n ∈ N, then x− 2 ≤ 1
n for each n ∈ N.

By a previous lemma, if r ≤ 1
n for each n ∈ N, then r ≤ 0.

Thus, x− 2 ≤ 0, so x ≤ 2.
Since 1 ≤ x and x ≤ 2, then 1 ≤ x ≤ 2, so x ∈ [1, 2].
Therefore, ∩∞n=1[ 1n , 2 + 1

n ] ⊂ [1, 2].

Let y ∈ [1, 2].
Then 1 ≤ y ≤ 2, so 1 ≤ y and y ≤ 2.
Since y ≤ 2, then y − 2 ≤ 0.

Let n ∈ N.
Then n ≥ 1 > 0, so n ≥ 1 and n > 0.
Hence, 1 ≥ 1

n > 0, so 1 ≥ 1
n and 1

n > 0.
Since 1

n ≤ 1 and 1 ≤ y, then 1
n ≤ y.

Since y − 2 ≤ 0 and 0 < 1
n , then y − 2 < 1

n , so y < 2 + 1
n .

Thus, 1
n ≤ y and y < 2 + 1

n , so 1
n ≤ y < 2 + 1

n .
Hence, y ∈ [ 1n , 2 + 1

n ].
Therefore, y ∈ [ 1n , 2 + 1

n ] for all n ∈ N, so y ∈ ∩∞n=1[ 1n , 2 + 1
n ].

Consequently, if y ∈ [1, 2], then y ∈ ∩∞n=1[ 1n , 2+ 1
n ], so [1, 2] ⊂ ∩∞n=1[ 1n , 2+ 1

n ].

Since ∩∞n=1[ 1n , 2+ 1
n ] ⊂ [1, 2] and [1, 2] ⊂ ∩∞n=1[ 1n , 2+ 1

n ], then ∩∞n=1[ 1n , 2+ 1
n ] =

[1, 2].

Observe that

∪∞n=1(R− [
1

n
, 2 +

1

n
]) = R− ∩∞n=1[

1

n
, 2 +

1

n
]

= R− [1, 2]

= (−∞, 1) ∪ (2,∞).
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Exercise 17. Does there exist ε > 0 such that the ε neighborhood of 1
3 contains

both 1
4 and 1

2 , but does not contain 17
30?

Solution. We must find a positive real ε, if one exists, such that 1
4 ∈ N( 1

3 ; ε)
and 1

2 ∈ N( 1
3 ; ε) and 17

30 6∈ N( 1
3 ; ε).

We see that any ε ∈ ( 1
6 ,

7
30 ] will work.

Let ε = 1
5 .

Since d( 1
4 ,

1
3 ) = | 14 −

1
3 | =

1
12 <

1
5 , then 1

4 ∈ N( 1
3 ; 1

5 ).
Since d( 1

2 ,
1
3 ) = | 12 −

1
3 | =

1
6 <

1
5 , then 1

2 ∈ N( 1
3 ; 1

5 ).
Since d( 17

30 ,
1
3 ) = | 1730 −

1
3 | =

7
30 >

1
5 , then 17

30 6∈ N( 1
3 ; 1

5 ).

Exercise 18. The interval [0, 1] is a neighborhood of 2
3 .

Proof. To prove [0, 1] is a neighborhood of 2
3 , let ε = 1

6 .
Then N( 2

3 ; 1
6 ) = ( 2

3 −
1
6 ,

2
3 + 1

6 ) = (3
6 ,

5
6 ) ⊂ [0, 1], as desired.

Exercise 19. Does there exist ε > 0 such that the ε neighborhood of 1
3 contains

11
12 , but does not contain either 1

2 or 5
8?

Solution.

Exercise 20. Let a, b ∈ R.
If a < b, then there exists a bijective function from the interval (a, b) onto

the interval (0, 1).

Proof. Suppose a < b.
Then b− a > 0, so b− a 6= 0.
Let f : (a, b)→ (0, 1) be a function defined by f(x) = x−a

b−a for all x ∈ (a, b).
We prove f is bijective.
Let x1, x2 ∈ (a, b) such that f(x1) = f(x2).
Then x1−a

b−a = x2−a
b−a , so x1 − a = x2 − a.

Therefore, x1 = x2, so f is injective.

Let t ∈ (0, 1).
Then 0 < t < 1.
Since b− a > 0, then 0 < t(b− a) < b− a.
Hence, a < a+ t(b− a) < b.
Let s = a+ t(b− a).
Then a < s < b, so s ∈ (a, b).
Observe that

f(s) = f(a+ t(b− a))

=
[a+ t(b− a)]− a

b− a

=
t(b− a)

b− a
= t.

12



Therefore, there exists s ∈ (a, b) such that f(s) = t, so f is surjective.
Since f is injective and surjective, then f is bijective, as desired.

Exercise 21. Let x and y be distinct real numbers.
Then there is a neighborhood P of x and a neighborhood Q of y such that

P ∩Q = ∅.

Proof. Since x and y are distinct real numbers, then x, y ∈ R and x 6= y, so
either x < y or x > y.

Without loss of generality, assume x < y.
Let δ = y−x

2 .

Since x < y, then y − x > 0, so y−x
2 > 0.

Hence, δ > 0.
Let P = (x− δ, x+ δ) and Q = (y − δ, y + δ).
Since x− δ < x+ δ and y − δ < y + δ, then P and Q are open intervals, so

P is a δ neighborhood of x and Q is a δ neighborhood of y.
Thus, P is a neighborhood of x and Q is a neighborhood of y.

We prove P ∩Q = ∅ by contradiction.
Suppose P ∩Q 6= ∅.
Then there exists p ∈ P ∩Q, so p ∈ P and p ∈ Q.
Since p ∈ P , then p ∈ (x− δ, x+ δ), so x− δ < p < x+ δ.
Thus, p < x+ δ, so p < x+ y−x

2 .

Hence, p < x+y
2 .

Since p ∈ Q, then p ∈ (y − δ, y + δ), so y − δ < p < y + δ.
Hence, y − δ < p, so y − y−x

2 < p.

Thus, y + x−y
2 < p, so x+y

2 < p.

Hence, we have p < x+y
2 and p > x+y

2 , a contradiction.
Therefore, P ∩Q = ∅, as desired.

Exercise 22. Let x ∈ R and ε > 0.
Then N(x; ε) is a neighborhood of each of its members.

Proof. Let y ∈ N(x; ε).
To prove N(x; ε) is a neighborhood of y, we must prove there exists δ > 0

such that N(y; δ) ⊂ N(x; ε).
Let δ = min{x+ ε− y, y − x+ ε}.
Then δ ≤ x+ε−y and δ ≤ y−x+ε, and either δ = x+ε−y and δ = y−x+ε.
Since y ∈ N(x; ε) = (x− ε, x+ ε), then x− ε < y < x+ ε, so x− ε < y and

y < x+ ε.
Thus, 0 < y − x+ ε and 0 < x+ ε− y, so δ > 0.
To prove N(y; δ) ⊂ N(x; ε), let p ∈ N(y; δ).
Then |p− y| < δ, so −δ < p− y < δ.
Hence, y − δ < p < y + δ, so y − δ < p and p < y + δ.
Since δ ≤ x+ ε− y, then y + δ ≤ x+ ε.
Since p < y + δ and y + δ ≤ x+ ε, then p < x+ ε.

13



Since δ ≤ y − x+ ε, then x− ε ≤ y − δ.
Since x− ε ≤ y − δ and y − δ < p, then x− ε < p.
Since x− ε < p and p < x+ ε, then x− ε < p < x+ ε, so p ∈ (x− ε, x+ ε) =

N(x; ε), as desired.

Exercise 23. The interval (0,∞) is an open subset of R.

Proof. Since (0,∞) = {x ∈ R : x > 0}, then (0,∞) ⊂ R.
Let x ∈ (0,∞).
Then x > 0.
Let ε = x.
Then ε > 0 and N(x; ε) = N(x;x) = (x− x, x+ x) = (0, 2x).
Let p ∈ N(x; ε).
Then p ∈ (0, 2x), so 0 < p < 2x.
Hence, 0 < p, so p ∈ (0,∞).
Thus, N(x; ε) ⊂ (0,∞).
Therefore, there exists ε > 0 such that N(x; ε) ⊂ (0,∞), so x is an interior

point of (0,∞).
Hence, every point in (0,∞) is an interior point of (0,∞), so (0,∞) is open.

Exercise 24. Let A be a set and B = R−A.
Then every interior point of A is not an accumulation point of B.

Proof. Let x be an arbitrary interior point of A.
Then there exists ε > 0 such that N(x; ε) ⊂ A.
We prove x is not an accumulation point of B by contradiction.
Suppose x is an accumulation point of B.
Since ε > 0, then N ′(x; ε) ∩B 6= ∅.
Hence, there exists p such that p ∈ N ′(x; ε) ∩B, so p ∈ N ′(x; ε) and p ∈ B.
Since p ∈ N ′(x; ε) and N ′(x; ε) ⊂ N(x; ε) ⊂ A, then p ∈ A.
Since p ∈ B, then p ∈ R and p 6∈ A.
Thus, we have p ∈ A and p 6∈ A, a contradiction.
Therefore, x is not an accumulation point of B, as desired.

Exercise 25. Every real number is an accumulation point of irrational numbers.

Proof. Let R−Q be the set of all irrational numbers.
Let x be an arbitrary real number.
We must prove x is an accumulation point of R−Q.
Let ε > 0.
Then ε > x− x, so x+ ε > x and x > x− ε.
Between any two distinct real numbers is an irrational number.
Since x, x + ε ∈ R and x < x + ε, then there exists r ∈ R − Q such that

x < r < x+ ε.
Hence, x− ε < x < r < x+ ε, so x− ε < r < x+ ε.
Thus, r ∈ (x− ε, x+ ε), so r ∈ N(x; ε).
Since r > x, then r 6= x, so r ∈ N ′(x; ε).
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Thus, r ∈ N ′(x; ε) ∩ (R − Q), so x is an accumulation point of R − Q, as
desired.

Exercise 26. Let S be a set of real numbers.
If there exists δ > 0 such that the distance between every distinct pair of

elements of S is greater than δ, then S has no accumulation points.

Proof. Suppose there exists δ > 0 such that the distance between every distinct
pair of elements of S is greater than δ.

Then for every a, b ∈ S with a 6= b, then d(a, b) = |a− b| > δ.
We prove S has no accumulation points by contradiction.
Suppose S has an accumulation point.
Then there exists x such that x is an accumulation point of S.
Since δ > 0, then δ

2 > 0, so N ′(x; δ2 ) ∩ S 6= ∅.
Hence, there exists a point a such that a ∈ N ′(x; δ2 )∩S, so a ∈ N ′(x; δ2 ) and

a ∈ S.
Since a ∈ N ′(x; δ2 ), then a ∈ N(x; δ2 ), so d(a, x) < δ

2 .

Since a ∈ N(x; δ2 ) and a ∈ S, then a ∈ N(x; δ2 ) ∩ S.

Since x is an accumulation point of S and δ
2 > 0, then the set N(x; δ2 ) ∩ S

is infinite.
Thus, there is at least one other point of the set N(x; δ2 ) ∩ S.

Therefore, there exists a point b such that b ∈ N(x; δ2 ) ∩ S and b 6= a.

Hence, b ∈ N(x; δ2 ) and b ∈ S.

Since b ∈ N(x; δ2 ), then d(x, b) < δ
2 .

Since d(a, x) < δ
2 and d(x, b) < δ

2 , then d(a, x) + d(x, b) < δ.
By the triangle inequality we have d(a, x) + d(x, b) ≥ d(a, b).
Since d(a, b) ≤ d(a, x) + d(x, b) and d(a, x) + d(x, b) < δ, then d(a, b) < δ.
Since a ∈ S and b ∈ S and a 6= b, then d(a, b) > δ.
Thus, we have a contradiction d(a, b) < δ and d(a, b) > δ.
Therefore, S does not have an accumulation point.

Exercise 27. True or false?
If p is an accumulation point of a set A and a set B, then p is an accumulation

point of A ∩B.

Proof. This is a false statement.
Here is a counterexample.
Let A = [0,∞) and B = (−∞, 0].
Then A ∩B = {0}.
Observe that 0 is an accumulation point of A and B.
Since A∩B is a finite set, then A∩B does not have an accumulation point,

so 0 cannot be an accumulation point of A ∩B.

Exercise 28. Every interior point is an accumulation point, but not conversely.
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Proof. Let S be a set of real numbers.
We must prove every interior point of S is an accumulation point of S.
Either S = ∅ or S 6= ∅.
We consider these cases separately.
Case 1: Suppose S = ∅.
Since there is no interior point of ∅, then for any x, x is not an interior point

of ∅.
Hence, for any x, the conditional ‘x is an interior point of ∅ implies x is an

accumulation point of ∅’ is vacuously true.
Therefore, every interior point of ∅ is an accumulation point of ∅, so every

interior point of S is an accumulation point of S.
Case 2: Suppose S 6= ∅.
Then there is at least one element of S.
Let x ∈ S such that x is an interior point of S.
Then there exists δ > 0 such that N(x; δ) ⊂ S.
Let ε > 0 be given.
To prove x is an accumulation point of S, we must prove N ′(x; ε) ∩ S 6= ∅.
Let M = min{δ, ε}.
Then M ≤ δ and M ≤ ε.
Since δ > 0 and ε > 0, then M > 0, so M

2 > 0.

Since 1
2 < 1 and M > 0, then M

2 < M .

Let p = x+ M
2 .

Then p− x = M
2 > 0, so d(p, x) = |p− x| = p− x = M

2 .

Since M
2 < M ≤ δ, then d(p, x) < δ, so p ∈ N(x; δ).

Since N(x; δ) ⊂ S, then p ∈ S.
Since d(p, x) = M

2 < M ≤ ε, then d(p, x) < ε, so p ∈ N(x; ε).
Since p− x > 0, then p > x, so p 6= x.
Hence, p ∈ N ′(x; ε).
Therefore, p ∈ N ′(x; ε) ∩ S, so N ′(x; ε) ∩ S 6= ∅, as desired.

Proof. To disprove the converse, we must prove ‘every accumulation point is an
interior point’ is false.

Hence, we must prove ‘some accumulation point is not an interior point’.
Let a, b ∈ R with a < b.
Let (a, b) be the open interval.
Since a < b, then a is an accumulation point of (a, b).
Since (a, b) 6= ∅, then every interior point of (a, b) is an element of (a, b).
Hence, if x is an interior point of (a, b), then x ∈ (a, b), so if x 6∈ (a, b), then

x is not an interior point of (a, b).
In particular, since a 6∈ (a, b), then a is not an interior point of (a, b).
Therefore, a is an accumulation point of (a, b), but a is not an interior point

of (a, b).

Exercise 29. Let S be a set of real numbers.
If supS exists, then either supS ∈ S or supS is an accumulation point of S.
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Proof. We prove by contrapositive.
Suppose supS exists and supS 6∈ S.
To prove supS is an accumulation point of S, let ε > 0 be given.
We must prove there exists x ∈ S such that x ∈ N ′(supS; ε).
Since ε > 0 = supS − supS, then ε > supS − supS, so supS > supS − ε.
Since supS − ε < supS, then supS − ε is not an upper bound of S.
Hence, there exists x ∈ S such that x > supS − ε.
Since supS is an upper bound of S and x ∈ S, then x ≤ supS, so either

x < supS or x = supS.
Since x ∈ S and supS 6∈ S, then x 6= supS.
Thus, x < supS, so supS − x > 0.
Since supS − ε < x, then supS − x < ε.
Hence, d(x, supS) = |x − supS| = | supS − x| = supS − x < ε, so

d(x, supS) < ε.
Thus, x ∈ N(supS; ε).
Since x 6= supS, then x ∈ N ′(supS; ε).
Therefore, there exists x ∈ S such that x ∈ N ′(supS; ε), as desired.

Exercise 30. Let S be a set of real numbers.
If inf S exists, then either inf S ∈ S or inf S is an accumulation point of S.

Proof. We prove by contrapositive.
Suppose inf S exists and inf S 6∈ S.
To prove inf S is an accumulation point of S, let ε > 0 be given.
We must prove there exists x ∈ S such that x ∈ N ′(inf S; ε).
Since ε > 0 = inf S − inf S, then ε > inf S − inf S, so inf S + ε > inf S.
Since inf S + ε > inf S, then inf S + ε is not a lower bound of S.
Hence, there exists x ∈ S such that x < inf S + ε.
Since inf S is a lower bound of S and x ∈ S, then inf S ≤ x, so either

inf S < x or inf S = x.
Since x ∈ S and inf S 6∈ S, then x 6= inf S.
Thus, inf S < x, so x− inf S > 0.
Since x < inf S + ε, then x− inf S < ε.
Hence, d(x, inf S) = |x− inf S| = x− inf S < ε, so d(x, inf S) < ε.
Thus, x ∈ N(inf S; ε).
Since x 6= inf S, then x ∈ N ′(inf S; ε).
Therefore, there exists x ∈ S such that x ∈ N ′(inf S; ε), as desired.

Exercise 31. Let S ⊂ R such that at least one point of accumulation of S
exists.

Then for every ε > 0 there exist points x, y ∈ S such that 0 < |x− y| < ε.

Proof. Let ε > 0 be given.
Then ε

2 > 0.
Since at least one accumulation point of S exists, let p be an accumulation

point of S.
Then N ′(p; ε2 ) ∩ S 6= ∅, so there exists x such that x ∈ N ′(p; ε2 ) ∩ S.
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Hence, x ∈ N ′(p; ε2 ) and x ∈ S.
Since x ∈ N ′(p; ε2 ) and N ′(p; ε2 ) ⊂ N(p; ε2 ), then x ∈ N(p; ε2 ), so x ∈

N(p; ε2 ) ∩ S.
Since p is an accumulation point of S and ε

2 > 0, then the set N(p; ε2 )∩S is
infinite.

Thus, there exists at least one other point of N(p; ε2 ) ∩ S.
Hence, there exists y such that y ∈ N(p; ε2 ) ∩ S and y 6= x.
Since y ∈ N(p; ε2 ) ∩ S, then y ∈ N(p; ε2 ) and y ∈ S.
Since x ∈ N(p; ε2 ) and y ∈ N(p; ε2 ), then d(p, x) < ε

2 and d(p, y) < ε
2 , so

|p− x| < ε
2 and |p− y| < ε

2 .
Since x 6= y, then d(x, y) > 0, so |x− y| > 0.
Observe that

|x− y| = |(x− p) + (p− y)|
≤ |x− p|+ |p− y|
= |p− x|+ |p− y|

<
ε

2
+
ε

2
= ε.

Thus, |x− y| < ε, so 0 < |x− y| < ε, as desired.

Exercise 32. Let (an) be a sequence of points such that limn→∞ an = L for
some real number L.

Let L be an interior point of a set S.
Then there is an integer N such that an ∈ S for all n > N .

Proof. Since L is an interior point of S, then there exists ε > 0 such that
N(L; ε) ⊂ S.

Since limn→∞ an = L, then there exists N ∈ N such that if n > N , then
|an − L| < ε.

Let n ∈ N such that n > N .
Then |an − L| < ε, so d(an, L) < ε.
Thus, an ∈ N(L; ε).
Since N(L; ε) ⊂ S, then an ∈ S.
Hence, an ∈ S for all integers n > N .
Therefore, there exists N ∈ N such that an ∈ S for all integers n > N .

Exercise 33. Let (xn) be a sequence of real numbers such that limn→∞ xn = L
for some real number L and xn 6= L for all n ∈ N.

Then the set {xn : n ∈ N} has exactly one accumulation point, L.

Proof. Let S be the range of the sequence (xn).
Then S = {xn : n ∈ N}.
We must prove L is the unique accumulation point of S.
Existence:
We prove L is an accumulation point of S.
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Let ε > 0 be given.
Since limn→∞ xn = L, then there exists N ∈ N such that if n > N , then

|xn − L| < ε.
Let n ∈ N such that n > N .
Then |xn − L| < ε, so d(xn, L) < ε.
Hence, xn ∈ N(L; ε).
Since n ∈ N, then xn 6= L, so xn ∈ N ′(L; ε).
Since n ∈ N, then xn ∈ S, so xn ∈ N ′(L; ε) ∩ S.
Therefore, N ′(L; ε) ∩ S 6= ∅, so L is an accumulation point of S.
Uniqueness:
Suppose x is an accumulation point of S.
We must prove x = L.
Let ε > 0 be given.
Then ε

2 > 0.
Since x is an accumulation point of S, then N ′(x; ε2 )∩S 6= ∅, so there exists

p such that p ∈ N ′(x; ε2 ) ∩ S.
Hence, p ∈ N ′(x; ε2 ) and p ∈ S.
Since p ∈ S, then there exists m ∈ N such that p = xm.
Thus, xm ∈ N ′(x; ε2 ), so xm ∈ N(x; ε2 ) and xm 6= x.
Hence, d(x, xm) < ε

2 , so |x− xm| < ε
2 .

Since limn→∞ xn = L and ε
2 > 0, then there exists N ∈ N such that if

n > N , then |xn − L| < ε
2 .

Let n ∈ N such that n > N .
Then |xn − L| < ε

2 .
We’re stuck!!!!!

Exercise 34. The interior of a set is open.

Proof. Let S be a set.
Let S◦ be the interior of S.
Then S◦ = {x : x is an interior point of S}.
We must prove S◦ is open.
Either S◦ = ∅ or S◦ 6= ∅.
We consider these cases separately.
Case 1: Suppose S◦ = ∅.
Since the empty set is open, then S◦ is open.
Case 2: Suppose S◦ 6= ∅.
Then there is at least one element of S◦.
Let x ∈ S◦.
Then x is an interior point of S, so there exists ε > 0 such that N(x; ε) ⊂ S.
To prove S◦ is open, we must prove x is an interior point of S◦.
Since N(x; ε) 6= ∅, then there is at least one element of N(x; ε).
Let p ∈ N(x; ε).
Then p ∈ (x− ε, x+ ε).
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Since (x− ε, x+ ε) is an open interval and every point in an open interval is
an interior point, then p is an interior point of (x− ε, x+ ε), so p is an interior
point of N(x; ε).

Hence, there exists δ > 0 such that N(p; δ) ⊂ N(x; ε).
Since N(x; ε) ⊂ S, then N(p; δ) ⊂ S.
Thus, there exists δ > 0 such that N(p; δ) ⊂ S, so p is an interior point of

S.
Hence, p ∈ S◦, so N(x; ε) ⊂ S◦.
Therefore, there exists ε > 0 such that N(x; ε) ⊂ S◦, so x is an interior point

of S◦, as desired

Exercise 35. Let S be a set.
If S′ = ∅, then S is closed.

Proof. Let S′ be the derived set of S.
Then S′ = {x : x is an accumulation point of S}.
Suppose S′ = ∅.
Then there is no accumulation point of S.
Therefore, S is a set with no accumulation points, so S is closed.

Exercise 36. Let A and B be closed sets.
Then A ∪B is closed and A ∩B is closed.

Proof. We prove A ∪B is closed.
Let x be an accumulation point of A ∪B.
Let ε > 0 be given.
Since x is an accumulation point of A ∪ B, then N ′(x; ε) ∩ (A ∪ B) 6= ∅, so

there exists p such that p ∈ N ′(x; ε) ∩ (A ∪B).
Hence, p ∈ N ′(x; ε) and p ∈ A ∪B.
Since p ∈ A ∪B, then either p ∈ A or p ∈ B.
We consider these cases separately.
Case 1: Suppose p ∈ A.
Since p ∈ N ′(x; ε) and p ∈ A, then p ∈ N ′(x; ε) ∩A, so N ′(x; ε) ∩A 6= ∅.
Thus, x is an accumulation point of A.
Since A is closed, then x ∈ A.
Case 2: Suppose p ∈ B.
Since p ∈ N ′(x; ε) and p ∈ B, then p ∈ N ′(x; ε) ∩B, so N ′(x; ε) ∩B 6= ∅.
Thus, x is an accumulation point of B.
Since B is closed, then x ∈ B.
Hence, either x ∈ A or x ∈ B, so x ∈ A ∪B.
Therefore, A ∪B is closed.

Proof. We prove A ∩B is closed.
Let x be an accumulation point of A ∩B.
Let ε > 0 be given.
Since x is an accumulation point of A ∩ B, then N ′(x; ε) ∩ (A ∩ B) 6= ∅, so

there exists p such that p ∈ N ′(x; ε) ∩ (A ∩B).
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Hence, p ∈ N ′(x; ε) and p ∈ A ∩B.
Since p ∈ A ∩B, then p ∈ A and p ∈ B.
Since p ∈ N ′(x; ε) and p ∈ A, then p ∈ N ′(x; ε) ∩A, so N ′(x; ε) ∩A 6= ∅.
Thus, x is an accumulation point of A.
Since A is closed, then x ∈ A.
Since p ∈ N ′(x; ε) and p ∈ B, then p ∈ N ′(x; ε) ∩B, so N ′(x; ε) ∩B 6= ∅.
Thus, x is an accumulation point of B.
Since B is closed, then x ∈ B.
Hence, x ∈ A and x ∈ B, so x ∈ A ∩B.
Therefore, A ∩B is closed.

Exercise 37. The derived set of a set is closed.

Proof. Let S be a set.
Let S′ be the derived set of S.
Then S′ = {x : x is an accumulation point of S}.
Let S′′ be the derived set of S′.
Then S′′ = {x : x is an accumulation point of S′}.
We must prove S′ is closed.
Either S′′ = ∅ or S′′ 6= ∅.
We consider these cases separately.
Case 1: Suppose S′′ = ∅.
Then there is no accumulation point of S′.
Therefore, S′ is a set with no accumulation points, so S′ is closed.
Case 2: Suppose S′′ 6= ∅.
Then there is at least one element of S′′.
Let x ∈ S′′.
Then x is an accumulation point of S′.
To prove S′ is closed, we must prove x ∈ S′, so we must prove x is an

accumulation point of S.
Hence, we must prove N ′(x; ε) ∩ S 6= ∅ for every ε > 0.
Let ε > 0 be given.
Since x is an accumulation point of S′, then N ′(x; ε) ∩ S′ 6= ∅.
Thus, there exists p such that p ∈ N ′(x; ε) ∩ S′, so p ∈ N ′(x; ε) and p ∈ S′.
Since p ∈ N ′(x; ε), then p ∈ N(x; ε) and p 6= x.
Since p 6= x, then either p < x or p > x.
We consider these cases separately.
Case 2a: Suppose p > x.
Since p ∈ N(x; ε), then p ∈ (x− ε, x+ ε), so x− ε < p < x+ ε.
Hence, p < x+ ε.
Since x < p and p < x+ ε, then x < p < x+ ε, so p ∈ (x, x+ ε).
Since the open interval (x, x + ε) is open, then p is an interior point of

(x, x+ ε).
Thus, there exists δ > 0 such that N(p; δ) ⊂ (x, x+ ε).
Since p ∈ S′, then p is an accumulation point of S, so N ′(p; δ) ∩ S 6= ∅.
Thus, there exists q such that q ∈ N ′(p; δ) ∩ S, so q ∈ N ′(p; δ) and q ∈ S.
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Since q ∈ N ′(p; δ), then q ∈ N(p; δ).
Since N(p; δ) ⊂ (x, x+ε) ⊂ (x−ε, x+ε), then q ∈ (x−ε, x+ε), so q ∈ N(x; ε).
We prove q 6= x by contradiction.
Suppose q = x.
Since q ∈ N(p; δ) and N(p; δ) ⊂ (x, x+ε), then q ∈ (x, x+ε), so x < q < x+ε.
Thus, x < q.
But, this contradicts the assumption x = q.
Hence, q 6= x.
Since q ∈ N(x; ε) and q 6= x, then q ∈ N ′(x; ε).
Thus, q ∈ N ′(x; ε) and q ∈ S, so q ∈ N ′(x; ε) ∩ S.
Therefore, N ′(x; ε) ∩ S 6= ∅.
Case 2b: Suppose p < x.
Since p ∈ N(x; ε), then p ∈ (x− ε, x+ ε), so x− ε < p < x+ ε.
Hence, x− ε < p.
Since x− ε < p and p < x, then x− ε < p < x, so p ∈ (x− ε, x).
Since the open interval (x − ε, x) is open, then p is an interior point of

(x− ε, x).
Thus, there exists δ > 0 such that N(p; δ) ⊂ (x− ε, x).
Since p ∈ S′, then p is an accumulation point of S, so N ′(p; δ) ∩ S 6= ∅.
Thus, there exists q such that q ∈ N ′(p; δ) ∩ S, so q ∈ N ′(p; δ) and q ∈ S.
Since q ∈ N ′(p; δ), then q ∈ N(p; δ).
Since N(p; δ) ⊂ (x−ε, x) ⊂ (x−ε, x+ε), then q ∈ (x−ε, x+ε), so q ∈ N(x; ε).
We prove q 6= x by contradiction.
Suppose q = x.
Since q ∈ N(p; δ) and N(p; δ) ⊂ (x−ε, x), then q ∈ (x−ε, x), so x−ε < q < x.
Thus, q < x.
But, this contradicts the assumption q = x.
Hence, q 6= x.
Since q ∈ N(x; ε) and q 6= x, then q ∈ N ′(x; ε).
Thus, q ∈ N ′(x; ε) and q ∈ S, so q ∈ N ′(x; ε) ∩ S.
Therefore, N ′(x; ε) ∩ S 6= ∅.
Thus, in either case, N ′(x; ε)∩S 6= ∅, so x is an accumulation point of S, as

desired.

Exercise 38. Let S be a set.
If S is closed and a ∈ S, then the set {x ∈ S : x ≤ a} is closed.

Proof. Suppose S is closed and a ∈ S.
Let T = {x ∈ S : x ≤ a}.
Then T ⊂ S.
We must prove T is closed.
Either there is an accumulation point of T or there is not.
We consider these cases separately.
Case 1: Suppose there is no accumulation point of T .
Then T is a set with no accumulation points.
Since every set with no accumulation points is closed, then T is closed.
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Case 2: Suppose there is some accumulation point of T .
Then there is at least one accumulation point of T .
Let x be an arbitrary accumulation point of T .
Since x is an accumulation point of T and T ⊂ S, then x is an accumulation

point of S.
Since S is closed, then x ∈ S.
We prove x ≤ a by contradiction.
Suppose x > a.
Then x− a > 0.
Since x is an accumulation point of T , then N ′(x;x − a) ∩ T 6= ∅, so there

exists p such that p ∈ N ′(x;x− a) ∩ T .
Hence, p ∈ N ′(x;x− a) and p ∈ T .
Since p ∈ N ′(x;x− a), then p ∈ N(x;x− a), so p ∈ (a, 2x− a).
Thus, a < p < 2x− a, so a < p.
Since p ∈ T , then p ≤ a.
Hence, we have p ≤ a and p > a, a violation of trichotomy.
Therefore, x ≤ a.
Since x ∈ S and x ≤ a, then x ∈ T , so T is closed.

Exercise 39. Let S1 = (−3, 23 ).
Let S2 = (−1, 12 ).
Let S3 = (0, 12 ).
Let S4 = ( 1

3 ,
2
3 ).

Let S5 = ( 1
2 , 1).

Let S6 = ( 9
10 , 2).

Let S7 = ( 2
3 ,

3
2 ).

Let F = {Sk : n ∈ N, 1 ≤ k ≤ 7}.
Then
a. The collection of sets F is a finite open covering of [0, 1].
b. The subcollection {S1, S5, S6} of F is a subcover of [0, 1].
c. The subcollection {S1, S2, S3, S7} of F is not a cover of [0, 1].

Proof. We prove a.
Since ∪F = ∪7k=1Sk = S1 ∪ S2 ∪ ... ∪ S7 = (−3, 2) ⊃ [0, 1], then F is a

covering of [0, 1].
Since each open interval Sk of F is an open set, then F is an open covering

of [0, 1].
Since F is a finite set, then F is a finite open covering of [0, 1].

Proof. We prove b.
Let G = {S1, S5, S6}.
Since ∪G = S1 ∪ S5 ∪ S6 = (−3, 2) ⊃ [0, 1], then G is a covering of [0, 1].
Since G = {S1, S5, S6} ⊂ {S1, S2, S3, S4, S5, S6, S7} = F , then G is a subcov-

ering of [0, 1].
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Proof. We prove c.
Let H = {S1, S2, S3, S7}.
Since 2

3 6∈ (−3, 23 ) and 2
3 6∈ ( 2

3 ,
3
2 ), then 2

3 6∈ (−3, 23 ) ∪ ( 2
3 ,

3
2 ).

Since ∪H = S1 ∪ S2 ∪ S3 ∪ S7 = (−3, 23 ) ∪ ( 2
3 ,

3
2 ), then 2

3 6∈ ∪H.
Since 2

3 ∈ [0, 1], but 2
3 6∈ ∪H, then [0, 1] 6⊂ H, so H is not a covering of

[0, 1].

Exercise 40. Let S = { 1n : n ∈ N}.
Let F = {N( 1

n ; 1
n(n+1) ) : n ∈ N}.

Then F is an open covering of S.

Proof. We prove F is a covering of S.
Since 1 ∈ N and 1

1 = 1 ∈ S, then S 6= ∅.
Let x ∈ S.
Then there exists n ∈ N such that x = 1

n .
Since n ∈ N, then n > 0.
Since n+ 1 > n and n > 0, then n+ 1 > 0.
Since n > 0 and n+ 1 > 0, then n(n+ 1) > 0, so 1

n(n+1) > 0.

Hence, 1
n(n+1) >

1
n −

1
n , so 1

n + 1
n(n+1) >

1
n and 1

n >
1
n −

1
n(n+1) .

Thus, 1
n −

1
n(n+1) <

1
n <

1
n + 1

n(n+1) , so 1
n ∈ ( 1

n −
1

n(n+1) ,
1
n + 1

n(n+1) ).

Therefore, 1
n ∈ N( 1

n ; 1
n(n+1) ), so x ∈ N( 1

n ; 1
n(n+1) ).

Let A = N( 1
n ; 1

n(n+1) ).

Then x ∈ A.
Since n ∈ N and A = N( 1

n ; 1
n(n+1) ), then A ∈ F .

Thus, there exists A ∈ F such that x ∈ A, so x ∈ ∪F .
Therefore, S ⊂ ∪F , so F is a covering of S.
For each n ∈ N, the set N( 1

n ; 1
n(n+1) ) is an open interval, so N( 1

n ; 1
n(n+1) ) is

an open set.
Thus, N( 1

n ; 1
n(n+1) ) is an open set for each n ∈ N, so each set in F is open.

Therefore, F is an open covering of S.

Exercise 41. For each a ∈ R, let Sa = (a, a+ 1
4 ).

Let I be the index set [0, 34 ].
Let F = {Sa : a ∈ I}.
Then
a. The collection of sets F is an open covering of (0, 1).
b. The subcollection {S0, S 1

8
, S 1

4
, S 3

8
, S 1

2
, S 5

8
, S 3

4
} of F is a finite subcover

of (0, 1).
c. The interval (0, 1) is not compact.

Proof. We prove a.
To prove F is a covering of the open unit interval (0, 1), we prove (0, 1) ⊂ ∪F .
Let x ∈ (0, 1).
Then 0 < x < 1, so 0 < x and x < 1.
We must prove there exists Sa ∈ F such that x ∈ Sa.
Let m = max{0, x− 1

4}.
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Let M = min{ 34 , x}.
We first prove m < M .
Since either m = 0 or m = x − 1

4 and either M = 3
4 or M = x, then either

m = 0 and M = 3
4 or m = 0 and M = x or m = x− 1

4 and M = 3
4 or m = x− 1

4
and M = x.

Thus, we have 4 cases to consider.
We consider these cases separately.
Case 1: Suppose m = 0 and M = 3

4 .
Since 0 < 3

4 , then m < M .
Case 2: Suppose m = 0 and M = x.
Since 0 < x, then m < M .
Case 3: Suppose m = x− 1

4 and M = 3
4 .

Since x < 1, then x− 1
4 <

3
4 , so m < M .

Case 4: Suppose m = x− 1
4 and M = x.

Since x− 1
4 < x, then m < M .

Thus, in all cases, m < M .
Hence, then by density of R, there exists a ∈ R such that m < a < M , so

m < a and a < M .
Since 0 ≤ m and m < a, then 0 < a.
Since a < M and M ≤ 3

4 , then a < 3
4 .

Thus, 0 < a < 3
4 , so a ∈ [0, 34 ] = I.

Hence, Sa ∈ F .
Since a < M and M ≤ x, then a < x.
Since x− 1

4 ≤ m and m < a, then x− 1
4 < a, so x < a+ 1

4 .
Thus, a < x < a+ 1

4 , so x ∈ (a, a+ 1
4 ) = Sa.

Thus, there exists Sa ∈ F such that x ∈ Sa, so F is a covering of (0, 1).

We prove each set in F is open.
Since S0 = (0, 14 ) ∈ F , then F 6= ∅.
Let Sa be an arbitrary set in F .
Then Sa = (a, a+ 1

4 ) for some real a ∈ [0, 34 ].
Since the open interval (a, a+ 1

4 ) is open, then Sa is open.
Thus, every set in F is open, so F is an open covering of (0, 1).

Proof. We prove b.
Let G = {S0, S 1

8
, S 1

4
, S 3

8
, S 1

2
, S 5

8
, S 3

4
}.

We must prove G is a finite subcover of (0, 1).
To prove (0, 1) ⊂ ∪G , let x ∈ (0, 1).
Since (0, 1) = (0, 14 ) ∪ {14} ∪ ( 1

4 ,
1
2 ) ∪ {12} ∪ ( 1

2 ,
3
4 ) ∪ {34} ∪ ( 3

4 , 1), then either
x ∈ (0, 14 ) or x = 1

4 or x ∈ ( 1
4 ,

1
2 ) or x = 1

2 or x ∈ ( 1
2 ,

3
4 ) or x = 3

4 or x ∈ ( 3
4 , 1).

We consider these cases separately.
Case 1: Suppose x ∈ (0, 14 ).
Since (0, 14 ) = S0, then x ∈ S0.
Since S0 ⊂ ∪G , then x ∈ ∪G .
Case 2: Suppose x = 1

4 .
Since 1

8 <
1
4 <

3
8 , then 1

8 < x < 3
8 , so x ∈ ( 1

8 ,
3
8 ).
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Since ( 1
8 ,

3
8 ) = S 1

8
, then x ∈ S 1

8
.

Since S 1
8
⊂ ∪G , then x ∈ ∪G .

Case 3: Suppose x ∈ ( 1
4 ,

1
2 ).

Since ( 1
4 ,

1
2 ) = S 1

4
, then x ∈ S 1

4
.

Since S 1
4
⊂ ∪G , then x ∈ ∪G .

Case 4: Suppose x = 1
2 .

Since 3
8 <

1
2 <

5
8 , then 3

8 < x < 5
8 , so x ∈ ( 3

8 ,
5
8 ).

Since ( 3
8 ,

5
8 ) = S 3

8
, then x ∈ S 3

8
.

Since S 3
8
⊂ ∪G , then x ∈ ∪G .

Case 5: Suppose x ∈ ( 1
2 ,

3
4 ).

Since ( 1
2 ,

3
4 ) = S 1

2
, then x ∈ S 1

2
.

Since S 1
2
⊂ ∪G , then x ∈ ∪G .

Case 6: Suppose x = 3
4 .

Since 5
8 <

3
4 <

7
8 , then 5

8 < x < 7
8 , so x ∈ ( 5

8 ,
7
8 ).

Since ( 5
8 ,

7
8 ) = S 5

8
, then x ∈ S 5

8
.

Since S 5
8
⊂ ∪G , then x ∈ ∪G .

Case 7: Suppose x ∈ ( 3
4 , 1).

Since ( 3
4 , 1) = S 3

4
, then x ∈ S 3

4
.

Since S 3
4
⊂ ∪G , then x ∈ ∪G .

Thus, in all cases, x ∈ ∪G .
Hence, (0, 1) ⊂ ∪G .
Since (0, 1) ⊂ ∪G and G is a finite set and G ⊂ F , then G is a finite subcover

of (0, 1).

Proof. We prove c.
To prove (0, 1) is not compact,
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