Topology of \mathbb{R} Exercises

Jason Sass

June 29, 2021

Topology of \mathbb{R}

Exercise 1. There are exactly two real numbers whose distance from the number 3 is 7.

Proof. Let S be the set of all real numbers whose distance from 3 is 7. Then $S = \{x \in \mathbb{R} : d(x, 3) = 7\}.$ We prove $S = \{-4, 10\}.$ Let $x \in S$. Then $x \in \mathbb{R}$ and d(x, 3) = 7, so |x - 3| = 7. Either $x - 3 \ge 0$ or x - 3 < 0. We consider these cases separately. Case 1: Suppose $x - 3 \ge 0$. Then 7 = |x - 3| = x - 3, so 7 = x - 3. Thus, x = 10. **Case 2:** Suppose x - 3 < 0. Then 7 = |x - 3| = -(x - 3) = -x + 3 = 3 - x, so 7 = 3 - x. Thus, x = -4. Hence, either x = 10 or x = -4. Therefore, $x \in \{-4, 10\}$, so $S \subset \{-4, 10\}$. Let $y \in \{-4, 10\}$. Then either y = -4 or y = 10. We consider these cases separately. Case 1: Suppose y = -4. Since $-4 \in \mathbb{R}$ and d(-4,3) = |-4-3| = |-7| = 7, then $y \in S$. Case 2: Suppose y = 10. Since $10 \in \mathbb{R}$ and d(10,3) = |10-3| = |7| = 7, then $y \in S$. Hence, in all cases, $y \in S$, so $\{-4, 10\} \subset S$. Since $S \subset \{-4, 10\}$ and $\{-4, 10\} \subset S$, then $S = \{-4, 10\}$. Since -4 and 10 are the only real numbers whose distance from the number 3 is 7, then there are exactly two real numbers whose distance from the number 3 is 7.

Exercise 2. Describe the set of all points in \mathbb{R} which are within 5 units of the number -2.

Proof. Let S be the set of all points in \mathbb{R} which are within 5 units of the number -2.

Then $S = \{x \in \mathbb{R} : d(x, -2) \le 5\}$. We prove S = [-7, 3]. Let $x \in S$. Then $x \in \mathbb{R}$ and $d(x, -2) \le 5$, so $5 \ge d(x, -2) = |x - (-2)| = |x + 2|$. Hence, $5 \ge |x + 2|$, so $|x + 2| \le 5$. Thus, $-5 \le x + 2 \le 5$, so $-7 \le x \le 3$. Therefore, $x \in [-7, 3]$, so $S \subset [-7, 3]$.

Let $y \in [-7, 3]$. Then $-7 \le y \le 3$, so $-5 \le y + 2 \le 5$. Hence, $|y + 2| \le 5$, so $|y - (-2)| \le 5$. Thus, $d(y, -2) \le 5$. Since $y \in \mathbb{R}$ and $d(y, -2) \le 5$, then $y \in S$, so $[-7, 3] \subset S$. Since $S \subset [-7, 3]$ and $[-7, 3] \subset S$, then S = [-7, 3].

Exercise 3. Describe the set of all real numbers whose distance from 4 is greater than 15.

Proof. Let S be the set of all real numbers whose distance from 4 is greater than 15.

Then $S = \{x \in \mathbb{R} : d(x, 4) > 15\}$. We prove $S = (-\infty, -11) \cup (19, \infty)$. Let $x \in S$. Then $x \in \mathbb{R}$ and d(x, 4) > 15, so |x - 4| > 15. Hence, either x - 4 > 15 or x - 4 < -15, so either x > 19 or x < -11. Thus, either $x \in (19, \infty)$ or $x \in (-\infty, -11)$, so $x \in (19, \infty) \cup (-\infty, -11)$. Therefore, $x \in (-\infty, -11) \cup (19, \infty)$, so $S \subset (-\infty, -11) \cup (19, \infty)$.

Let $y \in (-\infty, -11) \cup (19, \infty)$. Then either $y \in (-\infty, -11)$ or $y \in (19, \infty)$, so either y < -11 or y > 19. Hence, either y - 4 < -15 or y - 4 > 15, so either y - 4 > 15 or y - 4 < -15. Thus, |y - 4| > 15, so d(y, 4) > 15. Since $y \in \mathbb{R}$ and d(y, 4) > 15, then $y \in S$, so $(-\infty, -11) \cup (19, \infty) \subset S$. Since $S \subset (-\infty, -11) \cup (19, \infty)$ and $(-\infty, -11) \cup (19, \infty) \subset S$, then $S = (-\infty, -11) \cup (19, \infty)$.

Exercise 4. If I_1 and I_2 are intervals such that $I_1 \cap I_2 \neq \emptyset$, then $I_1 \cup I_2$ is an interval.

Solution.

Our hypothesis is I_1 is an interval and I_2 is an interval and $I_1 \cap I_2 \neq \emptyset$.

To prove our conclusion $I_1 \cup I_2$ is an interval, we must prove $(\forall a, b, c \in$ $\mathbb{R})[a, b \in I_1 \cup I_2 \land a < c < b \to c \in I_1 \cup I_2].$ We let a, b, c be arbitrary real numbers. To prove $c \in I_1 \cup I_2$, we assume $a \in I_1 \cup I_2$ and $b \in I_1 \cup I_2$ and a < c < b. We must prove either $c \in I_1$ or $c \in I_2$. To prove $c \in I_1$ we must prove $a, b \in I_1$ and a < c < b. To prove $c \in I_2$ we must prove $a, b \in I_2$ and a < c < b. Since $a \in I_1 \cup I_2$, then either $a \in I_1$ or $a \in I_2$. Since $b \in I_1 \cup I_2$, then either $b \in I_1$ or $b \in I_2$. Hence, we have 4 cases to consider: 1. $a \in I_1, b \in I_1$. 2. $a \in I_1, b \in I_2$. 3. $a \in I_2, b \in I_1$. 4. $a \in I_2, b \in I_2$. *Proof.* Let I_1 and I_2 be intervals such that $I_1 \cap I_2 \neq \emptyset$. Let a, b, and c be arbitrary real numbers. To prove $I_1 \cup I_2$ is an interval, we assume $a \in I_1 \cup I_2$ and $b \in I_1 \cup I_2$ and a < c < b. To prove $c \in I_1 \cup I_2$, we must prove either $c \in I_1$ or $c \in I_2$. Since $a \in I_1 \cup I_2$, then either $a \in I_1$ or $a \in I_2$. Since $b \in I_1 \cup I_2$, then either $b \in I_1$ or $b \in I_2$. There are 4 cases to consider. **Case 1:** Suppose $a \in I_1$ and $b \in I_1$. Since $a \in I_1$ and $b \in I_1$ and c is between a and b, and since I_1 is an interval, then we conclude $c \in I_1$. **Case 2:** Suppose $a \in I_1$ and $b \in I_2$. Since $I_1 \cap I_2$ is not empty, then there exists an element in $I_1 \cap I_2$. Let x be an arbitrary element of $I_1 \cap I_2$. Then $x \in I_1$ and $x \in I_2$. By trichotomy, either x < c or x = c or x > c. We consider these cases separately. Case 2a: Suppose x > c. Then c < x. Since a < c < b, then a < c and c < b. Since a < c and c < x, then a < c < x. Since $a \in I_1$ and $x \in I_1$ and c is between a and x, and since I_1 is an interval, then we conclude $c \in I_1$. Case 2b: Suppose x < c. Since a < c < b, then a < c and c < b. Since x < c and c < b, then x < c < b. Since $b \in I_2$ and $x \in I_2$ and c is between x and b, and since I_2 is an interval, then we conclude $c \in I_2$. Case 2c: Suppose x = c. Since $x \in I_1 \cap I_2$ and $I_1 \cap I_2 \subset I_1 \cup I_2$, then $x \in I_1 \cup I_2$. Since x = c, then $c \in I_1 \cup I_2$.

Hence, in all cases, either $c \in I_1$ or $c \in I_2$, so $c \in I_1 \cup I_2$. **Case 3:** Suppose $a \in I_2$ and $b \in I_1$. The argument is the same as case 2, with a and b reversed. **Case 4:** Suppose $a \in I_2$ and $b \in I_2$. The argument is the same as case 1, with I_2 instead of I_1 . Hence, in all 4 cases, c is contained in $I_1 \cup I_2$, so $I_1 \cup I_2$ is an interval, as desired.

Exercise 5. Let $a, b, a', b' \in \mathbb{R}$ with a < b and a' < b'. Let [a, b] and [a', b'] be closed intervals. Then $[a, b] \subset [a', b']$ iff $a' \leq a$ and $b \leq b'$.

Proof. We first prove if $a' \leq a$ and $b \leq b'$, then $[a, b] \subset [a', b']$. Suppose $a' \leq a$ and $b \leq b'$. Since a < b, then $[a, b] \neq \emptyset$. Let $x \in [a, b]$. Then $a \leq x \leq b$, so $a \leq x$ and $x \leq b$. Since $a' \leq a$ and $a \leq x$, then $a' \leq x$. Since $x \leq b$ and $b \leq b'$, then $x \leq b'$. Thus, $a' \leq x$ and $x \leq b'$, so $a' \leq x \leq b'$. Therefore, $x \in [a', b']$, so $[a, b] \subset [a', b']$.

Proof. Conversely, we prove if $[a, b] \subset [a', b']$, then $a' \leq a$ and $b \leq b'$. Suppose $[a, b] \subset [a', b']$. Since $a \in [a, b]$ and $[a, b] \subset [a', b']$, then $a \in [a', b']$, so $a' \leq a \leq b'$. Hence, $a' \leq a$ and $a \leq b'$, so $a' \leq a$. Since $b \in [a, b]$ and $[a, b] \subset [a', b']$, then $b \in [a', b']$, so $a' \leq b \leq b'$. Hence, $a' \leq b$ and $b \leq b'$, so $b \leq b'$. Therefore, $a' \leq a$ and $b \leq b'$, as desired. □

Exercise 6. Let S be a nonempty subset of \mathbb{R} . Then S is bounded iff there is a closed bounded interval I such that $S \subset I$.

Proof. Suppose S is bounded.

Then S is bounded above and below in \mathbb{R} , so there exist real numbers a and b such that $a \leq x \leq b$ for all $x \in S$.

Let I = [a, b]. Then I is a closed bounded interval. Since S is nonempty, let $x \in S$. Then $a \le x \le b$. Since $x \in S$ and $S \subset \mathbb{R}$, then $x \in \mathbb{R}$. Since $x \in \mathbb{R}$ and $a \le x \le b$, then $x \in I$, so $S \subset I$. Therefore, there is a closed bounded interval I such that $S \subset I$. Conversely, suppose there is a closed bounded interval I such that $S \subset I$. Then there are real numbers a and b such that I = [a, b]. Since S is not empty, let $x \in S$. Since $S \subset I$, then $x \in I$, so $a \leq x \leq b$. Hence, $a \leq x \leq b$ for all $x \in S$. Thus, there exist real numbers a and b such that $a \leq x \leq b$ for all $x \in S$. Therefore, S is bounded.

Exercise 7. Let S be a nonempty bounded subset of \mathbb{R} .

Let $I = [\inf S, \sup S].$ Then $S \subset I$.

Proof. Since S is a bounded subset of \mathbb{R} , then S is bounded above and below in \mathbb{R} .

Since S is nonempty and bounded above in \mathbb{R} , then sup S exists. Since S is nonempty and bounded below in \mathbb{R} , then inf S exists. Let $I = [\inf S, \sup S]$. Since S is not empty, let $x \in S$. Since $\sup S$ is an upper bound of S, then $x \leq \sup S$. Since $\inf S$ is a lower bound of S, then $\inf S < x$. Thus, $\inf S \leq x \leq \sup S$, so $x \in [\inf S, \sup S]$. Therefore, $x \in I$, so $S \subset I$.

Exercise 8. Let S be a nonempty bounded subset of \mathbb{R} . Let $I = [\inf S, \sup S].$ Let J be a closed bounded interval such that $S \subset J$. Then $I \subset J$.

Proof. Since J is a closed bounded interval, then there exist real numbers a and b with a < b such that J = [a, b].

Since $S \neq \emptyset$, let $x \in S$.

Since $S \subset J$, then $x \in J$, so $x \in [a, b]$.

Hence, $a \leq x \leq b$, so $a \leq x$ and $x \leq b$.

Thus, $a \leq x$ and $x \leq b$ for all $x \in S$, so $a \leq x$ for all $x \in S$ and $x \leq b$ for all $x \in S$.

Consequently, a is a lower bound of S and b is an upper bound of S.

Since b is an upper bound of S and $\sup S$ is the least upper bound of S, then $\sup S \leq b.$

Since a is a lower bound of S and $\inf S$ is the greatest lower bound of S, then $a \leq \inf S$.

Let $y \in I$. Then $\inf S \leq y \leq \sup S$, so $\inf S \leq y$ and $y \leq \sup S$. Since $a \leq \inf S$ and $\inf S \leq y$ and $y \leq \sup S$ and $\sup S \leq b$, then $a \leq y \leq b$, so $y \in [a, b]$. Therefore, $y \in J$, so $I \subset J$, as desired.

Exercise 9. Let $S_n = [0, \frac{1}{n}]$ for each $n \in \mathbb{N}$. Then $\bigcap_{n=1}^{\infty} S_n = \{0\}$.

Solution. We can draw several of these intervals and observe that each of the intervals gets smaller, so the collection $\{S_n : n \in \mathbb{N}\}$ is a decreasing family of sets indexed by \mathbb{N} . It appears that the intersection of all these intervals is the singleton set $\{0\}$.

Proof. To prove $\{0\} \subset \bigcap_{n=1}^{\infty} S_n$, let $n \in \mathbb{N}$ be arbitrary. Then $S_n = [0, \frac{1}{n}].$ Since $n \in \mathbb{N}$, then n > 0, so $\frac{1}{n} > 0$. Thus, $S_n \neq \emptyset$ and $0 \in S_n$. Since n is arbitrary, then $0 \in S_n$ for each $n \in \mathbb{N}$. Hence, $0 \in \bigcap_{n=1}^{\infty} S_n$, so $\{0\} \subset \bigcap_{n=1}^{\infty} S_n$. To prove $\cap_{n=1}^{\infty} S_n \subset \{0\}$, let $x \in \cap_{n=1}^{\infty} S_n$. Then $x \in S_n$ for each $n \in \mathbb{N}$. Thus, $x \in S_1 = [0, 1]$, so $0 \le x \le 1$. Hence, $0 \le x$, so $x \ge 0$. Therefore, either x > 0 or x = 0. Suppose x > 0. Then by the Archimedean property of \mathbb{R} , there exists $m \in \mathbb{N}$ such that $\frac{1}{m} < x.$ Thus, $x \notin [0, \frac{1}{m}]$. Hence, there exists $m \in \mathbb{N}$ such that $x \notin S_m$. But, this contradicts the fact that $x \in S_n$ for every $n \in \mathbb{N}$. Therefore, x = 0, so $x \in \{0\}$. Thus, $\bigcap_{n=1}^{\infty} S_n \subset \{0\}.$ Since $\bigcap_{n=1}^{\infty} S_n \subset \{0\}$ and $\{0\} \subset \bigcap_{n=1}^{\infty} S_n$, then $\bigcap_{n=1}^{\infty} S_n = \{0\}$.

Exercise 10. Let $S_n = (\frac{1}{n}, 1)$ for each $n \in \mathbb{N}$. Then $\bigcup_{n=1}^{\infty} S_n = (0, 1)$.

Solution. We can draw several of these intervals and observe that each of the intervals gets larger, so the collection $\{S_n : n \in \mathbb{N}\}$ is a increasing family of sets indexed by \mathbb{N} . It appears that the union of all these intervals is (0, 1). \Box

Proof. To prove $\bigcup_{n=1}^{\infty} S_n = (0,1)$, we prove $\bigcup_{n=1}^{\infty} S_n \subset (0,1)$ and $(0,1) \subset \bigcup_{n=1}^{\infty} S_n$. We prove $\bigcup_{n=1}^{\infty} S_n \subset (0,1)$. Let $x \in \bigcup_{n=1}^{\infty} S_n$. Then there exists $n \in \mathbb{N}$ such that $x \in S_n$. Thus, there exists $n \in \mathbb{N}$ such that $x \in \mathbb{R}$ and $\frac{1}{n} < x < 1$. Since $\frac{1}{n} < x < 1$, then $\frac{1}{n} < x$ and x < 1. Since $n \in \mathbb{N}$, then n > 0, so $n \neq 0$. Since $n \in \mathbb{N}$ and $\mathbb{N} \subset \mathbb{R}$, then $n \in \mathbb{R}$.

Since $n \in \mathbb{R}$ and $n \neq 0$, then $\frac{1}{n} \in \mathbb{R}$. Since n > 0, then $\frac{1}{n} > 0$, so $0 < \frac{1}{n}$. Since $0 < \frac{1}{n}$ and $\frac{1}{n} < x$, then 0 < x. Thus, 0 < x and x < 1, so 0 < x < 1. Since $x \in \mathbb{R}$ and 0 < x < 1, then $x \in (0, 1)$. Hence, $x \in \bigcup_{n=1}^{\infty} S_n$ implies $x \in (0, 1)$, so $\bigcup_{n=1}^{\infty} S_n \subset (0, 1)$. We prove $(0,1) \subset \bigcup_{n=1}^{\infty} S_n$. Let $y \in (0, 1)$. Then $y \in \mathbb{R}$ and 0 < y < 1, so 0 < y and y < 1. To prove $y \in \bigcup_{n=1}^{\infty} S_n$, we must show there exists $k \in \mathbb{N}$ such that $y \in S_k$. Since 0 < y, then y > 0, so $y \neq 0$. Since $y \in \mathbb{R}$ and $y \neq 0$, then $\frac{1}{y} \in \mathbb{R}$. By the Archimedean property of \mathbb{R} , for every real number there corresponds Hence, there exists a natural number that is larger than the real number $\frac{1}{n}$. Choose $k \in \mathbb{N}$ such that $k > \frac{1}{y}$. Since y > 0, we multiply by y to get ky > 1. Since $k \in \mathbb{N}$, then k > 0, so we divide by k to get $y > \frac{1}{k}$. Hence, $\frac{1}{k} < y$.

a larger natural number.

Since $\frac{1}{k} < y$ and y < 1, then $\frac{1}{k} < y < 1$. Since $y \in \mathbb{R}$ and $\frac{1}{k} < y < 1$, then $y \in (\frac{1}{k}, 1)$, so $y \in S_k$. Thus, there exists $k \in \mathbb{N}$ such that $y \in S_k$, so $y \in \bigcup_{n=1}^{\infty} S_n$. Therefore, $y \in (0,1)$ implies $y \in \bigcup_{n=1}^{\infty} S_n$, so $(0,1) \subset \bigcup_{n=1}^{\infty} S_n$. Since $\bigcup_{n=1}^{\infty} S_n \subset (0,1)$ and $(0,1) \subset \bigcup_{n=1}^{\infty} S_n$, then $\bigcup_{n=1}^{\infty} S_n = (0,1)$.

Exercise 11. Let $S_n = (0, \frac{1}{n})$ for each $n \in \mathbb{N}$. Then $\cap_{n=1}^{\infty} S_n = \emptyset$.

Solution. We can draw several of these intervals and note that each of the intervals gets smaller, so $S = \{S_n : n \in \mathbb{N}\}\$ is a decreasing family of sets indexed by \mathbb{N} . It appears that the intersection of all these intervals is empty.

Proof. We prove by contradiction.

Suppose $\cap_{n=1}^{\infty} S_n \neq \emptyset$. Then there is an element in $\cap_{n=1}^{\infty} S_n$. Let x be an element of $\bigcap_{n=1}^{\infty} S_n$. Then $x \in S_n$ for every $n \in \mathbb{N}$. Hence, $x \in \mathbb{R}$ and $0 < x < \frac{1}{n}$ for every $n \in \mathbb{N}$, so 0 < x and $x < \frac{1}{n}$ for every $n \in \mathbb{N}$. Since $x \in \mathbb{R}$ and x > 0, then $x \neq 0$. Since $x \in \mathbb{R}$ and $x \neq 0$, then $\frac{1}{x} \in \mathbb{R}$. By the Archimedean property of \mathbb{R} , there exists a natural number that is larger than the real number $\frac{1}{r}$. Thus, there exists $k \in \mathbb{N}$ such that $k > \frac{1}{r}$. Since $k \in \mathbb{N}$, then $x < \frac{1}{k}$ and k > 0.

Consequently, kx < 1.

Since x > 0, then $k < \frac{1}{x}$. Hence, we have $k > \frac{1}{x}$ and $k < \frac{1}{x}$, a contradiction. Therefore, $\bigcap_{n=1}^{\infty} S_n = \emptyset$, as desired.

Exercise 12. What is $\bigcup_{n=1}^{\infty} (\mathbb{R} - (0, \frac{1}{n}))?$

Solution. Observe that

$$\cup_{n=1}^{\infty} (\mathbb{R} - (0, \frac{1}{n})) = \mathbb{R} - \bigcap_{n=1}^{\infty} (0, \frac{1}{n})$$
$$= \mathbb{R} - \emptyset$$
$$= \mathbb{R}.$$

Exercise 13. Compute $\bigcap_{n=1}^{\infty} \left(\frac{-1}{n}, 1+\frac{1}{n}\right)$.

Solution. Let $S = \{S_n : n \in \mathbb{N}\}$ be a family of intervals $S_n = (\frac{-1}{n}, 1 + \frac{1}{n})$ indexed by \mathbb{N} .

We must compute $\cap_{n=1}^{\infty} S_n$.

We sketch S_1, S_2, S_3, S_4 intervals and observe that $S_1 \supset S_2 \supset S_3 \supset S_4 \supset ...$, so S is a decreasing family of nested intervals.

Intuitively, we see that the interval (0, 1) is contained in the intersection of this family of intervals.

We need to check the endpoints 0 and 1 to determine if they are in this intersection.

We show that $0 \in \bigcap_{n=1}^{\infty} S_n$. Let $n \in \mathbb{N}$. Then n > 0, so $\frac{1}{n} > 0$. Hence, $\frac{-1}{n} < 0$. Since -1 < 0 and $0 < \frac{1}{n}$, then $-1 < \frac{1}{n}$. Thus, $0 < 1 + \frac{1}{n}$. Therefore, $\frac{-1}{n} < 0$ and $0 < 1 + \frac{1}{n}$, so $\frac{-1}{n} < 0 < 1 + \frac{1}{n}$. Hence, $0 \in (\frac{-1}{n}, 1 + \frac{1}{n})$, so $0 \in S_n$. Since n is arbitrary, then $0 \in S_n$ for all $n \in \mathbb{N}$. Therefore, $0 \in \bigcap_{n=1}^{\infty} S_n$. Thus, the interval [0,1) is contained in $\bigcap_{n=1}^{\infty} S_n$. We show that $1 \in \bigcap_{n=1}^{\infty} S_n$. Let $n \in \mathbb{N}$. Then n > 0, so $\frac{1}{n} > 0$. Hence, $\frac{-1}{n} < 0$. Since $\frac{-1}{n} < 0$ and 0 < 1, then $\frac{-1}{n} < 1$. Since $0 < \frac{1}{n}$, then $1 < 1 + \frac{1}{n}$. Thus, $\frac{-1}{n} < 1$ and $1 < 1 + \frac{1}{n}$, so $\frac{-1}{n} < 1 < 1 + \frac{1}{n}$. Hence, $1 \in (\frac{-1}{n}, 1 + \frac{1}{n})$, so $1 \in S_n$. Since n is arbitrary, then $1 \in S_n$ for all $n \in \mathbb{N}$. Therefore, $1 \in \bigcap_{n=1}^{\infty} S_n$. Thus, the interval [0, 1] is contained in $\bigcap_{n=1}^{\infty} S_n$.

Proof. To prove $\cap_{n=1}^{\infty} S_n = [0,1]$, we prove $\cap_{n=1}^{\infty} S_n \subset [0,1]$ and $[0,1] \subset \cap_{n=1}^{\infty} S_n$. We first prove $\cap_{n=1}^{\infty} S_n \subset [0,1]$. Let $x \in \bigcap_{n=1}^{\infty} S_n$. Then $x \in S_n$ for all $n \in \mathbb{N}$, so $x \in (\frac{-1}{n}, 1 + \frac{1}{n})$ for all $n \in \mathbb{N}$. To prove $x \in [0, 1]$, we must prove $x \in \mathbb{R}$ and $0 \le x \le 1$. Let $n \in \mathbb{N}$. Then $x \in \left(\frac{-1}{n}, 1 + \frac{1}{n}\right)$, so $x \in \mathbb{R}$ and $\frac{-1}{n} < x < 1 + \frac{1}{n}$. Thus, $\frac{-1}{n} < x$ and $x < 1 + \frac{1}{n}$. Since $n \in \mathbb{N}$, then n > 0. Since $\frac{-1}{n} < x$, we multiply by *n* to get -1 < nx. Suppose x < 0. Then we divide by x to get $\frac{-1}{x} > n$. Thus, $n < \frac{-1}{x}$, so $n \leq \frac{-1}{x}$. Since x < 0, then $x \neq 0$, so $\frac{1}{x} \in \mathbb{R}$. Hence, $\frac{-1}{x} \in \mathbb{R}$. Since n is arbitrary then $n \leq \frac{-1}{x}$ for all $n \in \mathbb{N}$. Thus, the real number $\frac{-1}{x}$ is an upper bound for \mathbb{N} in \mathbb{R} , so \mathbb{N} has an upper bound in \mathbb{R} . By the Archimedean property of \mathbb{R} , \mathbb{N} has no upper bound in \mathbb{R} . Hence, we have \mathbb{N} has an upper bound in \mathbb{R} and \mathbb{N} has no upper bound in \mathbb{R} , a contradiction. Therefore, x cannot be negative. Hence, $x \ge 0$, so $0 \le x$. Suppose x > 1. Then x - 1 > 0. Since $x < 1 + \frac{1}{n}$, then $x - 1 < \frac{1}{n}$. Since n > 0, we multiply by n to get n(x - 1) < 1. Since x - 1 > 0, we divide by x - 1 to get $n < \frac{1}{x-1}$, so $n \le \frac{1}{x-1}$. Since x - 1 > 0, then $x - 1 \neq 0$, so $\frac{1}{x - 1} \in \mathbb{R}$. Since n is arbitrary, then $n \leq \frac{1}{x-1}$ for all $n \in \mathbb{N}$. Thus, the real number $\frac{1}{x-1}$ is an upper bound for \mathbb{N} in \mathbb{R} , so \mathbb{N} has an upper bound in \mathbb{R} . By the Archimedean property of \mathbb{R} , \mathbb{N} has no upper bound in \mathbb{R} . Hence, we have \mathbb{N} has an upper bound in \mathbb{R} and \mathbb{N} has no upper bound in \mathbb{R} , a contradiction. Therefore, x cannot be greater than 1. Thus, $x \leq 1$. Since $0 \le x$ and $x \le 1$, then $0 \le x \le 1$, so $x \in [0, 1]$. Therefore, $x \in \bigcap_{n=1}^{\infty} S_n$ implies $x \in [0, 1]$, so $\bigcap_{n=1}^{\infty} S_n \subset [0, 1]$. We prove $[0,1] \subset \bigcap_{n=1}^{\infty} S_n$. Let $y \in [0, 1]$. Then $y \in \mathbb{R}$ and $0 \le y \le 1$. To prove $y \in \bigcap_{n=1}^{\infty} S_n$, we must prove $y \in S_n$ for all $n \in \mathbb{N}$.

Thus, we must prove $y \in (\frac{-1}{n}, 1 + \frac{1}{n})$ for all $n \in \mathbb{N}$, so we must prove $y \in \mathbb{R}$ and $\frac{-1}{n} < y < 1 + \frac{1}{n}$ for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$. Then n > 0, so $\frac{1}{n} > 0$, so $\frac{-1}{n} < 0$. Since $0 \le y \le 1$, then either y = 0 or y = 1 or 0 < y < 1. We consider these cases separately. Case 1: Suppose 0 < y < 1. Then 0 < y and y < 1. Since $\frac{-1}{n} < 0$ and y < 1. Since $\frac{-1}{n} < 0$ and 0 < y, then $\frac{-1}{n} < y$. Since $\frac{1}{n} > 0$, then $0 < \frac{1}{n}$, so $1 < 1 + \frac{1}{n}$. Since y < 1 and $1 < 1 + \frac{1}{n}$, then $y < 1 + \frac{1}{n}$. Thus, $\frac{-1}{n} < y$ and $y < 1 + \frac{1}{n}$, so $\frac{-1}{n} < y < 1 + \frac{1}{n}$. **Case 2:** Suppose y = 0. **Case 2:** Suppose y = 0. Since $\frac{-1}{n} < 0$, then $\frac{-1}{n} < y$. Since -1 < 0 and $0 < \frac{1}{n}$, then $-1 < \frac{1}{n}$. Thus, $0 < 1 + \frac{1}{n}$, so $y < 1 + \frac{1}{n}$. Hence, $\frac{-1}{n} < y$ and $y < 1 + \frac{1}{n}$, so $\frac{-1}{n} < y < 1 + \frac{1}{n}$. **Case 3:** Suppose y = 1. Since $\frac{-1}{n} < 0$ and 0 < 1, then $\frac{-1}{n} < 1$, so $\frac{-1}{n} < y$. Since $0 < \frac{1}{n}$, then $1 < 1 + \frac{1}{n}$, so $y < 1 + \frac{1}{n}$. Hence, $\frac{-1}{n} < y$ and $y < 1 + \frac{1}{n}$, so $\frac{-1}{n} < y$. Since $0 < \frac{1}{n}$, then $1 < 1 + \frac{1}{n}$, so $\frac{-1}{n} < y < 1 + \frac{1}{n}$. Hence, $\frac{-1}{n} < y$ and $y < 1 + \frac{1}{n}$, so $\frac{-1}{n} < y < 1 + \frac{1}{n}$. Since $y \in \mathbb{R}$ and $\frac{-1}{n} < y < 1 + \frac{1}{n}$, then $y \in (\frac{-1}{n}, 1 + \frac{1}{n})$. Since n is arbitrary, then $y \in (\frac{-1}{n}, 1 + \frac{1}{n})$ for all $n \in \mathbb{N}$, so $y \in S_n$ for all $\in \mathbb{N}$. $n \in \mathbb{N}$. Therefore, $y \in \bigcap_{n=1}^{\infty} S_n$. Thus, $y \in [0,1]$ implies $y \in \bigcap_{n=1}^{\infty} S_n$, so $[0,1] \subset \bigcap_{n=1}^{\infty} S_n$. Since $\bigcap_{n=1}^{\infty} S_n \subset [0,1]$ and $[0,1] \subset \bigcap_{n=1}^{\infty} S_n$, then $\bigcap_{n=1}^{\infty} S_n = [0,1]$. Lemma 14. Let $r \in \mathbb{R}$. If $r \leq \frac{1}{n}$ for all $n \in \mathbb{N}$, then $r \leq 0$. *Proof.* We prove by contrapositive. Suppose r > 0.

Then, by the Archimedean property of \mathbb{R} , there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < r$. Therefore, there exists $n \in \mathbb{N}$ such that $r > \frac{1}{n}$, as desired.

Exercise 15. Let $S_n = (n, \infty)$ for each $n \in \mathbb{N}$. Then $\bigcap_{n=1}^{\infty} S_n = \emptyset$.

Proof. We prove by contradiction.

Suppose $\bigcap_{n=1}^{\infty} S_n \neq \emptyset$. Then there exists $x \in \bigcap_{n=1}^{\infty} S_n$, so $x \in S_n$ for all $n \in \mathbb{N}$. Hence, $x \in (n, \infty)$ for each $n \in \mathbb{N}$, so x > n for each $n \in \mathbb{N}$. Thus, there exists $x \in \mathbb{R}$ such that n < x for each $n \in \mathbb{N}$, so x is an upper bound of \mathbb{N} .

Consequently, \mathbb{N} is bounded above in \mathbb{R} .

Since 0 < n for all $n \in \mathbb{N}$, then 0 is a lower bound of \mathbb{N} , so \mathbb{N} is bounded below in \mathbb{R} .

Since \mathbb{N} is bounded above and below in \mathbb{R} , then \mathbb{N} is bounded in \mathbb{R} . But, this contradict the Archimedean property that \mathbb{N} is unbounded in \mathbb{R} . Therefore, $\bigcap_{n=1}^{\infty} S_n = \emptyset$.

Exercise 16. Compute $\bigcup_{n=1}^{\infty} (\mathbb{R} - [\frac{1}{n}, 2 + \frac{1}{n}]).$ Solution. We prove $\bigcup_{n=1}^{\infty} (\mathbb{R} - [\frac{1}{n}, 2 + \frac{1}{n}]) = (-\infty, 1) \cup (2, \infty).$

Proof. We first prove $\cap_{n=1}^{\infty} [\frac{1}{n}, 2 + \frac{1}{n}] = [1, 2].$

Let $x \in \bigcap_{n=1}^{\infty} [\frac{1}{n}, 2 + \frac{1}{n}]$. Then $x \in [\frac{1}{n}, 2 + \frac{1}{n}]$ for each $n \in \mathbb{N}$, so $\frac{1}{n} \leq x \leq 2 + \frac{1}{n}$ for each $n \in \mathbb{N}$. Hence, $\frac{1}{n} \leq x$ and $x \leq 2 + \frac{1}{n}$ for each $n \in \mathbb{N}$, so $\frac{1}{n} \leq x$ for each $n \in \mathbb{N}$ and $x \leq 2 + \frac{1}{n}$ for each $n \in \mathbb{N}$. Since $\frac{1}{n} \leq x$ for each $n \in \mathbb{N}$, then for n = 1, we have $\frac{1}{1} \leq x$, so $1 \leq x$. Since $x \leq 2 + \frac{1}{n}$ for each $n \in \mathbb{N}$, then $x - 2 \leq \frac{1}{n}$ for each $n \in \mathbb{N}$. By a previous lemma, if $r \leq \frac{1}{n}$ for each $n \in \mathbb{N}$, then $r \leq 0$. Thus, $x - 2 \leq 0$, so $x \leq 2$. Since $1 \leq x$ and $x \leq 2$, then $1 \leq x \leq 2$, so $x \in [1, 2]$. Therefore, $\bigcap_{n=1}^{\infty} [\frac{1}{n}, 2 + \frac{1}{n}] \subset [1, 2]$. Let $y \in [1, 2]$. Then $1 \leq y \leq 2$, so $1 \leq y$ and $y \leq 2$. Since $y \leq 2$, then $y - 2 \leq 0$. Let $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$. Then $n \ge 1 > 0$, so $n \ge 1$ and n > 0. Hence, $1 \ge \frac{1}{n} > 0$, so $1 \ge \frac{1}{n}$ and $\frac{1}{n} > 0$. Since $\frac{1}{n} \le 1$ and $1 \le y$, then $\frac{1}{n} \le y$. Since $y - 2 \le 0$ and $0 < \frac{1}{n}$, then $y - 2 < \frac{1}{n}$, so $y < 2 + \frac{1}{n}$. Thus, $\frac{1}{n} \le y$ and $y < 2 + \frac{1}{n}$, so $\frac{1}{n} \le y < 2 + \frac{1}{n}$. Hence, $y \in [\frac{1}{n}, 2 + \frac{1}{n}]$. Therefore, $y \in [\frac{1}{n}, 2 + \frac{1}{n}]$ for all $n \in \mathbb{N}$, so $y \in \bigcap_{n=1}^{\infty} [\frac{1}{n}, 2 + \frac{1}{n}]$. Consequently, if $y \in [1, 2]$, then $y \in \bigcap_{n=1}^{\infty} [\frac{1}{n}, 2 + \frac{1}{n}]$, so $[1, 2] \subset \bigcap_{n=1}^{\infty} [\frac{1}{n}, 2 + \frac{1}{n}]$.

Since $\cap_{n=1}^{\infty}[\frac{1}{n}, 2+\frac{1}{n}] \subset [1, 2]$ and $[1, 2] \subset \cap_{n=1}^{\infty}[\frac{1}{n}, 2+\frac{1}{n}]$, then $\cap_{n=1}^{\infty}[\frac{1}{n}, 2+\frac{1}{n}] = [1, 2]$.

Observe that

$$\cup_{n=1}^{\infty} (\mathbb{R} - [\frac{1}{n}, 2 + \frac{1}{n}]) = \mathbb{R} - \bigcap_{n=1}^{\infty} [\frac{1}{n}, 2 + \frac{1}{n}]$$

= $\mathbb{R} - [1, 2]$
= $(-\infty, 1) \cup (2, \infty).$

Exercise 17. Does there exist $\epsilon > 0$ such that the ϵ neighborhood of $\frac{1}{3}$ contains both $\frac{1}{4}$ and $\frac{1}{2}$, but does not contain $\frac{17}{30}$?

Solution. We must find a positive real ϵ , if one exists, such that $\frac{1}{4} \in N(\frac{1}{3};\epsilon)$ and $\frac{1}{2} \in N(\frac{1}{3};\epsilon)$ and $\frac{17}{30} \notin N(\frac{1}{3};\epsilon)$. We see that any $\epsilon \in (\frac{1}{6}, \frac{7}{30}]$ will work.

We see that any $\epsilon \in (\frac{1}{6}, \frac{7}{30}]$ will work. Let $\epsilon = \frac{1}{5}$. Since $d(\frac{1}{4}, \frac{1}{3}) = |\frac{1}{4} - \frac{1}{3}| = \frac{1}{12} < \frac{1}{5}$, then $\frac{1}{4} \in N(\frac{1}{3}; \frac{1}{5})$. Since $d(\frac{1}{2}, \frac{1}{3}) = |\frac{1}{2} - \frac{1}{3}| = \frac{1}{6} < \frac{1}{5}$, then $\frac{1}{2} \in N(\frac{1}{3}; \frac{1}{5})$. Since $d(\frac{17}{30}, \frac{1}{3}) = |\frac{17}{30} - \frac{1}{3}| = \frac{7}{30} > \frac{1}{5}$, then $\frac{17}{30} \notin N(\frac{1}{3}; \frac{1}{5})$.

Exercise 18. The interval [0,1] is a neighborhood of $\frac{2}{3}$.

Proof. To prove
$$[0,1]$$
 is a neighborhood of $\frac{2}{3}$, let $\epsilon = \frac{1}{6}$.
Then $N(\frac{2}{3};\frac{1}{6}) = (\frac{2}{3} - \frac{1}{6},\frac{2}{3} + \frac{1}{6}) = (\frac{3}{6},\frac{5}{6}) \subset [0,1]$, as desired.

Exercise 19. Does there exist $\epsilon > 0$ such that the ϵ neighborhood of $\frac{1}{3}$ contains $\frac{11}{12}$, but does not contain either $\frac{1}{2}$ or $\frac{5}{8}$?

Solution.

Exercise 20. Let $a, b \in \mathbb{R}$.

If a < b, then there exists a bijective function from the interval (a, b) onto the interval (0, 1).

Proof. Suppose a < b. Then b - a > 0, so $b - a \neq 0$. Let $f: (a, b) \rightarrow (0, 1)$ be a function defined by $f(x) = \frac{x-a}{b-a}$ for all $x \in (a, b)$. We prove f is bijective. Let $x_1, x_2 \in (a, b)$ such that $f(x_1) = f(x_2)$. Then $\frac{x_1-a}{b-a} = \frac{x_2-a}{b-a}$, so $x_1 - a = x_2 - a$. Therefore, $x_1 = x_2$, so f is injective.

Let $t \in (0, 1)$. Then 0 < t < 1. Since b - a > 0, then 0 < t(b - a) < b - a. Hence, a < a + t(b - a) < b. Let s = a + t(b - a). Then a < s < b, so $s \in (a, b)$. Observe that

$$f(s) = f(a + t(b - a))$$

=
$$\frac{[a + t(b - a)] - a}{b - a}$$

=
$$\frac{t(b - a)}{b - a}$$

=
$$t.$$

Therefore, there exists $s \in (a, b)$ such that f(s) = t, so f is surjective. Since f is injective and surjective, then f is bijective, as desired.

 \square

Exercise 21. Let x and y be distinct real numbers.

Then there is a neighborhood P of x and a neighborhood Q of y such that $P \cap Q = \emptyset$.

Proof. Since x and y are distinct real numbers, then $x, y \in \mathbb{R}$ and $x \neq y$, so either x < y or x > y.

Without loss of generality, assume x < y. Let $\delta = \frac{y-x}{2}$. Since x < y, then y - x > 0, so $\frac{y-x}{2} > 0$. Hence, $\delta > 0$. Let $P = (x - \delta, x + \delta)$ and $Q = (y - \delta, y + \delta)$. Since $x - \delta < x + \delta$ and $y - \delta < y + \delta$, then P and Q are open intervals, so

P is a δ neighborhood of *x* and *Q* is a δ neighborhood of *y*.

Thus, P is a neighborhood of x and Q is a neighborhood of y.

We prove $P \cap Q = \emptyset$ by contradiction. Suppose $P \cap Q \neq \emptyset$. Then there exists $p \in P \cap Q$, so $p \in P$ and $p \in Q$. Since $p \in P$, then $p \in (x - \delta, x + \delta)$, so $x - \delta .$ $Thus, <math>p < x + \delta$, so $p < x + \frac{y - x}{2}$. Hence, $p < \frac{x + y}{2}$. Since $p \in Q$, then $p \in (y - \delta, y + \delta)$, so $y - \delta .$ $Hence, <math>y - \delta < p$, so $y - \frac{y - x}{2} < p$. Thus, $y + \frac{x - y}{2} < p$, so $\frac{x + y}{2} < p$. Hence, we have $p < \frac{x + y}{2}$ and $p > \frac{x + y}{2}$, a contradiction. Therefore, $P \cap Q = \emptyset$, as desired.

Exercise 22. Let $x \in \mathbb{R}$ and $\epsilon > 0$.

Then $N(x; \epsilon)$ is a neighborhood of each of its members.

Proof. Let $y \in N(x; \epsilon)$.

To prove $N(x; \epsilon)$ is a neighborhood of y, we must prove there exists $\delta > 0$ such that $N(y; \delta) \subset N(x; \epsilon)$.

Let $\delta = \min\{x + \epsilon - y, y - x + \epsilon\}$. Then $\delta \le x + \epsilon - y$ and $\delta \le y - x + \epsilon$, and either $\delta = x + \epsilon - y$ and $\delta = y - x + \epsilon$. Since $y \in N(x; \epsilon) = (x - \epsilon, x + \epsilon)$, then $x - \epsilon < y < x + \epsilon$, so $x - \epsilon < y$ and $y < x + \epsilon$. Thus, $0 < y - x + \epsilon$ and $0 < x + \epsilon - y$, so $\delta > 0$. To prove $N(y; \delta) \subset N(x; \epsilon)$, let $p \in N(y; \delta)$. Then $|p - y| < \delta$, so $-\delta .$ $Hence, <math>y - \delta , so <math>y - \delta < p$ and $p < y + \delta$. Since $\delta \le x + \epsilon - y$, then $y + \delta \le x + \epsilon$. Since $p < y + \delta$ and $y + \delta \le x + \epsilon$, then $p < x + \epsilon$. Since $\delta \leq y - x + \epsilon$, then $x - \epsilon \leq y - \delta$. Since $x - \epsilon \leq y - \delta$ and $y - \delta < p$, then $x - \epsilon < p$. Since $x - \epsilon < p$ and $p < x + \epsilon$, then $x - \epsilon , so <math>p \in (x - \epsilon, x + \epsilon) = N(x; \epsilon)$, as desired.

Exercise 23. The interval $(0, \infty)$ is an open subset of \mathbb{R} .

Proof. Since $(0, \infty) = \{x \in \mathbb{R} : x > 0\}$, then $(0, \infty) \subset \mathbb{R}$. Let $x \in (0, \infty)$. Then x > 0. Let $\epsilon = x$. Then $\epsilon > 0$ and $N(x; \epsilon) = N(x; x) = (x - x, x + x) = (0, 2x)$. Let $p \in N(x; \epsilon)$. Then $p \in (0, 2x)$, so 0 .Hence, <math>0 < p, so $p \in (0, \infty)$. Thus, $N(x; \epsilon) \subset (0, \infty)$. Therefore, there exists $\epsilon > 0$ such that $N(x; \epsilon) \subset (0, \infty)$, so x is an interior point of $(0, \infty)$.

Hence, every point in $(0,\infty)$ is an interior point of $(0,\infty)$, so $(0,\infty)$ is open.

Exercise 24. Let A be a set and $B = \mathbb{R} - A$.

Then every interior point of A is not an accumulation point of B.

Proof. Let x be an arbitrary interior point of A. Then there exists $\epsilon > 0$ such that $N(x; \epsilon) \subset A$. We prove x is not an accumulation point of B by contradiction. Suppose x is an accumulation point of B. Since $\epsilon > 0$, then $N'(x; \epsilon) \cap B \neq \emptyset$. Hence, there exists p such that $p \in N'(x; \epsilon) \cap B$, so $p \in N'(x; \epsilon)$ and $p \in B$. Since $p \in N'(x; \epsilon)$ and $N'(x; \epsilon) \subset N(x; \epsilon) \subset A$, then $p \in A$. Since $p \in B$, then $p \in \mathbb{R}$ and $p \notin A$. Thus, we have $p \in A$ and $p \notin A$, a contradiction. Therefore, x is not an accumulation point of B, as desired.

Exercise 25. Every real number is an accumulation point of irrational numbers.

Proof. Let $\mathbb{R} - \mathbb{Q}$ be the set of all irrational numbers. Let x be an arbitrary real number. We must prove x is an accumulation point of $\mathbb{R} - \mathbb{Q}$. Let $\epsilon > 0$. Then $\epsilon > x - x$, so $x + \epsilon > x$ and $x > x - \epsilon$. Between any two distinct real numbers is an irrational number. Since $x, x + \epsilon \in \mathbb{R}$ and $x < x + \epsilon$, then there exists $r \in \mathbb{R} - \mathbb{Q}$ such that $x < r < x + \epsilon$. Hence, $x - \epsilon < x < r < x + \epsilon$, so $x - \epsilon < r < x + \epsilon$. Thus, $r \in (x - \epsilon, x + \epsilon)$, so $r \in N(x; \epsilon)$. Since r > x, then $r \neq x$, so $r \in N'(x; \epsilon)$.

Thus, $r \in N'(x; \epsilon) \cap (\mathbb{R} - \mathbb{Q})$, so x is an accumulation point of $\mathbb{R} - \mathbb{Q}$, as desired.

Exercise 26. Let *S* be a set of real numbers.

If there exists $\delta > 0$ such that the distance between every distinct pair of elements of S is greater than δ , then S has no accumulation points.

Proof. Suppose there exists $\delta > 0$ such that the distance between every distinct pair of elements of S is greater than δ .

Then for every $a, b \in S$ with $a \neq b$, then $d(a, b) = |a - b| > \delta$.

We prove S has no accumulation points by contradiction.

Suppose S has an accumulation point.

Then there exists x such that x is an accumulation point of S.

Since $\delta > 0$, then $\frac{\delta}{2} > 0$, so $N'(x; \frac{\delta}{2}) \cap S \neq \emptyset$.

Hence, there exists a point a such that $a \in N'(x; \frac{\delta}{2}) \cap S$, so $a \in N'(x; \frac{\delta}{2})$ and $a \in S$.

Since $a \in N'(x; \frac{\delta}{2})$, then $a \in N(x; \frac{\delta}{2})$, so $d(a, x) < \frac{\delta}{2}$. Since $a \in N(x; \frac{\delta}{2})$ and $a \in S$, then $a \in N(x; \frac{\delta}{2}) \cap S$.

Since x is an accumulation point of S and $\frac{\delta}{2} > 0$, then the set $N(x; \frac{\delta}{2}) \cap S$ is infinite.

Thus, there is at least one other point of the set $N(x; \frac{\delta}{2}) \cap S$.

Therefore, there exists a point b such that $b \in N(x; \frac{\delta}{2}) \cap S$ and $b \neq a$.

Hence, $b \in N(x; \frac{\delta}{2})$ and $b \in S$.

Since $b \in N(x; \frac{\delta}{2})$, then $d(x, b) < \frac{\delta}{2}$. Since $d(a, x) < \frac{\delta}{2}$ and $d(x, b) < \frac{\delta}{2}$, then $d(a, x) + d(x, b) < \delta$. By the triangle inequality we have $d(a, x) + d(x, b) \ge d(a, b)$.

Since $d(a,b) \le d(a,x) + d(x,b)$ and $d(a,x) + d(x,b) \le \delta$, then $d(a,b) \le \delta$.

Since $a \in S$ and $b \in S$ and $a \neq b$, then $d(a, b) > \delta$.

Thus, we have a contradiction $d(a, b) < \delta$ and $d(a, b) > \delta$.

Therefore, S does not have an accumulation point.

Exercise 27. True or false?

If p is an accumulation point of a set A and a set B, then p is an accumulation point of $A \cap B$.

Proof. This is a false statement.

Here is a counterexample. Let $A = [0, \infty)$ and $B = (-\infty, 0]$. Then $A \cap B = \{0\}$. Observe that 0 is an accumulation point of A and B. Since $A \cap B$ is a finite set, then $A \cap B$ does not have an accumulation point, so 0 cannot be an accumulation point of $A \cap B$.

Exercise 28. Every interior point is an accumulation point, but not conversely.

Proof. Let S be a set of real numbers.

We must prove every interior point of S is an accumulation point of S.

Either $S = \emptyset$ or $S \neq \emptyset$.

We consider these cases separately.

Case 1: Suppose $S = \emptyset$.

Since there is no interior point of \emptyset , then for any x, x is not an interior point of \emptyset .

Hence, for any x, the conditional 'x is an interior point of \emptyset implies x is an accumulation point of \emptyset ' is vacuously true.

Therefore, every interior point of \emptyset is an accumulation point of \emptyset , so every interior point of S is an accumulation point of S.

Case 2: Suppose $S \neq \emptyset$.

Then there is at least one element of S. Let $x \in S$ such that x is an interior point of S. Then there exists $\delta > 0$ such that $N(x; \delta) \subset S$. Let $\epsilon > 0$ be given. To prove x is an accumulation point of S, we must prove $N'(x; \epsilon) \cap S \neq \emptyset$. Let $M = \min\{\delta, \epsilon\}.$ Then $M \leq \delta$ and $M \leq \epsilon$. Since $\delta > 0$ and $\epsilon > 0$, then M > 0, so $\frac{M}{2} > 0$. Since $\frac{1}{2} < 1$ and M > 0, then $\frac{M}{2} < M$. Let $p = x + \frac{M}{2}$. Then $p - x = \frac{M}{2} > 0$, so $d(p, x) = |p - x| = p - x = \frac{M}{2}$. Since $\frac{M}{2} < M \leq \delta$, then $d(p, x) < \delta$, so $p \in N(x; \delta)$. Since $\tilde{N}(x; \delta) \subset S$, then $p \in S$. Since $d(p, x) = \frac{M}{2} < M \leq \epsilon$, then $d(p, x) < \epsilon$, so $p \in N(x; \epsilon)$. Since p - x > 0, then p > x, so $p \neq x$.

Hence, $p \in N'(x; \epsilon)$.

Proof. To disprove the converse, we must prove 'every accumulation point is an interior point' is false.

Hence, we must prove 'some accumulation point is not an interior point'. Let $a, b \in \mathbb{R}$ with a < b.

Let (a, b) be the open interval.

Since a < b, then a is an accumulation point of (a, b).

Therefore, $p \in N'(x; \epsilon) \cap S$, so $N'(x; \epsilon) \cap S \neq \emptyset$, as desired.

Since $(a, b) \neq \emptyset$, then every interior point of (a, b) is an element of (a, b).

Hence, if x is an interior point of (a, b), then $x \in (a, b)$, so if $x \notin (a, b)$, then x is not an interior point of (a, b).

In particular, since $a \notin (a, b)$, then a is not an interior point of (a, b).

Therefore, a is an accumulation point of (a, b), but a is not an interior point of (a, b).

Exercise 29. Let S be a set of real numbers.

If $\sup S$ exists, then either $\sup S \in S$ or $\sup S$ is an accumulation point of S.

Proof. We prove by contrapositive.

Suppose $\sup S$ exists and $\sup S \notin S$. To prove sup S is an accumulation point of S, let $\epsilon > 0$ be given. We must prove there exists $x \in S$ such that $x \in N'(\sup S; \epsilon)$. Since $\epsilon > 0 = \sup S - \sup S$, then $\epsilon > \sup S - \sup S$, so $\sup S > \sup S - \epsilon$. Since $\sup S - \epsilon < \sup S$, then $\sup S - \epsilon$ is not an upper bound of S. Hence, there exists $x \in S$ such that $x > \sup S - \epsilon$. Since $\sup S$ is an upper bound of S and $x \in S$, then $x \leq \sup S$, so either $x < \sup S$ or $x = \sup S$. Since $x \in S$ and $\sup S \notin S$, then $x \neq \sup S$. Thus, $x < \sup S$, so $\sup S - x > 0$. Since $\sup S - \epsilon < x$, then $\sup S - x < \epsilon$. Hence, $d(x, \sup S) = |x - \sup S| = |\sup S - x| = \sup S - x < \epsilon$, so $d(x, \sup S) < \epsilon.$ Thus, $x \in N(\sup S; \epsilon)$. Since $x \neq \sup S$, then $x \in N'(\sup S; \epsilon)$. Therefore, there exists $x \in S$ such that $x \in N'(\sup S; \epsilon)$, as desired. **Exercise 30.** Let S be a set of real numbers. If $\inf S$ exists, then either $\inf S \in S$ or $\inf S$ is an accumulation point of S. *Proof.* We prove by contrapositive. Suppose $\inf S$ exists and $\inf S \notin S$. To prove $\inf S$ is an accumulation point of S, let $\epsilon > 0$ be given. We must prove there exists $x \in S$ such that $x \in N'(\inf S; \epsilon)$. Since $\epsilon > 0 = \inf S - \inf S$, then $\epsilon > \inf S - \inf S$, so $\inf S + \epsilon > \inf S$. Since $\inf S + \epsilon > \inf S$, then $\inf S + \epsilon$ is not a lower bound of S. Hence, there exists $x \in S$ such that $x < \inf S + \epsilon$. Since $\inf S$ is a lower bound of S and $x \in S$, then $\inf S \leq x$, so either $\inf S < x \text{ or } \inf S = x.$ Since $x \in S$ and $\inf S \notin S$, then $x \neq \inf S$. Thus, $\inf S < x$, so $x - \inf S > 0$. Since $x < \inf S + \epsilon$, then $x - \inf S < \epsilon$. Hence, $d(x, \inf S) = |x - \inf S| = x - \inf S < \epsilon$, so $d(x, \inf S) < \epsilon$. Thus, $x \in N(\inf S; \epsilon)$. Since $x \neq \inf S$, then $x \in N'(\inf S; \epsilon)$. Therefore, there exists $x \in S$ such that $x \in N'(\inf S; \epsilon)$, as desired.

Exercise 31. Let $S \subset \mathbb{R}$ such that at least one point of accumulation of S exists.

Then for every $\epsilon > 0$ there exist points $x, y \in S$ such that $0 < |x - y| < \epsilon$.

Proof. Let $\epsilon > 0$ be given.

Then $\frac{\epsilon}{2} > 0$.

Since at least one accumulation point of S exists, let p be an accumulation point of S.

Then $N'(p; \frac{\epsilon}{2}) \cap S \neq \emptyset$, so there exists x such that $x \in N'(p; \frac{\epsilon}{2}) \cap S$.

Hence, $x \in N'(p; \frac{\epsilon}{2})$ and $x \in S$.

Since $x \in N'(p; \frac{\epsilon}{2})$ and $N'(p; \frac{\epsilon}{2}) \subset N(p; \frac{\epsilon}{2})$, then $x \in N(p; \frac{\epsilon}{2})$, so $x \in N(p; \frac{\epsilon}{2}) \cap S$.

Since p is an accumulation point of S and $\frac{\epsilon}{2} > 0$, then the set $N(p; \frac{\epsilon}{2}) \cap S$ is infinite.

Thus, there exists at least one other point of $N(p; \frac{\epsilon}{2}) \cap S$. Hence, there exists y such that $y \in N(p; \frac{\epsilon}{2}) \cap S$ and $y \neq x$. Since $y \in N(p; \frac{\epsilon}{2}) \cap S$, then $y \in N(p; \frac{\epsilon}{2})$ and $y \in S$. Since $x \in N(p; \frac{\epsilon}{2})$ and $y \in N(p; \frac{\epsilon}{2})$, then $d(p, x) < \frac{\epsilon}{2}$ and $d(p, y) < \frac{\epsilon}{2}$, so $|p - x| < \frac{\epsilon}{2}$ and $|p - y| < \frac{\epsilon}{2}$. Since $x \neq y$, then d(x, y) > 0, so |x - y| > 0. Observe that

$$\begin{aligned} |x-y| &= |(x-p) + (p-y)| \\ &\leq |x-p| + |p-y| \\ &= |p-x| + |p-y| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ &= \epsilon. \end{aligned}$$

Thus, $|x - y| < \epsilon$, so $0 < |x - y| < \epsilon$, as desired.

Exercise 32. Let (a_n) be a sequence of points such that $\lim_{n\to\infty} a_n = L$ for some real number L.

Let L be an interior point of a set S.

Then there is an integer N such that $a_n \in S$ for all n > N.

Proof. Since L is an interior point of S, then there exists $\epsilon > 0$ such that $N(L;\epsilon) \subset S$.

Since $\lim_{n\to\infty} a_n = L$, then there exists $N \in \mathbb{N}$ such that if n > N, then $|a_n - L| < \epsilon$.

Let $n \in \mathbb{N}$ such that n > N. Then $|a_n - L| < \epsilon$, so $d(a_n, L) < \epsilon$. Thus, $a_n \in N(L; \epsilon)$. Since $N(L; \epsilon) \subset S$, then $a_n \in S$. Hence, $a_n \in S$ for all integers n > N. Therefore, there exists $N \in \mathbb{N}$ such that $a_n \in S$ for all integers n > N. \Box

Exercise 33. Let (x_n) be a sequence of real numbers such that $\lim_{n\to\infty} x_n = L$ for some real number L and $x_n \neq L$ for all $n \in \mathbb{N}$.

Then the set $\{x_n : n \in \mathbb{N}\}$ has exactly one accumulation point, L.

Proof. Let S be the range of the sequence (x_n) . Then $S = \{x_n : n \in \mathbb{N}\}$. We must prove L is the unique accumulation point of S. **Existence:** We prove L is an accumulation point of S.

Let $\epsilon > 0$ be given. Since $\lim_{n\to\infty} x_n = L$, then there exists $N \in \mathbb{N}$ such that if n > N, then $|x_n - L| < \epsilon.$ Let $n \in \mathbb{N}$ such that n > N. Then $|x_n - L| < \epsilon$, so $d(x_n, L) < \epsilon$. Hence, $x_n \in N(L; \epsilon)$. Since $n \in \mathbb{N}$, then $x_n \neq L$, so $x_n \in N'(L; \epsilon)$. Since $n \in \mathbb{N}$, then $x_n \in S$, so $x_n \in N'(L; \epsilon) \cap S$. Therefore, $N'(L; \epsilon) \cap S \neq \emptyset$, so L is an accumulation point of S. Uniqueness: Suppose x is an accumulation point of S. We must prove x = L. Let $\epsilon > 0$ be given. Then $\frac{\epsilon}{2} > 0$. Since x is an accumulation point of S, then $N'(x; \frac{\epsilon}{2}) \cap S \neq \emptyset$, so there exists p such that $p \in N'(x; \frac{\epsilon}{2}) \cap S$. Hence, $p \in N'(x; \frac{\epsilon}{2})$ and $p \in S$. Since $p \in S$, then there exists $m \in \mathbb{N}$ such that $p = x_m$. Thus, $x_m \in N'(x; \frac{\epsilon}{2})$, so $x_m \in N(x; \frac{\epsilon}{2})$ and $x_m \neq x$. Hence, $d(x, x_m) < \frac{\epsilon}{2}$, so $|x - x_m| < \frac{\epsilon}{2}$. Since $\lim_{n\to\infty} x_n = L$ and $\frac{\epsilon}{2} > 0$, then there exists $N \in \mathbb{N}$ such that if n > N, then $|x_n - L| < \frac{\epsilon}{2}$. Let $n \in \mathbb{N}$ such that n > N. Then $|x_n - L| < \frac{\epsilon}{2}$. We're stuck!!!!!

Exercise 34. The interior of a set is open.

Proof. Let S be a set. Let S° be the interior of S. Then $S^{\circ} = \{x : x \text{ is an interior point of } S\}.$ We must prove S° is open. Either $S^{\circ} = \emptyset$ or $S^{\circ} \neq \emptyset$. We consider these cases separately. **Case 1:** Suppose $S^{\circ} = \emptyset$. Since the empty set is open, then S° is open. **Case 2:** Suppose $S^{\circ} \neq \emptyset$. Then there is at least one element of S° . Let $x \in S^{\circ}$. Then x is an interior point of S, so there exists $\epsilon > 0$ such that $N(x; \epsilon) \subset S$. To prove S° is open, we must prove x is an interior point of S° . Since $N(x;\epsilon) \neq \emptyset$, then there is at least one element of $N(x;\epsilon)$. Let $p \in N(x; \epsilon)$. Then $p \in (x - \epsilon, x + \epsilon)$.

Since $(x - \epsilon, x + \epsilon)$ is an open interval and every point in an open interval is an interior point, then p is an interior point of $(x - \epsilon, x + \epsilon)$, so p is an interior point of $N(x; \epsilon)$.

Hence, there exists $\delta > 0$ such that $N(p; \delta) \subset N(x; \epsilon)$.

Since $N(x;\epsilon) \subset S$, then $N(p;\delta) \subset S$.

Thus, there exists $\delta > 0$ such that $N(p; \delta) \subset S$, so p is an interior point of S.

Hence, $p \in S^{\circ}$, so $N(x; \epsilon) \subset S^{\circ}$.

Therefore, there exists $\epsilon > 0$ such that $N(x; \epsilon) \subset S^{\circ}$, so x is an interior point of S° , as desired

Exercise 35. Let S be a set.

If $S' = \emptyset$, then S is closed.

Proof. Let S' be the derived set of S. Then $S' = \{x : x \text{ is an accumulation point of } S\}$. Suppose $S' = \emptyset$. Then there is no accumulation point of S. Therefore, S is a set with no accumulation points, so S is closed.

Exercise 36. Let A and B be closed sets.

Then $A \cup B$ is closed and $A \cap B$ is closed.

Let x be an accumulation point of $A \cap B$.

Let $\epsilon > 0$ be given.

Proof. We prove $A \cup B$ is closed. Let x be an accumulation point of $A \cup B$. Let $\epsilon > 0$ be given. Since x is an accumulation point of $A \cup B$, then $N'(x; \epsilon) \cap (A \cup B) \neq \emptyset$, so there exists p such that $p \in N'(x; \epsilon) \cap (A \cup B)$. Hence, $p \in N'(x; \epsilon)$ and $p \in A \cup B$. Since $p \in A \cup B$, then either $p \in A$ or $p \in B$. We consider these cases separately. **Case 1:** Suppose $p \in A$. Since $p \in N'(x; \epsilon)$ and $p \in A$, then $p \in N'(x; \epsilon) \cap A$, so $N'(x; \epsilon) \cap A \neq \emptyset$. Thus, x is an accumulation point of A. Since A is closed, then $x \in A$. Case 2: Suppose $p \in B$. Since $p \in N'(x; \epsilon)$ and $p \in B$, then $p \in N'(x; \epsilon) \cap B$, so $N'(x; \epsilon) \cap B \neq \emptyset$. Thus, x is an accumulation point of B. Since B is closed, then $x \in B$. Hence, either $x \in A$ or $x \in B$, so $x \in A \cup B$. Therefore, $A \cup B$ is closed. *Proof.* We prove $A \cap B$ is closed.

Since x is an accumulation point of $A \cap B$, then $N'(x;\epsilon) \cap (A \cap B) \neq \emptyset$, so there exists p such that $p \in N'(x;\epsilon) \cap (A \cap B)$.

Hence, $p \in N'(x; \epsilon)$ and $p \in A \cap B$. Since $p \in A \cap B$, then $p \in A$ and $p \in B$. Since $p \in N'(x; \epsilon)$ and $p \in A$, then $p \in N'(x; \epsilon) \cap A$, so $N'(x; \epsilon) \cap A \neq \emptyset$. Thus, x is an accumulation point of A. Since A is closed, then $x \in A$. Since $p \in N'(x; \epsilon)$ and $p \in B$, then $p \in N'(x; \epsilon) \cap B$, so $N'(x; \epsilon) \cap B \neq \emptyset$. Thus, x is an accumulation point of B. Since B is closed, then $x \in B$. Hence, $x \in A$ and $x \in B$, so $x \in A \cap B$. Therefore, $A \cap B$ is closed.

Exercise 37. The derived set of a set is closed.

Proof. Let S be a set. Let S' be the derived set of S. Then $S' = \{x : x \text{ is an accumulation point of } S\}.$ Let S'' be the derived set of S'. Then $S'' = \{x : x \text{ is an accumulation point of } S'\}.$ We must prove S' is closed. Either $S'' = \emptyset$ or $S'' \neq \emptyset$. We consider these cases separately. **Case 1:** Suppose $S'' = \emptyset$. Then there is no accumulation point of S'. Therefore, S' is a set with no accumulation points, so S' is closed. **Case 2:** Suppose $S'' \neq \emptyset$. Then there is at least one element of S''. Let $x \in S''$. Then x is an accumulation point of S'. To prove S' is closed, we must prove $x \in S'$, so we must prove x is an accumulation point of S. Hence, we must prove $N'(x; \epsilon) \cap S \neq \emptyset$ for every $\epsilon > 0$. Let $\epsilon > 0$ be given. Since x is an accumulation point of S', then $N'(x; \epsilon) \cap S' \neq \emptyset$. Thus, there exists p such that $p \in N'(x; \epsilon) \cap S'$, so $p \in N'(x; \epsilon)$ and $p \in S'$. Since $p \in N'(x; \epsilon)$, then $p \in N(x; \epsilon)$ and $p \neq x$. Since $p \neq x$, then either p < x or p > x. We consider these cases separately. Case 2a: Suppose p > x. Since $p \in N(x; \epsilon)$, then $p \in (x - \epsilon, x + \epsilon)$, so $x - \epsilon .$ Hence, $p < x + \epsilon$. Since x < p and $p < x + \epsilon$, then $x , so <math>p \in (x, x + \epsilon)$. Since the open interval $(x, x + \epsilon)$ is open, then p is an interior point of $(x, x + \epsilon).$ Thus, there exists $\delta > 0$ such that $N(p; \delta) \subset (x, x + \epsilon)$. Since $p \in S'$, then p is an accumulation point of S, so $N'(p; \delta) \cap S \neq \emptyset$.

Thus, there exists q such that $q \in N'(p; \delta) \cap S$, so $q \in N'(p; \delta)$ and $q \in S$.

Since $q \in N'(p; \delta)$, then $q \in N(p; \delta)$. Since $N(p; \delta) \subset (x, x+\epsilon) \subset (x-\epsilon, x+\epsilon)$, then $q \in (x-\epsilon, x+\epsilon)$, so $q \in N(x; \epsilon)$. We prove $q \neq x$ by contradiction. Suppose q = x. Since $q \in N(p; \delta)$ and $N(p; \delta) \subset (x, x+\epsilon)$, then $q \in (x, x+\epsilon)$, so $x < q < x+\epsilon$. Thus, x < q. But, this contradicts the assumption x = q. Hence, $q \neq x$. Since $q \in N(x; \epsilon)$ and $q \neq x$, then $q \in N'(x; \epsilon)$. Thus, $q \in N'(x; \epsilon)$ and $q \in S$, so $q \in N'(x; \epsilon) \cap S$. Therefore, $N'(x; \epsilon) \cap S \neq \emptyset$. Case 2b: Suppose p < x. Since $p \in N(x; \epsilon)$, then $p \in (x - \epsilon, x + \epsilon)$, so $x - \epsilon .$ Hence, $x - \epsilon < p$. Since $x - \epsilon < p$ and p < x, then $x - \epsilon , so <math>p \in (x - \epsilon, x)$. Since the open interval $(x - \epsilon, x)$ is open, then p is an interior point of $(x-\epsilon,x).$ Thus, there exists $\delta > 0$ such that $N(p; \delta) \subset (x - \epsilon, x)$. Since $p \in S'$, then p is an accumulation point of S, so $N'(p; \delta) \cap S \neq \emptyset$. Thus, there exists q such that $q \in N'(p; \delta) \cap S$, so $q \in N'(p; \delta)$ and $q \in S$. Since $q \in N'(p; \delta)$, then $q \in N(p; \delta)$. Since $N(p; \delta) \subset (x - \epsilon, x) \subset (x - \epsilon, x + \epsilon)$, then $q \in (x - \epsilon, x + \epsilon)$, so $q \in N(x; \epsilon)$. We prove $q \neq x$ by contradiction. Suppose q = x. Since $q \in N(p; \delta)$ and $N(p; \delta) \subset (x - \epsilon, x)$, then $q \in (x - \epsilon, x)$, so $x - \epsilon < q < x$. Thus, q < x. But, this contradicts the assumption q = x. Hence, $q \neq x$. Since $q \in N(x; \epsilon)$ and $q \neq x$, then $q \in N'(x; \epsilon)$. Thus, $q \in N'(x; \epsilon)$ and $q \in S$, so $q \in N'(x; \epsilon) \cap S$. Therefore, $N'(x; \epsilon) \cap S \neq \emptyset$. Thus, in either case, $N'(x; \epsilon) \cap S \neq \emptyset$, so x is an accumulation point of S, as desired.

Exercise 38. Let S be a set.

If S is closed and $a \in S$, then the set $\{x \in S : x \leq a\}$ is closed.

Proof. Suppose S is closed and $a \in S$. Let $T = \{x \in S : x \leq a\}$. Then $T \subset S$. We must prove T is closed. Either there is an accumulation point of T or there is not. We consider these cases separately. **Case 1:** Suppose there is no accumulation point of T. Then T is a set with no accumulation points. Since every set with no accumulation points is closed, then T is closed.

Case 2: Suppose there is some accumulation point of T. Then there is at least one accumulation point of T. Let x be an arbitrary accumulation point of T. Since x is an accumulation point of T and $T \subset S$, then x is an accumulation point of S. Since S is closed, then $x \in S$. We prove $x \leq a$ by contradiction. Suppose x > a. Then x - a > 0. Since x is an accumulation point of T, then $N'(x; x - a) \cap T \neq \emptyset$, so there exists p such that $p \in N'(x; x - a) \cap T$. Hence, $p \in N'(x; x - a)$ and $p \in T$. Since $p \in N'(x; x - a)$, then $p \in N(x; x - a)$, so $p \in (a, 2x - a)$. Thus, a , so <math>a < p. Since $p \in T$, then $p \leq a$. Hence, we have p < a and p > a, a violation of trichotomy. Therefore, $x \leq a$. Since $x \in S$ and $x \leq a$, then $x \in T$, so T is closed. **Exercise 39.** Let $S_1 = (-3, \frac{2}{2})$. Let $S_2 = (-1, \frac{1}{2}).$ Let $S_2 = (-1, \frac{1}{2})$. Let $S_3 = (0, \frac{1}{2})$. Let $S_4 = (\frac{1}{3}, \frac{2}{3})$. Let $S_5 = (\frac{1}{2}, 1)$. Let $S_6 = (\frac{9}{10}, 2)$. Let $S_7 = (\frac{2}{3}, \frac{3}{2})$. Let $\mathcal{F} = \{S_k : n \in \mathbb{N}, 1 \le k \le 7\}$. Then a. The collection of sets \mathcal{F} is a finite open covering of [0, 1]. b. The subcollection $\{S_1, S_5, S_6\}$ of \mathcal{F} is a subcover of [0, 1]. c. The subcollection $\{S_1, S_2, S_3, S_7\}$ of \mathcal{F} is not a cover of [0, 1]. *Proof.* We prove a. Since $\cup_{\mathcal{F}} = \bigcup_{k=1}^{7} S_k = S_1 \cup S_2 \cup ... \cup S_7 = (-3,2) \supset [0,1]$, then \mathcal{F} is a covering of [0, 1]. Since each open interval S_k of \mathcal{F} is an open set, then \mathcal{F} is an open covering of [0, 1]. Since \mathcal{F} is a finite set, then \mathcal{F} is a finite open covering of [0, 1]. *Proof.* We prove b.

Let $\mathcal{G} = \{S_1, S_5, S_6\}.$

Since $\cup_{\mathcal{G}} = S_1 \cup S_5 \cup S_6 = (-3, 2) \supset [0, 1]$, then \mathcal{G} is a covering of [0, 1]. Since $\mathcal{G} = \{S_1, S_5, S_6\} \subset \{S_1, S_2, S_3, S_4, S_5, S_6, S_7\} = \mathcal{F}$, then \mathcal{G} is a subcovering of [0, 1].

Let $\mathcal{H} = \{S_1, S_2, S_3, S_7\}.$ Since $\frac{2}{3} \notin (-3, \frac{2}{3})$ and $\frac{2}{3} \notin (\frac{2}{3}, \frac{3}{2})$, then $\frac{2}{3} \notin (-3, \frac{2}{3}) \cup (\frac{2}{3}, \frac{3}{2}).$ Since $\cup_{\mathcal{H}} = S_1 \cup S_2 \cup S_3 \cup S_7 = (-3, \frac{2}{3}) \cup (\frac{2}{3}, \frac{3}{2})$, then $\frac{2}{3} \notin \cup_{\mathcal{H}}.$ Since $\frac{2}{3} \in [0, 1]$, but $\frac{2}{3} \notin \cup_{\mathcal{H}}$, then $[0, 1] \notin \mathcal{H}$, so \mathcal{H} is not a covering of [0,1].**Exercise 40.** Let $S = \{\frac{1}{n} : n \in \mathbb{N}\}$. Let $\mathcal{F} = \{N(\frac{1}{n}; \frac{1}{n(n+1)}) : n \in \mathbb{N}\}$. Then \mathcal{F} is an open covering of S. *Proof.* We prove \mathcal{F} is a covering of S. Since $1 \in \mathbb{N}$ and $\frac{1}{1} = 1 \in S$, then $S \neq \emptyset$. Let $x \in S$. Then there exists $n \in \mathbb{N}$ such that $x = \frac{1}{n}$. Since $n \in \mathbb{N}$, then n > 0. Since n + 1 > n and n > 0, then n + 1 > 0. Since n > 0 and n + 1 > 0, then n(n + 1) > 0, so $\frac{1}{n(n+1)} > 0$. Hence, $\frac{1}{n(n+1)} > \frac{1}{n} - \frac{1}{n}$, so $\frac{1}{n} + \frac{1}{n(n+1)} > \frac{1}{n}$ and $\frac{1}{n} > \frac{1}{n} - \frac{1}{n(n+1)}$. Thus, $\frac{1}{n} - \frac{1}{n(n+1)} < \frac{1}{n} < \frac{1}{n} + \frac{1}{n(n+1)}$, so $\frac{1}{n} \in (\frac{1}{n} - \frac{1}{n(n+1)}, \frac{1}{n} + \frac{1}{n(n+1)})$. Therefore, $\frac{1}{n} \in N(\frac{1}{n}; \frac{1}{n(n+1)})$, so $x \in N(\frac{1}{n}; \frac{1}{n(n+1)})$. Let $A = N(\frac{1}{n}; \frac{1}{n(n+1)}).$ Then $x \in A$. Since $n \in \mathbb{N}$ and $A = N(\frac{1}{n}; \frac{1}{n(n+1)})$, then $A \in \mathcal{F}$. Thus, there exists $A \in \mathcal{F}$ such that $x \in A$, so $x \in \cup \mathcal{F}$. Therefore, $S \subset \cup \mathcal{F}$, so \mathcal{F} is a covering of S. For each $n \in \mathbb{N}$, the set $N(\frac{1}{n}; \frac{1}{n(n+1)})$ is an open interval, so $N(\frac{1}{n}; \frac{1}{n(n+1)})$ is an open set. Thus, $N(\frac{1}{n}; \frac{1}{n(n+1)})$ is an open set for each $n \in \mathbb{N}$, so each set in \mathcal{F} is open. Therefore, \mathcal{F} is an open covering of S. **Exercise 41.** For each $a \in \mathbb{R}$, let $S_a = (a, a + \frac{1}{4})$. Let I be the index set $[0, \frac{3}{4}]$. Let $\mathcal{F} = \{S_a : a \in I\}.$ Then a. The collection of sets \mathcal{F} is an open covering of (0, 1). b. The subcollection $\{S_0, S_{\frac{1}{2}}, S_{\frac{1}{4}}, S_{\frac{3}{2}}, S_{\frac{1}{2}}, S_{\frac{5}{2}}, S_{\frac{3}{4}}\}$ of \mathcal{F} is a finite subcover of (0, 1). c. The interval (0, 1) is not compact. *Proof.* We prove a. To prove \mathcal{F} is a covering of the open unit interval (0,1), we prove $(0,1) \subset \bigcup_{\mathcal{F}}$. Let $x \in (0, 1)$. Then 0 < x < 1, so 0 < x and x < 1. We must prove there exists $S_a \in \mathcal{F}$ such that $x \in S_a$. Let $m = \max\{0, x - \frac{1}{4}\}.$

Proof. We prove c.

Let $M = \min\{\frac{3}{4}, x\}.$ We first prove m < M. Since either m = 0 or $m = x - \frac{1}{4}$ and either $M = \frac{3}{4}$ or M = x, then either m = 0 and $M = \frac{3}{4}$ or m = 0 and M = x or $m = x - \frac{1}{4}$ and $M = \frac{3}{4}$ or $m = x - \frac{1}{4}$ and M = x. Thus, we have 4 cases to consider. We consider these cases separately. **Case 1:** Suppose m = 0 and $M = \frac{3}{4}$ Since $0 < \frac{3}{4}$, then m < M. Case 2: Suppose m = 0 and M = x. Since 0 < x, then m < M. **Case 3:** Suppose $m = x - \frac{1}{4}$ and $M = \frac{3}{4}$. Since x < 1, then $x - \frac{1}{4} < \frac{3}{4}$, so m < M. **Case 4:** Suppose $m = x - \frac{1}{4}$ and M = x. Since $x - \frac{1}{4} < x$, then $m < \dot{M}$. Thus, in all cases, m < M. Hence, then by density of \mathbb{R} , there exists $a \in \mathbb{R}$ such that m < a < M, so m < a and a < M. Since $0 \le m$ and m < a, then 0 < a. Since a < M and $M \leq \frac{3}{4}$, then $a < \frac{3}{4}$ Thus, $0 < a < \frac{3}{4}$, so $a \in [0, \frac{3}{4}] = I$. Hence, $S_a \in \mathcal{F}$. Since a < M and $M \leq x$, then a < x. Since $x - \frac{1}{4} \le m$ and m < a, then $x - \frac{1}{4} < a$, so $x < a + \frac{1}{4}$. Thus, $a < x < a + \frac{1}{4}$, so $x \in (a, a + \frac{1}{4}) \stackrel{4}{=} S_a$. Thus, there exists $S_a \in \mathcal{F}$ such that $x \in S_a$, so \mathcal{F} is a covering of (0, 1). We prove each set in \mathcal{F} is open. Since $S_0 = (0, \frac{1}{4}) \in \mathcal{F}$, then $\mathcal{F} \neq \emptyset$. Let S_a be an arbitrary set in \mathcal{F} . Then $S_a = (a, a + \frac{1}{4})$ for some real $a \in [0, \frac{3}{4}]$. Since the open interval $(a, a + \frac{1}{4})$ is open, then S_a is open. Thus, every set in \mathcal{F} is open, so \mathcal{F} is an open covering of (0, 1). *Proof.* We prove b. Let $\mathcal{G} = \{S_0, S_{\frac{1}{8}}, S_{\frac{1}{4}}, S_{\frac{3}{8}}, S_{\frac{1}{2}}, S_{\frac{5}{8}}, S_{\frac{3}{4}}\}.$ We must prove \mathcal{G} is a finite subcover of (0, 1). To prove $(0,1) \subset \bigcup_{\mathcal{G}}$, let $x \in (0,1)$. Since $(0,1) = (0,\frac{1}{4}) \cup \{\frac{1}{4}\} \cup (\frac{1}{4},\frac{1}{2}) \cup \{\frac{1}{2}\} \cup (\frac{1}{2},\frac{3}{4}) \cup \{\frac{3}{4}\} \cup (\frac{3}{4},1)$, then either $x \in (0,\frac{1}{4})$ or $x = \frac{1}{4}$ or $x \in (\frac{1}{4},\frac{1}{2})$ or $x = \frac{1}{2}$ or $x \in (\frac{1}{2},\frac{3}{4})$ or $x = \frac{3}{4}$ or $x \in (\frac{3}{4},1)$. We consider these cases separately. Case 1: Suppose $x \in (0, \frac{1}{4})$. Since $(0, \frac{1}{4}) = S_0$, then $x \in S_0$. Since $S_0 \subset \cup_{\mathcal{G}}$, then $x \in \cup_{\mathcal{G}}$. **Case 2:** Suppose $x = \frac{1}{4}$. Since $\frac{1}{8} < \frac{1}{4} < \frac{3}{8}$, then $\frac{1}{8} < x < \frac{3}{8}$, so $x \in (\frac{1}{8}, \frac{3}{8})$.

Since $\left(\frac{1}{8}, \frac{3}{8}\right) = S_{\frac{1}{8}}$, then $x \in S_{\frac{1}{8}}$. Since $S_{\frac{1}{8}} \subset \cup_{\mathcal{G}}$, then $x \in \cup_{\mathcal{G}}$. **Case 3:** Suppose $x \in \left(\frac{1}{4}, \frac{1}{2}\right)$. Since $\left(\frac{1}{4}, \frac{1}{2}\right) = S_{\frac{1}{4}}$, then $x \in S_{\frac{1}{4}}$. Since $S_{\frac{1}{4}} \subset \cup_{\mathcal{G}}$, then $x \in \cup_{\mathcal{G}}$. **Case 4:** Suppose $x = \frac{1}{2}$. Since $\left(\frac{3}{8}, \frac{5}{8}\right) = S_{\frac{3}{8}}$, then $\frac{3}{8} < x < \frac{5}{8}$, so $x \in \left(\frac{3}{8}, \frac{5}{8}\right)$. Since $\left(\frac{3}{8}, \frac{5}{8}\right) = S_{\frac{3}{4}}$, then $x \in \cup_{\mathcal{G}}$. **Case 5:** Suppose $x \in \left(\frac{1}{2}, \frac{3}{4}\right)$. Since $\left(\frac{1}{2}, \frac{3}{4}\right) = S_{\frac{1}{2}}$, then $x \in \cup_{\mathcal{G}}$. **Case 6:** Suppose $x = \frac{3}{4}$. Since $\frac{5}{8} < \frac{34}{4} < \frac{7}{8}$, then $\frac{3}{8} < x < \frac{7}{8}$, so $x \in \left(\frac{5}{8}, \frac{7}{8}\right)$. Since $\left(\frac{5}{8}, \frac{7}{8}\right) = S_{\frac{5}{8}}$, then $x \in \cup_{\mathcal{G}}$. **Case 7:** Suppose $x \in \left(\frac{3}{4}, 1\right)$. Since $\left(\frac{3}{4}, 1\right) = S_{\frac{3}{4}}$, then $x \in S_{\frac{3}{4}}$. Since $S_{\frac{3}{4}} \subset \cup_{\mathcal{G}}$, then $x \in \cup_{\mathcal{G}}$. **Case 7:** Suppose $x \in \left(\frac{3}{4}, 1\right)$. Since $\left(\frac{3}{4}, 1\right) = S_{\frac{3}{4}}$, then $x \in \cup_{\mathcal{G}}$. Thus, in all cases, $x \in \cup_{\mathcal{G}}$. Hence, $(0, 1) \subset \cup_{\mathcal{G}}$. Since $(0, 1) \subset \cup_{\mathcal{G}}$ and \mathcal{G} is a finite set and $\mathcal{G} \subset \mathcal{F}$, then \mathcal{G} is a finite subcover of (0, 1).

Proof. We prove c.

To prove (0, 1) is not compact,