Sequences in \mathbb{R} Theory

Jason Sass

June 29, 2021

Sequences of Real Numbers

Proposition 1. n^{th} term of an arithmetic sequence Let $d \in \mathbb{R}$.

The nth term of an arithmetic sequence with common difference d and initial value a_1 is $a_n = a_1 + (n-1)d$.

Proof. We prove $a_n = a_1 + (n-1)d$ for all $n \in \mathbb{N}$ by induction on n. Let $S = \{n \in \mathbb{N} : a_n = a_1 + (n-1)d\}.$ Since $a_1 = a_1 + 0 = a_1 + 0d = a_1 + (1 - 1)d$, then $1 \in S$. Suppose $k \in S$. Then $k \in \mathbb{N}$ and $a_k = a_1 + (k-1)d$.

Observe that

$$a_{k+1} = a_k + d$$

= $(a_1 + (k - 1)d) + d$
= $(a_1 + kd - d) + d$
= $a_1 + kd - d + d$
= $a_1 + kd$
= $a_1 + ((k + 1) - 1)d$.

Thus, $a_{k+1} = a_1 + ((k+1) - 1)d$, so $k+1 \in S$. Therefore, by PMI, $S = \mathbb{N}$, so $a_n = a_1 + (n-1)d$ for all $n \in \mathbb{N}$.

Proposition 2. Let (a_n) be an arithmetic sequence of real numbers with common difference d. Then $a_n = \frac{a_{n-1}+a_{n+1}}{2}$ for all integers n > 1.

Proof. Let $n \in \mathbb{Z}$ with n > 1. Since (a_n) is an arithmetic sequence, then $a_{n+1} = a_n + d$ for all $n \in \mathbb{Z}^+$. Since n > 1 > 0, then n > 0. Since $n \in \mathbb{Z}$ and n > 0, then $n \in \mathbb{Z}^+$, so $a_{n+1} = a_n + d$. Since $n \in \mathbb{Z}$, then $n - 1 \in \mathbb{Z}$. Since n > 1, then n - 1 > 0. Since $n-1 \in \mathbb{Z}$ and n-1 > 0, then $n-1 \in \mathbb{Z}^+$.

Hence, $a_n = a_{n-1} + d$, so $a_{n-1} = a_n - d$. Therefore,

$$\frac{a_{n-1} + a_{n+1}}{2} = \frac{(a_n - d) + (a_n + d)}{2}$$
$$= \frac{2a_n}{2}$$
$$= a_n.$$

Proposition 3. n^{th} term of a geometric sequence

Let $r \in \mathbb{R}, r \neq 0$. The n^{th} term of a geometric sequence with common ratio r and initial value $a_1 \text{ is } a_n = a_1 r^{n-1}.$

Proof. We prove $a_n = a_1 r^{n-1}$ for all $n \in \mathbb{N}$ by induction on n. Let $S = \{ n \in \mathbb{N} : a_n = a_1 r^{n-1} \}.$ Since $a_1 = a_1 \cdot 1 = a_1 r^0 = a_1 r^{1-1}$, then $1 \in S$. Suppose $k \in S$. Then $k \in \mathbb{N}$ and $a_k = a_1 r^{k-1}$. Observe that

$$a_{k+1} = a_k \cdot r$$

= $(a_1 r^{k-1})r$
= $a_1(r^{k-1}r)$
= $a_1(r^{k-1+1})$
= $a_1 r^k$
= $a_1 r^{(k+1)-1}$.

Thus, $a_{k+1} = a_1 r^{(k+1)-1}$, so $k+1 \in S$. Therefore, by PMI, $S = \mathbb{N}$, so $a_n = a_1 r^{n-1}$ for all $n \in \mathbb{N}$.

Proposition 4. Let (a_n) be a geometric sequence of positive real numbers with $common \ ratio \ positive \ r.$

Then $a_n = \sqrt{a_{n-1}a_{n+1}}$ for all integers n > 1.

Proof. Let $n \in \mathbb{Z}$ with n > 1. Since (a_n) is a geometric sequence, then $a_{n+1} = a_n r$ for all $n \in \mathbb{Z}^+$. Since (a_n) is a sequence of positive terms, then $a_n > 0$ for all $n \in \mathbb{Z}^+$. Since n > 1 > 0, then n > 0. Since $n \in \mathbb{Z}$ and n > 0, then $n \in \mathbb{Z}^+$, so $a_{n+1} = a_n r$ and $a_n > 0$. Since $n \in \mathbb{Z}$, then $n - 1 \in \mathbb{Z}$. Since n > 1, then n - 1 > 0. Since $n-1 \in \mathbb{Z}$ and n-1 > 0, then $n-1 \in \mathbb{Z}^+$, so $a_n = a_{n-1}r$. Since r > 0, then $r \neq 0$, so $a_{n-1} = \frac{a_n}{r}$.

Therefore,

$$\sqrt{a_{n-1}a_{n+1}} = \sqrt{\left(\frac{a_n}{r}\right)(a_n r)}$$
$$= \sqrt{a_n a_n}$$
$$= \sqrt{(a_n)^2}$$
$$= |a_n|$$
$$= a_n.$$

Sequences as Functions

Proposition 5. sum and product of bounded sequences is bounded

Let (a_n) and (b_n) be bounded sequences of real numbers. Then

1. $(a_n + b_n)$ is bounded.

2. $(a_n b_n)$ is bounded.

Proof. We prove 1.

Suppose (a_n) and (b_n) are bounded.

Since (a_n) is bounded, then there exists $\alpha \in \mathbb{R}$ such that $|a_n| \leq \alpha$ for all $n \in \mathbb{N}$.

Since (b_n) is bounded, then there exists $\beta \in \mathbb{R}$ such that $|b_n| \leq \beta$ for all $n \in \mathbb{N}$.

To prove $(a_n + b_n)$ is bounded, we must prove there exists $\gamma \in \mathbb{R}$ such that $|a_n + b_n| \leq \gamma$ for all $n \in \mathbb{N}$.

Let $\gamma = \alpha + \beta$. Since $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}$, then $\alpha + \beta \in \mathbb{R}$, so $\gamma \in \mathbb{R}$. Let $n \in \mathbb{N}$. Then $|a_n| \le \alpha$ and $|b_n| \le \beta$. Thus,

$$|a_n + b_n| \leq |a_n| + |b_n|$$
$$\leq \alpha + \beta$$
$$= \gamma.$$

Therefore, $|a_n + b_n| \leq \gamma$.

Proof. We prove 2.

Suppose (a_n) and (b_n) are bounded.

Since (a_n) is bounded, then there exists $\alpha \in \mathbb{R}$ such that $|a_n| \leq \alpha$ for all $n \in \mathbb{N}$.

Since (b_n) is bounded, then there exists $\beta \in \mathbb{R}$ such that $|b_n| \leq \beta$ for all $n \in \mathbb{N}$.

To prove $(a_n b_n)$ is bounded, we must prove there exists $\gamma \in \mathbb{R}$ such that $|a_n b_n| \leq \gamma$ for all $n \in \mathbb{N}$.

Let $\gamma = \alpha\beta$. Since $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}$, then $\alpha\beta \in \mathbb{R}$, so $\gamma \in \mathbb{R}$. Let $n \in \mathbb{N}$. Then $|a_n| \leq \alpha$ and $|b_n| \leq \beta$. Since $0 \leq |a_n| \leq \alpha$ and $0 \leq |b_n| \leq \beta$, then $|a_nb_n| = |a_n||b_n| \leq \alpha\beta = \gamma$. Therefore, $|a_nb_n| \leq \gamma$.

Proposition 6. necessary and sufficient conditions for a monotonic sequence

Let (a_n) be a sequence of real numbers. Then

1. (a_n) is strictly increasing iff m < n implies $a_m < a_n$ for all $m, n \in \mathbb{N}$.

2. (a_n) is (monotonic) increasing iff m < n implies $a_m \leq a_n$ for all $m, n \in \mathbb{N}$.

3. (a_n) is strictly decreasing iff m < n implies $a_m > a_n$ for all $m, n \in \mathbb{N}$.

4. (a_n) is (monotonic) decreasing iff m < n implies $a_m \ge a_n$ for all $m, n \in \mathbb{N}$.

Proof. We prove 1.

We must prove (a_n) is strictly increasing iff m < n implies $a_m < a_n$ for all $m, n \in \mathbb{N}$.

We prove if m < n implies $a_m < a_n$ for all $m, n \in \mathbb{N}$, then (a_n) is strictly increasing.

Suppose m < n implies $a_m < a_n$ for all $m, n \in \mathbb{N}$.

Let $n \in \mathbb{N}$.

Since $n, n+1 \in \mathbb{N}$ and n < n+1, then $a_n < a_{n+1}$.

Therefore, (a_n) is strictly increasing.

Conversely, we prove if (a_n) is strictly increasing, then m < n implies $a_m < a_n$ for all $m, n \in \mathbb{N}$.

Suppose (a_n) is strictly increasing.

Let $m \in \mathbb{N}$ be given.

The statement m < n implies $a_m < a_n$ for all $n \in \mathbb{N}$ means that if n is an arbitrary natural number such that m < n, then $a_m < a_n$.

So, if $n \in \mathbb{N}$ such that m < n, then we must prove $a_m < a_{m+1}$ and $a_m < a_{m+2}$ and $a_m < a_{m+3}$... etc.

Thus, we must prove $a_m < a_{m+t}$ for every natural number t.

We prove $a_m < a_{m+t}$ for all $t \in \mathbb{N}$ by induction on t.

Let $S = \{t \in \mathbb{N} : a_m < a_{m+t}\}.$

Since (a_n) is strictly increasing, then $a_m < a_{m+1}$.

Hence, $1 \in S$.

Suppose $k \in S$.

Then $k \in \mathbb{N}$ and $a_m < a_{m+k}$.

Since (a_n) is strictly increasing, then $a_{m+k} < a_{m+k+1}$.

Thus, $a_m < a_{m+k} < a_{m+k+1}$, so $a_m < a_{m+k+1}$.

Since
$$k + 1 \in \mathbb{N}$$
 and $a_m < a_{m+k+1}$, then $k + 1 \in S$.

Thus, $k \in S$ implies $k + 1 \in S$.

By the principle of mathematical induction, $a_m < a_{m+t}$ for every natural number t.

Hence, m < n implies $a_m < a_n$ for all $n \in \mathbb{N}$.

Since $m \in \mathbb{N}$ is arbitrary, then m < n implies $a_m < a_n$ for all $m, n \in \mathbb{N}$. \Box

Proof. We prove 2.

We must prove (a_n) is monotonic increasing iff m < n implies $a_m \leq a_n$ for all $m, n \in \mathbb{N}$.

We prove if m < n implies $a_m \leq a_n$ for all $m, n \in \mathbb{N}$, then (a_n) is monotonic increasing.

Suppose m < n implies $a_m \leq a_n$ for all $m, n \in \mathbb{N}$. Let $n \in \mathbb{N}$.

Since $n, n+1 \in \mathbb{N}$ and n < n+1, then $a_n \leq a_{n+1}$.

Therefore, (a_n) is monotonic increasing.

Conversely, we prove if (a_n) is monotonic increasing, then m < n implies $a_m \leq a_n$ for all $m, n \in \mathbb{N}$.

Suppose (a_n) is monotonic increasing.

Let $m \in \mathbb{N}$ be given.

The statement m < n implies $a_m \leq a_n$ for all $n \in \mathbb{N}$ means that if n is an arbitrary natural number such that m < n, then $a_m \leq a_n$.

So, if $n \in \mathbb{N}$ such that m < n, then we must prove $a_m \leq a_{m+1}$ and $a_m \leq a_{m+2}$ and $a_m \leq a_{m+3}$... etc.

Thus, we must prove $a_m \leq a_{m+t}$ for every natural number t.

We prove $a_m \leq a_{m+t}$ for all $t \in \mathbb{N}$ by induction on t.

Let $S = \{t \in \mathbb{N} : a_m \le a_{m+t}\}.$

Since (a_n) is monotonic increasing, then $a_m \leq a_{m+1}$.

Hence, $1 \in S$.

Suppose $k \in S$.

Then $k \in \mathbb{N}$ and $a_m \leq a_{m+k}$.

Since (a_n) is monotonic increasing, then $a_{m+k} \leq a_{m+k+1}$.

Thus, $a_m \leq a_{m+k} \leq a_{m+k+1}$, so $a_m \leq a_{m+k+1}$.

Since $k + 1 \in \mathbb{N}$ and $a_m \leq a_{m+k+1}$, then $k + 1 \in S$.

Thus, $k \in S$ implies $k + 1 \in S$.

By the principle of mathematical induction, $a_m \leq a_{m+t}$ for every natural number t.

Hence, m < n implies $a_m \leq a_n$ for all $n \in \mathbb{N}$.

Since $m \in \mathbb{N}$ is arbitrary, then m < n implies $a_m \leq a_n$ for all $m, n \in \mathbb{N}$. \Box

Proof. We prove 3.

We must prove (a_n) is strictly decreasing iff m < n implies $a_m > a_n$ for all $m, n \in \mathbb{N}$.

We prove if m < n implies $a_m > a_n$ for all $m, n \in \mathbb{N}$, then (a_n) is strictly decreasing.

Suppose m < n implies $a_m > a_n$ for all $m, n \in \mathbb{N}$.

Let $n \in \mathbb{N}$.

Since $n, n+1 \in \mathbb{N}$ and n < n+1, then $a_n > a_{n+1}$.

Therefore, (a_n) is strictly decreasing.

Conversely, we prove if (a_n) is strictly decreasing, then m < n implies $a_m > n$ a_n for all $m, n \in \mathbb{N}$. Suppose (a_n) is strictly decreasing. Let $m \in \mathbb{N}$ be given. The statement m < n implies $a_m > a_n$ for all $n \in \mathbb{N}$ means that if n is an arbitrary natural number such that m < n, then $a_m > a_n$. So, if $n \in \mathbb{N}$ such that m < n, then we must prove $a_m > a_{m+1}$ and $a_m > a_m$ a_{m+2} and $a_m > a_{m+3}$... etc. Thus, we must prove $a_m > a_{m+t}$ for every natural number t. We prove $a_m > a_{m+t}$ for all $t \in \mathbb{N}$ by induction on t. Let $S = \{t \in \mathbb{N} : a_m > a_{m+t}\}.$ Since (a_n) is strictly decreasing, then $a_m > a_{m+1}$. Hence, $1 \in S$. Suppose $k \in S$. Then $k \in \mathbb{N}$ and $a_m > a_{m+k}$. Since (a_n) is strictly decreasing, then $a_{m+k} > a_{m+k+1}$. Thus, $a_m > a_{m+k} > a_{m+k+1}$, so $a_m > a_{m+k+1}$. Since $k + 1 \in \mathbb{N}$ and $a_m > a_{m+k+1}$, then $k + 1 \in S$. Thus, $k \in S$ implies $k + 1 \in S$. By the principle of mathematical induction, $a_m > a_{m+t}$ for every natural number t. Hence, m < n implies $a_m > a_n$ for all $n \in \mathbb{N}$. Since $m \in \mathbb{N}$ is arbitrary, then m < n implies $a_m > a_n$ for all $m, n \in \mathbb{N}$. \Box Proof. We prove 4. We must prove (a_n) is monotonic decreasing iff m < n implies $a_m \ge a_n$ for all $m, n \in \mathbb{N}$. We prove if m < n implies $a_m \ge a_n$ for all $m, n \in \mathbb{N}$, then (a_n) is monotonic decreasing. Suppose m < n implies $a_m \ge a_n$ for all $m, n \in \mathbb{N}$. Let $n \in \mathbb{N}$. Since $n, n+1 \in \mathbb{N}$ and n < n+1, then $a_n \ge a_{n+1}$. Therefore, (a_n) is monotonic decreasing. Conversely, we prove if (a_n) is monotonic decreasing, then m < n implies $a_m \ge a_n$ for all $m, n \in \mathbb{N}$. Suppose (a_n) is monotonic decreasing. Let $m \in \mathbb{N}$ be given. The statement m < n implies $a_m \ge a_n$ for all $n \in \mathbb{N}$ means that if n is an arbitrary natural number such that m < n, then $a_m \ge a_n$. So, if $n \in \mathbb{N}$ such that m < n, then we must prove $a_m \ge a_{m+1}$ and $a_m \ge a_m$ a_{m+2} and $a_m \ge a_{m+3}$... etc. Thus, we must prove $a_m \ge a_{m+t}$ for every natural number t. We prove $a_m \ge a_{m+t}$ for all $t \in \mathbb{N}$ by induction on t.

Let $S = \{t \in \mathbb{N} : a_m \ge a_{m+t}\}.$

Since (a_n) is monotonic decreasing, then $a_m \ge a_{m+1}$.

Hence, $1 \in S$. Suppose $k \in S$. Then $k \in \mathbb{N}$ and $a_m \ge a_{m+k}$. Since (a_n) is monotonic decreasing, then $a_{m+k} \ge a_{m+k+1}$. Thus, $a_m \ge a_{m+k} \ge a_{m+k+1}$, so $a_m \ge a_{m+k+1}$. Since $k + 1 \in \mathbb{N}$ and $a_m \ge a_{m+k+1}$, then $k + 1 \in S$. Thus, $k \in S$ implies $k + 1 \in S$. By the principle of mathematical induction, $a_m \ge a_{m+t}$ for every natural number t.

Hence, m < n implies $a_m \ge a_n$ for all $n \in \mathbb{N}$. Since $m \in \mathbb{N}$ is arbitrary, then m < n implies $a_m \ge a_n$ for all $m, n \in \mathbb{N}$. \Box

Proposition 7. If $f : \mathbb{N} \to \mathbb{N}$ is a strictly increasing function, then $f(n) \ge n$ for all $n \in \mathbb{N}$.

Proof. Let $f : \mathbb{N} \to \mathbb{N}$ be a strictly increasing function. We prove $f(n) \ge n$ for all $n \in \mathbb{N}$ by induction on n. Let $S = \{n \in \mathbb{N} : f(n) \ge n\}$. Since $1 \in \mathbb{N}$, then $f(1) \in \mathbb{N}$, so $f(1) \ge 1$. Hence, $1 \in S$. Suppose $k \in S$. Then $k \in \mathbb{N}$ and $f(k) \ge k$. Since f is strictly increasing and $k \in \mathbb{N}$ and $k+1 \in \mathbb{N}$, then f(k) < f(k+1). Thus, $k \le f(k)$ and f(k) < f(k+1), so k < f(k+1). Suppose f(k+1) < k+1. Then k < f(k+1) and f(k+1) < k+1, so k < f(k+1) < k+1. Since $k, k + 1, f(k+1) \in \mathbb{N}$, then this implies there is a natural number between two consecutive natural numbers, an impossibility.

Therefore, $f(k+1) \ge k+1$, so $k+1 \in S$. Thus, by PMI, $S = \mathbb{N}$, so $f(n) \ge n$ for all $n \in \mathbb{N}$, as desired.

Proposition 8. subsequence preserves monotonicity and boundedness

- 1. Every subsequence of an increasing sequence is increasing.
- 2. Every subsequence of a decreasing sequence is decreasing.
- 3. Every subsequence of a bounded sequence is bounded.

Proof. We prove 1.

We must prove every subsequence of an increasing sequence is increasing. Let (a_n) be a monotonic increasing sequence of real numbers.

Since (a_n) is a sequence of real numbers, then there exists a function $f : \mathbb{N} \to \mathbb{R}$ such that $f(n) = a_n$ for all $n \in \mathbb{N}$.

Suppose (b_n) is a subsequence of (a_n) .

Then there exists a strictly increasing function $g : \mathbb{N} \to \mathbb{N}$ such that $b_n = (f \circ g)(n)$ for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$.

Since g is strictly increasing, then g(n) < g(n+1).

Since (a_n) is monotonic increasing and $g(n), g(n+1) \in \mathbb{N}$ and g(n) < g(n+1), then $a_{g(n)} \leq a_{g(n+1)}$.

Observe that

$$b_n = (f \circ g)(n) \\ = f(g(n)) \\ = a_{g(n)} \\ \leq a_{g(n+1)} \\ = f(g(n+1)) \\ = (f \circ g)(n+1) \\ = b_{n+1}.$$

Therefore, $b_n \leq b_{n+1}$, so (b_n) is increasing, as desired.

Proof. We prove 2.

We must prove every subsequence of a decreasing sequence is decreasing. Let (a_n) be a monotonic decreasing sequence of real numbers.

Since (a_n) is a sequence of real numbers, then there exists a function $f : \mathbb{N} \to \mathbb{R}$ such that $f(n) = a_n$ for all $n \in \mathbb{N}$.

Suppose (b_n) is a subsequence of (a_n) .

Then there exists a strictly increasing function $g: \mathbb{N} \to \mathbb{N}$ such that $b_n = (f \circ g)(n)$ for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$.

Since g is strictly increasing, then g(n) < g(n+1).

Since (a_n) is monotonic decreasing and $g(n), g(n+1) \in \mathbb{N}$ and g(n) < g(n+1), then $a_{g(n)} \ge a_{g(n+1)}$.

Observe that

$$b_n = (f \circ g)(n) = f(g(n)) = a_{g(n)} \geq a_{g(n+1)} = f(g(n+1)) = (f \circ g)(n+1) = b_{n+1}.$$

Therefore, $b_n \ge b_{n+1}$, so (b_n) is decreasing, as desired.

Proof. We prove 3.

We must prove every subsequence of a bounded sequence is bounded.

Let (a_n) be a bounded sequence of real numbers.

Since (a_n) is a sequence of real numbers, then there exists a function $f : \mathbb{N} \to \mathbb{R}$ such that $f(n) = a_n$ for all $n \in \mathbb{N}$.

Suppose (b_n) is a subsequence of (a_n) .

Then there exists a strictly increasing function $g : \mathbb{N} \to \mathbb{N}$ such that $b_n = (f \circ g)(n)$ for all $n \in \mathbb{N}$.

Since (a_n) is bounded, then there exists $M \in \mathbb{R}$ such that $|a_n| \leq M$ for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$. Then $q(n) \in \mathbb{N}$ and

en
$$g(n) \in \mathbb{N}$$
 and

$$\begin{aligned} |b_n| &= |(f \circ g)(n)| \\ &= |f(g(n))| \\ &= |a_{g(n)}| \\ &< M. \end{aligned}$$

Therefore, $|b_n| \leq M$, so (b_n) is bounded, as desired.

Proposition 9. M tail of a sequence is a subsequence of the sequence Let (a_n) be a sequence in \mathbb{R} .

If (b_n) is an M tail of (a_n) , then (b_n) is a subsequence of (a_n) .

Proof. Suppose (b_n) is an M tail of (a_n) .

Then there exists $M \in \mathbb{N}$ such that $b_n = a_{M+n}$ for all $n \in \mathbb{N}$.

Since (a_n) is a sequence in \mathbb{R} , then there exists a function $f : \mathbb{N} \to \mathbb{R}$ such that $f(n) = a_n$ for all $n \in \mathbb{N}$.

Let $g: \mathbb{N} \to \mathbb{N}$ be a function defined by g(n) = M + n for all $n \in \mathbb{N}$. Let $m, n \in \mathbb{N}$ such that m < n. Then g(m) = M + m < M + n = g(n), so g(m) < g(n). Hence, g is strictly increasing. Let $n \in \mathbb{N}$ be given. Then

$$b_n = a_{M+n}$$

= $f(M+n)$
= $f(g(n))$
= $(f \circ g)(n).$

Therefore, (b_n) is a subsequence of (a_n) .

Convergent Sequences in \mathbb{R}

Theorem 10. uniqueness of a limit of a convergent sequence The limit of a convergent sequence of real numbers is unique.

Proof. Let (a_n) be a convergent sequence of real numbers.

Then a limit of (a_n) exists as a real number.

Thus, there is at least one limit of (a_n) .

To prove the limit is unique, let $L_1, L_2 \in \mathbb{R}$ such that L_1 is a limit of (a_n) and L_2 is a limit of (a_n) .

We must prove $L_1 = L_2$. Suppose $L_1 \neq L_2$. Then $L_1 - L_2 \neq 0$, so $|L_1 - L_2| > 0$. Let $\epsilon = \frac{|L_1 - L_2|}{2}$. Then $\epsilon > 0$. Since L_1 is a limit of (a_n) and $\epsilon > 0$, then there exists $N_1 \in \mathbb{N}$ such that if $n > N_1$ then $|a_n - L_1| < \epsilon$. Since L_2 is a limit of (a_n) and $\epsilon > 0$, then there exists $N_2 \in \mathbb{N}$ such that if $n > N_2$ then $|a_n - L_2| < \epsilon$. Let $N = \max\{N_1, N_2\}$. Let $n \in \mathbb{N}$ such that n > N. Since $n > N \ge N_1$, then $n > N_1$. Hence, $|a_n - L_1| < \epsilon$. Since $n > N \ge N_2$, then $n > N_2$. Hence, $|a_n - L_2| < \epsilon$. Observe that

$$|L_1 - L_2| = |(L_1 - a_n) + (a_n - L_2)|$$

$$\leq |L_1 - a_n| + |a_n - L_2|$$

$$= |a_n - L_1| + |a_n - L_2|$$

$$< \epsilon + \epsilon$$

$$= 2\epsilon.$$

Thus, $|L_1 - L_2| < 2\epsilon$, so $\frac{|L_1 - L_2|}{2} < \epsilon$. Hence, $\epsilon < \epsilon$, a contradiction. Therefore, $L_1 = L_2$, as desired.

Proposition 11. a difference in a finite number of initial terms does not affect the convergence of a sequence

Let (a_n) and (b_n) be sequences of real numbers.

If there exists $K \in \mathbb{N}$ such that $b_n = a_n$ for all n > K and $\lim_{n \to \infty} a_n = L$, then $\lim_{n \to \infty} b_n = L$.

Proof. Suppose there exists $K \in \mathbb{N}$ such that $b_n = a_n$ for all n > K and $\lim_{n \to \infty} a_n = L$.

Let $\epsilon > 0$ be given.

Since $\lim_{n\to\infty} a_n = L$, then there exists $N \in \mathbb{N}$ such that if n > N, then $|a_n - L| < \epsilon$.

Let $M = \max\{K, N\}$. Let $n \in \mathbb{N}$ such that n > M. Since $n > M \ge N$, then n > N. Hence, $|a_n - L| < \epsilon$. Since $n > M \ge K$, then n > K. Hence, $b_n = a_n$. Thus, $|b_n - L| = |a_n - L| < \epsilon$, so $|b_n - L| < \epsilon$. Therefore, $\lim_{n \to \infty} b_n = L$.

Proposition 12. Let $L \in \mathbb{R}$.

Let (a_n) and $(a_n - L)$ be sequences in \mathbb{R} . Then $\lim_{n\to\infty} a_n = L$ iff $\lim_{n\to\infty} (a_n - L) = 0$.

Proof. Observe that

$$\lim_{n \to \infty} a_n = L \quad \Leftrightarrow \quad (\forall \epsilon > 0)(\exists N \in \mathbb{N})(\forall n \in \mathbb{N})(n > N \to |a_n - L| < \epsilon) \quad \Leftrightarrow \quad (\forall \epsilon > 0)(\exists N \in \mathbb{N})(\forall n \in \mathbb{N})(n > N \to |(a_n - L) - 0| < \epsilon) \quad \Leftrightarrow \quad \lim_{n \to \infty} (a_n - L) = 0.$$

Theorem 13. every subsequence of a convergent sequence is convergent

Let (a_n) be a convergent sequence of real numbers.

If (b_n) is a subsequence of (a_n) , then $\lim_{n\to\infty} b_n = \lim_{n\to\infty} a_n$.

Proof. Suppose (b_n) is a subsequence of (a_n) .

Since (a_n) is convergent, then there exists a real number L such that $\lim_{n\to\infty} a_n = L$.

Let $\epsilon > 0$ be given.

Then there exists $N \in \mathbb{N}$ such that if n > N, then $|a_n - L| < \epsilon$.

Since (a_n) is a sequence, then there exists a function $f : \mathbb{N} \to \mathbb{R}$ such that $f(n) = a_n$ for all $n \in \mathbb{N}$.

Since (b_n) is a subsequence of (a_n) , then there exists a strictly increasing function $g: \mathbb{N} \to \mathbb{N}$ such that $b_n = (f \circ g)(n)$ for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$ such that n > N.

Then N < n.

Since g is strictly increasing, then g(N) < g(n).

Since g is strictly increasing and $N \in \mathbb{N}$, then by a previous proposition, $q(N) \geq N$.

Thus, $N \leq g(N)$ and g(N) < g(n), so N < g(n). Since $g(n) \in \mathbb{N}$ and g(n) > N, then $|a_{g(n)} - L| < \epsilon$. Observe that

$$|b_n - L| = |(f \circ g)(n) - L|$$

= $|f(g(n)) - L|$
= $|a_{g(n)} - L|$
 $< \epsilon.$

Therefore, $|b_n - L| < \epsilon$, so $\lim_{n \to \infty} b_n = L = \lim_{n \to \infty} a_n$.

Corollary 14. Let (a_n) be a sequence of real numbers. If (b_n) and (c_n) are convergent subsequences of (a_n) such that $\lim_{n\to\infty} b_n \neq \infty$

 $\lim_{n\to\infty} c_n$, then (a_n) is divergent.

Proof. Suppose (b_n) and (c_n) are convergent subsequences of (a_n) such that $\lim_{n\to\infty} b_n \neq \lim_{n\to\infty} c_n$.

We prove (a_n) is divergent by contradiction. Suppose (a_n) is not divergent. Then (a_n) is convergent. Hence, there exists a real number L such that $\lim_{n\to\infty} a_n = L$. Since (b_n) is a subsequence of (a_n) and $\lim_{n\to\infty} a_n = L$, then $\lim_{n\to\infty} b_n = L$. Since (c_n) is a subsequence of (a_n) and $\lim_{n\to\infty} a_n = L$, then $\lim_{n\to\infty} c_n = L$. Thus, $\lim_{n\to\infty} b_n = L = \lim_{n\to\infty} c_n$, so $\lim_{n\to\infty} b_n = \lim_{n\to\infty} c_n$. This contradicts the assumption that $\lim_{n\to\infty} b_n \neq \lim_{n\to\infty} c_n$. Therefore, (a_n) is divergent.

Proposition 15. M tail of a sequence is convergent iff the sequence is convergent

Let (a_n) be a sequence of real numbers. Let $M \in \mathbb{N}$. If (a_n) is convergent, then $\lim_{n\to\infty} a_{M+n} = \lim_{n\to\infty} a_n$. If (a_{M+n}) is convergent, then $\lim_{n\to\infty} a_n = \lim_{n\to\infty} a_{M+n}$.

Proof. Suppose (a_n) is convergent.

Then there exists $L \in \mathbb{R}$ such that $\lim_{n\to\infty} a_n = L$. Let (b_n) be a sequence of real numbers defined by $b_n = a_{M+n}$ for all $n \in \mathbb{N}$. We must prove $\lim_{n\to\infty} b_n = L$. Since $b_n = a_{M+n}$ for all $n \in \mathbb{N}$, then (b_n) is the M tail of (a_n) . Hence, (b_n) is a subsequence of (a_n) . Since (a_n) is convergent, then $\lim_{n\to\infty} b_n = \lim_{n\to\infty} a_n = L$, as esired.

Conversely, suppose (b_n) is convergent. Then there exists $L \in \mathbb{R}$ such that $\lim_{n\to\infty} b_n = L$. We must prove $\lim_{n\to\infty} a_n = L$. Let $\epsilon > 0$ be given. Then there exists $N \in \mathbb{N}$ such that if n > N, then $|b_n - L| < \epsilon$.

We prove $a_n = b_{n-M}$ for all n > M by induction on n. Let $S = \{n \in \mathbb{N} : a_n = b_{n-M}, n > M\}$. Since $M + 1 \in \mathbb{N}$ and M + 1 > M and $a_{M+1} = b_1 = b_{(M+1)-M}$, then $M + 1 \in S$. Suppose $k \in S$. Then $k \in \mathbb{N}$ and k > M. Since $k \in \mathbb{N}$, then $k + 1 \in \mathbb{N}$. Since k + 1 > k and k > M, then k + 1 > M. Since k + 1 > k and k > M, then k + 1 > M. Therefore, by PMI, $a_n = b_{n-M}$ for all n > M. Since $M \in \mathbb{N}$ and $N \in \mathbb{N}$, then $M + N \in \mathbb{N}$. Let $n \in \mathbb{N}$ such that n > M + N. Then n - M > N, so $|b_{n-M} - L| < \epsilon$. Since $N \in \mathbb{N}$, then N > 0, so M + N > M. Since n > M + N and M + N > M, then n > M, so $a_n = b_{n-M}$. Observe that

$$|a_n - L| = |b_{n-M} - L|$$

< ϵ .

Hence, $|a_n - L| < \epsilon$, so $\lim_{n \to \infty} a_n = L$, as desired.

Algebraic properties of convergent sequences

Theorem 16. convergence implies boundedness

Every convergent sequence of real numbers is bounded.

Proof. Let (a_n) be a convergent sequence of real numbers. Then there is a real number L such that for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $|a_n - L| < \epsilon$ whenever n > N. Let $\epsilon = 1$. Then there exists $N \in \mathbb{N}$ such that $|a_n - L| < 1$ whenever n > N. Let $S = \{|a_1|, |a_2|, ..., |a_N|, 1 + |L|\} = \{|a_k| : 1 \le k \le N\} \cup \{1 + |L|\}.$ Then $S \subset \mathbb{R}$. Since $1 + |L| \in S$, then S is not empty. Since S contains at most N + 1 elements, then S is finite. Hence, S is a nonempty finite set of real numbers. Therefore, $\max S$ exists. To prove (a_n) is bounded, we must prove there exists $M \in \mathbb{R}$ such that $|a_n| \leq M$ for all $n \in \mathbb{N}$. Let $M = \max S$. Since $M = \max S \in S$ and $S \subset \mathbb{R}$, then $M \in \mathbb{R}$. Let $n \in \mathbb{N}$. Either $n \leq N$ or n > N. We consider these cases separately. Case 1: Suppose $n \leq N$. Then $1 \leq n \leq N$, so $|a_n| \in S$. Therefore, $|a_n| \leq M$. Case 2: Suppose n > N. Then $|a_n - L| < 1$. Since $1 + |L| \in S$ and $M = \max S$, then $1 + |L| \leq M$.

Observe that

$$\begin{aligned} |a_n| &= |(a_n - L) + L| \\ &\leq |a_n - L| + |L| \\ &< 1 + |L| \\ &< M. \end{aligned}$$

Therefore, $|a_n| < M$, so $|a_n| \le M$.

Thus, in all cases, $|a_n| \leq M$, so (a_n) is bounded, as desired.

Proposition 17. If $\lim_{n\to\infty} a_n = 0$ and (b_n) is bounded, then $\lim_{n\to\infty} a_n b_n =$ 0.

Proof. Suppose $\lim_{n\to\infty} a_n = 0$ and (b_n) is bounded. Let $\epsilon > 0$ be given.

Since (b_n) is bounded, then there exists M > 0 such that $|b_n| < M$ for all $n \in \mathbb{N}$.

Since $\epsilon > 0$ and M > 0, then $\frac{\epsilon}{M} > 0$.

Since $\lim_{n\to\infty} a_n = 0$, then there exists $N \in \mathbb{N}$ such that $|a_n| < \frac{\epsilon}{M}$ whenever n > N.

Let $n \in \mathbb{N}$ such that n > N.

Then $|a_n| < \frac{\epsilon}{M}$ and $|b_n| < M$. Since $0 \le |a_n| < \frac{\epsilon}{M}$ and $0 \le |b_n| < M$, then

$$|a_n b_n| = |a_n||b_n|$$

< $\frac{\epsilon}{M} \cdot M$
= $\epsilon.$

Therefore, $|a_n b_n| < \epsilon$, so $\lim_{n \to \infty} a_n b_n = 0$.

Lemma 18. Let (a_n) be a sequence of real numbers.

If there exists $L \neq 0$ such that $\lim_{n\to\infty} a_n = L$, then there is a natural number N such that $|a_n| > \frac{|L|}{2}$ for all n > N.

Proof. Suppose there exists $L \neq 0$ such that $\lim_{n\to\infty} a_n = L$. Since $L \neq 0$, then |L| > 0, so $\frac{|L|}{2} > 0$.

Since $\lim_{n\to\infty} a_n = L$, then there exists $N \in \mathbb{N}$ such that $|a_n - L| < \frac{|L|}{2}$ whenever n > N.

Let $n \in \mathbb{N}$ such that n > N. Then $|a_n - L| < \frac{|L|}{2}$. Since $\frac{|L|}{2} > |a_n - L| \ge |L| - |a_n|$, then $\frac{|L|}{2} > |L| - |a_n|$. Therefore, $|a_n| > \frac{|L|}{2}$, as desired.

Lemma 19. Let (a_n) be a sequence of real numbers.

If there exists $L \neq 0$ such that $\lim_{n\to\infty} a_n = L$ and $a_n \neq 0$ for all $n \in \mathbb{N}$, then $\lim_{n\to\infty} \frac{1}{a_n} = \frac{1}{L}$.

Proof. Suppose there exists $L \neq 0$ such that $\lim_{n\to\infty} a_n = L$ and $a_n \neq 0$ for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$ be given. Since $a_n \neq 0$ for all $n \in \mathbb{N}$, then $a_n \neq 0$, so $\frac{1}{a_n} \in \mathbb{R}$. Hence, $\frac{1}{a_n} \in \mathbb{R}$ for all $n \in \mathbb{N}$, so the sequence $\left(\frac{1}{a_n}\right)$ is well defined. Since $L \neq 0$, then $\frac{1}{L} \in \mathbb{R}$. To prove $\lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{L}$, let $\epsilon > 0$ be given. Since $\epsilon > 0$ and $|L|^2 > 0$, then $\frac{\epsilon |L|^2}{2} > 0$. Since $\lim_{n \to \infty} a_n = L$, then there exists $N_1 \in \mathbb{N}$ such that if $n > N_1$, then $|a_n - L| < \frac{\epsilon |L|^2}{2}$. Since $\lim_{n \to \infty} a_n = L$ and $L \neq 0$, then by a previous lemma, there exists $N_2 \in \mathbb{N}$ such that if $n > N_2$, then $|a_n| > \frac{|L|}{2}$. Let $N = \max\{N_1, N_2\}$. Let $n \in \mathbb{N}$ such that n > N. Since $n > N \ge N_1$, then $n > N_1$, so $|a_n - L| < \frac{\epsilon |L|^2}{2}$. Thus, $0 \le |a_n - L| < \frac{\epsilon |L|^2}{2}$. Since $n > N \ge N_2$, then $n > N_2$, so $|a_n| > \frac{|L|}{2}$. Since $a_n \ne 0$, then |L| > 0. Since $a_n \ne 0$, then $|a_n| > 0$. Thus, $\frac{2}{|L|} > \frac{|a_n|}{|a_n|} > 0$, so $0 < \frac{1}{|a_n|} < \frac{2}{|L|}$. Observe that $\left|\frac{1}{a_n} - \frac{1}{L}\right| = \left|\frac{L - a_n}{a}\right|$

$$\begin{aligned} \frac{1}{a} - \frac{1}{L} &| &= |\frac{a_n L}{a_n L}| \\ &= |\frac{a_n - L}{a_n L}| \\ &= |a_n - L| \cdot \frac{1}{|a_n|} \cdot \frac{1}{|L|} \\ &< \frac{\epsilon |L|^2}{2} \cdot \frac{2}{|L|} \cdot \frac{1}{|L|} \\ &= \epsilon. \end{aligned}$$

Therefore, $\left|\frac{1}{a_n} - \frac{1}{L}\right| < \epsilon$, so $\lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{L}$, as desired.

Theorem 20. algebraic limit rules for convergent sequences If (a_n) and (b_n) are convergent sequences of real numbers, then 1. Scalar Multiple Rule $\lim_{n\to\infty}(\lambda a_n) = \lambda \lim_{n\to\infty} a_n$ for every $\lambda \in \mathbb{R}$. 2. Sum Rule (limit of sum equals sum of limits) $\lim_{n\to\infty}(a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$. 3. Difference Rule (limit of difference equals difference of limits) $\lim_{n\to\infty}(a_n - b_n) = \lim_{n\to\infty} a_n - \lim_{n\to\infty} b_n$. 4. Product Rule (limit of product equals product of limits) $\lim_{n\to\infty}(a_nb_n) = (\lim_{n\to\infty} a_n)(\lim_{n\to\infty} b_n)$. 5. Quotient Rule (limit of quotient equals quotient of limits)

If $\lim_{n\to\infty} b_n \neq 0$, then $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}$.

Proof. Let (a_n) be a convergent sequence of real numbers.

Then there exists a real number L such that $\lim_{n\to\infty} a_n = L$. We prove 1. Let $\lambda \in \mathbb{R}$. We must prove $\lim_{n\to\infty} (\lambda a_n) = \lambda L$. Either $\lambda = 0$ or $\lambda \neq 0$. We consider these cases separately. **Case 1:** Suppose $\lambda = 0$. Observe that

$$\lim_{n \to \infty} (0a_n) = \lim_{n \to \infty} 0$$
$$= 0$$
$$= 0L.$$

Therefore, $\lim_{n\to\infty} (0a_n) = 0L$, as desired.

Case 2: Suppose $\lambda \neq 0$. Let $\epsilon > 0$. Since $|\lambda| \ge 0$ and $\lambda \ne 0$, then $|\lambda| > 0$. Hence, $\frac{\epsilon}{|\lambda|} > 0$. Since $\lim_{n\to\infty} a_n = L$, then there exists $N \in \mathbb{N}$ such that $|a_n - L| < \frac{\epsilon}{|\lambda|}$ whenever n > N. Let $n \in \mathbb{N}$ such that n > N. Then $|a_n - L| < \frac{\epsilon}{|\lambda|}$. Observe that

$$\begin{aligned} |\lambda a_n - \lambda L| &= |\lambda (a_n - L)| \\ &= |\lambda| |a_n - L| \\ &< |\lambda| \frac{\epsilon}{|\lambda|} \\ &= \epsilon \end{aligned}$$

Therefore, $\lim_{n\to\infty} (\lambda a_n) = \lambda L$, as desired.

Proof. Let (a_n) and (b_n) be convergent sequences of real numbers.

Then there exist real numbers L and M such that $\lim_{n\to\infty} a_n = L$ and $\lim_{n\to\infty} b_n = M$.

We prove 2. We must prove $\lim_{n\to\infty} (a_n + b_n) = L + M$. Let $\epsilon > 0$. Then $\frac{\epsilon}{2} > 0$. Since $\lim_{n\to\infty} a_n = L$, then there exists $N_1 \in \mathbb{N}$ such that $|a_n - L| < \frac{\epsilon}{2}$ whenever $n > N_1$. Since $\lim_{n\to\infty} b_n = M$, then there exists $N_2 \in \mathbb{N}$ such that $|b_n - M| < \frac{\epsilon}{2}$ whenever $n > N_2$. Let $N = \max\{N_1, N_2\}$. Let $n \in \mathbb{N}$ such that n > N. Since $n > N \ge N_1$, then $n > N_1$. Hence, $|a_n - L| < \frac{\epsilon}{2}$. Since $n > N \ge N_2$, then $n > N_2$. Hence, $|b_n - M| < \frac{\epsilon}{2}$. Observe that

$$(a_n + b_n) - (L + M) | = |a_n + b_n - L - M| = |(a_n - L) + (b_n - M)| \leq |a_n - L| + |b_n - M| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Thus, $|(a_n + b_n) - (L + M)| < \epsilon$. Therefore, $\lim_{n \to \infty} (a_n + b_n) = L + M$, as desired.

Proof. Let (a_n) and (b_n) be convergent sequences of real numbers. Then there exist real numbers L and M such that $\lim_{n\to\infty} a_n = L$ and

 $\lim_{n \to \infty} b_n = M.$

We prove 3. We must prove $\lim_{n\to\infty} (a_n - b_n) = L - M$. Observe that

$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} [a_n + (-b_n)]$$

=
$$\lim_{n \to \infty} a_n + \lim_{x \to a} -b_n$$

=
$$\lim_{n \to \infty} a_n - \lim_{x \to a} b_n$$

=
$$L - M.$$

Therefore, $\lim_{n\to\infty} (a_n - b_n) = L - M$, as desired.

Proof. Let (a_n) and (b_n) be convergent sequences of real numbers.

Then there exist real numbers L and M such that $\lim_{n\to\infty} a_n = L$ and $\lim_{n\to\infty} b_n = M$. We prove 4. We must prove $\lim_{n\to\infty} (a_n b_n) = LM$. Let $\epsilon > 0$. Since (b_n) is convergent, then (b_n) is bounded. Hence, there exists b > 0 such that $|b_n| < b$ for all $n \in \mathbb{N}$. Since $\epsilon > 0$ and b > 0, then $\frac{\epsilon}{2b} > 0$. Since $\lim_{n\to\infty} a_n = L$, then there exists $N_1 \in \mathbb{N}$ such that $|a_n - L| < \frac{\epsilon}{2b}$

whenever $n > N_1$.

Since $|L| \ge 0$ and $|L| \ge 0 \Rightarrow |L| + 1 \ge 1 \Rightarrow 2(|L| + 1) \ge 2 > 0$, then 2(|L|+1) > 0.Since $\epsilon > 0$, then $\frac{\epsilon}{2(|L|+1)} > 0$. Since $\lim_{n\to\infty} b_n = M$, then there exists $N_2 \in \mathbb{N}$ such that $|b_n - M| < \infty$ $\frac{\epsilon}{2(|L|+1)}$ whenever $n > N_2$. Let $N = \max\{N_1, N_2\}.$ Let $n \in \mathbb{N}$ such that n > N. Since $n > N \ge N_1$, then $n > N_1$, so $|a_n - L| < \frac{\epsilon}{2b}$. Since $0 \le |a_n - L| < \frac{\epsilon}{2b}$ and $0 \le |b_n| < b$, then $|a_n - L||b_n| < \frac{\epsilon}{2}$. Since $n > N \ge N_2$, then $n > N_2$, so $|b_n - M| < \frac{\epsilon}{2(|L|+1)}$. Since $|L| \ge 0$, then $|L||b_n - M| \le \frac{|L|\epsilon}{2(|L|+1)}$. Since $0 \le |L| < |L| + 1$, then $0 \le \frac{|L|}{|L|+1} < 1$, so $\frac{|L|\epsilon}{2(|L|+1)} < \frac{\epsilon}{2}$. Thus, $|L||b_n - M| \le \frac{|L|\epsilon}{2(|L|+1)}$ and $\frac{|L|\epsilon}{2(|L|+1)} < \frac{\epsilon}{2}$, so $|L||b_n - M| < \frac{\epsilon}{2}$. Observe that

$$\begin{aligned} |a_n b_n - LM| &= |(a_n b_n - Lb_n) + (Lb_n - LM)| \\ &\leq |a_n b_n - Lb_n| + |Lb_n - LM| \\ &= |(a_n - L)b_n| + |L(b_n - M)| \\ &= |a_n - L||b_n| + |L||b_n - M| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ &= \epsilon. \end{aligned}$$

Thus, $|a_n b_n - LM| < \epsilon$.

Therefore, $\lim_{n\to\infty} (a_n b_n) = LM$, as desired.

Proof. Let (a_n) and (b_n) be convergent sequences of real numbers.

Then there exist real numbers L and M such that $\lim_{n\to\infty} a_n = L$ and $\lim_{n \to \infty} b_n = M.$

Suppose $M \neq 0$.

We prove 5.

We must prove $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{L}{M}$. We first prove $\lim_{n\to\infty} \frac{1}{b_n} = \frac{1}{M}$. Either there exists $k \in \mathbb{N}$ such that $b_k = 0$ or there does not exist $k \in \mathbb{N}$ such that $b_k = 0$.

We consider these cases separately.

Case 1: Suppose there does not exist $k \in \mathbb{N}$ such that $b_k = 0$.

Then $b_k \neq 0$ for all $k \in \mathbb{N}$.

Since $M \neq 0$ and $\lim_{n \to \infty} b_n = M$ and $b_n \neq 0$ for all $n \in \mathbb{N}$, then by a previous lemma, $\lim_{n\to\infty} \frac{1}{b_n} = \frac{1}{M}$. Case 2: Suppose there exists $k \in \mathbb{N}$ such that $b_k = 0$.

Then the expression $\frac{1}{h_{\mu}}$ is undefined, so $\left(\frac{1}{h_{\mu}}\right)$ does not define a sequence of real numbers.

We shall show that when the expression is defined, the sequence that results must converge to $\frac{1}{M}$.

Since $M \neq 0$ and $\lim_{n\to\infty} b_n = M$, then by a previous lemma, there exists $N \in \mathbb{N}$ such that $|b_n| > \frac{|M|}{2}$ for all n > N.

Let $c_n = b_{N+n}$ for all $n \in \mathbb{N}$. Then (c_n) is a sequence of real numbers.

Let $g: \mathbb{N} \to \mathbb{N}$ be a function defined by g(n) = N + n for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$ be given.

Since g(n) = N + n < N + (n + 1) = g(n + 1), then g(n) < g(n + 1), so g is strictly increasing.

Since $c_n = b_{N+n} = b_{q(n)}$, then (c_n) is a subsequence of (b_n) .

Since $n \ge 1 > 0$, then n > 0.

Since $N + n \in \mathbb{N}$ and N + n > N, then $|b_{N+n}| > \frac{|M|}{2}$, so $|c_n| > \frac{|M|}{2}$.

Since $M \neq 0$, then |M| > 0, so $\frac{|M|}{2} > 0$.

Thus, $|c_n| > \frac{|M|}{2} > 0$, so $|c_n| > 0$.

Hence, $c_n \neq 0$, so $c_n \neq 0$ for all $n \in \mathbb{N}$. Thus, $\frac{1}{c_n} \in \mathbb{R}$ for all $n \in \mathbb{N}$, so $(\frac{1}{c_n})$ is a sequence of real numbers. Since $\lim_{n\to\infty} b_n = M$ and (c_n) is a subsequence of (b_n) , then $\lim_{n\to\infty} c_n = M$. M.

Since $M \neq 0$ and $\lim_{n \to \infty} c_n = M$ and $c_n \neq 0$ for all $n \in \mathbb{N}$, then by a previous lemma, $\lim_{n\to\infty} \frac{1}{c_n} = \frac{1}{M}$.

Therefore, in all cases, $\lim_{n \to \infty} \frac{1}{b_n} = \frac{1}{M}$. Observe that

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} (a_n \cdot \frac{1}{b_n})$$
$$= (\lim_{n \to \infty} a_n) (\lim_{n \to \infty} \frac{1}{b_n})$$
$$= L \cdot \frac{1}{M}$$
$$= \frac{L}{M}.$$

Therefore, $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{L}{M}$, as desired.

Theorem 21. a limit preserves a non strict inequality

Let (a_n) and (b_n) be convergent sequences of real numbers.

If there exists K > 0 such that $a_n \leq b_n$ for all n > K, then $\lim_{n \to \infty} a_n \leq b_n$ $\lim_{n\to\infty} b_n$.

Proof. Suppose there exists K > 0 such that $a_n \leq b_n$ for all n > K.

Since (a_n) is convergent, then there exists $L \in \mathbb{R}$ such that $\lim_{n \to \infty} a_n = L$. Since (b_n) is convergent, then there exists $M \in \mathbb{R}$ such that $\lim_{n \to \infty} b_n = M$. We must prove $L \leq M$. Suppose for the sake of contradiction L > M. Then L - M > 0, so $\frac{L - M}{2} > 0$ Let $\epsilon = \frac{L-M}{2}$.

Then $\epsilon > 0$.

Since $\lim_{n\to\infty} a_n = L$, then there exists $N_1 \in \mathbb{N}$ such that if $n > N_1$, then $|a_n - L| < \epsilon.$ Since $\lim_{n\to\infty} b_n = M$, then there exists $N_2 \in \mathbb{N}$ such that if $n > N_2$, then $|b_n - M| < \epsilon.$ Let $N = \max\{N_1, N_2, K\}.$ Let $n \in \mathbb{N}$ such that n > N. Since n > N and $N \ge K$, then n > K, so $a_n \le b_n$. Since n > N and $N \ge N_1$, then $n > N_1$, so $|a_n - L| < \epsilon$. Thus, $-\epsilon < a_n - L < \epsilon$, so $L - \epsilon < a_n < L + \epsilon$. Since n > N and $N \ge N_2$, then $n > N_2$, so $|b_n - M| < \epsilon$. Thus, $-\epsilon < b_n - M < \epsilon$, so $M - \epsilon < b_n < M + \epsilon$. Since $\epsilon = \frac{L-M}{2}$, then $2\epsilon = L - M$, so $\epsilon + \epsilon = L - M$. Thus, $M + \epsilon = L - \epsilon$. Therefore, $b_n < M + \epsilon = L - \epsilon < a_n \le b_n$, so $b_n < b_n$, a contradiction. Hence, $L \leq M$, as desired. **Corollary 22.** Let (a_n) and (b_n) be convergent sequences of real numbers. If $a_n \leq b_n$ for all $n \in \mathbb{N}$, then $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$. *Proof.* Suppose $a_n \leq b_n$ for all $n \in \mathbb{N}$. By the density of \mathbb{R} , there exists $K \in \mathbb{R}$ such that 0 < K < 1. Thus, 0 < K and K < 1. Since 0 < K, then K > 0. Let $n \in \mathbb{N}$ be given.

Then $a_n \leq b_n$. Since $n \in \mathbb{N}$ then

Since $n \in \mathbb{N}$, then $n \ge 1$. Since $n \ge 1$ and 1 > K, then n > K.

Since n is arbitrary, then $a_n \leq b_n$ for all n > K.

Since (a_n) and (b_n) are convergent sequences, then by the inequality rule for convergent sequences, $\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n$.

Corollary 23. Let (a_n) be a convergent sequence in \mathbb{R} .

1. If M is an upper bound of (a_n) , then $\lim_{n\to\infty} a_n \leq M$.

2. If m is a lower bound of (a_n) , then $m \leq \lim_{n \to \infty} a_n$.

Proof. We prove 1.

Suppose $M \in \mathbb{R}$ is an upper bound of (a_n) .

Then $a_n \leq M$ for all $n \in \mathbb{N}$.

Let (b_n) be the constant sequence defined by $b_n = M$ for all $n \in \mathbb{N}$.

Since (a_n) is convergent and (b_n) is convergent and $a_n \leq b_n$ for all $n \in \mathbb{N}$, then by the inequality rule for convergent sequences, $\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n$.

Thus,

$$\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n \quad \Leftrightarrow \quad \lim_{n \to \infty} a_n \le \lim_{n \to \infty} M$$
$$\Leftrightarrow \quad \lim_{n \to \infty} a_n \le M.$$

Therefore, $\lim_{n\to\infty} a_n \leq M$, as desired.

Proof. We prove 1.

Since (a_n) is convergent, then there exists a real number L such that $\lim_{n\to\infty} a_n = L$. Suppose M is an upper bound of (a_n) . We prove $L \le M$ by contradiction. Suppose L > M. Then L - M > 0. Since $\lim_{n\to\infty} a_n = L$, then there exists $N \in \mathbb{N}$ such that if n > N, then $|a_n - L| < L - M$. Let $n \in \mathbb{N}$ such that n > N. Then $|a_n - L| < L - M$.

Observe that

$$\begin{aligned} |a_n - L| < L - M &\Leftrightarrow -(L - M) < a_n - L < L - M \\ &\Leftrightarrow M - L < a_n - L < L - M \\ &\Rightarrow M - L < a_n - L \\ &\Leftrightarrow M < a_n \\ &\Leftrightarrow a_n > M. \end{aligned}$$

Thus, $a_n > M$.

Hence, there exists $n \in \mathbb{N}$ such that $a_n > M$. This contradicts the assumption that M is an upper bound of (a_n) . Therefore, $L \leq M$, as desired.

Proof. We prove 2.

Suppose $m \in \mathbb{R}$ is a lower bound of (a_n) . Then $m \leq a_n$ for all $n \in \mathbb{N}$. Let (b_n) be the constant sequence defined by $b_n = m$ for all $n \in \mathbb{N}$.

Since (a_n) is convergent and (b_n) is convergent and $b_n \leq a_n$ for all $n \in \mathbb{N}$, then by the inequality rule for convergent sequences, $\lim_{n\to\infty} b_n \leq \lim_{n\to\infty} a_n$.

Thus,

$$\lim_{n \to \infty} b_n \leq \lim_{n \to \infty} a_n \quad \Leftrightarrow \quad \lim_{n \to \infty} m \leq \lim_{n \to \infty} a_n$$
$$\Leftrightarrow \quad m \leq \lim_{n \to \infty} a_n.$$

Therefore, $m \leq \lim_{n \to \infty} a_n$, as desired.

Proof. We prove 2.

Since (a_n) is convergent, then there exists a real number L such that $\lim_{n\to\infty} a_n = L$.

Suppose *m* is a lower bound of (a_n) . We prove $m \leq L$ by contradiction. Suppose m > L. Then m - L > 0. Since $\lim_{n\to\infty} a_n = L$, then there exists $N \in \mathbb{N}$ such that if n > N, then $|a_n - L| < m - L$.

Let $n \in \mathbb{N}$ such that n > N. Then $|a_n - L| < m - L$. Observe that

$$\begin{aligned} |a_n - L| < m - L & \Leftrightarrow & -(m - L) < a_n - L < m - L \\ & \Rightarrow & a_n - L < m - L \\ & \Leftrightarrow & a_n < m. \end{aligned}$$

Thus, $a_n < m$.

Hence, there exists $n \in \mathbb{N}$ such that $a_n < m$. This contradicts the assumption that m is a lower bound of (a_n) . Therefore, $m \leq L$, as desired.

Corollary 24. limit of a convergent sequence is between any upper and lower bound of the sequence

Let (a_n) be a convergent sequence in \mathbb{R} .

If there exist real numbers m and M such that $m \leq a_n \leq M$ for all $n \in \mathbb{N}$, then $m \leq \lim_{n \to \infty} a_n \leq M$.

Proof. Suppose there exist real numbers m and M such that $m \leq a_n \leq M$ for all $n \in \mathbb{N}$.

Then $m \leq a_n$ for all $n \in \mathbb{N}$ and $a_n \leq M$ for all $n \in \mathbb{N}$.

Since (a_n) is a convergent sequence, then there exists $L \in \mathbb{R}$ such that $\lim_{n\to\infty} a_n = L$.

We must prove $m \leq L \leq M$. Since $a_n \leq M$ for all $n \in \mathbb{N}$, then M is an upper bound of (a_n) . Hence, by the previous corollary, $L \leq M$. Since $m \leq a_n$ for all $n \in \mathbb{N}$, then m is a lower bound of (a_n) . Hence, by the previous corollary, $m \leq L$. Therefore, $m \leq L$ and $L \leq M$, so $m \leq L \leq M$, as desired.

Corollary 25. Let (a_n) be a convergent sequence in \mathbb{R} .

If there exist $K \in \mathbb{N}$ and real numbers m and M such that $m \leq a_n \leq M$ for all n > K, then $m \leq \lim_{n \to \infty} a_n \leq M$.

Proof. Suppose there exist $K \in \mathbb{N}$ and real numbers m and M such that $m \leq a_n \leq M$ for all n > K.

Let (b_n) be a sequence defined by $b_n = a_{K+n}$ for all $n \in \mathbb{N}$.

Then (b_n) is a K tail of the sequence (a_n) , so (b_n) is a subsequence of (a_n) . Since (a_n) is convergent, then (b_n) is convergent, so $\lim_{n\to\infty} b_n = \lim_{n\to\infty} a_n$.

We prove $m \leq b_n \leq M$ for all $n \in \mathbb{N}$ by induction on n. Let $S = \{n \in \mathbb{N} : m \leq b_n \leq M\}$. Since $K + 1 \in \mathbb{N}$ and K + 1 > K, then $m \leq a_{K+1} \leq M$. Since $b_1 = a_{K+1}$, then $m \leq b_1 \leq M$, so $1 \in S$. Suppose $k \in S$. Then $k \in \mathbb{N}$. Since $K + k + 1 \in \mathbb{N}$ and K + k + 1 > K, then $m \le a_{K+k+1} \le M$. Since $k + 1 \in \mathbb{N}$, then $b_{k+1} = a_{K+k+1}$, so $m \le b_{k+1} \le M$. Hence, $k + 1 \in S$. Thus, by PMI, $m \le b_n \le M$ for all $n \in \mathbb{N}$.

Since (b_n) is convergent and $m \leq b_n \leq M$ for all $n \in \mathbb{N}$, then by the inequality rule for convergent sequences, $m \leq \lim_{n \to \infty} b_n \leq M$.

Therefore, $m \leq \lim_{n \to \infty} a_n \leq M$, as desired.

Theorem 26. squeeze rule for convergent sequences

Let $(a_n), (b_n)$, and (c_n) be sequences of real numbers.

If there exists $K \in \mathbb{N}$ such that $a_n \leq c_n \leq b_n$ for all n > K and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$, then $\lim_{n \to \infty} c_n = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$.

Proof. Suppose there exists $K \in \mathbb{N}$ such that $a_n \leq c_n \leq b_n$ for all n > K and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$.

Since $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$, then there exists a real number L such that $L = \lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$.

We must prove $\lim_{n\to\infty} c_n = L$.

Let $\epsilon > 0$ be given.

Since $\lim_{n\to\infty} a_n = L$, then there exists $N_1 \in \mathbb{N}$ such that if $n > N_1$, then $|a_n - L| < \epsilon$.

Since $\lim_{n\to\infty} b_n = L$, then there exists $N_2 \in \mathbb{N}$ such that if $n > N_2$, then $|b_n - L| < \epsilon$.

Let $N = \max\{N_1, N_2, K\}$. Let $n \in \mathbb{N}$ such that n > N. Since n > N and $N \ge K$, then n > K, so $a_n \le c_n \le b_n$. Therefore, $a_n \le c_n$ and $c_n \le b_n$. Since n > N and $N \ge N_1$, then $n > N_1$, so $|a_n - L| < \epsilon$. Since n > N and $N \ge N_2$, then $n > N_2$, so $|b_n - L| < \epsilon$. Observe that

$$\begin{aligned} |a_n - L| < \epsilon & \Leftrightarrow & -\epsilon < a_n - L < \epsilon \\ & \Rightarrow & -\epsilon < a_n - L \\ & \Leftrightarrow & L - \epsilon < a_n. \end{aligned}$$

Since $L - \epsilon < a_n$ and $a_n \le c_n$, then $L - \epsilon < c_n$, so $-\epsilon < c_n - L$. Observe that

$$\begin{split} |b_n - L| < \epsilon & \Leftrightarrow & -\epsilon < b_n - L < \epsilon \\ & \Rightarrow & b_n - L < \epsilon \\ & \Leftrightarrow & b_n < L + \epsilon. \end{split}$$

Since $c_n \leq b_n$ and $b_n < L + \epsilon$, then $c_n < L + \epsilon$, so $c_n - L < \epsilon$.

Since $-\epsilon < c_n - L$ and $c_n - L < \epsilon$, then $-\epsilon < c_n - L < \epsilon$, so $|c_n - L| < \epsilon$. Therefore, $\lim_{n \to \infty} c_n = L$, as desired. **Corollary 27.** Let $(a_n), (b_n)$, and (c_n) be sequences of real numbers.

If $a_n \leq c_n \leq b_n$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$, then $\lim_{n \to \infty} c_n = \lim_{n \to \infty} b_n$. $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n.$

Proof. Suppose $a_n \leq c_n \leq b_n$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$. Let K = 1. Then $K \in \mathbb{N}$. Let $n \in \mathbb{N}$ such that n > K. Since $n \in \mathbb{N}$, then $a_n \leq c_n \leq b_n$. Since n is arbitrary, then $a_n \leq c_n \leq b_n$ for all n > K. Thus, there exists $K \in \mathbb{N}$ such that $a_n \leq c_n \leq b_n$ for all n > K. Since $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$, then by the squeeze rule for convergent sequences, $\lim_{n\to\infty} c_n = \lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$, as desired.

Proposition 28. limit of an absolute value equals absolute value of a limit

Let (a_n) be a convergent sequence. Then the sequence $(|a_n|)$ is convergent and $\lim_{n\to\infty} |a_n| = |\lim_{n\to\infty} a_n|$.

Proof. Let (a_n) be a convergent sequence. Then there exists a real number L such that $\lim_{n\to\infty} a_n = L$. We must prove $\lim_{n\to\infty} |a_n| = |L|$. Let $\epsilon > 0$ be given. Since $\lim_{n\to\infty} a_n = L$, then there exists $N \in \mathbb{N}$ such that $|a_n - L| < \epsilon$ whenever n > N. Let $n \in \mathbb{N}$ such that n > N. Then $|a_n - L| < \epsilon$. Hence, $||a_n| - |L|| \le |a_n - L| < \epsilon$, so $||a_n| - |L|| < \epsilon$. Therefore, $\lim_{n\to\infty} |a_n| = |L|$.

Lemma 29. Let $a, b, c, d \in \mathbb{R}$. If $0 \le a < b$ and 0 < c < d, then ac < bd.

Proof. Suppose $0 \le a < b$ and 0 < c < d. Then $0 \le a$ and a < b and 0 < c and c < d. Since a > 0, then either a > 0 or a = 0. We consider these cases separately. Case 1: Suppose a > 0. Since 0 < a and a < b, then 0 < a < b. Since 0 < a < b and 0 < c < d, then 0 < ac < bd. Therefore, ac < bd. Case 2: Suppose a = 0. Then ac = 0c = 0. Since b > a and a = 0, then b > 0. Since d > c and c > 0, then d > 0. Since b > 0 and d > 0, then bd > 0. Therefore, ac = 0 < bd, so ac < bd.

Lemma 30. sequence converging to a positive real number eventually has positive terms

Let (a_n) be a sequence of real numbers.

If $\lim_{n\to\infty} a_n$ exists and is positive, then there exists $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, if n > N, then $a_n > 0$.

Proof. Suppose $\lim_{n\to\infty} a_n$ exists and is positive. Then there exists a real number L such that $\lim_{n\to\infty} a_n = L$ and L > 0. Since $\lim_{n\to\infty} a_n = L$ and L > 0, then there exists $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, if n > N, then $|a_n - L| < L$. Let $n \in \mathbb{N}$ such that n > N. Then $|a_n - L| < L$, so $-L < a_n - L < L$. Hence, $-L < a_n - L$, so $0 < a_n$. Therefore, $a_n > 0$. Proposition 31. limit of a square root equals square root of a limit Let (a_n) be a sequence of real numbers. If $\lim_{n\to\infty} a_n$ exists and is positive, then $\lim_{n\to\infty} \sqrt{a_n} = \sqrt{\lim_{n\to\infty} a_n}$. *Proof.* Suppose $\lim_{n\to\infty} a_n$ exists and is positive. Then there is a real number L such that $\lim_{n\to\infty} a_n = L$ and L > 0. To prove $\lim_{n\to\infty} \sqrt{a_n} = \sqrt{\lim_{n\to\infty} a_n}$, we must prove $\lim_{n\to\infty} \sqrt{a_n} = \sqrt{L}$. Let $\epsilon > 0$ be given. Since L > 0, then $\sqrt{L} > 0$, so $\epsilon \sqrt{L} > 0$. Since $\lim_{n\to\infty} a_n = L$ and $\epsilon\sqrt{L} > 0$, then there exists $N_1 \in \mathbb{N}$ such that $|a_n - L| < \epsilon \sqrt{L}$ whenever $n > N_1$. Since $\lim_{n\to\infty} a_n = L$ and L > 0, then by the previous lemma, there exists $N_2 \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, if $n > N_2$, then $a_n > 0$. Let $N = \max\{N_1, N_2\}.$ Then either $N = N_1$ or $N = N_2$ and $N \ge N_1$ and $N \ge N_2$. Since either $N = N_1$ or $N = N_2$ and $N_1 \in \mathbb{N}$ and $N_2 \in \mathbb{N}$, then $N \in \mathbb{N}$. Let $n \in \mathbb{N}$ such that n > N. Since n > N and $N \ge N_1$, then $n > N_1$, so $|a_n - L| < \epsilon \sqrt{L}$. Hence, $0 \le |a_n - L| < \epsilon \sqrt{L}$. Since n > N and $N \ge N_2$, then $n > N_2$, so $a_n > 0$. Thus, $\sqrt{a_n} > 0$. Since $\sqrt{a_n} > 0$ and $\sqrt{L} > 0$, then $\sqrt{a_n} + \sqrt{L} > 0$ and $\sqrt{a_n} + \sqrt{L} > \sqrt{L} > 0$. Since $\sqrt{a_n} + \sqrt{L} > 0$, then $\sqrt{a_n} + \sqrt{L} \neq 0$.

Since $0 < \sqrt{L} < \sqrt{a_n} + \sqrt{L}$, then $0 < \frac{1}{\sqrt{a_n} + \sqrt{L}} < \frac{1}{\sqrt{L}}$.

Observe that

$$\begin{aligned} |\sqrt{a_n} - \sqrt{L}| &= |\sqrt{a_n} - \sqrt{L} \cdot \frac{\sqrt{a_n} + \sqrt{L}}{\sqrt{a_n} + \sqrt{L}}| \\ &= |\frac{a_n - L}{\sqrt{a_n} + \sqrt{L}}| \\ &= |a_n - L \cdot \frac{1}{\sqrt{a_n} + \sqrt{L}}| \\ &= |a_n - L| \cdot |\frac{1}{\sqrt{a_n} + \sqrt{L}}| \\ &= |a_n - L| \cdot \frac{1}{|\sqrt{a_n} + \sqrt{L}}| \\ &= |a_n - L| \cdot \frac{1}{\sqrt{a_n} + \sqrt{L}}| \\ &= |a_n - L| \cdot \frac{1}{\sqrt{a_n} + \sqrt{L}}| \\ &\leq \epsilon \sqrt{L} \cdot \frac{1}{\sqrt{L}} \\ &= \epsilon. \end{aligned}$$

Therefore, $|\sqrt{a_n} - \sqrt{L}| < \epsilon$, as desired.

Divergent Sequences

Proposition 32. divergence to ∞ implies divergence

A sequence that diverges to ∞ is divergent.

Proof. Let (a_n) be a sequence of real numbers. We must prove if (a_n) diverges to ∞ , then (a_n) diverges. Suppose $a_n \to \infty$. To prove (a_n) diverges, let $L \in \mathbb{R}$ be given. We must prove $(\exists \epsilon > 0)(\forall n \in \mathbb{N})(\exists N' \in \mathbb{N})(N' > n \land |s_{N'} - L| \ge \epsilon).$ Either L > 0 or L = 0 or L < 0. We consider these cases separately. Case 1: Suppose L = 0. Let $\epsilon = 1$. Then $\epsilon > 0$. Since $a_n \to \infty$, then there exists $N \in \mathbb{N}$ such that $a_n > 1$ whenever n > N. Let $n \in \mathbb{N}$. We must prove there exists $N' \in \mathbb{N}$ such that N' > n and $|s_{N'}| \ge 1$. Let N' = N + n. Then $N' \in \mathbb{N}$. Since N + n > n, then N' > n. Since N + n > N, then N' > N. Hence, $s_{N'} > 1 > 0$. Thus, $|s_{N'}| = s_{N'} > 1$, so $|s_{N'}| > 1$.

Therefore, $|s_{N'}| \ge 1$, as desired. Case 2: Suppose L > 0. Then 2L > 0. Since $a_n \to \infty$, then there exists $N \in \mathbb{N}$ such that $a_n > 2L$ whenever n > N. Let $\epsilon = L$. Then $\epsilon > 0$. Let $n \in \mathbb{N}$. We must prove there exists $N' \in \mathbb{N}$ such that N' > n and $|s_{N'} - L| \ge L$. Let N' = N + n. Then $N' \in \mathbb{N}$. Since N + n > n, then N' > n. Since N + n > N, then N' > N. Thus, $s_{N'} > 2L$. Hence, $s_{N'} - L > L > 0$. Thus, $|s_{N'} - L| = s_{N'} - L > L$, so $|s_{N'} - L| > L$. Therefore, $|s_{N'} - L| \ge L$, as desired. Case 3: Suppose L < 0. Then -L > 0. Since $a_n \to \infty$, then there exists $N \in \mathbb{N}$ such that $a_n > -L$ whenever n > N. Let $\epsilon = -2L$. Then $\epsilon > 0$. Let $n \in \mathbb{N}$. We must prove there exists $N' \in \mathbb{N}$ such that N' > n and $|s_{N'} - L| \ge -2L$. Let N' = N + n. Then $N' \in \mathbb{N}$. Since N + n > n, then N' > n. Since N + n > N, then N' > N. Thus, $s_{N'} > -L$. Hence, $s_{N'} - L > -2L > 0$. Thus, $|s_{N'} - L| = s_{N'} - L > -2L$, so $|s_{N'} - L| > -2L$. Therefore, $|s_{N'} - L| \ge -2L$, as desired.

Proposition 33. sequences that diverge to infinity are unbounded

Let (a_n) be a sequence of real numbers.

1. If $\lim_{n\to\infty} a_n = \infty$, then (a_n) is unbounded above. 2. If $\lim_{n\to\infty} a_n = -\infty$, then (a_n) is unbounded below.

Proof. We prove 1.

Suppose $\lim_{n\to\infty} a_n = \infty$. To prove (a_n) is unbounded above, we must prove $(\forall M)(\exists n \in \mathbb{N})(a_n > M)$. Let $M \in \mathbb{R}$. Either M > 0 or $M \leq 0$. We consider these cases separately. **Case 1:** Suppose M > 0. Since $\lim_{n\to\infty} a_n = \infty$, then there exists $N \in \mathbb{N}$ such that $a_n > M$ whenever

n > N.

Let $n \in \mathbb{N}$ such that n > N. Then $a_n > M$. Case 2: Suppose $M \leq 0$. Since 1 > 0 and $\lim_{n \to \infty} a_n = \infty$, then there exists $N \in \mathbb{N}$ such that $a_n > 1$ whenever n > N. Let $n \in \mathbb{N}$ such that n > N. Then $a_n > 1$. Since $a_n > 1 > 0 \ge M$, then $a_n > M$. Therefore, (a_n) is unbounded above, as desired. *Proof.* We prove 2. Suppose $\lim_{n\to\infty} a_n = -\infty$. Then $\lim_{n\to\infty} -a_n = \infty$. To prove (a_n) is unbounded below, we must prove $(\forall M)(\exists n \in \mathbb{N})(a_n < M)$. Let $M \in \mathbb{R}$. Either $M \ge 0$ or M < 0. We consider these cases separately. Case 1: Suppose M < 0. Then -M > 0. Since $\lim_{n\to\infty} -a_n = \infty$, then there exists $N \in \mathbb{N}$ such that $-a_n > -M$ whenever n > N. Let $n \in \mathbb{N}$ such that n > N. Then $-a_n > -M$. Hence, $a_n < M$. Case 2: Suppose $M \ge 0$. Since 1 > 0 and $\lim_{n \to \infty} -a_n = \infty$, then there exists $N \in \mathbb{N}$ such that $-a_n > 1$ whenever n > N. Let $n \in \mathbb{N}$ such that n > N. Then $-a_n > 1$. Hence, $a_n < -1$. Since $a_n < -1 < 0 \le M$, then $a_n < M$. Therefore, (a_n) is unbounded below, as desired.

Monotone Convergence Theorem

Theorem 34. Monotone convergence theorem

Let (a_n) be a sequence of real numbers. 1. If (a_n) is increasing and bounded above, then $\lim_{n\to\infty} a_n = \sup(a_n)$. 2. If (a_n) is increasing and unbounded above, then $\lim_{n\to\infty} a_n = \infty$. 3. If (a_n) is decreasing and bounded below, then $\lim_{n\to\infty} a_n = \inf(a_n)$. 4. If (a_n) is decreasing and unbounded below, then $\lim_{n\to\infty} a_n = -\infty$. Proof. We prove 1.

Suppose (a_n) is increasing and bounded above. Let $S = \{a_n : n \in \mathbb{N}\}$. Since (a_n) is a sequence of real numbers, then $S \subset \mathbb{R}$.

Since $a_1 \in S$, then $S \neq \emptyset$. Since (a_n) is bounded above, then S is bounded above. Thus, S is a nonempty subset of \mathbb{R} bounded above in \mathbb{R} , so by the completeness axiom of \mathbb{R} , sup S exists. Let $\epsilon > 0$ be given. Since sup S is the least upper bound of (a_n) , then there exists $N \in \mathbb{N}$ such that $a_N > \sup S - \epsilon$. Let $n \in \mathbb{N}$ such that n > N. Then N < n. Since (a_n) is increasing, then $a_N \leq a_n$. Since $\sup S$ is an upper bound of (a_n) , then $a_n \leq \sup S$. Observe that $\sup S - \epsilon < a_N \le \sup S < \sup S + \epsilon \quad \Rightarrow \quad \sup S - \epsilon < a_n < \sup S + \epsilon$ $\Leftrightarrow -\epsilon < a_n - \sup S < \epsilon$ $\Leftrightarrow |a_n - \sup S| < \epsilon.$ Thus, $\lim_{n\to\infty} a_n = \sup S = \sup(a_n)$. Proof. We prove 2. Suppose (a_n) is increasing and unbounded above. Let M > 0 be given. Since (a_n) is unbounded above, then there exists $N \in \mathbb{N}$ such that $a_N > M$. Let $n \in \mathbb{N}$ such that n > N. Then N < n. Since (a_n) is increasing, then $a_N \leq a_n$. Since $a_n \ge a_N > M$, then $a_n > M$. Therefore, $\lim_{n\to\infty} a_n = \infty$. *Proof.* We prove 3. Suppose (a_n) is decreasing and bounded below. Let $S = \{a_n : n \in \mathbb{N}\}.$ Since (a_n) is a sequence of real numbers, then $S \subset \mathbb{R}$. Since $a_1 \in S$, then $S \neq \emptyset$. Since (a_n) is bounded below, then S is bounded below. Thus, S is a nonempty subset of \mathbb{R} bounded below in \mathbb{R} , so by the completeness of \mathbb{R} , inf S exists. Let $\epsilon > 0$ be given. Since $\inf S$ is the greatest lower bound of (a_n) , then there exists $N \in \mathbb{N}$ such that $a_N < \inf S + \epsilon$. Let $n \in \mathbb{N}$ such that n > N. Then N < n. Since (a_n) is decreasing, then $a_N \ge a_n$. Since $\inf S$ is a lower bound of (a_n) , then $\inf S \leq a_n$.

Observe that

Then c > 0.

Suppose $k \in S$.

Let $S = \{n \in \mathbb{N} : r^n \ge cn+1\}.$

Then $k \in \mathbb{N}$ and $r^k \ge ck + 1$.

Since $k \in \mathbb{N}$, then $k \ge 1 > 0$, so k > 0. Since c > 0 and k > 0, then ck > 0.

Since $r^k \ge ck + 1 > 1$, then $r^k > 1$, so $r^k c > c$.

$$\begin{split} \inf S - \epsilon &< \inf S \leq a_n \leq a_N < \inf S + \epsilon \quad \Rightarrow \quad \inf S - \epsilon < a_n < \inf S + \epsilon \\ \Leftrightarrow &-\epsilon < a_n - \inf S < \epsilon \\ \Leftrightarrow &|a_n - \inf S| < \epsilon. \end{split}$$

Thus, $\lim_{n \to \infty} a_n = \inf S = \inf(a_n)$.

Proof. We prove 4. Suppose (a_n) is decreasing and unbounded below. Let M > 0 be given. Since $M \in \mathbb{R}$, then $-M \in \mathbb{R}$. Since (a_n) is unbounded below, then there exists $N \in \mathbb{N}$ such that $a_N < -M$. Let $n \in \mathbb{N}$ such that n > N. Then N < n. Since (a_n) is decreasing, then $a_N \ge a_n$. Since $a_n \leq a_N < -M$, then $a_n < -M$, so $-a_n > M$. Therefore, $\lim_{n\to\infty} -a_n = \infty$, so $\lim_{n\to\infty} a_n = -\infty$. Lemma 35. Let $r \in \mathbb{R}$. 1. If r > 0, then $r^n > 0$ for all $n \in \mathbb{N}$. 2. If r > 1, then $r^n \ge (r-1)n + 1$ for all $n \in \mathbb{N}$. Proof. We prove 1. Suppose r > 0. We prove $r^n > 0$ for all $n \in \mathbb{N}$ by induction on n. Let $S = \{n \in \mathbb{N} : r^n > 0\}.$ Since $r^1 = r > 0$, then $1 \in S$. Suppose $k \in S$. Then $k \in \mathbb{N}$ and $r^k > 0$. Since r > 0 and $r^k > 0$, then $r^{k+1} = r^k r > 0$. Thus, $r^{k+1} > 0$, so $k+1 \in S$. Therefore, by PMI, $S = \mathbb{N}$, so $r^n > 0$ for all $n \in \mathbb{N}$. *Proof.* We prove 2. Suppose r > 1. Then r - 1 > 0. Let c = r - 1.

We prove $r^n \ge cn+1$ for all $n \in \mathbb{N}$ by induction on n.

Since $r^1 = r = (r-1) \cdot 1 + 1 = c \cdot 1 + 1$, then $1 \in S$.

Observe that

$$r^{k+1} = r^{k} \cdot r$$

= $r^{k}(c+1)$
= $r^{k}c + r^{k}$
 $\geq r^{k}c + ck + 1$
 $> c + ck + 1$
= $c(k+1) + 1.$

Thus, $r^{k+1} > c(k+1) + 1$, so $k+1 \in S$. Therefore, by PMI, $S = \mathbb{N}$, so $r^n \ge cn+1$ for all $n \in \mathbb{N}$.

Proposition 36. convergence behavior of a geometric sequence

Let $r \in \mathbb{R}$. Let (r^n) be a geometric sequence. 1. If r > 1, then $\lim_{n\to\infty} r^n = \infty$. 2. If r = 1, then $\lim_{n\to\infty} r^n = 1$. 3. If |r| < 1, then $\lim_{n\to\infty} r^n = 0$. 4. If r = -1, then (r^n) is divergent (oscillates). 5. If r < -1, then (r^n) is divergent.

 $\mathit{Proof.}$ We prove 1.

Suppose r > 1.

We prove (r^n) is strictly increasing. Let $n \in \mathbb{N}$ be given. Since r > 1 > 0, then r > 0. Since $n \in \mathbb{N}$ and r > 0, then by a previous lemma, $r^n > 0$. Since $r^n > 0$ and r > 1, then $r^{n+1} = r^n r > r^n \cdot 1 = r^n$, so $r^{n+1} > r^n$. Thus, $r^n < r^{n+1}$, so (r^n) is strictly increasing.

Let M > 0 be given. Let c = r - 1. Since r > 1, then r - 1 > 0, so c > 0. Since $c \neq 0$, then $\frac{M-1}{c} \in \mathbb{R}$. By the Archimedean property of \mathbb{R} , there exists $N \in \mathbb{N}$ such that $N > \frac{M-1}{c}$. Thus, cN + 1 > M. Let $n \in \mathbb{N}$ such that n > N. Then N < n. Since (r^n) is strictly increasing, then $r^N < r^n$. Since r > 1 and $N \in \mathbb{N}$, then by a previous lemma, $r^N \ge cN + 1$. Hence, $M < cN + 1 \le r^N < r^n$, so $M < r^n$. Therefore, $r^n > M$, so $\lim_{n \to \infty} r^n = \infty$, as desired.

Proof. We prove 2. Suppose r = 1. Then $1 = \lim_{n \to \infty} 1 = \lim_{n \to \infty} 1^n = \lim_{n \to \infty} r^n$, so $\lim_{n \to \infty} r^n = 1$. Proof. We prove 3. Suppose |r| < 1. Since $|r| \ge 0$, then either |r| > 0 or |r| = 0. We consider these cases separately. Case 1: Suppose |r| = 0. Then r = 0. Since $n \in \mathbb{N}$, then $0 = \lim_{n \to \infty} 0 = \lim_{n \to \infty} 0^n = \lim_{n \to \infty} r^n$. Therefore, $\lim_{n\to\infty} r^n = 0$. Case 2: Suppose |r| > 0. Since 0 < |r| and |r| < 1, then 0 < |r| < 1, so $\frac{1}{|r|} > 1 > 0$. Thus, $\frac{1}{|r|} - 1 > 0$. Let $c = \frac{1}{|r|} - 1$. Then c > 0, so $c \neq 0$. Let $\epsilon > 0$ be given. Then $\epsilon \neq 0$, so $\frac{1}{\epsilon} \in \mathbb{R}$ and $\frac{1}{\epsilon} > 0$. Since $c \neq 0$, then $\frac{\frac{1}{c}-1}{c} \in \mathbb{R}$, so by the Archimedean property of \mathbb{R} , there exists $N \in \mathbb{N}$ such that $N > \frac{\frac{1}{\epsilon} - 1}{c}$ Let $n \in \mathbb{N}$ such that n > n. Since $n > N > \frac{\frac{1}{\epsilon} - 1}{c}$, then $n > \frac{\frac{1}{\epsilon} - 1}{c}$, so $cn > \frac{1}{\epsilon} - 1$. Thus, $cn + 1 > \frac{1}{\epsilon} > 0$, so $\epsilon > \frac{1}{cn+1}$. Since |r| > 0 and $n \in \mathbb{N}$, then by a previous lemma, $|r|^n > 0$. Since $\frac{1}{\epsilon} > 1$ and $n \in \mathbb{N}$ then by a previous lemma, $|r|^n > 0$. Since $\frac{1}{|r|} > 1$ and $n \in \mathbb{N}$, then by a previous lemma, $(\frac{1}{|r|})^n \ge cn + 1$. Since $cn + 1 > \frac{1}{\epsilon} > 0$, then cn + 1 > 0. Observe that $\left(\frac{1}{|r|}\right)^n \ge cn+1 \quad \Leftrightarrow \quad \frac{1}{|r|^n} \ge cn+1$ $\Leftrightarrow \quad \frac{1}{cn+1} \ge |r|^n.$ Thus, $\frac{1}{cn+1} \ge |r|^n$. Since |r| = 0 iff r = 0, then $|r| \ne 0$ iff $r \ne 0$. Since $|r| \neq 0$, then $r \neq 0$. Thus, $|r^n| = |r|^n \leq \frac{1}{cn+1} < \epsilon$, so $|r^n| < \epsilon$. Therefore, $\lim_{n \to \infty} r^n = 0$. Proof. We prove 4. Suppose r = -1. Then $r^n = (-1)^n$. The sequence given by $r^n = (-1)^n$ for all $n \in \mathbb{N}$ was previously proven in the examples to diverge. $\begin{array}{l} Proof. \mbox{ We prove 5.} \\ \mbox{Let } r < -1. \\ \mbox{Suppose } (r^n) \mbox{ is bounded.} \\ \mbox{Then there exists } M > 0 \mbox{ such that } |r^n| < M \mbox{ for all } n \in \mathbb{N}. \\ \mbox{Since } r < -1 \mbox{ and } -1 < 0, \mbox{ then } -r > 1 \mbox{ and } r < 0, \mbox{ so } |r| = -r > 1. \\ \mbox{Hence, } |r| > 1, \mbox{ so } |r| - 1 > 0. \\ \mbox{Thus, } |r| - 1 \neq 0, \mbox{ so } \frac{M-1}{|r|-1} \in \mathbb{R}. \\ \mbox{By the Archimedean property of } \mathbb{R}, \mbox{ there exists } N \in \mathbb{N} \mbox{ such that } N > \frac{M-1}{|r|-1}. \\ \mbox{Hence, } (|r| - 1)N > M - 1, \mbox{ so } (|r| - 1)N + 1 > M. \\ \mbox{Since } |r| > 1 \mbox{ and } N \in \mathbb{N}, \mbox{ then by a previous lemma, } |r|^N \geq (|r| - 1)N + 1. \\ \mbox{Since } r < 0, \mbox{ then } r \neq 0. \\ \mbox{Thus,} \end{array}$

$$\begin{aligned} r^{N}| &= |r|^{N} \\ &\geq (|r|-1)N+1 \\ &> M. \end{aligned}$$

Hence, there exists $N \in \mathbb{N}$ such that $|r^N| > M$.

This contradicts the assumption that (r^n) is bounded.

Therefore, (r^n) is unbounded.

Since every unbounded sequence is divergent, then (r^n) is divergent, as desired.

Bolzano-Weierstrass theorem

Theorem 37. Nested intervals theorem

Let (I_n) be a sequence of nonempty closed, bounded intervals in \mathbb{R} such that $I_n \supset I_{n+1}$ for all $n \in \mathbb{N}$. Then there exists $\alpha \in \mathbb{R}$ such that $\alpha \in I_n$ for all $n \in \mathbb{N}$.

Proof. Let $n \in \mathbb{N}$.

Since I_n is a closed and bounded interval, then there exist $a_n, b_n \in \mathbb{R}$ such that $I_n = [a_n, b_n] = \{x \in \mathbb{R} : a_n \leq x \leq b_n\}.$

Since I_n is not empty, then there exists $x \in I_n$. Hence, $x \in \mathbb{R}$ and $a_n \leq x \leq b_n$. Thus, $a_n \leq b_n$. Since n is arbitrary, then $a_n \leq b_n$ for all $n \in \mathbb{N}$. Since $a_n \in \mathbb{R}$ for all $n \in \mathbb{N}$, then (a_n) is a sequence of real numbers. Since $b_n \in \mathbb{R}$ for all $n \in \mathbb{N}$, then (b_n) is a sequence of real numbers.

Let $n \in \mathbb{N}$. Then $I_{n+1} \subset I_n$. Since $I_{n+1} = [a_{n+1}, b_{n+1}]$, then $a_{n+1} \in I_{n+1}$ and $b_{n+1} \in I_{n+1}$. Since $a_{n+1} \in I_{n+1}$ and $I_{n+1} \subset I_n$, then $a_{n+1} \in I_n$, so $a_n \leq a_{n+1} \leq b_n$. Since $b_{n+1} \in I_{n+1}$ and $I_{n+1} \subset I_n$, then $b_{n+1} \in I_n$, so $a_n \leq b_{n+1} \leq b_n$. Since $a_n \leq a_{n+1} \leq b_n$, then $a_n \leq a_{n+1}$. Since $a_n \leq b_{n+1} \leq b_n$, then $b_{n+1} \leq b_n$.

Since $a_n \leq a_{n+1}$ and n is arbitrary, then $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$, so (a_n) is increasing.

Since $b_n \ge b_{n+1}$ and *n* is arbitrary, then $b_n \ge b_{n+1}$ for all $n \in \mathbb{N}$, so (b_n) is decreasing.

Proof. We prove $a_m \leq b_n$ for all $m \in \mathbb{N}$ and all $n \in \mathbb{N}$. Let $m, n \in \mathbb{N}$ be given. Either m < n or m = n or m > n. We consider these cases separately. Case 1: Suppose m = n. Since $a_n \leq b_n$ for all $n \in \mathbb{N}$ and $m \in \mathbb{N}$, then $a_m \leq b_m = b_n$. Case 2: Suppose m < n. Since (a_n) is increasing, then $a_m \leq a_n$. Since $a_n \leq b_n$ for all $n \in \mathbb{N}$ and $n \in \mathbb{N}$, then $a_n \leq b_n$. Since $a_m \leq a_n$ and $a_n \leq b_n$, then $a_m \leq b_n$. Case 3: Suppose m > n. Since (b_n) is decreasing and n < m, then $b_n \ge b_m$. Since $a_n \leq b_n$ for all $n \in \mathbb{N}$ and $m \in \mathbb{N}$, then $a_m \leq b_m$. Since $a_m \leq b_m$ and $b_m \leq b_n$, then $a_m \leq b_n$. Therefore, in all cases, $a_m \leq b_n$, as desired.

Proof. Let $A = \{a_n : n \in \mathbb{N}\}.$

Since $a_1 \in A$, then $A \neq \emptyset$.

Since $a_m \leq b_n$ for all $m \in \mathbb{N}$ and all $n \in \mathbb{N}$ and $1 \in \mathbb{N}$, then $a_m \leq b_1$ for all $m \in \mathbb{N}$.

Hence, b_1 is an upper bound of A, so A is bounded above in \mathbb{R}

Since $A \neq \emptyset$ and is bounded above in \mathbb{R} , then by completeness of \mathbb{R} , sup A exists.

Let $B = \{b_n : n \in \mathbb{N}\}$. Since $b_1 \in B$, then $B \neq \emptyset$. Since $a_m \leq b_n$ for all $m \in \mathbb{N}$ and all $n \in \mathbb{N}$ and $1 \in \mathbb{N}$, then $a_1 \leq b_n$ for all $n \in \mathbb{N}$. Hence, a_1 is a lower bound of B, so B is bounded below in \mathbb{R} Since $B \neq \emptyset$ and is bounded below in \mathbb{R} , then by completeness of \mathbb{R} , inf B exists.

Proof. We prove $\sup A \leq \inf B$. Let $b \in B$. Then $b = b_n$ for some $n \in \mathbb{N}$. Since $a_m \leq b_n$ for all $m, n \in \mathbb{N}$ and $n \in \mathbb{N}$, then $a_m \leq b_n$ for all $m \in \mathbb{N}$. Hence, b_n is an upper bound of A. Since $\sup A$ is the least upper bound of A, then $\sup A \leq b_n$. Since b is arbitrary, then $\sup A \leq b_n$ for all $n \in \mathbb{N}$. Thus, $\sup A$ is a lower bound of B. Since $\inf B$ is the greatest lower bound of B, then $\sup A \leq \inf B$. *Proof.* Since sup A is an upper bound of A, then $a_n \leq \sup A$ for all $n \in \mathbb{N}$.

Since $\sup A \leq \inf B$, then $\sup A$ is a lower bound of B, so $\sup A \leq b_n$ for all $n \in \mathbb{N}$.

Since $a_n \leq \sup A$ for all $n \in \mathbb{N}$ and $\sup A \leq b_n$ for all $n \in \mathbb{N}$, then $a_n \leq \sup A \leq b_n$ for all $n \in \mathbb{N}$.

Let $\alpha = \sup A$.

Then $\alpha \in \mathbb{R}$ and $a_n \leq \alpha \leq b_n$ for all $n \in \mathbb{N}$, so $\alpha \in [a_n, b_n]$ for all $n \in \mathbb{N}$. Hence, $\alpha \in I_n$ for all $n \in \mathbb{N}$.

Therefore, there exists $\alpha \in \mathbb{R}$ such that $\alpha \in I_n$ for all $n \in \mathbb{N}$, as desired. \Box

Theorem 38. Bolzano-Weierstrass theorem

Every bounded sequence in \mathbb{R} has a convergent subsequence.

Proof. Let (x_n) be a bounded sequence of real numbers.

Then there exists $M \in \mathbb{R}$ such that $|x_n| \leq M$ for all $n \in \mathbb{N}$, so there exists M > 0 such that $-M \leq x_n \leq M$ for all $n \in \mathbb{N}$.

Let $I_1 = [-M, M]$.

... Since (I_n) is a sequence of nonempty closed bounded intervals such that $I_n \supset I_{n+1}$ for all $n \in \mathbb{N}$, then by the Nested Intervals theorem, there exists $\alpha \in \mathbb{R}$ such that $\alpha \in I_n$ for all $n \in \mathbb{N}$.

We then show there is a sequence (y_n) such that $y_n \in I_n$ for each $n \in \mathbb{N}$. We then show that (y_n) is a subsequence of (x_n) .

We should show that (y_n) is increasing sequence and is bounded above. We then show that $\lim_{n\to\infty} y_n = \alpha$.

Proof. Let (x_n) be a bounded sequence of real numbers.

Then there exists a real number M > 0 such that $-M < x_n < M$ for all $n \in \mathbb{N}$.

Let $I_1 = [-M, M]$.

Since (x_n) has infinitely many terms, then A_1 contains infinitely many terms of (x_n) .

Hence, I_1 is not empty.

Since M > 0, then -M < 0, so M and -M are distinct real numbers. Thus, there exists a unique midpoint of the interval I_1 .

Hence, there exist exactly two subintervals of I_1 of equal length.

Let $B_1 = [-M, 0]$ and $C_1 = [0, M]$ be these two subintervals of I_1 .

Then $I_1 = B_1 \cup C_1$.

Suppose B_1 and C_1 contain finitely many terms of (x_n) .

Then the number of terms in A_1 is $|A_1| = |B_1| + |C_1|$, a finite number.

But, this contradicts the fact that A_1 contains infinitely many terms of (x_n) . Hence, either B_1 contains infinitely many terms of (x_n) or C_1 contains in-

finitely many terms of (x_n) .

Thus, at least one of these closed, bounded subintervals of I_1 contains infinitely many terms of (x_n) .

Let I_2 be one of these closed, bounded subintervals of I_1 that contains infinitely many terms of (x_n) .

Since I_2 contains infinitely many terms of (x_n) , then I_2 is not empty.

Since I_2 is a subinterval of I_1 , then $I_2 \subset I_1$.

Since 0 < M, then there is a unique midpoint of the interval I_2 .

Thus, there exist exactly two subintervals of I_2 of equal length.

Let B_2 and C_2 be these two closed, bounded subintervals of I_2 of equal length.

Again, at least one of these two subintervals of I_2 contains infinitely many terms of (x_n) .

Let I_3 be one of these subintervals of I_2 that contains infinitely many terms of (x_n) .

Since I_3 contains infinitely many terms of (x_n) , then I_3 is not empty.

Since I_3 is a subinterval of I_2 , then $I_3 \subset I_2$.

We repeat this process.

Since we can continue to always choose a closed, bounded subinterval of a given interval I_k that always contains infinitely many terms of (x_n) , then this process never ends.

Therefore, we have a sequence of nested nonempty, closed, bounded intervals such that $I_1 \supset I_2 \supset I_3 \supset \dots$

Hence, by the Nested intervals theorem, there exists a real number α such that $\alpha \in I_n$ for all $n \in \mathbb{N}$.

Since $I_n \supset I_{n+1}$ for all $n \in \mathbb{N}$, then if m < n, then $I_m \supset I_n$. Prove this! \Box

Proof. We must prove there exists a convergent subsequence (y_n) of (x_n) .

Define function $g : \mathbb{N} \to \mathbb{N}$ by $g(n) = k_n$ such that g(n) < g(n+1) for all $n \in \mathbb{N}$ with g(1) = 1.

Since g(n) < g(n+1) for all $n \in \mathbb{N}$, then g is strictly increasing.

Let (y_n) be a subsequence of (x_n) such that $y_n = x_{g(n)} = x_{k_n}$ for all $n \in \mathbb{N}$. Then $y_1 = x_1 = x_{k_1}$.

We need to rigorously show that there exists $k_2 \in \mathbb{N}$ such that $x_{k_2} \in I_2$ and $k_2 > 1$.

Similarly, we need to show that there exists $k_3 \in \mathbb{N}$ such that $x_{k_3} \in I_3$ and $k_3 > k_2$.

etc.

In general, we have to show for each n > 1 there exists $k_n \in \mathbb{N}$ such that $x_{k_n} \in I_n$ and $k_n > k_{n-1}$. We should try to prove by induction.

Let $S = \{n \in \mathbb{N} : (\exists k_n \in \mathbb{N}) (x_{k_n} \in I_n) (k_n > k_{n-1}\}$ for n > 1 and $k_1 = 1$. Suppose $m \in S$.

Then $m \in \mathbb{N}$ and there exists $k_m \in \mathbb{N}$ such that $a_{k_m} \in A_m$ and $k_m > k_{m-1}$ and m > 1.

To prove $m + 1 \in S$, prove there exists $k_{m+1} \in \mathbb{N}$ such that $a_{k_{m+1}} \in A_{m+1}$ and $k_{m+1} > k_m$ and m + 1 > 1.

Since A_{m+1} contains infinitely many terms of (a_n) , then in particular, A_{m+1} contains at least m+1 elements.

Thus, there exist natural numbers $r_1, r_2, ..., r_{m+1}$ such that $a_{r_1}, a_{r_2}, a_{r_3}, ..., a_{r_{m+1}} \in A_{m+1}$.

It is because each A_n contains infinitely many terms.

So, for example for A_2 .

We should show that there exists $k_2 \in \mathbb{N}$ such that $a_{k_2} \in A_2$ and $k_2 > k_1 = 1$. Suppose there does not exist $k_2 \in \mathbb{N}$ such that $a_{k_2} \in A_2$ and $k_2 > k_1 = 1$.

This is equivalent to supposing that there does not exist $m \in \mathbb{N}$ such that $a_m \in A_2$ and m > 1.

Since A_2 contains infinitely many terms of (a_n) , then in particular, A_2 contains at least 2 elements.

Call these a_r and a_s , so $a_r \in A_2$ and $a_s \in A_2$ and $r, s \in \mathbb{N}$. We'd like to show that either r or s must be greater than 1. So, assume $r \leq 1$. We must prove s > 1. Since $r \in \mathbb{N}$, then $r \geq 1$. Since $r \geq 1$ and $r \leq 1$, then r = 1. Since r and s are distinct natural numbers, then $s \neq r$. Thus, $s \neq 1$. Since $s \in \mathbb{N}$, then $s \geq 1$. Hence, s > 1, as desired. What if we want to show there exists $k \in \mathbb{N}$ such that $a_k \in A_2$ and k > 2?

Proof. We now prove the subsequence (y_n) converges to α .

The length of the interval I_n is $2^{2-n}M$. Prove this!

Consider the sequence defined by $2^{2-n}M$ for all $n \in \mathbb{N}$.

This sequence is 4M times the geometric sequence $(\frac{1}{2})^n$ which converges to zero.

Thus, $2^{2-n}M$ converges to zero. (I.e. the lengths of the intervals eventually get smaller and closer to zero).

We must prove that the sequence $(2^{2-n}M)$ is decreasing and converges to 0, using any method we wish, such as by proving the sequence is 4 times the geometric sequence $(\frac{1}{2})^n$ which converges to zero.

So, this means the sequence $(2^{2-n}M)$ converges to 4 * 0 = 0.

Let $\epsilon > 0$ be given.

Since the sequence $(2^{2-n}M)$ is decreasing and converges to 0, then 0 is the greatest lower bound of $(2^{2-n}M)$.

Hence, $\epsilon > 0$ is not a lower bound of $(2^{2-n}M)$, so there exists $N \in \mathbb{N}$ such that $2^{2-N}M < \epsilon$.

Let $n \in \mathbb{N}$ such that n > N. Then N < n. Thus, $I_N \supset I_n$. Since $a_{k_n} \in I_n$ and $I_n \subset I_N$, then $a_{k_n} \in I_N$. Since $a_{k_n} = y_n$, then $y_n \in I_N$.

Proof. Let $n \in \mathbb{N}$.

We must show that the length of the n^{th} subinterval I_n is $2^{2-n}M$. We must show that $y_n \in I_n$. Since $\alpha \in I_n$ for all $n \in \mathbb{N}$ and $n \in \mathbb{N}$, then $\alpha \in I_n$. Since $y_n \in I_n$ and $\alpha \in I_n$ and I_n is a nonempty closed bounded interval with length $2^{2-n}M$, then $|y_n - \alpha| \leq 2^{2-n}M$.

Therefore, $|y_n - \alpha| \le 2^{2-n}M$ for all $n \in \mathbb{N}$.

Proof. We prove $\lim_{n\to\infty} y_n = \alpha$.

Let $\epsilon > 0$ be given. By the Archimedean property of \mathbb{R} , there exists $N \in \mathbb{N}$ such that $N > 2 + \frac{M}{\epsilon}$. Let $n \in \mathbb{N}$ such that n > N. Since n > N and $N > 2 + \frac{M}{\epsilon}$, then $n > 2 + \frac{M}{\epsilon}$, so $n - 2 > \frac{M}{\epsilon}$. Since n - 2 > 0, then $\epsilon > \frac{M}{n-2}$. Since $2^n > n > 0$ for all $n \in \mathbb{N}$, then $\frac{1}{2^n} < \frac{1}{n}$ for all $n \in \mathbb{N}$. Since $n - 2 \in \mathbb{N}$, then this implies $\frac{1}{2^{n-2}} < \frac{1}{n-2}$. Since M > 0, then $\frac{M}{2^{n-2}} < \frac{M}{n-2}$. Since $\frac{M}{2^{n-2}} < \frac{M}{n-2}$ and $\frac{M}{n-2} < \epsilon$, then $\frac{M}{2^{n-2}} < \epsilon$. Since n - 2 > 0, then $2^{2-n}M < \epsilon$. Since $|y_n - \alpha| \le 2^{2-n}M$ for all $n \in \mathbb{N}$ and $n \in \mathbb{N}$, then $|y_n - \alpha| \le 2^{2-n}M$. Thus, $|y_n - \alpha| \le 2^{2-n}M < \epsilon$, so $|y_n - \alpha| < \epsilon$. Therefore, $\lim_{n \to \infty} y_n = \alpha$.

Cauchy sequences

Lemma 39. Every convergent sequence in \mathbb{R} is a Cauchy sequence.

 $\begin{array}{l} Proof. \ \mathrm{Let} \ (a_n) \ \mathrm{be} \ \mathrm{a} \ \mathrm{convergent} \ \mathrm{sequence} \ \mathrm{of} \ \mathrm{real} \ \mathrm{numbers.} \\ \mathrm{To} \ \mathrm{prove} \ (a_n) \ \mathrm{is} \ \mathrm{a} \ \mathrm{Cauchy} \ \mathrm{sequence}, \ \mathrm{let} \ \epsilon > 0 \ \mathrm{be} \ \mathrm{given.} \\ \mathrm{Then} \ \frac{\epsilon}{2} > 0. \\ \mathrm{Since} \ (a_n) \ \mathrm{is} \ \mathrm{convergent}, \ \mathrm{then} \ \mathrm{there} \ \mathrm{exists} \ \mathrm{a} \ \mathrm{real} \ \mathrm{number} \ L \ \mathrm{and} \ \mathrm{there} \ \mathrm{exists} \\ N \in \mathbb{N} \ \mathrm{such} \ \mathrm{that} \ |a_n - L| < \frac{\epsilon}{2} \ \mathrm{whenever} \ n > N. \\ \mathrm{Let} \ m, n > N. \\ \mathrm{Since} \ m > N, \ \mathrm{then} \ |a_m - L| < \frac{\epsilon}{2}. \\ \mathrm{Since} \ n > N, \ \mathrm{then} \ |a_m - L| < \frac{\epsilon}{2}. \\ \mathrm{Observe} \ \mathrm{that} \\ |a_m - a_n| \ = \ |(a_m - L) + (L - a_n)| \\ \leq \ |a_m - L| + |L - a_n| \\ = \ |a_m - L| + |a_n - L| \\ < \ \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ = \ \epsilon. \end{array}$

Therefore, $|a_m - a_n| < \epsilon$, as desired.

Lemma 40. Every Cauchy sequence in \mathbb{R} is bounded.

Proof. Let (a_n) be a Cauchy sequence of real numbers.

Then for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $m, n \in \mathbb{N}$, if m, n > N, then $|a_m - a_n| < \epsilon$. Let $\epsilon = 1$. Then there exists $N \in \mathbb{N}$ such that for all $m, n \in \mathbb{N}$, if m, n > N, then $|a_m - a_n| < 1.$ Let $S = \{|a_1|, |a_2|, ..., |a_N|, 1 + |a_{N+1}|\} = \{|a_k| : 1 \le k \le N\} \cup \{1 + |a_{N+1}|\}.$ Then $S \subset \mathbb{R}$. Since $1 + |a_{N+1}| \in S$, then S is not empty. Since S contains at most N + 1 elements, then S is finite. Hence, S is a nonempty finite set of real numbers. Therefore, $\max S$ exists. To prove (a_n) is bounded, we must prove there exists $M \in \mathbb{R}$ such that $|a_n| \leq M$ for all $n \in \mathbb{N}$. Let $M = \max S$. Since $M = \max S \in S$ and $S \subset \mathbb{R}$, then $M \in \mathbb{R}$. Let $n \in \mathbb{N}$. Either $n \leq N$ or n > N. We consider these cases separately. Case 1: Suppose n < N. Then $1 \leq n \leq N$, so $|a_n| \in S$. Therefore, $|a_n| \leq M$. Case 2: Suppose n > N. Since n > N and N + 1 > N, then $|a_n - a_{N+1}| < 1$. Since $1 + |a_{N+1}| \in S$ and $M = \max S$, then $1 + |a_{N+1}| \leq M$. Observe that $|a_n| = |(a_n - a_{N+1}) + a_{N+1}|$

$$\begin{aligned} u_n | &= |(a_n - a_{N+1}) + a_{N+1}| \\ &\leq |a_n - a_{N+1}| + |a_{N+1}| \\ &< 1 + |a_{N+1}| \\ &\leq M. \end{aligned}$$

Therefore, $|a_n| < M$, so $|a_n| \le M$. Thus, in all cases, $|a_n| \le M$, so (a_n) is bounded, as desired.

Theorem 41. Cauchy convergence criterion for sequences

A sequence in \mathbb{R} is convergent iff it is a Cauchy sequence.

Proof. Let (a_n) be a sequence of real numbers.

Suppose (a_n) is convergent.

Then, by a previous lemma, (a_n) is a Cauchy sequence.

Conversely, suppose (a_n) is a Cauchy sequence.

Then, by a previous lemma, (a_n) is bounded.

Thus, by the Bolzano-Weierstrass theorem, (a_n) has a convergent subsequence.

Let (b_n) be a convergent subsequence of (a_n) .

Since (b_n) is convergent, then there exists a real number L such that $\lim_{n\to\infty} b_n = L$.

We prove $\lim_{n\to\infty} a_n = L$. Let $\epsilon > 0$ be given. Then $\frac{\epsilon}{2} > 0$. Since $\lim_{n\to\infty} b_n = L$, then there exists $N_1 \in \mathbb{N}$ such that if $n > N_1$, then $|b_n - L| < \frac{\epsilon}{2}.$ Since (a_n) is Cauchy, then there exists $N_2 \in \mathbb{N}$ such that if $m, n > N_2$, then $\begin{aligned} |a_m - a_n| &< \frac{\epsilon}{2}.\\ \text{Let } N &= \max\{N_1, N_2\}. \end{aligned}$ Let $n \in \mathbb{N}$ such that n > N. Since $n > N \ge N_1$, then $n > N_1$, so $|b_n - L| < \frac{\epsilon}{2}$. Since $n > N \ge N_2$, then $n > N_2$. Since (b_n) is a subsequence of (a_n) , then there exists a strictly increasing function $g: \mathbb{N} \to \mathbb{N}$ such that $b_n = a_{g(n)}$ for all $n \in \mathbb{N}$. Since $N_2 < n$ and g is strictly increasing, then $g(N_2) < g(n)$ and $g(N_2) \ge N_2$. Thus, $g(n) > g(N_2) \ge N_2$, so $g(n) > N_2$. Since $n > N_2$ and $g(n) > N_2$, then $|a_n - a_{g(n)}| < \frac{\epsilon}{2}$, so $|a_n - b_n| < \frac{\epsilon}{2}$. Hence,

$$|a_n - L| = |(a_n - b_n) + (b_n - L)|$$

$$\leq |a_n - b_n| + |b_n - L|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

Thus, $|a_n - L| < \epsilon$, so $\lim_{n \to \infty} a_n = L$. Therefore, (a_n) is convergent.