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Sequences of Real Numbers

Proposition 1. nth term of an arithmetic sequence
Let d ∈ R.
The nth term of an arithmetic sequence with common difference d and initial

value a1 is an = a1 + (n− 1)d.

Proof. We prove an = a1 + (n− 1)d for all n ∈ N by induction on n.
Let S = {n ∈ N : an = a1 + (n− 1)d}.
Since a1 = a1 + 0 = a1 + 0d = a1 + (1− 1)d, then 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and ak = a1 + (k − 1)d.
Observe that

ak+1 = ak + d

= (a1 + (k − 1)d) + d

= (a1 + kd− d) + d

= a1 + kd− d+ d

= a1 + kd

= a1 + ((k + 1)− 1)d.

Thus, ak+1 = a1 + ((k + 1)− 1)d, so k + 1 ∈ S.
Therefore, by PMI, S = N, so an = a1 + (n− 1)d for all n ∈ N.

Proposition 2. Let (an) be an arithmetic sequence of real numbers with com-
mon difference d.

Then an = an−1+an+1

2 for all integers n > 1.

Proof. Let n ∈ Z with n > 1.
Since (an) is an arithmetic sequence, then an+1 = an + d for all n ∈ Z+.
Since n > 1 > 0, then n > 0.
Since n ∈ Z and n > 0, then n ∈ Z+, so an+1 = an + d.
Since n ∈ Z, then n− 1 ∈ Z.
Since n > 1, then n− 1 > 0.
Since n− 1 ∈ Z and n− 1 > 0, then n− 1 ∈ Z+.



Hence, an = an−1 + d, so an−1 = an − d.
Therefore,

an−1 + an+1

2
=

(an − d) + (an + d)

2

=
2an
2

= an.

Proposition 3. nth term of a geometric sequence
Let r ∈ R, r 6= 0.
The nth term of a geometric sequence with common ratio r and initial value

a1 is an = a1r
n−1.

Proof. We prove an = a1r
n−1 for all n ∈ N by induction on n.

Let S = {n ∈ N : an = a1r
n−1}.

Since a1 = a1 · 1 = a1r
0 = a1r

1−1, then 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and ak = a1r

k−1.
Observe that

ak+1 = ak · r
= (a1r

k−1)r

= a1(rk−1r)

= a1(rk−1+1)

= a1r
k

= a1r
(k+1)−1.

Thus, ak+1 = a1r
(k+1)−1, so k + 1 ∈ S.

Therefore, by PMI, S = N, so an = a1r
n−1 for all n ∈ N.

Proposition 4. Let (an) be a geometric sequence of positive real numbers with
common ratio positive r.

Then an =
√
an−1an+1 for all integers n > 1.

Proof. Let n ∈ Z with n > 1.
Since (an) is a geometric sequence, then an+1 = anr for all n ∈ Z+.
Since (an) is a sequence of positive terms, then an > 0 for all n ∈ Z+.
Since n > 1 > 0, then n > 0.
Since n ∈ Z and n > 0, then n ∈ Z+, so an+1 = anr and and an > 0.
Since n ∈ Z, then n− 1 ∈ Z.
Since n > 1, then n− 1 > 0.
Since n− 1 ∈ Z and n− 1 > 0, then n− 1 ∈ Z+, so an = an−1r.
Since r > 0, then r 6= 0, so an−1 = an

r .
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Therefore,

√
an−1an+1 =

√
(
an
r

)(anr)

=
√
anan

=
√

(an)2

= |an|
= an.

Sequences as Functions

Proposition 5. sum and product of bounded sequences is bounded
Let (an) and (bn) be bounded sequences of real numbers. Then
1. (an + bn) is bounded.
2. (anbn) is bounded.

Proof. We prove 1.
Suppose (an) and (bn) are bounded.
Since (an) is bounded, then there exists α ∈ R such that |an| ≤ α for all

n ∈ N.
Since (bn) is bounded, then there exists β ∈ R such that |bn| ≤ β for all

n ∈ N.
To prove (an + bn) is bounded, we must prove there exists γ ∈ R such that

|an + bn| ≤ γ for all n ∈ N.
Let γ = α+ β.
Since α ∈ R and β ∈ R, then α+ β ∈ R, so γ ∈ R.
Let n ∈ N.
Then |an| ≤ α and |bn| ≤ β.
Thus,

|an + bn| ≤ |an|+ |bn|
≤ α+ β

= γ.

Therefore, |an + bn| ≤ γ.

Proof. We prove 2.
Suppose (an) and (bn) are bounded.
Since (an) is bounded, then there exists α ∈ R such that |an| ≤ α for all

n ∈ N.
Since (bn) is bounded, then there exists β ∈ R such that |bn| ≤ β for all

n ∈ N.
To prove (anbn) is bounded, we must prove there exists γ ∈ R such that

|anbn| ≤ γ for all n ∈ N.
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Let γ = αβ.
Since α ∈ R and β ∈ R, then αβ ∈ R, so γ ∈ R.
Let n ∈ N.
Then |an| ≤ α and |bn| ≤ β.
Since 0 ≤ |an| ≤ α and 0 ≤ |bn| ≤ β, then |anbn| = |an||bn| ≤ αβ = γ.
Therefore, |anbn| ≤ γ.

Proposition 6. necessary and sufficient conditions for a monotonic
sequence

Let (an) be a sequence of real numbers. Then
1. (an) is strictly increasing iff m < n implies am < an for all m,n ∈ N.
2. (an) is (monotonic) increasing iff m < n implies am ≤ an for all m,n ∈

N.
3. (an) is strictly decreasing iff m < n implies am > an for all m,n ∈ N.
4. (an) is (monotonic) decreasing iff m < n implies am ≥ an for all m,n ∈

N.

Proof. We prove 1.
We must prove (an) is strictly increasing iff m < n implies am < an for all

m,n ∈ N.
We prove if m < n implies am < an for all m,n ∈ N, then (an) is strictly

increasing.
Suppose m < n implies am < an for all m,n ∈ N.
Let n ∈ N.
Since n, n+ 1 ∈ N and n < n+ 1, then an < an+1.
Therefore, (an) is strictly increasing.
Conversely, we prove if (an) is strictly increasing, then m < n implies am <

an for all m,n ∈ N.
Suppose (an) is strictly increasing.
Let m ∈ N be given.
The statement m < n implies am < an for all n ∈ N means that if n is an

arbitrary natural number such that m < n, then am < an.
So, if n ∈ N such that m < n, then we must prove am < am+1 and am <

am+2 and am < am+3... etc.
Thus, we must prove am < am+t for every natural number t.
We prove am < am+t for all t ∈ N by induction on t.
Let S = {t ∈ N : am < am+t}.
Since (an) is strictly increasing, then am < am+1.
Hence, 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and am < am+k.
Since (an) is strictly increasing, then am+k < am+k+1.
Thus, am < am+k < am+k+1, so am < am+k+1.
Since k + 1 ∈ N and am < am+k+1, then k + 1 ∈ S.
Thus, k ∈ S implies k + 1 ∈ S.
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By the principle of mathematical induction, am < am+t for every natural
number t.

Hence, m < n implies am < an for all n ∈ N.
Since m ∈ N is arbitrary, then m < n implies am < an for all m,n ∈ N.

Proof. We prove 2.
We must prove (an) is monotonic increasing iff m < n implies am ≤ an for

all m,n ∈ N.
We prove if m < n implies am ≤ an for all m,n ∈ N, then (an) is monotonic

increasing.
Suppose m < n implies am ≤ an for all m,n ∈ N.
Let n ∈ N.
Since n, n+ 1 ∈ N and n < n+ 1, then an ≤ an+1.
Therefore, (an) is monotonic increasing.
Conversely, we prove if (an) is monotonic increasing, then m < n implies

am ≤ an for all m,n ∈ N.
Suppose (an) is monotonic increasing.
Let m ∈ N be given.
The statement m < n implies am ≤ an for all n ∈ N means that if n is an

arbitrary natural number such that m < n, then am ≤ an.
So, if n ∈ N such that m < n, then we must prove am ≤ am+1 and am ≤

am+2 and am ≤ am+3... etc.
Thus, we must prove am ≤ am+t for every natural number t.
We prove am ≤ am+t for all t ∈ N by induction on t.
Let S = {t ∈ N : am ≤ am+t}.
Since (an) is monotonic increasing, then am ≤ am+1.
Hence, 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and am ≤ am+k.
Since (an) is monotonic increasing, then am+k ≤ am+k+1.
Thus, am ≤ am+k ≤ am+k+1, so am ≤ am+k+1.
Since k + 1 ∈ N and am ≤ am+k+1, then k + 1 ∈ S.
Thus, k ∈ S implies k + 1 ∈ S.
By the principle of mathematical induction, am ≤ am+t for every natural

number t.
Hence, m < n implies am ≤ an for all n ∈ N.
Since m ∈ N is arbitrary, then m < n implies am ≤ an for all m,n ∈ N.

Proof. We prove 3.
We must prove (an) is strictly decreasing iff m < n implies am > an for all

m,n ∈ N.
We prove if m < n implies am > an for all m,n ∈ N, then (an) is strictly

decreasing.
Suppose m < n implies am > an for all m,n ∈ N.
Let n ∈ N.
Since n, n+ 1 ∈ N and n < n+ 1, then an > an+1.

5



Therefore, (an) is strictly decreasing.
Conversely, we prove if (an) is strictly decreasing, then m < n implies am >

an for all m,n ∈ N.
Suppose (an) is strictly decreasing.
Let m ∈ N be given.
The statement m < n implies am > an for all n ∈ N means that if n is an

arbitrary natural number such that m < n, then am > an.
So, if n ∈ N such that m < n, then we must prove am > am+1 and am >

am+2 and am > am+3... etc.
Thus, we must prove am > am+t for every natural number t.
We prove am > am+t for all t ∈ N by induction on t.
Let S = {t ∈ N : am > am+t}.
Since (an) is strictly decreasing, then am > am+1.
Hence, 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and am > am+k.
Since (an) is strictly decreasing, then am+k > am+k+1.
Thus, am > am+k > am+k+1, so am > am+k+1.
Since k + 1 ∈ N and am > am+k+1, then k + 1 ∈ S.
Thus, k ∈ S implies k + 1 ∈ S.
By the principle of mathematical induction, am > am+t for every natural

number t.
Hence, m < n implies am > an for all n ∈ N.
Since m ∈ N is arbitrary, then m < n implies am > an for all m,n ∈ N.

Proof. We prove 4.
We must prove (an) is monotonic decreasing iff m < n implies am ≥ an for

all m,n ∈ N.
We prove if m < n implies am ≥ an for all m,n ∈ N, then (an) is monotonic

decreasing.
Suppose m < n implies am ≥ an for all m,n ∈ N.
Let n ∈ N.
Since n, n+ 1 ∈ N and n < n+ 1, then an ≥ an+1.
Therefore, (an) is monotonic decreasing.
Conversely, we prove if (an) is monotonic decreasing, then m < n implies

am ≥ an for all m,n ∈ N.
Suppose (an) is monotonic decreasing.
Let m ∈ N be given.
The statement m < n implies am ≥ an for all n ∈ N means that if n is an

arbitrary natural number such that m < n, then am ≥ an.
So, if n ∈ N such that m < n, then we must prove am ≥ am+1 and am ≥

am+2 and am ≥ am+3... etc.
Thus, we must prove am ≥ am+t for every natural number t.
We prove am ≥ am+t for all t ∈ N by induction on t.
Let S = {t ∈ N : am ≥ am+t}.
Since (an) is monotonic decreasing, then am ≥ am+1.
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Hence, 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and am ≥ am+k.
Since (an) is monotonic decreasing, then am+k ≥ am+k+1.
Thus, am ≥ am+k ≥ am+k+1, so am ≥ am+k+1.
Since k + 1 ∈ N and am ≥ am+k+1, then k + 1 ∈ S.
Thus, k ∈ S implies k + 1 ∈ S.
By the principle of mathematical induction, am ≥ am+t for every natural

number t.
Hence, m < n implies am ≥ an for all n ∈ N.
Since m ∈ N is arbitrary, then m < n implies am ≥ an for all m,n ∈ N.

Proposition 7. If f : N → N is a strictly increasing function, then f(n) ≥ n
for all n ∈ N.

Proof. Let f : N→ N be a strictly increasing function.
We prove f(n) ≥ n for all n ∈ N by induction on n.
Let S = {n ∈ N : f(n) ≥ n}.
Since 1 ∈ N, then f(1) ∈ N, so f(1) ≥ 1.
Hence, 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and f(k) ≥ k.
Since f is strictly increasing and k ∈ N and k+ 1 ∈ N, then f(k) < f(k+ 1).
Thus, k ≤ f(k) and f(k) < f(k + 1), so k < f(k + 1).
Suppose f(k + 1) < k + 1.
Then k < f(k + 1) and f(k + 1) < k + 1, so k < f(k + 1) < k + 1.
Since k, k + 1, f(k + 1) ∈ N, then this implies there is a natural number

between two consecutive natural numbers, an impossibility.
Therefore, f(k + 1) ≥ k + 1, so k + 1 ∈ S.
Thus, by PMI, S = N, so f(n) ≥ n for all n ∈ N, as desired.

Proposition 8. subsequence preserves monotonicity and boundedness
1. Every subsequence of an increasing sequence is increasing.
2. Every subsequence of a decreasing sequence is decreasing.
3. Every subsequence of a bounded sequence is bounded.

Proof. We prove 1.
We must prove every subsequence of an increasing sequence is increasing.
Let (an) be a monotonic increasing sequence of real numbers.
Since (an) is a sequence of real numbers, then there exists a function f :

N→ R such that f(n) = an for all n ∈ N.
Suppose (bn) is a subsequence of (an).
Then there exists a strictly increasing function g : N → N such that bn =

(f ◦ g)(n) for all n ∈ N.
Let n ∈ N.
Since g is strictly increasing, then g(n) < g(n+ 1).
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Since (an) is monotonic increasing and g(n), g(n+1) ∈ N and g(n) < g(n+1),
then ag(n) ≤ ag(n+1).

Observe that

bn = (f ◦ g)(n)

= f(g(n))

= ag(n)

≤ ag(n+1)

= f(g(n+ 1))

= (f ◦ g)(n+ 1)

= bn+1.

Therefore, bn ≤ bn+1, so (bn) is increasing, as desired.

Proof. We prove 2.
We must prove every subsequence of a decreasing sequence is decreasing.
Let (an) be a monotonic decreasing sequence of real numbers.
Since (an) is a sequence of real numbers, then there exists a function f :

N→ R such that f(n) = an for all n ∈ N.
Suppose (bn) is a subsequence of (an).
Then there exists a strictly increasing function g : N → N such that bn =

(f ◦ g)(n) for all n ∈ N.
Let n ∈ N.
Since g is strictly increasing, then g(n) < g(n+ 1).
Since (an) is monotonic decreasing and g(n), g(n+1) ∈ N and g(n) < g(n+1),

then ag(n) ≥ ag(n+1).
Observe that

bn = (f ◦ g)(n)

= f(g(n))

= ag(n)

≥ ag(n+1)

= f(g(n+ 1))

= (f ◦ g)(n+ 1)

= bn+1.

Therefore, bn ≥ bn+1, so (bn) is decreasing, as desired.

Proof. We prove 3.
We must prove every subsequence of a bounded sequence is bounded.
Let (an) be a bounded sequence of real numbers.
Since (an) is a sequence of real numbers, then there exists a function f :

N→ R such that f(n) = an for all n ∈ N.
Suppose (bn) is a subsequence of (an).
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Then there exists a strictly increasing function g : N → N such that bn =
(f ◦ g)(n) for all n ∈ N.

Since (an) is bounded, then there exists M ∈ R such that |an| ≤ M for all
n ∈ N.

Let n ∈ N.
Then g(n) ∈ N and

|bn| = |(f ◦ g)(n)|
= |f(g(n))|
= |ag(n)|
≤ M.

Therefore, |bn| ≤M , so (bn) is bounded, as desired.

Proposition 9. M tail of a sequence is a subsequence of the sequence
Let (an) be a sequence in R.
If (bn) is an M tail of (an), then (bn) is a subsequence of (an).

Proof. Suppose (bn) is an M tail of (an).
Then there exists M ∈ N such that bn = aM+n for all n ∈ N.
Since (an) is a sequence in R, then there exists a function f : N → R such

that f(n) = an for all n ∈ N.
Let g : N→ N be a function defined by g(n) = M + n for all n ∈ N.
Let m,n ∈ N such that m < n.
Then g(m) = M +m < M + n = g(n), so g(m) < g(n).
Hence, g is strictly increasing.
Let n ∈ N be given.
Then

bn = aM+n

= f(M + n)

= f(g(n))

= (f ◦ g)(n).

Therefore, (bn) is a subsequence of (an).

Convergent Sequences in R
Theorem 10. uniqueness of a limit of a convergent sequence

The limit of a convergent sequence of real numbers is unique.

Proof. Let (an) be a convergent sequence of real numbers.
Then a limit of (an) exists as a real number.
Thus, there is at least one limit of (an).
To prove the limit is unique, let L1, L2 ∈ R such that L1 is a limit of (an)

and L2 is a limit of (an).
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We must prove L1 = L2.
Suppose L1 6= L2.
Then L1 − L2 6= 0, so |L1 − L2| > 0.

Let ε = |L1−L2|
2 .

Then ε > 0.
Since L1 is a limit of (an) and ε > 0, then there exists N1 ∈ N such that if

n > N1 then |an − L1| < ε.
Since L2 is a limit of (an) and ε > 0, then there exists N2 ∈ N such that if

n > N2 then |an − L2| < ε.
Let N = max{N1, N2}.
Let n ∈ N such that n > N .
Since n > N ≥ N1, then n > N1.
Hence, |an − L1| < ε.
Since n > N ≥ N2, then n > N2.
Hence, |an − L2| < ε.
Observe that

|L1 − L2| = |(L1 − an) + (an − L2)|
≤ |L1 − an|+ |an − L2|
= |an − L1|+ |an − L2|
< ε+ ε

= 2ε.

Thus, |L1 − L2| < 2ε, so |L1−L2|
2 < ε.

Hence, ε < ε, a contradiction.
Therefore, L1 = L2, as desired.

Proposition 11. a difference in a finite number of initial terms does
not affect the convergence of a sequence

Let (an) and (bn) be sequences of real numbers.
If there exists K ∈ N such that bn = an for all n > K and limn→∞ an = L,

then limn→∞ bn = L.

Proof. Suppose there exists K ∈ N such that bn = an for all n > K and
limn→∞ an = L.

Let ε > 0 be given.
Since limn→∞ an = L, then there exists N ∈ N such that if n > N , then

|an − L| < ε.
Let M = max{K,N}.
Let n ∈ N such that n > M .
Since n > M ≥ N , then n > N .
Hence, |an − L| < ε.
Since n > M ≥ K, then n > K.
Hence, bn = an.
Thus, |bn − L| = |an − L| < ε, so |bn − L| < ε.
Therefore, limn→∞ bn = L.
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Proposition 12. Let L ∈ R.
Let (an) and (an − L) be sequences in R.
Then limn→∞ an = L iff limn→∞(an − L) = 0.

Proof. Observe that

lim
n→∞

an = L ⇔

(∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n > N → |an − L| < ε) ⇔
(∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n > N → |(an − L)− 0| < ε) ⇔

lim
n→∞

(an − L) = 0.

Theorem 13. every subsequence of a convergent sequence is conver-
gent

Let (an) be a convergent sequence of real numbers.
If (bn) is a subsequence of (an), then limn→∞ bn = limn→∞ an.

Proof. Suppose (bn) is a subsequence of (an).
Since (an) is convergent, then there exists a real number L such that limn→∞ an =

L.
Let ε > 0 be given.
Then there exists N ∈ N such that if n > N , then |an − L| < ε.
Since (an) is a sequence, then there exists a function f : N → R such that

f(n) = an for all n ∈ N.
Since (bn) is a subsequence of (an), then there exists a strictly increasing

function g : N→ N such that bn = (f ◦ g)(n) for all n ∈ N.
Let n ∈ N such that n > N .
Then N < n.
Since g is strictly increasing, then g(N) < g(n).
Since g is strictly increasing and N ∈ N, then by a previous proposition,

g(N) ≥ N .
Thus, N ≤ g(N) and g(N) < g(n), so N < g(n).
Since g(n) ∈ N and g(n) > N , then |ag(n) − L| < ε.
Observe that

|bn − L| = |(f ◦ g)(n)− L|
= |f(g(n))− L|
= |ag(n) − L|
< ε.

Therefore, |bn − L| < ε, so limn→∞ bn = L = limn→∞ an.

Corollary 14. Let (an) be a sequence of real numbers.
If (bn) and (cn) are convergent subsequences of (an) such that limn→∞ bn 6=

limn→∞ cn, then (an) is divergent.
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Proof. Suppose (bn) and (cn) are convergent subsequences of (an) such that
limn→∞ bn 6= limn→∞ cn.

We prove (an) is divergent by contradiction.
Suppose (an) is not divergent.
Then (an) is convergent.
Hence, there exists a real number L such that limn→∞ an = L.
Since (bn) is a subsequence of (an) and limn→∞ an = L, then limn→∞ bn = L.
Since (cn) is a subsequence of (an) and limn→∞ an = L, then limn→∞ cn = L.
Thus, limn→∞ bn = L = limn→∞ cn, so limn→∞ bn = limn→∞ cn.
This contradicts the assumption that limn→∞ bn 6= limn→∞ cn.
Therefore, (an) is divergent.

Proposition 15. M tail of a sequence is convergent iff the sequence is
convergent

Let (an) be a sequence of real numbers.
Let M ∈ N.
If (an) is convergent, then limn→∞ aM+n = limn→∞ an.
If (aM+n) is convergent, then limn→∞ an = limn→∞ aM+n.

Proof. Suppose (an) is convergent.
Then there exists L ∈ R such that limn→∞ an = L.
Let (bn) be a sequence of real numbers defined by bn = aM+n for all n ∈ N.
We must prove limn→∞ bn = L.
Since bn = aM+n for all n ∈ N, then (bn) is the M tail of (an).
Hence, (bn) is a subsequence of (an).
Since (an) is convergent, then limn→∞ bn = limn→∞ an = L, as esired.

Conversely, suppose (bn) is convergent.
Then there exists L ∈ R such that limn→∞ bn = L.
We must prove limn→∞ an = L.
Let ε > 0 be given.
Then there exists N ∈ N such that if n > N , then |bn − L| < ε.

We prove an = bn−M for all n > M by induction on n.
Let S = {n ∈ N : an = bn−M , n > M}.
Since M + 1 ∈ N and M + 1 > M and aM+1 = b1 = b(M+1)−M , then

M + 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and k > M .
Since k ∈ N, then k + 1 ∈ N.
Since k + 1 > k and k > M , then k + 1 > M .
Since k + 1−M ∈ N and bk+1−M = aM+(k+1−M) = ak+1, then k + 1 ∈ S.
Therefore, by PMI, an = bn−M for all n > M .
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Since M ∈ N and N ∈ N, then M +N ∈ N.
Let n ∈ N such that n > M +N .
Then n−M > N , so |bn−M − L| < ε.
Since N ∈ N, then N > 0, so M +N > M .
Since n > M +N and M +N > M , then n > M , so an = bn−M .
Observe that

|an − L| = |bn−M − L|
< ε.

Hence, |an − L| < ε, so limn→∞ an = L, as desired.

Algebraic properties of convergent sequences

Theorem 16. convergence implies boundedness
Every convergent sequence of real numbers is bounded.

Proof. Let (an) be a convergent sequence of real numbers.
Then there is a real number L such that for every ε > 0 there exists N ∈ N

such that |an − L| < ε whenever n > N .
Let ε = 1.
Then there exists N ∈ N such that |an − L| < 1 whenever n > N .
Let S = {|a1|, |a2|, ..., |aN |, 1 + |L|} = {|ak| : 1 ≤ k ≤ N} ∪ {1 + |L|}.
Then S ⊂ R.
Since 1 + |L| ∈ S, then S is not empty.
Since S contains at most N + 1 elements, then S is finite.
Hence, S is a nonempty finite set of real numbers.
Therefore, maxS exists.
To prove (an) is bounded, we must prove there exists M ∈ R such that

|an| ≤M for all n ∈ N.
Let M = maxS.
Since M = maxS ∈ S and S ⊂ R, then M ∈ R.
Let n ∈ N.
Either n ≤ N or n > N .
We consider these cases separately.
Case 1: Suppose n ≤ N .
Then 1 ≤ n ≤ N , so |an| ∈ S.
Therefore, |an| ≤M .
Case 2: Suppose n > N .
Then |an − L| < 1.
Since 1 + |L| ∈ S and M = maxS, then 1 + |L| ≤M .
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Observe that

|an| = |(an − L) + L|
≤ |an − L|+ |L|
< 1 + |L|
≤ M.

Therefore, |an| < M , so |an| ≤M .
Thus, in all cases, |an| ≤M , so (an) is bounded, as desired.

Proposition 17. If limn→∞ an = 0 and (bn) is bounded, then limn→∞ anbn =
0.

Proof. Suppose limn→∞ an = 0 and (bn) is bounded.
Let ε > 0 be given.
Since (bn) is bounded, then there exists M > 0 such that |bn| < M for all

n ∈ N.
Since ε > 0 and M > 0, then ε

M > 0.
Since limn→∞ an = 0, then there exists N ∈ N such that |an| < ε

M whenever
n > N .

Let n ∈ N such that n > N .
Then |an| < ε

M and |bn| < M .
Since 0 ≤ |an| < ε

M and 0 ≤ |bn| < M , then

|anbn| = |an||bn|

<
ε

M
·M

= ε.

Therefore, |anbn| < ε, so limn→∞ anbn = 0.

Lemma 18. Let (an) be a sequence of real numbers.
If there exists L 6= 0 such that limn→∞ an = L, then there is a natural

number N such that |an| > |L|
2 for all n > N .

Proof. Suppose there exists L 6= 0 such that limn→∞ an = L.

Since L 6= 0, then |L| > 0, so |L|2 > 0.

Since limn→∞ an = L, then there exists N ∈ N such that |an − L| < |L|
2

whenever n > N .
Let n ∈ N such that n > N .
Then |an − L| < |L|

2 .

Since |L|2 > |an − L| ≥ |L| − |an|, then |L|2 > |L| − |an|.
Therefore, |an| > |L|

2 , as desired.

Lemma 19. Let (an) be a sequence of real numbers.
If there exists L 6= 0 such that limn→∞ an = L and an 6= 0 for all n ∈ N,

then limn→∞
1
an

= 1
L .

14



Proof. Suppose there exists L 6= 0 such that limn→∞ an = L and an 6= 0 for all
n ∈ N.

Let n ∈ N be given.
Since an 6= 0 for all n ∈ N, then an 6= 0, so 1

an
∈ R.

Hence, 1
an
∈ R for all n ∈ N, so the sequence ( 1

an
) is well defined.

Since L 6= 0, then 1
L ∈ R.

To prove limn→∞
1
an

= 1
L , let ε > 0 be given.

Since ε > 0 and |L|2 > 0, then ε|L|2
2 > 0.

Since limn→∞ an = L, then there exists N1 ∈ N such that if n > N1, then

|an − L| < ε|L|2
2 .

Since limn→∞ an = L and L 6= 0, then by a previous lemma, there exists

N2 ∈ N such that if n > N2, then |an| > |L|
2 .

Let N = max{N1, N2}.
Let n ∈ N such that n > N .
Since n > N ≥ N1, then n > N1, so |an − L| < ε|L|2

2 .

Thus, 0 ≤ |an − L| < ε|L|2
2 .

Since n > N ≥ N2, then n > N2, so |an| > |L|
2 .

Since L 6= 0, then |L| > 0.
Since an 6= 0, then |an| > 0.
Thus, 2

|L| >
1
|an| > 0, so 0 < 1

|an| <
2
|L| .

Observe that

| 1

an
− 1

L
| = |L− an

anL
|

= |an − L
anL

|

= |an − L| ·
1

|an|
· 1

|L|

<
ε|L|2

2
· 2

|L|
· 1

|L|
= ε.

Therefore, | 1an −
1
L | < ε, so limn→∞

1
an

= 1
L , as desired.

Theorem 20. algebraic limit rules for convergent sequences
If (an) and (bn) are convergent sequences of real numbers, then
1. Scalar Multiple Rule
limn→∞(λan) = λ limn→∞ an for every λ ∈ R.
2. Sum Rule (limit of sum equals sum of limits)
limn→∞(an + bn) = limn→∞ an + limn→∞ bn.
3. Difference Rule (limit of difference equals difference of limits)
limn→∞(an − bn) = limn→∞ an − limn→∞ bn.
4. Product Rule (limit of product equals product of limits)
limn→∞(anbn) = (limn→∞ an)(limn→∞ bn).
5. Quotient Rule (limit of quotient equals quotient of limits)
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If limn→∞ bn 6= 0, then
limn→∞

an
bn

= limn→∞ an
limn→∞ bn

.

Proof. Let (an) be a convergent sequence of real numbers.
Then there exists a real number L such that limn→∞ an = L.
We prove 1.
Let λ ∈ R.
We must prove limn→∞(λan) = λL.
Either λ = 0 or λ 6= 0.
We consider these cases separately.
Case 1: Suppose λ = 0.
Observe that

lim
n→∞

(0an) = lim
n→∞

0

= 0

= 0L.

Therefore, limn→∞(0an) = 0L, as desired.
Case 2: Suppose λ 6= 0.
Let ε > 0.
Since |λ| ≥ 0 and λ 6= 0, then |λ| > 0.
Hence, ε

|λ| > 0.

Since limn→∞ an = L, then there exists N ∈ N such that |an − L| < ε
|λ|

whenever n > N .
Let n ∈ N such that n > N .
Then |an − L| < ε

|λ| .

Observe that

|λan − λL| = |λ(an − L)|
= |λ||an − L|

< |λ| ε
|λ|

= ε.

Therefore, limn→∞(λan) = λL, as desired.

Proof. Let (an) and (bn) be convergent sequences of real numbers.
Then there exist real numbers L and M such that limn→∞ an = L and

limn→∞ bn = M .
We prove 2.
We must prove limn→∞(an + bn) = L+M .
Let ε > 0.
Then ε

2 > 0.
Since limn→∞ an = L, then there exists N1 ∈ N such that |an − L| < ε

2
whenever n > N1.

16



Since limn→∞ bn = M , then there exists N2 ∈ N such that |bn −M | < ε
2

whenever n > N2.
Let N = max{N1, N2}.
Let n ∈ N such that n > N .
Since n > N ≥ N1, then n > N1.
Hence, |an − L| < ε

2 .
Since n > N ≥ N2, then n > N2.
Hence, |bn −M | < ε

2 .
Observe that

|(an + bn)− (L+M)| = |an + bn − L−M |
= |(an − L) + (bn −M)|
≤ |an − L|+ |bn −M |

<
ε

2
+
ε

2
= ε.

Thus, |(an + bn)− (L+M)| < ε.
Therefore, limn→∞(an + bn) = L+M , as desired.

Proof. Let (an) and (bn) be convergent sequences of real numbers.
Then there exist real numbers L and M such that limn→∞ an = L and

limn→∞ bn = M .
We prove 3.
We must prove limn→∞(an − bn) = L−M .
Observe that

lim
n→∞

(an − bn) = lim
n→∞

[an + (−bn)]

= lim
n→∞

an + lim
x→a
−bn

= lim
n→∞

an − lim
x→a

bn

= L−M.

Therefore, limn→∞(an − bn) = L−M , as desired.

Proof. Let (an) and (bn) be convergent sequences of real numbers.
Then there exist real numbers L and M such that limn→∞ an = L and

limn→∞ bn = M .
We prove 4.
We must prove limn→∞(anbn) = LM .
Let ε > 0.
Since (bn) is convergent, then (bn) is bounded.
Hence, there exists b > 0 such that |bn| < b for all n ∈ N.
Since ε > 0 and b > 0, then ε

2b > 0.
Since limn→∞ an = L, then there exists N1 ∈ N such that |an − L| < ε

2b
whenever n > N1.

17



Since |L| ≥ 0 and |L| ≥ 0 ⇒ |L| + 1 ≥ 1 ⇒ 2(|L| + 1) ≥ 2 > 0, then
2(|L|+ 1) > 0.

Since ε > 0, then ε
2(|L|+1) > 0.

Since limn→∞ bn = M , then there exists N2 ∈ N such that |bn − M | <
ε

2(|L|+1) whenever n > N2.

Let N = max{N1, N2}.
Let n ∈ N such that n > N .
Since n > N ≥ N1, then n > N1, so |an − L| < ε

2b .
Since 0 ≤ |an − L| < ε

2b and 0 ≤ |bn| < b, then |an − L||bn| < ε
2 .

Since n > N ≥ N2, then n > N2, so |bn −M | < ε
2(|L|+1) .

Since |L| ≥ 0, then |L||bn −M | ≤ |L|ε
2(|L|+1) .

Since 0 ≤ |L| < |L|+ 1, then 0 ≤ |L|
|L|+1 < 1, so |L|ε

2(|L|+1) <
ε
2 .

Thus, |L||bn −M | ≤ |L|ε
2(|L|+1) and |L|ε

2(|L|+1) <
ε
2 , so |L||bn −M | < ε

2 .

Observe that

|anbn − LM | = |(anbn − Lbn) + (Lbn − LM)|
≤ |anbn − Lbn|+ |Lbn − LM |
= |(an − L)bn|+ |L(bn −M)|
= |an − L||bn|+ |L||bn −M |

<
ε

2
+
ε

2
= ε.

Thus, |anbn − LM | < ε.
Therefore, limn→∞(anbn) = LM , as desired.

Proof. Let (an) and (bn) be convergent sequences of real numbers.
Then there exist real numbers L and M such that limn→∞ an = L and

limn→∞ bn = M .
Suppose M 6= 0.
We prove 5.
We must prove limn→∞

an
bn

= L
M .

We first prove limn→∞
1
bn

= 1
M .

Either there exists k ∈ N such that bk = 0 or there does not exist k ∈ N
such that bk = 0.

We consider these cases separately.
Case 1: Suppose there does not exist k ∈ N such that bk = 0.
Then bk 6= 0 for all k ∈ N.
Since M 6= 0 and limn→∞ bn = M and bn 6= 0 for all n ∈ N, then by a

previous lemma, limn→∞
1
bn

= 1
M .

Case 2: Suppose there exists k ∈ N such that bk = 0.
Then the expression 1

bk
is undefined, so ( 1

bn
) does not define a sequence of

real numbers.
We shall show that when the expression is defined, the sequence that results

must converge to 1
M .
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Since M 6= 0 and limn→∞ bn = M , then by a previous lemma, there exists

N ∈ N such that |bn| > |M |
2 for all n > N .

Let cn = bN+n for all n ∈ N.
Then (cn) is a sequence of real numbers.
Let g : N→ N be a function defined by g(n) = N + n for all n ∈ N.
Let n ∈ N be given.
Since g(n) = N + n < N + (n+ 1) = g(n+ 1), then g(n) < g(n+ 1), so g is

strictly increasing.
Since cn = bN+n = bg(n), then (cn) is a subsequence of (bn).
Since n ≥ 1 > 0, then n > 0.

Since N + n ∈ N and N + n > N , then |bN+n| > |M |
2 , so |cn| > |M |

2 .

Since M 6= 0, then |M | > 0, so |M |2 > 0.

Thus, |cn| > |M |
2 > 0, so |cn| > 0.

Hence, cn 6= 0, so cn 6= 0 for all n ∈ N.
Thus, 1

cn
∈ R for all n ∈ N, so ( 1

cn
) is a sequence of real numbers.

Since limn→∞ bn = M and (cn) is a subsequence of (bn), then limn→∞ cn =
M .

Since M 6= 0 and limn→∞ cn = M and cn 6= 0 for all n ∈ N, then by a
previous lemma, limn→∞

1
cn

= 1
M .

Therefore, in all cases, limn→∞
1
bn

= 1
M .

Observe that

lim
n→∞

an
bn

= lim
n→∞

(an ·
1

bn
)

= ( lim
n→∞

an)( lim
n→∞

1

bn
)

= L · 1

M

=
L

M
.

Therefore, limn→∞
an
bn

= L
M , as desired.

Theorem 21. a limit preserves a non strict inequality
Let (an) and (bn) be convergent sequences of real numbers.
If there exists K > 0 such that an ≤ bn for all n > K, then limn→∞ an ≤

limn→∞ bn.

Proof. Suppose there exists K > 0 such that an ≤ bn for all n > K.
Since (an) is convergent, then there exists L ∈ R such that limn→∞ an = L.
Since (bn) is convergent, then there exists M ∈ R such that limn→∞ bn = M .
We must prove L ≤M .
Suppose for the sake of contradiction L > M .
Then L−M > 0, so L−M

2 > 0

Let ε = L−M
2 .
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Then ε > 0.
Since limn→∞ an = L, then there exists N1 ∈ N such that if n > N1, then

|an − L| < ε.
Since limn→∞ bn = M , then there exists N2 ∈ N such that if n > N2, then

|bn −M | < ε.
Let N = max{N1, N2,K}.
Let n ∈ N such that n > N .
Since n > N and N ≥ K, then n > K, so an ≤ bn.
Since n > N and N ≥ N1, then n > N1, so |an − L| < ε.
Thus, −ε < an − L < ε, so L− ε < an < L+ ε.
Since n > N and N ≥ N2, then n > N2, so |bn −M | < ε.
Thus, −ε < bn −M < ε, so M − ε < bn < M + ε.
Since ε = L−M

2 , then 2ε = L−M , so ε+ ε = L−M .
Thus, M + ε = L− ε.
Therefore, bn < M + ε = L− ε < an ≤ bn, so bn < bn, a contradiction.
Hence, L ≤M , as desired.

Corollary 22. Let (an) and (bn) be convergent sequences of real numbers.
If an ≤ bn for all n ∈ N, then limn→∞ an ≤ limn→∞ bn.

Proof. Suppose an ≤ bn for all n ∈ N.
By the density of R, there exists K ∈ R such that 0 < K < 1.
Thus, 0 < K and K < 1.
Since 0 < K, then K > 0.
Let n ∈ N be given.
Then an ≤ bn.
Since n ∈ N, then n ≥ 1.
Since n ≥ 1 and 1 > K, then n > K.
Since n is arbitrary, then an ≤ bn for all n > K.
Since (an) and (bn) are convergent sequences, then by the inequality rule for

convergent sequences, limn→∞ an ≤ limn→∞ bn.

Corollary 23. Let (an) be a convergent sequence in R.
1. If M is an upper bound of (an), then limn→∞ an ≤M .
2. If m is a lower bound of (an), then m ≤ limn→∞ an.

Proof. We prove 1.
Suppose M ∈ R is an upper bound of (an).
Then an ≤M for all n ∈ N.
Let (bn) be the constant sequence defined by bn = M for all n ∈ N.
Since (an) is convergent and (bn) is convergent and an ≤ bn for all n ∈ N,

then by the inequality rule for convergent sequences, limn→∞ an ≤ limn→∞ bn.
Thus,

lim
n→∞

an ≤ lim
n→∞

bn ⇔ lim
n→∞

an ≤ lim
n→∞

M

⇔ lim
n→∞

an ≤M.

Therefore, limn→∞ an ≤M , as desired.
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Proof. We prove 1.
Since (an) is convergent, then there exists a real number L such that limn→∞ an =

L.
Suppose M is an upper bound of (an).
We prove L ≤M by contradiction.
Suppose L > M .
Then L−M > 0.
Since limn→∞ an = L, then there exists N ∈ N such that if n > N , then

|an − L| < L−M .
Let n ∈ N such that n > N .
Then |an − L| < L−M .
Observe that

|an − L| < L−M ⇔ −(L−M) < an − L < L−M
⇔ M − L < an − L < L−M
⇒ M − L < an − L
⇔ M < an

⇔ an > M.

Thus, an > M .
Hence, there exists n ∈ N such that an > M .
This contradicts the assumption that M is an upper bound of (an).
Therefore, L ≤M , as desired.

Proof. We prove 2.
Suppose m ∈ R is a lower bound of (an).
Then m ≤ an for all n ∈ N.
Let (bn) be the constant sequence defined by bn = m for all n ∈ N.
Since (an) is convergent and (bn) is convergent and bn ≤ an for all n ∈ N,

then by the inequality rule for convergent sequences, limn→∞ bn ≤ limn→∞ an.
Thus,

lim
n→∞

bn ≤ lim
n→∞

an ⇔ lim
n→∞

m ≤ lim
n→∞

an

⇔ m ≤ lim
n→∞

an.

Therefore, m ≤ limn→∞ an, as desired.

Proof. We prove 2.
Since (an) is convergent, then there exists a real number L such that limn→∞ an =

L.
Suppose m is a lower bound of (an).
We prove m ≤ L by contradiction.
Suppose m > L.
Then m− L > 0.
Since limn→∞ an = L, then there exists N ∈ N such that if n > N , then

|an − L| < m− L.
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Let n ∈ N such that n > N .
Then |an − L| < m− L.
Observe that

|an − L| < m− L ⇔ −(m− L) < an − L < m− L
⇒ an − L < m− L
⇔ an < m.

Thus, an < m.
Hence, there exists n ∈ N such that an < m.
This contradicts the assumption that m is a lower bound of (an).
Therefore, m ≤ L, as desired.

Corollary 24. limit of a convergent sequence is between any upper
and lower bound of the sequence

Let (an) be a convergent sequence in R.
If there exist real numbers m and M such that m ≤ an ≤ M for all n ∈ N,

then m ≤ limn→∞ an ≤M .

Proof. Suppose there exist real numbers m and M such that m ≤ an ≤ M for
all n ∈ N.

Then m ≤ an for all n ∈ N and an ≤M for all n ∈ N.
Since (an) is a convergent sequence, then there exists L ∈ R such that

limn→∞ an = L.
We must prove m ≤ L ≤M .
Since an ≤M for all n ∈ N, then M is an upper bound of (an).
Hence, by the previous corollary, L ≤M .
Since m ≤ an for all n ∈ N, then m is a lower bound of (an).
Hence, by the previous corollary, m ≤ L.
Therefore, m ≤ L and L ≤M , so m ≤ L ≤M , as desired.

Corollary 25. Let (an) be a convergent sequence in R.
If there exist K ∈ N and real numbers m and M such that m ≤ an ≤M for

all n > K, then m ≤ limn→∞ an ≤M .

Proof. Suppose there exist K ∈ N and real numbers m and M such that m ≤
an ≤M for all n > K.

Let (bn) be a sequence defined by bn = aK+n for all n ∈ N.
Then (bn) is a K tail of the sequence (an), so (bn) is a subsequence of (an).
Since (an) is convergent, then (bn) is convergent, so limn→∞ bn = limn→∞ an.

We prove m ≤ bn ≤M for all n ∈ N by induction on n.
Let S = {n ∈ N : m ≤ bn ≤M}.
Since K + 1 ∈ N and K + 1 > K, then m ≤ aK+1 ≤M .
Since b1 = aK+1, then m ≤ b1 ≤M , so 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N.
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Since K + k + 1 ∈ N and K + k + 1 > K, then m ≤ aK+k+1 ≤M .
Since k + 1 ∈ N, then bk+1 = aK+k+1, so m ≤ bk+1 ≤M .
Hence, k + 1 ∈ S.
Thus, by PMI, m ≤ bn ≤M for all n ∈ N.

Since (bn) is convergent and m ≤ bn ≤M for all n ∈ N, then by the inequality
rule for convergent sequences, m ≤ limn→∞ bn ≤M .

Therefore, m ≤ limn→∞ an ≤M , as desired.

Theorem 26. squeeze rule for convergent sequences
Let (an), (bn), and (cn) be sequences of real numbers.
If there exists K ∈ N such that an ≤ cn ≤ bn for all n > K and limn→∞ an =

limn→∞ bn, then limn→∞ cn = limn→∞ an = limn→∞ bn.

Proof. Suppose there exists K ∈ N such that an ≤ cn ≤ bn for all n > K and
limn→∞ an = limn→∞ bn.

Since limn→∞ an = limn→∞ bn, then there exists a real number L such that
L = limn→∞ an = limn→∞ bn.

We must prove limn→∞ cn = L.
Let ε > 0 be given.
Since limn→∞ an = L, then there exists N1 ∈ N such that if n > N1, then

|an − L| < ε.
Since limn→∞ bn = L, then there exists N2 ∈ N such that if n > N2, then

|bn − L| < ε.
Let N = max{N1, N2,K}.
Let n ∈ N such that n > N .
Since n > N and N ≥ K, then n > K, so an ≤ cn ≤ bn.
Therefore, an ≤ cn and cn ≤ bn.
Since n > N and N ≥ N1, then n > N1, so |an − L| < ε.
Since n > N and N ≥ N2, then n > N2, so |bn − L| < ε.
Observe that

|an − L| < ε ⇔ −ε < an − L < ε

⇒ −ε < an − L
⇔ L− ε < an.

Since L− ε < an and an ≤ cn, then L− ε < cn, so −ε < cn − L.
Observe that

|bn − L| < ε ⇔ −ε < bn − L < ε

⇒ bn − L < ε

⇔ bn < L+ ε.

Since cn ≤ bn and bn < L+ ε , then cn < L+ ε, so cn − L < ε.
Since −ε < cn − L and cn − L < ε, then −ε < cn − L < ε, so |cn − L| < ε.
Therefore, limn→∞ cn = L, as desired.
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Corollary 27. Let (an), (bn), and (cn) be sequences of real numbers.
If an ≤ cn ≤ bn for all n ∈ N and limn→∞ an = limn→∞ bn, then limn→∞ cn =

limn→∞ an = limn→∞ bn.

Proof. Suppose an ≤ cn ≤ bn for all n ∈ N and limn→∞ an = limn→∞ bn.
Let K = 1.
Then K ∈ N.
Let n ∈ N such that n > K.
Since n ∈ N, then an ≤ cn ≤ bn.
Since n is arbitrary, then an ≤ cn ≤ bn for all n > K.
Thus, there exists K ∈ N such that an ≤ cn ≤ bn for all n > K.
Since limn→∞ an = limn→∞ bn, then by the squeeze rule for convergent

sequences, limn→∞ cn = limn→∞ an = limn→∞ bn, as desired.

Proposition 28. limit of an absolute value equals absolute value of a
limit

Let (an) be a convergent sequence.
Then the sequence (|an|) is convergent and limn→∞ |an| = | limn→∞ an|.

Proof. Let (an) be a convergent sequence.
Then there exists a real number L such that limn→∞ an = L.
We must prove limn→∞ |an| = |L|.
Let ε > 0 be given.
Since limn→∞ an = L, then there exists N ∈ N such that |an − L| < ε

whenever n > N .
Let n ∈ N such that n > N .
Then |an − L| < ε.
Hence, ||an| − |L|| ≤ |an − L| < ε, so ||an| − |L|| < ε.
Therefore, limn→∞ |an| = |L|.

Lemma 29. Let a, b, c, d ∈ R.
If 0 ≤ a < b and 0 < c < d, then ac < bd.

Proof. Suppose 0 ≤ a < b and 0 < c < d.
Then 0 ≤ a and a < b and 0 < c and c < d.
Since a ≥ 0, then either a > 0 or a = 0.
We consider these cases separately.
Case 1: Suppose a > 0.
Since 0 < a and a < b, then 0 < a < b.
Since 0 < a < b and 0 < c < d, then 0 < ac < bd.
Therefore, ac < bd.
Case 2: Suppose a = 0.
Then ac = 0c = 0.
Since b > a and a = 0, then b > 0.
Since d > c and c > 0, then d > 0.
Since b > 0 and d > 0, then bd > 0.
Therefore, ac = 0 < bd, so ac < bd.
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Lemma 30. sequence converging to a positive real number eventually
has positive terms

Let (an) be a sequence of real numbers.
If limn→∞ an exists and is positive, then there exists N ∈ N such that for all

n ∈ N, if n > N , then an > 0.

Proof. Suppose limn→∞ an exists and is positive.
Then there exists a real number L such that limn→∞ an = L and L > 0.
Since limn→∞ an = L and L > 0, then there exists N ∈ N such that for all

n ∈ N, if n > N , then |an − L| < L.
Let n ∈ N such that n > N .
Then |an − L| < L, so −L < an − L < L.
Hence, −L < an − L, so 0 < an.
Therefore, an > 0.

Proposition 31. limit of a square root equals square root of a limit
Let (an) be a sequence of real numbers.
If limn→∞ an exists and is positive, then limn→∞

√
an =

√
limn→∞ an.

Proof. Suppose limn→∞ an exists and is positive.
Then there is a real number L such that limn→∞ an = L and L > 0.
To prove limn→∞

√
an =

√
limn→∞ an, we must prove limn→∞

√
an =

√
L.

Let ε > 0 be given.
Since L > 0, then

√
L > 0, so ε

√
L > 0.

Since limn→∞ an = L and ε
√
L > 0, then there exists N1 ∈ N such that

|an − L| < ε
√
L whenever n > N1.

Since limn→∞ an = L and L > 0, then by the previous lemma, there exists
N2 ∈ N such that for all n ∈ N, if n > N2, then an > 0.

Let N = max{N1, N2}.
Then either N = N1 or N = N2 and N ≥ N1 and N ≥ N2.
Since either N = N1 or N = N2 and N1 ∈ N and N2 ∈ N, then N ∈ N.
Let n ∈ N such that n > N .
Since n > N and N ≥ N1, then n > N1, so |an − L| < ε

√
L.

Hence, 0 ≤ |an − L| < ε
√
L.

Since n > N and N ≥ N2, then n > N2, so an > 0.
Thus,

√
an > 0.

Since
√
an > 0 and

√
L > 0, then

√
an +

√
L > 0 and

√
an +

√
L >

√
L > 0.

Since
√
an +

√
L > 0, then

√
an +

√
L 6= 0.

Since 0 <
√
L <

√
an +

√
L, then 0 < 1√

an+
√
L
< 1√

L
.
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Observe that

|
√
an −

√
L| = |

√
an −

√
L ·
√
an +

√
L

√
an +

√
L
|

= | an − L
√
an +

√
L
|

= |an − L ·
1

√
an +

√
L
|

= |an − L| · |
1

√
an +

√
L
|

= |an − L| ·
1

|√an +
√
L|

= |an − L| ·
1

√
an +

√
L

< ε
√
L · 1√

L
= ε.

Therefore, |√an −
√
L| < ε, as desired.

Divergent Sequences

Proposition 32. divergence to ∞ implies divergence
A sequence that diverges to ∞ is divergent.

Proof. Let (an) be a sequence of real numbers.
We must prove if (an) diverges to ∞, then (an) diverges.
Suppose an →∞.
To prove (an) diverges, let L ∈ R be given.
We must prove (∃ε > 0)(∀n ∈ N)(∃N ′ ∈ N)(N ′ > n ∧ |sN ′ − L| ≥ ε).
Either L > 0 or L = 0 or L < 0.
We consider these cases separately.
Case 1: Suppose L = 0.
Let ε = 1.
Then ε > 0.
Since an →∞, then there exists N ∈ N such that an > 1 whenever n > N .
Let n ∈ N.
We must prove there exists N ′ ∈ N such that N ′ > n and |sN ′ | ≥ 1.
Let N ′ = N + n.
Then N ′ ∈ N.
Since N + n > n, then N ′ > n.
Since N + n > N , then N ′ > N .
Hence, sN ′ > 1 > 0.
Thus, |sN ′ | = sN ′ > 1, so |sN ′ | > 1.
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Therefore, |sN ′ | ≥ 1, as desired.
Case 2: Suppose L > 0.
Then 2L > 0.
Since an →∞, then there exists N ∈ N such that an > 2L whenever n > N .
Let ε = L.
Then ε > 0.
Let n ∈ N.
We must prove there exists N ′ ∈ N such that N ′ > n and |sN ′ − L| ≥ L.
Let N ′ = N + n.
Then N ′ ∈ N.
Since N + n > n, then N ′ > n.
Since N + n > N , then N ′ > N .
Thus, sN ′ > 2L.
Hence, sN ′ − L > L > 0.
Thus, |sN ′ − L| = sN ′ − L > L, so |sN ′ − L| > L.
Therefore, |sN ′ − L| ≥ L, as desired.
Case 3: Suppose L < 0.
Then −L > 0.
Since an →∞, then there exists N ∈ N such that an > −L whenever n > N .
Let ε = −2L.
Then ε > 0.
Let n ∈ N.
We must prove there exists N ′ ∈ N such that N ′ > n and |sN ′ − L| ≥ −2L.
Let N ′ = N + n.
Then N ′ ∈ N.
Since N + n > n, then N ′ > n.
Since N + n > N , then N ′ > N .
Thus, sN ′ > −L.
Hence, sN ′ − L > −2L > 0.
Thus, |sN ′ − L| = sN ′ − L > −2L, so |sN ′ − L| > −2L.
Therefore, |sN ′ − L| ≥ −2L, as desired.

Proposition 33. sequences that diverge to infinity are unbounded
Let (an) be a sequence of real numbers.
1. If limn→∞ an =∞, then (an) is unbounded above.
2. If limn→∞ an = −∞, then (an) is unbounded below.

Proof. We prove 1.
Suppose limn→∞ an =∞.
To prove (an) is unbounded above, we must prove (∀M)(∃n ∈ N)(an > M).
Let M ∈ R.
Either M > 0 or M ≤ 0.
We consider these cases separately.
Case 1: Suppose M > 0.
Since limn→∞ an =∞, then there exists N ∈ N such that an > M whenever

n > N .
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Let n ∈ N such that n > N .
Then an > M .
Case 2: Suppose M ≤ 0.
Since 1 > 0 and limn→∞ an =∞, then there exists N ∈ N such that an > 1

whenever n > N .
Let n ∈ N such that n > N .
Then an > 1.
Since an > 1 > 0 ≥M , then an > M .
Therefore, (an) is unbounded above, as desired.

Proof. We prove 2.
Suppose limn→∞ an = −∞.
Then limn→∞−an =∞.
To prove (an) is unbounded below, we must prove (∀M)(∃n ∈ N)(an < M).
Let M ∈ R.
Either M ≥ 0 or M < 0.
We consider these cases separately.
Case 1: Suppose M < 0.
Then −M > 0.
Since limn→∞−an = ∞, then there exists N ∈ N such that −an > −M

whenever n > N .
Let n ∈ N such that n > N .
Then −an > −M .
Hence, an < M .
Case 2: Suppose M ≥ 0.
Since 1 > 0 and limn→∞−an = ∞, then there exists N ∈ N such that

−an > 1 whenever n > N .
Let n ∈ N such that n > N .
Then −an > 1.
Hence, an < −1.
Since an < −1 < 0 ≤M , then an < M .
Therefore, (an) is unbounded below, as desired.

Monotone Convergence Theorem

Theorem 34. Monotone convergence theorem
Let (an) be a sequence of real numbers.
1. If (an) is increasing and bounded above, then limn→∞ an = sup(an).
2. If (an) is increasing and unbounded above, then limn→∞ an =∞.
3. If (an) is decreasing and bounded below, then limn→∞ an = inf(an).
4. If (an) is decreasing and unbounded below, then limn→∞ an = −∞.

Proof. We prove 1.
Suppose (an) is increasing and bounded above.
Let S = {an : n ∈ N}.
Since (an) is a sequence of real numbers, then S ⊂ R.
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Since a1 ∈ S, then S 6= ∅.
Since (an) is bounded above, then S is bounded above.
Thus, S is a nonempty subset of R bounded above in R, so by the complete-

ness axiom of R, supS exists.
Let ε > 0 be given.
Since supS is the least upper bound of (an), then there exists N ∈ N such

that aN > supS − ε.
Let n ∈ N such that n > N .
Then N < n.
Since (an) is increasing, then aN ≤ an.
Since supS is an upper bound of (an), then an ≤ supS.
Observe that

supS − ε < aN ≤ an ≤ supS < supS + ε ⇒ supS − ε < an < supS + ε

⇔ −ε < an − supS < ε

⇔ |an − supS| < ε.

Thus, limn→∞ an = supS = sup(an).

Proof. We prove 2.
Suppose (an) is increasing and unbounded above.
Let M > 0 be given.
Since (an) is unbounded above, then there exists N ∈ N such that aN > M .
Let n ∈ N such that n > N .
Then N < n.
Since (an) is increasing, then aN ≤ an.
Since an ≥ aN > M , then an > M .
Therefore, limn→∞ an =∞.

Proof. We prove 3.
Suppose (an) is decreasing and bounded below.
Let S = {an : n ∈ N}.
Since (an) is a sequence of real numbers, then S ⊂ R.
Since a1 ∈ S, then S 6= ∅.
Since (an) is bounded below, then S is bounded below.
Thus, S is a nonempty subset of R bounded below in R, so by the complete-

ness of R, inf S exists.
Let ε > 0 be given.
Since inf S is the greatest lower bound of (an), then there exists N ∈ N such

that aN < inf S + ε.
Let n ∈ N such that n > N .
Then N < n.
Since (an) is decreasing, then aN ≥ an.
Since inf S is a lower bound of (an), then inf S ≤ an.
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Observe that

inf S − ε < inf S ≤ an ≤ aN < inf S + ε ⇒ inf S − ε < an < inf S + ε

⇔ −ε < an − inf S < ε

⇔ |an − inf S| < ε.

Thus, limn→∞ an = inf S = inf(an).

Proof. We prove 4.
Suppose (an) is decreasing and unbounded below.
Let M > 0 be given.
Since M ∈ R, then −M ∈ R.
Since (an) is unbounded below, then there exists N ∈ N such that aN < −M .
Let n ∈ N such that n > N .
Then N < n.
Since (an) is decreasing, then aN ≥ an.
Since an ≤ aN < −M , then an < −M , so −an > M .
Therefore, limn→∞−an =∞, so limn→∞ an = −∞.

Lemma 35. Let r ∈ R.
1. If r > 0, then rn > 0 for all n ∈ N.
2. If r > 1, then rn ≥ (r − 1)n+ 1 for all n ∈ N.

Proof. We prove 1.
Suppose r > 0.
We prove rn > 0 for all n ∈ N by induction on n.
Let S = {n ∈ N : rn > 0}.
Since r1 = r > 0, then 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and rk > 0.
Since r > 0 and rk > 0, then rk+1 = rkr > 0.
Thus, rk+1 > 0, so k + 1 ∈ S.
Therefore, by PMI, S = N, so rn > 0 for all n ∈ N.

Proof. We prove 2.
Suppose r > 1.
Then r − 1 > 0.
Let c = r − 1.
Then c > 0.
We prove rn ≥ cn+ 1 for all n ∈ N by induction on n.
Let S = {n ∈ N : rn ≥ cn+ 1}.
Since r1 = r = (r − 1) · 1 + 1 = c · 1 + 1, then 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and rk ≥ ck + 1.
Since k ∈ N, then k ≥ 1 > 0, so k > 0.
Since c > 0 and k > 0, then ck > 0.
Since rk ≥ ck + 1 > 1, then rk > 1, so rkc > c.
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Observe that

rk+1 = rk · r
= rk(c+ 1)

= rkc+ rk

≥ rkc+ ck + 1

> c+ ck + 1

= c(k + 1) + 1.

Thus, rk+1 > c(k + 1) + 1, so k + 1 ∈ S.
Therefore, by PMI, S = N, so rn ≥ cn+ 1 for all n ∈ N.

Proposition 36. convergence behavior of a geometric sequence
Let r ∈ R.
Let (rn) be a geometric sequence.
1. If r > 1, then limn→∞ rn =∞.
2. If r = 1, then limn→∞ rn = 1.
3. If |r| < 1, then limn→∞ rn = 0.
4. If r = −1, then (rn) is divergent (oscillates).
5. If r < −1, then (rn) is divergent.

Proof. We prove 1.
Suppose r > 1.

We prove (rn) is strictly increasing.
Let n ∈ N be given.
Since r > 1 > 0, then r > 0.
Since n ∈ N and r > 0, then by a previous lemma, rn > 0.
Since rn > 0 and r > 1, then rn+1 = rnr > rn · 1 = rn, so rn+1 > rn.
Thus, rn < rn+1, so (rn) is strictly increasing.

Let M > 0 be given.
Let c = r − 1.
Since r > 1, then r − 1 > 0, so c > 0.
Since c 6= 0, then M−1

c ∈ R.

By the Archimedean property of R, there exists N ∈ N such that N > M−1
c .

Thus, cN + 1 > M .
Let n ∈ N such that n > N .
Then N < n.
Since (rn) is strictly increasing, then rN < rn.
Since r > 1 and N ∈ N, then by a previous lemma, rN ≥ cN + 1.
Hence, M < cN + 1 ≤ rN < rn, so M < rn.
Therefore, rn > M , so limn→∞ rn =∞, as desired.
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Proof. We prove 2.
Suppose r = 1.
Then 1 = limn→∞ 1 = limn→∞ 1n = limn→∞ rn, so limn→∞ rn = 1.

Proof. We prove 3.
Suppose |r| < 1.
Since |r| ≥ 0, then either |r| > 0 or |r| = 0.
We consider these cases separately.
Case 1: Suppose |r| = 0.
Then r = 0.
Since n ∈ N, then 0 = limn→∞ 0 = limn→∞ 0n = limn→∞ rn.
Therefore, limn→∞ rn = 0.
Case 2: Suppose |r| > 0.
Since 0 < |r| and |r| < 1, then 0 < |r| < 1, so 1

|r| > 1 > 0.

Thus, 1
|r| − 1 > 0.

Let c = 1
|r| − 1.

Then c > 0, so c 6= 0.
Let ε > 0 be given.
Then ε 6= 0, so 1

ε ∈ R and 1
ε > 0.

Since c 6= 0, then
1
ε−1
c ∈ R, so by the Archimedean property of R, there

exists N ∈ N such that N >
1
ε−1
c .

Let n ∈ N such that n > N .
Since n > N >

1
ε−1
c , then n >

1
ε−1
c , so cn > 1

ε − 1.
Thus, cn+ 1 > 1

ε > 0, so ε > 1
cn+1 .

Since |r| > 0 and n ∈ N, then by a previous lemma, |r|n > 0.
Since 1

|r| > 1 and n ∈ N, then by a previous lemma, ( 1
|r| )

n ≥ cn+ 1.

Since cn+ 1 > 1
ε > 0, then cn+ 1 > 0.

Observe that

(
1

|r|
)n ≥ cn+ 1 ⇔ 1

|r|n
≥ cn+ 1

⇔ 1

cn+ 1
≥ |r|n.

Thus, 1
cn+1 ≥ |r|

n.
Since |r| = 0 iff r = 0, then |r| 6= 0 iff r 6= 0.
Since |r| 6= 0, then r 6= 0.
Thus, |rn| = |r|n ≤ 1

cn+1 < ε, so |rn| < ε.
Therefore, limn→∞ rn = 0.

Proof. We prove 4.
Suppose r = −1.
Then rn = (−1)n.
The sequence given by rn = (−1)n for all n ∈ N was previously proven in

the examples to diverge.
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Proof. We prove 5.
Let r < −1.
Suppose (rn) is bounded.
Then there exists M > 0 such that |rn| < M for all n ∈ N.
Since r < −1 and −1 < 0, then −r > 1 and r < 0, so |r| = −r > 1.
Hence, |r| > 1, so |r| − 1 > 0.
Thus, |r| − 1 6= 0, so M−1

|r|−1 ∈ R.

By the Archimedean property of R, there exists N ∈ N such that N > M−1
|r|−1 .

Hence, (|r| − 1)N > M − 1, so (|r| − 1)N + 1 > M .
Since |r| > 1 and N ∈ N, then by a previous lemma, |r|N ≥ (|r| − 1)N + 1.
Since r < 0, then r 6= 0.
Thus,

|rN | = |r|N

≥ (|r| − 1)N + 1

> M.

Hence, there exists N ∈ N such that |rN | > M .
This contradicts the assumption that (rn) is bounded.
Therefore, (rn) is unbounded.
Since every unbounded sequence is divergent, then (rn) is divergent, as de-

sired.

Bolzano-Weierstrass theorem

Theorem 37. Nested intervals theorem
Let (In) be a sequence of nonempty closed, bounded intervals in R such that

In ⊃ In+1 for all n ∈ N. Then there exists α ∈ R such that α ∈ In for all n ∈ N.

Proof. Let n ∈ N.
Since In is a closed and bounded interval, then there exist an, bn ∈ R such

that In = [an, bn] = {x ∈ R : an ≤ x ≤ bn}.
Since In is not empty, then there exists x ∈ In.
Hence, x ∈ R and an ≤ x ≤ bn.
Thus, an ≤ bn.
Since n is arbitrary, then an ≤ bn for all n ∈ N.
Since an ∈ R for all n ∈ N, then (an) is a sequence of real numbers.
Since bn ∈ R for all n ∈ N, then (bn) is a sequence of real numbers.

Let n ∈ N.
Then In+1 ⊂ In.
Since In+1 = [an+1, bn+1], then an+1 ∈ In+1 and bn+1 ∈ In+1.
Since an+1 ∈ In+1 and In+1 ⊂ In, then an+1 ∈ In, so an ≤ an+1 ≤ bn.
Since bn+1 ∈ In+1 and In+1 ⊂ In, then bn+1 ∈ In, so an ≤ bn+1 ≤ bn.
Since an ≤ an+1 ≤ bn, then an ≤ an+1.
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Since an ≤ bn+1 ≤ bn, then bn+1 ≤ bn.
Since an ≤ an+1 and n is arbitrary, then an ≤ an+1 for all n ∈ N, so (an) is

increasing.
Since bn ≥ bn+1 and n is arbitrary, then bn ≥ bn+1 for all n ∈ N, so (bn) is

decreasing.

Proof. We prove am ≤ bn for all m ∈ N and all n ∈ N.
Let m,n ∈ N be given.
Either m < n or m = n or m > n.
We consider these cases separately.
Case 1: Suppose m = n.
Since an ≤ bn for all n ∈ N and m ∈ N, then am ≤ bm = bn.
Case 2: Suppose m < n.
Since (an) is increasing, then am ≤ an.
Since an ≤ bn for all n ∈ N and n ∈ N, then an ≤ bn.
Since am ≤ an and an ≤ bn, then am ≤ bn.
Case 3: Suppose m > n.
Since (bn) is decreasing and n < m, then bn ≥ bm.
Since an ≤ bn for all n ∈ N and m ∈ N, then am ≤ bm.
Since am ≤ bm and bm ≤ bn, then am ≤ bn.
Therefore, in all cases, am ≤ bn, as desired.

Proof. Let A = {an : n ∈ N}.
Since a1 ∈ A, then A 6= ∅.
Since am ≤ bn for all m ∈ N and all n ∈ N and 1 ∈ N, then am ≤ b1 for all

m ∈ N.
Hence, b1 is an upper bound of A, so A is bounded above in R
Since A 6= ∅ and is bounded above in R, then by completeness of R, supA

exists.

Let B = {bn : n ∈ N}.
Since b1 ∈ B, then B 6= ∅.
Since am ≤ bn for all m ∈ N and all n ∈ N and 1 ∈ N, then a1 ≤ bn for all

n ∈ N.
Hence, a1 is a lower bound of B, so B is bounded below in R
Since B 6= ∅ and is bounded below in R, then by completeness of R, inf B

exists.

Proof. We prove supA ≤ inf B.
Let b ∈ B.
Then b = bn for some n ∈ N.
Since am ≤ bn for all m,n ∈ N and n ∈ N, then am ≤ bn for all m ∈ N.
Hence, bn is an upper bound of A.
Since supA is the least upper bound of A, then supA ≤ bn.
Since b is arbitrary, then supA ≤ bn for all n ∈ N.
Thus, supA is a lower bound of B.
Since inf B is the greatest lower bound of B, then supA ≤ inf B.
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Proof. Since supA is an upper bound of A, then an ≤ supA for all n ∈ N.
Since supA ≤ inf B, then supA is a lower bound of B, so supA ≤ bn for all

n ∈ N.
Since an ≤ supA for all n ∈ N and supA ≤ bn for all n ∈ N, then an ≤

supA ≤ bn for all n ∈ N.
Let α = supA.
Then α ∈ R and an ≤ α ≤ bn for all n ∈ N, so α ∈ [an, bn] for all n ∈ N.
Hence, α ∈ In for all n ∈ N.
Therefore, there exists α ∈ R such that α ∈ In for all n ∈ N, as desired.

Theorem 38. Bolzano-Weierstrass theorem
Every bounded sequence in R has a convergent subsequence.

Proof. Let (xn) be a bounded sequence of real numbers.
Then there exists M ∈ R such that |xn| ≤ M for all n ∈ N, so there exists

M > 0 such that −M ≤ xn ≤M for all n ∈ N.
Let I1 = [−M,M ].
... Since (In) is a sequence of nonempty closed bounded intervals such that

In ⊃ In+1 for all n ∈ N, then by the Nested Intervals theorem, there exists
α ∈ R such that α ∈ In for all n ∈ N.

We then show there is a sequence (yn) such that yn ∈ In for each n ∈ N.
We then show that (yn) is a subsequence of (xn).
We should show that (yn) is increasing sequence and is bounded above.
We then show that limn→∞ yn = α.

Proof. Let (xn) be a bounded sequence of real numbers.
Then there exists a real number M > 0 such that −M < xn < M for all

n ∈ N.
Let I1 = [−M,M ].
Since (xn) has infinitely many terms, then A1 contains infinitely many terms

of (xn).
Hence, I1 is not empty.
Since M > 0, then −M < 0, so M and −M are distinct real numbers.
Thus, there exists a unique midpoint of the interval I1.
Hence, there exist exactly two subintervals of I1 of equal length.
Let B1 = [−M, 0] and C1 = [0,M ] be these two subintervals of I1.
Then I1 = B1 ∪ C1.
Suppose B1 and C1 contain finitely many terms of (xn).
Then the number of terms in A1 is |A1| = |B1|+ |C1|, a finite number.
But, this contradicts the fact that A1 contains infinitely many terms of (xn).
Hence, either B1 contains infinitely many terms of (xn) or C1 contains in-

finitely many terms of (xn).
Thus, at least one of these closed, bounded subintervals of I1 contains in-

finitely many terms of (xn).
Let I2 be one of these closed, bounded subintervals of I1 that contains in-

finitely many terms of (xn).
Since I2 contains infinitely many terms of (xn), then I2 is not empty.
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Since I2 is a subinterval of I1, then I2 ⊂ I1.
Since 0 < M , then there is a unique midpoint of the interval I2.
Thus, there exist exactly two subintervals of I2 of equal length.
Let B2 and C2 be these two closed, bounded subintervals of I2 of equal

length.
Again, at least one of these two subintervals of I2 contains infinitely many

terms of (xn).
Let I3 be one of these subintervals of I2 that contains infinitely many terms

of (xn).
Since I3 contains infinitely many terms of (xn), then I3 is not empty.
Since I3 is a subinterval of I2, then I3 ⊂ I2.
We repeat this process.
Since we can continue to always choose a closed, bounded subinterval of a

given interval Ik that always contains infinitely many terms of (xn), then this
process never ends.

Therefore, we have a sequence of nested nonempty, closed, bounded intervals
such that I1 ⊃ I2 ⊃ I3 ⊃ ....

Hence, by the Nested intervals theorem, there exists a real number α such
that α ∈ In for all n ∈ N.

Since In ⊃ In+1 for all n ∈ N, then if m < n, then Im ⊃ In. Prove this!

Proof. We must prove there exists a convergent subsequence (yn) of (xn).
Define function g : N → N by g(n) = kn such that g(n) < g(n + 1) for all

n ∈ N with g(1) = 1.
Since g(n) < g(n+ 1) for all n ∈ N, then g is strictly increasing.
Let (yn) be a subsequence of (xn) such that yn = xg(n) = xkn for all n ∈ N.
Then y1 = x1 = xk1 .
We need to rigorously show that there exists k2 ∈ N such that xk2 ∈ I2 and

k2 > 1.
Similarly, we need to show that there exists k3 ∈ N such that xk3 ∈ I3 and

k3 > k2.
etc.
In general, we have to show for each n > 1 there exists kn ∈ N such that

xkn ∈ In and kn > kn−1. We should try to prove by induction.
Let S = {n ∈ N : (∃kn ∈ N)(xkn ∈ In)(kn > kn−1} for n > 1 and k1 = 1.
Suppose m ∈ S.
Then m ∈ N and there exists km ∈ N such that akm ∈ Am and km > km−1

and m > 1.
To prove m + 1 ∈ S, prove there exists km+1 ∈ N such that akm+1

∈ Am+1

and km+1 > km and m+ 1 > 1.
Since Am+1 contains infinitely many terms of (an), then in particular, Am+1

contains at least m+ 1 elements.
Thus, there exist natural numbers r1, r2, ..., rm+1 such that ar1 , ar2 , ar3 , ..., arm+1

∈
Am+1.

It is because each An contains infinitely many terms.
So, for example for A2.
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We should show that there exists k2 ∈ N such that ak2 ∈ A2 and k2 > k1 = 1.
Suppose there does not exist k2 ∈ N such that ak2 ∈ A2 and k2 > k1 = 1.
This is equivalent to supposing that there does not exist m ∈ N such that

am ∈ A2 and m > 1.
Since A2 contains infinitely many terms of (an), then in particular, A2 con-

tains at least 2 elements.
Call these ar and as, so ar ∈ A2 and as ∈ A2 and r, s ∈ N.
We’d like to show that either r or s must be greater than 1.
So, assume r ≤ 1.
We must prove s > 1.
Since r ∈ N, then r ≥ 1.
Since r ≥ 1 and r ≤ 1, then r = 1.
Since r and s are distinct natural numbers, then s 6= r.
Thus, s 6= 1.
Since s ∈ N, then s ≥ 1.
Hence, s > 1, as desired.
What if we want to show there exists k ∈ N such that ak ∈ A2 and k > 2?

Proof. We now prove the subsequence (yn) converges to α.
The length of the interval In is 22−nM . Prove this!
Consider the sequence defined by 22−nM for all n ∈ N.
This sequence is 4M times the geometric sequence ( 1

2 )n which converges to
zero.

Thus, 22−nM converges to zero. (I.e. the lengths of the intervals eventually
get smaller and closer to zero).

We must prove that the sequence (22−nM) is decreasing and converges to
0, using any method we wish, such as by proving the sequence is 4 times the
geometric sequence ( 1

2 )n which converges to zero.
So, this means the sequence (22−nM) converges to 4 ∗ 0 = 0.

Let ε > 0 be given.
Since the sequence (22−nM) is decreasing and converges to 0, then 0 is the

greatest lower bound of (22−nM).
Hence, ε > 0 is not a lower bound of (22−nM), so there exists N ∈ N such

that 22−NM < ε.
Let n ∈ N such that n > N .
Then N < n.
Thus, IN ⊃ In.
Since akn ∈ In and In ⊂ IN , then akn ∈ IN .
Since akn = yn, then yn ∈ IN .

Proof. Let n ∈ N.
We must show that the length of the nth subinterval In is 22−nM .
We must show that yn ∈ In.
Since α ∈ In for all n ∈ N and n ∈ N, then α ∈ In.
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Since yn ∈ In and α ∈ In and In is a nonempty closed bounded interval with
length 22−nM , then |yn − α| ≤ 22−nM .

Therefore, |yn − α| ≤ 22−nM for all n ∈ N.

Proof. We prove limn→∞ yn = α.
Let ε > 0 be given.
By the Archimedean property of R, there exists N ∈ N such that N > 2+M

ε .
Let n ∈ N such that n > N .
Since n > N and N > 2 + M

ε , then n > 2 + M
ε , so n− 2 > M

ε .

Since n− 2 > 0, then ε > M
n−2 .

Since 2n > n > 0 for all n ∈ N, then 1
2n <

1
n for all n ∈ N.

Since n− 2 ∈ N, then this implies 1
2n−2 <

1
n−2 .

Since M > 0, then M
2n−2 <

M
n−2 .

Since M
2n−2 <

M
n−2 and M

n−2 < ε, then M
2n−2 < ε.

Since n− 2 > 0, then 22−nM < ε.
Since |yn − α| ≤ 22−nM for all n ∈ N and n ∈ N, then |yn − α| ≤ 22−nM .
Thus, |yn − α| ≤ 22−nM < ε, so |yn − α| < ε.
Therefore, limn→∞ yn = α.

Cauchy sequences

Lemma 39. Every convergent sequence in R is a Cauchy sequence.

Proof. Let (an) be a convergent sequence of real numbers.
To prove (an) is a Cauchy sequence, let ε > 0 be given.
Then ε

2 > 0.
Since (an) is convergent, then there exists a real number L and there exists

N ∈ N such that |an − L| < ε
2 whenever n > N .

Let m,n > N .
Since m > N , then |am − L| < ε

2 .
Since n > N , then |an − L| < ε

2 .
Observe that

|am − an| = |(am − L) + (L− an)|
≤ |am − L|+ |L− an|
= |am − L|+ |an − L|

<
ε

2
+
ε

2
= ε.

Therefore, |am − an| < ε, as desired.

Lemma 40. Every Cauchy sequence in R is bounded.
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Proof. Let (an) be a Cauchy sequence of real numbers.
Then for every ε > 0 there exists N ∈ N such that for all m,n ∈ N, if

m,n > N , then |am − an| < ε.
Let ε = 1.
Then there exists N ∈ N such that for all m,n ∈ N, if m,n > N , then

|am − an| < 1.
Let S = {|a1|, |a2|, ..., |aN |, 1 + |aN+1|} = {|ak| : 1 ≤ k ≤ N} ∪ {1 + |aN+1|}.
Then S ⊂ R.
Since 1 + |aN+1| ∈ S, then S is not empty.
Since S contains at most N + 1 elements, then S is finite.
Hence, S is a nonempty finite set of real numbers.
Therefore, maxS exists.
To prove (an) is bounded, we must prove there exists M ∈ R such that

|an| ≤M for all n ∈ N.
Let M = maxS.
Since M = maxS ∈ S and S ⊂ R, then M ∈ R.
Let n ∈ N.
Either n ≤ N or n > N .
We consider these cases separately.
Case 1: Suppose n ≤ N .
Then 1 ≤ n ≤ N , so |an| ∈ S.
Therefore, |an| ≤M .
Case 2: Suppose n > N .
Since n > N and N + 1 > N , then |an − aN+1| < 1.
Since 1 + |aN+1| ∈ S and M = maxS, then 1 + |aN+1| ≤M .
Observe that

|an| = |(an − aN+1) + aN+1|
≤ |an − aN+1|+ |aN+1|
< 1 + |aN+1|
≤ M.

Therefore, |an| < M , so |an| ≤M .
Thus, in all cases, |an| ≤M , so (an) is bounded, as desired.

Theorem 41. Cauchy convergence criterion for sequences
A sequence in R is convergent iff it is a Cauchy sequence.

Proof. Let (an) be a sequence of real numbers.
Suppose (an) is convergent.
Then, by a previous lemma, (an) is a Cauchy sequence.
Conversely, suppose (an) is a Cauchy sequence.
Then, by a previous lemma, (an) is bounded.
Thus, by the Bolzano-Weierstrass theorem, (an) has a convergent subse-

quence.
Let (bn) be a convergent subsequence of (an).
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Since (bn) is convergent, then there exists a real number L such that limn→∞ bn =
L.

We prove limn→∞ an = L.
Let ε > 0 be given.
Then ε

2 > 0.
Since limn→∞ bn = L, then there exists N1 ∈ N such that if n > N1, then

|bn − L| < ε
2 .

Since (an) is Cauchy, then there exists N2 ∈ N such that if m,n > N2, then
|am − an| < ε

2 .
Let N = max{N1, N2}.
Let n ∈ N such that n > N .
Since n > N ≥ N1, then n > N1, so |bn − L| < ε

2 .
Since n > N ≥ N2, then n > N2.
Since (bn) is a subsequence of (an), then there exists a strictly increasing

function g : N→ N such that bn = ag(n) for all n ∈ N.
SinceN2 < n and g is strictly increasing, then g(N2) < g(n) and g(N2) ≥ N2.
Thus, g(n) > g(N2) ≥ N2, so g(n) > N2.
Since n > N2 and g(n) > N2, then |an − ag(n)| < ε

2 , so |an − bn| < ε
2 .

Hence,

|an − L| = |(an − bn) + (bn − L)|
≤ |an − bn|+ |bn − L|

<
ε

2
+
ε

2
= ε.

Thus, |an − L| < ε, so limn→∞ an = L.
Therefore, (an) is convergent.
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