Sequences in \mathbb{R} Theory

Jason Sass

June 29, 2021

Sequences of Real Numbers

Proposition 1. $n^{\text {th }}$ term of an arithmetic sequence
Let $d \in \mathbb{R}$.
The $n^{\text {th }}$ term of an arithmetic sequence with common difference d and initial value a_{1} is $a_{n}=a_{1}+(n-1) d$.

Proof. We prove $a_{n}=a_{1}+(n-1) d$ for all $n \in \mathbb{N}$ by induction on n.
Let $S=\left\{n \in \mathbb{N}: a_{n}=a_{1}+(n-1) d\right\}$.
Since $a_{1}=a_{1}+0=a_{1}+0 d=a_{1}+(1-1) d$, then $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $a_{k}=a_{1}+(k-1) d$.
Observe that

$$
\begin{aligned}
a_{k+1} & =a_{k}+d \\
& =\left(a_{1}+(k-1) d\right)+d \\
& =\left(a_{1}+k d-d\right)+d \\
& =a_{1}+k d-d+d \\
& =a_{1}+k d \\
& =a_{1}+((k+1)-1) d
\end{aligned}
$$

Thus, $a_{k+1}=a_{1}+((k+1)-1) d$, so $k+1 \in S$.
Therefore, by PMI, $S=\mathbb{N}$, so $a_{n}=a_{1}+(n-1) d$ for all $n \in \mathbb{N}$.
Proposition 2. Let $\left(a_{n}\right)$ be an arithmetic sequence of real numbers with common difference d.

Then $a_{n}=\frac{a_{n-1}+a_{n+1}}{2}$ for all integers $n>1$.
Proof. Let $n \in \mathbb{Z}$ with $n>1$.
Since $\left(a_{n}\right)$ is an arithmetic sequence, then $a_{n+1}=a_{n}+d$ for all $n \in \mathbb{Z}^{+}$.
Since $n>1>0$, then $n>0$.
Since $n \in \mathbb{Z}$ and $n>0$, then $n \in \mathbb{Z}^{+}$, so $a_{n+1}=a_{n}+d$.
Since $n \in \mathbb{Z}$, then $n-1 \in \mathbb{Z}$.
Since $n>1$, then $n-1>0$.
Since $n-1 \in \mathbb{Z}$ and $n-1>0$, then $n-1 \in \mathbb{Z}^{+}$.

Hence, $a_{n}=a_{n-1}+d$, so $a_{n-1}=a_{n}-d$.
Therefore,

$$
\begin{aligned}
\frac{a_{n-1}+a_{n+1}}{2} & =\frac{\left(a_{n}-d\right)+\left(a_{n}+d\right)}{2} \\
& =\frac{2 a_{n}}{2} \\
& =a_{n}
\end{aligned}
$$

Proposition 3. $n^{\text {th }}$ term of a geometric sequence
Let $r \in \mathbb{R}, r \neq 0$.
The $n^{\text {th }}$ term of a geometric sequence with common ratio r and initial value a_{1} is $a_{n}=a_{1} r^{n-1}$.

Proof. We prove $a_{n}=a_{1} r^{n-1}$ for all $n \in \mathbb{N}$ by induction on n.
Let $S=\left\{n \in \mathbb{N}: a_{n}=a_{1} r^{n-1}\right\}$.
Since $a_{1}=a_{1} \cdot 1=a_{1} r^{0}=a_{1} r^{1-1}$, then $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $a_{k}=a_{1} r^{k-1}$.
Observe that

$$
\begin{aligned}
a_{k+1} & =a_{k} \cdot r \\
& =\left(a_{1} r^{k-1}\right) r \\
& =a_{1}\left(r^{k-1} r\right) \\
& =a_{1}\left(r^{k-1+1}\right) \\
& =a_{1} r^{k} \\
& =a_{1} r^{(k+1)-1}
\end{aligned}
$$

Thus, $a_{k+1}=a_{1} r^{(k+1)-1}$, so $k+1 \in S$.
Therefore, by PMI, $S=\mathbb{N}$, so $a_{n}=a_{1} r^{n-1}$ for all $n \in \mathbb{N}$.
Proposition 4. Let $\left(a_{n}\right)$ be a geometric sequence of positive real numbers with common ratio positive r.

Then $a_{n}=\sqrt{a_{n-1} a_{n+1}}$ for all integers $n>1$.
Proof. Let $n \in \mathbb{Z}$ with $n>1$.
Since $\left(a_{n}\right)$ is a geometric sequence, then $a_{n+1}=a_{n} r$ for all $n \in \mathbb{Z}^{+}$.
Since $\left(a_{n}\right)$ is a sequence of positive terms, then $a_{n}>0$ for all $n \in \mathbb{Z}^{+}$.
Since $n>1>0$, then $n>0$.
Since $n \in \mathbb{Z}$ and $n>0$, then $n \in \mathbb{Z}^{+}$, so $a_{n+1}=a_{n} r$ and and $a_{n}>0$.
Since $n \in \mathbb{Z}$, then $n-1 \in \mathbb{Z}$.
Since $n>1$, then $n-1>0$.
Since $n-1 \in \mathbb{Z}$ and $n-1>0$, then $n-1 \in \mathbb{Z}^{+}$, so $a_{n}=a_{n-1} r$.
Since $r>0$, then $r \neq 0$, so $a_{n-1}=\frac{a_{n}}{r}$.

Therefore,

$$
\begin{aligned}
\sqrt{a_{n-1} a_{n+1}} & =\sqrt{\left(\frac{a_{n}}{r}\right)\left(a_{n} r\right)} \\
& =\sqrt{a_{n} a_{n}} \\
& =\sqrt{\left(a_{n}\right)^{2}} \\
& =\left|a_{n}\right| \\
& =a_{n}
\end{aligned}
$$

Sequences as Functions

Proposition 5. sum and product of bounded sequences is bounded
Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be bounded sequences of real numbers. Then

1. $\left(a_{n}+b_{n}\right)$ is bounded.
2. $\left(a_{n} b_{n}\right)$ is bounded.

Proof. We prove 1.
Suppose $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are bounded.
Since $\left(a_{n}\right)$ is bounded, then there exists $\alpha \in \mathbb{R}$ such that $\left|a_{n}\right| \leq \alpha$ for all $n \in \mathbb{N}$.

Since $\left(b_{n}\right)$ is bounded, then there exists $\beta \in \mathbb{R}$ such that $\left|b_{n}\right| \leq \beta$ for all $n \in \mathbb{N}$.

To prove $\left(a_{n}+b_{n}\right)$ is bounded, we must prove there exists $\gamma \in \mathbb{R}$ such that $\left|a_{n}+b_{n}\right| \leq \gamma$ for all $n \in \mathbb{N}$.

Let $\gamma=\alpha+\beta$.
Since $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}$, then $\alpha+\beta \in \mathbb{R}$, so $\gamma \in \mathbb{R}$.
Let $n \in \mathbb{N}$.
Then $\left|a_{n}\right| \leq \alpha$ and $\left|b_{n}\right| \leq \beta$.
Thus,

$$
\begin{aligned}
\left|a_{n}+b_{n}\right| & \leq\left|a_{n}\right|+\left|b_{n}\right| \\
& \leq \alpha+\beta \\
& =\gamma
\end{aligned}
$$

Therefore, $\left|a_{n}+b_{n}\right| \leq \gamma$.
Proof. We prove 2.
Suppose $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are bounded.
Since $\left(a_{n}\right)$ is bounded, then there exists $\alpha \in \mathbb{R}$ such that $\left|a_{n}\right| \leq \alpha$ for all $n \in \mathbb{N}$.

Since $\left(b_{n}\right)$ is bounded, then there exists $\beta \in \mathbb{R}$ such that $\left|b_{n}\right| \leq \beta$ for all $n \in \mathbb{N}$.

To prove $\left(a_{n} b_{n}\right)$ is bounded, we must prove there exists $\gamma \in \mathbb{R}$ such that $\left|a_{n} b_{n}\right| \leq \gamma$ for all $n \in \mathbb{N}$.

Let $\gamma=\alpha \beta$.
Since $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}$, then $\alpha \beta \in \mathbb{R}$, so $\gamma \in \mathbb{R}$.
Let $n \in \mathbb{N}$.
Then $\left|a_{n}\right| \leq \alpha$ and $\left|b_{n}\right| \leq \beta$.
Since $0 \leq\left|a_{n}\right| \leq \alpha$ and $0 \leq\left|b_{n}\right| \leq \beta$, then $\left|a_{n} b_{n}\right|=\left|a_{n}\right|\left|b_{n}\right| \leq \alpha \beta=\gamma$.
Therefore, $\left|a_{n} b_{n}\right| \leq \gamma$.

Proposition 6. necessary and sufficient conditions for a monotonic sequence

Let $\left(a_{n}\right)$ be a sequence of real numbers. Then

1. $\left(a_{n}\right)$ is strictly increasing iff $m<n$ implies $a_{m}<a_{n}$ for all $m, n \in \mathbb{N}$.
2. $\left(a_{n}\right)$ is (monotonic) increasing iff $m<n$ implies $a_{m} \leq a_{n}$ for all $m, n \in$ \mathbb{N}.
3. $\left(a_{n}\right)$ is strictly decreasing iff $m<n$ implies $a_{m}>a_{n}$ for all $m, n \in \mathbb{N}$.
4. $\left(a_{n}\right)$ is (monotonic) decreasing iff $m<n$ implies $a_{m} \geq a_{n}$ for all $m, n \in$ \mathbb{N}.

Proof. We prove 1.
We must prove $\left(a_{n}\right)$ is strictly increasing iff $m<n$ implies $a_{m}<a_{n}$ for all $m, n \in \mathbb{N}$.

We prove if $m<n$ implies $a_{m}<a_{n}$ for all $m, n \in \mathbb{N}$, then $\left(a_{n}\right)$ is strictly increasing.

Suppose $m<n$ implies $a_{m}<a_{n}$ for all $m, n \in \mathbb{N}$.
Let $n \in \mathbb{N}$.
Since $n, n+1 \in \mathbb{N}$ and $n<n+1$, then $a_{n}<a_{n+1}$.
Therefore, $\left(a_{n}\right)$ is strictly increasing.
Conversely, we prove if $\left(a_{n}\right)$ is strictly increasing, then $m<n$ implies $a_{m}<$ a_{n} for all $m, n \in \mathbb{N}$.

Suppose (a_{n}) is strictly increasing.
Let $m \in \mathbb{N}$ be given.
The statement $m<n$ implies $a_{m}<a_{n}$ for all $n \in \mathbb{N}$ means that if n is an arbitrary natural number such that $m<n$, then $a_{m}<a_{n}$.

So, if $n \in \mathbb{N}$ such that $m<n$, then we must prove $a_{m}<a_{m+1}$ and $a_{m}<$ a_{m+2} and $a_{m}<a_{m+3} \ldots$ etc.

Thus, we must prove $a_{m}<a_{m+t}$ for every natural number t.
We prove $a_{m}<a_{m+t}$ for all $t \in \mathbb{N}$ by induction on t.
Let $S=\left\{t \in \mathbb{N}: a_{m}<a_{m+t}\right\}$.
Since $\left(a_{n}\right)$ is strictly increasing, then $a_{m}<a_{m+1}$.
Hence, $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $a_{m}<a_{m+k}$.
Since $\left(a_{n}\right)$ is strictly increasing, then $a_{m+k}<a_{m+k+1}$.
Thus, $a_{m}<a_{m+k}<a_{m+k+1}$, so $a_{m}<a_{m+k+1}$.
Since $k+1 \in \mathbb{N}$ and $a_{m}<a_{m+k+1}$, then $k+1 \in S$.
Thus, $k \in S$ implies $k+1 \in S$.

By the principle of mathematical induction, $a_{m}<a_{m+t}$ for every natural number t.

Hence, $m<n$ implies $a_{m}<a_{n}$ for all $n \in \mathbb{N}$.
Since $m \in \mathbb{N}$ is arbitrary, then $m<n$ implies $a_{m}<a_{n}$ for all $m, n \in \mathbb{N}$.
Proof. We prove 2.
We must prove $\left(a_{n}\right)$ is monotonic increasing iff $m<n$ implies $a_{m} \leq a_{n}$ for all $m, n \in \mathbb{N}$.

We prove if $m<n$ implies $a_{m} \leq a_{n}$ for all $m, n \in \mathbb{N}$, then $\left(a_{n}\right)$ is monotonic increasing.

Suppose $m<n$ implies $a_{m} \leq a_{n}$ for all $m, n \in \mathbb{N}$.
Let $n \in \mathbb{N}$.
Since $n, n+1 \in \mathbb{N}$ and $n<n+1$, then $a_{n} \leq a_{n+1}$.
Therefore, $\left(a_{n}\right)$ is monotonic increasing.
Conversely, we prove if $\left(a_{n}\right)$ is monotonic increasing, then $m<n$ implies $a_{m} \leq a_{n}$ for all $m, n \in \mathbb{N}$.

Suppose $\left(a_{n}\right)$ is monotonic increasing.
Let $m \in \mathbb{N}$ be given.
The statement $m<n$ implies $a_{m} \leq a_{n}$ for all $n \in \mathbb{N}$ means that if n is an arbitrary natural number such that $m<n$, then $a_{m} \leq a_{n}$.

So, if $n \in \mathbb{N}$ such that $m<n$, then we must prove $a_{m} \leq a_{m+1}$ and $a_{m} \leq$ a_{m+2} and $a_{m} \leq a_{m+3} \ldots$ etc.

Thus, we must prove $a_{m} \leq a_{m+t}$ for every natural number t.
We prove $a_{m} \leq a_{m+t}$ for all $t \in \mathbb{N}$ by induction on t.
Let $S=\left\{t \in \mathbb{N}: a_{m} \leq a_{m+t}\right\}$.
Since $\left(a_{n}\right)$ is monotonic increasing, then $a_{m} \leq a_{m+1}$.
Hence, $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $a_{m} \leq a_{m+k}$.
Since $\left(a_{n}\right)$ is monotonic increasing, then $a_{m+k} \leq a_{m+k+1}$.
Thus, $a_{m} \leq a_{m+k} \leq a_{m+k+1}$, so $a_{m} \leq a_{m+k+1}$.
Since $k+1 \in \mathbb{N}$ and $a_{m} \leq a_{m+k+1}$, then $k+1 \in S$.
Thus, $k \in S$ implies $k+1 \in S$.
By the principle of mathematical induction, $a_{m} \leq a_{m+t}$ for every natural number t.

Hence, $m<n$ implies $a_{m} \leq a_{n}$ for all $n \in \mathbb{N}$.
Since $m \in \mathbb{N}$ is arbitrary, then $m<n$ implies $a_{m} \leq a_{n}$ for all $m, n \in \mathbb{N}$.
Proof. We prove 3.
We must prove $\left(a_{n}\right)$ is strictly decreasing iff $m<n$ implies $a_{m}>a_{n}$ for all $m, n \in \mathbb{N}$.

We prove if $m<n$ implies $a_{m}>a_{n}$ for all $m, n \in \mathbb{N}$, then $\left(a_{n}\right)$ is strictly decreasing.

Suppose $m<n$ implies $a_{m}>a_{n}$ for all $m, n \in \mathbb{N}$.
Let $n \in \mathbb{N}$.
Since $n, n+1 \in \mathbb{N}$ and $n<n+1$, then $a_{n}>a_{n+1}$.

Therefore, $\left(a_{n}\right)$ is strictly decreasing.
Conversely, we prove if $\left(a_{n}\right)$ is strictly decreasing, then $m<n$ implies $a_{m}>$ a_{n} for all $m, n \in \mathbb{N}$.

Suppose $\left(a_{n}\right)$ is strictly decreasing.
Let $m \in \mathbb{N}$ be given.
The statement $m<n$ implies $a_{m}>a_{n}$ for all $n \in \mathbb{N}$ means that if n is an arbitrary natural number such that $m<n$, then $a_{m}>a_{n}$.

So, if $n \in \mathbb{N}$ such that $m<n$, then we must prove $a_{m}>a_{m+1}$ and $a_{m}>$ a_{m+2} and $a_{m}>a_{m+3} \ldots$ etc.

Thus, we must prove $a_{m}>a_{m+t}$ for every natural number t.
We prove $a_{m}>a_{m+t}$ for all $t \in \mathbb{N}$ by induction on t.
Let $S=\left\{t \in \mathbb{N}: a_{m}>a_{m+t}\right\}$.
Since $\left(a_{n}\right)$ is strictly decreasing, then $a_{m}>a_{m+1}$.
Hence, $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $a_{m}>a_{m+k}$.
Since $\left(a_{n}\right)$ is strictly decreasing, then $a_{m+k}>a_{m+k+1}$.
Thus, $a_{m}>a_{m+k}>a_{m+k+1}$, so $a_{m}>a_{m+k+1}$.
Since $k+1 \in \mathbb{N}$ and $a_{m}>a_{m+k+1}$, then $k+1 \in S$.
Thus, $k \in S$ implies $k+1 \in S$.
By the principle of mathematical induction, $a_{m}>a_{m+t}$ for every natural number t.

Hence, $m<n$ implies $a_{m}>a_{n}$ for all $n \in \mathbb{N}$.
Since $m \in \mathbb{N}$ is arbitrary, then $m<n$ implies $a_{m}>a_{n}$ for all $m, n \in \mathbb{N}$.
Proof. We prove 4.
We must prove $\left(a_{n}\right)$ is monotonic decreasing iff $m<n$ implies $a_{m} \geq a_{n}$ for all $m, n \in \mathbb{N}$.

We prove if $m<n$ implies $a_{m} \geq a_{n}$ for all $m, n \in \mathbb{N}$, then $\left(a_{n}\right)$ is monotonic decreasing.

Suppose $m<n$ implies $a_{m} \geq a_{n}$ for all $m, n \in \mathbb{N}$.
Let $n \in \mathbb{N}$.
Since $n, n+1 \in \mathbb{N}$ and $n<n+1$, then $a_{n} \geq a_{n+1}$.
Therefore, $\left(a_{n}\right)$ is monotonic decreasing.
Conversely, we prove if $\left(a_{n}\right)$ is monotonic decreasing, then $m<n$ implies $a_{m} \geq a_{n}$ for all $m, n \in \mathbb{N}$.

Suppose $\left(a_{n}\right)$ is monotonic decreasing.
Let $m \in \mathbb{N}$ be given.
The statement $m<n$ implies $a_{m} \geq a_{n}$ for all $n \in \mathbb{N}$ means that if n is an arbitrary natural number such that $m<n$, then $a_{m} \geq a_{n}$.

So, if $n \in \mathbb{N}$ such that $m<n$, then we must prove $a_{m} \geq a_{m+1}$ and $a_{m} \geq$ a_{m+2} and $a_{m} \geq a_{m+3} \ldots$ etc.

Thus, we must prove $a_{m} \geq a_{m+t}$ for every natural number t.
We prove $a_{m} \geq a_{m+t}$ for all $t \in \mathbb{N}$ by induction on t.
Let $S=\left\{t \in \mathbb{N}: a_{m} \geq a_{m+t}\right\}$.
Since $\left(a_{n}\right)$ is monotonic decreasing, then $a_{m} \geq a_{m+1}$.

Hence, $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $a_{m} \geq a_{m+k}$.
Since (a_{n}) is monotonic decreasing, then $a_{m+k} \geq a_{m+k+1}$.
Thus, $a_{m} \geq a_{m+k} \geq a_{m+k+1}$, so $a_{m} \geq a_{m+k+1}$.
Since $k+1 \in \mathbb{N}$ and $a_{m} \geq a_{m+k+1}$, then $k+1 \in S$.
Thus, $k \in S$ implies $k+1 \in S$.
By the principle of mathematical induction, $a_{m} \geq a_{m+t}$ for every natural number t.

Hence, $m<n$ implies $a_{m} \geq a_{n}$ for all $n \in \mathbb{N}$.
Since $m \in \mathbb{N}$ is arbitrary, then $m<n$ implies $a_{m} \geq a_{n}$ for all $m, n \in \mathbb{N}$.
Proposition 7. If $f: \mathbb{N} \rightarrow \mathbb{N}$ is a strictly increasing function, then $f(n) \geq n$ for all $n \in \mathbb{N}$.

Proof. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a strictly increasing function.
We prove $f(n) \geq n$ for all $n \in \mathbb{N}$ by induction on n.
Let $S=\{n \in \mathbb{N}: f(n) \geq n\}$.
Since $1 \in \mathbb{N}$, then $f(1) \in \mathbb{N}$, so $f(1) \geq 1$.
Hence, $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $f(k) \geq k$.
Since f is strictly increasing and $k \in \mathbb{N}$ and $k+1 \in \mathbb{N}$, then $f(k)<f(k+1)$.
Thus, $k \leq f(k)$ and $f(k)<f(k+1)$, so $k<f(k+1)$.
Suppose $f(k+1)<k+1$.
Then $k<f(k+1)$ and $f(k+1)<k+1$, so $k<f(k+1)<k+1$.
Since $k, k+1, f(k+1) \in \mathbb{N}$, then this implies there is a natural number between two consecutive natural numbers, an impossibility.

Therefore, $f(k+1) \geq k+1$, so $k+1 \in S$.
Thus, by PMI, $S=\mathbb{N}$, so $f(n) \geq n$ for all $n \in \mathbb{N}$, as desired.
Proposition 8. subsequence preserves monotonicity and boundedness

1. Every subsequence of an increasing sequence is increasing.
2. Every subsequence of a decreasing sequence is decreasing.
3. Every subsequence of a bounded sequence is bounded.

Proof. We prove 1.
We must prove every subsequence of an increasing sequence is increasing.
Let $\left(a_{n}\right)$ be a monotonic increasing sequence of real numbers.
Since $\left(a_{n}\right)$ is a sequence of real numbers, then there exists a function f :
$\mathbb{N} \rightarrow \mathbb{R}$ such that $f(n)=a_{n}$ for all $n \in \mathbb{N}$.
Suppose $\left(b_{n}\right)$ is a subsequence of $\left(a_{n}\right)$.
Then there exists a strictly increasing function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that $b_{n}=$ $(f \circ g)(n)$ for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$.
Since g is strictly increasing, then $g(n)<g(n+1)$.

Since $\left(a_{n}\right)$ is monotonic increasing and $g(n), g(n+1) \in \mathbb{N}$ and $g(n)<g(n+1)$, then $a_{g(n)} \leq a_{g(n+1)}$.

Observe that

$$
\begin{aligned}
b_{n} & =(f \circ g)(n) \\
& =f(g(n)) \\
& =a_{g(n)} \\
& \leq a_{g(n+1)} \\
& =f(g(n+1)) \\
& =(f \circ g)(n+1) \\
& =b_{n+1} .
\end{aligned}
$$

Therefore, $b_{n} \leq b_{n+1}$, so $\left(b_{n}\right)$ is increasing, as desired.
Proof. We prove 2.
We must prove every subsequence of a decreasing sequence is decreasing.
Let $\left(a_{n}\right)$ be a monotonic decreasing sequence of real numbers.
Since $\left(a_{n}\right)$ is a sequence of real numbers, then there exists a function f : $\mathbb{N} \rightarrow \mathbb{R}$ such that $f(n)=a_{n}$ for all $n \in \mathbb{N}$.

Suppose $\left(b_{n}\right)$ is a subsequence of $\left(a_{n}\right)$.
Then there exists a strictly increasing function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that $b_{n}=$ $(f \circ g)(n)$ for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$.
Since g is strictly increasing, then $g(n)<g(n+1)$.
Since $\left(a_{n}\right)$ is monotonic decreasing and $g(n), g(n+1) \in \mathbb{N}$ and $g(n)<g(n+1)$, then $a_{g(n)} \geq a_{g(n+1)}$.

Observe that

$$
\begin{aligned}
b_{n} & =(f \circ g)(n) \\
& =f(g(n)) \\
& =a_{g(n)} \\
& \geq a_{g(n+1)} \\
& =f(g(n+1)) \\
& =(f \circ g)(n+1) \\
& =b_{n+1} .
\end{aligned}
$$

Therefore, $b_{n} \geq b_{n+1}$, so (b_{n}) is decreasing, as desired.
Proof. We prove 3.
We must prove every subsequence of a bounded sequence is bounded.
Let $\left(a_{n}\right)$ be a bounded sequence of real numbers.
Since $\left(a_{n}\right)$ is a sequence of real numbers, then there exists a function f : $\mathbb{N} \rightarrow \mathbb{R}$ such that $f(n)=a_{n}$ for all $n \in \mathbb{N}$.

Suppose $\left(b_{n}\right)$ is a subsequence of $\left(a_{n}\right)$.

Then there exists a strictly increasing function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that $b_{n}=$ $(f \circ g)(n)$ for all $n \in \mathbb{N}$.

Since $\left(a_{n}\right)$ is bounded, then there exists $M \in \mathbb{R}$ such that $\left|a_{n}\right| \leq M$ for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$.
Then $g(n) \in \mathbb{N}$ and

$$
\begin{aligned}
\left|b_{n}\right| & =|(f \circ g)(n)| \\
& =|f(g(n))| \\
& =\left|a_{g(n)}\right| \\
& \leq M
\end{aligned}
$$

Therefore, $\left|b_{n}\right| \leq M$, so $\left(b_{n}\right)$ is bounded, as desired.
Proposition 9. M tail of a sequence is a subsequence of the sequence
Let $\left(a_{n}\right)$ be a sequence in \mathbb{R}.
If $\left(b_{n}\right)$ is an M tail of $\left(a_{n}\right)$, then $\left(b_{n}\right)$ is a subsequence of $\left(a_{n}\right)$.
Proof. Suppose $\left(b_{n}\right)$ is an M tail of $\left(a_{n}\right)$.
Then there exists $M \in \mathbb{N}$ such that $b_{n}=a_{M+n}$ for all $n \in \mathbb{N}$.
Since $\left(a_{n}\right)$ is a sequence in \mathbb{R}, then there exists a function $f: \mathbb{N} \rightarrow \mathbb{R}$ such that $f(n)=a_{n}$ for all $n \in \mathbb{N}$.

Let $g: \mathbb{N} \rightarrow \mathbb{N}$ be a function defined by $g(n)=M+n$ for all $n \in \mathbb{N}$.
Let $m, n \in \mathbb{N}$ such that $m<n$.
Then $g(m)=M+m<M+n=g(n)$, so $g(m)<g(n)$.
Hence, g is strictly increasing.
Let $n \in \mathbb{N}$ be given.
Then

$$
\begin{aligned}
b_{n} & =a_{M+n} \\
& =f(M+n) \\
& =f(g(n)) \\
& =(f \circ g)(n)
\end{aligned}
$$

Therefore, $\left(b_{n}\right)$ is a subsequence of $\left(a_{n}\right)$.

Convergent Sequences in \mathbb{R}

Theorem 10. uniqueness of a limit of a convergent sequence
The limit of a convergent sequence of real numbers is unique.
Proof. Let $\left(a_{n}\right)$ be a convergent sequence of real numbers.
Then a limit of $\left(a_{n}\right)$ exists as a real number.
Thus, there is at least one limit of $\left(a_{n}\right)$.
To prove the limit is unique, let $L_{1}, L_{2} \in \mathbb{R}$ such that L_{1} is a limit of $\left(a_{n}\right)$ and L_{2} is a limit of $\left(a_{n}\right)$.

We must prove $L_{1}=L_{2}$.
Suppose $L_{1} \neq L_{2}$.
Then $L_{1}-L_{2} \neq 0$, so $\left|L_{1}-L_{2}\right|>0$.
Let $\epsilon=\frac{\left|L_{1}-L_{2}\right|}{2}$.
Then $\epsilon>0$.
Since L_{1} is a limit of $\left(a_{n}\right)$ and $\epsilon>0$, then there exists $N_{1} \in \mathbb{N}$ such that if $n>N_{1}$ then $\left|a_{n}-L_{1}\right|<\epsilon$.

Since L_{2} is a limit of $\left(a_{n}\right)$ and $\epsilon>0$, then there exists $N_{2} \in \mathbb{N}$ such that if $n>N_{2}$ then $\left|a_{n}-L_{2}\right|<\epsilon$.

Let $N=\max \left\{N_{1}, N_{2}\right\}$.
Let $n \in \mathbb{N}$ such that $n>N$.
Since $n>N \geq N_{1}$, then $n>N_{1}$.
Hence, $\left|a_{n}-L_{1}\right|<\epsilon$.
Since $n>N \geq N_{2}$, then $n>N_{2}$.
Hence, $\left|a_{n}-L_{2}\right|<\epsilon$.
Observe that

$$
\begin{aligned}
\left|L_{1}-L_{2}\right| & =\left|\left(L_{1}-a_{n}\right)+\left(a_{n}-L_{2}\right)\right| \\
& \leq\left|L_{1}-a_{n}\right|+\left|a_{n}-L_{2}\right| \\
& =\left|a_{n}-L_{1}\right|+\left|a_{n}-L_{2}\right| \\
& <\epsilon+\epsilon \\
& =2 \epsilon .
\end{aligned}
$$

Thus, $\left|L_{1}-L_{2}\right|<2 \epsilon$, so $\frac{\left|L_{1}-L_{2}\right|}{2}<\epsilon$.
Hence, $\epsilon<\epsilon$, a contradiction.
Therefore, $L_{1}=L_{2}$, as desired.
Proposition 11. a difference in a finite number of initial terms does not affect the convergence of a sequence

Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be sequences of real numbers.
If there exists $K \in \mathbb{N}$ such that $b_{n}=a_{n}$ for all $n>K$ and $\lim _{n \rightarrow \infty} a_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=L$.

Proof. Suppose there exists $K \in \mathbb{N}$ such that $b_{n}=a_{n}$ for all $n>K$ and $\lim _{n \rightarrow \infty} a_{n}=L$.

Let $\epsilon>0$ be given.
Since $\lim _{n \rightarrow \infty} a_{n}=L$, then there exists $N \in \mathbb{N}$ such that if $n>N$, then $\left|a_{n}-L\right|<\epsilon$.

Let $M=\max \{K, N\}$.
Let $n \in \mathbb{N}$ such that $n>M$.
Since $n>M \geq N$, then $n>N$.
Hence, $\left|a_{n}-L\right|<\epsilon$.
Since $n>M \geq K$, then $n>K$.
Hence, $b_{n}=a_{n}$.
Thus, $\left|b_{n}-L\right|=\left|a_{n}-L\right|<\epsilon$, so $\left|b_{n}-L\right|<\epsilon$.
Therefore, $\lim _{n \rightarrow \infty} b_{n}=L$.

Proposition 12. Let $L \in \mathbb{R}$.
Let $\left(a_{n}\right)$ and $\left(a_{n}-L\right)$ be sequences in \mathbb{R}.
Then $\lim _{n \rightarrow \infty} a_{n}=L$ iff $\lim _{n \rightarrow \infty}\left(a_{n}-L\right)=0$.
Proof. Observe that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n}=L & \Leftrightarrow \\
(\forall \epsilon>0)(\exists N \in \mathbb{N})(\forall n \in \mathbb{N})\left(n>N \rightarrow\left|a_{n}-L\right|<\epsilon\right) & \Leftrightarrow \\
(\forall \epsilon>0)(\exists N \in \mathbb{N})(\forall n \in \mathbb{N})\left(n>N \rightarrow\left|\left(a_{n}-L\right)-0\right|<\epsilon\right) & \Leftrightarrow \\
\lim _{n \rightarrow \infty}\left(a_{n}-L\right)=0 . &
\end{aligned}
$$

Theorem 13. every subsequence of a convergent sequence is convergent

Let $\left(a_{n}\right)$ be a convergent sequence of real numbers.
If $\left(b_{n}\right)$ is a subsequence of $\left(a_{n}\right)$, then $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} a_{n}$.
Proof. Suppose $\left(b_{n}\right)$ is a subsequence of $\left(a_{n}\right)$.
Since $\left(a_{n}\right)$ is convergent, then there exists a real number L such that $\lim _{n \rightarrow \infty} a_{n}=$ L.

Let $\epsilon>0$ be given.
Then there exists $N \in \mathbb{N}$ such that if $n>N$, then $\left|a_{n}-L\right|<\epsilon$.
Since $\left(a_{n}\right)$ is a sequence, then there exists a function $f: \mathbb{N} \rightarrow \mathbb{R}$ such that $f(n)=a_{n}$ for all $n \in \mathbb{N}$.

Since $\left(b_{n}\right)$ is a subsequence of $\left(a_{n}\right)$, then there exists a strictly increasing function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that $b_{n}=(f \circ g)(n)$ for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $N<n$.
Since g is strictly increasing, then $g(N)<g(n)$.
Since g is strictly increasing and $N \in \mathbb{N}$, then by a previous proposition, $g(N) \geq N$.

Thus, $N \leq g(N)$ and $g(N)<g(n)$, so $N<g(n)$.
Since $g(n) \in \mathbb{N}$ and $g(n)>N$, then $\left|a_{g(n)}-L\right|<\epsilon$.
Observe that

$$
\begin{aligned}
\left|b_{n}-L\right| & =|(f \circ g)(n)-L| \\
& =|f(g(n))-L| \\
& =\left|a_{g(n)}-L\right| \\
& <\epsilon
\end{aligned}
$$

Therefore, $\left|b_{n}-L\right|<\epsilon$, so $\lim _{n \rightarrow \infty} b_{n}=L=\lim _{n \rightarrow \infty} a_{n}$.
Corollary 14. Let $\left(a_{n}\right)$ be a sequence of real numbers.
If $\left(b_{n}\right)$ and $\left(c_{n}\right)$ are convergent subsequences of $\left(a_{n}\right)$ such that $\lim _{n \rightarrow \infty} b_{n} \neq$ $\lim _{n \rightarrow \infty} c_{n}$, then $\left(a_{n}\right)$ is divergent.

Proof. Suppose $\left(b_{n}\right)$ and $\left(c_{n}\right)$ are convergent subsequences of $\left(a_{n}\right)$ such that $\lim _{n \rightarrow \infty} b_{n} \neq \lim _{n \rightarrow \infty} c_{n}$.

We prove $\left(a_{n}\right)$ is divergent by contradiction.
Suppose (a_{n}) is not divergent.
Then $\left(a_{n}\right)$ is convergent.
Hence, there exists a real number L such that $\lim _{n \rightarrow \infty} a_{n}=L$.
Since $\left(b_{n}\right)$ is a subsequence of $\left(a_{n}\right)$ and $\lim _{n \rightarrow \infty} a_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=L$.
Since $\left(c_{n}\right)$ is a subsequence of $\left(a_{n}\right)$ and $\lim _{n \rightarrow \infty} a_{n}=L$, then $\lim _{n \rightarrow \infty} c_{n}=L$.
Thus, $\lim _{n \rightarrow \infty} b_{n}=L=\lim _{n \rightarrow \infty} c_{n}$, so $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} c_{n}$.
This contradicts the assumption that $\lim _{n \rightarrow \infty} b_{n} \neq \lim _{n \rightarrow \infty} c_{n}$.
Therefore, $\left(a_{n}\right)$ is divergent.
Proposition 15. M tail of a sequence is convergent iff the sequence is convergent

Let $\left(a_{n}\right)$ be a sequence of real numbers.
Let $M \in \mathbb{N}$.
If $\left(a_{n}\right)$ is convergent, then $\lim _{n \rightarrow \infty} a_{M+n}=\lim _{n \rightarrow \infty} a_{n}$.
If $\left(a_{M+n}\right)$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{M+n}$.
Proof. Suppose $\left(a_{n}\right)$ is convergent.
Then there exists $L \in \mathbb{R}$ such that $\lim _{n \rightarrow \infty} a_{n}=L$.
Let $\left(b_{n}\right)$ be a sequence of real numbers defined by $b_{n}=a_{M+n}$ for all $n \in \mathbb{N}$.
We must prove $\lim _{n \rightarrow \infty} b_{n}=L$.
Since $b_{n}=a_{M+n}$ for all $n \in \mathbb{N}$, then $\left(b_{n}\right)$ is the M tail of $\left(a_{n}\right)$.
Hence, $\left(b_{n}\right)$ is a subsequence of $\left(a_{n}\right)$.
Since $\left(a_{n}\right)$ is convergent, then $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} a_{n}=L$, as esired.

Conversely, suppose $\left(b_{n}\right)$ is convergent.
Then there exists $L \in \mathbb{R}$ such that $\lim _{n \rightarrow \infty} b_{n}=L$.
We must prove $\lim _{n \rightarrow \infty} a_{n}=L$.
Let $\epsilon>0$ be given.
Then there exists $N \in \mathbb{N}$ such that if $n>N$, then $\left|b_{n}-L\right|<\epsilon$.

We prove $a_{n}=b_{n-M}$ for all $n>M$ by induction on n.
Let $S=\left\{n \in \mathbb{N}: a_{n}=b_{n-M}, n>M\right\}$.
Since $M+1 \in \mathbb{N}$ and $M+1>M$ and $a_{M+1}=b_{1}=b_{(M+1)-M}$, then $M+1 \in S$.

Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $k>M$.
Since $k \in \mathbb{N}$, then $k+1 \in \mathbb{N}$.
Since $k+1>k$ and $k>M$, then $k+1>M$.
Since $k+1-M \in \mathbb{N}$ and $b_{k+1-M}=a_{M+(k+1-M)}=a_{k+1}$, then $k+1 \in S$.
Therefore, by PMI, $a_{n}=b_{n-M}$ for all $n>M$.

Since $M \in \mathbb{N}$ and $N \in \mathbb{N}$, then $M+N \in \mathbb{N}$.
Let $n \in \mathbb{N}$ such that $n>M+N$.
Then $n-M>N$, so $\left|b_{n-M}-L\right|<\epsilon$.
Since $N \in \mathbb{N}$, then $N>0$, so $M+N>M$.
Since $n>M+N$ and $M+N>M$, then $n>M$, so $a_{n}=b_{n-M}$.
Observe that

$$
\begin{aligned}
\left|a_{n}-L\right| & =\left|b_{n-M}-L\right| \\
& <\epsilon
\end{aligned}
$$

Hence, $\left|a_{n}-L\right|<\epsilon$, so $\lim _{n \rightarrow \infty} a_{n}=L$, as desired.

Algebraic properties of convergent sequences

Theorem 16. convergence implies boundedness
Every convergent sequence of real numbers is bounded.
Proof. Let $\left(a_{n}\right)$ be a convergent sequence of real numbers.
Then there is a real number L such that for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|a_{n}-L\right|<\epsilon$ whenever $n>N$.

Let $\epsilon=1$.
Then there exists $N \in \mathbb{N}$ such that $\left|a_{n}-L\right|<1$ whenever $n>N$.
Let $S=\left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{N}\right|, 1+|L|\right\}=\left\{\left|a_{k}\right|: 1 \leq k \leq N\right\} \cup\{1+|L|\}$.
Then $S \subset \mathbb{R}$.
Since $1+|L| \in S$, then S is not empty.
Since S contains at most $N+1$ elements, then S is finite.
Hence, S is a nonempty finite set of real numbers.
Therefore, $\max S$ exists.
To prove $\left(a_{n}\right)$ is bounded, we must prove there exists $M \in \mathbb{R}$ such that $\left|a_{n}\right| \leq M$ for all $n \in \mathbb{N}$.

Let $M=\max S$.
Since $M=\max S \in S$ and $S \subset \mathbb{R}$, then $M \in \mathbb{R}$.
Let $n \in \mathbb{N}$.
Either $n \leq N$ or $n>N$.
We consider these cases separately.
Case 1: Suppose $n \leq N$.
Then $1 \leq n \leq N$, so $\left|a_{n}\right| \in S$.
Therefore, $\left|a_{n}\right| \leq M$.
Case 2: Suppose $n>N$.
Then $\left|a_{n}-L\right|<1$.
Since $1+|L| \in S$ and $M=\max S$, then $1+|L| \leq M$.

Observe that

$$
\begin{aligned}
\left|a_{n}\right| & =\left|\left(a_{n}-L\right)+L\right| \\
& \leq\left|a_{n}-L\right|+|L| \\
& <1+|L| \\
& \leq M .
\end{aligned}
$$

Therefore, $\left|a_{n}\right|<M$, so $\left|a_{n}\right| \leq M$.
Thus, in all cases, $\left|a_{n}\right| \leq M$, so $\left(a_{n}\right)$ is bounded, as desired.
Proposition 17. If $\lim _{n \rightarrow \infty} a_{n}=0$ and $\left(b_{n}\right)$ is bounded, then $\lim _{n \rightarrow \infty} a_{n} b_{n}=$ 0 .

Proof. Suppose $\lim _{n \rightarrow \infty} a_{n}=0$ and $\left(b_{n}\right)$ is bounded.
Let $\epsilon>0$ be given.
Since $\left(b_{n}\right)$ is bounded, then there exists $M>0$ such that $\left|b_{n}\right|<M$ for all $n \in \mathbb{N}$.

Since $\epsilon>0$ and $M>0$, then $\frac{\epsilon}{M}>0$.
Since $\lim _{n \rightarrow \infty} a_{n}=0$, then there exists $N \in \mathbb{N}$ such that $\left|a_{n}\right|<\frac{\epsilon}{M}$ whenever $n>N$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $\left|a_{n}\right|<\frac{\epsilon}{M}$ and $\left|b_{n}\right|<M$.
Since $0 \leq\left|a_{n}\right|<\frac{\epsilon}{M}$ and $0 \leq\left|b_{n}\right|<M$, then

$$
\begin{aligned}
\left|a_{n} b_{n}\right| & =\left|a_{n}\right|\left|b_{n}\right| \\
& <\frac{\epsilon}{M} \cdot M \\
& =\epsilon .
\end{aligned}
$$

Therefore, $\left|a_{n} b_{n}\right|<\epsilon$, so $\lim _{n \rightarrow \infty} a_{n} b_{n}=0$.
Lemma 18. Let $\left(a_{n}\right)$ be a sequence of real numbers.
If there exists $L \neq 0$ such that $\lim _{n \rightarrow \infty} a_{n}=L$, then there is a natural number N such that $\left|a_{n}\right|>\frac{|L|}{2}$ for all $n>N$.

Proof. Suppose there exists $L \neq 0$ such that $\lim _{n \rightarrow \infty} a_{n}=L$.
Since $L \neq 0$, then $|L|>0$, so $\frac{|L|}{2}>0$.
Since $\lim _{n \rightarrow \infty} a_{n}=L$, then there exists $N \in \mathbb{N}$ such that $\left|a_{n}-L\right|<\frac{|L|}{2}$ whenever $n>N$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $\left|a_{n}-L\right|<\frac{|L|}{2}$.
Since $\frac{|L|}{2}>\left|a_{n}-L\right| \geq|L|-\left|a_{n}\right|$, then $\frac{|L|}{2}>|L|-\left|a_{n}\right|$.
Therefore, $\left|a_{n}\right|>\frac{|L|}{2}$, as desired.
Lemma 19. Let $\left(a_{n}\right)$ be a sequence of real numbers.
If there exists $L \neq 0$ such that $\lim _{n \rightarrow \infty} a_{n}=L$ and $a_{n} \neq 0$ for all $n \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=\frac{1}{L}$.

Proof. Suppose there exists $L \neq 0$ such that $\lim _{n \rightarrow \infty} a_{n}=L$ and $a_{n} \neq 0$ for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$ be given.
Since $a_{n} \neq 0$ for all $n \in \mathbb{N}$, then $a_{n} \neq 0$, so $\frac{1}{a_{n}} \in \mathbb{R}$.
Hence, $\frac{1}{a_{n}} \in \mathbb{R}$ for all $n \in \mathbb{N}$, so the sequence $\left(\frac{1}{a_{n}}\right)$ is well defined.
Since $L \neq 0$, then $\frac{1}{L} \in \mathbb{R}$.
To prove $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=\frac{1}{L}$, let $\epsilon>0$ be given.
Since $\epsilon>0$ and $|L|^{2}>0$, then $\frac{\epsilon|L|^{2}}{2}>0$.
Since $\lim _{n \rightarrow \infty} a_{n}=L$, then there exists $N_{1} \in \mathbb{N}$ such that if $n>N_{1}$, then $\left|a_{n}-L\right|<\frac{\epsilon|L|^{2}}{2}$.

Since $\lim _{n \rightarrow \infty} a_{n}=L$ and $L \neq 0$, then by a previous lemma, there exists $N_{2} \in \mathbb{N}$ such that if $n>N_{2}$, then $\left|a_{n}\right|>\frac{|L|}{2}$.

Let $N=\max \left\{N_{1}, N_{2}\right\}$.
Let $n \in \mathbb{N}$ such that $n>N$.
Since $n>N \geq N_{1}$, then $n>N_{1}$, so $\left|a_{n}-L\right|<\frac{\epsilon|L|^{2}}{2}$.
Thus, $0 \leq\left|a_{n}-L\right|<\frac{\epsilon|L|^{2}}{2}$.
Since $n>N \geq N_{2}$, then $n>N_{2}$, so $\left|a_{n}\right|>\frac{|L|}{2}$.
Since $L \neq 0$, then $|L|>0$.
Since $a_{n} \neq 0$, then $\left|a_{n}\right|>0$.
Thus, $\frac{2}{|L|}>\frac{1}{\left|a_{n}\right|}>0$, so $0<\frac{1}{\left|a_{n}\right|}<\frac{2}{|L|}$.
Observe that

$$
\begin{aligned}
\left|\frac{1}{a_{n}}-\frac{1}{L}\right| & =\left|\frac{L-a_{n}}{a_{n} L}\right| \\
& =\left|\frac{a_{n}-L}{a_{n} L}\right| \\
& =\left|a_{n}-L\right| \cdot \frac{1}{\left|a_{n}\right|} \cdot \frac{1}{|L|} \\
& <\frac{\epsilon|L|^{2}}{2} \cdot \frac{2}{|L|} \cdot \frac{1}{|L|} \\
& =\epsilon .
\end{aligned}
$$

Therefore, $\left|\frac{1}{a_{n}}-\frac{1}{L}\right|<\epsilon$, so $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=\frac{1}{L}$, as desired.
Theorem 20. algebraic limit rules for convergent sequences
If $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are convergent sequences of real numbers, then

1. Scalar Multiple Rule
$\lim _{n \rightarrow \infty}\left(\lambda a_{n}\right)=\lambda \lim _{n \rightarrow \infty} a_{n}$ for every $\lambda \in \mathbb{R}$.
2. Sum Rule (limit of sum equals sum of limits)
$\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}$.
3. Difference Rule (limit of difference equals difference of limits)
$\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}-\lim _{n \rightarrow \infty} b_{n}$.
4. Product Rule (limit of product equals product of limits)
$\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=\left(\lim _{n \rightarrow \infty} a_{n}\right)\left(\lim _{n \rightarrow \infty} b_{n}\right)$.
5. Quotient Rule (limit of quotient equals quotient of limits)

If $\lim _{n \rightarrow \infty} b_{n} \neq 0$, then
$\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}$.
Proof. Let $\left(a_{n}\right)$ be a convergent sequence of real numbers.
Then there exists a real number L such that $\lim _{n \rightarrow \infty} a_{n}=L$.
We prove 1 .
Let $\lambda \in \mathbb{R}$.
We must prove $\lim _{n \rightarrow \infty}\left(\lambda a_{n}\right)=\lambda L$.
Either $\lambda=0$ or $\lambda \neq 0$.
We consider these cases separately.
Case 1: Suppose $\lambda=0$.
Observe that

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(0 a_{n}\right) & =\lim _{n \rightarrow \infty} 0 \\
& =0 \\
& =0 L .
\end{aligned}
$$

Therefore, $\lim _{n \rightarrow \infty}\left(0 a_{n}\right)=0 L$, as desired.
Case 2: Suppose $\lambda \neq 0$.
Let $\epsilon>0$.
Since $|\lambda| \geq 0$ and $\lambda \neq 0$, then $|\lambda|>0$.
Hence, $\frac{\epsilon}{|\lambda|}>0$.
Since $\lim _{n \rightarrow \infty} a_{n}=L$, then there exists $N \in \mathbb{N}$ such that $\left|a_{n}-L\right|<\frac{\epsilon}{|\lambda|}$ whenever $n>N$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $\left|a_{n}-L\right|<\frac{\epsilon}{|\lambda|}$.
Observe that

$$
\begin{aligned}
\left|\lambda a_{n}-\lambda L\right| & =\left|\lambda\left(a_{n}-L\right)\right| \\
& =|\lambda|\left|a_{n}-L\right| \\
& <|\lambda| \frac{\epsilon}{|\lambda|} \\
& =\epsilon .
\end{aligned}
$$

Therefore, $\lim _{n \rightarrow \infty}\left(\lambda a_{n}\right)=\lambda L$, as desired.
Proof. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be convergent sequences of real numbers.
Then there exist real numbers L and M such that $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} b_{n}=M$.

We prove 2 .
We must prove $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=L+M$.
Let $\epsilon>0$.
Then $\frac{\epsilon}{2}>0$.
Since $\lim _{n \rightarrow \infty} a_{n}=L$, then there exists $N_{1} \in \mathbb{N}$ such that $\left|a_{n}-L\right|<\frac{\epsilon}{2}$ whenever $n>N_{1}$.

Since $\lim _{n \rightarrow \infty} b_{n}=M$, then there exists $N_{2} \in \mathbb{N}$ such that $\left|b_{n}-M\right|<\frac{\epsilon}{2}$ whenever $n>N_{2}$.

Let $N=\max \left\{N_{1}, N_{2}\right\}$.
Let $n \in \mathbb{N}$ such that $n>N$.
Since $n>N \geq N_{1}$, then $n>N_{1}$.
Hence, $\left|a_{n}-L\right|<\frac{\epsilon}{2}$.
Since $n>N \geq N_{2}$, then $n>N_{2}$.
Hence, $\left|b_{n}-M\right|<\frac{\epsilon}{2}$.
Observe that

$$
\begin{aligned}
\left|\left(a_{n}+b_{n}\right)-(L+M)\right| & =\left|a_{n}+b_{n}-L-M\right| \\
& =\left|\left(a_{n}-L\right)+\left(b_{n}-M\right)\right| \\
& \leq\left|a_{n}-L\right|+\left|b_{n}-M\right| \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon .
\end{aligned}
$$

Thus, $\left|\left(a_{n}+b_{n}\right)-(L+M)\right|<\epsilon$.
Therefore, $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=L+M$, as desired.
Proof. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be convergent sequences of real numbers.
Then there exist real numbers L and M such that $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} b_{n}=M$.

We prove 3.
We must prove $\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=L-M$.
Observe that

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right) & =\lim _{n \rightarrow \infty}\left[a_{n}+\left(-b_{n}\right)\right] \\
& =\lim _{n \rightarrow \infty} a_{n}+\lim _{x \rightarrow a}-b_{n} \\
& =\lim _{n \rightarrow \infty} a_{n}-\lim _{x \rightarrow a} b_{n} \\
& =L-M .
\end{aligned}
$$

Therefore, $\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=L-M$, as desired.
Proof. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be convergent sequences of real numbers.
Then there exist real numbers L and M such that $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} b_{n}=M$.

We prove 4.
We must prove $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=L M$.
Let $\epsilon>0$.
Since $\left(b_{n}\right)$ is convergent, then $\left(b_{n}\right)$ is bounded.
Hence, there exists $b>0$ such that $\left|b_{n}\right|<b$ for all $n \in \mathbb{N}$.
Since $\epsilon>0$ and $b>0$, then $\frac{\epsilon}{2 b}>0$.
Since $\lim _{n \rightarrow \infty} a_{n}=L$, then there exists $N_{1} \in \mathbb{N}$ such that $\left|a_{n}-L\right|<\frac{\epsilon}{2 b}$ whenever $n>N_{1}$.

Since $|L| \geq 0$ and $|L| \geq 0 \Rightarrow|L|+1 \geq 1 \Rightarrow 2(|L|+1) \geq 2>0$, then $2(|L|+1)>0$.

Since $\epsilon>0$, then $\frac{\epsilon}{2(|L|+1)}>0$.
Since $\lim _{n \rightarrow \infty} b_{n}=M$, then there exists $N_{2} \in \mathbb{N}$ such that $\left|b_{n}-M\right|<$ $\frac{\epsilon}{2(|L|+1)}$ whenever $n>N_{2}$.

Let $N=\max \left\{N_{1}, N_{2}\right\}$.
Let $n \in \mathbb{N}$ such that $n>N$.
Since $n>N \geq N_{1}$, then $n>N_{1}$, so $\left|a_{n}-L\right|<\frac{\epsilon}{2 b}$.
Since $0 \leq\left|a_{n}-L\right|<\frac{\epsilon}{2 b}$ and $0 \leq\left|b_{n}\right|<b$, then $\left|a_{n}-L\right|\left|b_{n}\right|<\frac{\epsilon}{2}$.
Since $n>N \geq N_{2}$, then $n>N_{2}$, so $\left|b_{n}-M\right|<\frac{\epsilon}{2(|L|+1)}$.
Since $|L| \geq 0$, then $|L|\left|b_{n}-M\right| \leq \frac{|L| \epsilon}{2(|L|+1)}$.
Since $0 \leq|L|<|L|+1$, then $0 \leq \frac{|L|}{|L|+1}<1$, so $\frac{|L| \epsilon}{2(|L|+1)}<\frac{\epsilon}{2}$.
Thus, $|L|\left|b_{n}-M\right| \leq \frac{|L| \epsilon}{2(|L|+1)}$ and $\frac{|L| \epsilon}{2(|L|+1)}<\frac{\epsilon}{2}$, so $|L|\left|b_{n}-M\right|<\frac{\epsilon}{2}$.
Observe that

$$
\begin{aligned}
\left|a_{n} b_{n}-L M\right| & =\left|\left(a_{n} b_{n}-L b_{n}\right)+\left(L b_{n}-L M\right)\right| \\
& \leq\left|a_{n} b_{n}-L b_{n}\right|+\left|L b_{n}-L M\right| \\
& =\left|\left(a_{n}-L\right) b_{n}\right|+\left|L\left(b_{n}-M\right)\right| \\
& =\left|a_{n}-L\right|\left|b_{n}\right|+|L|\left|b_{n}-M\right| \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon .
\end{aligned}
$$

Thus, $\left|a_{n} b_{n}-L M\right|<\epsilon$.
Therefore, $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=L M$, as desired.
Proof. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be convergent sequences of real numbers.
Then there exist real numbers L and M such that $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} b_{n}=M$.

Suppose $M \neq 0$.
We prove 5 .
We must prove $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{L}{M}$.
We first prove $\lim _{n \rightarrow \infty} \frac{1}{b_{n}}=\frac{1}{M}$.
Either there exists $k \in \stackrel{N}{\mathbb{N}}$ such that $b_{k}=0$ or there does not exist $k \in \mathbb{N}$ such that $b_{k}=0$.

We consider these cases separately.
Case 1: Suppose there does not exist $k \in \mathbb{N}$ such that $b_{k}=0$.
Then $b_{k} \neq 0$ for all $k \in \mathbb{N}$.
Since $M \neq 0$ and $\lim _{n \rightarrow \infty} b_{n}=M$ and $b_{n} \neq 0$ for all $n \in \mathbb{N}$, then by a previous lemma, $\lim _{n \rightarrow \infty} \frac{1}{b_{n}}=\frac{1}{M}$.

Case 2: Suppose there exists $k \in \mathbb{N}$ such that $b_{k}=0$.
Then the expression $\frac{1}{b_{k}}$ is undefined, so $\left(\frac{1}{b_{n}}\right)$ does not define a sequence of real numbers.

We shall show that when the expression is defined, the sequence that results must converge to $\frac{1}{M}$.

Since $M \neq 0$ and $\lim _{n \rightarrow \infty} b_{n}=M$, then by a previous lemma, there exists $N \in \mathbb{N}$ such that $\left|b_{n}\right|>\frac{|M|}{2}$ for all $n>N$.

Let $c_{n}=b_{N+n}$ for all $n \in \mathbb{N}$.
Then $\left(c_{n}\right)$ is a sequence of real numbers.
Let $g: \mathbb{N} \rightarrow \mathbb{N}$ be a function defined by $g(n)=N+n$ for all $n \in \mathbb{N}$.
Let $n \in \mathbb{N}$ be given.
Since $g(n)=N+n<N+(n+1)=g(n+1)$, then $g(n)<g(n+1)$, so g is strictly increasing.

Since $c_{n}=b_{N+n}=b_{g(n)}$, then $\left(c_{n}\right)$ is a subsequence of $\left(b_{n}\right)$.
Since $n \geq 1>0$, then $n>0$.
Since $N+n \in \mathbb{N}$ and $N+n>N$, then $\left|b_{N+n}\right|>\frac{|M|}{2}$, so $\left|c_{n}\right|>\frac{|M|}{2}$.
Since $M \neq 0$, then $|M|>0$, so $\frac{|M|}{2}>0$.
Thus, $\left|c_{n}\right|>\frac{|M|}{2}>0$, so $\left|c_{n}\right|>0$.
Hence, $c_{n} \neq 0$, so $c_{n} \neq 0$ for all $n \in \mathbb{N}$.
Thus, $\frac{1}{c_{n}} \in \mathbb{R}$ for all $n \in \mathbb{N}$, so $\left(\frac{1}{c_{n}}\right)$ is a sequence of real numbers.
Since $\lim _{n \rightarrow \infty} b_{n}=M$ and $\left(c_{n}\right)$ is a subsequence of $\left(b_{n}\right)$, then $\lim _{n \rightarrow \infty} c_{n}=$ M.

Since $M \neq 0$ and $\lim _{n \rightarrow \infty} c_{n}=M$ and $c_{n} \neq 0$ for all $n \in \mathbb{N}$, then by a previous lemma, $\lim _{n \rightarrow \infty} \frac{1}{c_{n}}=\frac{1}{M}$.

Therefore, in all cases, $\lim _{n \rightarrow \infty} \frac{1}{b_{n}}=\frac{1}{M}$.
Observe that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\lim _{n \rightarrow \infty}\left(a_{n} \cdot \frac{1}{b_{n}}\right) \\
& =\left(\lim _{n \rightarrow \infty} a_{n}\right)\left(\lim _{n \rightarrow \infty} \frac{1}{b_{n}}\right) \\
& =L \cdot \frac{1}{M} \\
& =\frac{L}{M}
\end{aligned}
$$

Therefore, $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{L}{M}$, as desired.
Theorem 21. a limit preserves a non strict inequality
Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be convergent sequences of real numbers.
If there exists $K>0$ such that $a_{n} \leq b_{n}$ for all $n>K$, then $\lim _{n \rightarrow \infty} a_{n} \leq$ $\lim _{n \rightarrow \infty} b_{n}$.

Proof. Suppose there exists $K>0$ such that $a_{n} \leq b_{n}$ for all $n>K$.
Since $\left(a_{n}\right)$ is convergent, then there exists $L \in \mathbb{R}$ such that $\lim _{n \rightarrow \infty} a_{n}=L$.
Since $\left(b_{n}\right)$ is convergent, then there exists $M \in \mathbb{R}$ such that $\lim _{n \rightarrow \infty} b_{n}=M$.
We must prove $L \leq M$.
Suppose for the sake of contradiction $L>M$.
Then $L-M>0$, so $\frac{L-M}{2}>0$
Let $\epsilon=\frac{L-M}{2}$.

Then $\epsilon>0$.
Since $\lim _{n \rightarrow \infty} a_{n}=L$, then there exists $N_{1} \in \mathbb{N}$ such that if $n>N_{1}$, then $\left|a_{n}-L\right|<\epsilon$.

Since $\lim _{n \rightarrow \infty} b_{n}=M$, then there exists $N_{2} \in \mathbb{N}$ such that if $n>N_{2}$, then $\left|b_{n}-M\right|<\epsilon$.

Let $N=\max \left\{N_{1}, N_{2}, K\right\}$.
Let $n \in \mathbb{N}$ such that $n>N$.
Since $n>N$ and $N \geq K$, then $n>K$, so $a_{n} \leq b_{n}$.
Since $n>N$ and $N \geq N_{1}$, then $n>N_{1}$, so $\left|a_{n}-L\right|<\epsilon$.
Thus, $-\epsilon<a_{n}-L<\epsilon$, so $L-\epsilon<a_{n}<L+\epsilon$.
Since $n>N$ and $N \geq N_{2}$, then $n>N_{2}$, so $\left|b_{n}-M\right|<\epsilon$.
Thus, $-\epsilon<b_{n}-M<\epsilon$, so $M-\epsilon<b_{n}<M+\epsilon$.
Since $\epsilon=\frac{L-M}{2}$, then $2 \epsilon=L-M$, so $\epsilon+\epsilon=L-M$.
Thus, $M+\epsilon=L-\epsilon$.
Therefore, $b_{n}<M+\epsilon=L-\epsilon<a_{n} \leq b_{n}$, so $b_{n}<b_{n}$, a contradiction.
Hence, $L \leq M$, as desired.
Corollary 22. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be convergent sequences of real numbers.
If $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} a_{n} \leq \lim _{n \rightarrow \infty} b_{n}$.
Proof. Suppose $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$.
By the density of \mathbb{R}, there exists $K \in \mathbb{R}$ such that $0<K<1$.
Thus, $0<K$ and $K<1$.
Since $0<K$, then $K>0$.
Let $n \in \mathbb{N}$ be given.
Then $a_{n} \leq b_{n}$.
Since $n \in \mathbb{N}$, then $n \geq 1$.
Since $n \geq 1$ and $1>K$, then $n>K$.
Since n is arbitrary, then $a_{n} \leq b_{n}$ for all $n>K$.
Since $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are convergent sequences, then by the inequality rule for convergent sequences, $\lim _{n \rightarrow \infty} a_{n} \leq \lim _{n \rightarrow \infty} b_{n}$.

Corollary 23. Let $\left(a_{n}\right)$ be a convergent sequence in \mathbb{R}.

1. If M is an upper bound of $\left(a_{n}\right)$, then $\lim _{n \rightarrow \infty} a_{n} \leq M$.
2. If m is a lower bound of $\left(a_{n}\right)$, then $m \leq \lim _{n \rightarrow \infty} a_{n}$.

Proof. We prove 1.
Suppose $M \in \mathbb{R}$ is an upper bound of $\left(a_{n}\right)$.
Then $a_{n} \leq M$ for all $n \in \mathbb{N}$.
Let $\left(b_{n}\right)$ be the constant sequence defined by $b_{n}=M$ for all $n \in \mathbb{N}$.
Since $\left(a_{n}\right)$ is convergent and $\left(b_{n}\right)$ is convergent and $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$, then by the inequality rule for convergent sequences, $\lim _{n \rightarrow \infty} a_{n} \leq \lim _{n \rightarrow \infty} b_{n}$.

Thus,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} \leq \lim _{n \rightarrow \infty} b_{n} & \Leftrightarrow \lim _{n \rightarrow \infty} a_{n} \leq \lim _{n \rightarrow \infty} M \\
& \Leftrightarrow \lim _{n \rightarrow \infty} a_{n} \leq M
\end{aligned}
$$

Therefore, $\lim _{n \rightarrow \infty} a_{n} \leq M$, as desired.

Proof. We prove 1.
Since $\left(a_{n}\right)$ is convergent, then there exists a real number L such that $\lim _{n \rightarrow \infty} a_{n}=$ L.

Suppose M is an upper bound of $\left(a_{n}\right)$.
We prove $L \leq M$ by contradiction.
Suppose $L>M$.
Then $L-M>0$.
Since $\lim _{n \rightarrow \infty} a_{n}=L$, then there exists $N \in \mathbb{N}$ such that if $n>N$, then $\left|a_{n}-L\right|<L-M$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $\left|a_{n}-L\right|<L-M$.
Observe that

$$
\begin{aligned}
\left|a_{n}-L\right|<L-M & \Leftrightarrow-(L-M)<a_{n}-L<L-M \\
& \Leftrightarrow M-L<a_{n}-L<L-M \\
& \Leftrightarrow M-L<a_{n}-L \\
& \Leftrightarrow M<a_{n} \\
& \Leftrightarrow a_{n}>M .
\end{aligned}
$$

Thus, $a_{n}>M$.
Hence, there exists $n \in \mathbb{N}$ such that $a_{n}>M$.
This contradicts the assumption that M is an upper bound of $\left(a_{n}\right)$.
Therefore, $L \leq M$, as desired.
Proof. We prove 2.
Suppose $m \in \mathbb{R}$ is a lower bound of $\left(a_{n}\right)$.
Then $m \leq a_{n}$ for all $n \in \mathbb{N}$.
Let $\left(b_{n}\right)$ be the constant sequence defined by $b_{n}=m$ for all $n \in \mathbb{N}$.
Since $\left(a_{n}\right)$ is convergent and $\left(b_{n}\right)$ is convergent and $b_{n} \leq a_{n}$ for all $n \in \mathbb{N}$, then by the inequality rule for convergent sequences, $\lim _{n \rightarrow \infty} b_{n} \leq \lim _{n \rightarrow \infty} a_{n}$.

Thus,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} b_{n} \leq \lim _{n \rightarrow \infty} a_{n} & \Leftrightarrow \lim _{n \rightarrow \infty} m \leq \lim _{n \rightarrow \infty} a_{n} \\
& \Leftrightarrow m \leq \lim _{n \rightarrow \infty} a_{n} .
\end{aligned}
$$

Therefore, $m \leq \lim _{n \rightarrow \infty} a_{n}$, as desired.
Proof. We prove 2.
Since $\left(a_{n}\right)$ is convergent, then there exists a real number L such that $\lim _{n \rightarrow \infty} a_{n}=$ L.

Suppose m is a lower bound of $\left(a_{n}\right)$.
We prove $m \leq L$ by contradiction.
Suppose $m>L$.
Then $m-L>0$.
Since $\lim _{n \rightarrow \infty} a_{n}=L$, then there exists $N \in \mathbb{N}$ such that if $n>N$, then $\left|a_{n}-L\right|<m-L$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $\left|a_{n}-L\right|<m-L$.
Observe that

$$
\begin{aligned}
\left|a_{n}-L\right|<m-L & \Leftrightarrow-(m-L)<a_{n}-L<m-L \\
& \Rightarrow a_{n}-L<m-L \\
& \Leftrightarrow a_{n}<m .
\end{aligned}
$$

Thus, $a_{n}<m$.
Hence, there exists $n \in \mathbb{N}$ such that $a_{n}<m$.
This contradicts the assumption that m is a lower bound of $\left(a_{n}\right)$.
Therefore, $m \leq L$, as desired.
Corollary 24. limit of a convergent sequence is between any upper and lower bound of the sequence

Let $\left(a_{n}\right)$ be a convergent sequence in \mathbb{R}.
If there exist real numbers m and M such that $m \leq a_{n} \leq M$ for all $n \in \mathbb{N}$, then $m \leq \lim _{n \rightarrow \infty} a_{n} \leq M$.

Proof. Suppose there exist real numbers m and M such that $m \leq a_{n} \leq M$ for all $n \in \mathbb{N}$.

Then $m \leq a_{n}$ for all $n \in \mathbb{N}$ and $a_{n} \leq M$ for all $n \in \mathbb{N}$.
Since $\left(a_{n}\right)$ is a convergent sequence, then there exists $L \in \mathbb{R}$ such that $\lim _{n \rightarrow \infty} a_{n}=L$.

We must prove $m \leq L \leq M$.
Since $a_{n} \leq M$ for all $n \in \mathbb{N}$, then M is an upper bound of $\left(a_{n}\right)$.
Hence, by the previous corollary, $L \leq M$.
Since $m \leq a_{n}$ for all $n \in \mathbb{N}$, then m is a lower bound of $\left(a_{n}\right)$.
Hence, by the previous corollary, $m \leq L$.
Therefore, $m \leq L$ and $L \leq M$, so $m \leq L \leq M$, as desired.
Corollary 25. Let $\left(a_{n}\right)$ be a convergent sequence in \mathbb{R}.
If there exist $K \in \mathbb{N}$ and real numbers m and M such that $m \leq a_{n} \leq M$ for all $n>K$, then $m \leq \lim _{n \rightarrow \infty} a_{n} \leq M$.

Proof. Suppose there exist $K \in \mathbb{N}$ and real numbers m and M such that $m \leq$ $a_{n} \leq M$ for all $n>K$.

Let $\left(b_{n}\right)$ be a sequence defined by $b_{n}=a_{K+n}$ for all $n \in \mathbb{N}$.
Then $\left(b_{n}\right)$ is a K tail of the sequence $\left(a_{n}\right)$, so $\left(b_{n}\right)$ is a subsequence of $\left(a_{n}\right)$.
Since $\left(a_{n}\right)$ is convergent, then $\left(b_{n}\right)$ is convergent, so $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} a_{n}$.
We prove $m \leq b_{n} \leq M$ for all $n \in \mathbb{N}$ by induction on n.
Let $S=\left\{n \in \mathbb{N}: m \leq b_{n} \leq M\right\}$.
Since $K+1 \in \mathbb{N}$ and $K+1>K$, then $m \leq a_{K+1} \leq M$.
Since $b_{1}=a_{K+1}$, then $m \leq b_{1} \leq M$, so $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$.

Since $K+k+1 \in \mathbb{N}$ and $K+k+1>K$, then $m \leq a_{K+k+1} \leq M$.
Since $k+1 \in \mathbb{N}$, then $b_{k+1}=a_{K+k+1}$, so $m \leq b_{k+1} \leq M$.
Hence, $k+1 \in S$.
Thus, by PMI, $m \leq b_{n} \leq M$ for all $n \in \mathbb{N}$.

Since $\left(b_{n}\right)$ is convergent and $m \leq b_{n} \leq M$ for all $n \in \mathbb{N}$, then by the inequality rule for convergent sequences, $m \leq \lim _{n \rightarrow \infty} b_{n} \leq M$.

Therefore, $m \leq \lim _{n \rightarrow \infty} a_{n} \leq M$, as desired.

Theorem 26. squeeze rule for convergent sequences

Let $\left(a_{n}\right),\left(b_{n}\right)$, and $\left(c_{n}\right)$ be sequences of real numbers.
If there exists $K \in \mathbb{N}$ such that $a_{n} \leq c_{n} \leq b_{n}$ for all $n>K$ and $\lim _{n \rightarrow \infty} a_{n}=$ $\lim _{n \rightarrow \infty} b_{n}$, then $\lim _{n \rightarrow \infty} c_{n}=\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$.

Proof. Suppose there exists $K \in \mathbb{N}$ such that $a_{n} \leq c_{n} \leq b_{n}$ for all $n>K$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$.

Since $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$, then there exists a real number L such that $L=\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$.

We must prove $\lim _{n \rightarrow \infty} c_{n}=L$.
Let $\epsilon>0$ be given.
Since $\lim _{n \rightarrow \infty} a_{n}=L$, then there exists $N_{1} \in \mathbb{N}$ such that if $n>N_{1}$, then $\left|a_{n}-L\right|<\epsilon$.

Since $\lim _{n \rightarrow \infty} b_{n}=L$, then there exists $N_{2} \in \mathbb{N}$ such that if $n>N_{2}$, then $\left|b_{n}-L\right|<\epsilon$.

Let $N=\max \left\{N_{1}, N_{2}, K\right\}$.
Let $n \in \mathbb{N}$ such that $n>N$.
Since $n>N$ and $N \geq K$, then $n>K$, so $a_{n} \leq c_{n} \leq b_{n}$.
Therefore, $a_{n} \leq c_{n}$ and $c_{n} \leq b_{n}$.
Since $n>N$ and $N \geq N_{1}$, then $n>N_{1}$, so $\left|a_{n}-L\right|<\epsilon$.
Since $n>N$ and $N \geq N_{2}$, then $n>N_{2}$, so $\left|b_{n}-L\right|<\epsilon$.
Observe that

$$
\begin{aligned}
\left|a_{n}-L\right|<\epsilon & \Leftrightarrow-\epsilon<a_{n}-L<\epsilon \\
& \Rightarrow-\epsilon<a_{n}-L \\
& \Leftrightarrow L-\epsilon<a_{n} .
\end{aligned}
$$

Since $L-\epsilon<a_{n}$ and $a_{n} \leq c_{n}$, then $L-\epsilon<c_{n}$, so $-\epsilon<c_{n}-L$.
Observe that

$$
\begin{aligned}
\left|b_{n}-L\right|<\epsilon & \Leftrightarrow-\epsilon<b_{n}-L<\epsilon \\
& \Rightarrow b_{n}-L<\epsilon \\
& \Leftrightarrow b_{n}<L+\epsilon
\end{aligned}
$$

Since $c_{n} \leq b_{n}$ and $b_{n}<L+\epsilon$, then $c_{n}<L+\epsilon$, so $c_{n}-L<\epsilon$.
Since $-\epsilon<c_{n}-L$ and $c_{n}-L<\epsilon$, then $-\epsilon<c_{n}-L<\epsilon$, so $\left|c_{n}-L\right|<\epsilon$.
Therefore, $\lim _{n \rightarrow \infty} c_{n}=L$, as desired.

Corollary 27. Let $\left(a_{n}\right),\left(b_{n}\right)$, and $\left(c_{n}\right)$ be sequences of real numbers.
If $a_{n} \leq c_{n} \leq b_{n}$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$, then $\lim _{n \rightarrow \infty} c_{n}=$ $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$.

Proof. Suppose $a_{n} \leq c_{n} \leq b_{n}$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$.
Let $K=1$.
Then $K \in \mathbb{N}$.
Let $n \in \mathbb{N}$ such that $n>K$.
Since $n \in \mathbb{N}$, then $a_{n} \leq c_{n} \leq b_{n}$.
Since n is arbitrary, then $a_{n} \leq c_{n} \leq b_{n}$ for all $n>K$.
Thus, there exists $K \in \mathbb{N}$ such that $a_{n} \leq c_{n} \leq b_{n}$ for all $n>K$.
Since $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$, then by the squeeze rule for convergent sequences, $\lim _{n \rightarrow \infty} c_{n}=\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$, as desired.

Proposition 28. limit of an absolute value equals absolute value of a limit

Let $\left(a_{n}\right)$ be a convergent sequence.
Then the sequence $\left(\left|a_{n}\right|\right)$ is convergent and $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\left|\lim _{n \rightarrow \infty} a_{n}\right|$.
Proof. Let $\left(a_{n}\right)$ be a convergent sequence.
Then there exists a real number L such that $\lim _{n \rightarrow \infty} a_{n}=L$.
We must prove $\lim _{n \rightarrow \infty}\left|a_{n}\right|=|L|$.
Let $\epsilon>0$ be given.
Since $\lim _{n \rightarrow \infty} a_{n}=L$, then there exists $N \in \mathbb{N}$ such that $\left|a_{n}-L\right|<\epsilon$ whenever $n>N$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $\left|a_{n}-L\right|<\epsilon$.
Hence, $\left|\left|a_{n}\right|-|L|\right| \leq\left|a_{n}-L\right|<\epsilon$, so $\left|\left|a_{n}\right|-|L|\right|<\epsilon$.
Therefore, $\lim _{n \rightarrow \infty}\left|a_{n}\right|=|L|$.
Lemma 29. Let $a, b, c, d \in \mathbb{R}$.
If $0 \leq a<b$ and $0<c<d$, then $a c<b d$.
Proof. Suppose $0 \leq a<b$ and $0<c<d$.
Then $0 \leq a$ and $a<b$ and $0<c$ and $c<d$.
Since $a \geq 0$, then either $a>0$ or $a=0$.
We consider these cases separately.
Case 1: Suppose $a>0$.
Since $0<a$ and $a<b$, then $0<a<b$.
Since $0<a<b$ and $0<c<d$, then $0<a c<b d$.
Therefore, $a c<b d$.
Case 2: Suppose $a=0$.
Then $a c=0 c=0$.
Since $b>a$ and $a=0$, then $b>0$.
Since $d>c$ and $c>0$, then $d>0$.
Since $b>0$ and $d>0$, then $b d>0$.
Therefore, $a c=0<b d$, so $a c<b d$.

Lemma 30. sequence converging to a positive real number eventually

 has positive termsLet $\left(a_{n}\right)$ be a sequence of real numbers.
If $\lim _{n \rightarrow \infty} a_{n}$ exists and is positive, then there exists $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, if $n>N$, then $a_{n}>0$.

Proof. Suppose $\lim _{n \rightarrow \infty} a_{n}$ exists and is positive.
Then there exists a real number L such that $\lim _{n \rightarrow \infty} a_{n}=L$ and $L>0$.
Since $\lim _{n \rightarrow \infty} a_{n}=L$ and $L>0$, then there exists $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, if $n>N$, then $\left|a_{n}-L\right|<L$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $\left|a_{n}-L\right|<L$, so $-L<a_{n}-L<L$.
Hence, $-L<a_{n}-L$, so $0<a_{n}$.
Therefore, $a_{n}>0$.
Proposition 31. limit of a square root equals square root of a limit
Let $\left(a_{n}\right)$ be a sequence of real numbers.
If $\lim _{n \rightarrow \infty} a_{n}$ exists and is positive, then $\lim _{n \rightarrow \infty} \sqrt{a_{n}}=\sqrt{\lim _{n \rightarrow \infty} a_{n}}$.
Proof. Suppose $\lim _{n \rightarrow \infty} a_{n}$ exists and is positive.
Then there is a real number L such that $\lim _{n \rightarrow \infty} a_{n}=L$ and $L>0$.
To prove $\lim _{n \rightarrow \infty} \sqrt{a_{n}}=\sqrt{\lim _{n \rightarrow \infty} a_{n}}$, we must prove $\lim _{n \rightarrow \infty} \sqrt{a_{n}}=\sqrt{L}$.
Let $\epsilon>0$ be given.
Since $L>0$, then $\sqrt{L}>0$, so $\epsilon \sqrt{L}>0$.
Since $\lim _{n \rightarrow \infty} a_{n}=L$ and $\epsilon \sqrt{L}>0$, then there exists $N_{1} \in \mathbb{N}$ such that $\left|a_{n}-L\right|<\epsilon \sqrt{L}$ whenever $n>N_{1}$.

Since $\lim _{n \rightarrow \infty} a_{n}=L$ and $L>0$, then by the previous lemma, there exists $N_{2} \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, if $n>N_{2}$, then $a_{n}>0$.

Let $N=\max \left\{N_{1}, N_{2}\right\}$.
Then either $N=N_{1}$ or $N=N_{2}$ and $N \geq N_{1}$ and $N \geq N_{2}$.
Since either $N=N_{1}$ or $N=N_{2}$ and $N_{1} \in \mathbb{N}$ and $N_{2} \in \mathbb{N}$, then $N \in \mathbb{N}$.
Let $n \in \mathbb{N}$ such that $n>N$.
Since $n>N$ and $N \geq N_{1}$, then $n>N_{1}$, so $\left|a_{n}-L\right|<\epsilon \sqrt{L}$.
Hence, $0 \leq\left|a_{n}-L\right|<\epsilon \sqrt{L}$.
Since $n>N$ and $N \geq N_{2}$, then $n>N_{2}$, so $a_{n}>0$.
Thus, $\sqrt{a_{n}}>0$.
Since $\sqrt{a_{n}}>0$ and $\sqrt{L}>0$, then $\sqrt{a_{n}}+\sqrt{L}>0$ and $\sqrt{a_{n}}+\sqrt{L}>\sqrt{L}>0$.
Since $\sqrt{a_{n}}+\sqrt{L}>0$, then $\sqrt{a_{n}}+\sqrt{L} \neq 0$.
Since $0<\sqrt{L}<\sqrt{a_{n}}+\sqrt{L}$, then $0<\frac{1}{\sqrt{a_{n}}+\sqrt{L}}<\frac{1}{\sqrt{L}}$.

Observe that

$$
\begin{aligned}
\left|\sqrt{a_{n}}-\sqrt{L}\right| & =\left|\sqrt{a_{n}}-\sqrt{L} \cdot \frac{\sqrt{a_{n}}+\sqrt{L}}{\sqrt{a_{n}}+\sqrt{L}}\right| \\
& =\left|\frac{a_{n}-L}{\sqrt{a_{n}}+\sqrt{L}}\right| \\
& =\left|a_{n}-L \cdot \frac{1}{\sqrt{a_{n}}+\sqrt{L}}\right| \\
& =\left|a_{n}-L\right| \cdot\left|\frac{1}{\sqrt{a_{n}}+\sqrt{L}}\right| \\
& \left.=\left|a_{n}-L\right| \cdot \frac{1}{\mid \sqrt{a_{n}}+\sqrt{L}} \right\rvert\, \\
& =\left|a_{n}-L\right| \cdot \frac{1}{\sqrt{a_{n}}+\sqrt{L}} \\
& <\epsilon \sqrt{L} \cdot \frac{1}{\sqrt{L}} \\
& =\epsilon .
\end{aligned}
$$

Therefore, $\left|\sqrt{a_{n}}-\sqrt{L}\right|<\epsilon$, as desired.

Divergent Sequences

Proposition 32. divergence to ∞ implies divergence
A sequence that diverges to ∞ is divergent.
Proof. Let $\left(a_{n}\right)$ be a sequence of real numbers.
We must prove if $\left(a_{n}\right)$ diverges to ∞, then $\left(a_{n}\right)$ diverges.
Suppose $a_{n} \rightarrow \infty$.
To prove $\left(a_{n}\right)$ diverges, let $L \in \mathbb{R}$ be given.
We must prove $(\exists \epsilon>0)(\forall n \in \mathbb{N})\left(\exists N^{\prime} \in \mathbb{N}\right)\left(N^{\prime}>n \wedge\left|s_{N^{\prime}}-L\right| \geq \epsilon\right)$.
Either $L>0$ or $L=0$ or $L<0$.
We consider these cases separately.
Case 1: Suppose $L=0$.
Let $\epsilon=1$.
Then $\epsilon>0$.
Since $a_{n} \rightarrow \infty$, then there exists $N \in \mathbb{N}$ such that $a_{n}>1$ whenever $n>N$.
Let $n \in \mathbb{N}$.
We must prove there exists $N^{\prime} \in \mathbb{N}$ such that $N^{\prime}>n$ and $\left|s_{N^{\prime}}\right| \geq 1$.
Let $N^{\prime}=N+n$.
Then $N^{\prime} \in \mathbb{N}$.
Since $N+n>n$, then $N^{\prime}>n$.
Since $N+n>N$, then $N^{\prime}>N$.
Hence, $s_{N^{\prime}}>1>0$.
Thus, $\left|s_{N^{\prime}}\right|=s_{N^{\prime}}>1$, so $\left|s_{N^{\prime}}\right|>1$.

Therefore, $\left|s_{N^{\prime}}\right| \geq 1$, as desired.
Case 2: Suppose $L>0$.
Then $2 L>0$.
Since $a_{n} \rightarrow \infty$, then there exists $N \in \mathbb{N}$ such that $a_{n}>2 L$ whenever $n>N$.
Let $\epsilon=L$.
Then $\epsilon>0$.
Let $n \in \mathbb{N}$.
We must prove there exists $N^{\prime} \in \mathbb{N}$ such that $N^{\prime}>n$ and $\left|s_{N^{\prime}}-L\right| \geq L$.
Let $N^{\prime}=N+n$.
Then $N^{\prime} \in \mathbb{N}$.
Since $N+n>n$, then $N^{\prime}>n$.
Since $N+n>N$, then $N^{\prime}>N$.
Thus, $s_{N^{\prime}}>2 L$.
Hence, $s_{N^{\prime}}-L>L>0$.
Thus, $\left|s_{N^{\prime}}-L\right|=s_{N^{\prime}}-L>L$, so $\left|s_{N^{\prime}}-L\right|>L$.
Therefore, $\left|s_{N^{\prime}}-L\right| \geq L$, as desired.
Case 3: Suppose $L<0$.
Then $-L>0$.
Since $a_{n} \rightarrow \infty$, then there exists $N \in \mathbb{N}$ such that $a_{n}>-L$ whenever $n>N$.
Let $\epsilon=-2 L$.
Then $\epsilon>0$.
Let $n \in \mathbb{N}$.
We must prove there exists $N^{\prime} \in \mathbb{N}$ such that $N^{\prime}>n$ and $\left|s_{N^{\prime}}-L\right| \geq-2 L$.
Let $N^{\prime}=N+n$.
Then $N^{\prime} \in \mathbb{N}$.
Since $N+n>n$, then $N^{\prime}>n$.
Since $N+n>N$, then $N^{\prime}>N$.
Thus, $s_{N^{\prime}}>-L$.
Hence, $s_{N^{\prime}}-L>-2 L>0$.
Thus, $\left|s_{N^{\prime}}-L\right|=s_{N^{\prime}}-L>-2 L$, so $\left|s_{N^{\prime}}-L\right|>-2 L$.
Therefore, $\left|s_{N^{\prime}}-L\right| \geq-2 L$, as desired.
Proposition 33. sequences that diverge to infinity are unbounded
Let $\left(a_{n}\right)$ be a sequence of real numbers.

1. If $\lim _{n \rightarrow \infty} a_{n}=\infty$, then $\left(a_{n}\right)$ is unbounded above.
2. If $\lim _{n \rightarrow \infty} a_{n}=-\infty$, then $\left(a_{n}\right)$ is unbounded below.

Proof. We prove 1.
Suppose $\lim _{n \rightarrow \infty} a_{n}=\infty$.
To prove $\left(a_{n}\right)$ is unbounded above, we must prove $(\forall M)(\exists n \in \mathbb{N})\left(a_{n}>M\right)$.
Let $M \in \mathbb{R}$.
Either $M>0$ or $M \leq 0$.
We consider these cases separately.
Case 1: Suppose $M>0$.
Since $\lim _{n \rightarrow \infty} a_{n}=\infty$, then there exists $N \in \mathbb{N}$ such that $a_{n}>M$ whenever $n>N$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $a_{n}>M$.
Case 2: Suppose $M \leq 0$.
Since $1>0$ and $\lim _{n \rightarrow \infty} a_{n}=\infty$, then there exists $N \in \mathbb{N}$ such that $a_{n}>1$
whenever $n>N$.
Let $n \in \mathbb{N}$ such that $n>N$.
Then $a_{n}>1$.
Since $a_{n}>1>0 \geq M$, then $a_{n}>M$.
Therefore, $\left(a_{n}\right)$ is unbounded above, as desired.
Proof. We prove 2.
Suppose $\lim _{n \rightarrow \infty} a_{n}=-\infty$.
Then $\lim _{n \rightarrow \infty}-a_{n}=\infty$.
To prove $\left(a_{n}\right)$ is unbounded below, we must prove $(\forall M)(\exists n \in \mathbb{N})\left(a_{n}<M\right)$.
Let $M \in \mathbb{R}$.
Either $M \geq 0$ or $M<0$.
We consider these cases separately.
Case 1: Suppose $M<0$.
Then $-M>0$.
Since $\lim _{n \rightarrow \infty}-a_{n}=\infty$, then there exists $N \in \mathbb{N}$ such that $-a_{n}>-M$
whenever $n>N$.
Let $n \in \mathbb{N}$ such that $n>N$.
Then $-a_{n}>-M$.
Hence, $a_{n}<M$.
Case 2: Suppose $M \geq 0$.
Since $1>0$ and $\lim _{n \rightarrow \infty}-a_{n}=\infty$, then there exists $N \in \mathbb{N}$ such that $-a_{n}>1$ whenever $n>N$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $-a_{n}>1$.
Hence, $a_{n}<-1$.
Since $a_{n}<-1<0 \leq M$, then $a_{n}<M$.
Therefore, $\left(a_{n}\right)$ is unbounded below, as desired.

Monotone Convergence Theorem

Theorem 34. Monotone convergence theorem
Let $\left(a_{n}\right)$ be a sequence of real numbers.

1. If $\left(a_{n}\right)$ is increasing and bounded above, then $\lim _{n \rightarrow \infty} a_{n}=\sup \left(a_{n}\right)$.
2. If $\left(a_{n}\right)$ is increasing and unbounded above, then $\lim _{n \rightarrow \infty} a_{n}=\infty$.
3. If $\left(a_{n}\right)$ is decreasing and bounded below, then $\lim _{n \rightarrow \infty} a_{n}=\inf \left(a_{n}\right)$.
4. If $\left(a_{n}\right)$ is decreasing and unbounded below, then $\lim _{n \rightarrow \infty} a_{n}=-\infty$.

Proof. We prove 1.
Suppose $\left(a_{n}\right)$ is increasing and bounded above.
Let $S=\left\{a_{n}: n \in \mathbb{N}\right\}$.
Since $\left(a_{n}\right)$ is a sequence of real numbers, then $S \subset \mathbb{R}$.

Since $a_{1} \in S$, then $S \neq \emptyset$.
Since $\left(a_{n}\right)$ is bounded above, then S is bounded above.
Thus, S is a nonempty subset of \mathbb{R} bounded above in \mathbb{R}, so by the completeness axiom of $\mathbb{R}, \sup S$ exists.

Let $\epsilon>0$ be given.
Since $\sup S$ is the least upper bound of $\left(a_{n}\right)$, then there exists $N \in \mathbb{N}$ such that $a_{N}>\sup S-\epsilon$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $N<n$.
Since $\left(a_{n}\right)$ is increasing, then $a_{N} \leq a_{n}$.
Since $\sup S$ is an upper bound of $\left(a_{n}\right)$, then $a_{n} \leq \sup S$.
Observe that

$$
\begin{aligned}
\sup S-\epsilon<a_{N} \leq a_{n} \leq \sup S<\sup S+\epsilon & \Rightarrow \sup S-\epsilon<a_{n}<\sup S+\epsilon \\
& \Leftrightarrow-\epsilon<a_{n}-\sup S<\epsilon \\
& \Leftrightarrow\left|a_{n}-\sup S\right|<\epsilon
\end{aligned}
$$

Thus, $\lim _{n \rightarrow \infty} a_{n}=\sup S=\sup \left(a_{n}\right)$.
Proof. We prove 2.
Suppose $\left(a_{n}\right)$ is increasing and unbounded above.
Let $M>0$ be given.
Since $\left(a_{n}\right)$ is unbounded above, then there exists $N \in \mathbb{N}$ such that $a_{N}>M$.
Let $n \in \mathbb{N}$ such that $n>N$.
Then $N<n$.
Since $\left(a_{n}\right)$ is increasing, then $a_{N} \leq a_{n}$.
Since $a_{n} \geq a_{N}>M$, then $a_{n}>M$.
Therefore, $\lim _{n \rightarrow \infty} a_{n}=\infty$.
Proof. We prove 3.
Suppose $\left(a_{n}\right)$ is decreasing and bounded below.
Let $S=\left\{a_{n}: n \in \mathbb{N}\right\}$.
Since $\left(a_{n}\right)$ is a sequence of real numbers, then $S \subset \mathbb{R}$.
Since $a_{1} \in S$, then $S \neq \emptyset$.
Since $\left(a_{n}\right)$ is bounded below, then S is bounded below.
Thus, S is a nonempty subset of \mathbb{R} bounded below in \mathbb{R}, so by the completeness of $\mathbb{R}, \inf S$ exists.

Let $\epsilon>0$ be given.
Since $\inf S$ is the greatest lower bound of $\left(a_{n}\right)$, then there exists $N \in \mathbb{N}$ such that $a_{N}<\inf S+\epsilon$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $N<n$.
Since $\left(a_{n}\right)$ is decreasing, then $a_{N} \geq a_{n}$.
Since $\inf S$ is a lower bound of $\left(a_{n}\right)$, then $\inf S \leq a_{n}$.

Observe that

$$
\begin{aligned}
\inf S-\epsilon<\inf S \leq a_{n} \leq a_{N}<\inf S+\epsilon & \Rightarrow \inf S-\epsilon<a_{n}<\inf S+\epsilon \\
& \Leftrightarrow-\epsilon<a_{n}-\inf S<\epsilon \\
& \Leftrightarrow\left|a_{n}-\inf S\right|<\epsilon .
\end{aligned}
$$

Thus, $\lim _{n \rightarrow \infty} a_{n}=\inf S=\inf \left(a_{n}\right)$.
Proof. We prove 4.
Suppose $\left(a_{n}\right)$ is decreasing and unbounded below.
Let $M>0$ be given.
Since $M \in \mathbb{R}$, then $-M \in \mathbb{R}$.
Since $\left(a_{n}\right)$ is unbounded below, then there exists $N \in \mathbb{N}$ such that $a_{N}<-M$.
Let $n \in \mathbb{N}$ such that $n>N$.
Then $N<n$.
Since $\left(a_{n}\right)$ is decreasing, then $a_{N} \geq a_{n}$.
Since $a_{n} \leq a_{N}<-M$, then $a_{n}<-M$, so $-a_{n}>M$.
Therefore, $\lim _{n \rightarrow \infty}-a_{n}=\infty$, so $\lim _{n \rightarrow \infty} a_{n}=-\infty$.
Lemma 35. Let $r \in \mathbb{R}$.

1. If $r>0$, then $r^{n}>0$ for all $n \in \mathbb{N}$.
2. If $r>1$, then $r^{n} \geq(r-1) n+1$ for all $n \in \mathbb{N}$.

Proof. We prove 1.
Suppose $r>0$.
We prove $r^{n}>0$ for all $n \in \mathbb{N}$ by induction on n.
Let $S=\left\{n \in \mathbb{N}: r^{n}>0\right\}$.
Since $r^{1}=r>0$, then $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $r^{k}>0$.
Since $r>0$ and $r^{k}>0$, then $r^{k+1}=r^{k} r>0$.
Thus, $r^{k+1}>0$, so $k+1 \in S$.
Therefore, by PMI, $S=\mathbb{N}$, so $r^{n}>0$ for all $n \in \mathbb{N}$.
Proof. We prove 2.
Suppose $r>1$.
Then $r-1>0$.
Let $c=r-1$.
Then $c>0$.
We prove $r^{n} \geq c n+1$ for all $n \in \mathbb{N}$ by induction on n.
Let $S=\left\{n \in \mathbb{N}: r^{n} \geq c n+1\right\}$.
Since $r^{1}=r=(r-1) \cdot 1+1=c \cdot 1+1$, then $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $r^{k} \geq c k+1$.
Since $k \in \mathbb{N}$, then $k \geq 1>0$, so $k>0$.
Since $c>0$ and $k>0$, then $c k>0$.
Since $r^{k} \geq c k+1>1$, then $r^{k}>1$, so $r^{k} c>c$.

Observe that

$$
\begin{aligned}
r^{k+1} & =r^{k} \cdot r \\
& =r^{k}(c+1) \\
& =r^{k} c+r^{k} \\
& \geq r^{k} c+c k+1 \\
& >c+c k+1 \\
& =c(k+1)+1
\end{aligned}
$$

Thus, $r^{k+1}>c(k+1)+1$, so $k+1 \in S$.
Therefore, by PMI, $S=\mathbb{N}$, so $r^{n} \geq c n+1$ for all $n \in \mathbb{N}$.
Proposition 36. convergence behavior of a geometric sequence
Let $r \in \mathbb{R}$.
Let $\left(r^{n}\right)$ be a geometric sequence.

1. If $r>1$, then $\lim _{n \rightarrow \infty} r^{n}=\infty$.
2. If $r=1$, then $\lim _{n \rightarrow \infty} r^{n}=1$.
3. If $|r|<1$, then $\lim _{n \rightarrow \infty} r^{n}=0$.
4. If $r=-1$, then $\left(r^{n}\right)$ is divergent (oscillates).
5. If $r<-1$, then $\left(r^{n}\right)$ is divergent.

Proof. We prove 1.
Suppose $r>1$.

We prove $\left(r^{n}\right)$ is strictly increasing.
Let $n \in \mathbb{N}$ be given.
Since $r>1>0$, then $r>0$.
Since $n \in \mathbb{N}$ and $r>0$, then by a previous lemma, $r^{n}>0$.
Since $r^{n}>0$ and $r>1$, then $r^{n+1}=r^{n} r>r^{n} \cdot 1=r^{n}$, so $r^{n+1}>r^{n}$. Thus, $r^{n}<r^{n+1}$, so $\left(r^{n}\right)$ is strictly increasing.

Let $M>0$ be given.
Let $c=r-1$.
Since $r>1$, then $r-1>0$, so $c>0$.
Since $c \neq 0$, then $\frac{M-1}{c} \in \mathbb{R}$.
By the Archimedean property of \mathbb{R}, there exists $N \in \mathbb{N}$ such that $N>\frac{M-1}{c}$. Thus, $c N+1>M$.
Let $n \in \mathbb{N}$ such that $n>N$.
Then $N<n$.
Since (r^{n}) is strictly increasing, then $r^{N}<r^{n}$.
Since $r>1$ and $N \in \mathbb{N}$, then by a previous lemma, $r^{N} \geq c N+1$.
Hence, $M<c N+1 \leq r^{N}<r^{n}$, so $M<r^{n}$.
Therefore, $r^{n}>M$, so $\lim _{n \rightarrow \infty} r^{n}=\infty$, as desired.

Proof. We prove 2.
Suppose $r=1$.
Then $1=\lim _{n \rightarrow \infty} 1=\lim _{n \rightarrow \infty} 1^{n}=\lim _{n \rightarrow \infty} r^{n}$, so $\lim _{n \rightarrow \infty} r^{n}=1$.
Proof. We prove 3.
Suppose $|r|<1$.
Since $|r| \geq 0$, then either $|r|>0$ or $|r|=0$.
We consider these cases separately.
Case 1: Suppose $|r|=0$.
Then $r=0$.
Since $n \in \mathbb{N}$, then $0=\lim _{n \rightarrow \infty} 0=\lim _{n \rightarrow \infty} 0^{n}=\lim _{n \rightarrow \infty} r^{n}$.
Therefore, $\lim _{n \rightarrow \infty} r^{n}=0$.
Case 2: Suppose $|r|>0$.
Since $0<|r|$ and $|r|<1$, then $0<|r|<1$, so $\frac{1}{|r|}>1>0$.
Thus, $\frac{1}{|r|}-1>0$.
Let $c=\frac{1}{|r|}-1$.
Then $c>0$, so $c \neq 0$.
Let $\epsilon>0$ be given.
Then $\epsilon \neq 0$, so $\frac{1}{\epsilon} \in \mathbb{R}$ and $\frac{1}{\epsilon}>0$.
Since $c \neq 0$, then $\frac{\frac{1}{\epsilon}-1}{c} \in \mathbb{R}$, so by the Archimedean property of \mathbb{R}, there exists $N \in \mathbb{N}$ such that $N>\frac{\frac{1}{\epsilon}-1}{c}$.

Let $n \in \mathbb{N}$ such that $n>N$.
Since $n>N>\frac{\frac{1}{\epsilon}-1}{1^{c}}$, then $n>\frac{\frac{1}{\epsilon}-1}{1^{c}}$, so $c n>\frac{1}{\epsilon}-1$.
Thus, $c n+1>\frac{1}{\epsilon}^{c}>0$, so $\epsilon>\frac{1}{c n+1}$.
Since $|r|>0$ and $n \in \mathbb{N}$, then by a previous lemma, $|r|^{n}>0$.
Since $\frac{1}{|r|}>1$ and $n \in \mathbb{N}$, then by a previous lemma, $\left(\frac{1}{|r|}\right)^{n} \geq c n+1$.
Since $c n+1>\frac{1}{\epsilon}>0$, then $c n+1>0$.
Observe that

$$
\begin{aligned}
\left(\frac{1}{|r|}\right)^{n} \geq c n+1 & \Leftrightarrow \frac{1}{|r|^{n}} \geq c n+1 \\
& \Leftrightarrow \frac{1}{c n+1} \geq|r|^{n}
\end{aligned}
$$

Thus, $\frac{1}{c n+1} \geq|r|^{n}$.
Since $|r|=0$ iff $r=0$, then $|r| \neq 0$ iff $r \neq 0$.
Since $|r| \neq 0$, then $r \neq 0$.
Thus, $\left|r^{n}\right|=|r|^{n} \leq \frac{1}{c n+1}<\epsilon$, so $\left|r^{n}\right|<\epsilon$.
Therefore, $\lim _{n \rightarrow \infty} r^{n}=0$.
Proof. We prove 4.
Suppose $r=-1$.
Then $r^{n}=(-1)^{n}$.
The sequence given by $r^{n}=(-1)^{n}$ for all $n \in \mathbb{N}$ was previously proven in the examples to diverge.

Proof. We prove 5.
Let $r<-1$.
Suppose (r^{n}) is bounded.
Then there exists $M>0$ such that $\left|r^{n}\right|<M$ for all $n \in \mathbb{N}$.
Since $r<-1$ and $-1<0$, then $-r>1$ and $r<0$, so $|r|=-r>1$.
Hence, $|r|>1$, so $|r|-1>0$.
Thus, $|r|-1 \neq 0$, so $\frac{M-1}{|r|-1} \in \mathbb{R}$.
By the Archimedean property of \mathbb{R}, there exists $N \in \mathbb{N}$ such that $N>\frac{M-1}{|r|-1}$.
Hence, $(|r|-1) N>M-1$, so $(|r|-1) N+1>M$.
Since $|r|>1$ and $N \in \mathbb{N}$, then by a previous lemma, $|r|^{N} \geq(|r|-1) N+1$.
Since $r<0$, then $r \neq 0$.
Thus,

$$
\begin{aligned}
\left|r^{N}\right| & =|r|^{N} \\
& \geq(|r|-1) N+1 \\
& >M
\end{aligned}
$$

Hence, there exists $N \in \mathbb{N}$ such that $\left|r^{N}\right|>M$.
This contradicts the assumption that $\left(r^{n}\right)$ is bounded.
Therefore, (r^{n}) is unbounded.
Since every unbounded sequence is divergent, then $\left(r^{n}\right)$ is divergent, as desired.

Bolzano-Weierstrass theorem

Theorem 37. Nested intervals theorem

Let $\left(I_{n}\right)$ be a sequence of nonempty closed, bounded intervals in \mathbb{R} such that $I_{n} \supset I_{n+1}$ for all $n \in \mathbb{N}$. Then there exists $\alpha \in \mathbb{R}$ such that $\alpha \in I_{n}$ for all $n \in \mathbb{N}$.

Proof. Let $n \in \mathbb{N}$.
Since I_{n} is a closed and bounded interval, then there exist $a_{n}, b_{n} \in \mathbb{R}$ such that $I_{n}=\left[a_{n}, b_{n}\right]=\left\{x \in \mathbb{R}: a_{n} \leq x \leq b_{n}\right\}$.

Since I_{n} is not empty, then there exists $x \in I_{n}$.
Hence, $x \in \mathbb{R}$ and $a_{n} \leq x \leq b_{n}$.
Thus, $a_{n} \leq b_{n}$.
Since n is arbitrary, then $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$.
Since $a_{n} \in \mathbb{R}$ for all $n \in \mathbb{N}$, then $\left(a_{n}\right)$ is a sequence of real numbers.
Since $b_{n} \in \mathbb{R}$ for all $n \in \mathbb{N}$, then $\left(b_{n}\right)$ is a sequence of real numbers.

Let $n \in \mathbb{N}$.
Then $I_{n+1} \subset I_{n}$.
Since $I_{n+1}=\left[a_{n+1}, b_{n+1}\right]$, then $a_{n+1} \in I_{n+1}$ and $b_{n+1} \in I_{n+1}$.
Since $a_{n+1} \in I_{n+1}$ and $I_{n+1} \subset I_{n}$, then $a_{n+1} \in I_{n}$, so $a_{n} \leq a_{n+1} \leq b_{n}$.
Since $b_{n+1} \in I_{n+1}$ and $I_{n+1} \subset I_{n}$, then $b_{n+1} \in I_{n}$, so $a_{n} \leq b_{n+1} \leq b_{n}$.
Since $a_{n} \leq a_{n+1} \leq b_{n}$, then $a_{n} \leq a_{n+1}$.

Since $a_{n} \leq b_{n+1} \leq b_{n}$, then $b_{n+1} \leq b_{n}$.
Since $a_{n} \leq a_{n+1}$ and n is arbitrary, then $a_{n} \leq a_{n+1}$ for all $n \in \mathbb{N}$, so $\left(a_{n}\right)$ is increasing.

Since $b_{n} \geq b_{n+1}$ and n is arbitrary, then $b_{n} \geq b_{n+1}$ for all $n \in \mathbb{N}$, so $\left(b_{n}\right)$ is decreasing.

Proof. We prove $a_{m} \leq b_{n}$ for all $m \in \mathbb{N}$ and all $n \in \mathbb{N}$.
Let $m, n \in \mathbb{N}$ be given.
Either $m<n$ or $m=n$ or $m>n$.
We consider these cases separately.
Case 1: Suppose $m=n$.
Since $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$ and $m \in \mathbb{N}$, then $a_{m} \leq b_{m}=b_{n}$.
Case 2: Suppose $m<n$.
Since $\left(a_{n}\right)$ is increasing, then $a_{m} \leq a_{n}$.
Since $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$ and $n \in \mathbb{N}$, then $a_{n} \leq b_{n}$.
Since $a_{m} \leq a_{n}$ and $a_{n} \leq b_{n}$, then $a_{m} \leq b_{n}$.
Case 3: Suppose $m>n$.
Since $\left(b_{n}\right)$ is decreasing and $n<m$, then $b_{n} \geq b_{m}$.
Since $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$ and $m \in \mathbb{N}$, then $a_{m} \leq b_{m}$.
Since $a_{m} \leq b_{m}$ and $b_{m} \leq b_{n}$, then $a_{m} \leq b_{n}$.
Therefore, in all cases, $a_{m} \leq b_{n}$, as desired.
Proof. Let $A=\left\{a_{n}: n \in \mathbb{N}\right\}$.
Since $a_{1} \in A$, then $A \neq \emptyset$.
Since $a_{m} \leq b_{n}$ for all $m \in \mathbb{N}$ and all $n \in \mathbb{N}$ and $1 \in \mathbb{N}$, then $a_{m} \leq b_{1}$ for all $m \in \mathbb{N}$.

Hence, b_{1} is an upper bound of A, so A is bounded above in \mathbb{R}
Since $A \neq \emptyset$ and is bounded above in \mathbb{R}, then by completeness of $\mathbb{R}, \sup A$ exists.

Let $B=\left\{b_{n}: n \in \mathbb{N}\right\}$.
Since $b_{1} \in B$, then $B \neq \emptyset$.
Since $a_{m} \leq b_{n}$ for all $m \in \mathbb{N}$ and all $n \in \mathbb{N}$ and $1 \in \mathbb{N}$, then $a_{1} \leq b_{n}$ for all $n \in \mathbb{N}$.

Hence, a_{1} is a lower bound of B, so B is bounded below in \mathbb{R}
Since $B \neq \emptyset$ and is bounded below in \mathbb{R}, then by completeness of $\mathbb{R}, \inf B$ exists.

Proof. We prove sup $A \leq \inf B$.
Let $b \in B$.
Then $b=b_{n}$ for some $n \in \mathbb{N}$.
Since $a_{m} \leq b_{n}$ for all $m, n \in \mathbb{N}$ and $n \in \mathbb{N}$, then $a_{m} \leq b_{n}$ for all $m \in \mathbb{N}$.
Hence, b_{n} is an upper bound of A.
Since $\sup A$ is the least upper bound of A, then $\sup A \leq b_{n}$.
Since b is arbitrary, then $\sup A \leq b_{n}$ for all $n \in \mathbb{N}$.
Thus, $\sup A$ is a lower bound of B.
Since $\inf B$ is the greatest lower bound of B, then $\sup A \leq \inf B$.

Proof. Since $\sup A$ is an upper bound of A, then $a_{n} \leq \sup A$ for all $n \in \mathbb{N}$.
Since $\sup A \leq \inf B$, then $\sup A$ is a lower bound of B, so $\sup A \leq b_{n}$ for all $n \in \mathbb{N}$.

Since $a_{n} \leq \sup A$ for all $n \in \mathbb{N}$ and $\sup A \leq b_{n}$ for all $n \in \mathbb{N}$, then $a_{n} \leq$ $\sup A \leq b_{n}$ for all $n \in \mathbb{N}$.

Let $\alpha=\sup A$.
Then $\alpha \in \mathbb{R}$ and $a_{n} \leq \alpha \leq b_{n}$ for all $n \in \mathbb{N}$, so $\alpha \in\left[a_{n}, b_{n}\right]$ for all $n \in \mathbb{N}$.
Hence, $\alpha \in I_{n}$ for all $n \in \mathbb{N}$.
Therefore, there exists $\alpha \in \mathbb{R}$ such that $\alpha \in I_{n}$ for all $n \in \mathbb{N}$, as desired.

Theorem 38. Bolzano-Weierstrass theorem

Every bounded sequence in \mathbb{R} has a convergent subsequence.
Proof. Let $\left(x_{n}\right)$ be a bounded sequence of real numbers.
Then there exists $M \in \mathbb{R}$ such that $\left|x_{n}\right| \leq M$ for all $n \in \mathbb{N}$, so there exists $M>0$ such that $-M \leq x_{n} \leq M$ for all $n \in \mathbb{N}$.

Let $I_{1}=[-M, M]$.
... Since $\left(I_{n}\right)$ is a sequence of nonempty closed bounded intervals such that $I_{n} \supset I_{n+1}$ for all $n \in \mathbb{N}$, then by the Nested Intervals theorem, there exists $\alpha \in \mathbb{R}$ such that $\alpha \in I_{n}$ for all $n \in \mathbb{N}$.

We then show there is a sequence $\left(y_{n}\right)$ such that $y_{n} \in I_{n}$ for each $n \in \mathbb{N}$.
We then show that $\left(y_{n}\right)$ is a subsequence of $\left(x_{n}\right)$.
We should show that $\left(y_{n}\right)$ is increasing sequence and is bounded above.
We then show that $\lim _{n \rightarrow \infty} y_{n}=\alpha$.
Proof. Let $\left(x_{n}\right)$ be a bounded sequence of real numbers.
Then there exists a real number $M>0$ such that $-M<x_{n}<M$ for all $n \in \mathbb{N}$.

Let $I_{1}=[-M, M]$.
Since (x_{n}) has infinitely many terms, then A_{1} contains infinitely many terms of $\left(x_{n}\right)$.

Hence, I_{1} is not empty.
Since $M>0$, then $-M<0$, so M and $-M$ are distinct real numbers.
Thus, there exists a unique midpoint of the interval I_{1}.
Hence, there exist exactly two subintervals of I_{1} of equal length.
Let $B_{1}=[-M, 0]$ and $C_{1}=[0, M]$ be these two subintervals of I_{1}.
Then $I_{1}=B_{1} \cup C_{1}$.
Suppose B_{1} and C_{1} contain finitely many terms of $\left(x_{n}\right)$.
Then the number of terms in A_{1} is $\left|A_{1}\right|=\left|B_{1}\right|+\left|C_{1}\right|$, a finite number.
But, this contradicts the fact that A_{1} contains infinitely many terms of $\left(x_{n}\right)$.
Hence, either B_{1} contains infinitely many terms of $\left(x_{n}\right)$ or C_{1} contains infinitely many terms of $\left(x_{n}\right)$.

Thus, at least one of these closed, bounded subintervals of I_{1} contains infinitely many terms of $\left(x_{n}\right)$.

Let I_{2} be one of these closed, bounded subintervals of I_{1} that contains infinitely many terms of $\left(x_{n}\right)$.

Since I_{2} contains infinitely many terms of $\left(x_{n}\right)$, then I_{2} is not empty.

Since I_{2} is a subinterval of I_{1}, then $I_{2} \subset I_{1}$.
Since $0<M$, then there is a unique midpoint of the interval I_{2}.
Thus, there exist exactly two subintervals of I_{2} of equal length.
Let B_{2} and C_{2} be these two closed, bounded subintervals of I_{2} of equal length.

Again, at least one of these two subintervals of I_{2} contains infinitely many terms of $\left(x_{n}\right)$.

Let I_{3} be one of these subintervals of I_{2} that contains infinitely many terms of $\left(x_{n}\right)$.

Since I_{3} contains infinitely many terms of $\left(x_{n}\right)$, then I_{3} is not empty.
Since I_{3} is a subinterval of I_{2}, then $I_{3} \subset I_{2}$.
We repeat this process.
Since we can continue to always choose a closed, bounded subinterval of a given interval I_{k} that always contains infinitely many terms of $\left(x_{n}\right)$, then this process never ends.

Therefore, we have a sequence of nested nonempty, closed, bounded intervals such that $I_{1} \supset I_{2} \supset I_{3} \supset \ldots$

Hence, by the Nested intervals theorem, there exists a real number α such that $\alpha \in I_{n}$ for all $n \in \mathbb{N}$.

Since $I_{n} \supset I_{n+1}$ for all $n \in \mathbb{N}$, then if $m<n$, then $I_{m} \supset I_{n}$. Prove this!
Proof. We must prove there exists a convergent subsequence $\left(y_{n}\right)$ of $\left(x_{n}\right)$.
Define function $g: \mathbb{N} \rightarrow \mathbb{N}$ by $g(n)=k_{n}$ such that $g(n)<g(n+1)$ for all $n \in \mathbb{N}$ with $g(1)=1$.

Since $g(n)<g(n+1)$ for all $n \in \mathbb{N}$, then g is strictly increasing.
Let $\left(y_{n}\right)$ be a subsequence of $\left(x_{n}\right)$ such that $y_{n}=x_{g(n)}=x_{k_{n}}$ for all $n \in \mathbb{N}$.
Then $y_{1}=x_{1}=x_{k_{1}}$.
We need to rigorously show that there exists $k_{2} \in \mathbb{N}$ such that $x_{k_{2}} \in I_{2}$ and $k_{2}>1$.

Similarly, we need to show that there exists $k_{3} \in \mathbb{N}$ such that $x_{k_{3}} \in I_{3}$ and $k_{3}>k_{2}$.
etc.
In general, we have to show for each $n>1$ there exists $k_{n} \in \mathbb{N}$ such that $x_{k_{n}} \in I_{n}$ and $k_{n}>k_{n-1}$. We should try to prove by induction.

Let $S=\left\{n \in \mathbb{N}:\left(\exists k_{n} \in \mathbb{N}\right)\left(x_{k_{n}} \in I_{n}\right)\left(k_{n}>k_{n-1}\right\}\right.$ for $n>1$ and $k_{1}=1$.
Suppose $m \in S$.
Then $m \in \mathbb{N}$ and there exists $k_{m} \in \mathbb{N}$ such that $a_{k_{m}} \in A_{m}$ and $k_{m}>k_{m-1}$ and $m>1$.

To prove $m+1 \in S$, prove there exists $k_{m+1} \in \mathbb{N}$ such that $a_{k_{m+1}} \in A_{m+1}$ and $k_{m+1}>k_{m}$ and $m+1>1$.

Since A_{m+1} contains infinitely many terms of $\left(a_{n}\right)$, then in particular, A_{m+1} contains at least $m+1$ elements.

Thus, there exist natural numbers $r_{1}, r_{2}, \ldots, r_{m+1}$ such that $a_{r_{1}}, a_{r_{2}}, a_{r_{3}}, \ldots, a_{r_{m+1}} \in$ A_{m+1}.

It is because each A_{n} contains infinitely many terms.
So, for example for A_{2}.

We should show that there exists $k_{2} \in \mathbb{N}$ such that $a_{k_{2}} \in A_{2}$ and $k_{2}>k_{1}=1$. Suppose there does not exist $k_{2} \in \mathbb{N}$ such that $a_{k_{2}} \in A_{2}$ and $k_{2}>k_{1}=1$.
This is equivalent to supposing that there does not exist $m \in \mathbb{N}$ such that $a_{m} \in A_{2}$ and $m>1$.

Since A_{2} contains infinitely many terms of $\left(a_{n}\right)$, then in particular, A_{2} contains at least 2 elements.

Call these a_{r} and a_{s}, so $a_{r} \in A_{2}$ and $a_{s} \in A_{2}$ and $r, s \in \mathbb{N}$.
We'd like to show that either r or s must be greater than 1 .
So, assume $r \leq 1$.
We must prove $s>1$.
Since $r \in \mathbb{N}$, then $r \geq 1$.
Since $r \geq 1$ and $r \leq 1$, then $r=1$.
Since r and s are distinct natural numbers, then $s \neq r$.
Thus, $s \neq 1$.
Since $s \in \mathbb{N}$, then $s \geq 1$.
Hence, $s>1$, as desired.
What if we want to show there exists $k \in \mathbb{N}$ such that $a_{k} \in A_{2}$ and $k>2$?
Proof. We now prove the subsequence $\left(y_{n}\right)$ converges to α.
The length of the interval I_{n} is $2^{2-n} M$. Prove this!
Consider the sequence defined by $2^{2-n} M$ for all $n \in \mathbb{N}$.
This sequence is $4 M$ times the geometric sequence $\left(\frac{1}{2}\right)^{n}$ which converges to zero.

Thus, $2^{2-n} M$ converges to zero. (I.e. the lengths of the intervals eventually get smaller and closer to zero).

We must prove that the sequence $\left(2^{2-n} M\right)$ is decreasing and converges to 0 , using any method we wish, such as by proving the sequence is 4 times the geometric sequence $\left(\frac{1}{2}\right)^{n}$ which converges to zero.

So, this means the sequence $\left(2^{2-n} M\right)$ converges to $4 * 0=0$.

Let $\epsilon>0$ be given.
Since the sequence $\left(2^{2-n} M\right)$ is decreasing and converges to 0 , then 0 is the greatest lower bound of $\left(2^{2-n} M\right)$.

Hence, $\epsilon>0$ is not a lower bound of $\left(2^{2-n} M\right)$, so there exists $N \in \mathbb{N}$ such that $2^{2-N} M<\epsilon$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $N<n$.
Thus, $I_{N} \supset I_{n}$.
Since $a_{k_{n}} \in I_{n}$ and $I_{n} \subset I_{N}$, then $a_{k_{n}} \in I_{N}$.
Since $a_{k_{n}}=y_{n}$, then $y_{n} \in I_{N}$.
Proof. Let $n \in \mathbb{N}$.
We must show that the length of the $n^{\text {th }}$ subinterval I_{n} is $2^{2-n} M$.
We must show that $y_{n} \in I_{n}$.
Since $\alpha \in I_{n}$ for all $n \in \mathbb{N}$ and $n \in \mathbb{N}$, then $\alpha \in I_{n}$.

Since $y_{n} \in I_{n}$ and $\alpha \in I_{n}$ and I_{n} is a nonempty closed bounded interval with length $2^{2-n} M$, then $\left|y_{n}-\alpha\right| \leq 2^{2-n} M$.

Therefore, $\left|y_{n}-\alpha\right| \leq 2^{2-n} M$ for all $n \in \mathbb{N}$.
Proof. We prove $\lim _{n \rightarrow \infty} y_{n}=\alpha$.
Let $\epsilon>0$ be given.
By the Archimedean property of \mathbb{R}, there exists $N \in \mathbb{N}$ such that $N>2+\frac{M}{\epsilon}$.
Let $n \in \mathbb{N}$ such that $n>N$.
Since $n>N$ and $N>2+\frac{M}{\epsilon}$, then $n>2+\frac{M}{\epsilon}$, so $n-2>\frac{M}{\epsilon}$.
Since $n-2>0$, then $\epsilon>\frac{M}{n-2}$.
Since $2^{n}>n>0$ for all $n \in \mathbb{N}$, then $\frac{1}{2^{n}}<\frac{1}{n}$ for all $n \in \mathbb{N}$.
Since $n-2 \in \mathbb{N}$, then this implies $\frac{1^{2^{n}}}{2^{n-2}}<\frac{n_{1}}{n-2}$.
Since $M>0$, then $\frac{M}{2^{n-2}}<\frac{M}{n-2}$.
Since $\frac{M}{2^{n-2}}<\frac{M}{n-2}$ and $\frac{M}{n-2}<\epsilon$, then $\frac{M}{2^{n-2}}<\epsilon$.
Since $n-2>0$, then $2^{2-n} M<\epsilon$.
Since $\left|y_{n}-\alpha\right| \leq 2^{2-n} M$ for all $n \in \mathbb{N}$ and $n \in \mathbb{N}$, then $\left|y_{n}-\alpha\right| \leq 2^{2-n} M$.
Thus, $\left|y_{n}-\alpha\right| \leq 2^{2-n} M<\epsilon$, so $\left|y_{n}-\alpha\right|<\epsilon$.
Therefore, $\lim _{n \rightarrow \infty} y_{n}=\alpha$.

Cauchy sequences

Lemma 39. Every convergent sequence in \mathbb{R} is a Cauchy sequence.
Proof. Let $\left(a_{n}\right)$ be a convergent sequence of real numbers.
To prove $\left(a_{n}\right)$ is a Cauchy sequence, let $\epsilon>0$ be given.
Then $\frac{\epsilon}{2}>0$.
Since $\left(a_{n}\right)$ is convergent, then there exists a real number L and there exists $N \in \mathbb{N}$ such that $\left|a_{n}-L\right|<\frac{\epsilon}{2}$ whenever $n>N$.

Let $m, n>N$.
Since $m>N$, then $\left|a_{m}-L\right|<\frac{\epsilon}{2}$.
Since $n>N$, then $\left|a_{n}-L\right|<\frac{\epsilon}{2}$.
Observe that

$$
\begin{aligned}
\left|a_{m}-a_{n}\right| & =\left|\left(a_{m}-L\right)+\left(L-a_{n}\right)\right| \\
& \leq\left|a_{m}-L\right|+\left|L-a_{n}\right| \\
& =\left|a_{m}-L\right|+\left|a_{n}-L\right| \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon .
\end{aligned}
$$

Therefore, $\left|a_{m}-a_{n}\right|<\epsilon$, as desired.
Lemma 40. Every Cauchy sequence in \mathbb{R} is bounded.

Proof. Let $\left(a_{n}\right)$ be a Cauchy sequence of real numbers.
Then for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that for all $m, n \in \mathbb{N}$, if $m, n>N$, then $\left|a_{m}-a_{n}\right|<\epsilon$.

Let $\epsilon=1$.
Then there exists $N \in \mathbb{N}$ such that for all $m, n \in \mathbb{N}$, if $m, n>N$, then $\left|a_{m}-a_{n}\right|<1$.

Let $S=\left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{N}\right|, 1+\left|a_{N+1}\right|\right\}=\left\{\left|a_{k}\right|: 1 \leq k \leq N\right\} \cup\left\{1+\left|a_{N+1}\right|\right\}$.
Then $S \subset \mathbb{R}$.
Since $1+\left|a_{N+1}\right| \in S$, then S is not empty.
Since S contains at most $N+1$ elements, then S is finite.
Hence, S is a nonempty finite set of real numbers.
Therefore, max S exists.
To prove $\left(a_{n}\right)$ is bounded, we must prove there exists $M \in \mathbb{R}$ such that $\left|a_{n}\right| \leq M$ for all $n \in \mathbb{N}$.

Let $M=\max S$.
Since $M=\max S \in S$ and $S \subset \mathbb{R}$, then $M \in \mathbb{R}$.
Let $n \in \mathbb{N}$.
Either $n \leq N$ or $n>N$.
We consider these cases separately.
Case 1: Suppose $n \leq N$.
Then $1 \leq n \leq N$, so $\left|a_{n}\right| \in S$.
Therefore, $\left|a_{n}\right| \leq M$.
Case 2: Suppose $n>N$.
Since $n>N$ and $N+1>N$, then $\left|a_{n}-a_{N+1}\right|<1$.
Since $1+\left|a_{N+1}\right| \in S$ and $M=\max S$, then $1+\left|a_{N+1}\right| \leq M$.
Observe that

$$
\begin{aligned}
\left|a_{n}\right| & =\left|\left(a_{n}-a_{N+1}\right)+a_{N+1}\right| \\
& \leq\left|a_{n}-a_{N+1}\right|+\left|a_{N+1}\right| \\
& <1+\left|a_{N+1}\right| \\
& \leq M
\end{aligned}
$$

Therefore, $\left|a_{n}\right|<M$, so $\left|a_{n}\right| \leq M$.
Thus, in all cases, $\left|a_{n}\right| \leq M$, so $\left(a_{n}\right)$ is bounded, as desired.
Theorem 41. Cauchy convergence criterion for sequences
A sequence in \mathbb{R} is convergent iff it is a Cauchy sequence.
Proof. Let $\left(a_{n}\right)$ be a sequence of real numbers.
Suppose (a_{n}) is convergent.
Then, by a previous lemma, $\left(a_{n}\right)$ is a Cauchy sequence.
Conversely, suppose $\left(a_{n}\right)$ is a Cauchy sequence.
Then, by a previous lemma, $\left(a_{n}\right)$ is bounded.
Thus, by the Bolzano-Weierstrass theorem, $\left(a_{n}\right)$ has a convergent subsequence.

Let $\left(b_{n}\right)$ be a convergent subsequence of $\left(a_{n}\right)$.

Since $\left(b_{n}\right)$ is convergent, then there exists a real number L such that $\lim _{n \rightarrow \infty} b_{n}=$ L.

We prove $\lim _{n \rightarrow \infty} a_{n}=L$.
Let $\epsilon>0$ be given.
Then $\frac{\epsilon}{2}>0$.
Since $\lim _{n \rightarrow \infty} b_{n}=L$, then there exists $N_{1} \in \mathbb{N}$ such that if $n>N_{1}$, then $\left|b_{n}-L\right|<\frac{\epsilon}{2}$.

Since $\left(a_{n}\right)$ is Cauchy, then there exists $N_{2} \in \mathbb{N}$ such that if $m, n>N_{2}$, then $\left|a_{m}-a_{n}\right|<\frac{\epsilon}{2}$.

Let $N=\max \left\{N_{1}, N_{2}\right\}$.
Let $n \in \mathbb{N}$ such that $n>N$.
Since $n>N \geq N_{1}$, then $n>N_{1}$, so $\left|b_{n}-L\right|<\frac{\epsilon}{2}$.
Since $n>N \geq N_{2}$, then $n>N_{2}$.
Since $\left(b_{n}\right)$ is a subsequence of $\left(a_{n}\right)$, then there exists a strictly increasing function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that $b_{n}=a_{g(n)}$ for all $n \in \mathbb{N}$.

Since $N_{2}<n$ and g is strictly increasing, then $g\left(N_{2}\right)<g(n)$ and $g\left(N_{2}\right) \geq N_{2}$.
Thus, $g(n)>g\left(N_{2}\right) \geq N_{2}$, so $g(n)>N_{2}$.
Since $n>N_{2}$ and $g(n)>N_{2}$, then $\left|a_{n}-a_{g(n)}\right|<\frac{\epsilon}{2}$, so $\left|a_{n}-b_{n}\right|<\frac{\epsilon}{2}$.
Hence,

$$
\begin{aligned}
\left|a_{n}-L\right| & =\left|\left(a_{n}-b_{n}\right)+\left(b_{n}-L\right)\right| \\
& \leq\left|a_{n}-b_{n}\right|+\left|b_{n}-L\right| \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon
\end{aligned}
$$

Thus, $\left|a_{n}-L\right|<\epsilon$, so $\lim _{n \rightarrow \infty} a_{n}=L$.
Therefore, $\left(a_{n}\right)$ is convergent.

