Sequences in \mathbb{R} Examples

Jason Sass

May 19, 2023

Sequences in \mathbb{R}

Sequences as Functions

Example 1. The sequence given by $a_{n}=n^{2}$ is strictly increasing.
Proof. Let $n \in \mathbb{N}$.
Since $a_{n}=n^{2}<n^{2}+2 n+1=(n+1)^{2}=a_{n+1}$, then $\left(a_{n}\right)$ is strictly increasing.
Example 2. The sequence given by $a_{n}=3+\frac{(-1)^{n}}{n}$ is neither increasing nor decreasing.
Proof. Since $2 \in \mathbb{N}$ and $a_{2}=\frac{7}{2}>\frac{8}{3}=a_{3}$, then $\left(a_{n}\right)$ is not increasing. Since $1 \in \mathbb{N}$ and $a_{1}=2<\frac{7}{2}=a_{2}$, then $\left(a_{n}\right)$ is not decreasing. Therefore, $\left(a_{n}\right)$ is neither increasing nor decreasing.

Example 3. constant sequence is increasing and decreasing. Let k be a real number.
The sequence given by $a_{n}=k$ is monotonic increasing and decreasing, but is neither strictly increasing nor strictly decreasing.

Proof. Since $1 \in \mathbb{N}$ and $a_{1}=k \geq k=a_{2}$, then $\left(a_{n}\right)$ is not strictly increasing. Since $1 \in \mathbb{N}$ and $a_{1}=k \leq k=a_{2}$, then $\left(a_{n}\right)$ is not strictly decreasing. Let $n \in \mathbb{N}$.
Since $a_{n}=k \leq k=a_{n+1}$, then $\left(a_{n}\right)$ is monotonic increasing.
Since $a_{n}=k \geq k=a_{n+1}$, then $\left(a_{n}\right)$ is monotonic decreasing.
Example 4. every strictly increasing sequence is (monotonic) increasing.

Let $\left(a_{n}\right)$ be a strictly increasing sequence of real numbers. Then $\left(a_{n}\right)$ is monotonic increasing.

Proof. Let $n \in \mathbb{N}$.
Since $\left(a_{n}\right)$ is strictly increasing, then $a_{n}<a_{n+1}$.
Thus, either $a_{n}<a_{n+1}$ or $a_{n}=a_{n+1}$, so $a_{n} \leq a_{n+1}$.
Hence, $a_{n} \leq a_{n+1}$ for all $n \in \mathbb{N}$.
Therefore, $\left(a_{n}\right)$ is monotonic increasing.

Example 5. every strictly decreasing sequence is (monotonic) decreasing.

Let $\left(a_{n}\right)$ be a strictly decreasing sequence of real numbers.
Then $\left(a_{n}\right)$ is monotonic decreasing.
Proof. Let $n \in \mathbb{N}$.
Since $\left(a_{n}\right)$ is strictly decreasing, then $a_{n}>a_{n+1}$.
Thus, either $a_{n}>a_{n+1}$ or $a_{n}=a_{n+1}$, so $a_{n} \geq a_{n+1}$.
Hence, $a_{n} \geq a_{n+1}$ for all $n \in \mathbb{N}$.
Therefore, $\left(a_{n}\right)$ is monotonic decreasing.
Example 6. The sequence defined by $a_{n}=n^{2}$ for all $n \in \mathbb{N}$ is bounded below by 0 , but is not bounded above.

Proof. Since $a_{n}=n^{2}>0$ for all $n \in \mathbb{N}$, then 0 is a lower bound of $\left(a_{n}\right)$, so $\left(a_{n}\right)$ is bounded below by 0 .

To prove $\left(a_{n}\right)$ is unbounded above, let $M \in \mathbb{R}$ be given.
We must prove there exists $n \in \mathbb{N}$ such that $a_{n}>M$.
Either $M \leq 0$ or $M>0$.
We consider these cases separately.
Case 1: Suppose $M \leq 0$.
Since $1 \in \mathbb{N}$ and $M \leq 0<1=a_{1}$, then $a_{1}>M$.
Case 2: Suppose $M>0$.
Then $\sqrt{M}>0$.
By the Archimedean property of \mathbb{R}, there exists $n \in \mathbb{N}$ such that $n>\sqrt{M}$.
Since $n>\sqrt{M}>0$, then $a_{n}=n^{2}>M$.
Therefore, $\left(a_{n}\right)$ is unbounded above, so $\left(a_{n}\right)$ is not bounded above.
Example 7. The sequence defined by $a_{n}=-n$ for all $n \in \mathbb{N}$ is bounded above by 0 , but is not bounded below.

Proof. Let $n \in \mathbb{N}$.
Then $a_{n}=-n<0$, so $a_{n}<0$.
Hence, $a_{n} \leq 0$, so 0 is an upper bound of $\left(a_{n}\right)$.
Therefore, $\left(a_{n}\right)$ is bounded above by 0 .
Let $m \in \mathbb{R}$ be given.
Then $-m \in \mathbb{R}$.
By the Archimedean property of \mathbb{R}, there exists $n \in \mathbb{N}$ such that $n>-m$.
Hence, $a_{n}=-n<m$.
Thus, there exists $n \in \mathbb{N}$ such that $a_{n}<m$.
Therefore, $\left(a_{n}\right)$ is unbounded below.
Example 8. The sequence defined by $a_{n}=\frac{1}{n}$ for all $n \in \mathbb{N}$ is bounded above by 1 and is bounded below by 0 .

Proof. Let $n \in \mathbb{N}$.
Then $n \geq 1$, so $1 \geq \frac{1}{n}=a_{n}$.
Hence, $a_{n} \leq 1$, so 1 is an upper bound of $\left(a_{n}\right)$.

Therefore, $\left(a_{n}\right)$ is bounded above by 1 .
Let $n \in \mathbb{N}$.
Then $n \geq 1>0$, so $n>0$.
Hence, $a_{n}=\frac{1}{n}>0$, so $a_{n}>0$.
Thus, $0<a_{n}$, so $0 \leq a_{n}$.
Therefore, 0 is a lower bound of $\left(a_{n}\right)$, so $\left(a_{n}\right)$ is bounded below by 0 .
Since $\left(a_{n}\right)$ is bounded above and below, then $\left(a_{n}\right)$ is bounded.
Example 9. The sequence defined by $a_{n}=\cos (n)$ for all $n \in \mathbb{N}$ is bounded above by 1 and is bounded below by -1 .

Proof. Let $n \in \mathbb{N}$.
Since $\mathbb{N} \subset \mathbb{R}$, then $n \in \mathbb{R}$.
Since $|\cos (x)| \leq 1$ for all $x \in \mathbb{R}$, then in particular, $\left|a_{n}\right|=|\cos (n)| \leq 1$.
Hence, $\left|a_{n}\right| \leq 1$, so $-1 \leq a_{n} \leq 1$.
Thus, $-1 \leq a_{n} \leq 1$ for all $n \in \mathbb{N}$, so 1 is an upper bound and -1 is a lower bound of $\left(a_{n}\right)$.

Therefore, $\left(a_{n}\right)$ is bounded above by 1 and below by -1 .
Since $\left(a_{n}\right)$ is bounded above and below, then $\left(a_{n}\right)$ is bounded.
Example 10. The sequence defined by $b_{n}=(2 n+1)^{2}$ is a subsequence of the sequence defined by $a_{n}=n^{2}$ for all $n \in \mathbb{N}$.

Proof. Since $\left(a_{n}\right)$ is a sequence of real numbers, then there exists a function $f: \mathbb{N} \rightarrow \mathbb{R}$ such that $f(n)=a_{n}=n^{2}$ for all $n \in \mathbb{N}$.

Let $g: \mathbb{N} \rightarrow \mathbb{N}$ be a function defined by $g(n)=2 n+1$ for all $n \in \mathbb{N}$.
To prove $\left(b_{n}\right)$ is a subsequence of $\left(a_{n}\right)$, we must prove g is strictly increasing and $b_{n}=(f \circ g)(n)$ for all $n \in \mathbb{N}$.

Let $m, n \in \mathbb{N}$ such that $m<n$.
Since $m<n \Rightarrow 2 m<2 n \Rightarrow g(m)=2 m+1<2 n+1=g(n)$, then $g(m)<g(n)$.

Hence, g is strictly increasing.
Let $n \in \mathbb{N}$.
Then

$$
\begin{aligned}
(f \circ g)(n) & =f(g(n)) \\
& =f(2 n+1) \\
& =(2 n+1)^{2} \\
& =b_{n} .
\end{aligned}
$$

Therefore, $b_{n}=(f \circ g)(n)$ for all $n \in \mathbb{N}$, as desired.
Example 11. a sequence is a subsequence of itself
If $\left(a_{n}\right)$ is a sequence, then $\left(a_{n}\right)$ is a subsequence of $\left(a_{n}\right)$.

Proof. Let $\left(a_{n}\right)$ be a sequence of real numbers.
Then there exists a function $f: \mathbb{N} \rightarrow \mathbb{R}$ such that $f(n)=a_{n}$ for all $n \in \mathbb{N}$.
Let $g: \mathbb{N} \rightarrow \mathbb{N}$ be a function defined by $g(n)=n$ for all $n \in \mathbb{N}$.
Let $n \in \mathbb{N}$ be given.
Since $g(n)=n<n+1=g(n+1)$, then g is strictly increasing.
Observe that

$$
\begin{aligned}
(f \circ g)(n) & =f(g(n)) \\
& =f(n) \\
& =a_{n} .
\end{aligned}
$$

Therefore, $\left(a_{n}\right)$ is a subsequence of $\left(a_{n}\right)$.

Convergent Sequences in \mathbb{R}

Example 12. The sequence $\left(\frac{1}{n}\right)$ converges to zero in \mathbb{R}.
Therefore $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.
Equivalently, $\frac{1}{n} \rightarrow 0$.
Proof. Let $\epsilon>0$ be given.
We must prove there exists a natural number N such that for all natural numbers n, if $n>N$, then $\left|\frac{1}{n}\right|<\epsilon$.

Since $\epsilon>0$, then $\frac{1}{\epsilon} \in \mathbb{R}$.
By the archimedean property of \mathbb{R} there exists a natural number N such that $N>\frac{1}{\epsilon}$.

Let $n \in \mathbb{N}$ such that $n>N$.
Since $n>N$ and $N>\frac{1}{\epsilon}$, then $n>\frac{1}{\epsilon}$.
Since $n \in \mathbb{N}$, then $n \geq 1>0$, so $n>0$.
Since $n>\frac{1}{\epsilon}$ and $\epsilon>0$ and $n>0$, then $\epsilon>\frac{1}{n}>0$.
Therefore, $\left|\frac{1}{n}\right|=\frac{1}{n}<\epsilon$, as desired.
Example 13. limit of a constant sequence
For all $k \in \mathbb{R}, \lim _{n \rightarrow \infty} k=k$. (limit of a constant k is k)
Proof. Let $k \in \mathbb{R}$.
Let $\epsilon>0$ be given.
To prove prove $\lim _{n \rightarrow \infty} k=k$, we must prove there exists a natural number N such that for all natural numbers n, if $n>N$, then $|k-k|<\epsilon$.

Let N be the natural number 1 .
Let $n \in \mathbb{N}$ such that $n>N$.
Since $|k-k|=|0|=0<\epsilon$, then $|k-k|<\epsilon$.
Hence, the implication $n>N \Rightarrow|k-k|<\epsilon$ is trivially true.
Therefore, $n>N$ implies $|k-k|<\epsilon$ for all $n \in \mathbb{N}$, as desired.
Example 14. If $\lim _{n \rightarrow \infty} a_{n}=L$, then $\lim _{n \rightarrow \infty} a_{n+1}=L$.

Proof. Let $\left(a_{n}\right)$ be a sequence such that $\lim _{n \rightarrow \infty} a_{n}=L$.
Then $\left(a_{n}\right)$ is convergent.
Let $\left(b_{n}\right)$ be a sequence defined by $b_{n}=a_{n+1}$ for all $n \in \mathbb{N}$.
We must prove $\lim _{n \rightarrow \infty} b_{n}=L$.
Since $b_{n}=a_{n+1}$ for all $n \in \mathbb{N}$, then $\left(b_{n}\right)$ is the 1-tail of $\left(a_{n}\right)$, so $\left(b_{n}\right)$ is a subsequence of $\left(a_{n}\right)$.

Since $\left(b_{n}\right)$ is a subsequence of $\left(a_{n}\right)$, then $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} a_{n}=L$, as desired.

Lemma 15. Let $\left(a_{n}\right)$ be a sequence defined by $a_{n}=(-1)^{n}$ for all $n \in \mathbb{N}$.
Then $\left|(-1)^{n}\right|=1$ for all $n \in \mathbb{N}$ and $\left|(-1)^{n+1}-(-1)^{n}\right|=2$ for all $n \in \mathbb{N}$.
Proof. We prove $\left|(-1)^{n}\right|=1$ for all $n \in \mathbb{N}$ by induction on n.
Let $p(n):\left|(-1)^{n}\right|=1$ be a predicate defined over \mathbb{N}.

Basis:

Since $\left|(-1)^{1}\right|=|-1|=1$, then the statement $p(1)$ is true.
Induction:
Let $n \in \mathbb{N}$ such that $p(n)$ is true.
Then $\left|(-1)^{n}\right|=1$.
Observe that

$$
\begin{aligned}
\left|(-1)^{n+1}\right| & =\left|(-1)^{n}(-1)\right| \\
& =\left|(-1)^{n}\right||-1| \\
& =1 \cdot 1 \\
& =1
\end{aligned}
$$

Therefore, $\left|(-1)^{n+1}\right|=1$, so $p(n+1)$ is true.
Hence, $p(n)$ implies $p(n+1)$ for all $n \in \mathbb{N}$.
Since $p(1)$ is true and $p(n)$ implies $p(n+1)$ for all $n \in \mathbb{N}$, then by induction, $p(n)$ is true for all $n \in \mathbb{N}$.

Therefore, $\left|(-1)^{n}\right|=1$ for all $n \in \mathbb{N}$.
We prove $\left|(-1)^{n+1}-(-1)^{n}\right|=2$ for all $n \in \mathbb{N}$ by induction on n.
Let $p(n):\left|(-1)^{n+1}-(-1)^{n}\right|=2$ be a predicate defined over \mathbb{N}.
Basis:
Since $\left|(-1)^{2}-(-1)^{1}\right|=|1+1|=2$, then the statement $p(1)$ is true.
Induction:
Let $n \in \mathbb{N}$ such that $p(n)$ is true.
Then $\left|(-1)^{n+1}-(-1)^{n}\right|=2$.

Observe that

$$
\begin{aligned}
\left|(-1)^{n+2}-(-1)^{n+1}\right| & =\left|(-1)^{n}(-1)^{2}-(-1)^{n}(-1)\right| \\
& =\left|(-1)^{n}\left((-1)^{2}-(-1)\right)\right| \\
& =\left|(-1)^{n}(2)\right| \\
& =\left|(-1)^{n}\right| \cdot|2| \\
& =1 \cdot 2 \\
& =2 .
\end{aligned}
$$

Therefore, $\left|(-1)^{n+2}-(-1)^{n+1}\right|=2$, so $p(n+1)$ is true.
Hence, $p(n)$ implies $p(n+1)$ for all $n \in \mathbb{N}$.
Since $p(1)$ is true and $p(n)$ implies $p(n+1)$ for all $n \in \mathbb{N}$, then by induction, $p(n)$ is true for all $n \in \mathbb{N}$. Therefore, $\left|(-1)^{n+1}-(-1)^{n}\right|=2$ for all $n \in \mathbb{N}$.

Example 16. bounded divergent sequence that oscillates
The sequence $\left(a_{n}\right)$ defined by $a_{n}=(-1)^{n}$ diverges.
Therefore, $\lim _{n \rightarrow \infty}(-1)^{n}$ does not exist.
Moreover, $\left(a_{n}\right)$ is bounded.
Therefore, $\left(a_{n}\right)$ is a bounded divergent sequence.
Proof. We first prove $\left(a_{n}\right)$ diverges.
Suppose (a_{n}) does not diverge.
Then $\left(a_{n}\right)$ converges to some real number L.
Hence, for every $\epsilon>0$, there exists $N \in \mathbb{N}$ such that $\left|(-1)^{n}-L\right|<\epsilon$ whenever $n>N$.

In particular, let $\epsilon=\frac{1}{2}$.
Then there exists $N \in \mathbb{N}$ such that $\left|(-1)^{n}-L\right|<\frac{1}{2}$ whenever $n>N$.
Observe that $\left|(-1)^{n+1}-(-1)^{n}\right|=2$ for all $n \in \mathbb{N}$.
Since $N+1>N$, then $\left|(-1)^{N+1}-L\right|<\frac{1}{2}$.
Since $N+2>N$, then $\left|(-1)^{N+2}-L\right|<\frac{1}{2}$.
Observe that

$$
\begin{aligned}
2 & =\left|(-1)^{N+2}-(-1)^{N+1}\right| \\
& =\left|\left((-1)^{N+2}-L\right)+\left(L-(-1)^{N+1}\right)\right| \\
& \leq\left|(-1)^{N+2}-L\right|+\left|L-(-1)^{N+1}\right| \\
& =\left|(-1)^{N+2}-L\right|+\left|(-1)^{N+1}-L\right| \\
& <\frac{1}{2}+\frac{1}{2} \\
& =1
\end{aligned}
$$

Hence, $2<1$, a contradiction.
Therefore, $\left(a_{n}\right)$ diverges, as desired.

To prove $\left(a_{n}\right)$ is bounded, we must prove there exists a real number b such that $\left|(-1)^{n}\right| \leq b$ for all $n \in \mathbb{N}$.

Let $b=1$.
Let $n \in \mathbb{N}$.
Then $\left|(-1)^{n}\right|=1 \leq b$, as desired.
Example 17. If $\left(a_{n}\right)$ is a convergent sequence of real numbers, then $\lim _{n \rightarrow \infty} a_{n-1}=$ $\lim _{n \rightarrow \infty} a_{n}$.

Proof. Let $\left(a_{n}\right)$ be a convergent sequence of real numbers.
Then there exists $L \in \mathbb{R}$ such that $\lim _{n \rightarrow \infty} a_{n}=L$.
Let $\left(b_{n}\right)$ be a sequence of real numbers defined by $b_{n}=a_{n-1}$ for all natural numbers $n>1$.

We must prove $\lim _{n \rightarrow \infty} b_{n}=L$.
Let $n \in \mathbb{N}$ be given.
Since $1+n \in \mathbb{N}$ and $1+n>1$, then $b_{1+n}=a_{(1+n)-1}=a_{n}$.
Hence, $b_{1+n}=a_{n}$ for all $n \in \mathbb{N}$, so $\left(b_{1+n}\right)=\left(a_{n}\right)$.
Since $\left(b_{1+n}\right)=\left(a_{n}\right)$ is convergent, then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} b_{n} & =\lim _{n \rightarrow \infty} b_{1+n} \\
& =\lim _{n \rightarrow \infty} a_{n} \\
& =L
\end{aligned}
$$

Therefore, $\lim _{n \rightarrow \infty} b_{n}=L$, as desired.
Proof. Let $\left(a_{n}\right)$ be a convergent sequence of real numbers.
Let $\left(b_{n}\right)$ be a sequence of real numbers defined by $b_{n}=a_{n-1}$ for all natural numbers $n>1$.

We must prove $\lim _{n \rightarrow \infty} b_{n}=L$.
Let $\epsilon>0$ be given.
Since $\lim _{n \rightarrow \infty} a_{n}=L$, then there exists $N \in \mathbb{N}$ such that if $n>N$, then $\left|a_{n}-L\right|<\epsilon$.

Since $N \in \mathbb{N}$, then $N+1 \in \mathbb{N}$.
Let $n \in \mathbb{N}$ such that $n>N+1$.
Then $n-1>N$.
Hence, $\left|a_{n-1}-L\right|<\epsilon$.
Since $N \in \mathbb{N}$, then $N \geq 1$.
Since $n>N+1>N \geq 1$, then $n>1$.
Hence, $b_{n}=a_{n-1}$.
Observe that

$$
\begin{aligned}
\left|b_{n}-L\right| & =\left|a_{n-1}-L\right| \\
& <\epsilon
\end{aligned}
$$

Therefore, $\left|b_{n}-L\right|<\epsilon$, so $\lim _{n \rightarrow \infty} b_{n}=L$, as desired.

Example 18. a. $\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$.
b. $\lim _{n \rightarrow \infty} \frac{1}{n^{k}}=0$ for any $k \in \mathbb{N}$.
c. $\lim _{n \rightarrow \infty} \frac{\cos (n)}{n}=0$.

Solution. a. Since the sequence ($\frac{1}{n}$) converges to 0 and $\left(\frac{1}{n}\right)$ is bounded, then the sequence given by $\frac{1}{n} \cdot \frac{1}{n}=\frac{1}{n^{2}}$ converges to 0 .

Therefore, $\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$.
b. We prove $\lim _{n \rightarrow \infty} \frac{1}{n^{k}}=0$ for any $k \in \mathbb{N}$ by induction on k.

Let $S=\left\{k \in \mathbb{N}: \lim _{n \rightarrow \infty} \frac{1}{n^{k}}=0\right\}$.
Since $\lim _{n \rightarrow \infty} \frac{1}{n^{1}}=\lim _{n \rightarrow \infty} \frac{1}{n}=0$, then $1 \in S$.
Suppose $m \in S$.
Then $m \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} \frac{1}{n^{m}}=0$.
Since $\lim _{n \rightarrow \infty} \frac{1}{n^{m}}=0$ and the sequence $\left(\frac{1}{n}\right)$ is bounded, then the sequence given by $\frac{1}{n^{m}} \cdot \frac{1}{n}=\frac{1}{n_{1}^{m+1}}$ converges to 0 .

Thus, $\lim _{n \rightarrow \infty} \frac{1}{n^{m+1}}=0$, so $m+1 \in S$.
Hence, $m \in S$ implies $m+1 \in S$.
By PMI, $\lim _{n \rightarrow \infty} \frac{1}{n^{k}}=0$ for all $k \in \mathbb{N}$, as desired.
c. Since the sequence $\left(\frac{1}{n}\right)$ converges to 0 and the sequence $(\cos (n))$ is bounded, then the sequence given by $\frac{1}{n} \cdot \cos (n)=\frac{\cos (n)}{n}$ converges to 0 .

Therefore, $\lim _{n \rightarrow \infty} \frac{\cos (n)}{n}=0$.

Divergent Sequences

Example 19. unbounded divergent sequence

The sequence $\left(a_{n}\right)$ defined by $a_{n}=n^{2}$ diverges to infinity.
Hence, $\lim _{n \rightarrow \infty} n^{2}=\infty$, so $\left(a_{n}\right)$ is divergent.
Moreover, $\left(a_{n}\right)$ is unbounded.
Therefore, $\left(a_{n}\right)$ is an unbounded divergent sequence.
Solution. Clearly, the sequence $\left(a_{n}\right)$ defined by $a_{n}=n^{2}$ does not converge.
To rigorously prove $\left(a_{n}\right)$ diverges, we prove $\left(a_{n}\right)$ diverges to ∞.
That is, we prove for every $M>0$ there exists $N \in \mathbb{N}$ such that $n^{2}>M$ whenever $n>N$.

This will prove $\left(a_{n}\right)$ diverges because the definition of divergence to ∞ implies a sequence diverges.

To prove $\left(a_{n}\right)$ is unbounded, we must prove $(\forall b \in \mathbb{R})(\exists n \in \mathbb{N})\left(\left|n^{2}\right|>b\right)$.
Proof. To prove $\lim _{n \rightarrow \infty} n^{2}=\infty$, let $M>0$ be given.
We must prove there exists $N \in \mathbb{N}$ such that if $n>N$, then $n^{2}>M$.
Since $M>0$, then $\sqrt{M}>0$.
Since $\sqrt{M} \in \mathbb{R}$, then by the Archimedean property of \mathbb{R}, there exists $N \in \mathbb{N}$ such that $N>\sqrt{M}$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $n>N>\sqrt{M}>0$, so $n>\sqrt{M}>0$.

Thus, $n^{2}>M>0$, so $n^{2}>M$, as desired.
Hence, $\left(a_{n}\right)$ diverges to ∞, so $\left(a_{n}\right)$ is divergent.
To prove $\left(a_{n}\right)$ is unbounded, we must prove for every $b>0$, there exists $n \in \mathbb{N}$ such that $\left|n^{2}\right|>b$.

Let b be a positive real number.
Then $b>0$, so $\sqrt{b}>0$.
Since $\sqrt{b} \in \mathbb{R}$, then by the Archimedean property of \mathbb{R}, there exists $n \in \mathbb{N}$ such that $n>\sqrt{b}$.

Thus, $0<\sqrt{b}<n$, so $0<b<n^{2}=|n|^{2}=\left|n^{2}\right|$.
Therefore, $b<\left|n^{2}\right|$, so $\left|n^{2}\right|>b$, as desired.
Thus, $\left(a_{n}\right)$ is unbounded.
Hence $\left(a_{n}\right)$ is an unbounded divergent sequence.

Monotone Convergence Theorem

Example 20. sequence of rational numbers that converges to an irrational number

Let $\left(x_{n}\right)$ be a sequence of rational numbers defined recursively by $x_{1}=2$ and $x_{n+1}=\frac{x_{n}}{2}+\frac{1}{x_{n}}$ for all $n \in \mathbb{N}$.

Then $\lim _{n \rightarrow \infty} x_{n}=\sqrt{2}$.
Solution. We compute several terms of the sequence and observe that the terms are all positive.

A graph of this sequence as a function suggests that the function is decreasing and the sequence seems to converge to $\sqrt{2}$, even though $\sqrt{2}$ is not a rational number.

Note that this sequence is obtained by using Newton's method to approximate the zeroes of the real valued function $f(x)=x^{2}-2$.

Proof. To prove $\left(x_{n}\right)$ is a sequence of all positive terms, we prove $x_{n}>0$ for all $n \in \mathbb{N}$ by induction on n.

Let $S=\left\{n \in \mathbb{N}: x_{n}>0\right\}$.
Since $1 \in \mathbb{N}$ and $x_{1}=2>0$, then $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $x_{k}>0$.
Hence, $\frac{1}{x_{k}}>0$ and $\frac{x_{k}}{2}>0$.
Thus, $x_{k+1}=\frac{x_{k}}{2}+\frac{1}{x_{k}}>0$, so $x_{k+1}>0$.
Since $k+1 \in \mathbb{N}$ and $x_{k+1}>0$, then $k+1 \in S$.
Thus, $k \in S$ implies $k+1 \in S$.
By the principle of mathematical induction, $x_{n}>0$ for all $n \in \mathbb{N}$, as desired.

Proof. To prove $\left(x_{n}\right)$ is a sequence of rational numbers, we prove $x_{n} \in \mathbb{Q}$ for all $n \in \mathbb{N}$ by induction on n.

Let $S=\left\{n \in \mathbb{N}: x_{n} \in \mathbb{Q}\right\}$.
Since $1 \in \mathbb{N}$ and $x_{1}=2 \in \mathbb{Q}$, then $1 \in S$.

Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $x_{k} \in \mathbb{Q}$.
Since $x_{k} \in \mathbb{Q}$, then $\frac{x_{k}}{2} \in \mathbb{Q}$.
Since $k \in \mathbb{N}$, then $x_{k}>0$, so $x_{k} \neq 0$.
Hence, $\frac{1}{x_{k}} \in \mathbb{Q}$.
Thus, $x_{k+1}=\frac{x_{k}}{2}+\frac{1}{x_{k}} \in \mathbb{Q}$, so $x_{k+1} \in \mathbb{Q}$.
Since $k+1 \in \mathbb{N}$ and $x_{k+1} \in \mathbb{Q}$, then $k+1 \in S$.
Thus, $k \in S$ implies $k+1 \in S$.
By the PMI, $x_{n} \in \mathbb{Q}$ for all $n \in \mathbb{N}$, as desired.
Proof. We prove $\left(x_{n}\right)^{2}-2>0$ for all $n \in \mathbb{N}$.
Let $n \in \mathbb{N}$.
Either $n=1$ or $n>1$.
We consider these cases separately.
Case 1: Suppose $n=1$.
Then $\left(x_{1}\right)^{2}-2=2^{2}-2=2>0$.
Case 2: Suppose $n>1$.
Then $x_{n}=\frac{x_{n-1}}{2}+\frac{1}{x_{n-1}}$.
Observe that

$$
\begin{aligned}
\left(x_{n}\right)^{2}-2 & =\left(\frac{x_{n-1}}{2}+\frac{1}{x_{n-1}}\right)^{2}-2 \\
& =\left(\frac{x_{n-1}}{2}\right)^{2}+2\left(\frac{x_{n-1}}{2}\right)\left(\frac{1}{x_{n-1}}\right)+\left(\frac{1}{x_{n-1}}\right)^{2}-2 \\
& =\left(\frac{x_{n-1}}{2}\right)^{2}+1+\left(\frac{1}{x_{n-1}}\right)^{2}-2 \\
& =\left(\frac{x_{n-1}}{2}\right)^{2}-1+\left(\frac{1}{x_{n-1}}\right)^{2} \\
& =\left(\frac{x_{n-1}}{2}\right)^{2}-2\left(\frac{x_{n-1}}{2}\right)\left(\frac{1}{x_{n-1}}\right)+\left(\frac{1}{x_{n-1}}\right)^{2} \\
& =\left(\frac{x_{n-1}}{2}-\frac{1}{x_{n-1}}\right)^{2} \\
& \geq 0 .
\end{aligned}
$$

Thus, $\left(x_{n}\right)^{2}-2 \geq 0$.
Hence, in all cases, $\left(x_{n}\right)^{2}-2 \geq 0$ for all $n \in \mathbb{N}$.
Suppose there exists $k \in \mathbb{N}$ such that $\left(x_{k}\right)^{2}-2=0$.
Then $\left(x_{k}\right)^{2}=2$.
Since $x_{k} \in \mathbb{Q}$, then this implies there is a rational number whose square is 2.

This contradicts the fact that there is no rational number whose square is 2 .
Therefore, there is no $k \in \mathbb{N}$ such that $\left(x_{k}\right)^{2}-2=0$.
Hence, $\left(x_{k}\right)^{2}-2 \neq 0$ for all $k \in \mathbb{N}$, so $\left(x_{n}\right)^{2}-2 \neq 0$ for all $n \in \mathbb{N}$.
Since $\left(x_{n}\right)^{2}-2 \neq 0$ for all $n \in \mathbb{N}$ and $\left(x_{n}\right)^{2}-2 \geq 0$ for all $n \in \mathbb{N}$, then $\left(x_{n}\right)^{2}-2>0$ for all $n \in \mathbb{N}$, as desired.

Proof. We prove $\left(x_{n}\right)$ is strictly decreasing.
Let $n \in \mathbb{N}$ be given.
Since $x_{n}>0$ for all $n \in \mathbb{N}$, then in particular, $x_{n}>0$.
Hence, $2 x_{n}>0$.
Since $\left(x_{n}\right)^{2}-2>0$ for all $n \in \mathbb{N}$, then in particular, $\left(x_{n}\right)^{2}-2>0$.
Observe that

$$
\begin{aligned}
x_{n}-x_{n+1} & =x_{n}-\left(\frac{x_{n}}{2}+\frac{1}{x_{n}}\right) \\
& =\frac{x_{n}}{2}-\frac{1}{x_{n}} \\
& =\frac{x_{n}^{2}-2}{2 x_{n}} \\
& >0
\end{aligned}
$$

Thus, $x_{n}-x_{n+1}>0$, so $x_{n}>x_{n+1}$.
Therefore, $\left(x_{n}\right)$ is strictly decreasing, so $\left(x_{n}\right)$ is monotonic.
Proof. We prove $\left(x_{n}\right)$ is bounded above by 2 .
Since $x_{1}=2$ and $\left(x_{n}\right)$ is strictly decreasing, then $2=x_{1}>x_{2}>x_{3}>x_{4}>$
Hence, $2 \geq x_{n}$ for all $n \in \mathbb{N}$.
Therefore, 2 is an upper bound of $\left(x_{n}\right)$.
Since $x_{n}>0$ for all $n \in \mathbb{N}$ and $2 \geq x_{n}$ for all $n \in \mathbb{N}$, then $2 \geq x_{n}>0$ for all $n \in \mathbb{N}$.

Hence, $0<x_{n} \leq 2$ for all $n \in \mathbb{N}$, so $\left(x_{n}\right)$ is bounded.
Since $\left(x_{n}\right)$ is bounded and monotonic, then by MCT, $\left(x_{n}\right)$ is convergent.
Proof. We prove $x_{n}>1$ for all $n \in \mathbb{N}$ by induction on n.
Let $S=\left\{n \in \mathbb{N}: x_{n}>1\right\}$.
Since $1 \in \mathbb{N}$ and $x_{1}=2>1$, then $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $x_{k}>1$.
Since $x_{k}>1$, then $\frac{x_{k}}{2}>\frac{1}{2}$.
Since 2 is an upper bound of $\left(x_{n}\right)$, then $x_{k} \leq 2$.
Since all terms of $\left(x_{n}\right)$ are positive, then $x_{k}>0$.
Thus, $0<x_{k} \leq 2$, so $\frac{1}{x_{k}} \geq \frac{1}{2}$.
Since $\frac{x_{k}}{2}>\frac{1}{2}$ and $\frac{1}{x_{k}} \geq \frac{1}{2}$, then $x_{k+1}=\frac{x_{k}}{2}+\frac{1}{x_{k}}>\frac{1}{2}+\frac{1}{2}=1$, so $x_{k+1}>1$.
Since $k+1 \in \mathbb{N}$ and $x_{k+1}>1$, then $k+1 \in S$.
Thus, $k \in S$ implies $k+1 \in S$.
By the PMI, $x_{n}>1$ for all $n \in \mathbb{N}$, as desired.
Proof. We prove $\left(x_{n}\right)$ converges to $\sqrt{2}$.
Since $\left(x_{n}\right)$ is a sequence of rational numbers and $\mathbb{Q} \subset \mathbb{R}$, then $\left(x_{n}\right)$ is a sequence of real numbers.

Since $\left(x_{n}\right)$ is convergent, then there exists $L \in \mathbb{R}$ such that $\lim _{n \rightarrow \infty} x_{n}=L$.
We must prove $L=\sqrt{2}$.

Since $x_{n}>1$ for all $n \in \mathbb{N}$, then 1 is a lower bound of $\left(x_{n}\right)$.
Since $\left(x_{n}\right)$ is a decreasing convergent sequence, then L is the greatest lower bound of $\left(x_{n}\right)$.

Hence, $L \geq 1>0$, so $L>0$.
Thus, $L \neq 0$.
Since $x_{n}>0$ for all $n \in \mathbb{N}$, then $x_{n} \neq 0$ for all $n \in \mathbb{N}$.
Observe that

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty} x_{n} \\
& =\lim _{n \rightarrow \infty} x_{n+1} \\
& =\lim _{n \rightarrow \infty}\left(\frac{x_{n}}{2}+\frac{1}{x_{n}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{x_{n}}{2}+\lim _{n \rightarrow \infty} \frac{1}{x_{n}} \\
& =\frac{1}{2} \lim _{n \rightarrow \infty} x_{n}+\frac{1}{\lim _{n \rightarrow \infty} x_{n}} \\
& =\frac{L}{2}+\frac{1}{L}
\end{aligned}
$$

Thus, $L=\frac{L}{2}+\frac{1}{L}$, so $\frac{L}{2}=\frac{1}{L}$.
Hence, $L^{2}=2$, so either $L=\sqrt{2}$ or $L=-\sqrt{2}$.
Since $L>0$, then $L \neq-\sqrt{2}$, so $L=\sqrt{2}$, as desired.

