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Sequences in R
Sequences as Functions

Example 1. The sequence given by an = n2 is strictly increasing.

Proof. Let n ∈ N.
Since an = n2 < n2 + 2n + 1 = (n + 1)2 = an+1, then (an) is strictly

increasing.

Example 2. The sequence given by an = 3 + (−1)n
n is neither increasing nor

decreasing.

Proof. Since 2 ∈ N and a2 = 7
2 >

8
3 = a3, then (an) is not increasing.

Since 1 ∈ N and a1 = 2 < 7
2 = a2, then (an) is not decreasing.

Therefore, (an) is neither increasing nor decreasing.

Example 3. constant sequence is increasing and decreasing.
Let k be a real number.
The sequence given by an = k is monotonic increasing and decreasing, but

is neither strictly increasing nor strictly decreasing.

Proof. Since 1 ∈ N and a1 = k ≥ k = a2, then (an) is not strictly increasing.
Since 1 ∈ N and a1 = k ≤ k = a2, then (an) is not strictly decreasing.
Let n ∈ N.
Since an = k ≤ k = an+1, then (an) is monotonic increasing.
Since an = k ≥ k = an+1, then (an) is monotonic decreasing.

Example 4. every strictly increasing sequence is (monotonic) increas-
ing.

Let (an) be a strictly increasing sequence of real numbers.
Then (an) is monotonic increasing.

Proof. Let n ∈ N.
Since (an) is strictly increasing, then an < an+1.
Thus, either an < an+1 or an = an+1, so an ≤ an+1.
Hence, an ≤ an+1 for all n ∈ N.
Therefore, (an) is monotonic increasing.



Example 5. every strictly decreasing sequence is (monotonic) decreas-
ing.

Let (an) be a strictly decreasing sequence of real numbers.
Then (an) is monotonic decreasing.

Proof. Let n ∈ N.
Since (an) is strictly decreasing, then an > an+1.
Thus, either an > an+1 or an = an+1, so an ≥ an+1.
Hence, an ≥ an+1 for all n ∈ N.
Therefore, (an) is monotonic decreasing.

Example 6. The sequence defined by an = n2 for all n ∈ N is bounded below
by 0, but is not bounded above.

Proof. Since an = n2 > 0 for all n ∈ N, then 0 is a lower bound of (an), so (an)
is bounded below by 0.

To prove (an) is unbounded above, let M ∈ R be given.
We must prove there exists n ∈ N such that an > M .
Either M ≤ 0 or M > 0.
We consider these cases separately.
Case 1: Suppose M ≤ 0.
Since 1 ∈ N and M ≤ 0 < 1 = a1, then a1 > M .
Case 2: Suppose M > 0.
Then

√
M > 0.

By the Archimedean property of R, there exists n ∈ N such that n >
√
M .

Since n >
√
M > 0, then an = n2 > M .

Therefore, (an) is unbounded above, so (an) is not bounded above.

Example 7. The sequence defined by an = −n for all n ∈ N is bounded above
by 0, but is not bounded below.

Proof. Let n ∈ N.
Then an = −n < 0, so an < 0.
Hence, an ≤ 0, so 0 is an upper bound of (an).
Therefore, (an) is bounded above by 0.
Let m ∈ R be given.
Then −m ∈ R.
By the Archimedean property of R, there exists n ∈ N such that n > −m.
Hence, an = −n < m.
Thus, there exists n ∈ N such that an < m.
Therefore, (an) is unbounded below.

Example 8. The sequence defined by an = 1
n for all n ∈ N is bounded above

by 1 and is bounded below by 0.

Proof. Let n ∈ N.
Then n ≥ 1, so 1 ≥ 1

n = an.
Hence, an ≤ 1, so 1 is an upper bound of (an).
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Therefore, (an) is bounded above by 1.
Let n ∈ N.
Then n ≥ 1 > 0, so n > 0.
Hence, an = 1

n > 0, so an > 0.
Thus, 0 < an, so 0 ≤ an.
Therefore, 0 is a lower bound of (an), so (an) is bounded below by 0.
Since (an) is bounded above and below, then (an) is bounded.

Example 9. The sequence defined by an = cos(n) for all n ∈ N is bounded
above by 1 and is bounded below by -1.

Proof. Let n ∈ N.
Since N ⊂ R, then n ∈ R.
Since | cos(x)| ≤ 1 for all x ∈ R, then in particular, |an| = | cos(n)| ≤ 1.
Hence, |an| ≤ 1, so −1 ≤ an ≤ 1.
Thus, −1 ≤ an ≤ 1 for all n ∈ N, so 1 is an upper bound and -1 is a lower

bound of (an).
Therefore, (an) is bounded above by 1 and below by -1.
Since (an) is bounded above and below, then (an) is bounded.

Example 10. The sequence defined by bn = (2n+ 1)2 is a subsequence of the
sequence defined by an = n2 for all n ∈ N.

Proof. Since (an) is a sequence of real numbers, then there exists a function
f : N→ R such that f(n) = an = n2 for all n ∈ N.

Let g : N→ N be a function defined by g(n) = 2n+ 1 for all n ∈ N.
To prove (bn) is a subsequence of (an), we must prove g is strictly increasing

and bn = (f ◦ g)(n) for all n ∈ N.
Let m,n ∈ N such that m < n.
Since m < n ⇒ 2m < 2n ⇒ g(m) = 2m + 1 < 2n + 1 = g(n), then

g(m) < g(n).
Hence, g is strictly increasing.
Let n ∈ N.
Then

(f ◦ g)(n) = f(g(n))

= f(2n+ 1)

= (2n+ 1)2

= bn.

Therefore, bn = (f ◦ g)(n) for all n ∈ N, as desired.

Example 11. a sequence is a subsequence of itself
If (an) is a sequence, then (an) is a subsequence of (an).
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Proof. Let (an) be a sequence of real numbers.
Then there exists a function f : N→ R such that f(n) = an for all n ∈ N.
Let g : N→ N be a function defined by g(n) = n for all n ∈ N.
Let n ∈ N be given.
Since g(n) = n < n+ 1 = g(n+ 1), then g is strictly increasing.
Observe that

(f ◦ g)(n) = f(g(n))

= f(n)

= an.

Therefore, (an) is a subsequence of (an).

Convergent Sequences in R
Example 12. The sequence ( 1

n ) converges to zero in R.
Therefore limn→∞

1
n = 0.

Equivalently, 1
n → 0.

Proof. Let ε > 0 be given.
We must prove there exists a natural number N such that for all natural

numbers n, if n > N , then | 1n | < ε.
Since ε > 0, then 1

ε ∈ R.
By the archimedean property of R there exists a natural number N such

that N > 1
ε .

Let n ∈ N such that n > N .
Since n > N and N > 1

ε , then n > 1
ε .

Since n ∈ N, then n ≥ 1 > 0, so n > 0.
Since n > 1

ε and ε > 0 and n > 0, then ε > 1
n > 0.

Therefore, | 1n | =
1
n < ε, as desired.

Example 13. limit of a constant sequence
For all k ∈ R, limn→∞ k = k. (limit of a constant k is k )

Proof. Let k ∈ R.
Let ε > 0 be given.
To prove prove limn→∞ k = k, we must prove there exists a natural number

N such that for all natural numbers n, if n > N , then |k − k| < ε.
Let N be the natural number 1.
Let n ∈ N such that n > N .
Since |k − k| = |0| = 0 < ε, then |k − k| < ε.
Hence, the implication n > N ⇒ |k − k| < ε is trivially true.
Therefore, n > N implies |k − k| < ε for all n ∈ N, as desired.

Example 14. If limn→∞ an = L, then limn→∞ an+1 = L.
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Proof. Let (an) be a sequence such that limn→∞ an = L.
Then (an) is convergent.
Let (bn) be a sequence defined by bn = an+1 for all n ∈ N.
We must prove limn→∞ bn = L.
Since bn = an+1 for all n ∈ N, then (bn) is the 1-tail of (an), so (bn) is a

subsequence of (an).
Since (bn) is a subsequence of (an), then limn→∞ bn = limn→∞ an = L, as

desired.

Lemma 15. Let (an) be a sequence defined by an = (−1)n for all n ∈ N.
Then |(−1)n| = 1 for all n ∈ N and |(−1)n+1 − (−1)n| = 2 for all n ∈ N.

Proof. We prove |(−1)n| = 1 for all n ∈ N by induction on n.
Let p(n) : |(−1)n| = 1 be a predicate defined over N.
Basis:
Since |(−1)1| = | − 1| = 1, then the statement p(1) is true.
Induction:
Let n ∈ N such that p(n) is true.
Then |(−1)n| = 1.
Observe that

|(−1)n+1| = |(−1)n(−1)|
= |(−1)n|| − 1|
= 1 · 1
= 1.

Therefore, |(−1)n+1| = 1, so p(n+ 1) is true.
Hence, p(n) implies p(n+ 1) for all n ∈ N.
Since p(1) is true and p(n) implies p(n+ 1) for all n ∈ N, then by induction,

p(n) is true for all n ∈ N.
Therefore, |(−1)n| = 1 for all n ∈ N.

We prove |(−1)n+1 − (−1)n| = 2 for all n ∈ N by induction on n.
Let p(n) : |(−1)n+1 − (−1)n| = 2 be a predicate defined over N.
Basis:
Since |(−1)2 − (−1)1| = |1 + 1| = 2, then the statement p(1) is true.
Induction:
Let n ∈ N such that p(n) is true.
Then |(−1)n+1 − (−1)n| = 2.
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Observe that

|(−1)n+2 − (−1)n+1| = |(−1)n(−1)2 − (−1)n(−1)|
= |(−1)n((−1)2 − (−1))|
= |(−1)n(2)|
= |(−1)n| · |2|
= 1 · 2
= 2.

Therefore, |(−1)n+2 − (−1)n+1| = 2, so p(n+ 1) is true.
Hence, p(n) implies p(n+ 1) for all n ∈ N.
Since p(1) is true and p(n) implies p(n+ 1) for all n ∈ N, then by induction,

p(n) is true for all n ∈ N. Therefore, |(−1)n+1 − (−1)n| = 2 for all n ∈ N.

Example 16. bounded divergent sequence that oscillates
The sequence (an) defined by an = (−1)n diverges.
Therefore, limn→∞(−1)n does not exist.
Moreover, (an) is bounded.
Therefore, (an) is a bounded divergent sequence.

Proof. We first prove (an) diverges.
Suppose (an) does not diverge.
Then (an) converges to some real number L.
Hence, for every ε > 0, there exists N ∈ N such that |(−1)n − L| < ε

whenever n > N .
In particular, let ε = 1

2 .
Then there exists N ∈ N such that |(−1)n − L| < 1

2 whenever n > N .
Observe that |(−1)n+1 − (−1)n| = 2 for all n ∈ N.
Since N + 1 > N , then |(−1)N+1 − L| < 1

2 .
Since N + 2 > N , then |(−1)N+2 − L| < 1

2 .
Observe that

2 = |(−1)N+2 − (−1)N+1|
= |((−1)N+2 − L) + (L− (−1)N+1)|
≤ |(−1)N+2 − L|+ |L− (−1)N+1|
= |(−1)N+2 − L|+ |(−1)N+1 − L|

<
1

2
+

1

2
= 1.

Hence, 2 < 1, a contradiction.
Therefore, (an) diverges, as desired.
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To prove (an) is bounded, we must prove there exists a real number b such
that |(−1)n| ≤ b for all n ∈ N.

Let b = 1.
Let n ∈ N.
Then |(−1)n| = 1 ≤ b, as desired.

Example 17. If (an) is a convergent sequence of real numbers, then limn→∞ an−1 =
limn→∞ an.

Proof. Let (an) be a convergent sequence of real numbers.
Then there exists L ∈ R such that limn→∞ an = L.
Let (bn) be a sequence of real numbers defined by bn = an−1 for all natural

numbers n > 1.
We must prove limn→∞ bn = L.
Let n ∈ N be given.
Since 1 + n ∈ N and 1 + n > 1, then b1+n = a(1+n)−1 = an.
Hence, b1+n = an for all n ∈ N, so (b1+n) = (an).
Since (b1+n) = (an) is convergent, then

lim
n→∞

bn = lim
n→∞

b1+n

= lim
n→∞

an

= L.

Therefore, limn→∞ bn = L, as desired.

Proof. Let (an) be a convergent sequence of real numbers.
Let (bn) be a sequence of real numbers defined by bn = an−1 for all natural

numbers n > 1.
We must prove limn→∞ bn = L.
Let ε > 0 be given.
Since limn→∞ an = L, then there exists N ∈ N such that if n > N , then

|an − L| < ε.
Since N ∈ N, then N + 1 ∈ N.
Let n ∈ N such that n > N + 1.
Then n− 1 > N .
Hence, |an−1 − L| < ε.
Since N ∈ N, then N ≥ 1.
Since n > N + 1 > N ≥ 1, then n > 1.
Hence, bn = an−1.
Observe that

|bn − L| = |an−1 − L|
< ε.

Therefore, |bn − L| < ε, so limn→∞ bn = L, as desired.
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Example 18. a. limn→∞
1
n2 = 0.

b. limn→∞
1
nk = 0 for any k ∈ N.

c. limn→∞
cos(n)
n = 0.

Solution. a. Since the sequence ( 1
n ) converges to 0 and ( 1

n ) is bounded, then
the sequence given by 1

n ·
1
n = 1

n2 converges to 0.
Therefore, limn→∞

1
n2 = 0.

b. We prove limn→∞
1
nk = 0 for any k ∈ N by induction on k.

Let S = {k ∈ N : limn→∞
1
nk = 0}.

Since limn→∞
1
n1 = limn→∞

1
n = 0, then 1 ∈ S.

Suppose m ∈ S.
Then m ∈ N and limn→∞

1
nm = 0.

Since limn→∞
1
nm = 0 and the sequence ( 1

n ) is bounded, then the sequence
given by 1

nm · 1n = 1
nm+1 converges to 0.

Thus, limn→∞
1

nm+1 = 0, so m+ 1 ∈ S.
Hence, m ∈ S implies m+ 1 ∈ S.
By PMI, limn→∞

1
nk = 0 for all k ∈ N, as desired.

c. Since the sequence ( 1
n ) converges to 0 and the sequence (cos(n)) is bounded,

then the sequence given by 1
n · cos(n) = cos(n)

n converges to 0.

Therefore, limn→∞
cos(n)
n = 0.

Divergent Sequences

Example 19. unbounded divergent sequence
The sequence (an) defined by an = n2 diverges to infinity.
Hence, limn→∞ n2 =∞, so (an) is divergent.
Moreover, (an) is unbounded.
Therefore, (an) is an unbounded divergent sequence.

Solution. Clearly, the sequence (an) defined by an = n2 does not converge.
To rigorously prove (an) diverges, we prove (an) diverges to ∞.
That is, we prove for every M > 0 there exists N ∈ N such that n2 > M

whenever n > N .
This will prove (an) diverges because the definition of divergence to ∞ im-

plies a sequence diverges.
To prove (an) is unbounded, we must prove (∀b ∈ R)(∃n ∈ N)(|n2| > b).

Proof. To prove limn→∞ n2 =∞, let M > 0 be given.
We must prove there exists N ∈ N such that if n > N , then n2 > M .
Since M > 0, then

√
M > 0.

Since
√
M ∈ R, then by the Archimedean property of R, there exists N ∈ N

such that N >
√
M .

Let n ∈ N such that n > N .
Then n > N >

√
M > 0, so n >

√
M > 0.
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Thus, n2 > M > 0, so n2 > M , as desired.
Hence, (an) diverges to ∞, so (an) is divergent.
To prove (an) is unbounded, we must prove for every b > 0, there exists

n ∈ N such that |n2| > b.
Let b be a positive real number.
Then b > 0, so

√
b > 0.

Since
√
b ∈ R, then by the Archimedean property of R, there exists n ∈ N

such that n >
√
b.

Thus, 0 <
√
b < n, so 0 < b < n2 = |n|2 = |n2|.

Therefore, b < |n2|, so |n2| > b, as desired.
Thus, (an) is unbounded.
Hence (an) is an unbounded divergent sequence.

Monotone Convergence Theorem

Example 20. sequence of rational numbers that converges to an irra-
tional number

Let (xn) be a sequence of rational numbers defined recursively by x1 = 2
and xn+1 = xn

2 + 1
xn

for all n ∈ N.

Then limn→∞ xn =
√

2.

Solution. We compute several terms of the sequence and observe that the
terms are all positive.

A graph of this sequence as a function suggests that the function is decreasing
and the sequence seems to converge to

√
2, even though

√
2 is not a rational

number.
Note that this sequence is obtained by using Newton’s method to approxi-

mate the zeroes of the real valued function f(x) = x2 − 2.

Proof. To prove (xn) is a sequence of all positive terms, we prove xn > 0 for all
n ∈ N by induction on n.

Let S = {n ∈ N : xn > 0}.
Since 1 ∈ N and x1 = 2 > 0, then 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and xk > 0.
Hence, 1

xk
> 0 and xk

2 > 0.

Thus, xk+1 = xk

2 + 1
xk
> 0, so xk+1 > 0.

Since k + 1 ∈ N and xk+1 > 0, then k + 1 ∈ S.
Thus, k ∈ S implies k + 1 ∈ S.
By the principle of mathematical induction, xn > 0 for all n ∈ N, as desired.

Proof. To prove (xn) is a sequence of rational numbers, we prove xn ∈ Q for all
n ∈ N by induction on n.

Let S = {n ∈ N : xn ∈ Q}.
Since 1 ∈ N and x1 = 2 ∈ Q, then 1 ∈ S.
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Suppose k ∈ S.
Then k ∈ N and xk ∈ Q.
Since xk ∈ Q, then xk

2 ∈ Q.
Since k ∈ N, then xk > 0, so xk 6= 0.
Hence, 1

xk
∈ Q.

Thus, xk+1 = xk

2 + 1
xk
∈ Q, so xk+1 ∈ Q.

Since k + 1 ∈ N and xk+1 ∈ Q, then k + 1 ∈ S.
Thus, k ∈ S implies k + 1 ∈ S.
By the PMI, xn ∈ Q for all n ∈ N, as desired.

Proof. We prove (xn)2 − 2 > 0 for all n ∈ N.
Let n ∈ N.
Either n = 1 or n > 1.
We consider these cases separately.
Case 1: Suppose n = 1.
Then (x1)2 − 2 = 22 − 2 = 2 > 0.
Case 2: Suppose n > 1.
Then xn = xn−1

2 + 1
xn−1

.

Observe that

(xn)2 − 2 = (
xn−1

2
+

1

xn−1
)2 − 2

= (
xn−1

2
)2 + 2(

xn−1
2

)(
1

xn−1
) + (

1

xn−1
)2 − 2

= (
xn−1

2
)2 + 1 + (

1

xn−1
)2 − 2

= (
xn−1

2
)2 − 1 + (

1

xn−1
)2

= (
xn−1

2
)2 − 2(

xn−1
2

)(
1

xn−1
) + (

1

xn−1
)2

= (
xn−1

2
− 1

xn−1
)2

≥ 0.

Thus, (xn)2 − 2 ≥ 0.
Hence, in all cases, (xn)2 − 2 ≥ 0 for all n ∈ N.
Suppose there exists k ∈ N such that (xk)2 − 2 = 0.
Then (xk)2 = 2.
Since xk ∈ Q, then this implies there is a rational number whose square is

2.
This contradicts the fact that there is no rational number whose square is 2.
Therefore, there is no k ∈ N such that (xk)2 − 2 = 0.
Hence, (xk)2 − 2 6= 0 for all k ∈ N, so (xn)2 − 2 6= 0 for all n ∈ N.
Since (xn)2 − 2 6= 0 for all n ∈ N and (xn)2 − 2 ≥ 0 for all n ∈ N, then

(xn)2 − 2 > 0 for all n ∈ N, as desired.
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Proof. We prove (xn) is strictly decreasing.
Let n ∈ N be given.
Since xn > 0 for all n ∈ N, then in particular, xn > 0.
Hence, 2xn > 0.
Since (xn)2 − 2 > 0 for all n ∈ N, then in particular, (xn)2 − 2 > 0.
Observe that

xn − xn+1 = xn − (
xn
2

+
1

xn
)

=
xn
2
− 1

xn

=
x2n − 2

2xn
> 0.

Thus, xn − xn+1 > 0, so xn > xn+1.
Therefore, (xn) is strictly decreasing, so (xn) is monotonic.

Proof. We prove (xn) is bounded above by 2.
Since x1 = 2 and (xn) is strictly decreasing, then 2 = x1 > x2 > x3 > x4 >

....
Hence, 2 ≥ xn for all n ∈ N.
Therefore, 2 is an upper bound of (xn).
Since xn > 0 for all n ∈ N and 2 ≥ xn for all n ∈ N, then 2 ≥ xn > 0 for all

n ∈ N.
Hence, 0 < xn ≤ 2 for all n ∈ N, so (xn) is bounded.
Since (xn) is bounded and monotonic, then by MCT, (xn) is convergent.

Proof. We prove xn > 1 for all n ∈ N by induction on n.
Let S = {n ∈ N : xn > 1}.
Since 1 ∈ N and x1 = 2 > 1, then 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and xk > 1.
Since xk > 1, then xk

2 > 1
2 .

Since 2 is an upper bound of (xn), then xk ≤ 2.
Since all terms of (xn) are positive, then xk > 0.
Thus, 0 < xk ≤ 2, so 1

xk
≥ 1

2 .

Since xk

2 > 1
2 and 1

xk
≥ 1

2 , then xk+1 = xk

2 + 1
xk
> 1

2 + 1
2 = 1, so xk+1 > 1.

Since k + 1 ∈ N and xk+1 > 1, then k + 1 ∈ S.
Thus, k ∈ S implies k + 1 ∈ S.
By the PMI, xn > 1 for all n ∈ N, as desired.

Proof. We prove (xn) converges to
√

2.
Since (xn) is a sequence of rational numbers and Q ⊂ R, then (xn) is a

sequence of real numbers.
Since (xn) is convergent, then there exists L ∈ R such that limn→∞ xn = L.
We must prove L =

√
2.
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Since xn > 1 for all n ∈ N, then 1 is a lower bound of (xn).
Since (xn) is a decreasing convergent sequence, then L is the greatest lower

bound of (xn).
Hence, L ≥ 1 > 0, so L > 0.
Thus, L 6= 0.
Since xn > 0 for all n ∈ N, then xn 6= 0 for all n ∈ N.
Observe that

L = lim
n→∞

xn

= lim
n→∞

xn+1

= lim
n→∞

(
xn
2

+
1

xn
)

= lim
n→∞

xn
2

+ lim
n→∞

1

xn

=
1

2
lim
n→∞

xn +
1

limn→∞ xn

=
L

2
+

1

L
.

Thus, L = L
2 + 1

L , so L
2 = 1

L .

Hence, L2 = 2, so either L =
√

2 or L = −
√

2.
Since L > 0, then L 6= −

√
2, so L =

√
2, as desired.
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