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Sequences in R
Exercise 1. Let (an) be a sequence defined recursively by an+1 = 2an−an−1+2
for n > 1 with a1 = 3, a2 = 6.

Then an = n2 + 2 for all n ∈ N.

Solution. We prove the proposition an = n2 + 2 for all natural numbers n by
induction on n.

Let S = {n ∈ N : an = n2 + 2}.
We prove by strong induction:
1. 1 ∈ S.
2. 1, 2, ..., k ∈ S implies k + 1 ∈ S.

Proof. We prove by strong induction on n.
Let S = {n ∈ N : an = n2 + 2}.
Since a1 = 3 = 12 + 2, then 1 ∈ S.
Suppose 1, 2, ..., k ∈ S.
Either k > 1 or k = 1.
We consider each case separately.
Case 1: Suppose k = 1.
Since a2 = 6 = 22 + 2, then 2 = k + 1 ∈ S.
Case 2: Suppose k > 1.
Since k ∈ S, then ak = k2 + 2.
Since k > 1, then k − 1 ∈ S. so ak−1 = (k − 1)2 + 2.
Since k > 1, then

ak+1 = 2ak − ak−1 + 2

= 2(k2 + 2)− [(k − 1)2 + 2] + 2

= 2k2 + 4− (k2 − 2k + 3) + 2

= k2 + 2k + 3

= k2 + 2k + 1 + 2

= (k + 1)2 + 2.

Hence, ak+1 = (k + 1)2 + 2, so k + 1 ∈ S.



Thus, by the principle of strong mathematical induction, an = n2 + 2 for all
n ∈ N, as desired.

Exercise 2. Let (an) be a sequence defined recursively by an+1 = an+(n+1)2

with a1 = 1.
Then an = n(n+1)(2n+1)

6 for all n ∈ N.

Proof. We prove by induction on n.

Let S = {n ∈ N : n(n+1)(2n+1)
6 }.

Since a1 = 1 = 1∗2∗3
6 = 1(1+1)(2∗1+1)

6 , then 1 ∈ S.
Let k ∈ S be given.

Then ak = k(k+1)(2k+1)
6 .

Observe that

ak+1 = ak + (k + 1)2

=
k(k + 1)(2k + 1)

6
+ (k + 1)2

= (k + 1)[
k(2k + 1)

6
+ (k + 1)]

= (k + 1)
2k2 + k + 6k + 6

6

= (k + 1)
2k2 + 7k + 6

6

= (k + 1)
(k + 2)(2k + 3)

6

=
(k + 1)[(k + 1) + 1][2(k + 1) + 1]

6
.

Hence, ak+1 = (k+1)[(k+1)+1][2(k+1)+1]
6 , so k + 1 ∈ S.

Thus, k ∈ S implies k + 1 ∈ S.

By the principle of mathematical induction, an = n(n+1)(2n+1)
6 for all n ∈ N,

as desired.

Exercise 3. Let (an) be a sequence defined recursively by an+1 = an+2(n+1)
with a1 = 2.

Then an =
∑n
k=1(2k) for all n ∈ N.

Proof. We prove by induction on n.
Let S = {n ∈ N : an =

∑n
k=1(2k)}.

Since a1 = 2 = 2 ∗ 1 =
∑1
k=1(2k), then 1 ∈ S.

Suppose m ∈ S.
Then m ∈ N and am =

∑m
k=1(2k).
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Observe that

am+1 = am + 2(m+ 1)

=

m∑
k=1

(2k) + 2(m+ 1)

= (2 ∗ 1 + 2 ∗ 2 + 2 ∗ 3 + ...+ 2m) + 2(m+ 1)

= 2 ∗ 1 + 2 ∗ 2 + 2 ∗ 3 + ...+ 2m+ 2(m+ 1)

=

m+1∑
k=1

(2k).

Since m+ 1 ∈ N and am+1 =
∑m+1
k=1 (2k), then m+ 1 ∈ S.

Thus, m ∈ S implies m+ 1 ∈ S.
By the principle of mathematical induction, an =

∑n
k=1(2k) for all n ∈ N,

as desired.

Exercise 4. Let (an) be a sequence defined recursively by an+1 = an + 2n+ 3
with a1 = 5.

Then an = (n+ 1)2 + 1 for all n ∈ N.

Proof. We prove by induction on n.
Let S = {n ∈ N : an = (n+ 1)2 + 1}.
Since a1 = 5 = (1 + 1)2 + 1, then 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and ak = (k + 1)2 + 1.
Observe that

ak+1 = ak + 2k + 3

= [(k + 1)2 + 1] + 2k + 3

= (k2 + 2k + 2) + 2k + 3

= k2 + 4k + 5

= (k2 + 4k + 4) + 1

= (k + 2)2 + 1

= [(k + 1) + 1]2 + 1.

Since k + 1 ∈ N and ak+1 = [(k + 1) + 1]2 + 1, then k + 1 ∈ S.
Thus, k ∈ S implies k + 1 ∈ S.
By the principle of mathematical induction, an = (n+ 1)2 + 1 for all n ∈ N,

as desired.

Exercise 5. Let (an) be a sequence defined recursively by an+1 = an+ 2n with
a1 = 1.

Then an =
∑n−1
k=0(2k) = 2n − 1 for all n ∈ N.
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Proof. We prove by induction on n.
Let S = {n ∈ N : an = 2n − 1}.
Since 1 ∈ N and a1 = 1 = 21 − 1, then 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and ak = 2k − 1.
Observe that

ak+1 = ak + 2k

= (2k − 1) + 2k

= 2 ∗ 2k − 1

= 2k+1 − 1.

Since k + 1 ∈ N and ak+1 = 2k+1 − 1, then k + 1 ∈ S.
Thus, k ∈ S implies k + 1 ∈ S.
By the principle of mathematical induction, an = 2n − 1 for all n ∈ N, as

desired.

Exercise 6. Let (an) be a sequence defined recursively by an+1 = an+ 3n with
a1 = 1.

Then an =
∑n−1
k=0(3k) = 3n−1

2 for all n ∈ N.

Proof. We prove by induction on n.
Let S = {n ∈ N : an = 3n−1

2 }.
Since 1 ∈ N and a1 = 1 = 31−1

2 , then 1 ∈ S.
Suppose m ∈ S.
Then m ∈ N and am = 3m−1

2 .
Observe that

am+1 = am + 3m

=
3m − 1

2
+ 3m

=
3m − 1 + 2 ∗ 3m

2

=
3 ∗ 3m − 1

2

=
3m+1 − 1

2
.

Since m+ 1 ∈ N and am+1 = 3m+1−1
2 , then m+ 1 ∈ S.

Thus, m ∈ S implies m+ 1 ∈ S.
By the principle of mathematical induction, an = 3n−1

2 for all n ∈ N, as
desired.

Exercise 7. Let r be a fixed real number with r 6= 1.
Let (an) be a sequence defined recursively by an+1 = an + rn with a1 = 1.

Then an =
∑n−1
k=0(rk) = rn−1

r−1 for all n ∈ N.
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Proof. We prove by induction on n.
Let S = {n ∈ N : an = rn−1

r−1 }.
Since 1 ∈ N and a1 = 1 = r1−1

r−1 and r 6= 1, then 1 ∈ S.
Suppose k ∈ S.

Then k ∈ N and ak = rk−1
r−1 .

Observe that

ak+1 = ak + rk

=
rk − 1

r − 1
+ rk

=
rk − 1 + rk(r − 1)

r − 1

=
rk − 1 + rk+1 − rk

r − 1

=
rk+1 − 1

r − 1
.

Since k + 1 ∈ N and ak+1 = rk+1−1
r−1 , then k + 1 ∈ S.

Thus, k ∈ S implies k + 1 ∈ S.
By the principle of mathematical induction, an = rn−1

r−1 for all n ∈ N, as
desired.

Exercise 8. Let c, r, a0 be fixed real numbers with r 6= 1.
Let (an) be a sequence defined recursively by an+1 = c + ran with a1 =

c+ ra0.
Then an = rn−1

r−1 c+ rna0 for all n ∈ N.

Proof. We prove by induction on n.
Let S = {n ∈ N : an = rn−1

r−1 c+ rna0}.
Since 1 ∈ N and a1 = c+ ra0 = r1−1

r−1 c+ r1a0 and r 6= 1, then 1 ∈ S.
Suppose k ∈ S.

Then k ∈ N and ak = rk−1
r−1 c+ rka0.

Observe that

ak+1 = c+ rak

= c+ r[
rk − 1

r − 1
c+ rka0]

= c+
rk+1 − r
r − 1

c+ rk+1a0

= (1 +
rk+1 − r
r − 1

)c+ rk+1a0

=
r − 1 + rk+1 − r

r − 1
c+ rk+1a0

=
rk+1 − 1

r − 1
c+ rk+1a0.
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Since k + 1 ∈ N and ak+1 = rk+1−1
r−1 c+ rk+1a0, then k + 1 ∈ S.

Thus, k ∈ S implies k + 1 ∈ S.
By the principle of mathematical induction, an = rn−1

r−1 c+rna0 for all n ∈ N,
as desired.

Exercise 9. Let (an) be a sequence defined recursively by an+1 = 2an−an−1 +
6n for n > 1 with a1 = 1 and a2 = 8.

Then an = n3 for all n ∈ N.

Proof. We prove by strong induction on n.
Let S = {n ∈ N : an = n3}.
Since 1 ∈ N and a1 = 1 = 13, then 1 ∈ S.
Suppose 1, 2, ..., k ∈ S.
Since k ∈ S, then k ∈ N and ak = k3.
Since k ∈ N, then k ≥ 1, so either k > 1 or k = 1.
We consider these cases separately.
Case 1: Suppose k > 1.
Then k − 1 > 0.
Since k ∈ N, then k − 1 ∈ Z, so k − 1 ≥ 1.
Since k − 1 < k, then k − 1 ∈ S, so ak−1 = (k − 1)3.
Observe that

ak+1 = 2ak − ak−1 + 6k

= 2k3 − (k − 1)3 + 6k

= 2k3 − (k3 − 3k2 + 3k − 1) + 6k

= k3 + 3k2 + 3k + 1

= (k + 1)3.

Since k + 1 ∈ N and ak+1 = (k + 1)3, then k + 1 ∈ S.
Case 2: Suppose k = 1.
Since a2 = 8 = 23 and k + 1 = 2, then k + 1 ∈ S.
Therefore, in all cases, k + 1 ∈ S.
Hence, by the principle of mathematical induction(strong), an = n3 for all

n ∈ N, as desired.

Exercise 10. Let (an) be a sequence defined recursively by an+1 = 3an −
3an−1 + an−2 for n > 2 with a1 = 1, a2 = 4, and a3 = 9.

Then an = n2 for all n ∈ N.

Proof. We prove by strong induction on n.
Let S = {n ∈ N : an = n2}.
Since 1 ∈ N and a1 = 1 = 12, then 1 ∈ S.
Suppose 1, 2, ..., k ∈ S.
Since k ∈ S, then k ∈ N and ak = k2.
Since k ∈ N, then either k = 1 or k = 2 or k > 2.
We consider these cases separately.
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Case 1: Suppose k = 1.
Since a2 = 4 = 22 then 2 = k + 1 ∈ S.
Case 2: Suppose k = 2.
Since a3 = 9 = 32 then 3 = k + 1 ∈ S.
Case 3: Suppose k > 2.
Then

ak+1 = 3ak − 3ak−1 + ak−2

= 3k2 − 3(k − 1)2 + (k − 2)2

= 3k2 − 3(k2 − 2k + 1) + (k2 − 4k + 4)

= k2 + 2k + 1

= (k + 1)2.

Since k + 1 ∈ N and ak+1 = (k + 1)2, then k + 1 ∈ S.
Therefore, in all cases, k + 1 ∈ S.
Hence, by the principle of mathematical induction(strong), an = n2 for all

n ∈ N, as desired.

Exercise 11. Let (an) be a sequence defined recursively by an+1 = an +
1

(n+1)(n+2) with a1 = 1
2 .

Then an = n
n+1 for all n ∈ N.

Proof. We prove an = n
n+1 for all n ∈ N by induction on n.

Let S = {n ∈ N : an = n
n+1}.

Since 1 ∈ N and a1 = 1
2 = 1

1+1 , then 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and ak = k

k+1 .
Observe that

ak+1 = ak +
1

(k + 1)(k + 2)

=
k

k + 1
+

1

(k + 1)(k + 2)

=
k(k + 2) + 1

(k + 1)(k + 2)

=
k2 + 2k + 1

(k + 1)(k + 2)

=
(k + 1)2

(k + 1)(k + 2)

=
k + 1

k + 2

=
k + 1

(k + 1) + 1
.

Since k + 1 ∈ N and ak+1 = k+1
(k+1)+1 , then k + 1 ∈ S.
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Thus, k ∈ S implies k + 1 ∈ S.
By the principle of mathematical induction, an = n

n+1 for all n ∈ N, as
desired.

Exercise 12. Let (an) be a sequence defined recursively by an+2 = an+1+an
2

for all n ∈ Z+ and a1 = 1 and a2 = 2.
Then 1 ≤ an ≤ 2 for all n ∈ Z+.

Proof. We prove 1 ≤ an ≤ 2 for all n ∈ Z+ by strong induction on n.
Let S = {n ∈ Z+ : 1 ≤ an ≤ 2}.
Since 1 ∈ Z+ and 1 = a1 < 2, then 1 ∈ S.
Let k ∈ Z+ such that {1, 2, ..., k} ⊂ S.
Since k ∈ Z+, then k + 1 ∈ Z+.
Since {1, 2, ..., k} ⊂ S, then k − 1 ∈ S and k ∈ S.
Since k − 1 ∈ S, then k − 1 ∈ Z+ and 1 ≤ ak−1 ≤ 2.
Since k ∈ S, then k ∈ Z+ and 1 ≤ ak ≤ 2.
Since 1 ≤ ak ≤ 2 and 1 ≤ ak−1 ≤ 2, then 2 ≤ ak + ak−1 ≤ 4, so 1 ≤

ak+ak−1

2 ≤ 2.

Since k − 1 ∈ Z+, then ak+1 = ak+ak−1

2 , so 1 ≤ ak+1 ≤ 2.
Since k + 1 ∈ Z+ and 1 ≤ ak+1 ≤ 2, then k + 1 ∈ S.
Therefore, by PMI, 1 ≤ an ≤ 2 for all n ∈ Z+.

Sequences as Functions

Exercise 13. Let (an) be a sequence of real numbers defined by an = 3n+7
n for

all n ∈ N.
Then 3 is a lower bound of (an) and 10 is an upper bound of (an).

Proof. To prove 10 is an upper bound of (an), let n ∈ N be given.
Then n ≥ 1 > 0, so n ≥ 1 and n > 0.
Since n ≥ 1, then 7n ≥ 7, so 10n ≥ 3n+ 7.
Since n > 0, then 10 ≥ 3n+7

n = an, so an ≤ 10, as desired.

Proof. To prove 3 is a lower bound of (an), let n ∈ N be given.
Then n ≥ 1 > 0, so n > 0.
Since 0 < 7, then 3n < 3n+ 7.
Since n > 0, then 3 < 3n+7

n = an, so 3 < an.
Thus, 3 ≤ an, as desired.

Exercise 14. Let (an) be a sequence of real numbers.
Then (|an|) is bounded iff (an) is bounded.

Proof. Suppose (an) is bounded.
Then there exists M > 0 such that |an| ≤M for all n ∈ N.
Let n ∈ N.
Then |an| ≤M .
Since an ∈ R, then |an| ≥ 0.
Thus, ||an|| = |an| ≤M .
Hence, ||an|| ≤M , so (|an|) is bounded.
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Conversely, suppose (|an|) is bounded.
Then there exists M > 0 such that ||an|| ≤M for all n ∈ N.
Let n ∈ N.
Then ||an|| ≤M .
Since an ∈ R, then |an| ≥ 0.
Thus, |an| = ||an|| ≤M .
Hence, |an| ≤M , so (an) is bounded.

Exercise 15. Let (an) be a sequence defined recursively by an+1 = 4an+3
an+2 with

a1 = 4.
Then an = 3·5n+1

5n−1 and (an) is strictly decreasing, so that (an) is monotonic
decreasing.

Solution. We can actually show that an = 3a1∗5n−1+a1+3∗5n−1−3
a1∗5n−1−a1+5n−1+3 .

We must prove
1. an = 3·5n+1

5n−1 for all n ∈ N.
2. To prove (an) is strictly decreasing, we must prove an > an+1 for all

n ∈ N.
We compute terms of the sequence (such as using a computer) and observe

that all the terms are greater than 3.
So we conjecture that an > 3 for all n ∈ N.

Proof. We prove an = 3·5n+1
5n−1 for all n ∈ N by induction on n.

Let S = {n ∈ N : an = 3·5n+1
5n−1 }.

Since 1 ∈ N and a1 = 4 = 16
4 = 3·51+1

51−1 , then 1 ∈ S.
Suppose k ∈ S.

Then k ∈ N and ak = 3·5k+1
5k−1 .

Since k ∈ N, then k ≥ 1.
Since k ≥ 1⇒ k 6= 0⇒ 5k 6= 1⇒ 5k − 1 6= 0, then 5k − 1 6= 0.
Observe that

ak+1 =
4ak + 3

ak + 2

=
4 ∗ 3·5k+1

5k−1 + 3

3·5k+1
5k−1 + 2

=
4(3 ∗ 5k + 1) + 3(5k − 1)

(3 ∗ 5k + 1) + 2(5k − 1)

=
15 ∗ 5k + 1

5 ∗ 5k − 1

=
3 ∗ 5 ∗ 5k + 1

5k+1 − 1

=
3 ∗ 5k+1 + 1

5k+1 − 1
.

Since k + 1 ∈ N and ak+1 = 3∗5k+1+1
5k+1−1 , then k + 1 ∈ S.
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Thus, k ∈ S implies k + 1 ∈ S.
By the principle of mathematical induction, an = 3·5n+1

5n−1 for all n ∈ N, as
desired.

Proof. We prove an > 3 for all n ∈ N by induction on n.
Let S = {n ∈ N : an > 3}.
Since 1 ∈ N and a1 = 4 > 3, then 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and ak > 3.
Observe that

ak > 3 ⇒ ak + 2 > 5

⇒ 1 >
5

ak + 2

⇒ 4− 3 >
5

ak + 2

⇒ 4− 5

ak + 2
> 3

⇒ 4ak + 3

ak + 2
> 3

⇒ ak+1 > 3.

Since k + 1 ∈ N and ak+1 > 3, then k + 1 ∈ S.
Thus, k ∈ S implies k + 1 ∈ S.
By the principle of mathematical induction, an > 3 for all n ∈ N, as desired.

Proof. We prove an > an+1 for all n ∈ N.
Let n ∈ N.
Since an > 3 for all n ∈ N, then an > 3.
Hence, an + 2 > 5 > 0, so an + 2 > 0.
Since an > 3, then an − 2 > 1.
Since an > 3 > 0 and an − 2 > 1 > 0, then an(an − 2) > 3 ∗ 1 = 3, so

a2n − 2an > 3.
Hence, a2n − 2an − 3 > 0.
Observe that

an − an+1 = an −
4an + 3

an + 2

=
an(an + 2)− (4an + 3)

an + 2

=
a2n − 2an − 3

an + 2
> 0.

Hence, an − an+1 > 0, so an > an+1, as desired.
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Exercise 16. Let (an) be a sequence defined by an = n2 − n for all n ∈ N.
Then (an) is strictly increasing and is bounded below by 0 and is not bounded

above.

Proof. We prove (an) is strictly increasing.
Let n ∈ N be given.
Then n ≥ 1 > 0, so n > 0.
Thus, −n < 0 < n, so −n < n.
Hence, an = n2−n < n2 +n = (n2 + 2n+ 1)− (n+ 1) = (n+ 1)2− (n+ 1) =

an+1.
Therefore, an < an+1, so (an) is strictly increasing.
Thus, (an) is monotonic increasing, so (an) is monotonic.

Proof. We prove (an) is bounded below by 0.
Let n ∈ N be given.
Then n ≥ 1.
Since n ≥ 1 > 0, then n > 0.
Since n ≥ 1, then n− 1 ≥ 0.
Thus, an = n2 − n = n(n− 1) ≥ 0.
Therefore, an ≥ 0, so an ≥ 0 for all n ∈ N.
Hence, 0 is a lower bound of (an), so (an) is bounded below by 0.

Proof. We prove (an) is unbounded above.
Let M > 0 be given.
Since

M > 0 ⇒ 4M + 1 > 0

⇒
√

4M + 1 > 0

⇒
√

4M + 1 + 1

2
> 0,

then
√
4M+1+1

2 > 0.

Since
√
4M+1+1

2 ∈ R, then by the Archimedean property of R, there exists

n ∈ N such that n >
√
4M+1+1

2 .

Thus, n >
√
4M+1+1

2 > 0.
Since M > 0 and

M > 0 ⇒ 4M > 0

⇒ 4M + 1 > 1

⇒
√

4M + 1 > 1

⇒
√

4M + 1− 1 > 0

⇒
√

4M + 1− 1

2
> 0,

then
√
4M+1−1

2 > 0.
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Since 0 is a lower bound of (an), then 0 ≤ an for all n ∈ N.
In particular, 0 ≤ an = |an|.
Since n >

√
4M+1+1

2 , then n− 1 >
√
4M+1−1

2 .

Since n >
√
4M+1+1

2 > 0 and n− 1 >
√
4M+1−1

2 > 0, then

|an| = an

= n2 − n
= n(n− 1)

>

√
4M + 1 + 1

2
∗
√

4M + 1− 1

2

=
(4M + 1)− 1

4
= M.

Hence, |an| > M .
Thus, there exists n ∈ N such that |an| > M for all M > 0.
Therefore, (an) is unbounded above.

Exercise 17. Let (an) be a sequence defined by an = 1
n+1 for all n ∈ N.

Then (an) is strictly decreasing and is bounded below by 0 and is bounded
above by 1

2 .

Proof. We prove (an) is strictly decreasing.
Let n ∈ N be given.
Then n ≥ 1 > 0, so n > 0.
Since 0 < n < n+ 1 < n+ 2, then an+1 = 1

n+2 <
1

n+1 = an.
Hence, an+1 < an.
Therefore, an > an+1, so (an) is strictly decreasing.
Thus, (an) is monotonic decreasing, so (an) is monotonic.

Proof. We prove (an) is bounded below by 0.
Let n ∈ N be given.
Then n ≥ 1 > 0, so n > 0.
Hence, n+ 1 > 0, so an = 1

n+1 > 0.
Thus, an > 0.
Therefore, 0 is a lower bound of (an), so (an) is bounded below by 0.

Proof. We prove (an) is bounded above by 1
2 .

Let n ∈ N be given.
Then n ≥ 1.
Since n ≥ 1⇒ n+ 1 ≥ 2 > 0⇒ 1

n+1 ≤
1
2 , then an = 1

n+1 ≤
1
2 .

Hence, an ≤ 1
2 .

Therefore, 1
2 is an upper bound of (an), so (an) is bounded above by 1

2 .

Exercise 18. Let (an) be a sequence defined by an = (−1)n
n2 for all n ∈ N.

Then (an) is neither increasing nor decreasing and is bounded below by -1
and is bounded above by 1

4 .
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Proof. Since 2 ∈ N and a2 = 1
4 >

−1
9 = a3, then (an) is not increasing.

Since 1 ∈ N and a1 = −1 < 1
4 = a2, then (an) is not decreasing.

Since (an) is neither increasing nor decreasing, then (an) is not monotonic.
To prove (an) is bounded below by−1 and above by 1

4 , we prove−1 ≤ an ≤ 1
4

for all n ∈ N.
Let n ∈ N be given.
Either n is even or odd.
We consider these cases separately.
Case 1: Suppose n is even.
Then n ≥ 2 > 0, so n2 ≥ 4 > 0.
Hence, 1

n2 ≤ 1
4 .

Since n2 ≥ 4 > 0, then n2 > 0, so 1
n2 > 0.

Since (−1)n = 1 for all even n, then an = (−1)n
n2 = 1

n2 ≤ 1
4 and an = (−1)n

n2 =
1
n2 > 0 > −1.

Thus, an ≤ 1
4 and an > −1.

Since −1 < an and an ≤ 1
4 , then −1 < an ≤ 1

4 .
Case 2: Suppose n is odd.
Then n ≥ 1 > 0, so n2 ≥ 1 > 0.
Hence, 1

n2 ≤ 1, so −1n2 ≥ −1.
Since n2 ≥ 1 > 0, then n2 > 0, so 1

n2 > 0.
Hence, −1n2 < 0.

Since (−1)n = −1 for all odd n, then an = (−1)n
n2 = −1

n2 < 0 < 1
4 and

an = (−1)n
n2 = −1

n2 ≥ −1.
Thus, an <

1
4 and an ≥ −1.

Since −1 ≤ an and an <
1
4 , then −1 ≤ an < 1

4 .
Therefore, −1 ≤ an ≤ 1

4 , as desired.

Exercise 19. Let (an) be a sequence defined by an+1 = an + 1
n for n > 1 with

a1 = 1.
Then (an) is strictly increasing.

Proof. Let n ∈ N be given.
Then n ≥ 1, so either n > 1 or n = 1.
We consider these cases separately.
Case 1: Suppose n = 1.
Then a1 = 1 < 2 = 1 + 1 = a1 + 1

1 = a2, so a1 < a2.
Case 2: Suppose n > 1.
Then an+1 = an + 1

n .
Since n > 1 > 0, then n > 0, so 1

n > 0.
Thus, an+1 − an = 1

n > 0, so an+1 − an > 0.
Hence, an+1 > an, so an < an+1.
Therefore, an < an+1 for all n ∈ N , so (an) is strictly increasing.
Thus, (an) is monotonic increasing, so (an) is monotonic.

Exercise 20. Let (an) be a sequence of real numbers defined recursively by
a1 = 3 and an+1 = 3an+2

an+2 for all n ∈ N.
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Then an > 2 for all n ∈ N and (an) is strictly decreasing.

Solution. We compute several terms of the sequence and observe that the
terms are all greater than 2.

In fact, the terms seems to be approaching 2 (converging to 2).
We also graph this sequence as a function which suggests that the function

is strictly decreasing.
Thus, we must prove these observations of this sequence are true.

Proof. We prove an > 2 for all n ∈ N by induction on n.
Let S = {n ∈ N : an > 2}.
Since 1 ∈ N and a1 = 3 > 2, then 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and ak > 2.
Observe that ak > 2⇒ ak > 2 > −2⇒ ak > −2⇒ ak + 2 > 0.
Hence, ak + 2 > 0.
Thus,

ak > 2 ⇒ ak + 2 > 4

⇒ 3ak + 2 > 2ak + 4 = 2(ak + 2)

⇒ 3ak + 2 > 2(ak + 2)

⇒ 3ak + 2

ak + 2
> 2

⇒ ak+1 > 2.

Therefore, ak+1 > 2.
Since k + 1 ∈ N and ak+1 > 2, then k + 1 ∈ S.
Thus, k ∈ S implies k + 1 ∈ S.
By the principle of mathematical induction, an > 2 for all n ∈ N, as desired.

Proof. We prove (an) is strictly decreasing.
Let n ∈ N be given.
Since an > 2 for all n ∈ N, then in particular, an > 2.
Since an > 2⇒ an − 2 > 0, then an − 2 > 0.
Since an > 2⇒ an + 1 > 3 > 0⇒ an + 1 > 0, then an + 1 > 0.
Since an > 2⇒ an + 2 > 4 > 0⇒ an + 2 > 0, then an + 2 > 0.
Observe that

an − an+1 = an −
3an + 2

an + 2

=
an(an + 2)− (3an + 2)

an + 2

=
a2n − an − 2

an + 2

=
(an − 2)(an + 1)

an + 2
> 0.
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Thus, an − an+1 > 0, so an > an+1.
Therefore, (an) is strictly decreasing.
Thus, (an) is monotonic decreasing, so (an) is monotonic.

Convergent Sequences in R
Exercise 21. Show that the sequence (xn) defined by xn = n+1

2n is convergent.

Proof. To prove (xn) is convergent, we prove limn→∞
n+1
2n = 1

2 .
Let ε > 0 be given.
Then 1

2ε ∈ R.
Thus, by the Archimedean property of R, there exists N ∈ N such that

N > 1
2ε .

Let n ∈ N such that n > N .
Since n ∈ N, then n ≥ 1 > 0, so n > 0.
Since n > N > 1

2ε , then n > 1
2ε .

Since n > 1
2ε and ε > 0 and n > 0, then ε > 1

2n > 0.
Observe that

|n+ 1

2n
− 1

2
| = |n+ 1− n

2n
|

= | 1

2n
|

=
1

2n
< ε, as desired.

Exercise 22. Show that the sequence (xn) defined by xn = 3n+2
n+1 is convergent.

Proof. To prove (xn) is convergent, we prove limn→∞
3n+2
n+1 = 3.

Let ε > 0 be given.
Then 1

ε ∈ R.
Thus, by the Archimedean property of R, there exists N ∈ N such that

N > 1
ε .

Let n ∈ N such that n > N .
Since n > N > 1

ε , then n > 1
ε .

Since n ∈ N, then n ≥ 1 > 0, so n > 0.
Since n > 1

ε and ε > 0 and n > 0, then ε > 1
n .

Since n+ 1 > n > 0, then 1
n >

1
n+1 > 0.
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Observe that

|3n+ 2

n+ 1
− 3| = | (3n+ 2)− 3(n+ 1)

n+ 1
|

= |3n+ 2− 3n− 3

n+ 1
|

= | −1

n+ 1
|

=
1

n+ 1

<
1

n
< ε, as desired.

Exercise 23. The sequence (an) defined by an = 5 + 1
n is convergent.

Proof. To prove (an) is convergent, we prove limn→∞ 5 + 1
n = 5.

Let ε > 0 be given.
Then, by the Archimedean property of R, there exists N ∈ N such that

Nε > 1, so N > 1
ε .

Let n ∈ N such that n > N .
Then n > N > 1

ε , so n > 1
ε .

Hence, ε > 1
n .

Since n ∈ N, then n > 0, so 1
n > 0.

Observe that

|(5 +
1

n
)− 5| = | 1

n
|

=
1

n
< ε, as desired.

Exercise 24. Show that limn→∞
2−2n
n = −2.

Proof. Let ε > 0 be given.
Then 2

ε ∈ R.
By the archimedean property of R, there exists a natural number N such

that N > 2
ε .

Let n ∈ N such that n > N .
Since n > N > 2

ε , then n > 2
ε , so ε > 2

n .
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Observe that

|2− 2n

n
+ 2| = | 2

n
− 2 + 2|

= | 2
n
|

=
2

n
< ε, as desired.

Exercise 25. Show that the sequence (an) defined by an = 1
n2+1 is convergent.

Proof. To prove (an) is convergent, we prove limn→∞
1

n2+1 = 0.
Let ε > 0 be given.
Then 1

ε > 0.
Hence, by the Archimedean property of R, there exists N ∈ N such that

N > 1
ε .

Since n ∈ N, then N > 0.
Since N > 1

ε and ε > 0 and N > 0, then ε > 1
N .

Let n ∈ N such that n > N .
Since 0 < N and N < n, then 0 < N < n, so 1

n <
1
N .

Since n ∈ N, then n ≥ 1 > 0, so n2 ≥ n.
Since 1 > 0, then n2 + 1 > n2.
Since n2 + 1 > n2 ≥ n > 0, then n2 + 1 > n > 0, so 1

n >
1

n2+1 > 0.

Thus, 1
n >

1
n2+1 and 1

n2+1 > 0.

Therefore, | 1
n2+1 | =

1
n2+1 <

1
n <

1
N < ε, so | 1

n2+1 | < ε, as desired.

Exercise 26. Show that the sequence (xn) defined by xn =
√
n+ 1 −

√
n is

convergent.

Proof. To prove (xn) is convergent, we prove limn→∞(
√
n+ 1−

√
n) = 0.

Let ε > 0 be given.
Then 1

ε2 ∈ R.
Thus, by the Archimedean property of R, there exists N ∈ N such that

N > 1
ε2 .

Since N ∈ N, then N > 0.
Since N > 1

ε2 and ε > 0 and N > 0, then ε2 > 1
N > 0, so ε > 1√

N
> 0.

Let n ∈ N such that n > N .
Since n > N > 0, then

√
n >
√
N > 0, so 1√

N
> 1√

n
> 0.

Since 0 < 1√
n
< 1√

N
< ε, then 1√

n
< ε.

Since n ∈ N, then n ≥ 1 > 0, so n > 0.
Since n+ 1 > n > 0, then

√
n+ 1 >

√
n > 0, so

√
n+ 1 > 0 and

√
n > 0.

Since
√
n+ 1 > 0, then

√
n+ 1 +

√
n >
√
n.

Since
√
n+ 1+

√
n >
√
n > 0, then 1√

n
> 1√

n+1+
√
n
> 0 and

√
n+ 1+

√
n >

0.
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Since
√
n+ 1 +

√
n > 0, then

√
n+ 1 +

√
n 6= 0.

Observe that

|
√
n+ 1−

√
n| = |(

√
n+ 1−

√
n) ·
√
n+ 1 +

√
n√

n+ 1 +
√
n
|

= | (n+ 1)− n√
n+ 1 +

√
n
|

= | 1√
n+ 1 +

√
n
|

=
1√

n+ 1 +
√
n

<
1√
n

< ε, as desired.

Exercise 27. Show that limn→∞
n2

2n2+1 = 1
2 .

Proof. Let ε > 0 be given.
Then 2ε > 0, so by the Archimedean property of R, there exists N ∈ N such

that N(2ε) > 1, so N > 1
2ε .

Let n ∈ N such that n > N .
Then n > N > 1

2ε , so n > 1
2ε .

Since n ∈ N, then n > 0, so ε > 1
2n .

Since n ∈ N, then n ≥ 1, so n2 ≥ n ≥ 1 > 0.
Hence, n2 > 0, so n2 + 1 > 1 > 0.
Thus, n2 + 1 > 0, so 2n2 + 1 > n2 ≥ n > 0.
Therefore, 2n2 + 1 > n > 0, so 1

n >
1

2n2+1 > 0.
Observe that

| n2

2n2 + 1
− 1

2
| = |2n

2 − (2n2 + 1)

2(2n2 + 1)
|

= | −1

2(2n2 + 1)
|

=
1

2(2n2 + 1)

<
1

2n
< ε, as desired.

Exercise 28. Show that limn→∞ 2−n = 0.
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Proof. Let ε > 0 be given.
Then 1

ε > 0, so 1
ε − 1 ∈ R.

Thus, by the Archimedean property of R, there exists N ∈ N such that
N > 1

ε − 1.
Let n ∈ N such that n > N .
Then n > N > 1

ε − 1, so n > 1
ε − 1.

Hence, n+ 1 > 1
ε > 0, so ε > 1

n+1 .

We prove 2n ≥ n+ 1 for all n ∈ N by induction.
Basis:
Since 21 = 2 = 1 + 1, then the statement holds for n = 1.
Induction:
Let k ∈ N such that 2k ≥ k + 1.
Since k ∈ N, then k > 0.
Thus, 2k+1 = 2k · 2 = 2 · 2k ≥ 2(k + 1) = 2k + 2 > k + 2 = (k + 1) + 1, so

2k+1 > (k + 1) + 1.
Hence, 2k+1 ≥ (k + 1) + 1.
Therefore, by PMI, 2n ≥ n+ 1 for all n ∈ N.

We prove n+ 1 > 0 for all n ∈ N.
Let n ∈ N be given.
Then n ≥ 1 > −1, so n > −1.
Hence, n+ 1 > 0, so n+ 1 > 0 for all n ∈ N.

Since 2n ≥ n+1 for all n ∈ N and n+1 > 0 for all n ∈ N, then 2n ≥ n+1 > 0
for all n ∈ N.

Since n ∈ N, then 2n ≥ n+ 1 > 0, so 1
n+1 ≥

1
2n .

Observe that

|2−n − 0| = |2−n|

= | 1

2n
|

=
1

2n

≤ 1

n+ 1
< ε, as desired.

Exercise 29. Show that limn→∞
3n

2n+1 = 3
2 .

Proof. Let ε > 0 be given.
Then 3

2ε ∈ R.
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By the archimedean property of R, there exists a natural number N such
that N > 3

2ε .
Let n ∈ N such that n > N .
Since n > N > 3

2ε , then n > 3
2ε , so ε > 3

2n .
Since n ∈ N, then n > 0, so 2n > n.
Hence, 2n+ 1 > n+ 1 > n > 0, so 2n+ 1 > n > 0.
Thus, 1

n >
1

2n+1 , so 3
2n >

3
2(2n+1) .

Observe that

| 3n

2n+ 1
− 3

2
| = | (3n)2− (2n+ 1)3

(2n+ 1)2
|

= |6n− 6n− 3

2(2n+ 1)
|

= | −3

2(2n+ 1)
|

=
3

2(2n+ 1)

<
3

2n
< ε , as desired.

Exercise 30. Show that limn→∞
2n+3
3n+4 exists.

Solution. Let (sn) be a sequence defined by sn = 2n+3
3n+4 for all n ∈ N.

To prove limn→∞
2n+3
3n+4 exists, we prove limn→∞

2n+3
3n+4 = 2

3 .

Thus, we must prove (∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n > N → | 2n+3
3n+4 −

2
3 | <

ε.

Proof. Let ε > 0 be given.
Then 1

9ε ∈ R.
By the archimedean property of R, there exists a natural number N such

that N > 1
9ε .

Let n ∈ N such that n > N .
Since n > N > 1

9ε , then n > 1
9ε , so ε > 1

9n .
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Observe that

|2n+ 3

3n+ 4
− 2

3
| = | (2n+ 3)3− (3n+ 4)2

(3n+ 4)3
|

= | 1

3(3n+ 4)
|

=
1

3(3n+ 4)

=
1

9n+ 12

<
1

9n
< ε , as desired.

Exercise 31. Show that the sequence defined by an = 1
n does not converge to

0.01.

Solution. We know that limn→∞
1
n = 0.

Since limn→∞
1
n = 0.01 iff (∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n > N → | 1n−0.01| <

ε), then limn→∞
1
n 6= 0.01 iff (∃ε > 0)(∀N ∈ N)(∃n ∈ N)(n > N∧| 1n−0.01| ≥ ε).

After trying various values of ε, we see that any ε < 0.01 will work because
this will guarantee that for each N there is some term an with n > N such that
an lies outside the ε band. So, we just pick some ε < 0.01, such as ε = 1

2 ·0.01 =
0.005.

We want to find conditions that will guarantee that | 1n − 0.01| ≥ 0.005.
Suppose | 1n − 0.01| ≥ 0.005.
Then either 1

n − 0.01 ≥ 0.005 or 1
n − 0.01 ≤ −0.005, so either 1

n ≥ 0.015 or
1
n ≤ 0.005.

Thus, either 1
0.015 ≥ n or 1

0.005 ≤ n, so either 66.67 ≥ n or 200 ≤ n.
Hence, either n ≤ 66.67 or n ≥ 200.
We drop n ≤ 66.67 condition since we want to consider some subsequence

of (an).
Thus, we want n ≥ 200.
We can associate 1 to a200 and 2 to a201 and 3 to a202, etc.
Thus, we define a function f : N→ R by f(n) = an+199 for all n ∈ N.
Or, we could do the following since we want n ≥ 200 for any n ∈ N.
Let N ∈ N.
If N ∈ N, then if n > N , either n ≥ 200 or n < 200.
If n < 200, we want to pick 200 since 200 ≥ 200.
If n ≥ 200, we just pick n since n ≥ 200.
Thus, we just pick the maximum of n and 200.

Proof. Choose ε = 0.005.
Let N ∈ N.
Let M = max{N, 200}.
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Since M ∈ R, then by the Archimedean property of R, there exists n ∈ N
such that n > M .

Since n > M ≥ N , then n > N .
Since n > M ≥ 200, then n > 200.
Hence, 1

n <
1

200 , so − 1
n > −

1
200 = −0.005.

Thus, − 1
n > −0.005.

Since

| 1
n
− 0.01| ≥ |0.01| − | 1

n
|

= 0.01− 1

n
> 0.005

= ε,

then | 1n − 0.01 > ε, so | 1n − 0.01 ≥ ε.

Exercise 32. Show that limn→∞
1
n 6=

1
4 .

Solution. We know that limn→∞
1
n = 0.

Since limn→∞
1
n = 1

4 iff (∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n > N → | 1n −
1
4 | < ε),

then limn→∞
1
n 6=

1
4 iff (∃ε > 0)(∀N ∈ N)(∃n ∈ N)(n > N ∧ | 1n −

1
4 | ≥ ε).

After trying various values of ε, we see that any ε < 1
4 will work because this

will guarantee that for each N there is some term an with n > N such that an
lies outside the ε band.

So, we just pick some ε < 1
4 , such as ε = 1

2 ·
1
4 = 1

8 .
We want to find conditions that will guarantee that | 1n −

1
4 | ≥

1
8 .

Suppose | 1n −
1
4 | ≥

1
8 .

Then either 1
n −

1
4 ≥

1
8 or 1

n −
1
4 ≤ −

1
8 , so either 1

n ≥
3
8 or 1

n ≤
1
8 .

Thus, either 8
3 ≥ n or 8 ≤ n, so either 2.66 ≥ n or n ≥ 8.

We drop 2.66 ≥ n condition since we want to consider some subsequence of
(an).

Thus, we want n ≥ 8.
We can associate 1 to a8 and 2 to a9 and 3 to a10, etc.
Thus, we define a function f : N→ R by f(n) = an+7 for all n ∈ N.

Proof. Choose ε = 1
8 .

Let N ∈ N be given.
Then N ≥ 1.
Since N ≥ 1⇒ N + 7 ≥ 8⇒ 1

N+7 ≤
1
8 ⇒

−1
N+7 ≥

−1
8 , then −1

N+7 ≥
−1
8 .

Let n = N + 7.
Then n ∈ N.
Since N + 7 > N , then n > N .
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Observe that

| 1

N + 7
− 1

4
| ≥ |1

4
| − | 1

N + 7
|

=
1

4
− 1

N + 7

≥ 1

8
= ε.

Thus, | 1
N+7 −

1
4 | ≥ ε, as desired.

Exercise 33. Show that limn→∞
2n+1
3n−1 = 2

3 .

Proof. Let ε > 0 be given.
Then 1

ε ∈ R, so 5
3ε ∈ R.

Thus, by the Archimedean property of R, there exists a natural number N
such that N > 5

3ε .
Let n ∈ N such that n > N .
Since n > N > 5

3ε , then n > 5
3ε , so 3ε

5 > 1
n .

Since n ∈ N, then n ≥ 1 > 1
2 , so n > 1

2 .
Thus, 2n > 1, so 2n− 1 > 0.
Hence, 3n− 1 > n > 0, so 3ε

5 > 1
n >

1
3n−1 > 0.

Thus, 0 < 1
3n−1 <

1
n <

3ε
5 , so 1

3n−1 <
3ε
5 .

Observe that

|2n+ 1

3n− 1
− 2

3
| = |3(2n+ 1)− 2(3n− 1)

3(3n− 1)
|

= | 5

3(3n− 1)
|

=
5

3
· 1

3n− 1

<
5

3
· 3ε

5
= ε.

Therefore, | 2n+1
3n−1 −

2
3 | < ε, as desired.

Proof. Let (an) be a sequence of real numbers defined by an = 2n+1
3n−1 for all

n ∈ N.
We prove (an) is strictly decreasing.
Let n ∈ N be given.
Then n ≥ 1.
Since n ≥ 1 > 1

3 ⇒ n > 1
3 ⇒ 3n > 1⇒ 3n− 1 > 0, then 3n− 1 > 0.

Since n ≥ 1 > 0 ⇒ n > 0 ⇒ 3n > 0 ⇒ 3n + 2 > 2 > 0 ⇒ 3n + 2 > 0, then
3n+ 2 > 0.
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Observe that

an − an+1 =
2n+ 1

3n− 1
− 2(n+ 1) + 1

3(n+ 1)− 1

=
2n+ 1

3n− 1
− 2n+ 3

3n+ 2

=
(2n+ 1)(3n+ 2)− (3n− 1)(2n+ 3)

(3n− 1)(3n+ 2)

=
(6n2 + 7n+ 2)− (6n2 + 7n− 3)

(3n− 1)(3n+ 2)

=
5

(3n− 1)(3n+ 2)

> 0.

Therefore, an − an+1 > 0, so an > an+1, as desired.

Exercise 34. Show that limn→∞
2n2+3n−5
5n2+2n+1 = 2

5 .

Solution. Let (an) be a sequence of real numbers defined by an = 2n2+3n−5
5n2+2n+1

for all n ∈ N.
To prove limn→∞ an = 2

5 , we must prove (∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n >

N → | 2n
2+3n−5

5n2+2n+1 −
2
5 | < ε).

We work backwards.

Proof. Let ε > 0 be given.
Let M = max{ 11

25ε , 2}.
Since M ∈ R, then by the Archimedean property of R, there exists a natural

number N such that N > M .
Let n ∈ N such that n > N .
Since n > N > M ≥ 2, then n > 2, so n ≥ 3.
Thus, n ≥ 3 > 27

11 , so n > 27
11 .

Hence, 11n > 27, so 11n− 27 > 0.
Therefore, 11− 27

n > 0 and 11 > 11− 27
n .

Thus, 0 < 11− 27
n < 11.

Since n > 0, then 5 + 2
n + 1

n2 > 5.
Hence, 0 < 1

5+ 2
n+ 1

n2
< 1

5 .

Thus,
11− 27

n

5+ 2
n+ 1

n2
< 11

5 .

Multiplying by positive 1
5n we obtain

11− 27
n

5n(5+ 2
n+ 1

n2 )
< 11

25n .

Since n > N > M ≥ 11
25ε , then n > 11

25ε , so ε > 11
25n .

Thus,
11− 27

n

5n(5+ 2
n+ 1

n2 )
< 11

25n < ε, so
11− 27

n

5n(5+ 2
n+ 1

n2 )
< ε.

Therefore, 11n−27
5n2(5+ 2

n+ 1
n2 )

< ε.
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Observe that

|2n
2 + 3n− 5

5n2 + 2n+ 1
− 2

5
| = |5(2n2 + 3n− 5)− 2(5n2 + 2n+ 1)

5(5n2 + 2n+ 1)
|

= |10n2 + 15n− 25− 10n2 − 4n− 2

5(5n2 + 2n+ 1)
|

= | 11n− 27

5(5n2 + 2n+ 1)
|

=
11n− 27

5(5n2 + 2n+ 1)

=
11n− 27

5n2(5 + 2
n + 1

n2 )

< ε.

Therefore, | 2n
2+3n−5

5n2+2n+1 −
2
5 | < ε, as desired.

Exercise 35. Let an = n2+2
5n2+1 for all n ∈ N.

Then an → 1
5 .

Find N1 ∈ N so that if n > N1, then |an − 1
5 | < 0.02.

Find N ∈ N so that if n > N2, then |an − 1
5 | < 1.8.

Solution. We can graph this sequence and observe that it is strictly decreasing
and bounded above by a1 = 0.5 and below by 1

5 .
Let ε1 = 0.02.
Let N1 = 5.
Let n > N1.
Then n > 5.
Thus,

n > 5 ⇒ n2 > 25

⇒ 5n2 > 125

⇒ 5n2 + 1 > 126

⇒ 1

5n2 + 1
<

1

126

⇒ 9

5(5n2 + 1)
<

1

70
.

Hence, 9
5(5n2+1) <

1
70 .
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Observe that

|an −
1

5
| = | n

2 + 2

5n2 + 1
− 1

5
|

= |5(n2 + 2)− (5n2 + 1)

5(5n2 + 1)
|

= | 9

5(5n2 + 1)
|

=
9

5(5n2 + 1)

<
1

70
< ε.

Proof. To prove an → 1
5 , let ε > 0 be given.

Either ε ≥ 9
5 or ε < 9

5 .
We consider these cases separately.
Case 1: Suppose ε ≥ 9

5 .
Let N = 1.
Let n ∈ N such that n > N .
Then n > 1.
Since n > 0, then n2 > n, so n2 > n > 1.
Hence, n2 > 1.
Since

n2 > 1 ⇒ 5n2 > 5

⇒ 5n2 + 1 > 6 > 1

⇒ 5n2 + 1 > 1

⇒ 0 <
1

5n2 + 1
< 1

⇒ 9

5(5n2 + 1)
<

9

5
,

then 9
5(5n2+1) <

9
5 .
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Observe that

|an −
1

5
| = | n

2 + 2

5n2 + 1
− 1

5
|

= |5(n2 + 2)− (5n2 + 1)

5(5n2 + 1)
|

= | 9

5(5n2 + 1)
|

=
9

5(5n2 + 1)

<
9

5
≤ ε.

Therefore, |an − 1
5 | < ε.

Case 2: Suppose ε < 9
5 .

Then 9
5 > ε, so 9 > 5ε.

Hence, 9− 5ε > 0.
Thus, 9−5ε

25ε > 0, so 9
25ε −

1
5 > 0.

Hence,
√

9
25ε −

1
5 > 0.

Since
√

9
25ε −

1
5 ∈ R, then by the Archimedean property of R, there exists a

natural number N such that N >
√

9
25ε −

1
5 .

Let n ∈ N such that n > N .

Since n > N and N >
√

9
25ε −

1
5 , then n >

√
9

25ε −
1
5 .

Since

n >

√
9

25ε
− 1

5
> 0 ⇒ n2 >

9

25ε
− 1

5

⇒ 25n2 >
9

ε
− 5

⇒ 25n2 + 5 >
9

ε

⇒ ε >
9

25n2 + 5
,

then ε > 9
25n2+5 .
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Observe that

|an −
1

5
| = | n

2 + 2

5n2 + 1
− 1

5
|

= |5(n2 + 2)− (5n2 + 1)

5(5n2 + 1)
|

= | 9

5(5n2 + 1)
|

=
9

5(5n2 + 1)

=
9

25n2 + 5
< ε.

Therefore, |an − 1
5 | < ε.

Proof. We prove (an) is strictly decreasing.
Let n ∈ N be given.
Then

an − an+1 =
n2 + 2

5n2 + 1
− (n+ 1)2 + 2

5(n+ 1)2 + 1

=
n2 + 2

5n2 + 1
− n2 + 2n+ 3

5n2 + 10n+ 6

=
(n2 + 2)(5n2 + 10n+ 6)− (5n2 + 1)(n2 + 2n+ 3)

(5n2 + 1)(5n2 + 10n+ 6)

=
(5n4 + 10n3 + 16n2 + 20n+ 12)− (5n4 + 10n3 + 16n2 + 2n+ 3)

(5n2 + 1)(5n2 + 10n+ 6)

=
18n+ 9

(5n2 + 1)(5n2 + 10n+ 6)

> 0.

Hence, an − an+1 > 0, so an > an+1, as desired.

Proof. We prove 1
5 < an ≤ 1

2 for all n ∈ N by induction on n.
Let S = {n ∈ N : 1

5 < an ≤ 1
2}.

Since a1 = 1
2 and 1

5 <
1
2 , then 1

5 < a1 ≤ 1
2 .

Hence, 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and 1

5 < ak ≤ 1
2 .

Hence, 1
5 < ak and ak ≤ 1

2 .
Since (an) is strictly decreasing, then ak > ak+1.
Since ak+1 < ak and ak ≤ 1

2 , then ak+1 <
1
2 .

Suppose ak+1 ≤ 1
5 .

Then (k+1)2+2
5(k+1)2+1 ≤

1
5 .
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Thus, k2+2k+3
5k2+10k+6 ≤

1
5 , so 5k2 + 10k + 15 ≤ 5k2 + 10k + 6.

Hence, 15 ≤ 6, a contradiction.
Therefore, ak+1 >

1
5 .

Thus, 1
5 < ak+1 and ak+1 <

1
2 , so 1

5 < ak+1 <
1
2 .

Hence, k + 1 ∈ S.
Therefore, by PMI, S = N, so 1

5 < an ≤ 1
2 for all n ∈ N.

Thus, (an) is bounded above by 1
2 and below by 1

5 , so (an) is bounded.
Since (an) is a decreasing convergent sequence, then (an) converges to its

greatest lower bound, namely, 1
2 .

Exercise 36. Let (an) and (−an) be sequences of real numbers.
Let L ∈ R.
Then (an) converges to L iff (−an) converges to −L.
Therefore, limn→∞ an exists iff limn→∞−an exists.
Hence, limn→∞ an does not exist iff limn→∞−an does not exist.
Therefore, (an) diverges iff (−an) diverges.

Proof. Observe that

lim
n→∞

an = L ⇔

(∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n > N → |an − L| < ε) ⇔
(∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n > N → | − (an − L)| < ε) ⇔

(∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n > N → | − an − (−L)| < ε) ⇔
lim
n→∞

−an = −L.

Exercise 37. Show that limn→∞ 3− 1
n = 3.

Solution. We prove this statement in multiple ways- using definition of limit
or other propositions/theorems.

Proof. Let ε > 0 be given.
Since ε > 0, then 1

ε ∈ R.
By the archimedean property of R, there exists a natural number N such

that N > 1
ε .

Let n ∈ N such that n > N .
Since n > N > 1

ε , then n > 1
ε .

Hence, ε > 1
n .

Observe that

|(3− 1

n
)− 3| = | − 1

n
|

= | 1
n
|

=
1

n
< ε , as desired.
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Proof. Observe that

3 = 3− 0

= lim
n→∞

3− lim
n→∞

1

n

= lim
n→∞

(3− 1

n
).

Proof. We prove an is bounded above by 3 and below by 2.
Let n ∈ N be given.
Then n ≥ 1, so n > 0.
Observe that

n > 0 ⇒ 1

n
> 0

⇒ 3 +
1

n
> 3

⇒ 3 > 3− 1

n

⇒ 3− 1

n
< 3.

Thus, 3 is an upper bound of (an).
Observe that

n ≥ 1 ⇒ 1 ≥ 1

n

⇒ 3− 2 ≥ 1

n

⇒ 3− 1

n
≥ 2

⇒ 2 ≤ 3− 1

n
.

Thus, 2 is a lower bound of (an).
Therefore, (an) is bounded.

Exercise 38. Let (sn) be a sequence of real numbers.
Let L ∈ R.
Then
limn→∞ sn = L iff for every natural number m there is a real number N

such that |sn − L| < 1
m whenever n > N .

Solution. We must prove (∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n > N → |sn − L| < ε)
iff (∀m ∈ N)(∃N ∈ R)(∀n ∈ N)(n > N → |sn − L| < 1

m ).
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Proof. We prove if limn→∞ sn = L, then for every natural number m, there
exists a real number N such that |sn − L| < 1

m whenever n > N .
Suppose limn→∞ sn = L.
Then for every ε > 0, there exists N ∈ N such that |sn − L| < ε whenever

n > N .
Let m ∈ N.
Then m ≥ 1 > 0, so m > 0.
Hence, 1

m > 0.
Let ε = 1

m .
Then there exists N ∈ N such that |sn − L| < 1

m whenever n > N .
Since N ∈ N and N ⊂ R, then N ∈ R.
Thus, there is a real number N such that |sn −L| < 1

m whenever n > N , as
desired.

Conversely, we prove if for every natural number m there is a real number
N such that |sn − L| < 1

m whenever n > N , then limn→∞ sn = L.
Suppose for every natural number m there is a real number N such that

|sn − L| < 1
m whenever n > N .

To prove limn→∞ sn = L, let ε > 0 be given.
We must prove there is a natural number N ′ such that |sn−L| < ε whenever

n > N ′.
Since ε > 0, then 1

ε > 0.
Since 1

ε ∈ R, then by the Archimedean property of R, there exists m ∈ N
such that m > 1

ε .
Hence, ε > 1

m .
Since m ∈ N, then there is a real number N such that |sn−L| < 1

m whenever
n > N .

Since N ∈ R, then by the Archimedean property of R, there exists N ′ ∈ N
such that N ′ > N .

Let n ∈ N such that n > N ′.
Then n > N ′ > N , so n > N .
Hence, |sn − L| < 1

m .
Therefore, |sn − L| < 1

m and 1
m < ε, so |sn − L| < ε, as desired.

Exercise 39. Show that limn→∞
1+2+3+...+n

n2 = 1
2 .

Proof. Let (sn) be a sequence defined by sn = 1+2+3+...+n
n2 for all n ∈ N.

Since the sum of the first n natural numbers is n(n+1)
2 , then sn = n(n+1)

2n2 =
n+1
2n .

Note that this is a strictly decreasing sequence (We could prove this fact
formally, but we won’t here.)

To prove limn→∞ sn = 1
2 , let ε > 0 be given.

We must prove there is a natural number N such that for each natural
number n, if n > N , then |n+1

2n −
1
2 | < ε.

Since ε > 0, then 1
2ε ∈ R.

By the archimedean property of R, there exists a natural number N such
that N > 1

2ε .
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Let n ∈ N such that n > N .
Since n > N and N > 1

2ε , then n > 1
2ε .

Hence, ε > 1
2n .

Observe that

|n+ 1

2n
− 1

2
| = | (n+ 1)2− (2n)1

(2n)2
|

= | 2

2(2n)
|

= | 1

2n
|

=
1

2n
< ε , as desired.

Exercise 40. Show that limn→∞
12+22+32+...+n2

n3 = 1
3 .

Proof. Let (sn) be a sequence defined by sn = 12+22+32+...+n2

n3 for all n ∈ N.

Since the sum of the squares of the first n natural numbers is n(n+1)(2n+1)
6 ,

then sn = n(n+1)(2n+1)
6n3 = (n+1)(2n+1)

6n2 .
Note that this is a strictly decreasing sequence (We could prove this fact

formally, but we won’t here.)
To prove limn→∞ sn = 1

3 , let ε > 0 be given.
Then 2

3ε ∈ R.
Thus, by the Archimedean property of R, there exists a natural number N

such that N > 2
3ε .

Let n ∈ N such that n > N .
Since n > N > 2

3ε , then n > 2
3ε , so ε > 2

3n .
Since n ∈ N, then n ≥ 1.
Since

n ≥ 1 ⇒ 0 <
1

n
≤ 1

⇒ 1

6n
≤ 1

6

⇒ 1

2
+

1

6n
≤ 2

3

⇒ 1

n
(
1

2
+

1

6n
) ≤ 2

3n
,

then 1
n ( 1

2 + 1
6n ) ≤ 2

3n .
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Observe that

| (n+ 1)(2n+ 1)

6n2
− 1

3
| = |2n

2 + 3n+ 1

6n2
− 1

3
|

= |6n
2 + 9n+ 3− 6n2

18n2
|

= |9n+ 3

18n2
|

= | 1

2n
+

1

6n2
|

=
1

2n
+

1

6n2

=
1

n
(
1

2
+

1

6n
)

≤ 2

3n
< ε , as desired.

Exercise 41. Let L ∈ R.
If (sn) converges to L, then (2sn) converges to 2L.

Solution. Suppose sn → L.
To prove 2sn → 2L, we must prove (∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n > N →

|2sn − 2L| < ε).

Proof. Suppose sn → L.
To prove 2sn → 2L, let ε > 0 be given.
Then ε

2 > 0.
Since sn → L, then there exists N ∈ N such that |sn − L| < ε

2 whenever
n > N .

Let n ∈ N such that n > N .
Then |sn − L| < ε

2 .
Hence,

|2sn − 2L| = |2(sn − L)|
= 2|sn − L|

< 2(
ε

2
)

= ε.

Therefore |2sn − 2L| < ε, as desired.

Exercise 42. Let (an) be a sequence of real numbers.
If there exist L ∈ R and N ∈ N such that an = L for all n > N , then

an → L.
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Proof. Suppose there exist L ∈ R and N ∈ N such that an = L for all n > N .
To prove an → L, let ε > 0 be given.
Let n ∈ N such that n > N .
Then an = L.
Thus, |an − L| = |L− L| = 0 < ε.
Therefore, |an − L| < ε, so an → L, as desired.

Exercise 43. Let (an) be a sequence of real numbers.
If limn→∞ an = L and L > 0, then there exists N ∈ N such that if n > N ,

then L
2 < an < 2L.

Proof. Suppose limn→∞ an = L and L > 0.
Since L > 0, then L

2 > 0.
Since limn→∞ an = L, then there exists N ∈ N such that for all n ∈ N, if

n > N , then |an − L| < L
2 .

Let n ∈ N such that n > N .
Then |an − L| < L

2 , so −L2 < an − L < L
2 .

Hence, L
2 < an <

3L
2 .

Since 3
2 < 2 and L > 0, then 3L

2 < 2L.

Since L
2 < an <

3L
2 and 3L

2 < 2L, then L
2 < an <

3L
2 < 2L, so L

2 < an <
2L.

Exercise 44. Let (an) be a sequence of positive real numbers.
Let L > 0.
If limn→∞ an = L, then there exists M > 0 such that an > M for all n ∈ N.

Proof. Suppose limn→∞ an = L.
We must prove there exists M > 0 such that an > M for all n ∈ N.
Since L > 0, then L

2 > 0.
Since limn→∞ an = L, then there exists N ∈ N such that if n > N , then

|an − L| < L
2 .

Let S = {sk : 1 ≤ k ≤ N}.
Then S ⊂ R.
Since s1 ∈ S, then S is not empty.
Since S contains at most N elements, then S is finite.
Hence, S is a nonempty finite set of real numbers.
Therefore, minS exists.
Let M = min{L2 ,

minS
2 }.

We prove M > 0.
Either M = L

2 or M = minS
2 .

We consider these cases separately.
Case 1: Suppose M = L

2 .

Then M = L
2 > 0, so M > 0.

Case 2: Suppose M = minS
2 .

Since minS ∈ S, then there exists k ∈ N such that 1 ≤ k ≤ N and minS =
sk.

Since all terms of (an) are positive, then an > 0 for all n ∈ N.
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Hence, sk > 0, so minS > 0.
Thus, minS

2 > 0, so M > 0.
Let n ∈ N.
We prove an > M .
Either n ≤ N or n > N .
We consider these cases separately.
Case 1: Suppose n > N .
Then |an − L| < L

2 .
Observe that

|an − L| <
L

2
⇔ −L

2
< an − L <

L

2

⇔ L

2
< an <

3L

2

⇒ M ≤ L

2
< an <

3L

2
⇒ M < an.

Therefore, an > M .
Case 2: Suppose n ≤ N .
Then 1 ≤ n ≤ N , so an ∈ S.
Since M ≤ minS

2 < minS ≤ an, then M < an.
Therefore an > M .

Algebraic properties of convergent sequences

Exercise 45. Let (an) and (bn) be sequences of real numbers.
If (an) and (an + bn) are convergent, then (bn) is convergent.

Proof. Suppose (an) and (an + bn) are convergent
Since (an) is convergent, then there exists L1 ∈ R such that limn→∞ an = L1.
Since (an+bn) is convergent, then there exists L2 ∈ R such that limn→∞(an+

bn) = L2.
Since L1 ∈ R and L2 ∈ R, then L2 − L1 ∈ R.
Thus,

L2 − L1 = lim
n→∞

(an + bn)− lim
n→∞

an

= lim
n→∞

[(an + bn)− an]

= lim
n→∞

bn.

Therefore, L2 − L1 = limn→∞ bn, so (bn) is convergent, as desired.

Exercise 46. Let (an) and (bn) be sequences of real numbers.
If (an) converges to some nonzero real number and (anbn) is convergent,

then (bn) is convergent.
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Proof. Suppose (an) converges to some nonzero real number and (anbn) is con-
vergent.

Since (an) converges to some nonzero real number, then there exists a real
number L1 6= 0 such that limn→∞ an = L1.

Since (anbn) is convergent, then there exists a real number L2 such that
limn→∞ anbn = L2.

Since L1 ∈ R and L2 ∈ R and L1 6= 0, then L2

L1
∈ R.

Thus,

L2

L1
=

1

L1
· L2

=
limn→∞ 1

limn→∞ an
· lim
n→∞

anbn

= lim
n→∞

1

an
· lim
n→∞

anbn

= lim
n→∞

(
1

an
· anbn)

= lim
n→∞

bn.

Therefore, L2

L1
= limn→∞ bn, so (bn) is convergent, as desired.

Exercise 47. Let (an) be a convergent sequence of real numbers.
Then limn→∞(an)2 = (limn→∞ an)2.

Proof. Since (an) is convergent, then limn→∞ an exists.
Therefore,

( lim
n→∞

an)2 = ( lim
n→∞

an)( lim
n→∞

an)

= lim
n→∞

(anan)

= lim
n→∞

(an)2.

Proof. Since (an) is convergent, then there exists L ∈ R such that L = limn→∞ an.
To prove limn→∞(an)2 = L2, let ε > 0 be given.
Since 0 < ε, then 0 ≤ |L|2 < ε+ |L|2, so 0 ≤ |L| <

√
ε+ |L|2.

Since
√
ε+ |L|2−|L| > 0 and limn→∞ an = L, then there exists N ∈ N such

that |an − L| <
√
ε+ |L|2 − |L| whenever n > N .

Let n ∈ N such that n > N .
Then 0 ≤ |an − L| <

√
ε+ |L|2 − |L|.

Since |an+L| = |(an−L)+2L| ≤ |an−L|+2|L| < (
√
ε+ |L|2−|L|)+2|L| =√

ε+ |L|2 + |L|, then 0 ≤ |an + L| <
√
ε+ |L|2 + |L|.
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Observe that

|(an)2 − L2| = |(an − L)(an + L)|
= |an − L||an + L|
< (

√
ε+ |L|2 − |L|) · (

√
ε+ |L|2 + |L|)

= (ε+ |L|2)− |L|2

= ε.

Therefore, |(an)2 − L2| < ε, as desired.

Exercise 48. If (an) and (bn) are convergent sequences of real numbers, then
limn→∞(anbn) = (limn→∞ an)(limn→∞ bn).

Find the flaw in the proof below.
Suppose that ε > 0.
Choose N1 such that |an − L| < ε

2|M |+1 if n > N1.

Choose N2 such that |bn −M | < ε
2|an|+1 if n > N2.

If n > N = max{N1, N2}, then

|anbn − LM | = |anbn − anM + anM − LM |
= |an(bn −M) +M(an − L)|
≤ |an(bn −M)|+ |M(an − L)|
= |an||bn −M |+ |M ||an − L|

≤ |an|
ε

2|an|+ 1
+ |M | ε

2|M |+ 1
< ε.

Solution. The flaw occurs when choosing N2 such that |bn −M | < ε
2|an|+1 if

n > N2.
Since bn converges to M , then each ε chosen must be a fixed positive real

number.
In this case, the positive real number chosen is ε

2|an|+1 , which depends on

an and ultimately depends on n, so the chosen positive real number is not
constant.

Exercise 49. Let (an) be a sequence of real numbers such that an → L.
Let (bn) be a sequence defined by bn = an+an+1

2 for all n ∈ N.
Then bn → L.

Proof. Suppose (an) converges to a real number L.
Let ε > 0 be given.
Then there exists N ∈ N such that |an − L| < ε whenever n > N .
Let n ∈ N such that n > N .
Then |an − L| < ε.
Since n+ 1 > n > N , then n+ 1 > N , so |an+1 − L| < ε.
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Observe that

|bn − L| = |an + an+1

2
− L|

= |an + an+1 − 2L

2
|

= |an − L
2

+
an+1 − L

2
|

≤ |an − L
2
|+ |an+1 − L

2
|

=
1

2
|an − L|+

1

2
|an+1 − L|

<
ε

2
+
ε

2
= ε.

Therefore, |bn − L| < ε, so bn → L, as desired.

Proof. Since an → L, then limn→∞ an = L, so limn→∞ an+1 = L.
Observe that

L =
1

2
· 2L

=
1

2
(L+ L)

=
1

2
( lim
n→∞

an + lim
n→∞

an+1)

=
1

2
lim
n→∞

(an + an+1)

= lim
n→∞

an + an+1

2
= lim

n→∞
bn.

Therefore, limn→∞ bn = L, as desired.

Exercise 50. limit of a square root equals square root of a limit
Let (an) be a sequence of real numbers such that an ≥ 0 for all n ∈ N.
If limn→∞ an exists, then limn→∞

√
an =

√
limn→∞ an.

Proof. Suppose limn→∞ an exists.
Then there is a real number L such that limn→∞ an = L.
Since 0 ≤ an for all n ∈ N, then limn→∞ 0 ≤ limn→∞ an, so 0 ≤ L.
Thus, L ≥ 0, so either L > 0 or L = 0.
We consider these cases separately.
Case 1: Suppose L = 0.
To prove limn→∞

√
an =

√
limn→∞ an =

√
L =

√
0 = 0, we must prove

limn→∞
√
an = 0.

Since limn→∞ an = L and L = 0, then limn→∞ an = 0.
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Let ε > 0 be given.
Then ε2 > 0.
Since limn→∞ an = 0, then there exists N ∈ N such that |an| < ε2 whenever

n > N .
Let n ∈ N such that n > N .
Since n ∈ N, then an ≥ 0.
Since n > N , then |an| < ε2.
Since 0 ≤ an = |an| < ε2, then 0 ≤ an < ε2.

Hence, 0 ≤ √an <
√
ε2 = |ε| = ε.

Thus, 0 ≤ √an < ε, so 0 ≤ √an = |√an| < ε.
Therefore, |√an| < ε, as desired.
Case 2: Suppose L > 0.
To prove limn→∞

√
an =

√
limn→∞ an, we must prove limn→∞

√
an =

√
L.

Let ε > 0 be given.
Since L > 0, then

√
L > 0, so ε

√
L > 0.

Since limn→∞ an = L, then there exists N ∈ N such that |an − L| < ε
√
L

whenever n > N .
Let n ∈ N such that n > N .
Since n ∈ N, then an ≥ 0, so

√
an ≥ 0.

Since n > N , then |an − L| < ε
√
L, so 0 ≤ |an − L| < ε

√
L.

Since 0 <
√
L and 0 ≤ √an, then 0 <

√
L ≤ √an +

√
L.

Hence, 0 < 1√
an+
√
L
≤ 1√

L
.

Since
√
an ≥ 0 and

√
L > 0, then

√
an +

√
L > 0.

Observe that

|
√
an −

√
L| = |

√
an −

√
L ·
√
an +

√
L

√
an +

√
L
|

= | an − L
√
an +

√
L
|

= |an − L ·
1

√
an +

√
L
|

= |an − L| · |
1

√
an +

√
L
|

= |an − L| ·
1

|√an +
√
L|

= |an − L| ·
1

√
an +

√
L

< ε
√
L · 1√

L
= ε.

Therefore, |√an −
√
L| < ε, as desired.

Exercise 51. Show that limn→∞
2n+4
3n+1 = 2

3 .
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Proof. Let ε > 0 be given.
Then 10

9ε > 0, so 10
9ε ∈ R.

Thus, by the Archimedean property of R, there exists a natural number N
such that N > 10

9ε .
Let n ∈ N such that n > N .
Since n > N > 10

9ε , then n > 10
9ε , so ε > 10

9n .
Since n ∈ N, then n ≥ 1 > 0, so n > 0.
Since 9n+ 3 > 9n > 0, then 0 < 1

9n+3 <
1
9n , so 10

9n+3 <
10
9n .

Observe that

|2n+ 4

3n+ 1
− 2

3
| = |3(2n+ 4)− 2(3n+ 1)

3(3n+ 1)
|

= | 10

3(3n+ 1)
|

=
10

3(3n+ 1)

=
10

9n+ 3

<
10

9n
< ε.

Therefore, | 2n+4
3n+1 −

2
3 | < ε, as desired.

Proof. Observe that

2

3
=

2 + 4 · 0
3 + 0

=
limn→∞ 2 + 4 limn→∞

1
n

limn→∞ 3 + limn→∞
1
n

=
limn→∞ 2 + limn→∞

4
n

limn→∞ 3 + limn→∞
1
n

=
limn→∞(2 + 4

n )

limn→∞(3 + 1
n )

= lim
n→∞

2 + 4
n

3 + 1
n

= lim
n→∞

2n+ 4

3n+ 1
.

Exercise 52. Show that limn→∞
5−n
3n+7 = −1

3 .

Proof. Let ε > 0 be given.
Then 4

ε > 0, so 4
ε ∈ R.
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Let M = max{3, 4ε }.
Then M ∈ R, so by the Archimedean property of R, there exists a natural

number N such that N > M .
Let n ∈ N such that n > N .
Since n > N > M , then n > M .
Since n > M ≥ 3, then n > 3.
Since n > 3⇒ 3n > 9⇒ 3n− 7 > 2 > 0⇒ 3n− 7 > 0, then 3n− 7 > 0.
Since n > M ≥ 4

ε , then n > 4
ε , so ε > 4

n .
Since n > 3⇒ 1

n <
1
3 ⇒

7
n <

7
3 = 3− 2

3 , then 7
n < 3− 2

3 , so 2
3 < 3− 7

n .
Thus, 0 < 1

3− 7
n

< 3
2 , so 8

3n(3− 7
n )
< 4

n .

Hence, 8
3(3n−7) <

4
n .

Observe that

| 5− n
3n− 7

− −1

3
| = | 5− n

3n− 7
+

1

3
|

= |3(5− n) + (3n− 7)

3(3n− 7)
|

= | 8

3(3n− 7)
|

=
8

3(3n− 7)

<
4

n
< ε.

Therefore, | 5−n3n−7 −
−1
3 | < ε, as desired.

Exercise 53. Show that limn→∞
5n2+4
3n2+4 = 5

3 .

Proof. Let ε > 0 be given.

Then
√

8
9ε > 0, so

√
8
9ε ∈ R.

Thus, by the Archimedean property of R, there exists a natural number N

such that N >
√

8
9ε .

Let n ∈ N such that n > N .

Since n > N >
√

8
9ε , then n >

√
8
9ε .

Since n >
√

8
9ε > 0, then n2 > 8

9ε , so ε > 8
9n2 .

Since n ∈ N, then n ≥ 1 > 0, so n > 0.
Thus, n2 > 0, so 3n2 + 4 > 0 and 4

n2 > 0.
Hence, 3 + 4

n2 > 3, so 1
3+ 4

n2
< 1

3 .

Since 8
3n2 > 0, then 8

3n2(3+ 4
n2 )

< 8
9n2 , so 8

3(3n2+4) <
8

9n2 .
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Observe that

|5n
2 + 4

3n2 + 4
− 5

3
| = |3(5n2 + 4)− 5(3n2 + 4)

3(3n2 + 4)
|

= | −8

3(3n2 + 4)
|

=
8

3(3n2 + 4)

<
8

9n2
< ε.

Therefore, | 5n
2+4

3n2+4 −
5
3 | < ε, as desired.

Proof. Since limn→∞
1
n = 0 and limn→∞( 1

n ·
1
n ) = (limn→∞

1
n ) · (limn→∞

1
n ) =

0 · 0 = 0, then limn→∞
1
n2 = 0.

Observe that

5

3
=

5 + 4 · 0
3 + 4 · 0

=
limn→∞ 5 + 4 limn→∞

1
n2

limn→∞ 3 + 4 limn→∞
1
n2

=
limn→∞ 5 + limn→∞

4
n2

limn→∞ 3 + limn→∞
4
n2

=
limn→∞(5 + 4

n2 )

limn→∞(3 + 4
n2 )

= lim
n→∞

5 + 4
n2

3 + 4
n2

= lim
n→∞

5n2 + 4

3n2 + 4
.

Exercise 54. Show that limn→∞
2n2+4n−3
3n2+2n+1 = 2

3 .

Proof. Let ε > 0 be given.
Then 8

9ε > 0, so 8
9ε ∈ R.

Let M = max{2, 8
9ε}.

Then M ∈ R, so by the Archimedean property of R, there exists a natural
number N such that N > M .

Let n ∈ N such that n > N .
Since n > N > M ≥ 2, then n > 2.
Since n > 2 > 11

8 ⇒ n > 11
8 ⇒ 8n > 11⇒ 8n− 11 > 0, then 8n− 11 > 0.

Since n > N > M ≥ 8
9ε , then n > 8

9ε , so ε > 8
9n .

Since n ∈ N, then n ≥ 1 > 0, so n > 0.
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Hence, n2 > 0, so 3n2 + 2n+ 1 > 0.
Since 3 + 2

n + 1
n2 > 3, then 0 < 1

3+ 2
n+ 1

n2
< 1

3 .

Since 0 < 8− 11
n < 8, then we have

8− 11
n

3+ 2
n+ 1

n2
< 8

3 .

Since 1
3n > 0, then

8− 11
n

3n(3+ 2
n+ 1

n2 )
< 8

9n .

Thus, 8n−11
3n2(3+ 2

n+ 1
n2 )

< 8
9n , so 8n−11

3(3n2+2n+1) <
8
9n .

Observe that

|2n
2 + 4n− 3

3n2 + 2n+ 1
− 2

3
| = |3(2n2 + 4n− 3)− 2(3n2 + 2n+ 1)

3(3n2 + 2n+ 1)
|

= | 8n− 11

3(3n2 + 2n+ 1)
|

=
8n− 11

3(3n2 + 2n+ 1)

<
8

9n
< ε.

Therefore, | 2n
2+4n−3

3n2+2n+1 −
2
3 | < ε, as desired.

Proof. Let n ∈ N.
Since n > 0, then n2 > 0, so 3 + 2

n + 1
n2 > 0.

Thus, 3 + 2
n + 1

n2 6= 0.
Therefore, 3 + 2

n + 1
n2 6= 0 for all n ∈ N.

Observe that

2

3
=

2 + 4 · 0− 3 · 0 · 0
3 + 2 · 0 + 0 · 0

=
limn→∞ 2 + 4 · limn→∞

1
n − 3 · limn→∞

1
n · limn→∞

1
n

limn→∞ 3 + 2 · limn→∞
1
n + limn→∞

1
n · limn→∞

1
n

=
limn→∞ 2 + limn→∞

4
n − 3 · limn→∞

1
n2

limn→∞ 3 + limn→∞
2
n + limn→∞

1
n2

=
limn→∞(2 + 4

n )− limn→∞
3
n2

limn→∞(3 + 2
n + 1

n2 )

=
limn→∞(2 + 4

n −
3
n2 )

limn→∞(3 + 2
n + 1

n2 )

= lim
n→∞

2 + 4
n −

3
n2

3 + 2
n + 1

n2

= lim
n→∞

2n2 + 4n− 3

3n2 + 2n+ 1
.
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Proposition 55. Let r be a real number.
Then there is a sequence of rational numbers that converges to r.

Proof. Let (r, r + 1
n ) be a sequence of intervals for each n ∈ N.

Let n ∈ N be arbitrary.
Then (r, r + 1

n ) is an interval and r < r + 1
n .

Since Q is dense in R, then there exists q ∈ Q such that r < q < r + 1
n .

Hence, for every n ∈ N, there exists q ∈ Q such that r < q < r + 1
n .

Thus, there exists a sequence (an) in Q such that r < an < r + 1
n for each

n ∈ N.

Observe that limn→∞(r+ 1
n ) = limn→∞ r+limn→∞

1
n = r+0 = r = limn→∞ r.

Since r < an < r + 1
n for all n ∈ N and limn→∞ r = r = limn→∞(r + 1

n ),
then by the squeeze rule for sequences, limn→∞ an = r.

Therefore, there exists a sequence in Q that converges to r.

Proposition 56. Let r be a real number.
Then there is a sequence of irrational numbers that converges to r.

Proof. Let (r, r + 1
n ) be a sequence of intervals for each n ∈ N.

Let n ∈ N be arbitrary.
Then (r, r + 1

n ) is an interval and r < r + 1
n .

Since R−Q is dense in R, then there exists t ∈ R−Q such that r < t < r+ 1
n .

Hence, for every n ∈ N, there exists t ∈ R−Q such that r < t < r + 1
n .

Thus, there exists a sequence (an) in R − Q such that r < an < r + 1
n for

each n ∈ N.

Observe that limn→∞(r+ 1
n ) = limn→∞ r+limn→∞

1
n = r+0 = r = limn→∞ r.

Since r < an < r + 1
n for all n ∈ N and limn→∞ r = r = limn→∞(r + 1

n ),
then by the squeeze rule for sequences, limn→∞ an = r.

Therefore, there exists a sequence in R−Q that converges to r.

Exercise 57. The sequence (an) defined by an = n diverges.
Therefore, limn→∞ n does not exist.

Solution. Clearly, the sequence (an) defined by an = n does not converge.
To rigorously prove this fact, we must prove there exists ε > 0 such that for

every n ∈ N there exists N ∈ N such that N > n and |aN − L| ≥ ε.

Proof. Let L ∈ R.
Let ε = 1.
To prove limn→∞ n does not exist, we must prove (∀n ∈ N)(∃N ∈ N)(N >

n ∧ |aN − L| ≥ 1).
Let n ∈ N.
Since L+ 1 is a real number, then by the Archimedean property of R, there

exists M ∈ N such that M > L+ 1.
Either n < M or n ≥M .
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We consider these cases separately.
Case 1: Suppose n < M .
Let N = M .
Then N > n and aN = N = M > L+ 1.
Since aN > L+ 1, then aN − L > 1, so aN − L ≥ 1.
Since |aN −L| ≥ 1 iff either aN −L ≥ 1 or aN −L ≤ −1, then |aN −L| ≥ 1.
Case 2: Suppose n ≥M .
Let N = n+ 1.
Since n+ 1 > n, then N > n.
Observe that aN = N = n+ 1 > n ≥M > L+ 1, so aN > L+ 1.
Hence, aN − L > 1, so aN − L ≥ 1.
Since |aN −L| ≥ 1 iff either aN −L ≥ 1 or aN −L ≤ −1, then |aN −L| ≥ 1.
Therefore, in all cases, N > n and |aN − L| ≥ 1, as desired.

Exercise 58. Let (an) be a sequence in R.
Let A,B ∈ R.
If limn→∞ an = A and B is an accumulation point of the set {an : n ∈ N},

then A = B.

Proof. Suppose limn→∞ an = A and B is an accumulation point of the set
{an : n ∈ N}.

Let S = {an : n ∈ N}.
Then B is an accumulation point of S, so by a previous proposition, there

is a sequence (bn) of points in S − {B} such that limn→∞ bn = B.
We prove (bn) is a subsequence of (an).
Since limn→∞ an = A and (bn) is a subsequence of (an), thenB = limn→∞ bn =

limn→∞ an = A, so B = A.
Therefore, A = B.
Since B is an accumulation point of S, then for every ε > 0, there exists

s ∈ S such that s ∈ N ′(B; ε).
Let ε = 1

n for each n ∈ N.
Then for each n ∈ N, there exists s ∈ S such that s ∈ N ′(B; 1

n ).
Thus, there exists a sequence (bn) such that bn ∈ S and bn ∈ N ′(B; 1

n ).
Let n ∈ N be given.
Then bn ∈ S and bn ∈ N ′(B; 1

n ).
Since bn ∈ S, then bn = am for some m ∈ N.
Since bn ∈ N ′(B; 1

n ), then |bn −B| < 1
n , so |am −B| < 1

n .
Therefore, for each n ∈ N, there exists m ∈ N such that |am −B| < 1

n .

Exercise 59. Prove limn→∞
n2+1
n+1 =∞.

Proof. Let M > 0.

We must prove there exists N ∈ N such that n2+1
n+1 > M whenever n > N .

Since M+1 ∈ R, then by the Archimedean property of R, there exists N ∈ N
such that N > M + 1.

Let n ∈ N such that n > N .
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Then n > N > M + 1 > M > M − 1, so n > M − 1.
Hence, 1 > M−1

n , so M + 1 > M + M−1
n .

Thus, n > M + 1 > M + M−1
n , so n > M + M−1

n .
Consequently, n2 > Mn+M − 1, so n2 + 1 > M(n+ 1).

Therefore, n2+1
n+1 > M , as desired.

Lemma 60. Let a, b ∈ R.
If a > 1 and b > 1, then ab > 1.

Proof. Suppose a > 1 and b > 1.
Then there exists a′ > 0 such that 1 + a′ = a and there exists b′ > 0 such

that 1 + b′ = b.
Hence, ab = (1 + a′)(1 + b′) = 1 + b′ + a′ + a′b′, so ab− 1 = b′ + a′ + a′b′.
Since b′ > 0 and a′ > 0, then a′b′ > 0, so b′ + a′ + a′b′ > 0.
Therefore, ab− 1 > 0, so ab > 1, as desired.

Exercise 61. Prove limn→∞
n3+1
n2+1 =∞.

Proof. Let M > 0.

We must prove there exists N ∈ N such that n3+1
n2+1 > M whenever n > N .

Since M+1 ∈ R, then by the Archimedean property of R, there exists N ∈ N
such that N > M + 1.

Let n ∈ N such that n > N .
Then n > N > M + 1.
Since N −M > 1, then N −M > 0, so 1 + (N −M) > 0.
Hence, −1− (N −M) < 0.
Since n > N ≥ 1, then n > 1.
Since N −M > 1, then n(N −M) > 1.
Since n > 0, then n2(N −M) > n, so n2(N −M)− n > 0.
Thus, −1−(N−M) < 0 < n2(N−M)−n, so −1−(N−M) < n2(N−M)−n.
Hence, n− 1 < n2(N −M) + (N −M), so n− 1 < (n2 + 1)(N −M).
Since n2 + 1 > 0, then n−1

n2+1 < N −M .

Therefore, we have the inequality 1−n
n2+1 > M −N .

Adding the inequality n > N , we obtain n+ 1−n
n2+1 > M .

Thus, n3+1
n2+1 > M , as desired.

Exercise 62. Let (an) be a sequence of real numbers.
If an →∞, then (an)2 →∞.

Proof. Suppose an →∞.
To prove (an)2 →∞, let M > 0 be given.
We must prove there exists N ∈ N such that (an)2 > M whenever n > N .
Since M+1 > 0 and an →∞, then there exists N ∈ N such that an > M+1

whenever n > N .
Let n ∈ N such that n > N .
Then an > M + 1.
Thus, an > M + 1 > M > 0.
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Since an > M + 1 > 0, then (an)2 > (M + 1)2.
Since M + 1 > 1 and M + 1 > 0, then (M + 1)2 > M + 1.
Thus, (an)2 > (M + 1)2 > M + 1 > M , so (an)2 > M , as desired.

Exercise 63. Let (an) be a sequence of real numbers.
If an →∞ then 1

an
→ 0.

Proof. Suppose an →∞.
To prove 1

an
→ 0, let ε > 0 be given.

Then 1
ε > 0.

Since an →∞, then there exists N ∈ N such that an >
1
ε whenever n > N .

Let n ∈ N such that n > N .
Then an >

1
ε .

Since an >
1
ε > 0, then an > 0.

Hence, ε > 1
an

> 0.

Therefore, | 1an | =
1
an

< ε, as desired.

Exercise 64. Let (an) be a sequence of real numbers.
If an → 0 and an 6= 0 for all n ∈ N, then | 1an | → ∞.

Proof. Suppose an → 0 and an 6= 0 for all n ∈ N.
To prove | 1an | → ∞, let M > 0 be given.

Then 1
M > 0.

Since an → 0, then there exists N ∈ N such that |an| < 1
M whenever n > N .

Let n ∈ N such that n > N .
Then |an| < 1

M .
Since n ∈ N, then an 6= 0, so |an| 6= 0.
Thus, |an| > 0.
Hence, M < 1

|an| = | 1an |, so M < | 1an |.
Therefore, | 1an | > M , as desired.

Exercise 65. Let (an) be a sequence of positive real numbers.
Then an → 0 iff 1

an
→∞.

Proof. We prove if an → 0 then 1
an
→∞.

Suppose an → 0.
To prove 1

an
→∞, let M > 0 be given.

Then 1
M > 0.

Since an → 0, then there exists N ∈ N such that |an| < 1
M whenever n > N .

Let n ∈ N such that n > N .
Then |an| < 1

M .
Since all terms of (an) are positive, then an > 0 for all n ∈ N.
In particular, an > 0, so an <

1
M .

Since M > 0, then M < 1
an

.

Therefore, 1
an

> M , as desired.

Conversely, we prove if 1
an
→∞, then an → 0.
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Suppose 1
an
→∞.

To prove an → 0, let ε > 0 be given.
Then 1

ε > 0.
Since 1

an
→∞, then there exists N ∈ N such that 1

an
> 1

ε whenever n > N .
Let n ∈ N such that n > N .
Then 1

an
> 1

ε .
Since ε > 0, then ε

an
> 1.

Since all terms of (an) are positive, then an > 0 for all n ∈ N.
In particular, an > 0, so ε > an.
Therefore, an < ε, so |an| < ε, as desired.

Exercise 66. Let (xn) be a sequence of real numbers.
If (xn) diverges to ∞, then xn

xn+1 converges.
The converse if xn

xn+1 converges, then (xn) diverges to ∞ is false.

Proof. We first prove if (xn) diverges to ∞, then xn

xn+1 converges.
Suppose (xn) diverges to ∞.
To prove xn

xn+1 converges, we prove xn

xn+1 converges to 1.
Let ε > 0 be given.
Then 1

ε > 0.
We must prove there exists N ∈ N such that | xn

xn+1−1| < ε whenever n > N .

Since xn →∞, then there exists N ∈ N such that xn >
1
ε whenever n > N .

Let n ∈ N such that n > N .
Then xn >

1
ε > 0.

Since 1
ε < xn and xn < xn + 1, then 1

ε < xn + 1.
Since xn > 0, then xn + 1 > 0, so 1

xn+1 < ε.
Observe that

| xn
xn + 1

− 1| = |xn − (xn + 1)

xn + 1
|

= | −1

xn + 1
|

=
1

xn + 1
< ε.

Therefore, | xn

xn+1 − 1| < ε, so xn

xn+1 converges to 1.
To disprove the converse, we must prove there exists a sequence (xn) such

that xn

xn+1 converges and (xn) does not diverge to ∞.

Let (xn) be a sequence defined by xn = 1
n .

To prove xn

xn+1 converges, we prove xn

xn+1 converges to zero.
Let ε > 0.
Then 1

ε > 0. Since 1
ε ∈ R, then by the Archimedean property of R, there

exists N ∈ N such that N > 1
ε .

Let n ∈ N such that n > N .
Then n > N > 1

ε , so n > 1
ε .
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Hence, ε > 1
n .

Thus,

| xn
xn + 1

| = |
1
n

1
n + 1

|

=
1
n

1
n + 1

=
1

1 + n

<
1

n
< ε.

Therefore, xn

xn+1 converges to zero, so xn

xn+1 converges.
We prove (xn) does not diverge to ∞.
Since xn = 1

n and 1
n → 0, then xn converges to zero.

Hence, (xn) converges, so (xn) does not diverge.
In particular, (xn) does not diverge to ∞.

Exercise 67. Let (sn) be a sequence of positive real numbers.
Let α > 1.
If sn+1 > αsn for all n ∈ N, then sn →∞.

Proof. To prove sn →∞, let M > 0 be given.
We must prove there exists N ′ ∈ N such that if n > N ′, then sn > M .
We first prove the sequence αn diverges to ∞.
Let b > 0.
We must prove there exists N ∈ N such that if n > N , then αn > b.
Since α > 0 and b > 0, let x = logα b.
Then αx = b.
Since x ∈ R, then by the Archimedean property of R, there exists N ∈ N

such that N > x.
Let n ∈ N such that n > N .
Then n > N > x, so n > x.
Hence, n− x > 0.
Since α > 1 and n− x > 0, then αn−x > 1.
Since αx > 0, then αn > αx, so αn > b, as desired.
Therefore, αn diverges to ∞.
Hence, for every b > 0, there exists N ∈ N such that αn > b if n > N .
Since M > 0 and α > 0 and s1 > 0, then Mα

s1
> 0.

Thus, there exists N ∈ N such that αn > Mα
s1

if n > N .

We next prove sn > αn−1s1 for all n ≥ 2 by induction on n.
Let p(n) : sn > αn−1s1 be a predicate defined over N.
Basis:
Since s2 > αs1, then the statement p(2) is true.
Induction:
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Let n ≥ 2 such that p(n) is true.
Then sn > αn−1s1.
To prove p(n+ 1) is true, we must prove sn+1 > αns1.
Observe that sn+1 > αsn and αsn > αns1.
Therefore, sn+1 > αns1, as desired.
Hence, p(n) implies p(n+ 1) for all n ≥ 2.
Since p(2) is true and p(n) implies p(n+ 1) for all n ≥ 2, then by induction,

p(n) is true for all n ≥ 2.
Therefore, sn > αn−1s1 for all n ≥ 2.
Let N ′ = max{2, N}.
Then N ′ ∈ N and 2 ≤ N ′ and N ≤ N ′.
Let n ∈ N such that n > N ′.
Since n > N ′ ≥ N , then n > N .
Hence, αn > Mα

s1
.

Thus, αns1 > Mα, so αn−1s1 > M .
Since n > N ′ ≥ 2, then n > 2.
Hence, sn > αn−1s1.
Thus, sn > αn−1s1 and αn−1s1 > M , so sn > M , as desired.

Exercise 68. Let (sn) be a sequence of real numbers.
If (sn) is unbounded, then either sn →∞ or sn → −∞.

Solution. This is a false statement.
Here is a counterexample. Let

sn =

{
n if n is odd
1
n if n is even

We prove (sn) is unbounded.
Let M > 0 be given.
Since N is unbounded above in R, then there is a natural number n > M .
Let n ∈ N such that n > M .
Either n is even or n is odd.
We consider these cases separately.
Case 1: Suppose n is even.
Then n+ 1 is odd.
Therefore, |sn+1| = |n+ 1| = n+ 1 > n > M .
Hence, there exists n+ 1 ∈ N such that |sn+1| > M .
Case 2: Suppose n is odd.
Then |sn| = |n| = n > M .
Therefore, there exists n ∈ N such that |sn| > M .
Therefore, (sn) is unbounded.
To prove (sn) does not diverge to∞, we must prove (∃M > 0)(∀n ∈ N)(∃N ∈

N)(N > n ∧ sN ≤M).
Let M = 1.
Let n ∈ N.
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Then n ≥ 1, so 1 ≥ 1
n .

Either n is even or n is odd.
We consider these cases separately.
Case 1: Suppose n is even.
Then n+ 2 is even.
Let N = n+ 2.
Since n+ 2 > n, then N > n.
Hence, sN = sn+2 = 1

n+2 <
1
n ≤ 1, so sN < 1.

Therefore, sN ≤ 1.
Case 2: Suppose n is odd.
Then n+ 1 is even.
Let N = n+ 1.
Since n+ 1 > n, then N > n.
Hence, sN = sn+1 = 1

n+1 <
1
n ≤ 1, so sN < 1.

Therefore, sN ≤ 1.
Thus, (sn) does not diverge to ∞.
We prove (sn) does not diverge to −∞.
Suppose that (sn) diverges to −∞.
Then (−sn) diverges to ∞.
Hence, for every M > 0, there exists N ∈ N such that −sn > M whenever

n > N .
Let M = 1.
Then there exists N ∈ N such that −sn > 1 whenever n > N .
Let n ∈ N such that n > N .
Then −sn > 1.
Since −sn > 1 > 0, then −sn > 0.
Hence, sn < 0.
Thus, there exists n ∈ N such that sn < 0, contradicting the fact that sn > 0

for all n ∈ N.
Therefore, (sn) does not diverge to −∞.

Exercise 69. Let (sn) be a sequence of real numbers.
If (sn) is unbounded, then |sn| → ∞.

Solution. This is a false statement.
Here is a counterexample. Let

sn =

{
n if n is odd
1
n if n is even

We prove (sn) is unbounded.
Let M > 0 be given.
Since N is unbounded above in R, then there is a natural number n > M .
Let n ∈ N such that n > M .
Either n is even or n is odd.
We consider these cases separately.
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Case 1: Suppose n is even.
Then n+ 1 is odd.
Therefore, |sn+1| = |n+ 1| = n+ 1 > n > M .
Hence, there exists n+ 1 ∈ N such that |sn+1| > M .
Case 2: Suppose n is odd.
Then |sn| = |n| = n > M .
Therefore, there exists n ∈ N such that |sn| > M .
Therefore, (sn) is unbounded.
To prove |sn| does not diverge to∞, we must prove (∃M > 0)(∀n ∈ N)(∃N ∈

N)(N > n ∧ |sN | ≤M).
Let M = 1.
Let n ∈ N.
Then n ≥ 1, so 1 ≥ 1

n .
Either n is even or n is odd.
We consider these cases separately.
Case 1: Suppose n is even.
Then n+ 2 is even.
Let N = n+ 2.
Since n+ 2 > n, then N > n.
Hence, |sN | = |sn+2| = | 1

n+2 | =
1

n+2 <
1
n ≤ 1, so |sN | < 1.

Therefore, |sN | ≤ 1.
Case 2: Suppose n is odd.
Then n+ 1 is even.
Let N = n+ 1.
Since n+ 1 > n, then N > n.
Hence, |sN | = |sn+1| = | 1

n+1 | =
1

n+1 <
1
n ≤ 1, so |sN | < 1.

Therefore, |sN | ≤ 1.
Thus, |sn| does not diverge to ∞.

Exercise 70. Let (an) and (bn) be unbounded sequences of real numbers.
Then (an + bn) is unbounded.

Solution. This is a false statement.
Here is a counterexample.
Let an = n2 and bn = −an for all n ∈ N.
Then an →∞ and bn → −∞.
Thus, (an) is unbounded and (bn) is unbounded.
Since an + bn = an− an = 0 and 0 is constant, then (an + bn) is convergent.
Therefore, (an + bn) is bounded.

Exercise 71. Let (an) and (bn) be sequences of real numbers.
If (an) and (bn) are unbounded, then (anbn) is unbounded.

Solution. This is a false statement.
Here is a counterexample. Let

an =

{
n if n is odd
1
n if n is even
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Let

bn =

{
n if n is even
1
n if n is odd

Then (an) and (bn) are unbounded sequences.
But, anbn = 1 for all n ∈ N, so (anbn) is the constant sequence which

converges.
Hence, (anbn) is bounded.

Exercise 72. Let (sn) be a sequence of real numbers.
If (sn) is bounded, then ( 1

sn
) is bounded.

Solution. This is a false statement.
Here is a counterexample.
Let sn = 1

n .
Then (sn) converges to zero, so (sn) is bounded.
But, ( 1

sn
) = n diverges to ∞, so ( 1

sn
) is unbounded.

Exercise 73. Let (sn) be a sequence of real numbers.
If (sn) is unbounded, then ( 1

sn
) is bounded.

Solution. This is a false statement.
Here is a counterexample.
Let

sn =

{
n if n is odd
1
n if n is even

We proved previously that (sn) is unbounded.
Observe that

1

sn
=

{
n if n is even
1
n if n is odd

Thus, ( 1
sn

) is unbounded.

Therefore, (sn) is unbounded and ( 1
sn

) is unbounded.

Exercise 74. Let (an) be a bounded sequence of real numbers.
Then (ann ) is convergent.

Proof. Since the sequence given by 1
n converges to 0 and (an) is bounded, then

the sequence given by 1
n · an = an

n converges to 0.
Therefore, the sequence (ann ) is convergent.
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Monotone Convergence Theorem

Exercise 75. Let (xn) be a sequence of real numbers defined by x1 =
√

2 and
xn =

√
2 + xn−1 for n > 1.

Show that xn < 2 for all n ∈ N and xn < xn+1 for all n ∈ N and
limn→∞ xn = 2.

Solution. We compute several terms of the sequence and observe that the
terms are all positive and less than 2.

We observe that the sequence appears to be strictly increasing and the terms
get close to 2.

We must prove these observations of this sequence are true.

Proof. We prove xn < 2 for all n ∈ N by induction on n.
Let p(n) : xn < 2 be a predicate defined over N.
Basis:
Since 0 < 2 < 4, then 0 <

√
2 < 2, so

√
2 < 2.

Therefore, x1 < 2, so p(1) is true.
Induction:
Let k ∈ N such that p(k) is true.
Then xk < 2.
Suppose xk+1 ≥ 2.
Then

√
2 + xk ≥ 2, so 2 + xk ≥ 4.

Hence, xk ≥ 2.
But, xk < 2 by hypothesis.
Therefore, xk+1 < 2, so p(k + 1) is true.
Hence, p(k) implies p(k + 1) for all k ∈ N.
Since p(1) is true and p(k) implies p(k+ 1) for all k ∈ N, then by induction,

p(n) is true for all n ∈ N.
Therefore, xn < 2 for all n ∈ N.

Proof. We prove xn > 0 for all n ∈ N by induction on n.
Let p(n) : xn > 0 be a predicate defined over N.
Basis:
Since 2 > 0, then

√
2 > 0, so x1 > 0.

Therefore, p(1) is true.
Induction:
Let k ∈ N such that p(k) is true.
Then xk > 0.
Hence, 2 + xk > 2, so

√
2 + xk >

√
2.

Thus, xk+1 >
√

2.
Since

√
2 > 0, then xk+1 > 0, so p(k + 1) is true.

Hence, p(k) implies p(k + 1) for all k ∈ N.
Since p(1) is true and p(k) implies p(k+ 1) for all k ∈ N, then by induction,

p(n) is true for all n ∈ N.
Therefore, xn > 0 for all n ∈ N.
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Proof. We prove xn < xn+1 for all n ∈ N by induction on n.
Let p(n) : xn < xn+1 be a predicate defined over N.
Basis:
Since 0 <

√
2, then 2 < 2 +

√
2.

Since 0 < 2 < 2 +
√

2, then 0 <
√

2 <
√

2 +
√

2.

Hence,
√

2 <
√

2 +
√

2, so x1 <
√

2 + x1.
Therefore, x1 < x2, so p(1) is true.
Induction:
Let k ∈ N such that p(k) is true.
Then xk < xk+1.
Suppose xk+1 ≥ xk+2.
Then

√
2 + xk ≥

√
2 + xk+1.

Since xn > 0 for all n ∈ N and k + 1 ∈ N, then xk+1 > 0.
Hence, 2 + xk+1 > 0, so

√
2 + xk+1 > 0.

Thus,
√

2 + xk ≥
√

2 + xk+1 > 0, so 2 + xk ≥ 2 + xk+1 > 0.
Hence, 2 + xk ≥ 2 + xk+1, so xk ≥ xk+1.
But, xk < xk+1, by the induction hypothesis.
Therefore, xk+1 < xk+2, so p(k + 1) is true.
Hence, p(k) implies p(k + 1) for all k ∈ N.
Since p(1) is true and p(k) implies p(k+ 1) for all k ∈ N, then by induction,

p(n) is true for all n ∈ N.
Therefore, xn < xn+1 for all n ∈ N.

Proof. We prove limn→∞ xn = 2.
Since xn < xn+1 for all n ∈ N, then (xn) is strictly increasing, so (xn) is

monotonic.
Since xn > 0 for all n ∈ N and xn < 2 for all n ∈ N, then 0 < xn < 2 for all

n ∈ N, so (xn) is bounded.
Since (xn) is monotonic and bounded, then by MCT, (xn) is convergent.
Thus, there is a real number L such that limn→∞ xn = L.
We must prove L = 2.
Since 0 < xn < 2 for all n ∈ N, then 0 ≤ xn ≤ 2 for all n ∈ N, so

0 ≤ limn→∞ xn ≤ 2.
Hence, 0 ≤ L ≤ 2, so 0 ≤ L and L ≤ 2.
Since limn→∞ xn = L, then limn→∞ xn+1 = L.
Thus, L = limn→∞ xn+1 = limn→∞

√
2 + xn.

Observe that

2 + L = lim
n→∞

2 + lim
n→∞

xn

= lim
n→∞

(2 + xn)

= lim
n→∞

(
√

2 + xn)(
√

2 + xn)

= lim
n→∞

(
√

2 + xn) · lim
n→∞

(
√

2 + xn)

= L · L.
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Thus, 2 + L = L2, so 0 = L2 − L− 2 = (L− 2)(L+ 1).
Hence, either L− 2 = 0 or L+ 1 = 0, so either L = 2 or L = −1.
Since L ≥ 0 > −1, then L > −1, so L 6= −1.
Therefore, L = 2, as desired.

Exercise 76. Let (xn) be a sequence of real numbers defined by x1 = 6 and
xn =

√
6 + xn−1 for n > 1.

Then xn > 0 for all n ∈ N and xn > xn+1 for all n ∈ N and limn→∞ xn = 3.

Solution. We compute several terms of the sequence and observe that the
terms are all positive and less than or equal to 6.

We observe that the sequence appears to be strictly decreasing and the terms
get close to 3.

We must prove these observations of this sequence are true.

Proof. We prove xn > 0 for all n ∈ N by induction on n.
Let p(n) : xn > 0 be a predicate defined over N.
Basis:
Since 0 < 6 = x1, then 0 < x1, so x1 > 0.
Therefore, p(1) is true.
Induction:
Let k ∈ N such that p(k) is true.
Then xk > 0.
Hence, 6 + xk > 6 > 0, so 6 + xk > 0.
Thus,

√
6 + xk > 0, so xk+1 > 0.

Hence, p(k + 1) is true, so p(k) implies p(k + 1) for all k ∈ N.
Since p(1) is true and p(k) implies p(k+ 1) for all k ∈ N, then by induction,

p(n) is true for all n ∈ N.
Therefore, xn > 0 for all n ∈ N.

Proof. We prove xn > xn+1 for all n ∈ N by induction on n.
Let p(n) : xn > xn+1 be a predicate defined over N.
Basis:
Since 36 > 12, then 6 >

√
12.

Thus, x1 = 6 >
√

12 =
√

6 + 6 =
√

6 + x1 = x2, so x1 > x2.
Hence, p(1) is true.
Induction:
Let k ∈ N such that p(k) is true.
Then xk > xk+1.
Hence, xk >

√
6 + xk, so 6 + xk > 6 +

√
6 + xk.

Since xn > 0 for all n ∈ N and k ∈ N, then xk > 0, so 6 + xk > 0.
Thus,

√
6 + xk > 0, so 6 +

√
6 + xk > 0.

Therefore, 6 + xk > 6 +
√

6 + xk > 0, so
√

6 + xk >
√

6 +
√

6 + xk.
Hence, xk+1 >

√
6 + xk+1, so xk+1 > xk+2.

Thus, p(k + 1) is true.
Hence, p(k) implies p(k + 1) for all k ∈ N.
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Since p(1) is true and p(k) implies p(k+ 1) for all k ∈ N, then by induction,
p(n) is true for all n ∈ N.

Therefore, xn > xn+1 for all n ∈ N.

Proof. We prove limn→∞ xn = 3.
Since xn > xn+1 for all n ∈ N, then (xn) is strictly decreasing, so (xn) is

decreasing.
Since xn > 0 for all n ∈ N, then 0 is a lower bound of (xn), so (xn) is

bounded below.
Since (xn) is decreasing and bounded below, then by MCT, (xn) is conver-

gent.
Thus, there is a real number L such that limn→∞ xn = L.
We must prove L = 3.
Since (xn) is convergent and 0 is a lower bound of (xn), then 0 ≤ L, so

L ≥ 0.
Since limn→∞ xn = L, then limn→∞ xn+1 = L.
Thus, L = limn→∞ xn+1 = limn→∞

√
6 + xn.

Observe that

6 + L = lim
n→∞

6 + lim
n→∞

xn

= lim
n→∞

(6 + xn)

= lim
n→∞

(
√

6 + xn)(
√

6 + xn)

= lim
n→∞

(
√

6 + xn) · lim
n→∞

(
√

6 + xn)

= L · L.

Thus, 6 + L = L2, so 0 = L2 − L− 6 = (L− 3)(L+ 2).
Hence, either L− 3 = 0 or L+ 2 = 0.
Since L ≥ 0, then L+ 2 ≥ 2 > 0, so L+ 2 > 0.
Thus, L+ 2 6= 0, so L− 3 = 0.
Therefore, L = 3, as desired.

Exercise 77. Let (an) be a sequence of real numbers bounded above in R.
Let bn = max{a1, a2, ..., an} for all n ∈ N.
Show that the sequence (bn) is increasing.
Show that if M is an upper bound of (an), then M is an upper bound of

(bn).
Show that sup(an) exists.

Proof. Since bn = max{a1, a2, ..., an} for all n ∈ N, then (bn) is a sequence of
real numbers.

Let A = {an : n ∈ N} and B = {bn : n ∈ N}.
Since (an) is bounded above in R, then A has an upper bound in R.
Let M ∈ R be an arbitrary upper bound of A.
Let n ∈ N be given.
Let S = {a1, a2, ..., an}.
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Since bn = max{a1, a2, ..., an}, then bn = maxS, so bn ∈ S.
Let S′ = S ∪ {an+1}.
Since bn+1 = max{a1, a2, ..., an, an+1}, then bn+1 = maxS′.
Since S ⊂ S ∪ {an+1} = S′, then S ⊂ S′.
Since bn ∈ S and S ⊂ S′, then bn ∈ S′.
Since bn+1 = maxS′, then bn+1 is an upper bound of S′, so bn ≤ bn+1.
Thus, (bn) is increasing.
Since bn ∈ S and S ⊂ A, then bn ∈ A.
Since M is an upper bound of A, then bn ≤M .
Therefore, M is an upper bound of B, so (bn) is bounded above in R.
Since (bn) is increasing and bounded above, then by MCT, supB exists and

limn→∞ bn = supB.
Since supB is the least upper bound of B and M is an upper bound of B,

then supB ≤M .
Since an ∈ S and bn = maxS and bn ∈ B, then an ≤ maxS = bn ≤ supB,

so an ≤ supB.
Hence, supB is an upper bound of A.
Since supB ≤ M and M is an arbitrary upper bound of A, then supB is

the least upper bound of A.
Therefore, supB = supA.
Thus, if (an) is a sequence of real numbers bounded above in R, then sup(an)

exists.

Exercise 78. Let r ∈ R.
Let (rn) be a geometric sequence.
If 0 < r < 1, then rn → 0.

Proof. Suppose 0 < r < 1.
Then 0 < r and r < 1.
Since r > 0, then rn > 0 for all n ∈ N.

We prove rn < 1 by induction on n.
Let S = {n ∈ N : rn < 1}.
Since r1 = r < 1, then 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and rk < 1.
Since rk < 1 and r > 0, then rk+1 = rkr < 1 · r = r < 1.
Thus, rk+1 < 1, so k + 1 ∈ S.
Therefore, by PMI, S = N, so rn < 1 for all n ∈ N.
Since rn > 0 for all n ∈ N and rn < 1 for all n ∈ N, then 0 < rn < 1 for all

n ∈ N.
Thus, (rn) is bounded.
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We prove (rn) is strictly decreasing.
Let n ∈ N be given.
Since rn > 0 and 1 > r, then rn > rnr = rn+1.
Therefore, rn > rn+1, so (rn) is strictly decreasing.
Thus, (rn) is monotonic.
Hence, by MCT, (rn) is convergent.
Therefore, there exists L ∈ R such that limn→∞ rn = L.
Observe that

L = lim
n→∞

rn

= lim
n→∞

rn+1

= lim
n→∞

(rnr)

= ( lim
n→∞

rn)( lim
n→∞

r)

= Lr.

Thus, L = Lr, so Lr − L = 0.
Hence, L(r − 1) = 0, so either L = 0 or r − 1 = 0.
Suppose r − 1 = 0.
Then r = 1.
But, this contradicts the assumption that r < 1.
Thus, r − 1 6= 0, so L = 0.
Therefore, limn→∞ rn = 0, as desired.

Exercise 79. Let (an) be a sequence defined by a1 = 3 and a2 = 3
2 and

an = an−1+an−2

2 for all natural numbers n > 2.
Then an = 2 + (−12 )n−1 for all n ∈ N and limn→∞ an = 2.

Proof. We first prove an = 2 + (−12 )n−1 for all n ∈ N by strong induction on n.
Let S = {n ∈ N : an = 2 + (−12 )n−1}.
Since 1 ∈ N and a1 = 2 + (−12 )1−1 = 2 + 1 = 3, then 1 ∈ S.
Since 2 ∈ N and a2 = 2 + (−12 )2−1 = 2− 1

2 = 3
2 , then 2 ∈ S.

Let k ∈ N with n ≥ 2.
Suppose m ∈ S for all m ∈ N such that 1 ≤ m ≤ k.
To prove k + 1 ∈ S, we must prove k + 1 ∈ N and ak+1 = 2 + (−12 )k.
Since k ∈ N, then k + 1 ∈ N.
Since k ∈ N and 1 < 2 ≤ k, then 1 < k, so k ∈ S.
Hence, ak = 2 + (−12 )k−1.
Since 2 ≤ k < k + 1, then 1 ≤ k − 1 < k, so k − 1 ∈ S.
Hence, ak−1 = 2 + (−12 )k−2.
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Observe that

ak+1 =
ak + ak−1

2

=
2 + (−12 )k−1 + 2 + (−12 )k−2

2

=
4 + (−12 )k−2(−12 + 1)

2

=
4 + (−12 )k−2( 1

2 )

2

= 2 + (
−1

2
)k−2(

1

2
)2

= 2 + (
−1

2
)k−2(

−1

2
)2

= 2 + (
−1

2
)k.

Since k + 1 ∈ N and ak+1 = 2 + (−12 )k, then k + 1 ∈ S.
Thus, k ∈ S implies k+1 ∈ S, so by the principle of mathematical induction,

an = 2 + (−12 )n−1 for all n ∈ N, as desired.

Proof. We prove limn→∞ an = 2.
Thus,

lim
n→∞

an = lim
n→∞

[2 + (
−1

2
)n−1]

= lim
n→∞

2 + lim
n→∞

(
−1

2
)n−1

= 2 + 0

= 2.

Exercise 80. limit of a monotonic convergent sequence is a bound of
the sequence

Let (an) be a convergent sequence in R.
1. If (an) is increasing, then limn→∞ an is an upper bound of (an).
2. If (an) is decreasing, then limn→∞ an is a lower bound of (an).

Proof. We prove 1.
Since (an) is convergent, then there exists L ∈ R such that limn→∞ an = L.
Suppose (an) is increasing.
We must prove L is an upper bound of (an).

Suppose L is not an upper bound of (an).
Then there exists k ∈ N such that ak > L.
Thus, ak − L > 0.
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Since limn→∞ an = L, then there exists N ∈ N such that if n > N , then
|an − L| < ak − L.

Let m = max{k,N}.
Then m ≥ k and m ≥ N .
Since m+ 1 > m and m ≥ N , then m+ 1 > N , so |am+1 − L| < ak − L.
Since k ≤ m and m < m+ 1, then k < m+ 1.
Since (an) is increasing and k < m+ 1, then ak ≤ am+1.
Since L < ak and ak ≤ am+1, then L < am+1, so am+1 − L > 0.
Thus, am+1 − L = |am+1 − L| < ak − L, so am+1 − L < ak − L.
Hence, am+1 < ak, so ak > am+1.
But, this contradicts the fact that ak ≤ am+1.
Hence, L is an upper bound of (an).

Proof. We prove 2.
Since (an) is convergent, then there exists L ∈ R such that limn→∞ an = L.
Suppose (an) is decreasing.
We must prove L is a lower bound of (an).

Suppose L is not a lower bound of (an).
Then there exists k ∈ N such that ak < L.
Thus, L− ak > 0.
Since limn→∞ an = L, then there exists N ∈ N such that if n > N , then

|an − L| < L− ak.
Let m = max{k,N}.
Then m ≥ k and m ≥ N .
Since m+ 1 > m and m ≥ N , then m+ 1 > N , so |am+1 − L| < L− ak.
Since k ≤ m and m < m+ 1, then k < m+ 1.
Since (an) is decreasing and k ≤ m+ 1, then ak ≥ am+1.
Since am+1 ≤ ak and ak < L, then am+1 < L, so am+1 − L < 0.
Thus, L− am+1 = |am+1 − L| < L− ak, so L− am+1 < L− ak.
Hence, −am+1 < −ak, so am+1 > ak.
But, this contradicts the fact that am+1 ≤ ak.
Hence, L is a lower bound of (an).

Let (an) be an increasing sequence such that limn→∞ an = L.
Then L is an upper bound of (an).
Let M be any upper bound of (an).
Since limn→∞ an = L and M is an upper bound of (an), then L ≤M .
Hence, L is the least upper bound of (an).
Therefore, an increasing convergent sequence converges to the least upper

bound of the sequence.
Thus, if (an) is increasing and convergent, then limn→∞ an = sup(an).
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Let (an) be a decreasing sequence such that limn→∞ an = L.
Then L is a lower bound of (an).
Let m be any lower bound of (an).
Since limn→∞ an = L and m is a lower bound of (an), then m ≤ L.
Hence, L is the greatest lower bound of (an).
Therefore, a decreasing convergent sequence converges to the greatest lower

bound of the sequence.
Thus, if (an) is decreasing and convergent, then limn→∞ an = inf(an).

Exercise 81. Let (xn) be a sequence of real numbers defined by xn+1 = 1
2+xn

for all n ∈ N and x1 = 1
2 .

Then limn→∞ xn =
√

2− 1.

Proof. We prove (xn) is convergent by proving its even and odd subsequences
converge to the same value. We prove the even subsequence (x2n) is convergent
using MCT by proving it is increasing and bounded above. We prove the odd
subsequence (x2n−1) is convergent using MCT by proving it is decreasing and
bounded below.

We first prove xn > 0 for all n ∈ Z+. To do this, we must prove x2n > 0 for
all n ∈ Z+ and x2n−1 > 0 for all n ∈ Z+.

Proof. We prove x2n > 0 for all n ∈ Z+ by induction on n.
Let S = {n ∈ Z+ : x2n > 0}.
Since 1 ∈ Z+ and x2 = 1

2+x1
= 1

2+ 1
2

= 2
5 > 0, then 1 ∈ S.

Suppose k ∈ S.
Then k ∈ Z+ and x2k > 0.
Since k ∈ Z+, then k + 1 ∈ Z+ and 2k ∈ Z+ and 2k + 1 ∈ Z+.
Observe that

x2(k+1) = x2k+2

= x(2k+1)+1

=
1

2 + x2k+1

=
1

2 + 1
2+x2k

=
x2k + 2

2x2k + 5
.

Since x2(k+1) = x2k+2
2x2k+5 and x2k > 0, then x2k + 2 > 0 and 2x2k + 5 > 0, so

x2(k+1) > 0.
Since k + 1 ∈ Z+ and x2(k+1) > 0, then k + 1 ∈ S.
Thus, k ∈ S implies k + 1 ∈ S.
By the principle of mathematical induction, x2n > 0 for all n ∈ Z+.

Proof. We prove x2n−1 > 0 for all n ∈ Z+ by induction on n.
Let S = {n ∈ Z+ : x2n−1 > 0}.
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Since 1 ∈ Z+ and x1 = 1
2 > 0, then 1 ∈ S.

Suppose k ∈ S.
Then k ∈ Z+ and x2k−1 > 0.
Since k ∈ Z+, then k ∈ Z and k + 1 ∈ Z+ and 2k ∈ Z+.
Since k ∈ Z+, then k ≥ 1 > 1

2 , so k > 1
2 .

Hence, 2k > 1, so 2k − 1 > 0.
Since k ∈ Z, then 2k − 1 ∈ Z.
Since 2k − 1 ∈ Z and 2k − 1 > 0, then 2k − 1 ∈ Z+.
Observe that

x2(k+1)−1 = x2k+1

=
1

2 + x2k

=
1

2 + x(2k−1)+1

=
1

2 + 1
2+x2k−1

=
x2k−1 + 2

2x2k−1 + 5
.

Since x2(k+1)−1 = x2k−1+2
2x2k−1+5 and x2k−1 > 0, then x2k−1 +2 > 0 and 2x2k−1 +

5 > 0, so x2(k+1)−1 > 0.
Since k + 1 ∈ Z+ and x2(k+1)−1 > 0, then k + 1 ∈ S.
Thus, k ∈ S implies k + 1 ∈ S.
By the principle of mathematical induction, x2n−1 > 0 for all n ∈ Z+.
Therefore, 0 is a lower bound for (x2n−1), so (x2n−1) is bounded below.

Proof. We prove xn > 0 for all n ∈ Z+.
Let n ∈ Z+.
Then either n is even or n is odd.
We consider these cases separately.
Case 1: Suppose n is even.
Then n = 2k for some positive integer k.
Since x2n > 0 for all n ∈ Z+ and k ∈ Z+, then xn = x2k > 0.
Case 2: Suppose n is odd.
Then n = 2k − 1 for some positive integer k.
Since x2n−1 > 0 for all n ∈ Z+ and k ∈ Z+, then xn = x2k−1 > 0.
Hence, in all cases, xn > 0.
Therefore, xn > 0 for all n ∈ Z+, as desired.

Proof. To prove (x2n) is bounded above, we prove x2n <
1
2 for all n ∈ Z+ by

induction on n.
Let S = {n ∈ Z+ : x2n <

1
2}.

Since 1 ∈ Z+ and x2 = 2
5 <

1
2 , then 1 ∈ S.

Suppose k ∈ S.
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Then k ∈ Z+ and x2k <
1
2 .

Since k ∈ Z+, then k + 1 ∈ Z+ and 2k ∈ Z+.
Since 2k ∈ Z+, then 2k + 1 ∈ Z+.
Hence, x2k+1 > 0, so 2 + x2k+1 > 2 > 0.
Thus, 1

2 >
1

2+x2k+1
= x2k+2 = x2(k+1).

Since k + 1 ∈ Z+ and x2(k+1) <
1
2 , then k + 1 ∈ S.

Thus, k ∈ S implies k + 1 ∈ S.
By the principle of mathematical induction, x2n <

1
2 for all n ∈ Z+.

Therefore, 1
2 is an upper bound for (x2n), so (x2n) is bounded above, as

desired.

Proof. To prove (x2n) is strictly increasing, we prove x2n < x2n+2 for all n ∈ Z+

by induction on n.
Let S = {n ∈ Z+ : x2n < x2n+2}.
Since 1 ∈ Z+, then x2 = 1

2+x1
= 1

2+ 1
2

= 2
5 and x3 = 1

2+x2
= 1

2+ 2
5

= 5
12 and

x4 = 1
2+x3

= 1
2+ 5

12

= 12
29 .

Since 1 ∈ Z+ and x2 = 2
5 <

12
29 = x4, then 1 ∈ S.

Suppose k ∈ S.
Then k ∈ Z+ and x2k < x2k+2.
Since k ∈ Z+, then k+1 ∈ Z+ and 2k ∈ Z+ and 2k+1 ∈ Z+ and 2k+2 ∈ Z+

and 2k + 3 ∈ Z+.
Since 2k ∈ Z+, then x2k > 0, so 2 + x2k > 0.
Since 2k + 1 ∈ Z+, then x2k+1 > 0, so 2 + x2k+1 > 0.
Since 2k + 2 ∈ Z+, then x2k+2 > 0, so 2 + x2k+2 > 0.
Since 2k + 3 ∈ Z+, then x2k+3 > 0, so 2 + x2k+3 > 0.
Observe that

x2k < x2k+2 ⇔ 2 + x2k < 2 + x2k+2

⇒ 1

2 + x2k+2
<

1

2 + x2k
⇒ x2k+3 < x2k+1

⇔ 2 + x2k+3 < 2 + x2k+1

⇒ 1

2 + x2k+1
<

1

2 + x2k+3

⇒ x2k+2 < x2k+4

⇔ x2(k+1) < x2(k+1)+2.

Since x2k < x2k+2, then x2(k+1) < x2(k+1)+2.
Since k + 1 ∈ Z+ and x2(k+1) < x2(k+1)+2, then k + 1 ∈ S.
Thus, k ∈ S implies k + 1 ∈ S.
By the principle of mathematical induction, x2n < x2n+2 for all n ∈ Z+.
Therefore, (x2n) is strictly increasing, as desired.

Proof. To prove (x2n−1) is strictly decreasing, we prove x2n−1 > x2n+1 for all
n ∈ Z+ by induction on n.
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Let S = {n ∈ Z+ : x2n−1 > x2n+1}.
Since 1 ∈ Z+ and x1 = 1

2 >
5
12 = x3, then 1 ∈ S.

Suppose k ∈ S.
Then k ∈ Z+ and x2k−1 > x2k+1.
Since k ∈ Z+, then k ∈ Z and k ≥ 1 and k + 1 ∈ Z+ and 2k ∈ Z+ and

2k + 1 ∈ Z+ and 2k + 2 ∈ Z+.
Since k ∈ Z, then 2k − 1 ∈ Z.
Since k ≥ 1, then 2k ≥ 2, so 2k − 1 ≥ 1 > 0.
Hence, 2k − 1 > 0.
Since 2k − 1 ∈ Z and 2k − 1 > 0, then 2k − 1 ∈ Z+

Thus, x2k−1 > 0, so 2 + x2k−1 > 0.
Since 2k ∈ Z+, then x2k > 0, so 2 + x2k > 0.
Since 2k + 1 ∈ Z+, then x2k+1 > 0, so 2 + x2k+1 > 0.
Since 2k + 2 ∈ Z+, then x2k+2 > 0, so 2 + x2k+2 > 0.
Observe that

x2k−1 > x2k+1 ⇔ 2 + x2k−1 > 2 + x2k+1

⇒ 1

2 + x2k+1
>

1

2 + x2k−1
⇒ x2k+2 > x2k

⇔ 2 + x2k+2 > 2 + x2k

⇒ 1

2 + x2k
>

1

2 + x2k+2

⇒ x2k+1 > x2k+3

⇔ x2(k+1)−1 > x2(k+1)+1.

Since x2k−1 > x2k+1, then x2(k+1)−1 > x2(k+1)+1.
Since k + 1 ∈ Z+ and x2(k+1)−1 > x2(k+1)+1, then k + 1 ∈ S.
Thus, k ∈ S implies k + 1 ∈ S.
By the principle of mathematical induction, x2n−1 > x2n+1 for all n ∈ Z+.
Therefore, (x2n−1) is strictly decreasing, as desired.

Proof. Since (x2n) is strictly increasing and bounded above, then by MCT,
limn→∞ x2n = sup(x2n).

Since (x2n−1) is strictly decreasing and bounded below, then by MCT,
limn→∞ x2n−1 = inf(x2n−1).

To prove limn→∞ x2n = limn→∞ x2n−1, we must prove sup(x2n) = inf(x2n−1).

Proof. We prove x2 < x2n−1 for all n ∈ Z+ by induction on n.
Let S = {n ∈ Z+ : x2 < x2n−1}.
Since 1 ∈ Z+ and x2 = 2

5 <
1
2 = x1, then 1 ∈ S.

Suppose k ∈ S.
Then k ∈ Z+ and x2 < x2k−1.
Since k ∈ Z+, then k + 1 ∈ Z+ and 2k ∈ Z+.
Since x2n <

1
2 for all n ∈ Z+ and k ∈ Z+, then x2k <

1
2 = x1.
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Since 2k ∈ Z+, then x2k > 0, so 2 + x2k > 0.
Thus, 0 < 2 + x2k < 2 + x1, so 1

2+x1
< 1

2+x2k
.

Hence, x2 < x2k+1 = x2(k+1)−1.
Since k + 1 ∈ Z+ and x2 < x2(k+1)−1, then k + 1 ∈ S.
Thus, k ∈ S implies k + 1 ∈ S.
By the principle of mathematical induction, x2 < x2n−1 for all n ∈ Z+.

Proof. We next prove x2n < x2m−1 for all m,n ∈ Z+.
Let m ∈ Z+ be given.
We must prove x2n < x2m−1 for all n ∈ Z+.
Either m = 1 or m > 1.
We consider these cases separately.
Case 1: Suppose m = 1.
Let n ∈ Z+ be given.
Since x2n <

1
2 for all n ∈ Z+, then x2n <

1
2 = x1 = x2m−1.

Therefore, x2n < x2m−1 for all n ∈ Z+.
Case 2: Suppose m > 1.
Since m ∈ Z+ and m > 1, then m ≥ 2.
Let T = {n ∈ Z+ : x2n < x2m−1}.
Since x2 < x2m−1 for all m ∈ Z+, then x2 < x2m−1.
Since 1 ∈ Z+ and x2 < x2m−1, then 1 ∈ T .
Suppose k ∈ T .
Then k ∈ Z+ and x2k < x2m−1.
Since k ∈ Z+, then k ∈ Z and k + 1 ∈ Z+ and 2k ∈ Z+.
Since 2k ∈ Z+, then 2k + 1 ∈ Z+, so x2k+1 > 0.
Since m ∈ Z+, then m ∈ Z, so 2m− 3 ∈ Z.
Since m ≥ 2, then 2m ≥ 4, so 2m− 3 ≥ 1 > 0.
Hence, 2m− 3 > 0.
Since 2m− 3 ∈ Z and 2m− 3 > 0, then 2m− 3 ∈ Z+, so 2m− 2 ∈ Z+ and

2m− 1 ∈ Z+.
Since (x2n−1) is strictly decreasing and 2m− 3 ∈ Z+ and 2m− 1 ∈ Z+ and

2m− 3 < 2m− 1, then x2m−3 > x2m−1.
Since 2k ∈ Z+, then x2k > 0, so 2 + x2k > 0.
Since 2m− 3 ∈ Z+, then x2m−3 > 0, so 2 + x2m−3 > 0.
Since x2k+1 > 0, then 2 + x2k+1 > 0.
Since 2m− 2 ∈ Z+, then x2m−2 > 0, so 2 + x2m−2 > 0.
Since x2k < x2m−1 and x2m−1 < x2m−3, then x2k < x2m−3.
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Observe that

x2k < x2m−3 ⇔ 2 + x2k < 2 + x2m−3

⇒ 1

2 + x2m−3
<

1

2 + x2k
⇒ x2m−2 < x2k+1

⇔ 2 + x2m−2 < 2 + x2k+1

⇒ 1

2 + x2k+1
<

1

2 + x2m−2
⇒ x2k+2 < x2m−1

⇔ x2(k+1) < x2m−1.

Thus, x2(k+1) < x2m−1.
Since k + 1 ∈ Z+ and x2(k+1) < x2m−1, then k + 1 ∈ T .
Thus, k ∈ T implies k + 1 ∈ T .
By the principle of mathematical induction, x2n < x2m−1 for all n ∈ Z+.
Hence, in all cases, x2n < x2m−1 for all n ∈ Z+.
Since m is arbitrary, then x2n < x2m−1 for all n ∈ Z+ for all m ∈ Z+.

Proof. Let n ∈ Z+.
Then x2n < x2m−1 for all m ∈ Z+, so x2n is a lower bound of (x2n−1).
Since inf(x2n−1) is the greatest lower bound of (x2n−1), then x2n ≤ inf(x2n−1).
Since n is arbitrary, then x2n ≤ inf(x2n−1) for all n ∈ Z+.
Hence, inf(x2n−1) is an upper bound of (x2n).
We now prove inf(x2n−1) is truly the least upper bound of (x2n).
Since sup(x2n) is the least upper bound of (x2n), then sup(x2n) ≤ inf(x2n−1).
Now, we must prove sup(x2n) = inf(x2n−1).
Could we argue by contradiction that it must be impossible for sup(x2n) <

inf(x2n−1)?

Proof. To prove inf(x2n−1) is the least upper bound of (x2n), we must prove
inf(x2n−1) is an upper bound of (x2n) and that it is the least such upper bound.

Since limn→∞ x2n = L = limn→∞ x2n−1, then by a lemma proved in real
series notes, we have limn→∞ xn = L. Since limn→∞ xn = L and xn+1 = 1

2+xn

for all n ∈ N, then

L = lim
n→∞

xn

= lim
n→∞

xn+1

= lim
n→∞

1

2 + xn

=
1

2 + limn→∞ xn

=
1

2 + L
.

Thus, L = 1
2+L , so 2L+ L2 = 1.
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Hence, (L+ 1)2 = L2 + 2L+ 1 = 1 + 1 = 2, so L+ 1 = ±
√

2.
Therefore, either L = −1 +

√
2 or L = −1−

√
2.

Since L > 0 > −(1 +
√

2) = −1−
√

2, then L > −1−
√

2, so L 6= −1−
√

2.
Thus, L = −1 +

√
2 =
√

2− 1, so limn→∞ xn =
√

2− 1, as desired.

Bolzano-Weierstrass theorem

Exercise 82. Let (an) and (bn) be sequences in R.
Let (In) be a sequence of intervals defined by In = [an, bn] for all n ∈ N.
If In ⊃ In+1 for all n ∈ N and inf{bn − an : n ∈ N} = 0, then α ∈ ∩∞n=1In is

unique.

Proof. Suppose In ⊃ In+1 for all n ∈ N and inf{bn − an : n ∈ N} = 0.
Since (In) is a sequence of nonempty closed bounded intervals in R and In ⊃

In+1 for all n ∈ N, then by the Nested intervals theorem, sup(an) ∈ ∩∞n=1In.
Let α = sup(an).
Then α ∈ ∩∞n=1In, so α ∈ In for all n ∈ N.
To prove α is unique, let β ∈ ∩∞n=1In.
Then β ∈ R and β ∈ In for all n ∈ N.
We must prove β = α.
Since β ∈ In for all n ∈ N, then β ∈ [an, bn] for all n ∈ N, so an ≤ β ≤ bn

for all n ∈ N.
Thus, an ≤ β and β ≤ bn for all n ∈ N, so an ≤ β for all n ∈ N.
Hence, β is an upper bound of (an).
Since α is the least upper bound of (an) and β is an upper bound of (an),

then α ≤ β, so β − α ≥ 0.
Let S = {bn − an : n ∈ N}.
Then inf S = 0.
Since 0 is the greatest lower bound of S, then for every ε > 0, there exists

k ∈ N such that bk − ak < ε.
Let ε > 0 be given.
Then there exists k ∈ N such that bk − ak < ε.
Since k ∈ N, then Ik = [ak, bk].
Since k ∈ N and α ∈ In for all n ∈ N, then α ∈ Ik.
Since k ∈ N and β ∈ In for all n ∈ N, then β ∈ Ik.
Since α ∈ Ik and β ∈ Ik and Ik = [ak, bk], then the distance between α and

β is less than the length of the interval Ik.
Thus, |β − α| = β − α < bk − ak < ε, so |β − α| < ε.
Hence, |β − α| < ε for every ε > 0, so β − α = 0.
Therefore, β = α, as desired.

Cauchy sequences

Exercise 83. The sequence ( 1
n ) is a Cauchy sequence.
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Proof. Let ε > 0 be given.
Then ε 6= 0, so 1

ε ∈ R.
By the Archimedean property of R, there exists N ∈ N such that N > 1

ε , so
ε > 1

N .
Let m,n ∈ Z+ such that m > N and n > N .
Since N ∈ N, then N > 0.
Since m > N > 0, then 0 < 1

m < 1
N .

Since n > N > 0, then 0 < 1
n <

1
N .

Since the distance between any two points in the interval (0, 1
N ) is less than

1
N , then | 1m −

1
n | <

1
N < ε.

Therefore, ( 1
n ) is a Cauchy sequence.

Exercise 84. If (an) and (bn) are Cauchy sequences, then (an+bn) is a Cauchy
sequence.

Proof. Suppose (an) and (bn) are Cauchy sequences.
To prove (an + bn) is a Cauchy sequence, let ε > 0 be given.
Then ε

2 > 0.
Since (an) is Cauchy, then there exists N1 ∈ N such that if m,n > N1, then

|am − an| < ε
2 .

Since (bn) is Cauchy, then there exists N2 ∈ N such that if m,n > N2, then
|bm − bn| < ε

2 .
Let N = max{N1, N2}.
Let m,n ∈ N such that m > N and n > N .
Since m > N ≥ N1, then m > N1.
Since n > N ≥ N1, then n > N1.
Thus, |am − an| < ε

2 .
Since m > N ≥ N2, then m > N2.
Since n > N ≥ N2, then n > N2.
Thus, |bm − bn| < ε

2 .
Therefore,

|(am + bm)− (an + bn)| = |(am − an) + (bm − bn)|
≤ |am − an|+ |bm − bn|

<
ε

2
+
ε

2
= ε.

Hence, |(am + bm)− (an + bn)| < ε, as desired.

Proof. Suppose (an) and (bn) are Cauchy sequences of real numbers.
Then (an) and (bn) are convergent.
Hence, the sum (an + bn) is convergent, so (an + bn) is Cauchy.
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