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Sequences of Real Numbers

A sequence is an ordered list of objects.

Definition 1. infinite sequence
An infinite sequence (an) is a function whose domain is N.

The functional values a1, a2, ..., an, ... are called the terms of the sequence
and an is the nth term of the sequence.

Since an infinite sequence is a function whose domain is N, then an infinite
sequence maps n to an for all n ∈ N.

The term an is the nth element in the list which means that an is in the nth

position in the list.

Definition 2. sequence of real numbers
An infinite sequence of real numbers is a function f : N→ R.

Let (an) be an infinite sequence of real numbers.
Then there exists a function f : N→ R such that an = f(n) for all n ∈ N.
The terms of the sequence are a1, a2, a3, ..., an, ...
The nth term of the sequence is an and an ∈ R for all n ∈ N.

Conversely, let f : N→ R be a function.
Then there exists a sequence (an) such that an = f(n) for all n ∈ N.

Definition 3. constant sequence in R
Let k be a real number.
Let (an) be a sequence of real numbers defined by an = k for all n ∈ N.
Then (an) is called a constant sequence.

Let k ∈ R.
Let (an) be a constant sequence given by an = k for all n ∈ N.
Then a1 = a2 = a3 = ... = k and an+1 = k = an.
The first few terms are k, k, k, .....
The graph of (an) is the constant linear function f(n) = k with slope 0.
The distance between any terms is zero because all of the terms are equal.



Definition 4. sequence defined recursively
Let f be a function.
Let (an) be a sequence defined by an+1 = f(an) and an ∈ domf for all

positive integers n.

Then f(n+1) = an+1 = f(an) for all n ∈ Z+, so the sequence (an) is defined
recursively.

Observe that
f(1) = a1
f(2) = a2 = f(a1)
f(3) = a3 = f(a2) = f(f(a1)) = (f ◦ f)(a1)
f(4) = a4 = f(a3) = f((f ◦ f)(a1)) = (f ◦ (f ◦ f))(a1) = (f ◦ f ◦ f)(a1)
...
f(n) = an = (f ◦ f... ◦ f)(a1)
Therefore, an is the value obtained by applying the function f n − 1 times

to a1.

Definition 5. arithmetic sequence
Let d ∈ R.
Let (an) be a sequence of real numbers defined by an+1 = an + d for all

positive integers n.
Then (an) is called an arithmetic sequence with common difference

d.

Let (an) be an arithmetic sequence with common difference d.
Then there is a function f such that f(an) = an+1 = an + d for all positive

integers n.

Proposition 6. nth term of an arithmetic sequence
Let d ∈ R.
The nth term of an arithmetic sequence with common difference d and initial

value a1 is an = a1 + (n− 1)d.

Let (an) be an arithmetic sequence with common difference d and initial
value a1.

Then an+1 = an + d for all positive integers n and there is a function f such
that f(n) = an = a1 + (n− 1)d for all positive integers n.

The first few terms are a1, a1 + d, a1 + 2d, a1 + 3d, ....
The graph of (an) is the linear function f(n) = a1 + (n− 1)d with slope d.
The difference between consecutive terms is the constant d = an+1 − an.
Therefore, the distance between any consecutive terms is constant, so the

terms are equally spaced.
If d = 0, then an = a1, so (an) is the constant sequence.

Proposition 7. Let (an) be an arithmetic sequence of real numbers with com-
mon difference d.

Then an = an−1+an+1

2 for all integers n > 1.
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Therefore, the nth term of an arithmetic sequence is the average (arithmetic
mean) of its neighboring terms.

Definition 8. geometric sequence
Let r ∈ R.
Let (an) be a sequence of real numbers defined by an+1 = anr for all positive

integers n.
Then (an) is called a geometric sequence with common ratio r.

Let (an) be a geometric sequence with common ratio r.
Then there is a function f such that f(an) = an+1 = anr for all positive

integers n.

Proposition 9. nth term of a geometric sequence
Let r ∈ R, r 6= 0.
The nth term of a geometric sequence with common ratio r and initial value

a1 is an = a1r
n−1.

Let (an) be a geometric sequence with common ratio r and initial value a1.
Then an+1 = anr for all positive integers n and there is a function f such

that f(n) = an = a1r
n−1 for all positive integers n.

The first few terms are a1, a1r, a1r
2, a1r

3, ....
The graph of (an) is the exponential function f(n) = a1r

n−1.
The ratio between consecutive terms is the constant r = an+1

an
.

The distance between any consecutive terms increases or decreases, based
on the value of r.

Let a1 > 0.
If r > 1, then the terms increase by a factor of r.
If r = 1, then an = a1(1)n−1 = a1(1) = a1, so (an) is the constant sequence.
If 0 < r < 1, then the terms decrease by a factor of r.

Proposition 10. Let (an) be a geometric sequence of positive real numbers with
common ratio positive r.

Then an =
√
an−1an+1 for all integers n > 1.

Therefore, the nth term of a geometric sequence of positive terms is the
geometric mean of its neighboring terms.

Example 11. Fibonacci sequence
Let (fn) be a sequence of natural numbers defined by f1 = 1, f2 = 1 and

fn = fn−1 + fn−2 for all natural numbers n > 2.
The sequence (fn) is called the Fibonacci sequence.
The first few terms are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ....

Sequences as Functions

Definition 12. bounded sequence in R
A sequence (an) of real numbers is said to be
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i. bounded above iff its range is bounded above in R.
ii. bounded below iff its range is bounded below in R.
iii. bounded iff its range is a bounded set in R.
iv. unbounded iff (an) is not bounded.

Let S be the range of (an).
Then S is the set of all the terms of the sequence.
Hence, S = {an : n ∈ N} and S ⊂ R.
S is bounded above in R iff there exists M ∈ R such that x ≤ M for all

x ∈ S.
Hence, (an) is bounded above iff there exists M ∈ R such that an ≤ M for

all n ∈ N.
Therefore, (an) is bounded above iff (∃M ∈ R)(∀n ∈ N)(an ≤M).
Similarly, (an) is bounded below iff (∃m ∈ R)(∀n ∈ N)(m ≤ an).
S is bounded in R iff S is bounded above and below in R.
Hence, S is bounded in R iff there exist m,M ∈ R such that m ≤ x ≤ M

for all x ∈ S.
Thus, (an) is bounded in R iff there exist m,M ∈ R such that m ≤ an ≤M

for all n ∈ N.
Therefore, (an) is bounded in R iff (∃m,M ∈ R)(∀n ∈ N)(m ≤ an ≤M).
Equivalently, S is bounded in R iff (∃M ∈ R)(∀x ∈ S)(|x| ≤M).
Therefore, (an) is bounded in R iff (∃M ∈ R)(∀n ∈ N)(|an| ≤M).
Therefore, (an) is unbounded in R iff (∀M ∈ R)(∃n ∈ N)(|an| > M).

Suppose (an) is a bounded sequence of real numbers.
Then there exists M ∈ R such that |an| ≤M for all n ∈ N.
Hence, there exists M > 0 such that |an| < M for all n ∈ N.

Example 13. sequence of natural numbers N
Let (an) be a sequence defined by an = n for all n ∈ N.
Then (an) is the sequence of natural numbers and is an arithmetic sequence

with common difference 1 and initial value 1.
The first few terms are 1, 2, 3, 4, .....
Since N is unbounded above in R, then (an) is unbounded above, so (an) is

an unbounded sequence.
Since all natural numbers are positive, then an = n > 0 for all n ∈ N.
Hence, 0 is a lower bound of (an), so (an) is bounded below.

Example 14. The sequence defined by an = n2 for all n ∈ N is bounded below
by 0, but is not bounded above.

Example 15. The sequence defined by an = −n for all n ∈ N is bounded above
by 0, but is not bounded below.

Example 16. The sequence defined by an = 1
n for all n ∈ N is bounded above

by 1 and is bounded below by 0.
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Example 17. The sequence defined by an = cos(n) for all n ∈ N is bounded
above by 1 and is bounded below by -1.

Proposition 18. sum and product of bounded sequences is bounded
Let (an) and (bn) be bounded sequences of real numbers. Then
1. (an + bn) is bounded.
2. (anbn) is bounded.

Definition 19. monotonic sequence in R
A sequence (an) of real numbers is said to be
i. strictly increasing iff an < an+1 for all n ∈ N.
ii. (monotonic) increasing iff an ≤ an+1 for all n ∈ N.
iii. strictly decreasing iff an > an+1 for all n ∈ N.
iv. (monotonic) decreasing iff an ≥ an+1 for all n ∈ N.
v. monotonic iff (an) is either monotonic increasing or monotonic decreas-

ing.

Therefore, (an) is
strictly increasing iff a1 < a2 < a3 < ... < an < ...
strictly decreasing iff a1 > a2 > a3 > ... > an > ...
monotonic increasing iff a1 ≤ a2 ≤ a3 ≤ ... ≤ an ≤ ...
monotonic decreasing iff a1 ≥ a2 ≥ a3 ≥ ... ≥ an ≥ ....

Example 20. The sequence given by an = n2 is strictly increasing.

Example 21. The sequence given by an = 3 + (−1)n
n is neither increasing nor

decreasing.

Example 22. constant sequence is increasing and decreasing.
Let k be a real number.
The sequence given by an = k is monotonic increasing and decreasing, but

is neither strictly increasing nor strictly decreasing.

Example 23. every strictly increasing sequence is (monotonic) in-
creasing.

Let (an) be a strictly increasing sequence of real numbers.
Then (an) is monotonic increasing.

Therefore, a strictly increasing sequence is monotonic.

Example 24. every strictly decreasing sequence is (monotonic) de-
creasing.

Let (an) be a strictly decreasing sequence of real numbers.
Then (an) is monotonic decreasing.

Therefore, a strictly decreasing sequence is monotonic.
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Proposition 25. necessary and sufficient conditions for a monotonic
sequence

Let (an) be a sequence of real numbers. Then
1. (an) is strictly increasing iff m < n implies am < an for all m,n ∈ N.
2. (an) is (monotonic) increasing iff m < n implies am ≤ an for all m,n ∈

N.
3. (an) is strictly decreasing iff m < n implies am > an for all m,n ∈ N.
4. (an) is (monotonic) decreasing iff m < n implies am ≥ an for all m,n ∈

N.

Let (an) be a sequence.
A subsequence is a sequence that contains only some of terms of (an) in the

same order.

Definition 26. subsequence in R
Let (an) be a sequence of real numbers defined by the function f : N→ R.
A sequence (bn) of real numbers is a subsequence of (an) iff there exists a

strictly increasing function g : N→ N such that bn = (f ◦ g)(n) for all n ∈ N.

Let (an) be a sequence of real numbers.
Then there exists a function f : N→ R defined by f(n) = an for all n ∈ N.
Let (bn) be a sequence of real numbers.
Suppose there exists a strictly increasing function g : N → N such that

bn = (f ◦ g)(n) for all n ∈ N.
Then (bn) is a subsequence of (an) and bn = (f ◦ g)(n) = f(g(n)) = ag(n)

for all n ∈ N.

Example 27. The sequence defined by bn = (2n+ 1)2 is a subsequence of the
sequence defined by an = n2 for all n ∈ N.

Example 28. a sequence is a subsequence of itself
If (an) is a sequence, then (an) is a subsequence of (an).

Proposition 29. If f : N→ N is a strictly increasing function, then f(n) ≥ n
for all n ∈ N.

Proposition 30. subsequence preserves monotonicity and bounded-
ness

1. Every subsequence of an increasing sequence is increasing.
2. Every subsequence of a decreasing sequence is decreasing.
3. Every subsequence of a bounded sequence is bounded.

Definition 31. M tail of a sequence
Let (an) be a sequence in R.
Let M ∈ N.
The M tail of (an) is the sequence (bn) defined by bn = aM+n for all n ∈ N.

Proposition 32. M tail of a sequence is a subsequence of the sequence
Let (an) be a sequence in R.
If (bn) is an M tail of (an), then (bn) is a subsequence of (an).
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Convergent Sequences in R
A convergent sequence is a sequence whose terms eventually get arbitrarily close
to some number.

A sequence (an) has a limit L if the terms of the sequence get arbitrarily
close to some number L when n is sufficiently large.

Definition 33. limit of a sequence in R
Let (an) be a sequence of real numbers.
A real number L is a limit of (an), denoted limn→∞ an = L or an → L, iff

for every positive real ε, there exists a natural number N such that |an−L| < ε
whenever n > N .

Therefore, limn→∞ an = L iff
(∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n > N → |an − L| < ε).
If the limit of a sequence is L, we say that the sequence converges to L.

Definition 34. convergent sequence in R
A sequence (an) is said to be convergent iff there exists a real number L

such that limn→∞ an = L.
A sequence that is not convergent is said to be divergent.

Therefore, a sequence is either convergent or divergent.

Let (an) be a sequence in R.
Suppose (an) is convergent.
Then there exists a real number L such that limn→∞ an = L.
Therefore, (∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n > N → |an − L| < ε).
Observe that (∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n > N → |an − L| < ε) iff
(∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n > N → an ∈ N(L; ε)).
Therefore, limn→∞ an = L implies that for every ε > 0 there exists N ∈ N

such that for each n ∈ N, if n > N, then an is in the ε neighborhood of L.

Suppose a real number L is not the limit of (an).
Then limn→∞ an 6= L.
Therefore, (∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n > N → |an − L| < ε) is false.
Observe that

¬(∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n > N → |an − L| < ε) ⇔
¬(∀ε > 0)(∃N ∈ N)(∀n ∈ N)(n > N → an ∈ N(L; ε)) ⇔

(∃ε > 0)(∀N ∈ N)(∃n ∈ N)(n > N ∧ an 6∈ N(L; ε)) ⇔
(∃ε > 0)(∀N ∈ N)(∃n ∈ N, n > N)(an 6∈ N(L; ε)).

Therefore, limn→∞ an 6= L implies that there exists ε > 0 such that for every
N ∈ N, there exists n ∈ N such that n > N and there exists an ε neighborhood
of L such that an 6∈ N(L; ε).
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Suppose (an) is divergent.
Then (an) is not convergent, so there does not exist L ∈ R such that

limn→∞ an = L.
Thus, ¬(∃L ∈ R)(limn→∞ an = L).

Example 35. The sequence ( 1
n ) converges to zero in R.

Therefore limn→∞
1
n = 0.

Equivalently, 1
n → 0.

Example 36. limit of a constant sequence
For all k ∈ R, limn→∞ k = k. (limit of a constant k is k )

Theorem 37. uniqueness of a limit of a convergent sequence
The limit of a convergent sequence of real numbers is unique.

Let (an) be a convergent sequence of real numbers.
Then there exists L ∈ R such that limn→∞ an = L and L is unique.
Therefore, a convergent sequence cannot have more than one limit.

Proposition 38. a difference in a finite number of initial terms does
not affect the convergence of a sequence

Let (an) and (bn) be sequences of real numbers.
If there exists K ∈ N such that bn = an for all n > K and limn→∞ an = L,

then limn→∞ bn = L.

Proposition 39. Let L ∈ R.
Let (an) and (an − L) be sequences in R.
Then limn→∞ an = L iff limn→∞(an − L) = 0.

Theorem 40. every subsequence of a convergent sequence is conver-
gent

Let (an) be a convergent sequence of real numbers.
If (bn) is a subsequence of (an), then limn→∞ bn = limn→∞ an.

Thus, if a sequence is convergent, then every subsequence is convergent.
Hence, if there is some subsequence that is not convergent, then the sequence

is not convergent.
Therefore, if there is some subsequence that is divergent, then the sequence

is divergent.

Example 41. If limn→∞ an = L, then limn→∞ an+1 = L.

Corollary 42. Let (an) be a sequence of real numbers.
If (bn) and (cn) are convergent subsequences of (an) such that limn→∞ bn 6=

limn→∞ cn, then (an) is divergent.

Example 43. bounded divergent sequence that oscillates
Let (an) be a sequence of real numbers defined by an = (−1)n for all n ∈ N.
Then (an) consists of even terms all equal to 1 and of odd terms all equal

to -1.
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Hence, the even subsequence given by bn = a2n converges to 1 and the odd
subsequence given by cn = a2n−1 converges to -1.

Therefore, (an) is divergent.

Proposition 44. M tail of a sequence is convergent iff the sequence is
convergent

Let (an) be a sequence of real numbers.
Let M ∈ N.
If (an) is convergent, then limn→∞ aM+n = limn→∞ an.
If (aM+n) is convergent, then limn→∞ an = limn→∞ aM+n.

Let (an) be a sequence of real numbers.
Let M ∈ N.
Suppose (an) is convergent.
Then limn→∞ aM+n = limn→∞ an, so (aM+n) is convergent.
Hence, if (an) is convergent, then (aM+n) is convergent.
Suppose (aM+n) is convergent.
Then limn→∞ an = limn→∞ aM+n, so (an) is convergent.
Hence, if (aM+n) is convergent then (an) is convergent.
Thus, (aM+n) is convergent iff (an) is convergent.
Therefore, the M tail of a sequence is convergent iff the sequence is conver-

gent.

Example 45. If (an) is a convergent sequence of real numbers, then limn→∞ an−1 =
limn→∞ an.

Algebraic properties of convergent sequences

Theorem 46. convergence implies boundedness
Every convergent sequence of real numbers is bounded.

Therefore, if a sequence is convergent, then it is bounded.
Hence, if a sequence is not bounded, then it is not convergent.
Thus, if a sequence is unbounded, then it is divergent.
Therefore, an unbounded sequence is divergent.

Let (an) be a convergent sequence of real numbers.
Then (an) is bounded.
Therefore, there exist m,M ∈ R such that m ≤ an ≤M for all n ∈ N.
Equivalently, there exists M ∈ R such that |an| ≤M for all n ∈ N.

Example 47. sequence of natural numbers is divergent
Let an = n for all n ∈ N.
Since the set {an : n ∈ N} = {n : n ∈ N} = N is unbounded, then the

sequence (an) is unbounded.
Therefore, (an) is divergent.
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Example 48. bounded sequence does not imply convergence
Let (an) be a sequence of real numbers defined by an = (−1)n for all n ∈ N.
Let S = {an : n ∈ N} = {(−1)n : n ∈ N}.
Since S is bounded above by 1 and below by -1, then the sequence (an) is

bounded.
Since the terms oscillate between 1 and -1, then the sequence (an) does not

converge.
Therefore, (an) is bounded, but is not convergent.

Example 49. bounded divergent sequence that oscillates
The sequence (an) defined by an = (−1)n diverges.
Therefore, limn→∞(−1)n does not exist.
Moreover, (an) is bounded.
Therefore, (an) is a bounded divergent sequence.

Proposition 50. If limn→∞ an = 0 and (bn) is bounded, then limn→∞ anbn =
0.

Example 51. a. limn→∞
1
n2 = 0.

b. limn→∞
1
nk = 0 for every k ∈ N.

c. limn→∞
cos(n)

n = 0.

Lemma 52. Let (an) be a sequence of real numbers.
If there exists L 6= 0 such that limn→∞ an = L, then there is a natural

number N such that |an| > |L|
2 for all n > N .

Lemma 53. Let (an) be a sequence of real numbers.
If there exists L 6= 0 such that limn→∞ an = L and an 6= 0 for all n ∈ N,

then limn→∞
1
an

= 1
L .

Theorem 54. algebraic limit rules for convergent sequences
If (an) and (bn) are convergent sequences of real numbers, then
1. Scalar Multiple Rule
limn→∞(λan) = λ limn→∞ an for every λ ∈ R.
2. Sum Rule (limit of sum equals sum of limits)
limn→∞(an + bn) = limn→∞ an + limn→∞ bn.
3. Difference Rule (limit of difference equals difference of limits)
limn→∞(an − bn) = limn→∞ an − limn→∞ bn.
4. Product Rule (limit of product equals product of limits)
limn→∞(anbn) = (limn→∞ an)(limn→∞ bn).
5. Quotient Rule (limit of quotient equals quotient of limits)
If limn→∞ bn 6= 0, then
limn→∞

an

bn
= limn→∞ an

limn→∞ bn
.

If an → L and bn →M , then
1. Scalar Multiple Rule
λan → λL for every λ ∈ R.
2. Sum Rule
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an + bn → L+M .
3. Difference Rule
an − bn → L−M .
4. Product Rule
anbn → LM .
5. Quotient Rule
If M 6= 0, then an

bn
→ L

M .

Theorem 55. a limit preserves a non strict inequality
Let (an) and (bn) be convergent sequences of real numbers.
If there exists K > 0 such that an ≤ bn for all n > K, then limn→∞ an ≤

limn→∞ bn.

Corollary 56. Let (an) and (bn) be convergent sequences of real numbers.
If an ≤ bn for all n ∈ N, then limn→∞ an ≤ limn→∞ bn.

Corollary 57. Let (an) be a convergent sequence in R.
1. If M is an upper bound of (an), then limn→∞ an ≤M .
2. If m is a lower bound of (an), then m ≤ limn→∞ an.

Corollary 58. limit of a convergent sequence is between any upper
and lower bound of the sequence

Let (an) be a convergent sequence in R.
If there exist real numbers m and M such that m ≤ an ≤ M for all n ∈ N,

then m ≤ limn→∞ an ≤M .

Corollary 59. Let (an) be a convergent sequence in R.
If there exist K ∈ N and real numbers m and M such that m ≤ an ≤M for

all n > K, then m ≤ limn→∞ an ≤M .

Example 60. If limn→∞ an = L and an ≥ 0 for all n ∈ N, then L ≥ 0.
However, an > 0 for all n ∈ N does not imply L > 0.

Proof. Suppose limn→∞ an = L and an ≥ 0 for all n ∈ N.
Since an ≥ 0 for all n ∈ N, then 0 is a lower bound of (an).
Since limn→∞ an = L and 0 is a lower bound of (an), then 0 ≤ L, so L ≥ 0,

as desired.
Here is a counterexample:
Let an = 1

n .
Then limn→∞ an = 0 and an = 1

n > 0 for all n ∈ N, but 0 6> 0.

Theorem 61. squeeze rule for convergent sequences
Let (an), (bn), and (cn) be sequences of real numbers.
If there exists K ∈ N such that an ≤ cn ≤ bn for all n > K and limn→∞ an =

limn→∞ bn, then limn→∞ cn = limn→∞ an = limn→∞ bn.

Corollary 62. Let (an), (bn), and (cn) be sequences of real numbers.
If an ≤ cn ≤ bn for all n ∈ N and limn→∞ an = limn→∞ bn, then limn→∞ cn =

limn→∞ an = limn→∞ bn.
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Proposition 63. limit of an absolute value equals absolute value of a
limit

Let (an) be a convergent sequence.
Then the sequence (|an|) is convergent and limn→∞ |an| = | limn→∞ an|.

Lemma 64. Let a, b, c, d ∈ R.
If 0 ≤ a < b and 0 < c < d, then ac < bd.

Lemma 65. sequence converging to a positive real number eventually
has positive terms

Let (an) be a sequence of real numbers.
If limn→∞ an exists and is positive, then there exists N ∈ N such that for all

n ∈ N, if n > N , then an > 0.

Proposition 66. limit of a square root equals square root of a limit
Let (an) be a sequence of real numbers.
If limn→∞ an exists and is positive, then limn→∞

√
an =

√
limn→∞ an.

Divergent Sequences

A sequence that diverges to∞ consists of terms that eventually get arbitrarily
large.

Definition 67. divergent sequence to ∞
Let (an) be a sequence of real numbers.
The sequence (an) diverges to ∞, denoted limn→∞ an = ∞, iff for every

positive real M , there exists a natural number N such that an > M whenever
n > N .

In symbols, limn→∞ an =∞ iff (∀M > 0)(∃N ∈ N)(∀n ∈ N)(n > N → an >
M).

A sequence (an) diverges to −∞, denoted limn→∞ an = −∞, iff (−an)
diverges to ∞.

Therefore, limn→∞ an = −∞ iff limn→∞−an =∞.

Example 68. Let (an) be a sequence of real numbers.
Then limn→∞ an =∞ iff limn→∞−an = −∞.

Proof. Observe that

lim
n→∞

an =∞ ⇔ lim
n→∞

−(−an) =∞

⇔ lim
n→∞

−an = −∞.

Proposition 69. divergence to ∞ implies divergence
A sequence that diverges to ∞ is divergent.
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Let (an) be a sequence.
If (an) diverges to −∞, then (−an) diverges to ∞.
Hence, (−an) is divergent, so (an) is divergent.
Therefore, a sequence that diverges to −∞ is divergent.

Example 70. unbounded divergent sequence
The sequence (an) defined by an = n2 diverges to infinity.
Hence, limn→∞ n2 =∞, so (an) is divergent.
Moreover, (an) is unbounded.
Therefore, (an) is an unbounded divergent sequence.

Proposition 71. sequences that diverge to infinity are unbounded
Let (an) be a sequence of real numbers.
1. If limn→∞ an =∞, then (an) is unbounded above.
2. If limn→∞ an = −∞, then (an) is unbounded below.

If limn→∞ an =∞, then (an) is unbounded above, so (an) is unbounded.
If limn→∞ an = −∞, then (an) is unbounded below, so (an) is unbounded.
Therefore, if either limn→∞ an = ∞ or limn→∞ an = −∞, then (an) is

unbounded.

Monotone Convergence Theorem

Theorem 72. Monotone convergence theorem
Let (an) be a sequence of real numbers.
1. If (an) is increasing and bounded above, then limn→∞ an = sup(an).
2. If (an) is increasing and unbounded above, then limn→∞ an =∞.
3. If (an) is decreasing and bounded below, then limn→∞ an = inf(an).
4. If (an) is decreasing and unbounded below, then limn→∞ an = −∞.

Let (an) be a monotonic sequence of real numbers.
Suppose (an) is bounded.
Since (an) is monotonic, then either (an) is increasing or (an) is decreasing.
We consider these cases separately.
Case 1: Suppose (an) is increasing.
Since (an) is bounded, then (an) is bounded above.
Thus, limn→∞ an = sup(an), so (an) is convergent.
Case 2: Suppose (an) is decreasing.
Since (an) is bounded, then (an) is bounded below.
Thus, limn→∞ an = inf(an), so (an) is convergent.
Hence, in all cases, (an) is convergent.
Thus, if (an) is a monotonic sequence, then if (an) is bounded, then (an) is

convergent.
Hence, if (an) is a bounded monotonic sequence, then (an) is convergent.
Therefore, every bounded monotonic sequence of real numbers is convergent.
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Suppose (an) is a monotonic sequence of real numbers.
If (an) is convergent, then (an) is bounded, since every convergent sequence

of real numbers is bounded.
If (an) is bounded, then (an) is convergent, since every bounded monotonic

sequence of real numbers is convergent.
Thus, (an) is convergent iff (an) is bounded.
Hence, if (an) is a monotonic sequence of real numbers, then (an) is conver-

gent iff (an) is bounded.
Therefore, a monotonic sequence of real numbers is convergent iff it is

bounded.

Since every bounded monotonic sequence of real numbers is convergent, then
if (an) is bounded and monotonic, then (an) is convergent.

Hence, if (an) is not convergent, then either (an) is not bounded or (an) is
not monotonic.

Thus, if (an) is divergent, then either (an) is unbounded or (an) is not
monotonic.

Therefore, a divergent sequence of real numbers is either unbounded or not
monotonic.

Example 73. sequence of rational numbers that converges to an irra-
tional number

Let (xn) be a sequence of rational numbers defined recursively by x1 = 2
and xn+1 = xn

2 + 1
xn

for all n ∈ N.

Then limn→∞ xn =
√

2.

Lemma 74. Let r ∈ R.
1. If r > 0, then rn > 0 for all n ∈ N.
2. If r > 1, then rn ≥ (r − 1)n+ 1 for all n ∈ N.

Proposition 75. convergence behavior of a geometric sequence
Let r ∈ R.
Let (rn) be a geometric sequence.
1. If r > 1, then limn→∞ rn =∞.
2. If r = 1, then limn→∞ rn = 1.
3. If |r| < 1, then limn→∞ rn = 0.
4. If r = −1, then (rn) is divergent (oscillates).
5. If r < −1, then (rn) is divergent.

Suppose |r| > 1.
Then either r > 1 or r < −1.
We consider these cases separately.
Case 1: Suppose r > 1.
Then limn→∞ rn =∞, so (rn) is divergent.
Case 2: Suppose r < −1.
Then (rn) is divergent.
Thus, in either case (rn) is divergent.
Therefore, if |r| > 1, then (rn) is divergent.
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Bolzano-Weierstrass theorem

Theorem 76. Nested intervals theorem
Let (In) be a sequence of nonempty closed, bounded intervals in R such that

In ⊃ In+1 for all n ∈ N. Then there exists α ∈ R such that α ∈ In for all n ∈ N.

Let (In) be a sequence of nonempty closed, bounded intervals in R such that
In ⊃ In+1 for all n ∈ N.

Since (In) is a sequence of nonempty closed bounded intervals in R, then
there exist an, bn ∈ R such that In = [an, bn] for all n ∈ N.

Since In is not empty, then there exists x ∈ R such that x ∈ In, so an ≤ x ≤
bn.

Thus, an ≤ bn, so an ≤ bn for all n ∈ N.
Since an ∈ R for all n ∈ N, then (an) is a sequence in R.
Since bn ∈ R for all n ∈ N, then (bn) is a sequence in R.
By the Nested interval theorem, (an) is increasing and (bn) is decreasing and

there exists α ∈ R such that α ∈ In for all n ∈ N and α = sup(an) and inf(bn)
exists and sup(an) ≤ inf(bn).

Since sup(an) is an upper bound of (an), then (an) is bounded above.
Since (an) is increasing and bounded above, then by MCT, limn→∞ an =

sup(an).
Since α ∈ In for all n ∈ N, then α ∈ ∩∞n=1In, so ∩∞n=1In 6= ∅.
Since α ∈ In for all n ∈ N, then α ∈ [an, bn] for all n ∈ N, so an ≤ α ≤ bn

for all n ∈ N.
Hence, an ≤ α and α ≤ bn for all n ∈ N, so α ≤ bn for all n ∈ N.
Therefore, α is a lower bound of (bn), so (bn) is bounded below.
Since (bn) is decreasing and bounded below, then by MCT, limn→∞ bn =

inf(bn).

Theorem 77. Bolzano-Weierstrass theorem
Every bounded sequence in R has a convergent subsequence.

Cauchy sequences

A Cauchy sequence consists of terms that are eventually arbitrarily close to-
gether.

Definition 78. Cauchy sequence
A sequence (an) is a Cauchy sequence iff, to every positive real ε, there

corresponds a natural number N such that |am − an| < ε for all m,n > N .
In symbols, (an) is Cauchy iff (∀ε > 0)(∃N ∈ N)(∀m,n ∈ Z+)(m > N ∧ n >

N → |am − an| < ε).

If the terms of a convergent sequence eventually get arbitrarily close to some
real number, then the terms eventually must get close together.

Lemma 79. Every convergent sequence in R is a Cauchy sequence.
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Lemma 80. Every Cauchy sequence in R is bounded.

Theorem 81. Cauchy convergence criterion for sequences
A sequence in R is convergent iff it is a Cauchy sequence.

Let (an) be a sequence of real numbers.
Then (an) is convergent iff (an) is Cauchy.
Thus, every sequence of real numbers is convergent iff it is Cauchy.
Therefore, every convergent sequence of real numbers is Cauchy and every

Cauchy sequence of real numbers is convergent.
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