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Infinite Series of Real Numbers

Proposition 1. properties of finite sums
Let n € N. Then

1Y g (ar + k) = D00y ak + 35—y by
2. 22:1()‘%) = )‘2221 ay, for every A € R.

Proof. We prove 1.
Observe that

zn:(ak+bk) = (a1 +0b1)+ (ag +b2) + ... + (an + by)
k=1

= (a1+as+..+ap)+ (b1 +ba+...+b,)

= Z ap + Z b
k=1 k=1

O
Proof. We prove 2.
Let A € R be given.
Then
D Xax = Xay+Aag+ ...+ Aap
k=1
= /\(al +as + ... + an)
= A Z ag.
k=1
O

Proposition 2. n'* term of a sequence of partial sums

Let (ay,) be a sequence of real numbers.

Let (s,) be a sequence defined by s1 = a1 and Sp41 = Sp + any1 for all
n € N.

The nt"* term of the sequence (s,) is 8y, = a1 + az + ... + a,.



Proof. We prove s, = > ., a; for all n € N by induction on n.
Let S={neN:s,=>" a;}
Since s1 = a1 = Z}Zl a;, then 1 € S.
Suppose k € S.
Then k£ € N and s, = Ele a;.
Observe that

Sk+1 = Skt Qg1

k
= E a; + ap4+1
i=1
k+1

= E ;.
i=1

Thus, sp11 = Zf:ll a;,sok+1¢eS8.
Therefore, by PMI, S =N, so s, =Y ., a; for all n € N, as desired. O

Theorem 3. uniqueness of a sum of a convergent series
The sum of a convergent series of real numbers is unique.

Proof. Let > 7, ay, be a convergent series of real numbers.

Let (s,) be the sequence of partial sums of the sequence (a,,).

Since the series Zf;o:l an is convergent, then there exists a real number S
such that lim,, o s, = S.

Since the limit of a convergent sequence is unique and lim,, ,~, s, = .5, then
S is unique. O

Theorem 4. n'" term test for divergence
If the series EZOZI an 18 convergent, then limy,_, . a, = 0.

Proof. Let (a,) be a sequence of real numbers.
Let (sy) be the sequence of partial sums of (a,).
Suppose the series Zzozl an is convergent.
Then there exists S € R such that lim,,_,o s, = S.
Hence, (s,) is convergent, so limy, o0 $p—1 = limy, 00 $p = S.
Observe that

0 = S-S5
= lim s, — lim s,_1
n— o0 n— oo

= Jim (s =50

= lim a,.
n—oo

Therefore, lim,, .~ a, = 0, as desired. O



Proposition 5. sum of n terms of a geometric series formula
Letr e R*)r # 1.

Then
n n—‘,—l -1
Z rk = for alln € Z*
-1
k=0
Proof. We prove the statement ZZ:O rb= 1 for all p e ZF by induction
on n. »
Let S={neZ": Y jr"=""%1}.
Basis:

Since 1 € Z+ and Yy r* =10 40l =147 =741 = C=00ED ’;.2711 =
%, then 1 € S.

Induction:

Suppose m € S.

k‘ _ m,+171

Then m € Z* and ) " jr¥ = ———

Since m € Zt, then m +1 € Z+.

Observe that

m—+1 m
Srt = Sk
k=0 k=0
s S
r—1
- ,r,m—i-l -1+ ’I“m+1(7“ _ 1)
N r—1
Terl — 1+ rm+2 _ ,rerl
B r—1
Tm+2
T o1
pm+1)+1
N r—1
Since m + 1 € Z* and ZmH k= %, then m+1¢€ S.
Hence, m € S implies m+1 € S.
Therefore, by PMIL, >, _ r¥ = Tn:jl_l for allm € ZT. O

Proposition 6. sum of a convergent geometric series
Let r € R.
Then o7, ™ is convergent iff |r| < 1.
If|r| <1, then Y07 " = 5.

r

Proof. Let (r™) be a geometric sequence of real numbers.
Let (s,) be the sequence of partial sums of (r™).

We first prove if r £ 1, then s, = = T " for all n € N.




Let n € N be given.
Then s, =r+r2 4+ 4+ ...+ ™
Thus, rs, =72+ 73 +r* + . 4L
Subtracting equations we get s,, — rs, = r — r"1.
Hence, s,(1 —7) =7 —r"+L.
41

Since r # 1, then 1 —r #£ 0, so s, = T’1T_7 , as desired.

Suppose Y ° | r™ is convergent.

Then lim,, ,o "™ = 0.

Since (r™) is a geometric sequence, then this implies that |r| < 1.
Conversely, suppose |r| < 1.

Then —1 <r <1,s0r <1.

Hence, r # 1, so s, = T_lrj:l foralln e Nand 1 —r # 0.
Observe that

r r
= 1-0
1—1r 1-— r( )
r . .
= [lim 1— lim r"]
1—rn-x n—00
_ r : _an
= Tt
—_ 3 _an
= At
r—pntl
= lim
n—oo |1 —1r
= lim s,.
n—oo
Therefore, 7 = limy 00 Sp = Z;L.Ozl r™, as desired. O

Theorem 7. algebraic summation rules for convergent series
If > a, and Y07 b, are convergent series of real numbers, then
1. Scalar Multiple Rule
Yoo i(Aan) =307 ay for every A € R.
2. Sum Rule
D nei(@n +bn) = 3000 an + 3000 b
3. Difference Rule

fo:l(an —b,) = ZZO=1 an — Zf:l bn.

Proof. Let (a,) and (b,) be sequences of real numbers.

Let (r,) be the sequence of partial sums of (a,).

Then r, =Y ,_; aj for all n € N.

Let (sy,) be the sequence of partial sums of (by,).

Then s, = Y p_, by, for all n € N.

Suppose >~ | a, and Y7, b, are convergent series.

Then the sequence of partial sums of (a,,) is convergent and the sequence of
partial sums of (b,,) is convergent.

Thus, there exist real numbers A and B such that lim,, .7, = A and
lim, o s, = B. ]



Proof. We prove 1.
Let A € R be given.
Let (t,,) be the sequence of partial sums of the sequence (Aay,).
Then t, =Y ;_,(Aay) for all n € N.
Observe that

M = Xlim r,

n—roo

= lim Ar,
n—o0

= lim )\Zak
n—oo 1

= lim Z(/\ak)

= lim ¢,.

n— oo

Therefore, AA = lim,,_, o ty, 80 Do (Aay,) = AA, as desired. O

Proof. We prove 2.
Let (t,) be the sequence of partial sums of the sequence (a,, + by).
Then t, =Y ,_;(ay + by) for all n € N.
Observe that
A+B = lim r,+ lim s,

n—oo n—oo

= i+ o)

= lim [Z ar + Z b
nee k=1 k=1

= i ) e+ be)
k=1

= lim t,.
n—oo

Therefore, A+ B = lim,,_, o0 t, 80 > (an + b,) = A+ B, as desired. O

Proof. We prove 3.

Since > b, is convergent, then Y —b, = —> by, so the series > —b, is
convergent.

Since > a,, is convergent, then Y (an—bn) = > [an+(—bn)] =D an+>_, —bn,
so the series > (a, — by,) is convergent, as desired. O

Theorem 8. inequality rule for convergent series
If the series 2211 a, and 22021 b, are convergent and a,, < by, for alln € N,
then 07 1 an < >0 by.



Proof. Suppose the series >~ a, and Y -, b, are convergent and a, < b,
for all n € N.

Let (s,) be the sequence of partial sums of the sequence (a,,).

Since the series > | a, is convergent, then lim, oo S, = > o an.

Let (t,,) be the sequence of partial sums of the sequence (b,,).

Since the series Y.~ | by, is convergent, then lim, o t, =Y oo by.

We prove s,, < t, for all n € N by induction on n.

Let S={neN:s, <t,}.

Since s1 = a; < by = t1, then s1 < t1, SO l1es.

Suppose k € S.

Then k € N and s < tg.

Since k € N, then k+1 € N, s0 ap41 < b41.

Observe that

Sk+1 Sk + ap41
by + apy1
ti + brt1

Thet1-

IN A

Thus, sgyr1 < tg+1,50k+1€S.

Therefore, by PMI, S =N, so s, <t, for all n € N.

Since limy, o0 8 = D peyq @n and limy, ooty = > oo by, and s, < ¢, for
all n € N, then by the inequality rule for convergent sequences, > .~ a, <
> b 0

Proof. Suppose the series > °°  a, and Y > | b, are convergent and a, < b,
for all n € N.

Let (s,) be the sequence of partial sums of the sequence (b, — ay).

Since the series Y.~ a, and Y. -, b, are convergent, then > >~ b, —
Yoo i an =Y 1 (by — ay), so the series Y (b, — ay,) is convergent.

Hence, lim;, o0 85 = D oney (b — @n) = Do 1 by — Dy an.

We prove s, > 0 for all n € N by induction on n.

Let S={neN:s, >0}.

Since a; < by, then s = by —ay > 0.

Thus, 1 € S.

Suppose k € S.

Then k € N and s, > 0.

Since £+ 1 € N, then ag4+1 < bgt1, S0 b1 — agy1 > 0.

Thus, sg+1 = Sk + (bg+1 — ag+1) > 0, 80 sk11 > 0.

Hence, k+1 € S, so by PMI, s,, > 0 for all n € N.

Since imy, o0 Sn = D veq bn — D peq @y and 0 is a lower bound of (sy,), then
0<3 02 bn =2 0 an-

Therefore, > 0" an < > 07 by. O



Theorem 9. tail of a series determines convergence of a series
Let M be any positive integer.
The series Y~ | ay is convergent iff the series Y >~ | anr4n is convergent.

Proof. Suppose the series Y.~ | a,, is convergent.
Then there exists a real number S such that >~ a, = S.
Since M > 1, then either M > 1 or M = 1.
We consider these cases separately.
Case 1: Suppose M = 1.
Since 7, a, = S, then a1 + az +az + ... = S.
Observe that

S 0o
E AM+n = E A1+4n
n=1 n=1

= ag+as+aqg+...
= S — aj.
Since S — ap is a real number, then the series Zzo:l apf+n 1S convergent.
Case 2: Suppose M > 1.

Since -7, an, = S, then (a14as+...+an)+(ap1+an2+anyz+...) = S.
Observe that

oo
Z GM+n = aym+1tap+2 +apy3+ ..
n=1

= S—(a1+as+..+aum).

Since S — (a1 + a2 + ... + apr) is a real number, then the series Y 7 | anryy is
convergent.
Therefore, in all cases, the series Y -~ | arr4r is convergent, as desired.

Conversely, suppose the series Y " | apr4p is convergent.
Then there exists a real number S such that ZZO:1 apfyn = S.
Since M > 1, then either M > 1 or M = 1.
We consider these cases separately.
Case 1: Suppose M = 1.
Then

o0
Zan = a1+ (ae+az+aq+..)
n=1

= a1+ (am41+ aymye + apss + ...)

00

= a1+ ZaM+n
n=1

= a1+ 8.

Since a; + S is a real number, then the series 220:1 a, is convergent.



Case 2: Suppose M > 1.
Then

o0
Zan = (a1 +az+ ...+ an) + (arr41 + anrgo + arrgps + ..

n=1

o0
= (a1 +az2+...+an) —|—ZaM+n

n=1

= (a1 +as+..+apy)+5S.

Since (a1 + as + ... + ap) + S is a real number, then the series > 7 a, is
convergent.
Therefore, in all cases, the series >~ a,, is convergent, as desired. O

Convergence Tests for Series of Real Numbers

Proposition 10. Cauchy convergence criterion for series
The infinite series of real numbers Yy a, is convergent iff for every e > 0
there exists N € N such that if n >m > N, then | Y p_ . ap| <e.

Proof. Let > a, be an infinite series of real numbers.

Let (s,) be the sequence of partial sums of the sequence (ay,).

Suppose that for every € > 0 there exists N € N such that if n > m > N,
then | Y0 o ax| <e.

Let € > 0 be given.

Then there exists N € N such that if n > m > N, then | Y77 . ax| <e

Let m,n € N such that n >m > N.

Then m > N and n > N and [Y",_ . ax| <e.

Observe that

|5m_5n‘ = |5n_5m‘
[(a1 4+ a2+ ... + am + Gmt1 + Gmg2 + oo Fan) — (a1 + a2+ ... + ap)|
= |am+1 + maz + .. + an|

n

>

k=m+1
< €

Hence, (s,) is a Cauchy sequence of real numbers.

Therefore, the sequence (s,,) is convergent, so the series > a,, is convergent,
as desired.

Conversely, suppose the series Y a,, is convergent.

Then the sequence (s,,) of real numbers is convergent, so (s,) is a Cauchy
sequence.

Thus, for every € > 0 there exists N € N such that if m,n > N, then
[$m — sn| <e.

Let € > 0 be given.



Then there exists N € N such that if m,n > N, then |s,, — s,| < e.
Let m,n € N such that n > m > N.

Then m > N and n > N, S0 |8y, — sp| < €.

Observe that

n

| Z apl = |amt1 + @Gme2 + .+ an)
k=m+1

[(a1 +as+ ...+ am + Gmy1 + Gmp2 + ..+ an) — (a1 + a2 + ... + an)|

= |sn — 5w
= [Sm — snl
< €.

O

Theorem 11. Boundedness convergence criterion for series of non-
negative terms

If (ay) is a sequence of nonnegative terms, then the seriesy . a, is convergent
iff the sequence of partial sums of (ay) is bounded.

Proof. Let (a,) be a sequence of nonnegative real numbers.
Then a,, > 0 for all n € N.
Let (s,,) be the sequence of partial sums of (a,,).
Suppose the series Y a,, is convergent.
Then the sequence of partial sums (s, ) is convergent.
Hence, (s;,) is bounded.
Conversely, suppose the sequence of partial sums (s,,) is bounded.
Let n € N be given.
Then n+1 €N, S0 Sp4+1 — S = Gpt1 > 0.
Thus, sp+1 — Sn > 0, S0 Sp4+1 > Sp-
Hence, s, < $p41, 50 (8y,) is increasing,.
Therefore, (s,) is monotonic.
Since (sy,) is monotonic and bounded, then by MCT, (s,,) is convergent.
Therefore, the series > a,, is convergent. O

Theorem 12. direct comparison test
Let (ay) and (by,) be sequences such that 0 < a,, <b,, for alln € N.
If > by, is convergent, then > ay, s convergent.

Proof. Since 0 < a,, < b, for all n € N, then 0 < a, for all n € N and 0 < b,
for all n € N.

Hence, (a,) is a sequence of nonnegative terms and (b,) is a sequence of
nonnegative terms.

Let (sy,) be the sequence of partial sums of (a,).

Let (¢) be the sequence of partial sums of (b,,).

Suppose the series > b,, is convergent.



Since (by,) is a sequence of nonnegative terms and the series . b,, is conver-
gent, then by the boundedness convergence criterion for series of nonnegative
terms, the sequence (¢,) is bounded.

Hence, (t,) is bounded above, so there exists a real number T such that
t, < T for all n € N.

We prove 0 < s, < t,, for all n € N by induction on n.
Let S={neN:0<s, <t,}.
Since 0 < ay < by and s;1 =ay and t; = by, then 0 < s; <ty,s01 € S.
Suppose m € S.
Then m € N and 0 < s, < tp, 50 0 < 5, and s, < typ,.
Since m+1 € N, then 0 < ay,41 < biy1, 80 0 < apppq and aopy1 < bppga-
Since s, > 0 and a,,+1 > 0, then s,,41 = Sy + Amr1 > 0, 80 Spp1 > 0.
Observe that

sm+1 Sm + am+1
tm + Am+1
tm + bm+1

b1

VARVAN

Thus, sm41 < tmta-
Since 0 < s;pp1 and Sppp1 < tip1, then 0 < sp41 <tpg1,s0m+1€ S,
Therefore, by PMI, S =N, s0 0< s, <t, for all n € N.

Since t, < T for allmn € N, then 0 < s, <t, <T for alln € N.
Thus, 0 < s, < T for all n € N, so (s,) is bounded.
Since (ay,) is a sequence of nonnegative terms and (s,) is bounded, then by
the boundedness convergence criterion for series of nonnegative terms, the series
> a, is convergent, as desired. O

Theorem 13. limit comparison test

Let (ay) and (by) be sequences of real numbers such that a, >0 and b, >0
for alln € N.

If there exists a positive real number L such that lim,,_, ‘;—: = L, then the
series Y ay, is convergent iff the series Y by is convergent.

Proof. Suppose there exists a positive real number L such that lim,,_, ‘;—’: = L.
Suppose the series Y b, is convergent.
Since L > 0, then there exists N € N such that if n > N, then [§= — L| < L.
Let n € N such that n > N.
Then b, >0 and |§* — L[ < L.

10



Observe that

|Z—"7L|<L = 7L<Z—"7L<L
n ann
= O<b—<2L

= 0<a,<2Lb,
= 0<a, <2Lb,.

Therefore, 0 < a,, < 2Lb,, for all n € N.

Since Y by, is convergent and > 2Lb,, = 2L > by, then by the scalar multiple
rule, the series > 2Lb,, is convergent.

Therefore, by DCT, the series > a,, is convergent.

Conversely, suppose the series ) a,, is convergent.
Since a,, > 0 and b, > 0 for all n € N, then 3= > 0, so 7= # 0 for all n € N.

Since L > 0 and lim,, Z—: = L and ‘g—: ;é 0 for all'n € N, then by a

previous lemma, lim, oo 2= = 1.
n

Since + > 0, then there exists N € N such that if n > N, then |2 — 1| < 1.

Let n € N such that n > N.
Then a, > 0 and |Z—Z —1l< 1.
Observe that

‘bn 1 1 1<bn 1<1
a, L L L a, L L
by, 2
= 0<—< =
an L

2
= O<bn<zan
= 0<b <2

n S 7 0n.
- L

Therefore, 0 < b,, < %an for all n € N.

Since Y a,, is convergent and %an = % > an, then by the scalar multiple
rule, the series > %an is convergent.

Therefore, by DCT, the series Y by, is convergent. O

Lemma 14. Let (a,) be a sequence in R.
If there exists a real number L such thatlim, .o a2, = L andlim,_, o asp—1 =
L, then lim,,_,,, a, = L.

Proof. Suppose there exists a real number L such that lim, . as, = L and
hmn—)oc A2n—1 = L.

Let € > 0 be given.

Since lim, o a2, = L, then there exists N7 € N such that |as, — L| < €
whenever n > Nj.

11



Since lim,, 00 G2n—1 = L, then there exists Ny € N such that |as,—1 —L| < €

whenever n > Ns.
Let N = max{2N1,2N; — 1}.
Let n > N.
Either n is even or n is odd.
We consider these cases separately.
Case 1: Suppose n is even.
Then there exists a natural number m such that n = 2m, so m = 3.
Since n > N > 2Ny, then n > 2Ny, so § > Njy.
Thus, m > Ny, so |agm — L] = |a, — L| < e.
Case 2: Suppose n is odd.

Then there exists a natural number m such that n =2m — 1, so m = "TH
Sincen>N22N2—1,thenn>2N2—1,so”TH>N2.

Thus, m > Na, so |agm—1 — L| = |a, — L| < €.

Therefore, in either case, |a, — L| < €, so lim,_, a, = L, as desired. O

Theorem 15. alternating series test

Let (ay,) be a sequence of positive terms in R.

If (a,,) is monotonic decreasing and lim,, oo a, = 0, then the series Y (—1)
18 convergent.

Proof. Suppose (a,,) is monotonic decreasing and lim,,_, o a, = 0.

nan

Let (s,) be the sequence of partial sums of the sequence given by (—1)"a,

for all n € N.
Then s, = Y p_,(—1)*ay, for all n € N and s,,41 = s, + (—1)" T a,41 for all
n € N.
Let n € N be given.
Then
S2(n+1) — Son =  S2n+2 — S2n
2n—+2 2n
= D (DFar =D (-1)Fa
k=1 k=1
2n 2n

= > (DFar+ (1) Magpir + (1) Pagnye — Y (=1)*ay,

k=1 k=1

_ (_1)2n+1 (_1)2n+2

a2n+1 + a2n+2

—Q2p4+1 + A2pt2-

Since (a,,) is decreasing , then as,11 > @2p42, S0 0 > —a2p,1+1 + d2pt2.
ThU.S, 0> S2(n+1) — S2n, SO S2n > S52(n+1)-

Therefore, the sequence (sa,,) is decreasing.

We prove —aq + ag, < o, for all n € N by induction on n.

Let S={n e N: —a; + as, < s2,}.

Since —ay + as = S9, then 1 € S.

Suppose k € S.

12



Then k € N and —a;1 + a9 < S9.
Observe that

IN

Sok — G2k+1 + Q2k+2
2k+1
sk + (=) agi1 + agito

—a1 + G2k — G2k+1 + A2k42

Sok+1 + G2k+2
(_ 1)2k+2

Sok+1 + a2k+2

= S52k42-

Hence, —a1+ar—aok4+1+02k42 < Sop42, SO Aok —A2k+1 < Soky2—(—a1+a2k42).

Since (a,,) is decreasing, then agr > asg41, SO agr — agk+1 > 0.

Since 0 < agy—agk+1 < Sop+2—(—a1+azk+2), then 0 < sopqo—(—a1+ask+2),
SO —aj + aspt2 < Sogy2-

Hence, —a1 + ag(r+1) < So(kt1), S0 k+1€ 5.

Therefore, by PMI, S =N, so —a; + a2, < so, for all n € N.

Let n € N be given.

Since (a,) is a sequence of positive terms, then a, > 0 for all n € N.

Since 2n € N, then ag,, > 0, so —a; + a2, > —a;.

Thus, —a1 < —a1 + a2, < S2n, 50 —a1 < S2g.

Therefore, —a; < s, for all n € N.

Since (s25,) is decreasing, then —a; 4+ ag = 3 > sa, for all n € N.

Since —a; < S9, for all n € N and sy, < —aj; + ag for all n € N, then
—ay < 89, < —ayp +as for all m € N.

Therefore, (s2,) is bounded.

Since (s25,) is decreasing, then (s2,) is monotonic.

Therefore, by MCT, (s2,) is convergent, so there exists a real number L such
that lim,, oo Son = L.

Since (a2 ) is a subsequence of (a,) and lim,, _+, a,, = 0, then lim,,_, as, =
0.

Since s2;, = S25—1 + (—1)* a2, = s2,—1 + a2p, then sa, = S95—1 + a2p.

Observe that

L = L-0
= lim s9, — lim asg,
n—oo n—oo

= lim (89, — az,)
n—oo
= lim Soan—1-
n—oo
Therefore, L = lim,, oo S2p_1-
Since there exists a real number L such that lim,, ., $2,, = L and lim,, . Sop,_1 =
L, then by a previous lemma, lim,, ., s, = L.
Therefore, (s,) is convergent, so > (—1)"a,, is convergent. O

Theorem 16. absolute convergence implies convergence
Let (ay,) be a sequence in R.
If the series > |an| is convergent, then the series Y a, is convergent.

13



Proof. Suppose the series > |a,| is convergent.

Let n € N be given.

Then a,, € R, so —|ay| < an, < |an].

Thus, —|a,| < a,, and a,, < |a,|.

Since —|a,| < ap, then 0 < a, + |a,|.

Since ay, < |ay|, then a, + |an| < 2|ay,|.

Hence, 0 < a,, + |an| < 2|an].

Since Y |ay| is convergent and Y 2|a,| = 2> |ay,|, then the series Y 2|ay|
is convergent.

Thus, by DCT, the series > (ay, + |an]|) is convergent.

Therefore, Y a, = > (an+|an|—|an]) = Y- (an+|an|) = |an], so the series
> a, is convergent, as desired. O

Proof. Suppose the series Y |a,| is convergent.
Then Y |ay,| satisfies the Cauchy criterion for series.
Let € > 0 be given.
Then there exists N € N such that if n > m > N, then | Y77 |ax|| <e
Let m,n € N such that n >m > N.
Then | Y27, o1 lax]| <e
Observe that

Z ar] = |ams1 + Gmez + ..o+ ay)
k=m+1

IN

lam+1] + [amia| + . + |an]

n

> Jax|

k=m+1
n
< Y ]
k=m+1
< e

Thus, | Y2 _,,+1 @kl <€ so the series ) a,, satisfies the Cauchy criterion.
Therefore, > a, is convergent, as desired. O

Theorem 17. ratio test
Let (a,) be a sequence of nonzero real numbers.
a. If lim,_, |an+1 | <1, then the series Y . a, is absolutely convergent.

b. If lim,, o |a”Jrl | > 1, then the series Y . a, is divergent.
an+1

c. Iflimg, oo |72 \ =1, then the ratio test is inconclusive.

Proof. Let (a,) be a sequence of nonzero real numbers.
Then a, # 0 for all n € N.
Since |a,| > 0 and a,, # 0 for all n € N, then |a,| > 0 for all n € N.
Let (b,,) be a convergent sequence deﬁned by b, = [*2+] for all n € N.
Since (by,) is convergent, then there exists L € R such that L = lim,,_,o, by, =
i) 0

limy, o0

14



Proof. We prove a.

If limy, o0 [ 25| < 1, then the series Y7 | a, is absolutely convergent.
Suppose L < 1.

Let n € N be given.

Since a, # 0 and @41 # 0, then 25 0.

Since |24 > 0 and #24L £ 0, then b, = |#2+| > 0.

Thus, b, > 0 for all n € N, so 0 is a lower bound of (by).

Since lim,,_, b, = L and 0 is a lower bound of (b,,), then 0 < L.

Hence, 0 < L < 1.

Since L and 1 are real numbers, then by the density of R, there exists € R

such that L < r < 1.

Thus, 0 < L<r<l,so0<r<landL <r.
Since r — L > 0 and lim,, . b, = L, then there exists N € N such that if

n > N, then |b, — L| <r — L.

Let n € N such that n > N.
Then |b, — L| <r — L.
Observe that
b, — Ll <r—L & —(r—L)<b,—L<r-—1L
= b,—L<r—1L

&S by <r
PN |M|<T’
n
= \an+1| <r
|an|

= |aps1| < rlag

Therefore, |a,41] < r|ay| for all natural numbers n > N.

k.

We prove |ax 1| < 7*7!|an1| for all natural numbers k > 2 by induction on

Let S ={k € N:|anix| < ¥ ani1], k> 2}.

Since N +1 € Nand N + 1 > N, then |ay 2| < rlany1] = r* "t ani1|
Thus, |an 2| < r*7tayii1|,s02 € S.

Suppose m € S.

Then m € N and m > 2 and |anm| < 7™ ayi1|.

Since m € N, then m+ 1 € N.

Since m + 1 > m and m > 2, then m +1 > 2.

Since N +m € Nand N +m > N, then |antm+1] < r|antm]|-

Since r > 0 and |anm| < 7™ ant1], then rlayim| < r™layt1].

Hence, |antm+1| < Tlantm| < ™|an+1], 50 |antm+1] < r"lant1] =

rm =t an ).

Thus, m+1€ S.
Therefore, by PMI, |an x| < 78! an1| for all natural numbers k > 2.

15



Since |an,| > 0 for all n € N and N + k € N for all natural numbers k > 2,
then |ay4x| > 0 for all natural numbers k > 2.

Thus, 0 < |an x| < 757 |an1| for all natural numbers k > 2.

Since |r| = r < 1, then the geometric series Y ;o r* is convergent and

Zzil Tk = 117” .

Observe that
o0

S Yaya| = rlanal + rFayal + rlan) + -
k=2

= lans1|(r+r%+r* 4.0

o0
jan1] Y
k=1

lany1|r
1—7

Thus, the series > 7, 7" an1| is convergent.
Hence, by DCT, the series Y-, |an+| is convergent.
Observe that

oo

Z lan+x| = lanye| + lants] + |langa] + ..
k=2

lavs1)+1] +lav)42| + laviny 4] + -

= Z |a(N+1)+n|'

n=1

. o0 .
Thus, the series ", |a(n+1)4n| is convergent. .
Since N +1 is a positive integer and the series ) |~ | |a(n1)4n| is convergent,
. (e} .
then the series >, |ay| is convergent.
Since absolute convergence implies convergence, then the series Zzozl ap is
convergent, as desired. O

Proof. We prove b.
If limy, o0 | “254] > 1, then the series 3,7 a, is divergent.
Suppose L > 1.
Then L —1 > 0.
Since L = lim, o0 |

il [ < L-1
Let n € N such that n > N.
Then |[*25] — L] < L — 1.

a

2t1], then there exists N € N such that if n > NN, then
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Observe that

|\aZH\7L|<L71 & 7(L71)<|a2+1|7L<L71

= 1-L< |
Qa

n

o 1< |inH
an

s 1< ans1]
|an|

= |an| < |CLn+1|.

Therefore, |a,| < |an+1| for all natural numbers n > N.

We prove |ant1| < |ay| for all natural numbers n > N by induction on n.
Let S={neN:|anyt1| <|an|,n > N}.
Since N+1eNand N+ 1> N and |anyt1| = |an41], then N +1 € S.
Suppose k € S.
Then k € Nand k > N and |an41] < |ag]-
Since k € N, then k+1 € N.
Since k+1 >k and k > N, then k+1 > N.
Since k € N and k > N, then |ax| < |agt1]-
Since |ay+1] < |ak| and |ag| < |agt1|, then layyi1| < |akti1], so k+1€ S.
Hence, by PMI, |ay11] < |ay]| for all natural numbers n > N.

Suppose lim,,_,~ a, = 0.
Since N +1 € N, then |an4+1]| > 0.
Hence, there exists K € N such that if n > K, then |a,| < |an41]-
Let M = max{K, N}.
Let n € N such that n > M.
Since n > M > K, then n > K, 80 |a,| < |an41]|-
Since n > M > N, then n > N, so |an+1| < |an|.
Thus, we have |a,| < |ant+1| and |an| > |an41], a violation of trichotomy.
Hence, lim, . a,, # 0.
Therefore, by the n'” term test for divergence, the series Y a,, is divergent.
O
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