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Infinite Series of Real Numbers

Proposition 1. properties of finite sums
Let n ∈ N. Then
1.

∑n
k=1(ak + bk) =

∑n
k=1 ak +

∑n
k=1 bk.

2.
∑n

k=1(λak) = λ
∑n

k=1 ak for every λ ∈ R.

Proof. We prove 1.
Observe that

n∑
k=1

(ak + bk) = (a1 + b1) + (a2 + b2) + ...+ (an + bn)

= (a1 + a2 + ...+ an) + (b1 + b2 + ...+ bn)

=

n∑
k=1

ak +

n∑
k=1

bk.

Proof. We prove 2.
Let λ ∈ R be given.
Then

n∑
k=1

λak = λa1 + λa2 + ...+ λan

= λ(a1 + a2 + ...+ an)

= λ

n∑
k=1

ak.

Proposition 2. nth term of a sequence of partial sums
Let (an) be a sequence of real numbers.
Let (sn) be a sequence defined by s1 = a1 and sn+1 = sn + an+1 for all

n ∈ N.
The nth term of the sequence (sn) is sn = a1 + a2 + ...+ an.



Proof. We prove sn =
∑n

i=1 ai for all n ∈ N by induction on n.
Let S = {n ∈ N : sn =

∑n
i=1 ai}.

Since s1 = a1 =
∑1

i=1 ai, then 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and sk =

∑k
i=1 ai.

Observe that

sk+1 = sk + ak+1

=

k∑
i=1

ai + ak+1

=

k+1∑
i=1

ai.

Thus, sk+1 =
∑k+1

i=1 ai, so k + 1 ∈ S.
Therefore, by PMI, S = N, so sn =

∑n
i=1 ai for all n ∈ N, as desired.

Theorem 3. uniqueness of a sum of a convergent series
The sum of a convergent series of real numbers is unique.

Proof. Let
∑∞

n=1 an be a convergent series of real numbers.
Let (sn) be the sequence of partial sums of the sequence (an).
Since the series

∑∞
n=1 an is convergent, then there exists a real number S

such that limn→∞ sn = S.
Since the limit of a convergent sequence is unique and limn→∞ sn = S, then

S is unique.

Theorem 4. nth term test for divergence
If the series

∑∞
n=1 an is convergent, then limn→∞ an = 0.

Proof. Let (an) be a sequence of real numbers.
Let (sn) be the sequence of partial sums of (an).
Suppose the series

∑∞
n=1 an is convergent.

Then there exists S ∈ R such that limn→∞ sn = S.
Hence, (sn) is convergent, so limn→∞ sn−1 = limn→∞ sn = S.
Observe that

0 = S − S
= lim

n→∞
sn − lim

n→∞
sn−1

= lim
n→∞

(sn − sn−1)

= lim
n→∞

an.

Therefore, limn→∞ an = 0, as desired.
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Proposition 5. sum of n terms of a geometric series formula
Let r ∈ R∗, r 6= 1.
Then

n∑
k=0

rk =
rn+1 − 1

r − 1
for all n ∈ Z+

Proof. We prove the statement
∑n

k=0 r
k = rn+1−1

r−1 for all n ∈ Z+ by induction
on n.

Let S = {n ∈ Z+ :
∑n

k=0 r
k = rn+1−1

r−1 }.
Basis:
Since 1 ∈ Z+ and

∑1
k=0 r

k = r0 + r1 = 1 + r = r+ 1 = (r−1)(r+1)
r−1 = r2−1

r−1 =
r1+1−1
r−1 , then 1 ∈ S.
Induction:
Suppose m ∈ S.

Then m ∈ Z+ and
∑m

k=0 r
k = rm+1−1

r−1 .

Since m ∈ Z+, then m+ 1 ∈ Z+.
Observe that

m+1∑
k=0

rk =

m∑
k=0

rk + rm+1

=
rm+1 − 1

r − 1
+ rm+1

=
rm+1 − 1 + rm+1(r − 1)

r − 1

=
rm+1 − 1 + rm+2 − rm+1

r − 1

=
rm+2

r − 1

=
r(m+1)+1

r − 1
.

Since m+ 1 ∈ Z+ and
∑m+1

k=0 r
k = r(m+1)+1

r−1 , then m+ 1 ∈ S.
Hence, m ∈ S implies m+ 1 ∈ S.

Therefore, by PMI,
∑n

k=0 r
k = rn+1−1

r−1 for all n ∈ Z+.

Proposition 6. sum of a convergent geometric series
Let r ∈ R.
Then

∑∞
n=1 r

n is convergent iff |r| < 1.
If |r| < 1, then

∑∞
n=1 r

n = r
1−r .

Proof. Let (rn) be a geometric sequence of real numbers.
Let (sn) be the sequence of partial sums of (rn).

We first prove if r 6= 1, then sn = r−rn+1

1−r for all n ∈ N.
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Let n ∈ N be given.
Then sn = r + r2 + r3 + ...+ rn.
Thus, rsn = r2 + r3 + r4 + ...+ rn+1.
Subtracting equations we get sn − rsn = r − rn+1.
Hence, sn(1− r) = r − rn+1.

Since r 6= 1, then 1− r 6= 0, so sn = r−rn+1

1−r , as desired.

Suppose
∑∞

n=1 r
n is convergent.

Then limn→∞ rn = 0.
Since (rn) is a geometric sequence, then this implies that |r| < 1.
Conversely, suppose |r| < 1.
Then −1 < r < 1, so r < 1.

Hence, r 6= 1, so sn = r−rn+1

1−r for all n ∈ N and 1− r 6= 0.
Observe that

r

1− r
=

r

1− r
(1− 0)

=
r

1− r
[ lim
n→∞

1− lim
n→∞

rn]

=
r

1− r
lim
n→∞

(1− rn)

= lim
n→∞

r

1− r
(1− rn)

= lim
n→∞

r − rn+1

1− r
= lim

n→∞
sn.

Therefore, r
1−r = limn→∞ sn =

∑∞
n=1 r

n, as desired.

Theorem 7. algebraic summation rules for convergent series
If

∑∞
n=1 an and

∑∞
n=1 bn are convergent series of real numbers, then

1. Scalar Multiple Rule∑∞
n=1(λan) = λ

∑∞
n=1 an for every λ ∈ R.

2. Sum Rule∑∞
n=1(an + bn) =

∑∞
n=1 an +

∑∞
n=1 bn.

3. Difference Rule∑∞
n=1(an − bn) =

∑∞
n=1 an −

∑∞
n=1 bn.

Proof. Let (an) and (bn) be sequences of real numbers.
Let (rn) be the sequence of partial sums of (an).
Then rn =

∑n
k=1 ak for all n ∈ N.

Let (sn) be the sequence of partial sums of (bn).
Then sn =

∑n
k=1 bk for all n ∈ N.

Suppose
∑∞

n=1 an and
∑∞

n=1 bn are convergent series.
Then the sequence of partial sums of (an) is convergent and the sequence of

partial sums of (bn) is convergent.
Thus, there exist real numbers A and B such that limn→∞ rn = A and

limn→∞ sn = B.
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Proof. We prove 1.
Let λ ∈ R be given.
Let (tn) be the sequence of partial sums of the sequence (λan).
Then tn =

∑n
k=1(λak) for all n ∈ N.

Observe that

λA = λ lim
n→∞

rn

= lim
n→∞

λrn

= lim
n→∞

λ

n∑
k=1

ak

= lim
n→∞

n∑
k=1

(λak)

= lim
n→∞

tn.

Therefore, λA = limn→∞ tn, so
∑∞

n=1(λan) = λA, as desired.

Proof. We prove 2.
Let (tn) be the sequence of partial sums of the sequence (an + bn).
Then tn =

∑n
k=1(ak + bk) for all n ∈ N.

Observe that

A+B = lim
n→∞

rn + lim
n→∞

sn

= lim
n→∞

(rn + sn)

= lim
n→∞

[

n∑
k=1

ak +

n∑
k=1

bk]

= lim
n→∞

n∑
k=1

(ak + bk)

= lim
n→∞

tn.

Therefore, A+B = limn→∞ tn, so
∑∞

n=1(an + bn) = A+B, as desired.

Proof. We prove 3.
Since

∑
bn is convergent, then

∑
−bn = −

∑
bn, so the series

∑
−bn is

convergent.
Since

∑
an is convergent, then

∑
(an−bn) =

∑
[an+(−bn)] =

∑
an+

∑
−bn,

so the series
∑

(an − bn) is convergent, as desired.

Theorem 8. inequality rule for convergent series
If the series

∑∞
n=1 an and

∑∞
n=1 bn are convergent and an ≤ bn for all n ∈ N,

then
∑∞

n=1 an ≤
∑∞

n=1 bn.
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Proof. Suppose the series
∑∞

n=1 an and
∑∞

n=1 bn are convergent and an ≤ bn
for all n ∈ N.

Let (sn) be the sequence of partial sums of the sequence (an).
Since the series

∑∞
n=1 an is convergent, then limn→∞ sn =

∑∞
n=1 an.

Let (tn) be the sequence of partial sums of the sequence (bn).
Since the series

∑∞
n=1 bn is convergent, then limn→∞ tn =

∑∞
n=1 bn.

We prove sn ≤ tn for all n ∈ N by induction on n.
Let S = {n ∈ N : sn ≤ tn}.
Since s1 = a1 ≤ b1 = t1, then s1 ≤ t1, so 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and sk ≤ tk.
Since k ∈ N, then k + 1 ∈ N, so ak+1 ≤ bk+1.
Observe that

sk+1 = sk + ak+1

≤ tk + ak+1

≤ tk + bk+1

= tk+1.

Thus, sk+1 ≤ tk+1, so k + 1 ∈ S.
Therefore, by PMI, S = N, so sn ≤ tn for all n ∈ N.
Since limn→∞ sn =

∑∞
n=1 an and limn→∞ tn =

∑∞
n=1 bn and sn ≤ tn for

all n ∈ N, then by the inequality rule for convergent sequences,
∑∞

n=1 an ≤∑∞
n=1 bn.

Proof. Suppose the series
∑∞

n=1 an and
∑∞

n=1 bn are convergent and an ≤ bn
for all n ∈ N.

Let (sn) be the sequence of partial sums of the sequence (bn − an).
Since the series

∑∞
n=1 an and

∑∞
n=1 bn are convergent, then

∑∞
n=1 bn −∑∞

n=1 an =
∑∞

n=1(bn − an), so the series
∑∞

n=1(bn − an) is convergent.
Hence, limn→∞ sn =

∑∞
n=1(bn − an) =

∑∞
n=1 bn −

∑∞
n=1 an.

We prove sn ≥ 0 for all n ∈ N by induction on n.
Let S = {n ∈ N : sn ≥ 0}.
Since a1 ≤ b1, then s1 = b1 − a1 ≥ 0.
Thus, 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and sk ≥ 0.
Since k + 1 ∈ N, then ak+1 ≤ bk+1, so bk+1 − ak+1 ≥ 0.
Thus, sk+1 = sk + (bk+1 − ak+1) ≥ 0, so sk+1 ≥ 0.
Hence, k + 1 ∈ S, so by PMI, sn ≥ 0 for all n ∈ N.
Since limn→∞ sn =

∑∞
n=1 bn−

∑∞
n=1 an and 0 is a lower bound of (sn), then

0 ≤
∑∞

n=1 bn −
∑∞

n=1 an.
Therefore,

∑∞
n=1 an ≤

∑∞
n=1 bn.

6



Theorem 9. tail of a series determines convergence of a series
Let M be any positive integer.
The series

∑∞
n=1 an is convergent iff the series

∑∞
n=1 aM+n is convergent.

Proof. Suppose the series
∑∞

n=1 an is convergent.
Then there exists a real number S such that

∑∞
n=1 an = S.

Since M ≥ 1, then either M > 1 or M = 1.
We consider these cases separately.
Case 1: Suppose M = 1.
Since

∑∞
n=1 an = S, then a1 + a2 + a3 + ... = S.

Observe that

∞∑
n=1

aM+n =

∞∑
n=1

a1+n

= a2 + a3 + a4 + ...

= S − a1.

Since S − a1 is a real number, then the series
∑∞

n=1 aM+n is convergent.
Case 2: Suppose M > 1.
Since

∑∞
n=1 an = S, then (a1+a2+...+aM )+(aM+1+aM+2+aM+3+...) = S.

Observe that

∞∑
n=1

aM+n = aM+1 + aM+2 + aM+3 + ...

= S − (a1 + a2 + ...+ aM ).

Since S − (a1 + a2 + ... + aM ) is a real number, then the series
∑∞

n=1 aM+n is
convergent.

Therefore, in all cases, the series
∑∞

n=1 aM+n is convergent, as desired.

Conversely, suppose the series
∑∞

n=1 aM+n is convergent.
Then there exists a real number S such that

∑∞
n=1 aM+n = S.

Since M ≥ 1, then either M > 1 or M = 1.
We consider these cases separately.
Case 1: Suppose M = 1.
Then

∞∑
n=1

an = a1 + (a2 + a3 + a4 + ...)

= a1 + (aM+1 + aM+2 + aM+3 + ...)

= a1 +

∞∑
n=1

aM+n

= a1 + S.

Since a1 + S is a real number, then the series
∑∞

n=1 an is convergent.
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Case 2: Suppose M > 1.
Then

∞∑
n=1

an = (a1 + a2 + ...+ aM ) + (aM+1 + aM+2 + aM+3 + ...)

= (a1 + a2 + ...+ aM ) +

∞∑
n=1

aM+n

= (a1 + a2 + ...+ aM ) + S.

Since (a1 + a2 + ... + aM ) + S is a real number, then the series
∑∞

n=1 an is
convergent.

Therefore, in all cases, the series
∑∞

n=1 an is convergent, as desired.

Convergence Tests for Series of Real Numbers

Proposition 10. Cauchy convergence criterion for series
The infinite series of real numbers

∑
an is convergent iff for every ε > 0

there exists N ∈ N such that if n > m > N , then |
∑n

k=m+1 ak| < ε.

Proof. Let
∑
an be an infinite series of real numbers.

Let (sn) be the sequence of partial sums of the sequence (an).
Suppose that for every ε > 0 there exists N ∈ N such that if n > m > N ,

then |
∑n

k=m+1 ak| < ε.
Let ε > 0 be given.
Then there exists N ∈ N such that if n > m > N , then |

∑n
k=m+1 ak| < ε.

Let m,n ∈ N such that n > m > N .
Then m > N and n > N and |

∑n
k=m+1 ak| < ε.

Observe that

|sm − sn| = |sn − sm|
= |(a1 + a2 + ...+ am + am+1 + am+2 + ...+ an)− (a1 + a2 + ...+ am)|
= |am+1 + am+2 + ...+ an|

= |
n∑

k=m+1

ak|

< ε.

Hence, (sn) is a Cauchy sequence of real numbers.
Therefore, the sequence (sn) is convergent, so the series

∑
an is convergent,

as desired.
Conversely, suppose the series

∑
an is convergent.

Then the sequence (sn) of real numbers is convergent, so (sn) is a Cauchy
sequence.

Thus, for every ε > 0 there exists N ∈ N such that if m,n > N , then
|sm − sn| < ε.

Let ε > 0 be given.
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Then there exists N ∈ N such that if m,n > N , then |sm − sn| < ε.
Let m,n ∈ N such that n > m > N .
Then m > N and n > N , so |sm − sn| < ε.
Observe that

|
n∑

k=m+1

ak| = |am+1 + am+2 + ...+ an|

= |(a1 + a2 + ...+ am + am+1 + am+2 + ...+ an)− (a1 + a2 + ...+ am)|
= |sn − sm|
= |sm − sn|
< ε.

Theorem 11. Boundedness convergence criterion for series of non-
negative terms

If (an) is a sequence of nonnegative terms, then the series
∑
an is convergent

iff the sequence of partial sums of (an) is bounded.

Proof. Let (an) be a sequence of nonnegative real numbers.
Then an ≥ 0 for all n ∈ N.
Let (sn) be the sequence of partial sums of (an).
Suppose the series

∑
an is convergent.

Then the sequence of partial sums (sn) is convergent.
Hence, (sn) is bounded.
Conversely, suppose the sequence of partial sums (sn) is bounded.
Let n ∈ N be given.
Then n+ 1 ∈ N, so sn+1 − sn = an+1 ≥ 0.
Thus, sn+1 − sn ≥ 0, so sn+1 ≥ sn.
Hence, sn ≤ sn+1, so (sn) is increasing.
Therefore, (sn) is monotonic.
Since (sn) is monotonic and bounded, then by MCT, (sn) is convergent.
Therefore, the series

∑
an is convergent.

Theorem 12. direct comparison test
Let (an) and (bn) be sequences such that 0 ≤ an ≤ bn for all n ∈ N.
If

∑
bn is convergent, then

∑
an is convergent.

Proof. Since 0 ≤ an ≤ bn for all n ∈ N, then 0 ≤ an for all n ∈ N and 0 ≤ bn
for all n ∈ N.

Hence, (an) is a sequence of nonnegative terms and (bn) is a sequence of
nonnegative terms.

Let (sn) be the sequence of partial sums of (an).
Let (tn) be the sequence of partial sums of (bn).
Suppose the series

∑
bn is convergent.
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Since (bn) is a sequence of nonnegative terms and the series
∑
bn is conver-

gent, then by the boundedness convergence criterion for series of nonnegative
terms, the sequence (tn) is bounded.

Hence, (tn) is bounded above, so there exists a real number T such that
tn ≤ T for all n ∈ N.

We prove 0 ≤ sn ≤ tn for all n ∈ N by induction on n.
Let S = {n ∈ N : 0 ≤ sn ≤ tn}.
Since 0 ≤ a1 ≤ b1 and s1 = a1 and t1 = b1, then 0 ≤ s1 ≤ t1, so 1 ∈ S.
Suppose m ∈ S.
Then m ∈ N and 0 ≤ sm ≤ tm, so 0 ≤ sm and sm ≤ tm.
Since m+ 1 ∈ N, then 0 ≤ am+1 ≤ bm+1, so 0 ≤ am+1 and am+1 ≤ bm+1.
Since sm ≥ 0 and am+1 ≥ 0, then sm+1 = sm + am+1 ≥ 0, so sm+1 ≥ 0.
Observe that

sm+1 = sm + am+1

≤ tm + am+1

≤ tm + bm+1

= tm+1.

Thus, sm+1 ≤ tm+1.
Since 0 ≤ sm+1 and sm+1 ≤ tm+1, then 0 ≤ sm+1 ≤ tm+1, so m+ 1 ∈ S.
Therefore, by PMI, S = N, so 0 ≤ sn ≤ tn for all n ∈ N.

Since tn ≤ T for all n ∈ N, then 0 ≤ sn ≤ tn ≤ T for all n ∈ N.
Thus, 0 ≤ sn ≤ T for all n ∈ N, so (sn) is bounded.
Since (an) is a sequence of nonnegative terms and (sn) is bounded, then by

the boundedness convergence criterion for series of nonnegative terms, the series∑
an is convergent, as desired.

Theorem 13. limit comparison test
Let (an) and (bn) be sequences of real numbers such that an > 0 and bn > 0

for all n ∈ N.
If there exists a positive real number L such that limn→∞

an

bn
= L, then the

series
∑
an is convergent iff the series

∑
bn is convergent.

Proof. Suppose there exists a positive real number L such that limn→∞
an

bn
= L.

Suppose the series
∑
bn is convergent.

Since L > 0, then there exists N ∈ N such that if n > N , then |an

bn
−L| < L.

Let n ∈ N such that n > N .
Then bn > 0 and |an

bn
− L| < L.
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Observe that

|an
bn
− L| < L ⇒ −L < an

bn
− L < L

⇒ 0 <
an
bn

< 2L

⇒ 0 < an < 2Lbn

⇒ 0 ≤ an ≤ 2Lbn.

Therefore, 0 ≤ an ≤ 2Lbn for all n ∈ N.
Since

∑
bn is convergent and

∑
2Lbn = 2L

∑
bn, then by the scalar multiple

rule, the series
∑

2Lbn is convergent.
Therefore, by DCT, the series

∑
an is convergent.

Conversely, suppose the series
∑
an is convergent.

Since an > 0 and bn > 0 for all n ∈ N, then an

bn
> 0, so an

bn
6= 0 for all n ∈ N.

Since L > 0 and limn→∞
an

bn
= L and an

bn
6= 0 for all n ∈ N, then by a

previous lemma, limn→∞
bn
an

= 1
L .

Since 1
L > 0, then there exists N ∈ N such that if n > N , then | bnan

− 1
L | <

1
L .

Let n ∈ N such that n > N .
Then an > 0 and | bnan

− 1
L | <

1
L .

Observe that

| bn
an
− 1

L
| < 1

L
⇒ − 1

L
<
bn
an
− 1

L
<

1

L

⇒ 0 <
bn
an

<
2

L

⇒ 0 < bn <
2

L
an

⇒ 0 ≤ bn ≤
2

L
an.

Therefore, 0 ≤ bn ≤ 2
Lan for all n ∈ N.

Since
∑
an is convergent and

∑
2
Lan = 2

L

∑
an, then by the scalar multiple

rule, the series
∑

2
Lan is convergent.

Therefore, by DCT, the series
∑
bn is convergent.

Lemma 14. Let (an) be a sequence in R.
If there exists a real number L such that limn→∞ a2n = L and limn→∞ a2n−1 =

L, then limn→∞ an = L.

Proof. Suppose there exists a real number L such that limn→∞ a2n = L and
limn→∞ a2n−1 = L.

Let ε > 0 be given.
Since limn→∞ a2n = L, then there exists N1 ∈ N such that |a2n − L| < ε

whenever n > N1.
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Since limn→∞ a2n−1 = L, then there exists N2 ∈ N such that |a2n−1−L| < ε
whenever n > N2.

Let N = max{2N1, 2N2 − 1}.
Let n > N .
Either n is even or n is odd.
We consider these cases separately.
Case 1: Suppose n is even.
Then there exists a natural number m such that n = 2m, so m = n

2 .
Since n > N ≥ 2N1, then n > 2N1, so n

2 > N1.
Thus, m > N1, so |a2m − L| = |an − L| < ε.
Case 2: Suppose n is odd.
Then there exists a natural number m such that n = 2m− 1, so m = n+1

2 .
Since n > N ≥ 2N2 − 1, then n > 2N2 − 1, so n+1

2 > N2.
Thus, m > N2, so |a2m−1 − L| = |an − L| < ε.
Therefore, in either case, |an − L| < ε, so limn→∞ an = L, as desired.

Theorem 15. alternating series test
Let (an) be a sequence of positive terms in R.
If (an) is monotonic decreasing and limn→∞ an = 0, then the series

∑
(−1)nan

is convergent.

Proof. Suppose (an) is monotonic decreasing and limn→∞ an = 0.
Let (sn) be the sequence of partial sums of the sequence given by (−1)nan

for all n ∈ N.
Then sn =

∑n
k=1(−1)kak for all n ∈ N and sn+1 = sn + (−1)n+1an+1 for all

n ∈ N.
Let n ∈ N be given.
Then

s2(n+1) − s2n = s2n+2 − s2n

=

2n+2∑
k=1

(−1)kak −
2n∑
k=1

(−1)kak

=

2n∑
k=1

(−1)kak + (−1)2n+1a2n+1 + (−1)2n+2a2n+2 −
2n∑
k=1

(−1)kak

= (−1)2n+1a2n+1 + (−1)2n+2a2n+2

= −a2n+1 + a2n+2.

Since (an) is decreasing , then a2n+1 ≥ a2n+2, so 0 ≥ −a2n+1 + a2n+2.
Thus, 0 ≥ s2(n+1) − s2n, so s2n ≥ s2(n+1).
Therefore, the sequence (s2n) is decreasing.
We prove −a1 + a2n ≤ s2n for all n ∈ N by induction on n.
Let S = {n ∈ N : −a1 + a2n ≤ s2n}.
Since −a1 + a2 = s2, then 1 ∈ S.
Suppose k ∈ S.
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Then k ∈ N and −a1 + a2k ≤ s2k.
Observe that

−a1 + a2k − a2k+1 + a2k+2 ≤ s2k − a2k+1 + a2k+2

= s2k + (−1)2k+1a2k+1 + a2k+2

= s2k+1 + a2k+2

= s2k+1 + (−1)2k+2a2k+2

= s2k+2.

Hence, −a1+a2k−a2k+1+a2k+2 ≤ s2k+2, so a2k−a2k+1 ≤ s2k+2−(−a1+a2k+2).
Since (an) is decreasing, then a2k ≥ a2k+1, so a2k − a2k+1 ≥ 0.
Since 0 ≤ a2k−a2k+1 ≤ s2k+2−(−a1+a2k+2), then 0 ≤ s2k+2−(−a1+a2k+2),

so −a1 + a2k+2 ≤ s2k+2.
Hence, −a1 + a2(k+1) ≤ s2(k+1), so k + 1 ∈ S.
Therefore, by PMI, S = N, so −a1 + a2n ≤ s2n for all n ∈ N.
Let n ∈ N be given.
Since (an) is a sequence of positive terms, then an > 0 for all n ∈ N.
Since 2n ∈ N, then a2n > 0, so −a1 + a2n > −a1.
Thus, −a1 < −a1 + a2n ≤ s2n, so −a1 < s2n.
Therefore, −a1 < s2n for all n ∈ N.
Since (s2n) is decreasing, then −a1 + a2 = s2 ≥ s2n for all n ∈ N.
Since −a1 < s2n for all n ∈ N and s2n ≤ −a1 + a2 for all n ∈ N, then

−a1 < s2n ≤ −a1 + a2 for all n ∈ N.
Therefore, (s2n) is bounded.
Since (s2n) is decreasing, then (s2n) is monotonic.
Therefore, by MCT, (s2n) is convergent, so there exists a real number L such

that limn→∞ s2n = L.
Since (a2n) is a subsequence of (an) and limn→∞ an = 0, then limn→∞ a2n =

0.
Since s2n = s2n−1 + (−1)2na2n = s2n−1 + a2n, then s2n = s2n−1 + a2n.
Observe that

L = L− 0

= lim
n→∞

s2n − lim
n→∞

a2n

= lim
n→∞

(s2n − a2n)

= lim
n→∞

s2n−1.

Therefore, L = limn→∞ s2n−1.
Since there exists a real number L such that limn→∞ s2n = L and limn→∞ s2n−1 =

L, then by a previous lemma, limn→∞ sn = L.
Therefore, (sn) is convergent, so

∑
(−1)nan is convergent.

Theorem 16. absolute convergence implies convergence
Let (an) be a sequence in R.
If the series

∑
|an| is convergent, then the series

∑
an is convergent.
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Proof. Suppose the series
∑
|an| is convergent.

Let n ∈ N be given.
Then an ∈ R, so −|an| ≤ an ≤ |an|.
Thus, −|an| ≤ an and an ≤ |an|.
Since −|an| ≤ an, then 0 ≤ an + |an|.
Since an ≤ |an|, then an + |an| ≤ 2|an|.
Hence, 0 ≤ an + |an| ≤ 2|an|.
Since

∑
|an| is convergent and

∑
2|an| = 2

∑
|an|, then the series

∑
2|an|

is convergent.
Thus, by DCT, the series

∑
(an + |an|) is convergent.

Therefore,
∑
an =

∑
(an + |an|−|an|) =

∑
(an + |an|)−

∑
|an|, so the series∑

an is convergent, as desired.

Proof. Suppose the series
∑
|an| is convergent.

Then
∑
|an| satisfies the Cauchy criterion for series.

Let ε > 0 be given.
Then there exists N ∈ N such that if n > m > N , then |

∑n
k=m+1 |ak|| < ε.

Let m,n ∈ N such that n > m > N .
Then |

∑n
k=m+1 |ak|| < ε.

Observe that

|
n∑

k=m+1

ak| = |am+1 + am+2 + ...+ an|

≤ |am+1|+ |am+2|+ ...+ |an|

=

n∑
k=m+1

|ak|

≤ |
n∑

k=m+1

|ak||

< ε.

Thus, |
∑n

k=m+1 ak| < ε, so the series
∑
an satisfies the Cauchy criterion.

Therefore,
∑
an is convergent, as desired.

Theorem 17. ratio test
Let (an) be a sequence of nonzero real numbers.
a. If limn→∞ |an+1

an
| < 1, then the series

∑∞
n=1 an is absolutely convergent.

b. If limn→∞ |an+1

an
| > 1, then the series

∑∞
n=1 an is divergent.

c. If limn→∞ |an+1

an
| = 1, then the ratio test is inconclusive.

Proof. Let (an) be a sequence of nonzero real numbers.
Then an 6= 0 for all n ∈ N.
Since |an| ≥ 0 and an 6= 0 for all n ∈ N, then |an| > 0 for all n ∈ N.
Let (bn) be a convergent sequence defined by bn = |an+1

an
| for all n ∈ N.

Since (bn) is convergent, then there exists L ∈ R such that L = limn→∞ bn =
limn→∞ |an+1

an
|.
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Proof. We prove a.
If limn→∞ |an+1

an
| < 1, then the series

∑∞
n=1 an is absolutely convergent.

Suppose L < 1.
Let n ∈ N be given.
Since an 6= 0 and an+1 6= 0, then an+1

an
6= 0.

Since |an+1

an
| ≥ 0 and an+1

an
6= 0, then bn = |an+1

an
| > 0.

Thus, bn > 0 for all n ∈ N, so 0 is a lower bound of (bn).
Since limn→∞ bn = L and 0 is a lower bound of (bn), then 0 ≤ L.
Hence, 0 ≤ L < 1.
Since L and 1 are real numbers, then by the density of R, there exists r ∈ R

such that L < r < 1.
Thus, 0 ≤ L < r < 1, so 0 < r < 1 and L < r.
Since r − L > 0 and limn→∞ bn = L, then there exists N ∈ N such that if

n > N , then |bn − L| < r − L.
Let n ∈ N such that n > N .
Then |bn − L| < r − L.
Observe that

|bn − L| < r − L ⇔ −(r − L) < bn − L < r − L
⇒ bn − L < r − L
⇔ bn < r

⇔ |an+1

an
| < r

⇔ |an+1|
|an|

< r

⇒ |an+1| < r|an|.

Therefore, |an+1| < r|an| for all natural numbers n > N .

We prove |aN+k| < rk−1|aN+1| for all natural numbers k ≥ 2 by induction on
k.

Let S = {k ∈ N : |aN+k| < rk−1|aN+1|, k ≥ 2}.
Since N + 1 ∈ N and N + 1 > N , then |aN+2| < r|aN+1| = r2−1|aN+1|.
Thus, |aN+2| < r2−1|aN+1|, so 2 ∈ S.
Suppose m ∈ S.
Then m ∈ N and m ≥ 2 and |aN+m| < rm−1|aN+1|.
Since m ∈ N, then m+ 1 ∈ N.
Since m+ 1 > m and m ≥ 2, then m+ 1 > 2.
Since N +m ∈ N and N +m > N , then |aN+m+1| < r|aN+m|.
Since r > 0 and |aN+m| < rm−1|aN+1|, then r|aN+m| < rm|aN+1|.
Hence, |aN+m+1| < r|aN+m| < rm|aN+1|, so |aN+m+1| < rm|aN+1| =

rm+1−1|aN+1|.
Thus, m+ 1 ∈ S.
Therefore, by PMI, |aN+k| < rk−1|aN+1| for all natural numbers k ≥ 2.
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Since |an| > 0 for all n ∈ N and N + k ∈ N for all natural numbers k ≥ 2,
then |aN+k| > 0 for all natural numbers k ≥ 2.

Thus, 0 < |aN+k| < rk−1|aN+1| for all natural numbers k ≥ 2.
Since |r| = r < 1, then the geometric series

∑∞
k=1 r

k is convergent and∑∞
k=1 r

k = r
1−r .

Observe that

∞∑
k=2

rk−1|aN+1| = r|aN+1|+ r2|aN+1|+ r3|aN+1|+ ...

= |aN+1|(r + r2 + r3 + ...)

= |aN+1|
∞∑
k=1

rk

=
|aN+1|r

1− r
.

Thus, the series
∑∞

k=2 r
k−1|aN+1| is convergent.

Hence, by DCT, the series
∑∞

k=2 |aN+k| is convergent.
Observe that

∞∑
k=2

|aN+k| = |aN+2|+ |aN+3|+ |aN+4|+ ...

= |a(N+1)+1|+ |a(N+1)+2|+ |a(N+1)+3|+ ...

=

∞∑
n=1

|a(N+1)+n|.

Thus, the series
∑∞

n=1 |a(N+1)+n| is convergent.
Since N+1 is a positive integer and the series

∑∞
n=1 |a(N+1)+n| is convergent,

then the series
∑∞

n=1 |an| is convergent.
Since absolute convergence implies convergence, then the series

∑∞
n=1 an is

convergent, as desired.

Proof. We prove b.
If limn→∞ |an+1

an
| > 1, then the series

∑∞
n=1 an is divergent.

Suppose L > 1.
Then L− 1 > 0.
Since L = limn→∞ |an+1

an
|, then there exists N ∈ N such that if n > N , then

||an+1

an
| − L| < L− 1.

Let n ∈ N such that n > N .
Then ||an+1

an
| − L| < L− 1.

16



Observe that

||an+1

an
| − L| < L− 1 ⇔ −(L− 1) < |an+1

an
| − L < L− 1

⇒ 1− L < |an+1

an
| − L

⇔ 1 < |an+1

an
|

⇔ 1 <
|an+1|
|an|

⇒ |an| < |an+1|.

Therefore, |an| < |an+1| for all natural numbers n > N .

We prove |aN+1| ≤ |an| for all natural numbers n > N by induction on n.
Let S = {n ∈ N : |aN+1| ≤ |an|, n > N}.
Since N + 1 ∈ N and N + 1 > N and |aN+1| = |aN+1|, then N + 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and k > N and |aN+1| ≤ |ak|.
Since k ∈ N, then k + 1 ∈ N.
Since k + 1 > k and k > N , then k + 1 > N .
Since k ∈ N and k > N , then |ak| < |ak+1|.
Since |aN+1| ≤ |ak| and |ak| < |ak+1|, then |aN+1| < |ak+1|, so k + 1 ∈ S.
Hence, by PMI, |aN+1| ≤ |an| for all natural numbers n > N .

Suppose limn→∞ an = 0.
Since N + 1 ∈ N, then |aN+1| > 0.
Hence, there exists K ∈ N such that if n > K, then |an| < |aN+1|.
Let M = max{K,N}.
Let n ∈ N such that n > M .
Since n > M ≥ K, then n > K, so |an| < |aN+1|.
Since n > M ≥ N , then n > N , so |aN+1| ≤ |an|.
Thus, we have |an| < |aN+1| and |an| ≥ |aN+1|, a violation of trichotomy.
Hence, limn→∞ an 6= 0.
Therefore, by the nth term test for divergence, the series

∑
an is divergent.
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