Theory of convergent series in $\mathbb R$

Jason Sass

June 29, 2021

Infinite Series of Real Numbers

Proposition 1. properties of finite sums

Let $n \in \mathbb{N}$. Then 1. $\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$. 2. $\sum_{k=1}^{n} (\lambda a_k) = \lambda \sum_{k=1}^{n} a_k$ for every $\lambda \in \mathbb{R}$.

Proof. We prove 1. Observe that

$$\sum_{k=1}^{n} (a_k + b_k) = (a_1 + b_1) + (a_2 + b_2) + \dots + (a_n + b_n)$$

= $(a_1 + a_2 + \dots + a_n) + (b_1 + b_2 + \dots + b_n)$
= $\sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k.$

Proof. We prove 2.

Let $\lambda \in \mathbb{R}$ be given. Then

$$\sum_{k=1}^{n} \lambda a_k = \lambda a_1 + \lambda a_2 + \dots + \lambda a_n$$
$$= \lambda (a_1 + a_2 + \dots + a_n)$$
$$= \lambda \sum_{k=1}^{n} a_k.$$

Proposition 2. n^{th} term of a sequence of partial sums

Let (a_n) be a sequence of real numbers.

Let (s_n) be a sequence defined by $s_1 = a_1$ and $s_{n+1} = s_n + a_{n+1}$ for all $n \in \mathbb{N}$.

The n^{th} term of the sequence (s_n) is $s_n = a_1 + a_2 + \ldots + a_n$.

Proof. We prove $s_n = \sum_{i=1}^n a_i$ for all $n \in \mathbb{N}$ by induction on n. Let $S = \{n \in \mathbb{N} : s_n = \sum_{i=1}^n a_i\}$. Since $s_1 = a_1 = \sum_{i=1}^1 a_i$, then $1 \in S$. Suppose $k \in S$. Then $k \in \mathbb{N}$ and $s_k = \sum_{i=1}^k a_i$. Observe that

$$s_{k+1} = s_k + a_{k+1}$$

= $\sum_{i=1}^k a_i + a_{k+1}$
= $\sum_{i=1}^{k+1} a_i.$

Thus, $s_{k+1} = \sum_{i=1}^{k+1} a_i$, so $k+1 \in S$. Therefore, by PMI, $S = \mathbb{N}$, so $s_n = \sum_{i=1}^n a_i$ for all $n \in \mathbb{N}$, as desired.

Theorem 3. uniqueness of a sum of a convergent series

The sum of a convergent series of real numbers is unique.

Proof. Let $\sum_{n=1}^{\infty} a_n$ be a convergent series of real numbers. Let (s_n) be the sequence of partial sums of the sequence (a_n) . Since the series $\sum_{n=1}^{\infty} a_n$ is convergent, then there exists a real number S such that $\lim_{n\to\infty} s_n = S$.

Since the limit of a convergent sequence is unique and $\lim_{n\to\infty} s_n = S$, then S is unique.

Theorem 4. n^{th} term test for divergence If the series $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n\to\infty} a_n = 0$.

Proof. Let (a_n) be a sequence of real numbers. Let (s_n) be the sequence of partial sums of (a_n) . Suppose the series $\sum_{n=1}^{\infty} a_n$ is convergent. Then there exists $S \in \mathbb{R}$ such that $\lim_{n \to \infty} s_n = S$. Hence, (s_n) is convergent, so $\lim_{n\to\infty} s_{n-1} = \lim_{n\to\infty} s_n = S$. Observe that

$$0 = S - S$$

= $\lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1}$
= $\lim_{n \to \infty} (s_n - s_{n-1})$
= $\lim_{n \to \infty} a_n$.

Therefore, $\lim_{n\to\infty} a_n = 0$, as desired.

Proposition 5. sum of n terms of a geometric series formula

Let $r \in \mathbb{R}^*, r \neq 1$. Then

$$\sum_{k=0}^{n} r^{k} = \frac{r^{n+1} - 1}{r - 1} \text{ for all } n \in \mathbb{Z}^{+}$$

Proof. We prove the statement $\sum_{k=0}^{n} r^k = \frac{r^{n+1}-1}{r-1}$ for all $n \in \mathbb{Z}^+$ by induction on n. Let $S = \{n \in \mathbb{Z}^+ : \sum_{k=0}^{n} r^k = \frac{r^{n+1}-1}{r-1}\}$. Basis: Since $1 \in \mathbb{Z}^+$ and $\sum_{k=0}^{1} r^k = r^0 + r^1 = 1 + r = r + 1 = \frac{(r-1)(r+1)}{r-1} = \frac{r^2-1}{r-1} = \frac{r^{1+1}-1}{r-1}$, then $1 \in S$. Induction: Suppose $m \in S$. Then $m \in \mathbb{Z}^+$ and $\sum_{k=0}^{m} r^k = \frac{r^{m+1}-1}{r-1}$. Since $m \in \mathbb{Z}^+$, then $m + 1 \in \mathbb{Z}^+$. Observe that

$$\sum_{k=0}^{m+1} r^k = \sum_{k=0}^m r^k + r^{m+1}$$

$$= \frac{r^{m+1} - 1}{r - 1} + r^{m+1}$$

$$= \frac{r^{m+1} - 1 + r^{m+1}(r - 1)}{r - 1}$$

$$= \frac{r^{m+1} - 1 + r^{m+2} - r^{m+1}}{r - 1}$$

$$= \frac{r^{m+2}}{r - 1}$$

$$= \frac{r^{(m+1)+1}}{r - 1}.$$

Since $m + 1 \in \mathbb{Z}^+$ and $\sum_{k=0}^{m+1} r^k = \frac{r^{(m+1)+1}}{r-1}$, then $m + 1 \in S$. Hence, $m \in S$ implies $m + 1 \in S$. Therefore, by PMI, $\sum_{k=0}^n r^k = \frac{r^{n+1}-1}{r-1}$ for all $n \in \mathbb{Z}^+$.

Proposition 6. sum of a convergent geometric series Let $r \in \mathbb{R}$.

Then
$$\sum_{n=1}^{\infty} r^n$$
 is convergent iff $|r| < 1$.
If $|r| < 1$, then $\sum_{n=1}^{\infty} r^n = \frac{r}{1-r}$.

Proof. Let (r^n) be a geometric sequence of real numbers. Let (s_n) be the sequence of partial sums of (r^n) . We first prove if $r \neq 1$, then $s_n = \frac{r-r^{n+1}}{1-r}$ for all $n \in \mathbb{N}$. Let $n \in \mathbb{N}$ be given. Then $s_n = r + r^2 + r^3 + ... + r^n$. Thus, $rs_n = r^2 + r^3 + r^4 + \dots + r^{n+1}$. Subtracting equations we get $s_n - rs_n = r - r^{n+1}$. Hence, $s_n(1-r) = r - r^{n+1}$. Since $r \neq 1$, then $1 - r \neq 0$, so $s_n = \frac{r - r^{n+1}}{1 - r}$, as desired. Suppose $\sum_{n=1}^{\infty} r^n$ is convergent. Then $\lim_{n\to\infty} r^n = 0.$ Since (r^n) is a geometric sequence, then this implies that |r| < 1. Conversely, suppose |r| < 1. Then -1 < r < 1, so r < 1. Hence, $r \neq 1$, so $s_n = \frac{r-r^{n+1}}{1-r}$ for all $n \in \mathbb{N}$ and $1 - r \neq 0$. Observe that

$$\frac{r}{r-r} = \frac{r}{1-r}(1-0)$$

$$= \frac{r}{1-r}[\lim_{n\to\infty} 1 - \lim_{n\to\infty} r^n]$$

$$= \frac{r}{1-r}\lim_{n\to\infty} (1-r^n)$$

$$= \lim_{n\to\infty} \frac{r}{1-r}(1-r^n)$$

$$= \lim_{n\to\infty} \frac{r-r^{n+1}}{1-r}$$

$$= \lim_{n\to\infty} s_n.$$

Therefore, $\frac{r}{1-r} = \lim_{n \to \infty} s_n = \sum_{n=1}^{\infty} r^n$, as desired.

 $\overline{1}$

Theorem 7. algebraic summation rules for convergent series

If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent series of real numbers, then 1. Scalar Multiple Rule $\sum_{n=1}^{\infty} (\lambda a_n) = \lambda \sum_{n=1}^{\infty} a_n \text{ for every } \lambda \in \mathbb{R}.$ 2. Sum Rule $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n.$ 3. Difference Rule $\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n.$

Proof. Let (a_n) and (b_n) be sequences of real numbers.

Let (r_n) be the sequence of partial sums of (a_n) . Then $r_n = \sum_{k=1}^n a_k$ for all $n \in \mathbb{N}$.

Let (s_n) be the sequence of partial sums of (b_n) .

Then $s_n = \sum_{k=1}^n b_k$ for all $n \in \mathbb{N}$. Suppose $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent series.

Then the sequence of partial sums of (a_n) is convergent and the sequence of partial sums of (b_n) is convergent.

Thus, there exist real numbers A and B such that $\lim_{n\to\infty} r_n = A$ and $\lim_{n \to \infty} s_n = B.$

Proof. We prove 1. Let $\lambda \in \mathbb{R}$ be given. Let (t_n) be the sequence of partial sums of the sequence (λa_n) . Then $t_n = \sum_{k=1}^n (\lambda a_k)$ for all $n \in \mathbb{N}$. Observe that

$$\lambda A = \lambda \lim_{n \to \infty} r_n$$

=
$$\lim_{n \to \infty} \lambda r_n$$

=
$$\lim_{n \to \infty} \lambda \sum_{k=1}^n a_k$$

=
$$\lim_{n \to \infty} \sum_{k=1}^n (\lambda a_k)$$

=
$$\lim_{n \to \infty} t_n.$$

Therefore, $\lambda A = \lim_{n \to \infty} t_n$, so $\sum_{n=1}^{\infty} (\lambda a_n) = \lambda A$, as desired.

Proof. We prove 2.

Let (t_n) be the sequence of partial sums of the sequence $(a_n + b_n)$. Then $t_n = \sum_{k=1}^n (a_k + b_k)$ for all $n \in \mathbb{N}$. Observe that

$$A + B = \lim_{n \to \infty} r_n + \lim_{n \to \infty} s_n$$

=
$$\lim_{n \to \infty} (r_n + s_n)$$

=
$$\lim_{n \to \infty} [\sum_{k=1}^n a_k + \sum_{k=1}^n b_k]$$

=
$$\lim_{n \to \infty} \sum_{k=1}^n (a_k + b_k)$$

=
$$\lim_{n \to \infty} t_n.$$

Therefore, $A + B = \lim_{n \to \infty} t_n$, so $\sum_{n=1}^{\infty} (a_n + b_n) = A + B$, as desired. \Box

Proof. We prove 3.

Since $\sum_{n=1}^{\infty} b_n$ is convergent, then $\sum_{n=1}^{\infty} -b_n = -\sum_{n=1}^{\infty} b_n$, so the series $\sum_{n=1}^{\infty} -b_n$ is convergent.

Since $\sum a_n$ is convergent, then $\sum (a_n - b_n) = \sum [a_n + (-b_n)] = \sum a_n + \sum -b_n$, so the series $\sum (a_n - b_n)$ is convergent, as desired.

Theorem 8. inequality rule for convergent series If the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent and $a_n \leq b_n$ for all $n \in \mathbb{N}$, then $\sum_{n=1}^{\infty} a_n \leq \sum_{n=1}^{\infty} b_n$.

Proof. Suppose the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent and $a_n \leq b_n$ for all $n \in \mathbb{N}$.

Let (s_n) be the sequence of partial sums of the sequence (a_n) . Since the series $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n\to\infty} s_n = \sum_{n=1}^{\infty} a_n$. Let (t_n) be the sequence of partial sums of the sequence (b_n) . Since the series $\sum_{n=1}^{\infty} b_n$ is convergent, then $\lim_{n\to\infty} t_n = \sum_{n=1}^{\infty} b_n$.

We prove $s_n \leq t_n$ for all $n \in \mathbb{N}$ by induction on n. Let $S = \{n \in \mathbb{N} : s_n \leq t_n\}.$ Since $s_1 = a_1 \le b_1 = t_1$, then $s_1 \le t_1$, so $1 \in S$. Suppose $k \in S$. Then $k \in \mathbb{N}$ and $s_k \leq t_k$. Since $k \in \mathbb{N}$, then $k + 1 \in \mathbb{N}$, so $a_{k+1} \leq b_{k+1}$. Observe that

$$s_{k+1} = s_k + a_{k+1}$$

$$\leq t_k + a_{k+1}$$

$$\leq t_k + b_{k+1}$$

$$= t_{k+1}.$$

Thus, $s_{k+1} \leq t_{k+1}$, so $k+1 \in S$.

Therefore, by PMI, $S = \mathbb{N}$, so $s_n \leq t_n$ for all $n \in \mathbb{N}$.

Therefore, by FMI, $S = 1^{N}$, so $s_n \ge t_n$ for all $n \in \mathbb{Z}_{n=1}^{\infty} b_n$ and $s_n \le t_n$ for all $n \in \mathbb{N}$, then by the inequality rule for convergent sequences, $\sum_{n=1}^{\infty} a_n \le \sum_{n=1}^{\infty} a_n \le \sum_$ $\sum_{n=1}^{\infty} b_n.$

Proof. Suppose the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent and $a_n \leq b_n$ for all $n \in \mathbb{N}$. Let (s_n) be the sequence of partial sums of the sequence $(b_n - a_n)$. Since the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent, then $\sum_{n=1}^{\infty} b_n - \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (b_n - a_n)$, so the series $\sum_{n=1}^{\infty} (b_n - a_n)$ is convergent. Hence, $\lim_{n \to \infty} s_n = \sum_{n=1}^{\infty} (b_n - a_n) = \sum_{n=1}^{\infty} b_n - \sum_{n=1}^{\infty} a_n$. We prove $s_n \ge 0$ for all $n \in \mathbb{N}$ by induction on n. Let $S = \{n \in \mathbb{N} : s_n \ge 0\}.$ Since $a_1 \le b_1$, then $s_1 = b_1 - a_1 \ge 0$. Thus, $1 \in S$. Suppose $k \in S$. Then $k \in \mathbb{N}$ and $s_k \geq 0$. Since $k + 1 \in \mathbb{N}$, then $a_{k+1} \le b_{k+1}$, so $b_{k+1} - a_{k+1} \ge 0$. Thus, $s_{k+1} = s_k + (b_{k+1} - a_{k+1}) \ge 0$, so $s_{k+1} \ge 0$. Hence, $k + 1 \in S$, so by PMI, $s_n \ge 0$ for all $n \in \mathbb{N}$. Since $\lim_{n\to\infty} s_n = \sum_{n=1}^{\infty} b_n - \sum_{n=1}^{\infty} a_n$ and 0 is a lower bound of (s_n) , then $0 \le \sum_{n=1}^{\infty} b_n - \sum_{n=1}^{\infty} a_n$. Therefore, $\sum_{n=1}^{\infty} a_n \le \sum_{n=1}^{\infty} b_n$.

Theorem 9. tail of a series determines convergence of a series

Let M be any positive integer.

The series $\sum_{n=1}^{\infty} a_n$ is convergent iff the series $\sum_{n=1}^{\infty} a_{M+n}$ is convergent.

Proof. Suppose the series $\sum_{n=1}^{\infty} a_n$ is convergent. Then there exists a real number S such that $\sum_{n=1}^{\infty} a_n = S$. Since $M \ge 1$, then either M > 1 or M = 1. We consider these cases separately. **Case 1:** Suppose M = 1. Since $\sum_{n=1}^{\infty} a_n = S$, then $a_1 + a_2 + a_3 + ... = S$. Observe that

$$\sum_{n=1}^{\infty} a_{M+n} = \sum_{n=1}^{\infty} a_{1+n}$$

= $a_2 + a_3 + a_4 + \dots$
= $S - a_1$.

Since $S - a_1$ is a real number, then the series $\sum_{n=1}^{\infty} a_{M+n}$ is convergent.

Case 2: Suppose M > 1.

Since $\sum_{n=1}^{\infty} a_n = S$, then $(a_1 + a_2 + \ldots + a_M) + (a_{M+1} + a_{M+2} + a_{M+3} + \ldots) = S$. Observe that

$$\sum_{n=1}^{\infty} a_{M+n} = a_{M+1} + a_{M+2} + a_{M+3} + \dots$$
$$= S - (a_1 + a_2 + \dots + a_M).$$

Since $S - (a_1 + a_2 + ... + a_M)$ is a real number, then the series $\sum_{n=1}^{\infty} a_{M+n}$ is convergent.

Therefore, in all cases, the series $\sum_{n=1}^{\infty} a_{M+n}$ is convergent, as desired.

Conversely, suppose the series $\sum_{n=1}^{\infty} a_{M+n}$ is convergent. Then there exists a real number S such that $\sum_{n=1}^{\infty} a_{M+n} = S$. Since $M \ge 1$, then either M > 1 or M = 1. We consider these cases separately. **Case 1:** Suppose M = 1. Then

$$\sum_{n=1}^{\infty} a_n = a_1 + (a_2 + a_3 + a_4 + \dots)$$

= $a_1 + (a_{M+1} + a_{M+2} + a_{M+3} + \dots)$
= $a_1 + \sum_{n=1}^{\infty} a_{M+n}$
= $a_1 + S.$

Since $a_1 + S$ is a real number, then the series $\sum_{n=1}^{\infty} a_n$ is convergent.

Case 2: Suppose M > 1. Then

$$\sum_{n=1}^{\infty} a_n = (a_1 + a_2 + \dots + a_M) + (a_{M+1} + a_{M+2} + a_{M+3} + \dots)$$
$$= (a_1 + a_2 + \dots + a_M) + \sum_{n=1}^{\infty} a_{M+n}$$
$$= (a_1 + a_2 + \dots + a_M) + S.$$

Since $(a_1 + a_2 + ... + a_M) + S$ is a real number, then the series $\sum_{n=1}^{\infty} a_n$ is convergent.

Therefore, in all cases, the series $\sum_{n=1}^{\infty} a_n$ is convergent, as desired.

Convergence Tests for Series of Real Numbers

Proposition 10. Cauchy convergence criterion for series

The infinite series of real numbers $\sum a_n$ is convergent iff for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that if n > m > N, then $|\sum_{k=m+1}^n a_k| < \epsilon$.

Proof. Let $\sum a_n$ be an infinite series of real numbers.

Let (s_n) be the sequence of partial sums of the sequence (a_n) .

Suppose that for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that if n > m > N,

then $|\sum_{k=m+1}^{n} a_k| < \epsilon$. Let $\epsilon > 0$ be given.

Then there exists $N \in \mathbb{N}$ such that if n > m > N, then $|\sum_{k=m+1}^{n} a_k| < \epsilon$. Let $m, n \in \mathbb{N}$ such that n > m > N. Then m > N and n > N and $|\sum_{k=m+1}^{n} a_k| < \epsilon$. Observe that

$$\begin{aligned} |s_m - s_n| &= |s_n - s_m| \\ &= |(a_1 + a_2 + \dots + a_m + a_{m+1} + a_{m+2} + \dots + a_n) - (a_1 + a_2 + \dots + a_m)| \\ &= |a_{m+1} + a_{m+2} + \dots + a_n| \\ &= |\sum_{k=m+1}^n a_k| \\ &< \epsilon. \end{aligned}$$

Hence, (s_n) is a Cauchy sequence of real numbers.

Therefore, the sequence (s_n) is convergent, so the series $\sum a_n$ is convergent, as desired.

Conversely, suppose the series $\sum a_n$ is convergent.

Then the sequence (s_n) of real numbers is convergent, so (s_n) is a Cauchy sequence.

Thus, for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that if m, n > N, then $|s_m - s_n| < \epsilon$.

Let $\epsilon > 0$ be given.

Then there exists $N \in \mathbb{N}$ such that if m, n > N, then $|s_m - s_n| < \epsilon$. Let $m, n \in \mathbb{N}$ such that n > m > N. Then m > N and n > N, so $|s_m - s_n| < \epsilon$. Observe that $\begin{aligned}
|\sum_{k=m+1}^n a_k| &= |a_{m+1} + a_{m+2} + \dots + a_n| \\
&= |(a_1 + a_2 + \dots + a_m + a_{m+1} + a_{m+2} + \dots + a_n) - (a_1 + a_2 + \dots + a_m)| \\
&= |s_n - s_m| \\
&= |s_m - s_n| \\
&< \epsilon.
\end{aligned}$

Theorem 11. Boundedness convergence criterion for series of nonnegative terms

If (a_n) is a sequence of nonnegative terms, then the series $\sum a_n$ is convergent iff the sequence of partial sums of (a_n) is bounded.

Proof. Let (a_n) be a sequence of nonnegative real numbers. Then $a_n \ge 0$ for all $n \in \mathbb{N}$. Let (s_n) be the sequence of partial sums of (a_n) . Suppose the series $\sum a_n$ is convergent. Then the sequence of partial sums (s_n) is convergent. Hence, (s_n) is bounded. Conversely, suppose the sequence of partial sums (s_n) is bounded. Let $n \in \mathbb{N}$ be given. Then $n + 1 \in \mathbb{N}$, so $s_{n+1} - s_n = a_{n+1} \ge 0$. Thus, $s_{n+1} - s_n \ge 0$, so $s_{n+1} \ge s_n$. Hence, $s_n \le s_{n+1}$, so (s_n) is increasing. Therefore, (s_n) is monotonic. Since (s_n) is monotonic and bounded, then by MCT, (s_n) is convergent. Therefore, the series $\sum a_n$ is convergent. □

Theorem 12. direct comparison test

Let (a_n) and (b_n) be sequences such that $0 \le a_n \le b_n$ for all $n \in \mathbb{N}$. If $\sum b_n$ is convergent, then $\sum a_n$ is convergent.

Proof. Since $0 \le a_n \le b_n$ for all $n \in \mathbb{N}$, then $0 \le a_n$ for all $n \in \mathbb{N}$ and $0 \le b_n$ for all $n \in \mathbb{N}$.

Hence, (a_n) is a sequence of nonnegative terms and (b_n) is a sequence of nonnegative terms.

Let (s_n) be the sequence of partial sums of (a_n) .

Let (t_n) be the sequence of partial sums of (b_n) .

Suppose the series $\sum b_n$ is convergent.

Since (b_n) is a sequence of nonnegative terms and the series $\sum b_n$ is convergent, then by the boundedness convergence criterion for series of nonnegative terms, the sequence (t_n) is bounded.

Hence, (t_n) is bounded above, so there exists a real number T such that $t_n \leq T$ for all $n \in \mathbb{N}$.

We prove $0 \le s_n \le t_n$ for all $n \in \mathbb{N}$ by induction on n. Let $S = \{n \in \mathbb{N} : 0 \le s_n \le t_n\}$. Since $0 \le a_1 \le b_1$ and $s_1 = a_1$ and $t_1 = b_1$, then $0 \le s_1 \le t_1$, so $1 \in S$. Suppose $m \in S$. Then $m \in \mathbb{N}$ and $0 \le s_m \le t_m$, so $0 \le s_m$ and $s_m \le t_m$. Since $m + 1 \in \mathbb{N}$, then $0 \le a_{m+1} \le b_{m+1}$, so $0 \le a_{m+1}$ and $a_{m+1} \le b_{m+1}$. Since $s_m \ge 0$ and $a_{m+1} \ge 0$, then $s_{m+1} = s_m + a_{m+1} \ge 0$, so $s_{m+1} \ge 0$. Observe that

$$s_{m+1} = s_m + a_{m+1}$$

 $\leq t_m + a_{m+1}$
 $\leq t_m + b_{m+1}$
 $= t_{m+1}.$

Thus, $s_{m+1} \le t_{m+1}$.

Since $0 \leq s_{m+1}$ and $s_{m+1} \leq t_{m+1}$, then $0 \leq s_{m+1} \leq t_{m+1}$, so $m+1 \in S$. Therefore, by PMI, $S = \mathbb{N}$, so $0 \leq s_n \leq t_n$ for all $n \in \mathbb{N}$.

Since $t_n \leq T$ for all $n \in \mathbb{N}$, then $0 \leq s_n \leq t_n \leq T$ for all $n \in \mathbb{N}$.

Thus, $0 \le s_n \le T$ for all $n \in \mathbb{N}$, so (s_n) is bounded.

Since (a_n) is a sequence of nonnegative terms and (s_n) is bounded, then by the boundedness convergence criterion for series of nonnegative terms, the series $\sum a_n$ is convergent, as desired.

Theorem 13. limit comparison test

Let (a_n) and (b_n) be sequences of real numbers such that $a_n > 0$ and $b_n > 0$ for all $n \in \mathbb{N}$.

If there exists a positive real number L such that $\lim_{n\to\infty} \frac{a_n}{b_n} = L$, then the series $\sum a_n$ is convergent iff the series $\sum b_n$ is convergent.

Proof. Suppose there exists a positive real number L such that $\lim_{n\to\infty} \frac{a_n}{b_n} = L$. Suppose the series $\sum b_n$ is convergent. Since L > 0, then there exists $N \in \mathbb{N}$ such that if n > N, then $\left|\frac{a_n}{b_n} - L\right| < L$. Let $n \in \mathbb{N}$ such that n > N. Then $b_n > 0$ and $\left|\frac{a_n}{b_n} - L\right| < L$. Observe that

$$\begin{split} \frac{a_n}{b_n} - L | < L & \Rightarrow \quad -L < \frac{a_n}{b_n} - L < L \\ & \Rightarrow \quad 0 < \frac{a_n}{b_n} < 2L \\ & \Rightarrow \quad 0 < a_n < 2Lb_n \\ & \Rightarrow \quad 0 \le a_n \le 2Lb_n. \end{split}$$

Therefore, $0 \leq a_n \leq 2Lb_n$ for all $n \in \mathbb{N}$.

Since $\sum b_n$ is convergent and $\sum 2Lb_n = 2L \sum b_n$, then by the scalar multiple rule, the series $\sum 2Lb_n$ is convergent.

Therefore, by DCT, the series $\sum a_n$ is convergent.

Conversely, suppose the series $\sum a_n$ is convergent.

Since $a_n > 0$ and $b_n > 0$ for all $n \in \mathbb{N}$, then $\frac{a_n}{b_n} > 0$, so $\frac{a_n}{b_n} \neq 0$ for all $n \in \mathbb{N}$. Since L > 0 and $\lim_{n \to \infty} \frac{a_n}{b_n} = L$ and $\frac{a_n}{b_n} \neq 0$ for all $n \in \mathbb{N}$, then by a previous lemma, $\lim_{n \to \infty} \frac{b_n}{a_n} = \frac{1}{L}$.

Since $\frac{1}{L} > 0$, then there exists $N \in \mathbb{N}$ such that if n > N, then $\left|\frac{b_n}{a_n} - \frac{1}{L}\right| < \frac{1}{L}$. Let $n \in \mathbb{N}$ such that n > N. Then $a_n > 0$ and $\left|\frac{b_n}{a_n} - \frac{1}{L}\right| < \frac{1}{L}$.

Observe that

$$\begin{split} |\frac{b_n}{a_n} - \frac{1}{L}| < \frac{1}{L} & \Rightarrow \quad -\frac{1}{L} < \frac{b_n}{a_n} - \frac{1}{L} < \frac{1}{L} \\ & \Rightarrow \quad 0 < \frac{b_n}{a_n} < \frac{2}{L} \\ & \Rightarrow \quad 0 < b_n < \frac{2}{L}a_n \\ & \Rightarrow \quad 0 \le b_n \le \frac{2}{L}a_n. \end{split}$$

Therefore, $0 \le b_n \le \frac{2}{L}a_n$ for all $n \in \mathbb{N}$. Since $\sum a_n$ is convergent and $\sum \frac{2}{L}a_n = \frac{2}{L}\sum a_n$, then by the scalar multiple rule, the series $\sum \frac{2}{L}a_n$ is convergent.

Therefore, by DCT, the series $\sum b_n$ is convergent.

Lemma 14. Let (a_n) be a sequence in \mathbb{R} .

If there exists a real number L such that $\lim_{n\to\infty} a_{2n} = L$ and $\lim_{n\to\infty} a_{2n-1} = L$ L, then $\lim_{n\to\infty} a_n = L$.

Proof. Suppose there exists a real number L such that $\lim_{n\to\infty} a_{2n} = L$ and $\lim_{n \to \infty} a_{2n-1} = L.$

Let $\epsilon > 0$ be given.

Since $\lim_{n\to\infty} a_{2n} = L$, then there exists $N_1 \in \mathbb{N}$ such that $|a_{2n} - L| < \epsilon$ whenever $n > N_1$.

Since $\lim_{n\to\infty} a_{2n-1} = L$, then there exists $N_2 \in \mathbb{N}$ such that $|a_{2n-1} - L| < \epsilon$ whenever $n > N_2$. Let $N = \max\{2N_1, 2N_2 - 1\}$. Let n > N. Either n is even or n is odd. We consider these cases separately. **Case 1:** Suppose n is even. Then there exists a natural number m such that n = 2m, so $m = \frac{n}{2}$. Since $n > N \ge 2N_1$, then $n > 2N_1$, so $\frac{n}{2} > N_1$. Thus, $m > N_1$, so $|a_{2m} - L| = |a_n - L| < \epsilon$.

Case 2: Suppose n is odd.

Then there exists a natural number m such that n = 2m - 1, so $m = \frac{n+1}{2}$. Since $n > N \ge 2N_2 - 1$, then $n > 2N_2 - 1$, so $\frac{n+1}{2} > N_2$. Thus, $m > N_2$, so $|a_{2m-1} - L| = |a_n - L| < \epsilon$.

Therefore, in either case, $|a_n - L| < \epsilon$, so $\lim_{n \to \infty} a_n = L$, as desired. \Box

Theorem 15. alternating series test

Let (a_n) be a sequence of positive terms in \mathbb{R} .

If (a_n) is monotonic decreasing and $\lim_{n\to\infty} a_n = 0$, then the series $\sum (-1)^n a_n$ is convergent.

Proof. Suppose (a_n) is monotonic decreasing and $\lim_{n\to\infty} a_n = 0$.

Let (s_n) be the sequence of partial sums of the sequence given by $(-1)^n a_n$ for all $n \in \mathbb{N}$.

Then $s_n = \sum_{k=1}^n (-1)^k a_k$ for all $n \in \mathbb{N}$ and $s_{n+1} = s_n + (-1)^{n+1} a_{n+1}$ for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$ be given. Then

$$s_{2(n+1)} - s_{2n} = s_{2n+2} - s_{2n}$$

$$= \sum_{k=1}^{2n+2} (-1)^k a_k - \sum_{k=1}^{2n} (-1)^k a_k$$

$$= \sum_{k=1}^{2n} (-1)^k a_k + (-1)^{2n+1} a_{2n+1} + (-1)^{2n+2} a_{2n+2} - \sum_{k=1}^{2n} (-1)^k a_k$$

$$= (-1)^{2n+1} a_{2n+1} + (-1)^{2n+2} a_{2n+2}$$

$$= -a_{2n+1} + a_{2n+2}.$$

Since (a_n) is decreasing, then $a_{2n+1} \ge a_{2n+2}$, so $0 \ge -a_{2n+1} + a_{2n+2}$. Thus, $0 \ge s_{2(n+1)} - s_{2n}$, so $s_{2n} \ge s_{2(n+1)}$. Therefore, the sequence (s_{2n}) is decreasing. We prove $-a_1 + a_{2n} \le s_{2n}$ for all $n \in \mathbb{N}$ by induction on n. Let $S = \{n \in \mathbb{N} : -a_1 + a_{2n} \le s_{2n}\}$. Since $-a_1 + a_2 = s_2$, then $1 \in S$. Suppose $k \in S$. Then $k \in \mathbb{N}$ and $-a_1 + a_{2k} \leq s_{2k}$. Observe that

$$\begin{aligned} -a_1 + a_{2k} - a_{2k+1} + a_{2k+2} &\leq s_{2k} - a_{2k+1} + a_{2k+2} \\ &= s_{2k} + (-1)^{2k+1} a_{2k+1} + a_{2k+2} \\ &= s_{2k+1} + a_{2k+2} \\ &= s_{2k+1} + (-1)^{2k+2} a_{2k+2} \\ &= s_{2k+2}. \end{aligned}$$

Hence, $-a_1 + a_{2k} - a_{2k+1} + a_{2k+2} \le s_{2k+2}$, so $a_{2k} - a_{2k+1} \le s_{2k+2} - (-a_1 + a_{2k+2})$. Since (a_n) is decreasing, then $a_{2k} \ge a_{2k+1}$, so $a_{2k} - a_{2k+1} \ge 0$. Since $0 \le a_{2k} - a_{2k+1} \le s_{2k+2} - (-a_1 + a_{2k+2})$, then $0 \le s_{2k+2} - (-a_1 + a_{2k+2})$, 2.

so
$$-a_1 + a_{2k+2} \le s_{2k+2}$$

Hence, $-a_1 + a_{2(k+1)} \le s_{2(k+1)}$, so $k+1 \in S$.

Therefore, by PMI, $S = \mathbb{N}$, so $-a_1 + a_{2n} \leq s_{2n}$ for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$ be given.

Since (a_n) is a sequence of positive terms, then $a_n > 0$ for all $n \in \mathbb{N}$.

Since $2n \in \mathbb{N}$, then $a_{2n} > 0$, so $-a_1 + a_{2n} > -a_1$.

Thus, $-a_1 < -a_1 + a_{2n} \le s_{2n}$, so $-a_1 < s_{2n}$.

Therefore, $-a_1 < s_{2n}$ for all $n \in \mathbb{N}$.

Since (s_{2n}) is decreasing, then $-a_1 + a_2 = s_2 \ge s_{2n}$ for all $n \in \mathbb{N}$.

Since $-a_1 < s_{2n}$ for all $n \in \mathbb{N}$ and $s_{2n} \leq -a_1 + a_2$ for all $n \in \mathbb{N}$, then $-a_1 < s_{2n} \leq -a_1 + a_2$ for all $n \in \mathbb{N}$.

Therefore, (s_{2n}) is bounded.

Since (s_{2n}) is decreasing, then (s_{2n}) is monotonic.

Therefore, by MCT, (s_{2n}) is convergent, so there exists a real number L such that $\lim_{n\to\infty} s_{2n} = L$.

Since (a_{2n}) is a subsequence of (a_n) and $\lim_{n\to\infty} a_n = 0$, then $\lim_{n\to\infty} a_{2n} =$ 0.

Since $s_{2n} = s_{2n-1} + (-1)^{2n} a_{2n} = s_{2n-1} + a_{2n}$, then $s_{2n} = s_{2n-1} + a_{2n}$. Observe that

$$L = L - 0$$

= $\lim_{n \to \infty} s_{2n} - \lim_{n \to \infty} a_{2n}$
= $\lim_{n \to \infty} (s_{2n} - a_{2n})$
= $\lim_{n \to \infty} s_{2n-1}$.

Therefore, $L = \lim_{n \to \infty} s_{2n-1}$.

Since there exists a real number L such that $\lim_{n\to\infty} s_{2n} = L$ and $\lim_{n\to\infty} s_{2n-1} = L$ L, then by a previous lemma, $\lim_{n\to\infty} s_n = L$.

Therefore, (s_n) is convergent, so $\sum (-1)^n a_n$ is convergent.

Theorem 16. absolute convergence implies convergence

Let (a_n) be a sequence in \mathbb{R} . If the series $\sum |a_n|$ is convergent, then the series $\sum a_n$ is convergent. Proof. Suppose the series $\sum |a_n|$ is convergent. Let $n \in \mathbb{N}$ be given. Then $a_n \in \mathbb{R}$, so $-|a_n| \leq a_n \leq |a_n|$. Thus, $-|a_n| \leq a_n$ and $a_n \leq |a_n|$. Since $-|a_n| \leq a_n$, then $0 \leq a_n + |a_n|$. Since $a_n \leq |a_n|$, then $a_n + |a_n| \leq 2|a_n|$. Hence, $0 \leq a_n + |a_n| \leq 2|a_n|$. Since $\sum |a_n|$ is convergent and $\sum 2|a_n| = 2\sum |a_n|$, then the series $\sum 2|a_n|$ is convergent. Thus, by DCT, the series $\sum (a_n + |a_n|)$ is convergent. Therefore, $\sum a_n = \sum (a_n + |a_n| - |a_n|) = \sum (a_n + |a_n|) - \sum |a_n|$, so the series $\sum a_n$ is convergent, as desired.

Proof. Suppose the series $\sum |a_n|$ is convergent.

Then $\sum |a_n|$ satisfies the Cauchy criterion for series. Let $\epsilon > 0$ be given. Then there exists $N \in \mathbb{N}$ such that if n > m > N, then $|\sum_{k=m+1}^{n} |a_k|| < \epsilon$. Let $m, n \in \mathbb{N}$ such that n > m > N. Then $|\sum_{k=m+1}^{n} |a_k|| < \epsilon$. Observe that

$$|\sum_{k=m+1}^{n} a_{k}| = |a_{m+1} + a_{m+2} + \dots + a_{n}|$$

$$\leq |a_{m+1}| + |a_{m+2}| + \dots + |a_{n}|$$

$$= \sum_{k=m+1}^{n} |a_{k}|$$

$$\leq |\sum_{k=m+1}^{n} |a_{k}||$$

$$\leq \epsilon.$$

Thus, $|\sum_{k=m+1}^{n} a_k| < \epsilon$, so the series $\sum a_n$ satisfies the Cauchy criterion. Therefore, $\sum a_n$ is convergent, as desired.

Theorem 17. ratio test

Let (a_n) be a sequence of nonzero real numbers. a. If $\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. b. If $\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| > 1$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent. c. If $\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| = 1$, then the ratio test is inconclusive.

Proof. Let (a_n) be a sequence of nonzero real numbers.

Then $a_n \neq 0$ for all $n \in \mathbb{N}$.

Since $|a_n| \ge 0$ and $a_n \ne 0$ for all $n \in \mathbb{N}$, then $|a_n| > 0$ for all $n \in \mathbb{N}$. Let (b_n) be a convergent sequence defined by $b_n = |\frac{a_{n+1}}{a_n}|$ for all $n \in \mathbb{N}$. Since (b_n) is convergent, then there exists $L \in \mathbb{R}$ such that $L = \lim_{n \to \infty} b_n = \lim_{n \to \infty} |\frac{a_{n+1}}{a_n}|$. $\begin{array}{l} Proof. \mbox{ We prove a.} \\ \mbox{ If } \lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| < 1, \mbox{ then the series } \sum_{n=1}^{\infty} a_n \mbox{ is absolutely convergent.} \\ \mbox{ Suppose } L < 1. \\ \mbox{ Let } n \in \mathbb{N} \mbox{ be given.} \\ \mbox{ Since } a_n \neq 0 \mbox{ and } a_{n+1} \neq 0, \mbox{ then } \frac{a_{n+1}}{a_n} \neq 0. \\ \mbox{ Since } |\frac{a_{n+1}}{a_n}| \geq 0 \mbox{ and } \frac{a_{n+1}}{a_n} \neq 0, \mbox{ then } b_n = |\frac{a_{n+1}}{a_n}| > 0. \\ \mbox{ Thus, } b_n > 0 \mbox{ for all } n \in \mathbb{N}, \mbox{ so 0 is a lower bound of } (b_n). \\ \mbox{ Since } \lim_{n \to \infty} b_n = L \mbox{ and 0 is a lower bound of } (b_n), \mbox{ then } 0 \leq L. \\ \mbox{ Hence, } 0 \leq L < 1. \\ \mbox{ Since } L \mbox{ and 1 are real numbers, then by the density of } \mathbb{R}, \mbox{ there exists } r \in \mathbb{R} \\ \mbox{ such that } L < r < 1. \\ \mbox{ Thus, } 0 \leq L < r < 1, \mbox{ so } 0 < r < 1 \mbox{ and } L < r. \\ \mbox{ Since } r - L > 0 \mbox{ and } \lim_{n \to \infty} b_n = L, \mbox{ then there exists } N \in \mathbb{N} \mbox{ such that if } n > N, \mbox{ then } |b_n - L| < r - L. \\ \mbox{ Let } n \in \mathbb{N} \mbox{ such that } n > N. \\ \mbox{ Then } |b_n - L| < r - L. \\ \mbox{ Let } n \in \mathbb{N} \mbox{ such that } n > N. \\ \mbox{ Then } |b_n - L| < r - L. \\ \end{tabular}$

Observe that

$$\begin{split} |b_n - L| < r - L & \Leftrightarrow & -(r - L) < b_n - L < r - L \\ & \Rightarrow & b_n - L < r - L \\ & \Leftrightarrow & b_n < r \\ & \Leftrightarrow & |\frac{a_{n+1}}{a_n}| < r \\ & \Leftrightarrow & \frac{|a_{n+1}|}{|a_n|} < r \\ & \Rightarrow & |a_{n+1}| < r|a_n|. \end{split}$$

Therefore, $|a_{n+1}| < r|a_n|$ for all natural numbers n > N.

We prove $|a_{N+k}| < r^{k-1}|a_{N+1}|$ for all natural numbers $k \ge 2$ by induction on k.

Let $S = \{k \in \mathbb{N} : |a_{N+k}| < r^{k-1}|a_{N+1}|, k \ge 2\}$. Since $N + 1 \in \mathbb{N}$ and N + 1 > N, then $|a_{N+2}| < r|a_{N+1}| = r^{2-1}|a_{N+1}|$. Thus, $|a_{N+2}| < r^{2-1}|a_{N+1}|$, so $2 \in S$. Suppose $m \in S$. Then $m \in \mathbb{N}$ and $m \ge 2$ and $|a_{N+m}| < r^{m-1}|a_{N+1}|$. Since $m \in \mathbb{N}$, then $m + 1 \in \mathbb{N}$. Since m + 1 > m and $m \ge 2$, then m + 1 > 2. Since $N + m \in \mathbb{N}$ and N + m > N, then $|a_{N+m+1}| < r|a_{N+m}|$. Since r > 0 and $|a_{N+m}| < r^{m-1}|a_{N+1}|$, then $r|a_{N+m}| < r^m|a_{N+1}|$. Hence, $|a_{N+m+1}| < r|a_{N+m}| < r^m|a_{N+1}|$, so $|a_{N+m+1}| < r^m|a_{N+1}| = r^{m+1-1}|a_{N+1}|$. Thus, $m + 1 \in S$. Therefore, by PMI, $|a_{N+k}| < r^{k-1}|a_{N+1}|$ for all natural numbers $k \ge 2$. Since $|a_n| > 0$ for all $n \in \mathbb{N}$ and $N + k \in \mathbb{N}$ for all natural numbers $k \ge 2$,

then $|a_{N+k}| > 0$ for all natural numbers $k \ge 2$. Thus, $0 < |a_{N+k}| < r^{k-1}|a_{N+1}|$ for all natural numbers $k \ge 2$. Since |r| = r < 1, then the geometric series $\sum_{k=1}^{\infty} r^k$ is convergent and $\sum_{k=1}^{\infty} r^k = \frac{r}{1-r}$.

Observe that

$$\sum_{k=2}^{\infty} r^{k-1} |a_{N+1}| = r |a_{N+1}| + r^2 |a_{N+1}| + r^3 |a_{N+1}| + \dots$$
$$= |a_{N+1}| (r + r^2 + r^3 + \dots)$$
$$= |a_{N+1}| \sum_{k=1}^{\infty} r^k$$
$$= \frac{|a_{N+1}|r}{1-r}.$$

Thus, the series $\sum_{k=2}^{\infty} r^{k-1} |a_{N+1}|$ is convergent. Hence, by DCT, the series $\sum_{k=2}^{\infty} |a_{N+k}|$ is convergent. Observe that

$$\sum_{k=2}^{\infty} |a_{N+k}| = |a_{N+2}| + |a_{N+3}| + |a_{N+4}| + \dots$$
$$= |a_{(N+1)+1}| + |a_{(N+1)+2}| + |a_{(N+1)+3}| + \dots$$
$$= \sum_{n=1}^{\infty} |a_{(N+1)+n}|.$$

Thus, the series $\sum_{n=1}^{\infty} |a_{(N+1)+n}|$ is convergent. Since N+1 is a positive integer and the series $\sum_{n=1}^{\infty} |a_{(N+1)+n}|$ is convergent, then the series $\sum_{n=1}^{\infty} |a_n|$ is convergent.

Since absolute convergence implies convergence, then the series $\sum_{n=1}^{\infty} a_n$ is convergent, as desired.

Proof. We prove b. If $\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| > 1$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent. Suppose L > 1. Then L - 1 > 0. Since $L = \lim_{n \to \infty} |\frac{a_{n+1}}{a_n}|$, then there exists $N \in \mathbb{N}$ such that if n > N, then $||\frac{a_{n+1}}{a_n}| - L| < L - 1$. Let $n \in \mathbb{N}$ such that n > N. Then $||\frac{a_{n+1}}{a_n}| - L| < L - 1$. Observe that

$$\begin{split} ||\frac{a_{n+1}}{a_n}| - L| < L - 1 & \Leftrightarrow & -(L - 1) < |\frac{a_{n+1}}{a_n}| - L < L - 1 \\ & \Rightarrow & 1 - L < |\frac{a_{n+1}}{a_n}| - L \\ & \Leftrightarrow & 1 < |\frac{a_{n+1}}{a_n}| \\ & \Leftrightarrow & 1 < \frac{|a_{n+1}|}{|a_n|} \\ & \Rightarrow & |a_n| < |a_{n+1}|. \end{split}$$

Therefore, $|a_n| < |a_{n+1}|$ for all natural numbers n > N.

We prove $|a_{N+1}| \leq |a_n|$ for all natural numbers n > N by induction on n. Let $S = \{n \in \mathbb{N} : |a_{N+1}| \leq |a_n|, n > N\}$. Since $N + 1 \in \mathbb{N}$ and N + 1 > N and $|a_{N+1}| = |a_{N+1}|$, then $N + 1 \in S$. Suppose $k \in S$. Then $k \in \mathbb{N}$ and k > N and $|a_{N+1}| \leq |a_k|$. Since $k \in \mathbb{N}$, then $k + 1 \in \mathbb{N}$. Since $k \in \mathbb{N}$, then $k + 1 \in \mathbb{N}$. Since $k \in \mathbb{N}$ and k > N, then k + 1 > N. Since $k \in \mathbb{N}$ and k > N, then $|a_k| < |a_{k+1}|$. Since $|a_{N+1}| \leq |a_k|$ and $|a_k| < |a_{k+1}|$, then $|a_{N+1}| < |a_{k+1}|$, so $k + 1 \in S$. Hence, by PMI, $|a_{N+1}| \leq |a_n|$ for all natural numbers n > N.

Suppose $\lim_{n\to\infty} a_n = 0$. Since $N + 1 \in \mathbb{N}$, then $|a_{N+1}| > 0$. Hence, there exists $K \in \mathbb{N}$ such that if n > K, then $|a_n| < |a_{N+1}|$. Let $M = \max\{K, N\}$. Let $n \in \mathbb{N}$ such that n > M. Since $n > M \ge K$, then n > K, so $|a_n| < |a_{N+1}|$. Since $n > M \ge N$, then n > N, so $|a_{N+1}| \le |a_n|$. Thus, we have $|a_n| < |a_{N+1}|$ and $|a_n| \ge |a_{N+1}|$, a violation of trichotomy. Hence, $\lim_{n\to\infty} a_n \neq 0$. Therefore, by the n^{th} term test for divergence, the series $\sum a_n$ is divergent.