Theory of convergent series in \mathbb{R}

Jason Sass

June 29, 2021

Infinite Series of Real Numbers

Proposition 1. properties of finite sums
Let $n \in \mathbb{N}$. Then

1. $\sum_{k=1}^{n}\left(a_{k}+b_{k}\right)=\sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k}$.
2. $\sum_{k=1}^{n}\left(\lambda a_{k}\right)=\lambda \sum_{k=1}^{n} a_{k}$ for every $\lambda \in \mathbb{R}$.

Proof. We prove 1.
Observe that

$$
\begin{aligned}
\sum_{k=1}^{n}\left(a_{k}+b_{k}\right) & =\left(a_{1}+b_{1}\right)+\left(a_{2}+b_{2}\right)+\ldots+\left(a_{n}+b_{n}\right) \\
& =\left(a_{1}+a_{2}+\ldots+a_{n}\right)+\left(b_{1}+b_{2}+\ldots+b_{n}\right) \\
& =\sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k}
\end{aligned}
$$

Proof. We prove 2.
Let $\lambda \in \mathbb{R}$ be given.
Then

$$
\begin{aligned}
\sum_{k=1}^{n} \lambda a_{k} & =\lambda a_{1}+\lambda a_{2}+\ldots+\lambda a_{n} \\
& =\lambda\left(a_{1}+a_{2}+\ldots+a_{n}\right) \\
& =\lambda \sum_{k=1}^{n} a_{k}
\end{aligned}
$$

Proposition 2. $n^{\text {th }}$ term of a sequence of partial sums
Let $\left(a_{n}\right)$ be a sequence of real numbers.
Let $\left(s_{n}\right)$ be a sequence defined by $s_{1}=a_{1}$ and $s_{n+1}=s_{n}+a_{n+1}$ for all $n \in \mathbb{N}$.

The $n^{\text {th }}$ term of the sequence $\left(s_{n}\right)$ is $s_{n}=a_{1}+a_{2}+\ldots+a_{n}$.

Proof. We prove $s_{n}=\sum_{i=1}^{n} a_{i}$ for all $n \in \mathbb{N}$ by induction on n.
Let $S=\left\{n \in \mathbb{N}: s_{n}=\sum_{i=1}^{n} a_{i}\right\}$.
Since $s_{1}=a_{1}=\sum_{i=1}^{1} a_{i}$, then $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $s_{k}=\sum_{i=1}^{k} a_{i}$.
Observe that

$$
\begin{aligned}
s_{k+1} & =s_{k}+a_{k+1} \\
& =\sum_{i=1}^{k} a_{i}+a_{k+1} \\
& =\sum_{i=1}^{k+1} a_{i}
\end{aligned}
$$

Thus, $s_{k+1}=\sum_{i=1}^{k+1} a_{i}$, so $k+1 \in S$.
Therefore, by PMI, $S=\mathbb{N}$, so $s_{n}=\sum_{i=1}^{n} a_{i}$ for all $n \in \mathbb{N}$, as desired.

Theorem 3. uniqueness of a sum of a convergent series

The sum of a convergent series of real numbers is unique.
Proof. Let $\sum_{n=1}^{\infty} a_{n}$ be a convergent series of real numbers.
Let $\left(s_{n}\right)$ be the sequence of partial sums of the sequence $\left(a_{n}\right)$.
Since the series $\sum_{n=1}^{\infty} a_{n}$ is convergent, then there exists a real number S such that $\lim _{n \rightarrow \infty} s_{n}=S$.

Since the limit of a convergent sequence is unique and $\lim _{n \rightarrow \infty} s_{n}=S$, then S is unique.

Theorem 4. $n^{\text {th }}$ term test for divergence
If the series $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$.
Proof. Let $\left(a_{n}\right)$ be a sequence of real numbers.
Let $\left(s_{n}\right)$ be the sequence of partial sums of $\left(a_{n}\right)$.
Suppose the series $\sum_{n=1}^{\infty} a_{n}$ is convergent.
Then there exists $S \in \mathbb{R}$ such that $\lim _{n \rightarrow \infty} s_{n}=S$.
Hence, $\left(s_{n}\right)$ is convergent, so $\lim _{n \rightarrow \infty} s_{n-1}=\lim _{n \rightarrow \infty} s_{n}=S$.
Observe that

$$
\begin{aligned}
0 & =S-S \\
& =\lim _{n \rightarrow \infty} s_{n}-\lim _{n \rightarrow \infty} s_{n-1} \\
& =\lim _{n \rightarrow \infty}\left(s_{n}-s_{n-1}\right) \\
& =\lim _{n \rightarrow \infty} a_{n} .
\end{aligned}
$$

Therefore, $\lim _{n \rightarrow \infty} a_{n}=0$, as desired.

Proposition 5. sum of n terms of a geometric series formula
Let $r \in \mathbb{R}^{*}, r \neq 1$.
Then

$$
\sum_{k=0}^{n} r^{k}=\frac{r^{n+1}-1}{r-1} \text { for all } n \in \mathbb{Z}^{+}
$$

Proof. We prove the statement $\sum_{k=0}^{n} r^{k}=\frac{r^{n+1}-1}{r-1}$ for all $n \in \mathbb{Z}^{+}$by induction on n.

Let $S=\left\{n \in \mathbb{Z}^{+}: \sum_{k=0}^{n} r^{k}=\frac{r^{n+1}-1}{r-1}\right\}$.
Basis:
Since $1 \in \mathbb{Z}^{+}$and $\sum_{k=0}^{1} r^{k}=r^{0}+r^{1}=1+r=r+1=\frac{(r-1)(r+1)}{r-1}=\frac{r^{2}-1}{r-1}=$ $\frac{r^{1+1}-1}{r-1}$, then $1 \in S$.

Induction:
Suppose $m \in S$.
Then $m \in \mathbb{Z}^{+}$and $\sum_{k=0}^{m} r^{k}=\frac{r^{m+1}-1}{r-1}$.
Since $m \in \mathbb{Z}^{+}$, then $m+1 \in \mathbb{Z}^{+}$.
Observe that

$$
\begin{aligned}
\sum_{k=0}^{m+1} r^{k} & =\sum_{k=0}^{m} r^{k}+r^{m+1} \\
& =\frac{r^{m+1}-1}{r-1}+r^{m+1} \\
& =\frac{r^{m+1}-1+r^{m+1}(r-1)}{r-1} \\
& =\frac{r^{m+1}-1+r^{m+2}-r^{m+1}}{r-1} \\
& =\frac{r^{m+2}}{r-1} \\
& =\frac{r^{(m+1)+1}}{r-1}
\end{aligned}
$$

Since $m+1 \in \mathbb{Z}^{+}$and $\sum_{k=0}^{m+1} r^{k}=\frac{r^{(m+1)+1}}{r-1}$, then $m+1 \in S$.
Hence, $m \in S$ implies $m+1 \in S$.
Therefore, by PMI, $\sum_{k=0}^{n} r^{k}=\frac{r^{n+1}-1}{r-1}$ for all $n \in \mathbb{Z}^{+}$.
Proposition 6. sum of a convergent geometric series
Let $r \in \mathbb{R}$.
Then $\sum_{n=1}^{\infty} r^{n}$ is convergent iff $|r|<1$.
If $|r|<1$, then $\sum_{n=1}^{\infty} r^{n}=\frac{r}{1-r}$.
Proof. Let $\left(r^{n}\right)$ be a geometric sequence of real numbers.
Let $\left(s_{n}\right)$ be the sequence of partial sums of $\left(r^{n}\right)$.
We first prove if $r \neq 1$, then $s_{n}=\frac{r-r^{n+1}}{1-r}$ for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$ be given.
Then $s_{n}=r+r^{2}+r^{3}+\ldots+r^{n}$.
Thus, $r s_{n}=r^{2}+r^{3}+r^{4}+\ldots+r^{n+1}$.
Subtracting equations we get $s_{n}-r s_{n}=r-r^{n+1}$.
Hence, $s_{n}(1-r)=r-r^{n+1}$.
Since $r \neq 1$, then $1-r \neq 0$, so $s_{n}=\frac{r-r^{n+1}}{1-r}$, as desired.
Suppose $\sum_{n=1}^{\infty} r^{n}$ is convergent.
Then $\lim _{n \rightarrow \infty} r^{n}=0$.
Since $\left(r^{n}\right)$ is a geometric sequence, then this implies that $|r|<1$.
Conversely, suppose $|r|<1$.
Then $-1<r<1$, so $r<1$.
Hence, $r \neq 1$, so $s_{n}=\frac{r-r^{n+1}}{1-r}$ for all $n \in \mathbb{N}$ and $1-r \neq 0$.
Observe that

$$
\begin{aligned}
\frac{r}{1-r} & =\frac{r}{1-r}(1-0) \\
& =\frac{r}{1-r}\left[\lim _{n \rightarrow \infty} 1-\lim _{n \rightarrow \infty} r^{n}\right] \\
& =\frac{r}{1-r} \lim _{n \rightarrow \infty}\left(1-r^{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{r}{1-r}\left(1-r^{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{r-r^{n+1}}{1-r} \\
& =\lim _{n \rightarrow \infty} s_{n} .
\end{aligned}
$$

Therefore, $\frac{r}{1-r}=\lim _{n \rightarrow \infty} s_{n}=\sum_{n=1}^{\infty} r^{n}$, as desired.
Theorem 7. algebraic summation rules for convergent series
If $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are convergent series of real numbers, then 1. Scalar Multiple Rule
$\sum_{n=1}^{\infty}\left(\lambda a_{n}\right)=\lambda \sum_{n=1}^{\infty} a_{n}$ for every $\lambda \in \mathbb{R}$.
2. Sum Rule
$\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}$.
3. Difference Rule
$\sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)=\sum_{n=1}^{\infty} a_{n}-\sum_{n=1}^{\infty} b_{n}$.
Proof. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be sequences of real numbers.
Let $\left(r_{n}\right)$ be the sequence of partial sums of $\left(a_{n}\right)$.
Then $r_{n}=\sum_{k=1}^{n} a_{k}$ for all $n \in \mathbb{N}$.
Let $\left(s_{n}\right)$ be the sequence of partial sums of $\left(b_{n}\right)$.
Then $s_{n}=\sum_{k=1}^{n} b_{k}$ for all $n \in \mathbb{N}$.
Suppose $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are convergent series.
Then the sequence of partial sums of $\left(a_{n}\right)$ is convergent and the sequence of partial sums of $\left(b_{n}\right)$ is convergent.

Thus, there exist real numbers A and B such that $\lim _{n \rightarrow \infty} r_{n}=A$ and $\lim _{n \rightarrow \infty} s_{n}=B$.

Proof. We prove 1.
Let $\lambda \in \mathbb{R}$ be given.
Let $\left(t_{n}\right)$ be the sequence of partial sums of the sequence $\left(\lambda a_{n}\right)$.
Then $t_{n}=\sum_{k=1}^{n}\left(\lambda a_{k}\right)$ for all $n \in \mathbb{N}$.
Observe that

$$
\begin{aligned}
\lambda A & =\lambda \lim _{n \rightarrow \infty} r_{n} \\
& =\lim _{n \rightarrow \infty} \lambda r_{n} \\
& =\lim _{n \rightarrow \infty} \lambda \sum_{k=1}^{n} a_{k} \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\lambda a_{k}\right) \\
& =\lim _{n \rightarrow \infty} t_{n}
\end{aligned}
$$

Therefore, $\lambda A=\lim _{n \rightarrow \infty} t_{n}$, so $\sum_{n=1}^{\infty}\left(\lambda a_{n}\right)=\lambda A$, as desired.
Proof. We prove 2.
Let $\left(t_{n}\right)$ be the sequence of partial sums of the sequence $\left(a_{n}+b_{n}\right)$.
Then $t_{n}=\sum_{k=1}^{n}\left(a_{k}+b_{k}\right)$ for all $n \in \mathbb{N}$.
Observe that

$$
\begin{aligned}
A+B & =\lim _{n \rightarrow \infty} r_{n}+\lim _{n \rightarrow \infty} s_{n} \\
& =\lim _{n \rightarrow \infty}\left(r_{n}+s_{n}\right) \\
& =\lim _{n \rightarrow \infty}\left[\sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k}\right] \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(a_{k}+b_{k}\right) \\
& =\lim _{n \rightarrow \infty} t_{n}
\end{aligned}
$$

Therefore, $A+B=\lim _{n \rightarrow \infty} t_{n}$, so $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=A+B$, as desired.
Proof. We prove 3.
Since $\sum b_{n}$ is convergent, then $\sum-b_{n}=-\sum b_{n}$, so the series $\sum-b_{n}$ is convergent.

Since $\sum a_{n}$ is convergent, then $\sum\left(a_{n}-b_{n}\right)=\sum\left[a_{n}+\left(-b_{n}\right)\right]=\sum a_{n}+\sum-b_{n}$, so the series $\sum\left(a_{n}-b_{n}\right)$ is convergent, as desired.

Theorem 8. inequality rule for convergent series
If the series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are convergent and $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$, then $\sum_{n=1}^{\infty} a_{n} \leq \sum_{n=1}^{\infty} b_{n}$.

Proof. Suppose the series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are convergent and $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$.

Let $\left(s_{n}\right)$ be the sequence of partial sums of the sequence $\left(a_{n}\right)$.
Since the series $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} s_{n}=\sum_{n=1}^{\infty} a_{n}$.
Let $\left(t_{n}\right)$ be the sequence of partial sums of the sequence $\left(b_{n}\right)$.
Since the series $\sum_{n=1}^{\infty} b_{n}$ is convergent, then $\lim _{n \rightarrow \infty} t_{n}=\sum_{n=1}^{\infty} b_{n}$.

We prove $s_{n} \leq t_{n}$ for all $n \in \mathbb{N}$ by induction on n.
Let $S=\left\{n \in \mathbb{N}: s_{n} \leq t_{n}\right\}$.
Since $s_{1}=a_{1} \leq b_{1}=t_{1}$, then $s_{1} \leq t_{1}$, so $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $s_{k} \leq t_{k}$.
Since $k \in \mathbb{N}$, then $k+1 \in \mathbb{N}$, so $a_{k+1} \leq b_{k+1}$.
Observe that

$$
\begin{aligned}
s_{k+1} & =s_{k}+a_{k+1} \\
& \leq t_{k}+a_{k+1} \\
& \leq t_{k}+b_{k+1} \\
& =t_{k+1} .
\end{aligned}
$$

Thus, $s_{k+1} \leq t_{k+1}$, so $k+1 \in S$.
Therefore, by PMI, $S=\mathbb{N}$, so $s_{n} \leq t_{n}$ for all $n \in \mathbb{N}$.
Since $\lim _{n \rightarrow \infty} s_{n}=\sum_{n=1}^{\infty} a_{n}$ and $\lim _{n \rightarrow \infty} t_{n}=\sum_{n=1}^{\infty} b_{n}$ and $s_{n} \leq t_{n}$ for all $n \in \mathbb{N}$, then by the inequality rule for convergent sequences, $\sum_{n=1}^{\infty} a_{n} \leq$ $\sum_{n=1}^{\infty} b_{n}$.

Proof. Suppose the series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are convergent and $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$.

Let $\left(s_{n}\right)$ be the sequence of partial sums of the sequence $\left(b_{n}-a_{n}\right)$.
Since the series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are convergent, then $\sum_{n=1}^{\infty} b_{n}-$ $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty}\left(b_{n}-a_{n}\right)$, so the series $\sum_{n=1}^{\infty}\left(b_{n}-a_{n}\right)$ is convergent.

Hence, $\lim _{n \rightarrow \infty} s_{n}=\sum_{n=1}^{\infty}\left(b_{n}-a_{n}\right)=\sum_{n=1}^{\infty} b_{n}-\sum_{n=1}^{\infty} a_{n}$.
We prove $s_{n} \geq 0$ for all $n \in \mathbb{N}$ by induction on n.
Let $S=\left\{n \in \mathbb{N}: s_{n} \geq 0\right\}$.
Since $a_{1} \leq b_{1}$, then $s_{1}=b_{1}-a_{1} \geq 0$.
Thus, $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $s_{k} \geq 0$.
Since $k+1 \in \mathbb{N}$, then $a_{k+1} \leq b_{k+1}$, so $b_{k+1}-a_{k+1} \geq 0$.
Thus, $s_{k+1}=s_{k}+\left(b_{k+1}-a_{k+1}\right) \geq 0$, so $s_{k+1} \geq 0$.
Hence, $k+1 \in S$, so by PMI, $s_{n} \geq 0$ for all $n \in \mathbb{N}$.
Since $\lim _{n \rightarrow \infty} s_{n}=\sum_{n=1}^{\infty} b_{n}-\sum_{n=1}^{\infty} a_{n}$ and 0 is a lower bound of $\left(s_{n}\right)$, then $0 \leq \sum_{n=1}^{\infty} b_{n}-\sum_{n=1}^{\infty} a_{n}$.

Therefore, $\sum_{n=1}^{\infty} a_{n} \leq \sum_{n=1}^{\infty} b_{n}$.

Theorem 9. tail of a series determines convergence of a series
Let M be any positive integer.
The series $\sum_{n=1}^{\infty} a_{n}$ is convergent iff the series $\sum_{n=1}^{\infty} a_{M+n}$ is convergent.
Proof. Suppose the series $\sum_{n=1}^{\infty} a_{n}$ is convergent.
Then there exists a real number S such that $\sum_{n=1}^{\infty} a_{n}=S$.
Since $M \geq 1$, then either $M>1$ or $M=1$.
We consider these cases separately.
Case 1: Suppose $M=1$.
Since $\sum_{n=1}^{\infty} a_{n}=S$, then $a_{1}+a_{2}+a_{3}+\ldots=S$.
Observe that

$$
\begin{aligned}
\sum_{n=1}^{\infty} a_{M+n} & =\sum_{n=1}^{\infty} a_{1+n} \\
& =a_{2}+a_{3}+a_{4}+\ldots \\
& =S-a_{1}
\end{aligned}
$$

Since $S-a_{1}$ is a real number, then the series $\sum_{n=1}^{\infty} a_{M+n}$ is convergent.
Case 2: Suppose $M>1$.
Since $\sum_{n=1}^{\infty} a_{n}=S$, then $\left(a_{1}+a_{2}+\ldots+a_{M}\right)+\left(a_{M+1}+a_{M+2}+a_{M+3}+\ldots\right)=S$.
Observe that

$$
\begin{aligned}
\sum_{n=1}^{\infty} a_{M+n} & =a_{M+1}+a_{M+2}+a_{M+3}+\ldots \\
& =S-\left(a_{1}+a_{2}+\ldots+a_{M}\right)
\end{aligned}
$$

Since $S-\left(a_{1}+a_{2}+\ldots+a_{M}\right)$ is a real number, then the series $\sum_{n=1}^{\infty} a_{M+n}$ is convergent.

Therefore, in all cases, the series $\sum_{n=1}^{\infty} a_{M+n}$ is convergent, as desired.
Conversely, suppose the series $\sum_{n=1}^{\infty} a_{M+n}$ is convergent.
Then there exists a real number S such that $\sum_{n=1}^{\infty} a_{M+n}=S$.
Since $M \geq 1$, then either $M>1$ or $M=1$.
We consider these cases separately.
Case 1: Suppose $M=1$.
Then

$$
\begin{aligned}
\sum_{n=1}^{\infty} a_{n} & =a_{1}+\left(a_{2}+a_{3}+a_{4}+\ldots\right) \\
& =a_{1}+\left(a_{M+1}+a_{M+2}+a_{M+3}+\ldots\right) \\
& =a_{1}+\sum_{n=1}^{\infty} a_{M+n} \\
& =a_{1}+S
\end{aligned}
$$

Since $a_{1}+S$ is a real number, then the series $\sum_{n=1}^{\infty} a_{n}$ is convergent.

Case 2: Suppose $M>1$.
Then

$$
\begin{aligned}
\sum_{n=1}^{\infty} a_{n} & =\left(a_{1}+a_{2}+\ldots+a_{M}\right)+\left(a_{M+1}+a_{M+2}+a_{M+3}+\ldots\right) \\
& =\left(a_{1}+a_{2}+\ldots+a_{M}\right)+\sum_{n=1}^{\infty} a_{M+n} \\
& =\left(a_{1}+a_{2}+\ldots+a_{M}\right)+S
\end{aligned}
$$

Since $\left(a_{1}+a_{2}+\ldots+a_{M}\right)+S$ is a real number, then the series $\sum_{n=1}^{\infty} a_{n}$ is convergent.

Therefore, in all cases, the series $\sum_{n=1}^{\infty} a_{n}$ is convergent, as desired.

Convergence Tests for Series of Real Numbers

Proposition 10. Cauchy convergence criterion for series

The infinite series of real numbers $\sum a_{n}$ is convergent iff for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that if $n>m>N$, then $\left|\sum_{k=m+1}^{n} a_{k}\right|<\epsilon$.

Proof. Let $\sum a_{n}$ be an infinite series of real numbers.
Let $\left(s_{n}\right)$ be the sequence of partial sums of the sequence $\left(a_{n}\right)$.
Suppose that for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that if $n>m>N$, then $\left|\sum_{k=m+1}^{n} a_{k}\right|<\epsilon$.

Let $\epsilon>0$ be given.
Then there exists $N \in \mathbb{N}$ such that if $n>m>N$, then $\left|\sum_{k=m+1}^{n} a_{k}\right|<\epsilon$.
Let $m, n \in \mathbb{N}$ such that $n>m>N$.
Then $m>N$ and $n>N$ and $\left|\sum_{k=m+1}^{n} a_{k}\right|<\epsilon$.
Observe that

$$
\begin{aligned}
\left|s_{m}-s_{n}\right| & =\left|s_{n}-s_{m}\right| \\
& =\left|\left(a_{1}+a_{2}+\ldots+a_{m}+a_{m+1}+a_{m+2}+\ldots+a_{n}\right)-\left(a_{1}+a_{2}+\ldots+a_{m}\right)\right| \\
& =\left|a_{m+1}+a_{m+2}+\ldots+a_{n}\right| \\
& =\left|\sum_{k=m+1}^{n} a_{k}\right| \\
& <\epsilon .
\end{aligned}
$$

Hence, $\left(s_{n}\right)$ is a Cauchy sequence of real numbers.
Therefore, the sequence $\left(s_{n}\right)$ is convergent, so the series $\sum a_{n}$ is convergent, as desired.

Conversely, suppose the series $\sum a_{n}$ is convergent.
Then the sequence $\left(s_{n}\right)$ of real numbers is convergent, so $\left(s_{n}\right)$ is a Cauchy sequence.

Thus, for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that if $m, n>N$, then $\left|s_{m}-s_{n}\right|<\epsilon$.

Let $\epsilon>0$ be given.

Then there exists $N \in \mathbb{N}$ such that if $m, n>N$, then $\left|s_{m}-s_{n}\right|<\epsilon$.
Let $m, n \in \mathbb{N}$ such that $n>m>N$.
Then $m>N$ and $n>N$, so $\left|s_{m}-s_{n}\right|<\epsilon$.
Observe that

$$
\begin{aligned}
\left|\sum_{k=m+1}^{n} a_{k}\right| & =\left|a_{m+1}+a_{m+2}+\ldots+a_{n}\right| \\
& =\left|\left(a_{1}+a_{2}+\ldots+a_{m}+a_{m+1}+a_{m+2}+\ldots+a_{n}\right)-\left(a_{1}+a_{2}+\ldots+a_{m}\right)\right| \\
& =\left|s_{n}-s_{m}\right| \\
& =\left|s_{m}-s_{n}\right| \\
& <\epsilon
\end{aligned}
$$

Theorem 11. Boundedness convergence criterion for series of nonnegative terms

If $\left(a_{n}\right)$ is a sequence of nonnegative terms, then the series $\sum a_{n}$ is convergent iff the sequence of partial sums of $\left(a_{n}\right)$ is bounded.

Proof. Let $\left(a_{n}\right)$ be a sequence of nonnegative real numbers.
Then $a_{n} \geq 0$ for all $n \in \mathbb{N}$.
Let $\left(s_{n}\right)$ be the sequence of partial sums of $\left(a_{n}\right)$.
Suppose the series $\sum a_{n}$ is convergent.
Then the sequence of partial sums $\left(s_{n}\right)$ is convergent.
Hence, $\left(s_{n}\right)$ is bounded.
Conversely, suppose the sequence of partial sums $\left(s_{n}\right)$ is bounded.
Let $n \in \mathbb{N}$ be given.
Then $n+1 \in \mathbb{N}$, so $s_{n+1}-s_{n}=a_{n+1} \geq 0$.
Thus, $s_{n+1}-s_{n} \geq 0$, so $s_{n+1} \geq s_{n}$.
Hence, $s_{n} \leq s_{n+1}$, so $\left(s_{n}\right)$ is increasing.
Therefore, $\left(s_{n}\right)$ is monotonic.
Since $\left(s_{n}\right)$ is monotonic and bounded, then by $\operatorname{MCT},\left(s_{n}\right)$ is convergent.
Therefore, the series $\sum a_{n}$ is convergent.
Theorem 12. direct comparison test
Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be sequences such that $0 \leq a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$.
If $\sum b_{n}$ is convergent, then $\sum a_{n}$ is convergent.
Proof. Since $0 \leq a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$, then $0 \leq a_{n}$ for all $n \in \mathbb{N}$ and $0 \leq b_{n}$ for all $n \in \mathbb{N}$.

Hence, $\left(a_{n}\right)$ is a sequence of nonnegative terms and $\left(b_{n}\right)$ is a sequence of nonnegative terms.

Let $\left(s_{n}\right)$ be the sequence of partial sums of $\left(a_{n}\right)$.
Let $\left(t_{n}\right)$ be the sequence of partial sums of $\left(b_{n}\right)$.
Suppose the series $\sum b_{n}$ is convergent.

Since $\left(b_{n}\right)$ is a sequence of nonnegative terms and the series $\sum b_{n}$ is convergent, then by the boundedness convergence criterion for series of nonnegative terms, the sequence $\left(t_{n}\right)$ is bounded.

Hence, $\left(t_{n}\right)$ is bounded above, so there exists a real number T such that $t_{n} \leq T$ for all $n \in \mathbb{N}$.

We prove $0 \leq s_{n} \leq t_{n}$ for all $n \in \mathbb{N}$ by induction on n.
Let $S=\left\{n \in \mathbb{N}: 0 \leq s_{n} \leq t_{n}\right\}$.
Since $0 \leq a_{1} \leq b_{1}$ and $s_{1}=a_{1}$ and $t_{1}=b_{1}$, then $0 \leq s_{1} \leq t_{1}$, so $1 \in S$.
Suppose $m \in S$.
Then $m \in \mathbb{N}$ and $0 \leq s_{m} \leq t_{m}$, so $0 \leq s_{m}$ and $s_{m} \leq t_{m}$.
Since $m+1 \in \mathbb{N}$, then $0 \leq a_{m+1} \leq b_{m+1}$, so $0 \leq a_{m+1}$ and $a_{m+1} \leq b_{m+1}$.
Since $s_{m} \geq 0$ and $a_{m+1} \geq 0$, then $s_{m+1}=s_{m}+a_{m+1} \geq 0$, so $s_{m+1} \geq 0$.
Observe that

$$
\begin{aligned}
s_{m+1} & =s_{m}+a_{m+1} \\
& \leq t_{m}+a_{m+1} \\
& \leq t_{m}+b_{m+1} \\
& =t_{m+1}
\end{aligned}
$$

Thus, $s_{m+1} \leq t_{m+1}$.
Since $0 \leq s_{m+1}$ and $s_{m+1} \leq t_{m+1}$, then $0 \leq s_{m+1} \leq t_{m+1}$, so $m+1 \in S$. Therefore, by PMI, $S=\mathbb{N}$, so $0 \leq s_{n} \leq t_{n}$ for all $n \in \mathbb{N}$.

Since $t_{n} \leq T$ for all $n \in \mathbb{N}$, then $0 \leq s_{n} \leq t_{n} \leq T$ for all $n \in \mathbb{N}$.
Thus, $0 \leq s_{n} \leq T$ for all $n \in \mathbb{N}$, so $\left(s_{n}\right)$ is bounded.
Since $\left(a_{n}\right)$ is a sequence of nonnegative terms and $\left(s_{n}\right)$ is bounded, then by the boundedness convergence criterion for series of nonnegative terms, the series $\sum a_{n}$ is convergent, as desired.

Theorem 13. limit comparison test

Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be sequences of real numbers such that $a_{n}>0$ and $b_{n}>0$ for all $n \in \mathbb{N}$.

If there exists a positive real number L such that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$, then the series $\sum a_{n}$ is convergent iff the series $\sum b_{n}$ is convergent.

Proof. Suppose there exists a positive real number L such that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$. Suppose the series $\sum b_{n}$ is convergent.
Since $L>0$, then there exists $N \in \mathbb{N}$ such that if $n>N$, then $\left|\frac{a_{n}}{b_{n}}-L\right|<L$.
Let $n \in \mathbb{N}$ such that $n>N$.
Then $b_{n}>0$ and $\left|\frac{a_{n}}{b_{n}}-L\right|<L$.

Observe that

$$
\begin{aligned}
\left|\frac{a_{n}}{b_{n}}-L\right|<L & \Rightarrow-L<\frac{a_{n}}{b_{n}}-L<L \\
& \Rightarrow 0<\frac{a_{n}}{b_{n}}<2 L \\
& \Rightarrow 0<a_{n}<2 L b_{n} \\
& \Rightarrow 0 \leq a_{n} \leq 2 L b_{n}
\end{aligned}
$$

Therefore, $0 \leq a_{n} \leq 2 L b_{n}$ for all $n \in \mathbb{N}$.
Since $\sum b_{n}$ is convergent and $\sum 2 L b_{n}=2 L \sum b_{n}$, then by the scalar multiple rule, the series $\sum 2 L b_{n}$ is convergent.

Therefore, by DCT, the series $\sum a_{n}$ is convergent.

Conversely, suppose the series $\sum a_{n}$ is convergent.
Since $a_{n}>0$ and $b_{n}>0$ for all $n \in \mathbb{N}$, then $\frac{a_{n}}{b_{n}}>0$, so $\frac{a_{n}}{b_{n}} \neq 0$ for all $n \in \mathbb{N}$. Since $L>0$ and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$ and $\frac{a_{n}}{b_{n}} \neq 0$ for all $n \in \mathbb{N}$, then by a previous lemma, $\lim _{n \rightarrow \infty} \frac{b_{n}}{a_{n}}=\frac{1}{L}$.

Since $\frac{1}{L}>0$, then there exists $N \in \mathbb{N}$ such that if $n>N$, then $\left|\frac{b_{n}}{a_{n}}-\frac{1}{L}\right|<\frac{1}{L}$. Let $n \in \mathbb{N}$ such that $n>N$.
Then $a_{n}>0$ and $\left|\frac{b_{n}}{a_{n}}-\frac{1}{L}\right|<\frac{1}{L}$.
Observe that

$$
\begin{aligned}
\left|\frac{b_{n}}{a_{n}}-\frac{1}{L}\right|<\frac{1}{L} & \Rightarrow-\frac{1}{L}<\frac{b_{n}}{a_{n}}-\frac{1}{L}<\frac{1}{L} \\
& \Rightarrow 0<\frac{b_{n}}{a_{n}}<\frac{2}{L} \\
& \Rightarrow 0<b_{n}<\frac{2}{L} a_{n} \\
& \Rightarrow 0 \leq b_{n} \leq \frac{2}{L} a_{n}
\end{aligned}
$$

Therefore, $0 \leq b_{n} \leq \frac{2}{L} a_{n}$ for all $n \in \mathbb{N}$.
Since $\sum a_{n}$ is convergent and $\sum \frac{2}{L} a_{n}=\frac{2}{L} \sum a_{n}$, then by the scalar multiple rule, the series $\sum \frac{2}{L} a_{n}$ is convergent.

Therefore, by DCT, the series $\sum b_{n}$ is convergent.
Lemma 14. Let $\left(a_{n}\right)$ be a sequence in \mathbb{R}.
If there exists a real number L such that $\lim _{n \rightarrow \infty} a_{2 n}=L$ and $\lim _{n \rightarrow \infty} a_{2 n-1}=$ L, then $\lim _{n \rightarrow \infty} a_{n}=L$.

Proof. Suppose there exists a real number L such that $\lim _{n \rightarrow \infty} a_{2 n}=L$ and $\lim _{n \rightarrow \infty} a_{2 n-1}=L$.

Let $\epsilon>0$ be given.
Since $\lim _{n \rightarrow \infty} a_{2 n}=L$, then there exists $N_{1} \in \mathbb{N}$ such that $\left|a_{2 n}-L\right|<\epsilon$ whenever $n>N_{1}$.

Since $\lim _{n \rightarrow \infty} a_{2 n-1}=L$, then there exists $N_{2} \in \mathbb{N}$ such that $\left|a_{2 n-1}-L\right|<\epsilon$ whenever $n>N_{2}$.

Let $N=\max \left\{2 N_{1}, 2 N_{2}-1\right\}$.
Let $n>N$.
Either n is even or n is odd.
We consider these cases separately.
Case 1: Suppose n is even.
Then there exists a natural number m such that $n=2 m$, so $m=\frac{n}{2}$.
Since $n>N \geq 2 N_{1}$, then $n>2 N_{1}$, so $\frac{n}{2}>N_{1}$.
Thus, $m>N_{1}$, so $\left|a_{2 m}-L\right|=\left|a_{n}-L\right|<\epsilon$.
Case 2: Suppose n is odd.
Then there exists a natural number m such that $n=2 m-1$, so $m=\frac{n+1}{2}$.
Since $n>N \geq 2 N_{2}-1$, then $n>2 N_{2}-1$, so $\frac{n+1}{2}>N_{2}$.
Thus, $m>N_{2}$, so $\left|a_{2 m-1}-L\right|=\left|a_{n}-L\right|<\epsilon$.
Therefore, in either case, $\left|a_{n}-L\right|<\epsilon$, so $\lim _{n \rightarrow \infty} a_{n}=L$, as desired.

Theorem 15. alternating series test

Let $\left(a_{n}\right)$ be a sequence of positive terms in \mathbb{R}.
If $\left(a_{n}\right)$ is monotonic decreasing and $\lim _{n \rightarrow \infty} a_{n}=0$, then the series $\sum(-1)^{n} a_{n}$ is convergent.

Proof. Suppose $\left(a_{n}\right)$ is monotonic decreasing and $\lim _{n \rightarrow \infty} a_{n}=0$.
Let $\left(s_{n}\right)$ be the sequence of partial sums of the sequence given by $(-1)^{n} a_{n}$ for all $n \in \mathbb{N}$.

Then $s_{n}=\sum_{k=1}^{n}(-1)^{k} a_{k}$ for all $n \in \mathbb{N}$ and $s_{n+1}=s_{n}+(-1)^{n+1} a_{n+1}$ for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$ be given.
Then

$$
\begin{aligned}
s_{2(n+1)}-s_{2 n} & =s_{2 n+2}-s_{2 n} \\
& =\sum_{k=1}^{2 n+2}(-1)^{k} a_{k}-\sum_{k=1}^{2 n}(-1)^{k} a_{k} \\
& =\sum_{k=1}^{2 n}(-1)^{k} a_{k}+(-1)^{2 n+1} a_{2 n+1}+(-1)^{2 n+2} a_{2 n+2}-\sum_{k=1}^{2 n}(-1)^{k} a_{k} \\
& =(-1)^{2 n+1} a_{2 n+1}+(-1)^{2 n+2} a_{2 n+2} \\
& =-a_{2 n+1}+a_{2 n+2}
\end{aligned}
$$

Since $\left(a_{n}\right)$ is decreasing, then $a_{2 n+1} \geq a_{2 n+2}$, so $0 \geq-a_{2 n+1}+a_{2 n+2}$.
Thus, $0 \geq s_{2(n+1)}-s_{2 n}$, so $s_{2 n} \geq s_{2(n+1)}$.
Therefore, the sequence ($s_{2 n}$) is decreasing.
We prove $-a_{1}+a_{2 n} \leq s_{2 n}$ for all $n \in \mathbb{N}$ by induction on n.
Let $S=\left\{n \in \mathbb{N}:-a_{1}+a_{2 n} \leq s_{2 n}\right\}$.
Since $-a_{1}+a_{2}=s_{2}$, then $1 \in S$.
Suppose $k \in S$.

Then $k \in \mathbb{N}$ and $-a_{1}+a_{2 k} \leq s_{2 k}$.
Observe that

$$
\begin{aligned}
-a_{1}+a_{2 k}-a_{2 k+1}+a_{2 k+2} & \leq s_{2 k}-a_{2 k+1}+a_{2 k+2} \\
& =s_{2 k}+(-1)^{2 k+1} a_{2 k+1}+a_{2 k+2} \\
& =s_{2 k+1}+a_{2 k+2} \\
& =s_{2 k+1}+(-1)^{2 k+2} a_{2 k+2} \\
& =s_{2 k+2} .
\end{aligned}
$$

Hence, $-a_{1}+a_{2 k}-a_{2 k+1}+a_{2 k+2} \leq s_{2 k+2}$, so $a_{2 k}-a_{2 k+1} \leq s_{2 k+2}-\left(-a_{1}+a_{2 k+2}\right)$.
Since $\left(a_{n}\right)$ is decreasing, then $a_{2 k} \geq a_{2 k+1}$, so $a_{2 k}-a_{2 k+1} \geq 0$.
Since $0 \leq a_{2 k}-a_{2 k+1} \leq s_{2 k+2}-\left(-a_{1}+a_{2 k+2}\right)$, then $0 \leq s_{2 k+2}-\left(-a_{1}+a_{2 k+2}\right)$, so $-a_{1}+a_{2 k+2} \leq s_{2 k+2}$.

Hence, $-a_{1}+a_{2(k+1)} \leq s_{2(k+1)}$, so $k+1 \in S$.
Therefore, by PMI, $S=\mathbb{N}$, so $-a_{1}+a_{2 n} \leq s_{2 n}$ for all $n \in \mathbb{N}$.
Let $n \in \mathbb{N}$ be given.
Since $\left(a_{n}\right)$ is a sequence of positive terms, then $a_{n}>0$ for all $n \in \mathbb{N}$.
Since $2 n \in \mathbb{N}$, then $a_{2 n}>0$, so $-a_{1}+a_{2 n}>-a_{1}$.
Thus, $-a_{1}<-a_{1}+a_{2 n} \leq s_{2 n}$, so $-a_{1}<s_{2 n}$.
Therefore, $-a_{1}<s_{2 n}$ for all $n \in \mathbb{N}$.
Since $\left(s_{2 n}\right)$ is decreasing, then $-a_{1}+a_{2}=s_{2} \geq s_{2 n}$ for all $n \in \mathbb{N}$.
Since $-a_{1}<s_{2 n}$ for all $n \in \mathbb{N}$ and $s_{2 n} \leq-a_{1}+a_{2}$ for all $n \in \mathbb{N}$, then $-a_{1}<s_{2 n} \leq-a_{1}+a_{2}$ for all $n \in \mathbb{N}$.

Therefore, $\left(s_{2 n}\right)$ is bounded.
Since $\left(s_{2 n}\right)$ is decreasing, then $\left(s_{2 n}\right)$ is monotonic.
Therefore, by MCT, $\left(s_{2 n}\right)$ is convergent, so there exists a real number L such that $\lim _{n \rightarrow \infty} s_{2 n}=L$.

Since $\left(a_{2 n}\right)$ is a subsequence of $\left(a_{n}\right)$ and $\lim _{n \rightarrow \infty} a_{n}=0$, then $\lim _{n \rightarrow \infty} a_{2 n}=$ 0.

Since $s_{2 n}=s_{2 n-1}+(-1)^{2 n} a_{2 n}=s_{2 n-1}+a_{2 n}$, then $s_{2 n}=s_{2 n-1}+a_{2 n}$.
Observe that

$$
\begin{aligned}
L & =L-0 \\
& =\lim _{n \rightarrow \infty} s_{2 n}-\lim _{n \rightarrow \infty} a_{2 n} \\
& =\lim _{n \rightarrow \infty}\left(s_{2 n}-a_{2 n}\right) \\
& =\lim _{n \rightarrow \infty} s_{2 n-1} .
\end{aligned}
$$

Therefore, $L=\lim _{n \rightarrow \infty} s_{2 n-1}$.
Since there exists a real number L such that $\lim _{n \rightarrow \infty} s_{2 n}=L$ and $\lim _{n \rightarrow \infty} s_{2 n-1}=$ L, then by a previous lemma, $\lim _{n \rightarrow \infty} s_{n}=L$.

Therefore, $\left(s_{n}\right)$ is convergent, so $\sum(-1)^{n} a_{n}$ is convergent.

Theorem 16. absolute convergence implies convergence

Let $\left(a_{n}\right)$ be a sequence in \mathbb{R}.
If the series $\sum\left|a_{n}\right|$ is convergent, then the series $\sum a_{n}$ is convergent.

Proof. Suppose the series $\sum\left|a_{n}\right|$ is convergent.
Let $n \in \mathbb{N}$ be given.
Then $a_{n} \in \mathbb{R}$, so $-\left|a_{n}\right| \leq a_{n} \leq\left|a_{n}\right|$.
Thus, $-\left|a_{n}\right| \leq a_{n}$ and $a_{n} \leq\left|a_{n}\right|$.
Since $-\left|a_{n}\right| \leq a_{n}$, then $0 \leq a_{n}+\left|a_{n}\right|$.
Since $a_{n} \leq\left|a_{n}\right|$, then $a_{n}+\left|a_{n}\right| \leq 2\left|a_{n}\right|$.
Hence, $0 \leq a_{n}+\left|a_{n}\right| \leq 2\left|a_{n}\right|$.
Since $\sum\left|a_{n}\right|$ is convergent and $\sum 2\left|a_{n}\right|=2 \sum\left|a_{n}\right|$, then the series $\sum 2\left|a_{n}\right|$ is convergent.

Thus, by DCT, the series $\sum\left(a_{n}+\left|a_{n}\right|\right)$ is convergent.
Therefore, $\sum a_{n}=\sum\left(a_{n}+\left|a_{n}\right|-\left|a_{n}\right|\right)=\sum\left(a_{n}+\left|a_{n}\right|\right)-\sum\left|a_{n}\right|$, so the series $\sum a_{n}$ is convergent, as desired.

Proof. Suppose the series $\sum\left|a_{n}\right|$ is convergent.
Then $\sum\left|a_{n}\right|$ satisfies the Cauchy criterion for series.
Let $\epsilon>0$ be given.
Then there exists $N \in \mathbb{N}$ such that if $n>m>N$, then $\left|\sum_{k=m+1}^{n}\right| a_{k}| |<\epsilon$.
Let $m, n \in \mathbb{N}$ such that $n>m>N$.
Then $\left|\sum_{k=m+1}^{n}\right| a_{k}| |<\epsilon$.
Observe that

$$
\begin{aligned}
\left|\sum_{k=m+1}^{n} a_{k}\right| & =\left|a_{m+1}+a_{m+2}+\ldots+a_{n}\right| \\
& \leq\left|a_{m+1}\right|+\left|a_{m+2}\right|+\ldots+\left|a_{n}\right| \\
& =\sum_{k=m+1}^{n}\left|a_{k}\right| \\
& \leq\left|\sum_{k=m+1}^{n}\right| a_{k}| | \\
& <\epsilon
\end{aligned}
$$

Thus, $\left|\sum_{k=m+1}^{n} a_{k}\right|<\epsilon$, so the series $\sum a_{n}$ satisfies the Cauchy criterion.
Therefore, $\sum a_{n}$ is convergent, as desired.

Theorem 17. ratio test

Let $\left(a_{n}\right)$ be a sequence of nonzero real numbers.
a. If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent.
b. If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|>1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
c. If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$, then the ratio test is inconclusive.

Proof. Let $\left(a_{n}\right)$ be a sequence of nonzero real numbers.
Then $a_{n} \neq 0$ for all $n \in \mathbb{N}$.
Since $\left|a_{n}\right| \geq 0$ and $a_{n} \neq 0$ for all $n \in \mathbb{N}$, then $\left|a_{n}\right|>0$ for all $n \in \mathbb{N}$.
Let $\left(b_{n}\right)$ be a convergent sequence defined by $b_{n}=\left|\frac{a_{n+1}}{a_{n}}\right|$ for all $n \in \mathbb{N}$.
Since $\left(b_{n}\right)$ is convergent, then there exists $L \in \mathbb{R}$ such that $L=\lim _{n \rightarrow \infty} b_{n}=$ $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$.

Proof. We prove a.
If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent.
Suppose $L<1$.
Let $n \in \mathbb{N}$ be given.
Since $a_{n} \neq 0$ and $a_{n+1} \neq 0$, then $\frac{a_{n+1}}{a_{n}} \neq 0$.
Since $\left|\frac{a_{n+1}}{a_{n}}\right| \geq 0$ and $\frac{a_{n+1}}{a_{n}} \neq 0$, then $b_{n}=\left|\frac{a_{n+1}}{a_{n}}\right|>0$.
Thus, $b_{n}>0$ for all $n \in \mathbb{N}$, so 0 is a lower bound of $\left(b_{n}\right)$.
Since $\lim _{n \rightarrow \infty} b_{n}=L$ and 0 is a lower bound of $\left(b_{n}\right)$, then $0 \leq L$.
Hence, $0 \leq L<1$.
Since L and 1 are real numbers, then by the density of \mathbb{R}, there exists $r \in \mathbb{R}$ such that $L<r<1$.

Thus, $0 \leq L<r<1$, so $0<r<1$ and $L<r$.
Since $r-L>0$ and $\lim _{n \rightarrow \infty} b_{n}=L$, then there exists $N \in \mathbb{N}$ such that if $n>N$, then $\left|b_{n}-L\right|<r-L$.

Let $n \in \mathbb{N}$ such that $n>N$.
Then $\left|b_{n}-L\right|<r-L$.
Observe that

$$
\begin{aligned}
\left|b_{n}-L\right|<r-L & \Leftrightarrow-(r-L)<b_{n}-L<r-L \\
& \Rightarrow b_{n}-L<r-L \\
& \Leftrightarrow b_{n}<r \\
& \Leftrightarrow\left|\frac{a_{n+1}}{a_{n}}\right|<r \\
& \Leftrightarrow \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}<r \\
& \Rightarrow\left|a_{n+1}\right|<r\left|a_{n}\right|
\end{aligned}
$$

Therefore, $\left|a_{n+1}\right|<r\left|a_{n}\right|$ for all natural numbers $n>N$.
We prove $\left|a_{N+k}\right|<r^{k-1}\left|a_{N+1}\right|$ for all natural numbers $k \geq 2$ by induction on k.

Let $S=\left\{k \in \mathbb{N}:\left|a_{N+k}\right|<r^{k-1}\left|a_{N+1}\right|, k \geq 2\right\}$.
Since $N+1 \in \mathbb{N}$ and $N+1>N$, then $\left|a_{N+2}\right|<r\left|a_{N+1}\right|=r^{2-1}\left|a_{N+1}\right|$.
Thus, $\left|a_{N+2}\right|<r^{2-1}\left|a_{N+1}\right|$, so $2 \in S$.
Suppose $m \in S$.
Then $m \in \mathbb{N}$ and $m \geq 2$ and $\left|a_{N+m}\right|<r^{m-1}\left|a_{N+1}\right|$.
Since $m \in \mathbb{N}$, then $m+1 \in \mathbb{N}$.
Since $m+1>m$ and $m \geq 2$, then $m+1>2$.
Since $N+m \in \mathbb{N}$ and $N+m>N$, then $\left|a_{N+m+1}\right|<r\left|a_{N+m}\right|$.
Since $r>0$ and $\left|a_{N+m}\right|<r^{m-1}\left|a_{N+1}\right|$, then $r\left|a_{N+m}\right|<r^{m}\left|a_{N+1}\right|$.
Hence, $\left|a_{N+m+1}\right|<r\left|a_{N+m}\right|<r^{m}\left|a_{N+1}\right|$, so $\left|a_{N+m+1}\right|<r^{m}\left|a_{N+1}\right|=$ $r^{m+1-1}\left|a_{N+1}\right|$.

Thus, $m+1 \in S$.
Therefore, by PMI, $\left|a_{N+k}\right|<r^{k-1}\left|a_{N+1}\right|$ for all natural numbers $k \geq 2$.

Since $\left|a_{n}\right|>0$ for all $n \in \mathbb{N}$ and $N+k \in \mathbb{N}$ for all natural numbers $k \geq 2$, then $\left|a_{N+k}\right|>0$ for all natural numbers $k \geq 2$.

Thus, $0<\left|a_{N+k}\right|<r^{k-1}\left|a_{N+1}\right|$ for all natural numbers $k \geq 2$.
Since $|r|=r<1$, then the geometric series $\sum_{k=1}^{\infty} r^{k}$ is convergent and $\sum_{k=1}^{\infty} r^{k}=\frac{r}{1-r}$.

Observe that

$$
\begin{aligned}
\sum_{k=2}^{\infty} r^{k-1}\left|a_{N+1}\right| & =r\left|a_{N+1}\right|+r^{2}\left|a_{N+1}\right|+r^{3}\left|a_{N+1}\right|+\ldots \\
& =\left|a_{N+1}\right|\left(r+r^{2}+r^{3}+\ldots\right) \\
& =\left|a_{N+1}\right| \sum_{k=1}^{\infty} r^{k} \\
& =\frac{\left|a_{N+1}\right| r}{1-r}
\end{aligned}
$$

Thus, the series $\sum_{k=2}^{\infty} r^{k-1}\left|a_{N+1}\right|$ is convergent.
Hence, by DCT, the series $\sum_{k=2}^{\infty}\left|a_{N+k}\right|$ is convergent.
Observe that

$$
\begin{aligned}
\sum_{k=2}^{\infty}\left|a_{N+k}\right| & =\left|a_{N+2}\right|+\left|a_{N+3}\right|+\left|a_{N+4}\right|+\ldots \\
& =\left|a_{(N+1)+1}\right|+\left|a_{(N+1)+2}\right|+\left|a_{(N+1)+3}\right|+\ldots \\
& =\sum_{n=1}^{\infty}\left|a_{(N+1)+n}\right|
\end{aligned}
$$

Thus, the series $\sum_{n=1}^{\infty}\left|a_{(N+1)+n}\right|$ is convergent.
Since $N+1$ is a positive integer and the series $\sum_{n=1}^{\infty}\left|a_{(N+1)+n}\right|$ is convergent, then the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is convergent.

Since absolute convergence implies convergence, then the series $\sum_{n=1}^{\infty} a_{n}$ is convergent, as desired.

Proof. We prove b.
If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|>1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
Suppose $L>1$.
Then $L-1>0$.
Since $L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$, then there exists $N \in \mathbb{N}$ such that if $n>N$, then $\left|\left|\frac{a_{n+1}}{a_{n}}\right|-L\right|<L-1$.
${ }^{a_{n}}$ Let $n \in \mathbb{N}$ such that $n>N$.
Then $\left|\left|\frac{a_{n+1}}{a_{n}}\right|-L\right|<L-1$.

Observe that

$$
\begin{aligned}
\left|\left|\frac{a_{n+1}}{a_{n}}\right|-L\right|<L-1 & \Leftrightarrow-(L-1)<\left|\frac{a_{n+1}}{a_{n}}\right|-L<L-1 \\
& \Rightarrow 1-L<\left|\frac{a_{n+1}}{a_{n}}\right|-L \\
& \Leftrightarrow 1<\left|\frac{a_{n+1}}{a_{n}}\right| \\
& \Leftrightarrow 1<\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} \\
& \Rightarrow\left|a_{n}\right|<\left|a_{n+1}\right| .
\end{aligned}
$$

Therefore, $\left|a_{n}\right|<\left|a_{n+1}\right|$ for all natural numbers $n>N$.

We prove $\left|a_{N+1}\right| \leq\left|a_{n}\right|$ for all natural numbers $n>N$ by induction on n.
Let $S=\left\{n \in \mathbb{N}:\left|a_{N+1}\right| \leq\left|a_{n}\right|, n>N\right\}$.
Since $N+1 \in \mathbb{N}$ and $N+1>N$ and $\left|a_{N+1}\right|=\left|a_{N+1}\right|$, then $N+1 \in S$. Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $k>N$ and $\left|a_{N+1}\right| \leq\left|a_{k}\right|$.
Since $k \in \mathbb{N}$, then $k+1 \in \mathbb{N}$.
Since $k+1>k$ and $k>N$, then $k+1>N$.
Since $k \in \mathbb{N}$ and $k>N$, then $\left|a_{k}\right|<\left|a_{k+1}\right|$.
Since $\left|a_{N+1}\right| \leq\left|a_{k}\right|$ and $\left|a_{k}\right|<\left|a_{k+1}\right|$, then $\left|a_{N+1}\right|<\left|a_{k+1}\right|$, so $k+1 \in S$. Hence, by PMI, $\left|a_{N+1}\right| \leq\left|a_{n}\right|$ for all natural numbers $n>N$.

Suppose $\lim _{n \rightarrow \infty} a_{n}=0$.
Since $N+1 \in \mathbb{N}$, then $\left|a_{N+1}\right|>0$.
Hence, there exists $K \in \mathbb{N}$ such that if $n>K$, then $\left|a_{n}\right|<\left|a_{N+1}\right|$.
Let $M=\max \{K, N\}$.
Let $n \in \mathbb{N}$ such that $n>M$.
Since $n>M \geq K$, then $n>K$, so $\left|a_{n}\right|<\left|a_{N+1}\right|$.
Since $n>M \geq N$, then $n>N$, so $\left|a_{N+1}\right| \leq\left|a_{n}\right|$.
Thus, we have $\left|a_{n}\right|<\left|a_{N+1}\right|$ and $\left|a_{n}\right| \geq\left|a_{N+1}\right|$, a violation of trichotomy.
Hence, $\lim _{n \rightarrow \infty} a_{n} \neq 0$.
Therefore, by the $n^{t h}$ term test for divergence, the series $\sum a_{n}$ is divergent.

