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Infinite Series of Real Numbers

Example 1. telescoping series
Show that

∑∞
n=1

1
n(n+1) = 1.

Solution. Let (an) be a sequence of real numbers defined by an = 1
n(n+1) for

all n ∈ N.
Then an = 1

n −
1

n+1 .
Let (sn) be the sequence of partial sums of (an).
We first prove sn = n

n+1 for all n ∈ N by induction on n.
Let S = {n ∈ N : sn = n

n+1}.
Since s1 = a1 = 1

2 = 1
1+1 , then 1 ∈ S.

Suppose k ∈ S.
Then k ∈ N and sk = k

k+1 .
Observe that

sk+1 = sk + ak+1

=
k

k + 1
+

1

(k + 1)(k + 2)

=
k(k + 2) + 1

(k + 1)(k + 2)

=
k2 + 2k + 1

(k + 1)(k + 2)

=
(k + 1)2

(k + 1)(k + 2)

=
k + 1

k + 2

=
k + 1

[(k + 1) + 1]
.

Thus, k + 1 ∈ S.
Hence, by PMI, S = N, so sn = n

n+1 for all n ∈ N.

Thus, 1 = limn→∞
n

n+1 = limn→∞ sn, so
∑∞

n=1
1

n(n+1) = 1, as desired.



Example 2. harmonic series is divergent
Let (an) be a sequence defined by an = 1

n .
Let (sn) be the sequence of partial sums defined by sn = 1 + 1

2 + 1
3 + 1

4 +
... + 1

n =
∑n

k=1
1
k for all n ∈ N.

Then (sn) is divergent, so the sequence of terms (an) is not summable.
Therefore, the harmonic series

∑∞
n=1

1
n = 1 + 1

2 + 1
3 + 1

4 + ... diverges.

Proof. To prove (sn) diverges, we prove (sn) is unbounded.
We prove (sn) is unbounded above.
Hence, we prove (∀M ∈ R)(∃n ∈ N)(sn > M).
Let M ∈ R be given.
Either M ≤ 1 or M > 1.
We consider these cases separately.
Case 1: Suppose M ≤ 1.
Let n = 2. Then s2 = 1 + 1

2 > 1 ≥M , so s2 > M .
Case 2: Suppose M > 1.
Since 2M − 2 ∈ R, then by the Archimedean property of R, there exists

N ∈ N such that N > 2M − 2. Hence, 2+N
2 > M , so 1 + N

2 > M .
Let n = 2N . Then n ∈ N.
We first prove s2k ≥ 1 + k

2 for all k ∈ N by induction on k.

Since N ∈ N and s2k ≥ 1 + k
2 for all k ∈ N, then sn = s2N ≥ 1 + N

2 . Thus,

sn ≥ 1 + N
2 and 1 + N

2 > M , so sn > M .
Hence, (sn) is unbounded above, so (sn) is unbounded.
Therefore, (sn) is divergent.

Example 3. The series
∑∞

n=1
1
n2 is convergent.

Proof. Let (an) be a sequence of real numbers defined by an = 1
n2 for all n ∈ N.

Let (sn) be the sequence of partial sums of (an).
We first prove (sn) is strictly increasing.
Let n ∈ N be given.
Then n ≥ 1, so n + 1 ≥ 2 > 0.
Thus, n + 1 > 0, so (n + 1)2 > 0.
Hence, 1

(n+1)2 > 0.

Observe that sn+1 − sn = an+1 = 1
(n+1)2 > 0, so sn+1 − sn > 0.

Thus, sn+1 > sn, so sn < sn+1.
Therefore, (sn) is strictly increasing, so (sn) is monotonic and s1 = a1 = 1

is a lower bound of (sn).
We next prove sn ≤ 2− 1

n for all n ∈ N by induction on n.
Let S = {n ∈ N : sn ≤ 2− 1

n}.
Since s1 = a1 = 1 = 2− 1

1 , then 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and sk ≤ 2− 1

k .
Since k ∈ N, then k ≥ 1.
Since k ≥ 1 > 0, then k > 0.
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Since k ≥ 1 and k ≥ 1 ⇒ k + 1 ≥ 2 > 0 ⇒ k + 1 > 0 ⇒ (k + 1)2 > 0, then
(k + 1)2 > 0.

Observe that

k(k + 2) = k2 + 2k < k2 + 2k + 1 = (k + 1)2 ⇒ k(k + 2) < (k + 1)2

⇒ k + 2

(k + 1)2
<

1

k

⇒ 1 + (k + 1)

(k + 1)2
<

1

k

⇒ 1

(k + 1)2
+

1

k + 1
<

1

k

⇒ sk +
1

(k + 1)2
+

1

k + 1
< sk +

1

k
≤ 2

⇒ sk +
1

(k + 1)2
+

1

k + 1
< 2

⇒ sk +
1

(k + 1)2
< 2− 1

k + 1

⇒ sk + ak+1 < 2− 1

k + 1

⇒ sk+1 < 2− 1

k + 1
⇒ k + 1 ∈ S.

Thus, k ∈ S implies k + 1 ∈ S.
Hence, by PMI, S = N, so sn ≤ 2− 1

n for all n ∈ N.
We next prove 2− 1

n < 2 for all n ∈ N.
Let n ∈ N be given.
Then n ≥ 1 > 0, so n > 0.
Hence, 1

n > 0, so 1
n > 2− 2.

Therefore, 2 > 2− 1
n , so 2− 1

n < 2 for all n ∈ N.
Since sn ≤ 2− 1

n for all n ∈ N and 2− 1
n < 2 for all n ∈ N, then sn ≤ 2− 1

n < 2
for all n ∈ N, so sn < 2 for all n ∈ N.

Since 1 is a lower bound of (sn), then 1 ≤ sn for all n ∈ N.
Thus, 1 ≤ sn < 2 for all n ∈ N, so (sn) is bounded.
Since (sn) is bounded and monotonic, then by MCT, (sn) is convergent.
Hence,

∑∞
n=1

1
n2 is convergent.

Example 4. Show that
∑∞

n=1
1
2n = 1.

Proof. Let (an) be a sequence of real numbers defined by an = 1
2n for all n ∈ N.

Then an = ( 1
2 )n for all n ∈ N, so (an) is a geometric sequence with common

ratio r = 1
2 .

Since |r| = | 12 | =
1
2 < 1, then an → 0, so limn→∞

1
2n = 0.

Let (sn) be the sequence of partial sums of (an).
We prove sn = 1− 1

2n for all n ∈ N by induction on n.
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Let S = {n ∈ N : sn = 1− 1
2n }.

Since s1 = a1 = 1
2 = 1− 1

21 , then 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and sk = 1− 1

2k
.

Observe that

sk+1 = sk + ak+1

= (1− 1

2k
) +

1

2k+1

= 1− 1

2k
+

1

2

1

2k

= 1− 1

2

1

2k

= 1− 1

2k+1
.

Hence, sk+1 = 1− 1
2k+1 , so k + 1 ∈ S.

Thus, by PMI, sn = 1− 1
2n for all n ∈ N.

Observe that

1 = 1− 0

= lim
n→∞

1− lim
n→∞

1

2n

= lim
n→∞

(1− 1

2n
)

= lim
n→∞

sn.

Therefore, 1 = limn→∞ sn =
∑∞

n=1
1
2n , so

∑∞
n=1

1
2n = 1, as desired.

Convergence Tests for Series of Real Numbers

Example 5. applying the direct comparison test
a. The series

∑
1√
n

and
∑

n+1
n2+1 are divergent.

b. The series
∑

1
n2+1 and

∑
1
n3 are convergent.

Solution. a1. We prove the series
∑

1√
n

is divergent.

Let n ∈ N be given.
Then n ≥ 1 > 0.

4



Observe that

n ≥ 1 ∧ n > 0 ⇒ n2 ≥ n > 0

⇒
√
n2 ≥

√
n > 0

⇒ |n| ≥
√
n > 0

⇒ n ≥
√
n > 0

⇒ 1√
n
≥ 1

n
> 0

⇒ 0 <
1

n
≤ 1√

n

⇒ 0 ≤ 1

n
≤ 1√

n
.

Hence, 0 ≤ 1
n ≤

1√
n

for all n ∈ N.

Since the series
∑

1
n is divergent, then by DCT, the series

∑
1√
n

is divergent.

Solution. a2. We prove the series
∑

n+1
n2+1 is divergent.

Let n ∈ N be given.
Then n ≥ 1 > 0.
Observe that

0 < 1 ≤ n ⇒ 0 < n2 + 1 ≤ n2 + n = n(n + 1)

⇒ 0 < n2 + 1 ≤ n(n + 1)

⇒ 0 <
1

n
≤ n + 1

n2 + 1

⇒ 0 ≤ 1

n
≤ n + 1

n2 + 1
.

Since the series
∑

1
n is divergent, then by DCT, the series

∑
n+1
n2+1 is diver-

gent.
Solution. b1. We prove the series

∑
1

n2+1 is convergent.
Let n ∈ N be given.
Clearly, n2 + 1 > n2 > 0, so 0 < 1

n2+1 < 1
n2 .

Hence, 0 ≤ 1
n2+1 ≤

1
n2 , so 0 ≤ 1

n2+1 ≤
1
n2 for all n ∈ N.

Since the series
∑

1
n2 is convergent, then by DCT, the series

∑
1

n2+1 is
convergent.
Solution. b2. We prove the series

∑
1
n3 is convergent.

Let n ∈ N be given.
Then n ≥ 1 > 0, so n > 0.
Hence, n2 > 0.
Since n ≥ 1 and n2 > 0, then n3 ≥ n2 > 0, so 0 < 1

n3 ≤ 1
n2 .

Thus, 0 ≤ 1
n3 ≤ 1

n2 for all n ∈ N.
Since the series

∑
1
n2 is convergent, then by DCT, the series

∑
1
n3 is con-

vergent.
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Example 6. applying the limit comparison test
The series

∑∞
n=2

1
n2−1 is convergent.

Solution. Let n ∈ N such that n > 1.
Then n2 > 1, so n2 − 1 > 0.
Hence, 1

n2−1 > 0.

Since n > 0, then n2 > 0, so 1
n2 > 0.

Thus, 1
n2−1 > 0 and 1

n2 > 0 for all n > 1.

Since limn→∞
1

n2−1
1
n2

= limn→∞
n2

n2−1 = 1 > 0 and the series
∑

1
n2 is conver-

gent, then by LCT, the series
∑∞

n=2
1

n2−1 is convergent.

Example 7. alternating harmonic series is convergent

The series
∑ (−1)n

n is convergent.

Solution.
Let (an) be the sequence of real numbers defined by an = 1

n for all n ∈ N.
Since 1

n > 0 for all n ∈ N and the sequence ( 1
n ) is decreasing and limn→∞

1
n =

0, then by AST, the series
∑ (−1)n

n is convergent.

Example 8. The series
∑ (−1)n

n2 converges.

Solution.
Since ( 1

n2 ) is a decreasing sequence of positive terms and limn→∞
1
n2 = 0,

then by AST, the series
∑ (−1)n

n2 converges.
In fact, the series converges to a negative real number.

Example 9. The series
∑ sin(n)

n2 is absolutely convergent, so
∑ sin(n)

n2 is con-
vergent.

Solution. Let n ∈ N be given.
Then n > 0, so n2 > 0.
Since | sinx| ≤ 1 for all x ∈ R and n ∈ R, then 0 ≤ | sinn| ≤ 1.

Thus, 0 ≤ | sinn|
n2 ≤ 1

n2 , so 0 ≤ | sinn
n2 | ≤ 1

n2 .

Since the series
∑

1
n2 is convergent, then by DCT, the series

∑
| sinn

n2 | is
convergent.

Therefore, the series
∑ sin(n)

n2 is absolutely convergent, so
∑ sin(n)

n2 is conver-
gent.
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