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Infinite Series of Real Numbers

Example 1. telescoplng series

Show that > >, n(n+1) =1
Solution. Let (a,) be a sequence of real numbers defined by a,, = m for
alln € N.
Then a, = % — #
Let (s,) be the sequence of partial sums of (a,).
We first prove s, = 7 for all n € N by induction on n.
Let S={n€N:s, =5}
Since s1 = a1 = % —% then 1 € S.
Suppose k € S.
Then k € N and si = kil.
Observe that
Sk+1 = Skt agt1
B k 1
BT (k+1)(k+2)
o k(k+2)+1
 (k+1)(k+2)
kK +2k+1
 (k+1D)(k+2)
B (k+1)?
T TG
_k+1
= e
B kE+1
l(k+1)+1)
Thus, k+1€ S.
Hence, by PMI, S =N, so s, = ;.75 for all n € N.
Thus, 1 = limy, e 5757 = liMy—00 Sn,y 80 S ”(nl_H) =1, as desired. O



Example 2. harmonic series is divergent
Let (a,) be a sequence defined by a, = .
Let (s,) be the sequence of partial sums defined by s, =1+ 3 + % + 1 +
L+l =3 tforallneN.
Then (s,,) is divergent, so the sequence of terms (a,) is not summable.

Therefore, the harmonic series Y >° | 2 =141 + % + 1 + ... diverges.

n=1n

Proof. To prove (s,) diverges, we prove (s,) is unbounded.

We prove (s,,) is unbounded above.

Hence, we prove (VM € R)(In € N)(s, > M).

Let M € R be given.

Either M <1or M > 1.

We consider these cases separately.

Case 1: Suppose M < 1.

Let n = 2. Then82:1+%>12M,SOSQ>M.

Case 2: Suppose M > 1.

Since 2M — 2 € R, then by the Archimedean property of R, there exists
N € N such that N > 2M — 2. Hence, # > M, sol+%>M.

Let n =2V, Then n € N.

We first prove sor > 1+ % for all k£ € N by induction on k.

Since N € N and sor > 1+ g for all £ € N, then s,, = son > 1+ % Thus,
sn21+%and 1+%>M,sosn>M.

Hence, (s,) is unbounded above, so (s;,) is unbounded.

Therefore, (s,) is divergent. O
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Example 3. The series Y.~ | -5 is convergent.

Proof. Let (a,) be a sequence of real numbers defined by a,, = =5 for all n € N.
Let (sy,) be the sequence of partial sums of (a,).

We first prove (s, ) is strictly increasing.

Let n € N be given.

Thenn>1,son+1>2>0.

Thus, n+ 1 > 0, so (n+ 1)2 > 0.

Hence, —~ > 0.

(n+1)2

Observe that s,41 — Sp = apy1 = ﬁ >0, 80 Sp41 — Sp > 0.

Thus, Sp+1 > S, 50 Sy < Spt1-

Therefore, (s;,) is strictly increasing, so (s, ) is monotonic and s; = a; = 1
is a lower bound of (s,,).

We next prove s, < 2 — % for all n € N by induction on n.

Let S={neN:s, <2— 1}

Since51:a1:1:2—%,then165.

Suppose k € S.

ThenkENandsk§2—%.

Since k € N, then k£ > 1.

Since k > 1 > 0, then k£ > 0.

3[0‘ —



Sincek>land k>1=k+1>2>0=k+1>0= (k+1)2 >0, then
(k+1)2 > 0.
Observe that

k(k+2)=k>+2k<k?>4+2k+1=(k+1)? = k(k+2) < (k+1)>

L ka2
(k+1)2 "k
N 1+(k+1)<1
(k+1)2 k
B N
(k+1)2  k+1 Kk
= Sk + 1 + 1 <sk—|—1<2
(k+1)2 k+1 k—
1 1
= Sp+ + 2

Gr1Z kil

1 1
= Spt s <2———

(k+1)2 k+1
1
= <2—-—
Sk + QK41 Pl
1
= <2—-—
Sk+1 k1

= k+1€6b.

Thus, k € S implies k+1 € S.

Hence, by PMI, S =N, so s,, <2 — % for all n € N.

‘We next prove 2 — % < 2 for all n € N.

Let n € N be given.

Thenn>1>0,son > 0.

Hence, %>0, SO % >2—2.

Therefore, 2 > 2 — %, SO 2 — % < 2 for all n € N.

Since s,, < 2—% for alln € N and 2—% < 2foralln € N, then s,, < 2—% <2
for all n € N, so s, < 2 for all n € N.

Since 1 is a lower bound of (s,), then 1 < s, for all n € N.

Thus, 1 <s, <2 for all n € N, so (s,) is bounded.

Since (s,,) is bounded and monotonic, then by MCT, (s,,) is convergent.

Hence, Y, n—12 is convergent. O
Example 4. Show that >°7 L =1.

n=1 27

Proof. Let (ay,) be a sequence of real numbers defined by a,, = 2% for all n € N.
Then a, = (3)" for all n € N, so (a,) is a geometric sequence with common
ratio r = %
Since |r| = [3| = 2 < 1, then a, — 0, so lim, o 5 = 0.
Let (s,,) be the sequence of partial sums of (ay,).
We prove s, =1 — 2% for all n € N by induction on n.



Let S={neN:s,=1— 5}
Sincesl:alzézl—%,thenles.
Suppose k € S.

Then k € N and s, =1 — 5.

Observe that

Sk+1 = Sk T 0kt
1 1
= (o) o
1 1 11
N o T oo
11
= 1 om
1
= 1- TESE
Hence, sp41=1— Qk%, sok+1€S.
Thus, by PMI, s, =1 — 2% for all n € N.
Observe that
1 = 1-0
. . 1
= lim 1-— lim —
n—oo n—oo 21
I 1
= g
= lim s,.
n— o0

Therefore, 1 = lim;, o Sp = Y ney 50, SO Doy 5 = 1, as desired.

Convergence Tests for Series of Real Numbers

Example 5. applying the direct comparison test
a. The series ) ﬁ and Y :2111 are divergent.

. 1 1
b. The series ) 75 and ) ;5 are convergent.

Solution. al. We prove the series > ﬁ is divergent.
Let n € N be given.
Thenn > 1> 0.



Observe that

n>1An>0

b 44 44
Bl
Vv
5
Vv
(@)

y
A Sl-

Hence, 0 < % < % for all n € N.

Since the series > % is divergent, then by DCT, the series > ﬁ is divergent.

O
Solution. a2. We prove the series > 7’:;:_11 is divergent.
Let n € N be given.
Then n >1 > 0.

Observe that

0<1<n = 0<n®*+1<n’+n=n(n+1)
= 0<n’+1<n(n+1)

1 1
:>0<,§7712L
n ns+1

N 0<l< n+1'
“n " n?+1

Since the series Y 1 is divergent, then by DCT, the series > ggfl is diver-
gent. O
Solution. bl. We prove the series ) n%ﬂ is convergent.

Let n € N be given.

2 2 1 1

Clearly, n*+1>n”>0,s0 0 < T < nE

Hence, 0 < n%ﬂ < #, so0< n21+1 < n% for all n € N.

Since the series > # is convergent, then by DCT, the series n%ﬂ is
convergent. O
Solution. b2. We prove the series % is convergent.

Let n € N be given.

Thenn >1>0,s0n > 0.

Hence, n? > 0.

Sincenz1andn2>0,thenn32n2>0,s00<%g%.

Thus,OS%S%forallneN.

Since the series Y # is convergent, then by DCT, the series n—ls is con-

vergent. O




Example 6. applying the limit comparison test

The series Y, — is convergent.

Solution. Let n € N such that n > 1.
Then n? > 1,s0 n2 — 1> 0.
Hence, nz%l > 0.
Since n > 0, then n? >O SO 12 > 0.

Thus, 21>()and >Oforalln>1
Since lim,, 00 2% = limy, 00 n2 =1 > 0 and the series Z = is conver-
w2
gent, then by LCT, the series anz —3+— is convergent. O

Example 7. alternating harmonic series is convergent
. —1)" .
The series ) D" g convergent.
n

Solution.
Let (an) be the sequence of real numbers defined by a,, = L for all n € N.
Since £ > 0 for all n € N and the sequence (1) is decreasing and limy, 00 1 =
0, then by AST, the series Y ( n)" is convergent. O

Example 8. The series > (:LIQ)H converges.

Solution.

Since (#) is a decreasing sequence of positive terms and lim,,_, % =0,
then by AST, the series ) (_nlg)n converges.

In fact, the series converges to a negative real number. O

Example 9. The series ) m;l# is absolutely convergent, so > m;# is con-
vergent.

Solution. Let n € N be given.

Then n > 0, so n? > 0.

Since |sinz| <1 for all x € R and n € R, then 0 < |sinn| < 1.

Thus, 0 < B8 < 1 g0 0 < [sine| < L

’ n n2’ n n .

Since the series ). - is convergent, then by DCT, the series Y |22 is
convergent.

Therefore, the series > = sin(n) is absolutely convergent, so > == is conver-
gent. O

sm(n)




