Series in \mathbb{R} Examples

Jason Sass

May 19, 2023

Infinite Series of Real Numbers

Example 1. telescoping series Show that $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1.$

Solution. Let (a_n) be a sequence of real numbers defined by $a_n = \frac{1}{n(n+1)}$ for all $n \in \mathbb{N}$. Then $a_n = \frac{1}{n} - \frac{1}{n+1}$. Let (s_n) be the sequence of partial sums of (a_n) . We first prove $s_n = \frac{n}{n+1}$ for all $n \in \mathbb{N}$ by induction on n. Let $S = \{n \in \mathbb{N} : s_n = \frac{n}{n+1}\}$. Since $s_1 = a_1 = \frac{1}{2} = \frac{1}{1+1}$, then $1 \in S$. Suppose $k \in S$. Then $h \in \mathbb{N}$ and $a_1 = \frac{k}{2}$ Then $k \in \mathbb{N}$ and $s_k = \frac{k}{k+1}$.

Observe that

$$s_{k+1} = s_k + a_{k+1}$$

$$= \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$$

$$= \frac{k(k+2) + 1}{(k+1)(k+2)}$$

$$= \frac{k^2 + 2k + 1}{(k+1)(k+2)}$$

$$= \frac{(k+1)^2}{(k+1)(k+2)}$$

$$= \frac{k+1}{k+2}$$

$$= \frac{k+1}{[(k+1)+1]}.$$

Thus, $k + 1 \in S$.

Hence, by PMI, $S = \mathbb{N}$, so $s_n = \frac{n}{n+1}$ for all $n \in \mathbb{N}$. Thus, $1 = \lim_{n \to \infty} \frac{n}{n+1} = \lim_{n \to \infty} s_n$, so $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$, as desired.

Example 2. harmonic series is divergent

Let (a_n) be a sequence defined by $a_n = \frac{1}{n}$. Let (s_n) be the sequence of partial sums defined by $s_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{4}$ $\dots + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k}$ for all $n \in \mathbb{N}$. Then $\overline{(s_n)}$ is divergent, so the sequence of terms (a_n) is not summable. Therefore, the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$ diverges. *Proof.* To prove (s_n) diverges, we prove (s_n) is unbounded. We prove (s_n) is unbounded above. Hence, we prove $(\forall M \in \mathbb{R}) (\exists n \in \mathbb{N}) (s_n > M)$. Let $M \in \mathbb{R}$ be given. Either $M \leq 1$ or M > 1. We consider these cases separately. Case 1: Suppose $M \leq 1$. Let n = 2. Then $s_2 = 1 + \frac{1}{2} > 1 \ge M$, so $s_2 > M$. Case 2: Suppose M > 1. Since $2M - 2 \in \mathbb{R}$, then by the Archimedean property of \mathbb{R} , there exists $N \in \mathbb{N}$ such that N > 2M - 2. Hence, $\frac{2+N}{2} > M$, so $1 + \frac{N}{2} > M$. Let $n = 2^N$. Then $n \in \mathbb{N}$. We first prove $s_{2^k} \ge 1 + \frac{k}{2}$ for all $k \in \mathbb{N}$ by induction on k. Since $N \in \mathbb{N}$ and $s_{2^k} \ge 1 + \frac{k}{2}$ for all $k \in \mathbb{N}$, then $s_n = s_{2^N} \ge 1 + \frac{N}{2}$. Thus, $s_n \ge 1 + \frac{N}{2}$ and $1 + \frac{N}{2} > M$, so $s_n > M$. Hence, (s_n) is unbounded above, so (s_n) is unbounded. Therefore, (s_n) is divergent. **Example 3.** The series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent. *Proof.* Let (a_n) be a sequence of real numbers defined by $a_n = \frac{1}{n^2}$ for all $n \in \mathbb{N}$. Let (s_n) be the sequence of partial sums of (a_n) . We first prove (s_n) is strictly increasing. Let $n \in \mathbb{N}$ be given. Then $n \ge 1$, so $n+1 \ge 2 > 0$. Thus, n + 1 > 0, so $(n + 1)^2 > 0$. Hence, $\frac{1}{(n+1)^2} > 0$. Observe that $s_{n+1} - s_n = a_{n+1} = \frac{1}{(n+1)^2} > 0$, so $s_{n+1} - s_n > 0$. Thus, $s_{n+1} > s_n$, so $s_n < s_{n+1}$. Therefore, (s_n) is strictly increasing, so (s_n) is monotonic and $s_1 = a_1 = 1$ is a lower bound of (s_n) . We next prove $s_n \leq 2 - \frac{1}{n}$ for all $n \in \mathbb{N}$ by induction on n. Let $S = \{n \in \mathbb{N} : s_n \leq 2 - \frac{1}{n}\}.$ Since $s_1 = a_1 = 1 = 2 - \frac{1}{1}$, then $1 \in S$. Suppose $k \in S$. Then $k \in \mathbb{N}$ and $s_k \leq 2 - \frac{1}{k}$. Since $k \in \mathbb{N}$, then $k \ge 1$.

Since $k \ge 1 > 0$, then k > 0.

Since $k \ge 1$ and $k \ge 1 \Rightarrow k+1 \ge 2 > 0 \Rightarrow k+1 > 0 \Rightarrow (k+1)^2 > 0$, then $(k+1)^2 > 0$. Observe that

$$\begin{split} k(k+2) &= k^2 + 2k < k^2 + 2k + 1 = (k+1)^2 \implies k(k+2) < (k+1)^2 \\ \Rightarrow \quad \frac{k+2}{(k+1)^2} < \frac{1}{k} \\ \Rightarrow \quad \frac{1+(k+1)}{(k+1)^2} < \frac{1}{k} \\ \Rightarrow \quad \frac{1}{(k+1)^2} + \frac{1}{k+1} < \frac{1}{k} \\ \Rightarrow \quad s_k + \frac{1}{(k+1)^2} + \frac{1}{k+1} < s_k + \frac{1}{k} \le 2 \\ \Rightarrow \quad s_k + \frac{1}{(k+1)^2} + \frac{1}{k+1} < 2 \\ \Rightarrow \quad s_k + \frac{1}{(k+1)^2} < 2 - \frac{1}{k+1} \\ \Rightarrow \quad s_k + a_{k+1} < 2 - \frac{1}{k+1} \\ \Rightarrow \quad s_{k+1} < 2 - \frac{1}{k+1} \\ \Rightarrow \quad s_{k+1} < 2 - \frac{1}{k+1} \\ \Rightarrow \quad k+1 \in S. \end{split}$$

Thus, $k \in S$ implies $k + 1 \in S$. Hence, by PMI, $S = \mathbb{N}$, so $s_n \leq 2 - \frac{1}{n}$ for all $n \in \mathbb{N}$. We next prove $2 - \frac{1}{n} < 2$ for all $n \in \mathbb{N}$. Let $n \in \mathbb{N}$ be given. Then $n \geq 1 > 0$, so n > 0. Hence, $\frac{1}{n} > 0$, so $\frac{1}{n} > 2 - 2$. Therefore, $2 > 2 - \frac{1}{n}$, so $2 - \frac{1}{n} < 2$ for all $n \in \mathbb{N}$. Since $s_n \leq 2 - \frac{1}{n}$ for all $n \in \mathbb{N}$ and $2 - \frac{1}{n} < 2$ for all $n \in \mathbb{N}$, then $s_n \leq 2 - \frac{1}{n} < 2$ for all $n \in \mathbb{N}$, so $s_n < 2$ for all $n \in \mathbb{N}$. Since 1 is a lower bound of (s_n) , then $1 \leq s_n$ for all $n \in \mathbb{N}$. Thus, $1 \leq s_n < 2$ for all $n \in \mathbb{N}$, so (s_n) is bounded. Since (s_n) is bounded and monotonic, then by MCT, (s_n) is convergent. Hence, $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent.

Example 4. Show that $\sum_{n=1}^{\infty} \frac{1}{2^n} = 1$.

Proof. Let (a_n) be a sequence of real numbers defined by $a_n = \frac{1}{2^n}$ for all $n \in \mathbb{N}$. Then $a_n = (\frac{1}{2})^n$ for all $n \in \mathbb{N}$, so (a_n) is a geometric sequence with common ratio $r = \frac{1}{2}$. Since $|r| = |\frac{1}{2}| = \frac{1}{2} < 1$, then $a_n \to 0$, so $\lim_{n \to \infty} \frac{1}{2^n} = 0$. Let (s_n) be the sequence of partial sums of (a_n) .

We prove $s_n = 1 - \frac{1}{2^n}$ for all $n \in \mathbb{N}$ by induction on n.

Let $S = \{n \in \mathbb{N} : s_n = 1 - \frac{1}{2^n}\}.$ Since $s_1 = a_1 = \frac{1}{2} = 1 - \frac{1}{2^1}$, then $1 \in S$. Suppose $k \in S$. Then $k \in \mathbb{N}$ and $s_k = 1 - \frac{1}{2^k}$. Observe that

$$s_{k+1} = s_k + a_{k+1}$$

= $(1 - \frac{1}{2^k}) + \frac{1}{2^{k+1}}$
= $1 - \frac{1}{2^k} + \frac{1}{2}\frac{1}{2^k}$
= $1 - \frac{1}{2}\frac{1}{2^k}$
= $1 - \frac{1}{2^{k+1}}$.

Hence, $s_{k+1} = 1 - \frac{1}{2^{k+1}}$, so $k+1 \in S$.

Thus, by PMI, $\tilde{s}_n = 1 - \frac{1}{2^n}$ for all $n \in \mathbb{N}$. Observe that

$$1 = 1 - 0$$

= $\lim_{n \to \infty} 1 - \lim_{n \to \infty} \frac{1}{2^n}$
= $\lim_{n \to \infty} (1 - \frac{1}{2^n})$
= $\lim_{n \to \infty} s_n.$

Therefore, $1 = \lim_{n \to \infty} s_n = \sum_{n=1}^{\infty} \frac{1}{2^n}$, so $\sum_{n=1}^{\infty} \frac{1}{2^n} = 1$, as desired.

Convergence Tests for Series of Real Numbers

Example 5. applying the direct comparison test a. The series $\sum \frac{1}{\sqrt{n}}$ and $\sum \frac{n+1}{n^2+1}$ are divergent. b. The series $\sum \frac{1}{n^2+1}$ and $\sum \frac{1}{n^3}$ are convergent.

Solution. a1. We prove the series $\sum \frac{1}{\sqrt{n}}$ is divergent. Let $n \in \mathbb{N}$ be given. Then $n \ge 1 > 0$.

Observe that

$$\begin{split} n \geq 1 \wedge n > 0 &\Rightarrow n^2 \geq n > 0 \\ \Rightarrow \sqrt{n^2} \geq \sqrt{n} > 0 \\ \Rightarrow |n| \geq \sqrt{n} > 0 \\ \Rightarrow n \geq \sqrt{n} > 0 \\ \Rightarrow \frac{1}{\sqrt{n}} \geq \frac{1}{n} > 0 \\ \Rightarrow 0 < \frac{1}{n} \leq \frac{1}{\sqrt{n}} \\ \Rightarrow 0 \leq \frac{1}{n} \leq \frac{1}{\sqrt{n}}. \end{split}$$

Hence, $0 \leq \frac{1}{n} \leq \frac{1}{\sqrt{n}}$ for all $n \in \mathbb{N}$. Since the series $\sum \frac{1}{n}$ is divergent, then by DCT, the series $\sum \frac{1}{\sqrt{n}}$ is divergent.

Solution. a2. We prove the series $\sum \frac{n+1}{n^2+1}$ is divergent.

Let $n \in \mathbb{N}$ be given. Then $n \ge 1 > 0$. Observe that

$$\begin{array}{rcl} 0 < 1 \leq n & \Rightarrow & 0 < n^2 + 1 \leq n^2 + n = n(n+1) \\ & \Rightarrow & 0 < n^2 + 1 \leq n(n+1) \\ & \Rightarrow & 0 < \frac{1}{n} \leq \frac{n+1}{n^2+1} \\ & \Rightarrow & 0 \leq \frac{1}{n} \leq \frac{n+1}{n^2+1}. \end{array}$$

Since the series $\sum \frac{1}{n}$ is divergent, then by DCT, the series $\sum \frac{n+1}{n^2+1}$ is divergent.

Solution. b1. We prove the series $\sum \frac{1}{n^2+1}$ is convergent. Let $n \in \mathbb{N}$ be given. Clearly, $n^2 + 1 > n^2 > 0$, so $0 < \frac{1}{n^2 + 1} < \frac{1}{n^2}$. Hence, $0 \le \frac{1}{n^2 + 1} \le \frac{1}{n^2}$, so $0 \le \frac{1}{n^2 + 1} \le \frac{1}{n^2}$ for all $n \in \mathbb{N}$. Since the series $\sum \frac{1}{n^2}$ is convergent, then by DCT, the series $\sum \frac{1}{n^2 + 1}$ is convergent. **Solution.** b2. We prove the series $\sum \frac{1}{n^3}$ is convergent. Let $n \in \mathbb{N}$ be given. Then $n \ge 1 > 0$, so n > 0. Hence, $\overline{n^2} > 0$. Since $n \ge 1$ and $n^2 > 0$, then $n^3 \ge n^2 > 0$, so $0 < \frac{1}{n^3} \le \frac{1}{n^2}$. Thus, $0 \le \frac{1}{n^3} \le \frac{1}{n^2}$ for all $n \in \mathbb{N}$. Since the series $\sum \frac{1}{n^2} \frac{1}{n^2}$ is convergent, then by DCT, the series $\sum \frac{1}{n^3}$ is convergent.

Example 6. applying the limit comparison test

The series $\sum_{n=2}^{\infty} \frac{1}{n^2-1}$ is convergent.

Solution. Let $n \in \mathbb{N}$ such that n > 1. Then $n^2 > 1$, so $n^2 - 1 > 0$. Hence, $\frac{1}{n^2 - 1} > 0$. Since n > 0, then $n^2 > 0$, so $\frac{1}{n^2} > 0$. Thus, $\frac{1}{n^2 - 1} > 0$ and $\frac{1}{n^2} > 0$ for all n > 1. Since $\lim_{n\to\infty} \frac{\frac{1}{n^2 - 1}}{\frac{1}{n^2}} = \lim_{n\to\infty} \frac{n^2}{n^2 - 1} = 1 > 0$ and the series $\sum \frac{1}{n^2}$ is convergent, then by LCT, the series $\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$ is convergent.

Example 7. alternating harmonic series is convergent. The series $\sum \frac{(-1)^n}{n}$ is convergent.

Solution.

Let (a_n) be the sequence of real numbers defined by $a_n = \frac{1}{n}$ for all $n \in \mathbb{N}$. Since $\frac{1}{n} > 0$ for all $n \in \mathbb{N}$ and the sequence $(\frac{1}{n})$ is decreasing and $\lim_{n \to \infty} \frac{1}{n} = 0$, then by AST, the series $\sum \frac{(-1)^n}{n}$ is convergent.

Example 8. The series $\sum \frac{(-1)^n}{n^2}$ converges.

Solution.

Since $(\frac{1}{n^2})$ is a decreasing sequence of positive terms and $\lim_{n\to\infty} \frac{1}{n^2} = 0$, then by AST, the series $\sum \frac{(-1)^n}{n^2}$ converges. In fact, the series converges to a negative real number.

Example 9. The series $\sum \frac{\sin(n)}{n^2}$ is absolutely convergent, so $\sum \frac{\sin(n)}{n^2}$ is convergent.

Solution. Let $n \in \mathbb{N}$ be given.

Then n > 0, so $n^2 > 0$.

Since $|\sin x| \leq 1$ for all $x \in \mathbb{R}$ and $n \in \mathbb{R}$, then $0 \leq |\sin n| \leq 1$.

Thus, $0 \leq \frac{|\sin n|}{n^2} \leq \frac{1}{n^2}$, so $0 \leq \frac{|\sin n|}{n^2} \leq \frac{1}{n^2}$. Since the series $\sum \frac{1}{n^2}$ is convergent, then by DCT, the series $\sum \frac{|\sin n|}{n^2}$ is convergent.

Therefore, the series $\sum \frac{\sin(n)}{n^2}$ is absolutely convergent, so $\sum \frac{\sin(n)}{n^2}$ is conver-gent.