Series in \mathbb{R} Examples

Jason Sass

May 19, 2023

Infinite Series of Real Numbers

Example 1. telescoping series

Show that $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1$.
Solution. Let $\left(a_{n}\right)$ be a sequence of real numbers defined by $a_{n}=\frac{1}{n(n+1)}$ for all $n \in \mathbb{N}$.

Then $a_{n}=\frac{1}{n}-\frac{1}{n+1}$.
Let $\left(s_{n}\right)$ be the sequence of partial sums of $\left(a_{n}\right)$.
We first prove $s_{n}=\frac{n}{n+1}$ for all $n \in \mathbb{N}$ by induction on n.
Let $S=\left\{n \in \mathbb{N}: s_{n}=\frac{n}{n+1}\right\}$.
Since $s_{1}=a_{1}=\frac{1}{2}=\frac{1}{1+1}$, then $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $s_{k}=\frac{k}{k+1}$.
Observe that

$$
\begin{aligned}
s_{k+1} & =s_{k}+a_{k+1} \\
& =\frac{k}{k+1}+\frac{1}{(k+1)(k+2)} \\
& =\frac{k(k+2)+1}{(k+1)(k+2)} \\
& =\frac{k^{2}+2 k+1}{(k+1)(k+2)} \\
& =\frac{(k+1)^{2}}{(k+1)(k+2)} \\
& =\frac{k+1}{k+2} \\
& =\frac{k+1}{[(k+1)+1]} .
\end{aligned}
$$

Thus, $k+1 \in S$.
Hence, by PMI, $S=\mathbb{N}$, so $s_{n}=\frac{n}{n+1}$ for all $n \in \mathbb{N}$.
Thus, $1=\lim _{n \rightarrow \infty} \frac{n}{n+1}=\lim _{n \rightarrow \infty} s_{n}$, so $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1$, as desired.

Example 2. harmonic series is divergent
Let $\left(a_{n}\right)$ be a sequence defined by $a_{n}=\frac{1}{n}$.
Let $\left(s_{n}\right)$ be the sequence of partial sums defined by $s_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+$ $\ldots+\frac{1}{n}=\sum_{k=1}^{n} \frac{1}{k}$ for all $n \in \mathbb{N}$.

Then $\left(s_{n}\right)$ is divergent, so the sequence of terms $\left(a_{n}\right)$ is not summable.
Therefore, the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots$ diverges.
Proof. To prove $\left(s_{n}\right)$ diverges, we prove $\left(s_{n}\right)$ is unbounded.
We prove $\left(s_{n}\right)$ is unbounded above.
Hence, we prove $(\forall M \in \mathbb{R})(\exists n \in \mathbb{N})\left(s_{n}>M\right)$.
Let $M \in \mathbb{R}$ be given.
Either $M \leq 1$ or $M>1$.
We consider these cases separately.
Case 1: Suppose $M \leq 1$.
Let $n=2$. Then $s_{2}=1+\frac{1}{2}>1 \geq M$, so $s_{2}>M$.
Case 2: Suppose $M>1$.
Since $2 M-2 \in \mathbb{R}$, then by the Archimedean property of \mathbb{R}, there exists $N \in \mathbb{N}$ such that $N>2 M-2$. Hence, $\frac{2+N}{2}>M$, so $1+\frac{N}{2}>M$.

Let $n=2^{N}$. Then $n \in \mathbb{N}$.
We first prove $s_{2^{k}} \geq 1+\frac{k}{2}$ for all $k \in \mathbb{N}$ by induction on k.
Since $N \in \mathbb{N}$ and $s_{2^{k}} \geq 1+\frac{k}{2}$ for all $k \in \mathbb{N}$, then $s_{n}=s_{2^{N}} \geq 1+\frac{N}{2}$. Thus, $s_{n} \geq 1+\frac{N}{2}$ and $1+\frac{N}{2}>M$, so $s_{n}>M$.

Hence, $\left(s_{n}\right)$ is unbounded above, so $\left(s_{n}\right)$ is unbounded.
Therefore, $\left(s_{n}\right)$ is divergent.
Example 3. The series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent.
Proof. Let $\left(a_{n}\right)$ be a sequence of real numbers defined by $a_{n}=\frac{1}{n^{2}}$ for all $n \in \mathbb{N}$.
Let $\left(s_{n}\right)$ be the sequence of partial sums of $\left(a_{n}\right)$.
We first prove $\left(s_{n}\right)$ is strictly increasing.
Let $n \in \mathbb{N}$ be given.
Then $n \geq 1$, so $n+1 \geq 2>0$.
Thus, $n+1>0$, so $(n+1)^{2}>0$.
Hence, $\frac{1}{(n+1)^{2}}>0$.
Observe that $s_{n+1}-s_{n}=a_{n+1}=\frac{1}{(n+1)^{2}}>0$, so $s_{n+1}-s_{n}>0$.
Thus, $s_{n+1}>s_{n}$, so $s_{n}<s_{n+1}$.
Therefore, $\left(s_{n}\right)$ is strictly increasing, so $\left(s_{n}\right)$ is monotonic and $s_{1}=a_{1}=1$ is a lower bound of $\left(s_{n}\right)$.

We next prove $s_{n} \leq 2-\frac{1}{n}$ for all $n \in \mathbb{N}$ by induction on n.
Let $S=\left\{n \in \mathbb{N}: s_{n} \leq 2-\frac{1}{n}\right\}$.
Since $s_{1}=a_{1}=1=2-\frac{1}{1}$, then $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $s_{k} \leq 2-\frac{1}{k}$.
Since $k \in \mathbb{N}$, then $k \geq 1$.
Since $k \geq 1>0$, then $k>0$.

Since $k \geq 1$ and $k \geq 1 \Rightarrow k+1 \geq 2>0 \Rightarrow k+1>0 \Rightarrow(k+1)^{2}>0$, then $(k+1)^{2}>0$.

Observe that

$$
\begin{aligned}
k(k+2)=k^{2}+2 k<k^{2}+2 k+1=(k+1)^{2} & \Rightarrow k(k+2)<(k+1)^{2} \\
& \Rightarrow \frac{k+2}{(k+1)^{2}}<\frac{1}{k} \\
& \Rightarrow \frac{1+(k+1)}{(k+1)^{2}}<\frac{1}{k} \\
& \Rightarrow \frac{1}{(k+1)^{2}}+\frac{1}{k+1}<\frac{1}{k} \\
& \Rightarrow s_{k}+\frac{1}{(k+1)^{2}}+\frac{1}{k+1}<s_{k}+\frac{1}{k} \leq 2 \\
& \Rightarrow s_{k}+\frac{1}{(k+1)^{2}}+\frac{1}{k+1}<2 \\
& \Rightarrow s_{k}+\frac{1}{(k+1)^{2}}<2-\frac{1}{k+1} \\
& \Rightarrow s_{k}+a_{k+1}<2-\frac{1}{k+1} \\
& \Rightarrow s_{k+1}<2-\frac{1}{k+1} \\
& \Rightarrow k+1 \in S .
\end{aligned}
$$

Thus, $k \in S$ implies $k+1 \in S$.
Hence, by PMI, $S=\mathbb{N}$, so $s_{n} \leq 2-\frac{1}{n}$ for all $n \in \mathbb{N}$.
We next prove $2-\frac{1}{n}<2$ for all $n \in \mathbb{N}$.
Let $n \in \mathbb{N}$ be given.
Then $n \geq 1>0$, so $n>0$.
Hence, $\frac{1}{n}>0$, so $\frac{1}{n}>2-2$.
Therefore, $2>2-\frac{1}{n}$, so $2-\frac{1}{n}<2$ for all $n \in \mathbb{N}$.
Since $s_{n} \leq 2-\frac{1}{n}$ for all $n \in \mathbb{N}$ and $2-\frac{1}{n}<2$ for all $n \in \mathbb{N}$, then $s_{n} \leq 2-\frac{1}{n}<2$ for all $n \in \mathbb{N}$, so $s_{n}<2$ for all $n \in \mathbb{N}$.

Since 1 is a lower bound of $\left(s_{n}\right)$, then $1 \leq s_{n}$ for all $n \in \mathbb{N}$.
Thus, $1 \leq s_{n}<2$ for all $n \in \mathbb{N}$, so $\left(s_{n}\right)$ is bounded.
Since $\left(s_{n}\right)$ is bounded and monotonic, then by MCT, $\left(s_{n}\right)$ is convergent.
Hence, $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent.
Example 4. Show that $\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1$.
Proof. Let $\left(a_{n}\right)$ be a sequence of real numbers defined by $a_{n}=\frac{1}{2^{n}}$ for all $n \in \mathbb{N}$.
Then $a_{n}=\left(\frac{1}{2}\right)^{n}$ for all $n \in \mathbb{N}$, so $\left(a_{n}\right)$ is a geometric sequence with common ratio $r=\frac{1}{2}$.

Since $|r|=\left|\frac{1}{2}\right|=\frac{1}{2}<1$, then $a_{n} \rightarrow 0$, so $\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0$.
Let $\left(s_{n}\right)$ be the sequence of partial sums of $\left(a_{n}\right)$.
We prove $s_{n}=1-\frac{1}{2^{n}}$ for all $n \in \mathbb{N}$ by induction on n.

Let $S=\left\{n \in \mathbb{N}: s_{n}=1-\frac{1}{2^{n}}\right\}$.
Since $s_{1}=a_{1}=\frac{1}{2}=1-\frac{1}{2^{1}}$, then $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $s_{k}=1-\frac{1}{2^{k}}$.
Observe that

$$
\begin{aligned}
s_{k+1} & =s_{k}+a_{k+1} \\
& =\left(1-\frac{1}{2^{k}}\right)+\frac{1}{2^{k+1}} \\
& =1-\frac{1}{2^{k}}+\frac{1}{2} \frac{1}{2^{k}} \\
& =1-\frac{1}{2} \frac{1}{2^{k}} \\
& =1-\frac{1}{2^{k+1}} .
\end{aligned}
$$

Hence, $s_{k+1}=1-\frac{1}{2^{k+1}}$, so $k+1 \in S$.
Thus, by PMI, $s_{n}=1-\frac{1}{2^{n}}$ for all $n \in \mathbb{N}$.
Observe that

$$
\begin{aligned}
1 & =1-0 \\
& =\lim _{n \rightarrow \infty} 1-\lim _{n \rightarrow \infty} \frac{1}{2^{n}} \\
& =\lim _{n \rightarrow \infty}\left(1-\frac{1}{2^{n}}\right) \\
& =\lim _{n \rightarrow \infty} s_{n} .
\end{aligned}
$$

Therefore, $1=\lim _{n \rightarrow \infty} s_{n}=\sum_{n=1}^{\infty} \frac{1}{2^{n}}$, so $\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1$, as desired.

Convergence Tests for Series of Real Numbers

Example 5. applying the direct comparison test
a. The series $\sum \frac{1}{\sqrt{n}}$ and $\sum \frac{n+1}{n^{2}+1}$ are divergent.
b. The series $\sum \frac{1}{n^{2}+1}$ and $\sum \frac{1}{n^{3}}$ are convergent.

Solution. a1. We prove the series $\sum \frac{1}{\sqrt{n}}$ is divergent.
Let $n \in \mathbb{N}$ be given.
Then $n \geq 1>0$.

Observe that

$$
\begin{aligned}
n \geq 1 \wedge n>0 & \Rightarrow n^{2} \geq n>0 \\
& \Rightarrow \sqrt{n^{2}} \geq \sqrt{n}>0 \\
& \Rightarrow|n| \geq \sqrt{n}>0 \\
& \Rightarrow n \geq \sqrt{n}>0 \\
& \Rightarrow \frac{1}{\sqrt{n}} \geq \frac{1}{n}>0 \\
& \Rightarrow 0<\frac{1}{n} \leq \frac{1}{\sqrt{n}} \\
& \Rightarrow 0 \leq \frac{1}{n} \leq \frac{1}{\sqrt{n}}
\end{aligned}
$$

Hence, $0 \leq \frac{1}{n} \leq \frac{1}{\sqrt{n}}$ for all $n \in \mathbb{N}$.
Since the series $\sum \frac{1}{n}$ is divergent, then by DCT, the series $\sum \frac{1}{\sqrt{n}}$ is divergent.
Solution. a2. We prove the series $\sum \frac{n+1}{n^{2}+1}$ is divergent.
Let $n \in \mathbb{N}$ be given.
Then $n \geq 1>0$.
Observe that

$$
\begin{aligned}
0<1 \leq n & \Rightarrow 0<n^{2}+1 \leq n^{2}+n=n(n+1) \\
& \Rightarrow 0<n^{2}+1 \leq n(n+1) \\
& \Rightarrow 0<\frac{1}{n} \leq \frac{n+1}{n^{2}+1} \\
& \Rightarrow 0 \leq \frac{1}{n} \leq \frac{n+1}{n^{2}+1}
\end{aligned}
$$

Since the series $\sum \frac{1}{n}$ is divergent, then by DCT, the series $\sum \frac{n+1}{n^{2}+1}$ is divergent.
Solution. b1. We prove the series $\sum \frac{1}{n^{2}+1}$ is convergent.
Let $n \in \mathbb{N}$ be given.
Clearly, $n^{2}+1>n^{2}>0$, so $0<\frac{1}{n^{2}+1}<\frac{1}{n^{2}}$.
Hence, $0 \leq \frac{1}{n^{2}+1} \leq \frac{1}{n^{2}}$, so $0 \leq \frac{1}{n^{2}+1} \leq \frac{1}{n^{2}}$ for all $n \in \mathbb{N}$.
Since the series $\sum \frac{1}{n^{2}}$ is convergent, then by DCT, the series $\sum \frac{1}{n^{2}+1}$ is convergent.
Solution. b2. We prove the series $\sum \frac{1}{n^{3}}$ is convergent.
Let $n \in \mathbb{N}$ be given.
Then $n \geq 1>0$, so $n>0$.
Hence, $n^{2}>0$.
Since $n \geq 1$ and $n^{2}>0$, then $n^{3} \geq n^{2}>0$, so $0<\frac{1}{n^{3}} \leq \frac{1}{n^{2}}$.
Thus, $0 \leq \frac{1}{n^{3}} \leq \frac{1}{n^{2}}$ for all $n \in \mathbb{N}$.
Since the series $\sum \frac{1}{n^{2}}$ is convergent, then by DCT, the series $\sum \frac{1}{n^{3}}$ is convergent.

Example 6. applying the limit comparison test
The series $\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}$ is convergent.
Solution. Let $n \in \mathbb{N}$ such that $n>1$.
Then $n^{2}>1$, so $n^{2}-1>0$.
Hence, $\frac{1}{n^{2}-1}>0$.
Since $n>0$, then $n^{2}>0$, so $\frac{1}{n^{2}}>0$.
Thus, $\frac{1}{n^{2}-1}>0$ and $\frac{1}{n^{2}}>0$ for all $n>1$.
Since $\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{2}-1}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}-1}=1>0$ and the series $\sum \frac{1}{n^{2}}$ is convergent, then by LCT, the series $\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}$ is convergent.

Example 7. alternating harmonic series is convergent

The series $\sum \frac{(-1)^{n}}{n}$ is convergent.

Solution.

Let $\left(a_{n}\right)$ be the sequence of real numbers defined by $a_{n}=\frac{1}{n}$ for all $n \in \mathbb{N}$.
Since $\frac{1}{n}>0$ for all $n \in \mathbb{N}$ and the sequence $\left(\frac{1}{n}\right)$ is decreasing and $\lim _{n \rightarrow \infty} \frac{1}{n}=$ 0 , then by AST, the series $\sum \frac{(-1)^{n}}{n}$ is convergent.
Example 8. The series $\sum \frac{(-1)^{n}}{n^{2}}$ converges.

Solution.

Since $\left(\frac{1}{n^{2}}\right)$ is a decreasing sequence of positive terms and $\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$, then by AST, the series $\sum \frac{(-1)^{n}}{n^{2}}$ converges.

In fact, the series converges to a negative real number.
Example 9. The series $\sum \frac{\sin (n)}{n^{2}}$ is absolutely convergent, so $\sum \frac{\sin (n)}{n^{2}}$ is convergent.

Solution. Let $n \in \mathbb{N}$ be given.
Then $n>0$, so $n^{2}>0$.
Since $|\sin x| \leq 1$ for all $x \in \mathbb{R}$ and $n \in \mathbb{R}$, then $0 \leq|\sin n| \leq 1$.
Thus, $0 \leq \frac{|\sin n|}{n^{2}} \leq \frac{1}{n^{2}}$, so $0 \leq\left|\frac{\sin n}{n^{2}}\right| \leq \frac{1}{n^{2}}$.
Since the series $\sum \frac{1}{n^{2}}$ is convergent, then by DCT, the series $\sum\left|\frac{\sin n}{n^{2}}\right|$ is convergent.

Therefore, the series $\sum \frac{\sin (n)}{n^{2}}$ is absolutely convergent, so $\sum \frac{\sin (n)}{n^{2}}$ is convergent.

