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Infinite Series of Real Numbers

Exercise 1. Obtain a formula for
∑n

k=1(−1)k.

Solution. After various attempts, we have
∑n

k=1(−1)k = −1
2 + 1

2 (−1)n for all
n ∈ N.

We shall prove
∑n

k=1(−1)k = −1
2 + 1

2 (−1)n for all n ∈ N by induction on
n.

Exercise 2. Show that
∑∞

n=1
1

n+2 −
1

n+3 = 1
3 .

Solution. Let (an) be a sequence of real numbers defined by an = 1
n+2 −

1
n+3

for all n ∈ N.
Let (sn) be the sequence of partial sums of (an).
We first prove sn = 1

3 −
1

n+3 for all n ∈ N by induction on n.

Let S = {n ∈ N : sn = 1
3 −

1
n+3}.

Since s1 = a1 = 1
3 −

1
4 = 1

3 −
1

1+3 , then 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and sk = 1

3 −
1

k+3 .
Observe that

sk+1 = sk + ak+1

= (
1

3
− 1

k + 3
) + (

1

[(k + 1) + 2]
− 1

[(k + 1) + 3]
)

=
1

3
− 1

k + 3
+

1

k + 3
− 1

k + 4

=
1

3
− 1

k + 4

=
1

4
− 1

[(k + 1) + 3]
.

Thus, k + 1 ∈ S.
Hence, by PMI, S = N, so sn = 1

3 −
1

n+3 for all n ∈ N.
Let n ∈ N be given.
Then n ≥ 1 > 0, so n > 0.



Since n + 3 > n > 0, then 0 < 1
n+3 < 1

n .

Hence, 0 < 1
n+3 < 1

n for all n ∈ N.

Since 0 ≤ 1
n+3 ≤

1
n for all n ∈ N and limn→∞ 0 = 0 and limn→∞

1
n = 0,

then by the squeeze rule, limn→∞
1

n+3 = 0.
Observe that

1

3
=

1

3
− 0

= lim
n→∞

1

3
− lim

n→∞

1

n + 3

= lim
n→∞

(
1

3
− 1

n + 3
)

= lim
n→∞

sn.

Therefore, 1
3 = limn→∞ sn =

∑∞
n=1

1
n+2 −

1
n+3 .

Exercise 3. Show that
∑∞

n=1
1

(n+1)2 −
1

(n+2)2 = 1
4 .

Solution. Let (an) be a sequence of real numbers defined by an = 1
(n+1)2 −

1
(n+2)2 for all n ∈ N.

Let (sn) be the sequence of partial sums of (an).
We first prove sn = 1

4 −
1

(n+2)2 for all n ∈ N by induction on n.

Let S = {n ∈ N : sn = 1
4 −

1
(n+2)2 }.

Since s1 = a1 = 1
22 −

1
32 = 1

4 −
1

(1+2)2 , then 1 ∈ S.

Suppose k ∈ S.
Then k ∈ N and sk = 1

4 −
1

(k+2)2 .

Observe that

sk+1 = sk + ak+1

= [
1

4
− 1

(k + 2)2
] + (

1

[(k + 1) + 1]2
− 1

[(k + 1) + 2]2
)

=
1

4
− 1

(k + 2)2
+

1

(k + 2)2
− 1

(k + 3)2

=
1

4
− 1

(k + 3)2

=
1

4
− 1

[(k + 1) + 2]2
.

Thus, k + 1 ∈ S.
Hence, by PMI, S = N, so sn = 1

4 −
1

(n+2)2 for all n ∈ N.

Let n ∈ N be given.
Then n ≥ 1 > 0, so n > 0.
Since n + 2 > n > 0, then 0 < 1

n+2 < 1
n .

Hence, 0 < 1
n+2 < 1

n for all n ∈ N.
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Since 0 ≤ 1
n+2 ≤

1
n for all n ∈ N and limn→∞ 0 = 0 and limn→∞

1
n = 0,

then by the squeeze rule, limn→∞
1

n+2 = 0.
Observe that

1

4
=

1

4
− 0 · 0

= lim
n→∞

1

4
− lim

n→∞

1

n + 2
· lim
n→∞

1

n + 2

= lim
n→∞

1

4
− lim

n→∞

1

(n + 2)2

= lim
n→∞

[
1

4
− 1

(n + 2)2
]

= lim
n→∞

sn.

Therefore, 1
4 = limn→∞ sn =

∑∞
n=1

1
(n+1)2 −

1
(n+2)2 .

Exercise 4. Show that
∑∞

n=1
1√
n+1
− 1√

n+2
= 1√

2
.

Solution. Let (an) be a sequence of real numbers defined by an = 1√
n+1
− 1√

n+2

for all n ∈ N.
Let (sn) be the sequence of partial sums of (an).
We first prove sn = 1√

2
− 1√

n+2
for all n ∈ N by induction on n.

Let S = {n ∈ N : sn = 1√
2
− 1√

n+2
}.

Since s1 = a1 = 1√
2
− 1√

3
= 1√

2
− 1√

1+2
, then 1 ∈ S.

Suppose k ∈ S.
Then k ∈ N and sk = 1√

2
− 1√

k+2
.

Observe that

sk+1 = sk + ak+1

= (
1√
2
− 1√

k + 2
) + (

1√
(k + 1) + 1

− 1√
(k + 1) + 2

)

=
1√
2
− 1√

k + 2
+

1√
k + 2

− 1√
k + 3

=
1√
2
− 1√

k + 3

=
1√
2
− 1√

(k + 1) + 2
.

Thus, k + 1 ∈ S.
Hence, by PMI, S = N, so sn = 1√

2
− 1√

n+2
for all n ∈ N.

Let n ∈ N be given.
Then n ≥ 1 > 0, so n > 0.
Since n + 2 > n > 0, then

√
n + 2 >

√
n > 0, so 0 < 1√

n+2
< 1√

n
.

Hence, 0 < 1√
n+2

< 1√
n

for all n ∈ N.
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Since 1
n > 0 for all n ∈ N and limn→∞

1
n = 0, then by a previous exercise,

limn→∞

√
1
n = 0, so limn→∞

1√
n

= 0.

Since 0 ≤ 1√
n+2
≤ 1√

n
for all n ∈ N and limn→∞ 0 = 0 and limn→∞

1√
n

= 0,

then by the squeeze rule, limn→∞
1√
n+2

= 0.

Observe that

1√
2

=
1√
2
− 0

= lim
n→∞

1√
2
− lim

n→∞

1√
n + 2

= lim
n→∞

(
1√
2
− 1√

n + 2
)

= lim
n→∞

sn.

Therefore, 1√
2

= limn→∞ sn =
∑∞

n=1
1√
n+1
− 1√

n+2
.

Exercise 5. Show that the series
∑∞

n=1
1
n3 is convergent.

Solution. Let (an) be a sequence of real numbers defined by an = 1
n3 for all

n ∈ N.
Let (sn) be the sequence of partial sums of (an).
We first prove (sn) is strictly increasing.
Let n ∈ N be given.
Then n ≥ 1, so n + 1 ≥ 2 > 0.
Thus, n + 1 > 0, so (n + 1)3 > 0.
Hence, 1

(n+1)3 > 0.

Observe that sn+1 − sn = an+1 = 1
(n+1)3 > 0, so sn+1 − sn > 0.

Thus, sn+1 > sn, so sn < sn+1.
Therefore, (sn) is strictly increasing, so (sn) is monotonic and s1 = a1 = 1

is a lower bound of (sn).
We next prove sn ≤ 2− 1

n for all n ∈ N by induction on n.
Let S = {n ∈ N : sn ≤ 2− 1

n}.
Since s1 = a1 = 1 = 2− 1

1 , then 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and sk ≤ 2− 1

k .
Since k ∈ N, then k ≥ 1 > 0, so k > 0 and k2 > 0.
Since k2 > 0 and k > 0, then k2 + k + 1 > 0, so (k + 1)2 = k2 + 2k + 1 > k.
Thus, (k + 1)2 > k, so (k + 1)2 > k > 0.
Hence, (k + 1)3 > k(k + 1) > 0, so 1

(k+1)3 < 1
k(k+1) .
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Observe that

1

(k + 1)3
<

1

k(k + 1)
⇒ sk +

1

(k + 1)3
< sk +

1

k(k + 1)

⇒ sk + ak+1 < sk +
1

k(k + 1)

⇒ sk + ak+1 < sk +
1

k(k + 1)
≤ 2− 1

k
+

1

k(k + 1)

⇒ sk + ak+1 < 2− 1

k
+

1

k(k + 1)

⇒ sk+1 < 2− 1

k
(1− 1

k + 1
)

⇒ sk+1 < 2− 1

k
(

k

k + 1
)

⇒ sk+1 < 2− 1

k + 1
⇒ k + 1 ∈ S.

Thus, k ∈ S implies k + 1 ∈ S.
Hence, by PMI, S = N, so sn ≤ 2− 1

n for all n ∈ N.
We next prove 2− 1

n < 2 for all n ∈ N.
Let n ∈ N be given.
Then n ≥ 1 > 0, so n > 0.
Hence, 1

n > 0, so 1
n > 2− 2.

Therefore, 2 > 2− 1
n , so 2− 1

n < 2 for all n ∈ N.
Since sn ≤ 2− 1

n for all n ∈ N and 2− 1
n < 2 for all n ∈ N, then sn ≤ 2− 1

n < 2
for all n ∈ N, so sn < 2 for all n ∈ N.

Since 1 is a lower bound of (sn), then 1 ≤ sn for all n ∈ N.
Thus, 1 ≤ sn < 2 for all n ∈ N, so (sn) is bounded.
Since (sn) is bounded and monotonic, then by MCT, (sn) is convergent.
Hence,

∑∞
n=1

1
n3 is convergent.

Exercise 6. Show that the series
∑∞

n=1
n

n+1 is divergent.

Solution. Since limn→∞
n

n+1 = 1 6= 0, then by the nth term test for divergence,

the series
∑∞

n=1
n

n+1 is divergent.

Exercise 7. Find a sequence whose nth partial sum is n−1
n+1 .

Solution. Let (an) be a sequence of real numbers.
Let (sn) be the sequence of partial sums of (an).
Then sn = n−1

n+1 for all n ∈ N.
Thus, 0 = s1 = a1.
Since 1

3 = s2 = a1 + a2 = 0 + a2, then a2 = 1
3 .

Since 1
2 = s3 = a1 + a2 + a3 = 0 + 1

3 + a3, then a3 = 1
6 .

Since 3
5 = s4 = a1 + a2 + a3 + a4 = 0 + 1

3 + 1
6 + a4, then a4 = 1

10 .
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We can continue this process and see that the sequence has terms a1 =
0, a2 = 1

3 , a3 = 1
6 , a4 = 1

10 , a5 = 1
15 , a6 = 1

21 , a7 = 1
28 , ....

The sequence is defined recursively by a1 = 0 and a2 = 1
3 and an+1 =

an

1+(n+1)an
for n > 2.

Equivalently, the sequence is a1 = 0 and an = 2
n(n+1) for n > 1.

Proof. Let the sequence (an) be given by a1 = 0 and an = 2
n(n+1) for n > 1.

We prove the sequence of partial sums of (an) is n−1
n+1 .

Let (sn) be the sequence of partial sums of (an).
Then for all n ∈ N, we have sn = a1 + (a2 + a3 + ... + an) = 0 + (a2 + a3 +

... + an) = a2 + a3 + ... + an =
∑n

k=2 ak.
To prove sn = n−1

n+1 for all n ∈ N, we must prove
∑n

k=2 ak = n−1
n+1 for all

n ∈ N.
We prove by induction on n.
For n = 1, observe that 1−1

1+1 = 0 =
∑1

k=2 ak.

For n = 2, observe that 2−1
2+1 = 1

3 = 2
2·3 = a2 =

∑2
k=2 ak.

Let m ∈ N such that
∑m

k=2 ak = m−1
m+1 .

We must prove
∑m+1

k=2 ak = m
m+2 .

Since m ∈ N, then m ≥ 1, so m + 1 ≥ 2 > 1.
Hence, m + 1 > 1, so am+1 = 2

(m+1)(m+2) .

Observe that

m+1∑
k=2

ak =

m∑
k=2

ak + am+1

=
m− 1

m + 1
+

2

(m + 1)(m + 2)

=
(m− 1)(m + 2) + 2

(m + 1)(m + 2)

=
m2 + m

(m + 1)(m + 2)

=
m(m + 1)

(m + 1)(m + 2)

=
m

m + 2
.

Thus, by PMI,
∑n

k=2 ak = n−1
n+1 for all n ∈ N, so sn = n−1

n+1 for all n ∈ N, as
desired.

Exercise 8. Determine if the series
∑∞

n=1
1

n3+1 is convergent.

Solution. Let n ∈ N be given.
Then n > 0, so n3 > 0.
Since 0 < n3 < n3 + 1, then 0 < 1

n3+1 < 1
n3 .

Thus, 0 < 1
n3+1 < 1

n3 for all n ∈ N.
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Since the series
∑∞

n=1
1
n3 converges, then by DCT, the series

∑∞
n=1

1
n3+1

converges.

Exercise 9. Determine if the series
∑∞

n=1
n+1
n2+1 is convergent.

Solution. Let n ∈ N be given.
Then n ≥ 1.
Since 1 ≤ n, then n2 + 1 ≤ n2 + n = n(n + 1), so 0 < n2 + 1 ≤ n(n + 1).
Thus, 0 < 1

n ≤
n+1
n2+1 for all n ∈ N.

Since the series
∑∞

n=1
1
n diverges, then by DCT, the series

∑∞
n=1

n+1
n2+1 di-

verges.

Exercise 10. Determine if the series
∑∞

n=1
n+1
n3+1 is convergent.

Solution. Since n+1
n3+1 > 0 for all n ∈ N and 1

n2 > 0 for all n ∈ N and

limn→∞

n+1

n3+1
1
n2

= limn→∞
n3+n2

n3+1 = 1 > 0 and the series
∑∞

n=1
1
n2 is convergent,

then by LCT, the series
∑∞

n=1
n+1
n3+1 is convergent.

Exercise 11. Determine if the series
∑∞

n=1
1√

n2+1
is convergent.

Solution. Observe that 1√
n2+1

> 0 for all n ∈ N and 1
n > 0 for all n ∈ N.

Observe that

lim
n→∞

1
n
1√

n2+1

= lim
n→∞

√
n2 + 1

n

= lim
n→∞

√
n2(1 + 1

n2 )

n

= lim
n→∞

√
1 +

1

n2

= 1

> 0.

Since the series
∑∞

n=1
1
n is divergent, then by LCT, the series

∑∞
n=1

1√
n2+1

is

divergent too.

Exercise 12. Determine if the series
∑∞

n=1( 5
3 )−n is convergent.

Solution. Observe that
∞∑

n=1

(
5

3
)−n =

∞∑
n=1

1

( 5
3 )n

=

∞∑
n=1

1
5n

3n

=

∞∑
n=1

3n

5n

=

∞∑
n=1

(
3

5
)n.
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Thus, the series is a geometric series with common ratio 3
5 .

Since | 35 | =
3
5 < 1, then the geometric series converges to

3
5

1− 3
5

= 3
2 .

Therefore,
∑∞

n=1( 5
3 )−n = 3

2 .

Exercise 13. Let
∑∞

n=1 an be a series of nonnegative terms.
If
∑∞

n=1 an converges, then
∑∞

n=1 a
2
n converges.

Proof. Let (an) be a sequence in R of nonnegative terms.
Then an ≥ 0 for all n ∈ N.
Let (sn) be the sequence of partial sums of (an).
Suppose the series

∑∞
n=1 an is convergent.

Then the sequence (sn) is convergent, so (sn) is bounded.
Hence, there exists M ∈ R such that |sn| ≤M for all n ∈ N.
We first prove sn ≥ 0 for all n ∈ N by induction on n.
Let S = {n ∈ N : sn ≥ 0}.
Since s1 = a1 ≥ 0, then s1 ≥ 0, so 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and sk ≥ 0.
Since k + 1 ∈ N, then ak+1 ≥ 0.
Since sk+1 = sk + ak+1 and sk ≥ 0 and ak+1 ≥ 0, then sk+1 ≥ 0.
Hence, k + 1 ∈ S.
Therefore, by PMI, S = N, so sn ≥ 0 for all n ∈ N.
Thus, 0 ≤ |sn| = sn ≤M for all n ∈ N, so 0 ≤ sn ≤M for all n ∈ N.
We next prove an ≤M for all n ∈ N by induction on n.
Let T = {n ∈ N : an ≤M}.
Since a1 = s1 ≤M , then a1 ≤M , so 1 ∈ T .
Suppose m ∈ T .
Then m ∈ N.
Since m + 1 ∈ N, then sm+1 ≤M , so sm + am+1 ≤M .
Thus, am+1 ≤M − sm.
Since sm ≥ 0, then −sm ≤ 0, so M − sm ≤M .
Hence, am+1 ≤M − sm ≤M , so am+1 ≤M .
Thus, m + 1 ∈ T .
Therefore, by PMI, T = N, so an ≤M for all n ∈ N.
Since 0 ≤ an for all n ∈ N and an ≤ M for all n ∈ N, then 0 ≤ an ≤ M for

all n ∈ N.
Hence, 0 ≤ a2n ≤Man for all n ∈ N.
Since

∑∞
n=1 Man = M

∑∞
n=1 an and the series

∑∞
n=1 an is convergent then

by the scalar multiple rule, the series
∑∞

n=1 Man is convergent.
Therefore, by DCT, the series

∑∞
n=1 a

2
n is convergent.

Exercise 14. Give an example of a divergent series whose sequence of partial
sums is bounded.

Solution. Consider the series
∑∞

n=1(−1)n.
Since the sequence given by an = (−1)n for all n ∈ N oscillates between -1

and 1, then the sequence (an) is divergent.
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Hence, (an) is not convergent, so in particular, (an) does not converge to 0.
Therefore, by the nth term test, the series diverges.
Let (sn) be the sequence of partial sums of (an).
Then the sequence (sn) has terms −1, 0,−1, 0,−1, 0... so the set of all terms

of (sn) is {−1, 0}.
Therefore, −1 ≤ sn ≤ 0 for all n ∈ N, so the sequence (sn) is bounded.

Exercise 15. Let
∑∞

n=1 an be a series and let
∑∞

n=1 bn be a series in which the
terms are the same and in the same order as

∑∞
n=1 an except that all terms such

that an = 0 are omitted. If
∑∞

n=1 an is convergent, then
∑∞

n=1 bn is convergent.

Proof. Let (an) and (bn) be sequences of real numbers.
Let (sn) be the sequence of partial sums of (an) and let (tn) be the sequence

of partial sums of (bn).
Suppose the series

∑∞
n=1 an is convergent.

Then the sequence (sn) is convergent.
Either there exists n ∈ N such that for all N ∈ N, if N ≥ n, then aN = 0 or

there does not.
We consider each case separately.
Case 1: Suppose there exists n ∈ N such that for all N ∈ N, if N ≥ n, then

aN = 0.
Then this case implies that the sequence (an) has only a finite number of

nonzero terms.
So, this is the baseline case in which the series is just a finite sum + 0, so

this should be easy to prove.
Case 2: Suppose there does not exist n ∈ N such that for all N ∈ N, if

N ≥ n, then aN = 0.
Then for each n ∈ N there exists N ∈ N such that N ≥ n and aN 6= 0.
Let n ∈ N be given.
Then there exists N ∈ N such that N ≥ n and aN 6= 0.
Let T = {k ∈ N : k ≥ n ∧ ak 6= 0}.
Then T ⊂ N and N ∈ T , so T is not empty.
Hence, by WOP, T has a least element, so there exists a smallest natural

number m such that m ≥ n and am 6= 0.
Thus, there exists a smallest natural number m such that m ≥ n and am 6= 0

for each n ∈ N.
Since (bn) consists of the terms of (an) in the same order with the zero terms

omitted, then (bn) is a subsequence of (an).
Hence, there exists a strictly increasing function g : N → N such that bn =

ag(n) for all n ∈ N.
Let g(n) be the smallest natural number such that g(n) ≥ n and ag(n) 6= 0

for each n ∈ N.
We prove tn = sg(n) for all n ∈ N by induction on n.
Let S = {n ∈ N : tn = sg(n)}.
Since g(1) ≥ 1, then either g(1) > 1 or g(1) = 1.
If g(1) = 1, then t1 = b1 = ag(1) = a1 = s1 = sg(1), so t1 = sg(1).
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If g(1) > 1, then the first g(1) − 1 terms of the sequence (an) are zero, so
ai = 0 for each i ∈ {1, ..., g(1)− 1}.

Observe that

t1 = b1

= ag(1)

= 0 + ag(1)

=

g(1)−1∑
i=1

ai + ag(1)

=

g(1)∑
i=1

ai

= sg(1).

Therefore, in either case, t1 = sg(1), so 1 ∈ S.
Suppose k ∈ S.
Then k ∈ N and tk = sg(k).
Observe that

tk+1 = tk + bk+1

= sg(k) + ag(k+1)

=

g(k)∑
i=1

ai + ag(k+1)

=

g(k)∑
i=1

ai + 0 + ag(k+1)

=

g(k)∑
i=1

ai +

g(k+1)−1∑
i=g(k)+1

ai + ag(k+1)

=

g(k+1)∑
i=1

ai

= sg(k+1).

Hence, k + 1 ∈ S.
Therefore, by PMI, S = N, so tn = sg(n) for all n ∈ N.
Since g is a strictly increasing function and tn = sg(n) for all n ∈ N, then

(tn) is a subsequence of (sn).
Since (sn) is convergent, then (tn) is convergent, so

∑∞
n=1 bn is convergent.

Exercise 16. Discuss the convergence behavior of the series
∑∞

n=1
(−1)n(3n+2)

n3+1 .
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Solution. Since 3n+2
n3+1 > 0 and 1

n2 > 0 for all n ∈ N and limn→∞

3n+2

n3+1
1
n2

=

limn→∞
n2(3n+2)

n3+1 = limn→∞
3n3+2n2

n3+1 = 3 > 0 and the series
∑

1
n2 is convergent,

then by LCT, the series
∑

3n+2
n3+1 is convergent.

Since
∑
| (−1)

n(3n+2)
n3+1 | =

∑
3n+2
n3+1 , then the series

∑∞
n=1

(−1)n(3n+2)
n3+1 is abso-

lutely convergent, so the series
∑∞

n=1
(−1)n(3n+2)

n3+1 is convergent.

Exercise 17. Discuss the convergence behavior of the series
∑∞

n=1
(−1)n(2n+1)

n2+1 .

Solution. Since 2n+1
n2+1 > 0 and 1

n > 0 for all n ∈ N and limn→∞

2n+1

n2+1
1
n

=

limn→∞
n(2n+1)
n2+1 = limn→∞

2n2+n
n2+1 = 2 > 0 and the series

∑
1
n is divergent, then

by LCT, the series
∑

2n+1
n2+1 is divergent.

Let an = 2n+1
n2+1 for all n ∈ N.

Let n ∈ N be given.
Then n ≥ 1.
Thus,

n ≥ 1 ⇒ n + 2 ≥ 3

⇒ n(n + 2) ≥ 3 >
1

2

⇒ n(n + 2) >
1

2
⇒ 2n(n + 2) > 1

⇒ 2n2 + 4n > 1

⇒ 2n2 + 4n− 1 > 0.

Hence, 2n2 + 4n− 1 > 0.
Since n > 0, then n2+1 > 0 and [(n+1)2+1] > 0, so (n2+1)[(n+1)2+1] > 0.
Observe that

an − an+1 =
2n + 1

n2 + 1
− 2(n + 1) + 1

(n + 1)2 + 1

=
(2n + 1)[(n + 1)2 + 1]− (n2 + 1)[2(n + 1) + 1]

(n2 + 1)[(n + 1)2 + 1]

=
(2n + 1)(n2 + 2n + 2)− (n2 + 1)(2n + 3)

(n2 + 1)[(n + 1)2 + 1]

=
(2n3 + 5n2 + 6n + 2)− (2n3 + 3n2 + 2n + 3)

(n2 + 1)[(n + 1)2 + 1]

=
2n2 + 4n− 1

(n2 + 1)[(n + 1)2 + 1]

> 0.

Hence, an − an+1 > 0, so an > an+1.
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Thus, the sequence (an) is strictly decreasing, so (an) is monotonic decreas-
ing.

Since 2n+1
n2+1 > 0 for all n ∈ N and limn→∞

2n+1
n2+1 = 0, then by AST, the series∑∞

n=1
(−1)n(2n+1)

n2+1 is convergent.

Since the series
∑
| (−1)

n(2n+1)
n2+1 | =

∑
2n+1
n2+1 is divergent, then the series∑∞

n=1
(−1)n(2n+1)

n2+1 is conditionally convergent.

Exercise 18. Let (an) be a sequence of real numbers. Let S be a real number.
Then limn→∞ an = S iff the series a1 +

∑∞
n=2(an − an−1) converges and has

sum S.

Proof. Let (sn) be the sequence of partial sums of the sequence (an − an−1).
Then sn =

∑n
k=2(ak − ak−1) for each n ≥ 2.

We first prove sn = an − a1 for each natural number n ≥ 2 by induction on
n.

Let T = {n ∈ N : sn = an − a1, n ≥ 2}.
Since 2 = 2 and s2 =

∑2
k=2(ak − ak−1) = a2 − a1, then 2 ∈ T .

Suppose k ∈ T .
Then k ∈ N and k ≥ 2 and sk = ak − a1.
Thus,

sk+1 = sk + (ak+1 − ak)

= (ak − a1) + (ak+1 − ak)

= ak+1 − a1.

Since k ≥ 2 and sk+1 = ak+1 − a1, then k + 1 ∈ T .
Therefore, by PMI, sn = an − a1 for each natural number n ≥ 2.
Suppose limn→∞ an = S.
Then

S − a1 = lim
n→∞

an − lim
n→∞

a1

= lim
n→∞

(an − a1)

= lim
n→∞

sn.

Hence,
∑∞

n=2(an − an−1) = limn→∞ sn = S − a1.
Therefore, a1 +

∑∞
n=2(an − an−1) = S, as desired.

Conversely, suppose the series a1 +
∑∞

n=2(an−an−1) converges and has sum
S.

Then
∑∞

n=2(an − an−1) = S − a1.
Observe that

S − a1 = lim
n→∞

sn

= lim
n→∞

(an − a1)

= lim
n→∞

an − lim
n→∞

a1

= lim
n→∞

an − a1.
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Therefore, S − a1 = limn→∞ an − a1, so S = limn→∞ an, as desired.

Exercise 19. Let 0 < r < 1 be a real number.
Then the series

∑∞
n=1 nr

n is convergent.

Proof. Let n ∈ N.
Then n > 0.
Since 0 < r < 1, then 0 < r and r < 1.
Since r > 0 and n > 0, then rn > 0, so nrn > 0.
Since n + 1 > n > 0, then n+1

n > 0 for all n ∈ N.
Observe that

lim
n→∞

| (n + 1)rn+1

nrn
| = lim

n→∞
|n + 1

n
r|

= lim
n→∞

|n + 1

n
||r|

= |r| lim
n→∞

|n + 1

n
|

= r lim
n→∞

n + 1

n
= r · 1
= r

< 1.

Therefore, by the ratio test, the series
∑∞

n=1 nr
n is absolutely convergent, so

the series
∑∞

n=1 nr
n is convergent.
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