Series in \mathbb{R} Exercises

Jason Sass

June 29, 2021

Infinite Series of Real Numbers

Exercise 1. Obtain a formula for $\sum_{k=1}^{n} (-1)^k$.

Solution. After various attempts, we have $\sum_{k=1}^{n} (-1)^k = \frac{-1}{2} + \frac{1}{2} (-1)^n$ for all $n \in \mathbb{N}$.

We shall prove $\sum_{k=1}^{n} (-1)^k = \frac{-1}{2} + \frac{1}{2} (-1)^n$ for all $n \in \mathbb{N}$ by induction on n.

Exercise 2. Show that $\sum_{n=1}^{\infty} \frac{1}{n+2} - \frac{1}{n+3} = \frac{1}{3}$.

Solution. Let (a_n) be a sequence of real numbers defined by $a_n = \frac{1}{n+2} - \frac{1}{n+3}$ for all $n \in \mathbb{N}$.

Let (s_n) be the sequence of partial sums of (a_n) . We first prove $s_n = \frac{1}{3} - \frac{1}{n+3}$ for all $n \in \mathbb{N}$ by induction on n. Let $S = \{n \in \mathbb{N} : s_n = \frac{1}{3} - \frac{1}{n+3}\}$. Since $s_1 = a_1 = \frac{1}{3} - \frac{1}{4} = \frac{1}{3} - \frac{1}{1+3}$, then $1 \in S$. Suppose $k \in S$. Then $k \in \mathbb{N}$ and $s_k = \frac{1}{3} - \frac{1}{k+3}$. Observe that

$$s_{k+1} = s_k + a_{k+1}$$

$$= \left(\frac{1}{3} - \frac{1}{k+3}\right) + \left(\frac{1}{[(k+1)+2]} - \frac{1}{[(k+1)+3]}\right)$$

$$= \frac{1}{3} - \frac{1}{k+3} + \frac{1}{k+3} - \frac{1}{k+4}$$

$$= \frac{1}{3} - \frac{1}{k+4}$$

$$= \frac{1}{4} - \frac{1}{[(k+1)+3]}.$$

Thus, $k + 1 \in S$.

Hence, by PMI, $S = \mathbb{N}$, so $s_n = \frac{1}{3} - \frac{1}{n+3}$ for all $n \in \mathbb{N}$. Let $n \in \mathbb{N}$ be given. Then $n \ge 1 > 0$, so n > 0. Since n + 3 > n > 0, then $0 < \frac{1}{n+3} < \frac{1}{n}$. Hence, $0 < \frac{1}{n+3} < \frac{1}{n}$ for all $n \in \mathbb{N}$. Since $0 \le \frac{1}{n+3} \le \frac{1}{n}$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} 0 = 0$ and $\lim_{n \to \infty} \frac{1}{n} = 0$, then by the squeeze rule, $\lim_{n \to \infty} \frac{1}{n+3} = 0$.

Observe that

$$\frac{1}{3} = \frac{1}{3} - 0$$

= $\lim_{n \to \infty} \frac{1}{3} - \lim_{n \to \infty} \frac{1}{n+3}$
= $\lim_{n \to \infty} (\frac{1}{3} - \frac{1}{n+3})$
= $\lim_{n \to \infty} s_n.$

Exercise 3. Show that $\sum_{n=1}^{\infty} \frac{1}{(n+1)^2} - \frac{1}{(n+2)^2} = \frac{1}{4}$.

Therefore, $\frac{1}{3} = \lim_{n \to \infty} s_n = \sum_{n=1}^{\infty} \frac{1}{n+2} - \frac{1}{n+3}$.

Solution. Let (a_n) be a sequence of real numbers defined by $a_n = \frac{1}{(n+1)^2} - \frac{1}{(n+2)^2}$ for all $n \in \mathbb{N}$.

Let (s_n) be the sequence of partial sums of (a_n) . We first prove $s_n = \frac{1}{4} - \frac{1}{(n+2)^2}$ for all $n \in \mathbb{N}$ by induction on n. Let $S = \{n \in \mathbb{N} : s_n = \frac{1}{4} - \frac{1}{(n+2)^2}\}$. Since $s_1 = a_1 = \frac{1}{2^2} - \frac{1}{3^2} = \frac{1}{4} - \frac{1}{(1+2)^2}$, then $1 \in S$. Suppose $k \in S$. Then $k \in \mathbb{N}$ and $s_k = \frac{1}{4} - \frac{1}{(k+2)^2}$. Observe that

$$s_{k+1} = s_k + a_{k+1}$$

$$= \left[\frac{1}{4} - \frac{1}{(k+2)^2}\right] + \left(\frac{1}{[(k+1)+1]^2} - \frac{1}{[(k+1)+2]^2}\right)$$

$$= \frac{1}{4} - \frac{1}{(k+2)^2} + \frac{1}{(k+2)^2} - \frac{1}{(k+3)^2}$$

$$= \frac{1}{4} - \frac{1}{(k+3)^2}$$

$$= \frac{1}{4} - \frac{1}{[(k+1)+2]^2}.$$

Thus, $k+1 \in S$.

Hence, by PMI, $S = \mathbb{N}$, so $s_n = \frac{1}{4} - \frac{1}{(n+2)^2}$ for all $n \in \mathbb{N}$. Let $n \in \mathbb{N}$ be given. Then $n \ge 1 > 0$, so n > 0. Since n + 2 > n > 0, then $0 < \frac{1}{n+2} < \frac{1}{n}$. Hence, $0 < \frac{1}{n+2} < \frac{1}{n}$ for all $n \in \mathbb{N}$. Since $0 \leq \frac{1}{n+2} \leq \frac{1}{n}$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} 0 = 0$ and $\lim_{n \to \infty} \frac{1}{n} = 0$, then by the squeeze rule, $\lim_{n \to \infty} \frac{1}{n+2} = 0$.

Observe that

1

$$\begin{aligned} \frac{1}{4} &= \frac{1}{4} - 0 \cdot 0 \\ &= \lim_{n \to \infty} \frac{1}{4} - \lim_{n \to \infty} \frac{1}{n+2} \cdot \lim_{n \to \infty} \frac{1}{n+2} \\ &= \lim_{n \to \infty} \frac{1}{4} - \lim_{n \to \infty} \frac{1}{(n+2)^2} \\ &= \lim_{n \to \infty} \left[\frac{1}{4} - \frac{1}{(n+2)^2}\right] \\ &= \lim_{n \to \infty} s_n. \end{aligned}$$

Therefore, $\frac{1}{4} = \lim_{n \to \infty} s_n = \sum_{n=1}^{\infty} \frac{1}{(n+1)^2} - \frac{1}{(n+2)^2}$. **Exercise 4.** Show that $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}} - \frac{1}{\sqrt{n+2}} = \frac{1}{\sqrt{2}}$.

Solution. Let (a_n) be a sequence of real numbers defined by $a_n = \frac{1}{\sqrt{n+1}} - \frac{1}{\sqrt{n+2}}$ for all $n \in \mathbb{N}$.

Let (s_n) be the sequence of partial sums of (a_n) . We first prove $s_n = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{n+2}}$ for all $n \in \mathbb{N}$ by induction on n. Let $S = \{n \in \mathbb{N} : s_n = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{n+2}}\}$. Since $s_1 = a_1 = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{1+2}}$, then $1 \in S$. Suppose $k \in S$. Then $k \in \mathbb{N}$ and $s_k = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{k+2}}$. Observe that

$$s_{k+1} = s_k + a_{k+1}$$

$$= \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{k+2}}\right) + \left(\frac{1}{\sqrt{(k+1)+1}} - \frac{1}{\sqrt{(k+1)+2}}\right)$$

$$= \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{k+2}} + \frac{1}{\sqrt{k+2}} - \frac{1}{\sqrt{k+3}}$$

$$= \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{k+3}}$$

$$= \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{(k+1)+2}}.$$

Thus, $k+1 \in S$.

Hence, by PMI, $S = \mathbb{N}$, so $s_n = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{n+2}}$ for all $n \in \mathbb{N}$. Let $n \in \mathbb{N}$ be given. Then $n \ge 1 > 0$, so n > 0. Since n+2 > n > 0, then $\sqrt{n+2} > \sqrt{n} > 0$, so $0 < \frac{1}{\sqrt{n+2}} < \frac{1}{\sqrt{n}}$. Hence, $0 < \frac{1}{\sqrt{n+2}} < \frac{1}{\sqrt{n}}$ for all $n \in \mathbb{N}$.

Since $\frac{1}{n} > 0$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} \frac{1}{n} = 0$, then by a previous exercise, $\lim_{n \to \infty} \sqrt{\frac{1}{n}} = 0, \text{ so } \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0.$ Since $0 \le \frac{1}{\sqrt{n+2}} \le \frac{1}{\sqrt{n}}$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} 0 = 0$ and $\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$,

then by the squeeze rule, $\lim_{n\to\infty} \frac{1}{\sqrt{n+2}} = 0$.

Observe that

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} - 0$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{2}} - \lim_{n \to \infty} \frac{1}{\sqrt{n+2}}$$

$$= \lim_{n \to \infty} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{n+2}}\right)$$

$$= \lim_{n \to \infty} s_n.$$

Therefore, $\frac{1}{\sqrt{2}} = \lim_{n \to \infty} s_n = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}} - \frac{1}{\sqrt{n+2}}$.

Exercise 5. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^3}$ is convergent.

Solution. Let (a_n) be a sequence of real numbers defined by $a_n = \frac{1}{n^3}$ for all $n \in \mathbb{N}$.

Let (s_n) be the sequence of partial sums of (a_n) . We first prove (s_n) is strictly increasing. Let $n \in \mathbb{N}$ be given. Then $n \ge 1$, so $n + 1 \ge 2 > 0$. Thus, n + 1 > 0, so $(n + 1)^3 > 0$. Hence, $\frac{1}{(n+1)^3} > 0$. Observe that $s_{n+1} - s_n = a_{n+1} = \frac{1}{(n+1)^3} > 0$, so $s_{n+1} - s_n > 0$. Thus, $s_{n+1} > s_n$, so $s_n < s_{n+1}$. Therefore, (s_n) is strictly increasing, so (s_n) is monotonic and $s_1 = a_1 = 1$ is a lower bound of (s_n) . We next prove $s_n \leq 2 - \frac{1}{n}$ for all $n \in \mathbb{N}$ by induction on n. Let $S = \{n \in \mathbb{N} : s_n \leq 2 - \frac{1}{n}\}$. Since $s_1 = a_1 = 1 = 2 - \frac{1}{1}$, then $1 \in S$. Suppose $k \in S$. Then $k \in \mathbb{N}$ and $s_k \leq 2 - \frac{1}{k}$. Since $k \in \mathbb{N}$, then $k \geq 1 > 0$, so k > 0 and $k^2 > 0$. Since $k^2 > 0$ and k > 0, then $k^2 + k + 1 > 0$, so $(k + 1)^2 = k^2 + 2k + 1 > k$. Thus, $(k+1)^2 > k$, so $(k+1)^2 > k > 0$. Hence, $(k+1)^3 > k(k+1) > 0$, so $\frac{1}{(k+1)^3} < \frac{1}{k(k+1)}$.

Observe that

$$\begin{aligned} \frac{1}{(k+1)^3} < \frac{1}{k(k+1)} &\Rightarrow s_k + \frac{1}{(k+1)^3} < s_k + \frac{1}{k(k+1)} \\ &\Rightarrow s_k + a_{k+1} < s_k + \frac{1}{k(k+1)} \\ &\Rightarrow s_k + a_{k+1} < s_k + \frac{1}{k(k+1)} \le 2 - \frac{1}{k} + \frac{1}{k(k+1)} \\ &\Rightarrow s_k + a_{k+1} < 2 - \frac{1}{k} + \frac{1}{k(k+1)} \\ &\Rightarrow s_{k+1} < 2 - \frac{1}{k} (1 - \frac{1}{k+1}) \\ &\Rightarrow s_{k+1} < 2 - \frac{1}{k} (\frac{k}{k+1}) \\ &\Rightarrow s_{k+1} < 2 - \frac{1}{k} (\frac{k}{k+1}) \\ &\Rightarrow s_{k+1} < 2 - \frac{1}{k} + \frac{1}{k(k+1)} \end{aligned}$$

Thus, $k \in S$ implies $k + 1 \in S$. Hence, by PMI, $S = \mathbb{N}$, so $s_n \leq 2 - \frac{1}{n}$ for all $n \in \mathbb{N}$. We next prove $2 - \frac{1}{n} < 2$ for all $n \in \mathbb{N}$. Let $n \in \mathbb{N}$ be given. Then $n \geq 1 > 0$, so n > 0. Hence, $\frac{1}{n} > 0$, so $\frac{1}{n} > 2 - 2$. Therefore, $2 > 2 - \frac{1}{n}$, so $2 - \frac{1}{n} < 2$ for all $n \in \mathbb{N}$. Since $s_n \leq 2 - \frac{1}{n}$ for all $n \in \mathbb{N}$ and $2 - \frac{1}{n} < 2$ for all $n \in \mathbb{N}$, then $s_n \leq 2 - \frac{1}{n} < 2$ for all $n \in \mathbb{N}$, so $s_n < 2$ for all $n \in \mathbb{N}$. Since 1 is a lower bound of (s_n) , then $1 \leq s_n$ for all $n \in \mathbb{N}$. Thus, $1 \leq s_n < 2$ for all $n \in \mathbb{N}$, so (s_n) is bounded. Since (s_n) is bounded and monotonic, then by MCT, (s_n) is convergent. Hence, $\sum_{n=1}^{\infty} \frac{1}{n^3}$ is convergent.

Exercise 6. Show that the series $\sum_{n=1}^{\infty} \frac{n}{n+1}$ is divergent.

Solution. Since $\lim_{n\to\infty} \frac{n}{n+1} = 1 \neq 0$, then by the n^{th} term test for divergence, the series $\sum_{n=1}^{\infty} \frac{n}{n+1}$ is divergent.

Exercise 7. Find a sequence whose n^{th} partial sum is $\frac{n-1}{n+1}$.

Solution. Let (a_n) be a sequence of real numbers. Let (s_n) be the sequence of partial sums of (a_n) . Then $s_n = \frac{n-1}{n+1}$ for all $n \in \mathbb{N}$. Thus, $0 = s_1 = a_1$. Since $\frac{1}{3} = s_2 = a_1 + a_2 = 0 + a_2$, then $a_2 = \frac{1}{3}$. Since $\frac{1}{2} = s_3 = a_1 + a_2 + a_3 = 0 + \frac{1}{3} + a_3$, then $a_3 = \frac{1}{6}$. Since $\frac{3}{5} = s_4 = a_1 + a_2 + a_3 + a_4 = 0 + \frac{1}{3} + \frac{1}{6} + a_4$, then $a_4 = \frac{1}{10}$. We can continue this process and see that the sequence has terms $a_1 =$

 $0, a_2 = \frac{1}{3}, a_3 = \frac{1}{6}, a_4 = \frac{1}{10}, a_5 = \frac{1}{15}, a_6 = \frac{1}{21}, a_7 = \frac{1}{28}, \dots$ The sequence is defined recursively by $a_1 = 0$ and $a_2 = \frac{1}{3}$ and $a_{n+1} = \frac{1}{3}$ $\frac{a_n}{1+(n+1)a_n} \text{ for } n > 2.$

Equivalently, the sequence is $a_1 = 0$ and $a_n = \frac{2}{n(n+1)}$ for n > 1.

Proof. Let the sequence (a_n) be given by $a_1 = 0$ and $a_n = \frac{2}{n(n+1)}$ for n > 1.

We prove the sequence of partial sums of (a_n) is $\frac{n-1}{n+1}$.

Let (s_n) be the sequence of partial sums of (a_n) .

Then for all $n \in \mathbb{N}$, we have $s_n = a_1 + (a_2 + a_3 + \dots + a_n) = 0 + (a_2 + a_3 + \dots + a_n) = a_2 + a_3 + \dots + a_n = \sum_{k=2}^n a_k$. To prove $s_n = \frac{n-1}{n+1}$ for all $n \in \mathbb{N}$, we must prove $\sum_{k=2}^n a_k = \frac{n-1}{n+1}$ for all $n \in \mathbb{N}$.

 $n \in \mathbb{N}$.

We prove by induction on n. For n = 1, observe that $\frac{1-1}{1+1} = 0 = \sum_{k=2}^{1} a_k$. For n = 2, observe that $\frac{2-1}{2+1} = \frac{1}{3} = \frac{2}{2\cdot 3} = a_2 = \sum_{k=2}^{2} a_k$. Let $m \in \mathbb{N}$ such that $\sum_{k=2}^{m} a_k = \frac{m-1}{m+1}$. We must prove $\sum_{k=2}^{m+1} a_k = \frac{m}{m+2}$. Since $m \in \mathbb{N}$, then $m \ge 1$, so $m + 1 \ge 2 > 1$. Hence, m + 1 > 1, so $a_{m+1} = \frac{2}{(m+1)(m+2)}$. Observe that

$$\sum_{k=2}^{m+1} a_k = \sum_{k=2}^m a_k + a_{m+1}$$

$$= \frac{m-1}{m+1} + \frac{2}{(m+1)(m+2)}$$

$$= \frac{(m-1)(m+2) + 2}{(m+1)(m+2)}$$

$$= \frac{m^2 + m}{(m+1)(m+2)}$$

$$= \frac{m(m+1)}{(m+1)(m+2)}$$

$$= \frac{m}{m+2}.$$

Thus, by PMI, $\sum_{k=2}^{n} a_k = \frac{n-1}{n+1}$ for all $n \in \mathbb{N}$, so $s_n = \frac{n-1}{n+1}$ for all $n \in \mathbb{N}$, as desired.

Exercise 8. Determine if the series $\sum_{n=1}^{\infty} \frac{1}{n^3+1}$ is convergent.

Solution. Let $n \in \mathbb{N}$ be given. Then n > 0, so $n^3 > 0$. Since $0 < n^3 < n^3 + 1$, then $0 < \frac{1}{n^3 + 1} < \frac{1}{n^3}$. Thus, $0 < \frac{1}{n^3+1} < \frac{1}{n^3}$ for all $n \in \mathbb{N}$.

Since the series $\sum_{n=1}^{\infty} \frac{1}{n^3}$ converges, then by DCT, the series $\sum_{n=1}^{\infty} \frac{1}{n^3+1}$ converges.

Exercise 9. Determine if the series $\sum_{n=1}^{\infty} \frac{n+1}{n^2+1}$ is convergent.

Solution. Let $n \in \mathbb{N}$ be given.

Then n > 1. Since $1 \le n$, then $n^2 + 1 \le n^2 + n = n(n+1)$, so $0 < n^2 + 1 \le n(n+1)$. Thus, $0 < \frac{1}{n} \le \frac{n+1}{n^2+1}$ for all $n \in \mathbb{N}$. Since the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, then by DCT, the series $\sum_{n=1}^{\infty} \frac{n+1}{n^2+1}$ di-

verges.

Exercise 10. Determine if the series $\sum_{n=1}^{\infty} \frac{n+1}{n^3+1}$ is convergent.

Solution. Since $\frac{n+1}{n^3+1} > 0$ for all $n \in \mathbb{N}$ and $\frac{1}{n^2} > 0$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} \frac{\frac{n+1}{n^3+1}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^3+n^2}{n^3+1} = 1 > 0 \text{ and the series } \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ is convergent,}$ then by LCT, the series $\sum_{n=1}^{\infty} \frac{n+1}{n^3+1}$ is convergent.

Exercise 11. Determine if the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}$ is convergent.

Solution. Observe that $\frac{1}{\sqrt{n^2+1}} > 0$ for all $n \in \mathbb{N}$ and $\frac{1}{n} > 0$ for all $n \in \mathbb{N}$. Observe that

$$\lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{1}{\sqrt{n^2 + 1}}} = \lim_{n \to \infty} \frac{\sqrt{n^2 + 1}}{n}$$
$$= \lim_{n \to \infty} \frac{\sqrt{n^2 (1 + \frac{1}{n^2})}}{n}$$
$$= \lim_{n \to \infty} \sqrt{1 + \frac{1}{n^2}}$$
$$= 1$$
$$> 0.$$

Since the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent, then by LCT, the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}$ is divergent too.

Exercise 12. Determine if the series $\sum_{n=1}^{\infty} (\frac{5}{3})^{-n}$ is convergent. Solution. Observe that

$$\sum_{n=1}^{\infty} \left(\frac{5}{3}\right)^{-n} = \sum_{n=1}^{\infty} \frac{1}{\left(\frac{5}{3}\right)^n}$$
$$= \sum_{n=1}^{\infty} \frac{1}{\frac{5^n}{3^n}}$$
$$= \sum_{n=1}^{\infty} \frac{3^n}{5^n}$$
$$= \sum_{n=1}^{\infty} \left(\frac{3}{5}\right)^n.$$

Thus, the series is a geometric series with common ratio $\frac{3}{5}$.

Since $\left|\frac{3}{5}\right| = \frac{3}{5} < 1$, then the geometric series converges to $\frac{\frac{3}{5}}{1-\frac{3}{2}} = \frac{3}{2}$. Therefore, $\sum_{n=1}^{\infty} (\frac{5}{3})^{-n} = \frac{3}{2}$.

Exercise 13. Let $\sum_{n=1}^{\infty} a_n$ be a series of nonnegative terms. If $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} a_n^2$ converges.

Proof. Let (a_n) be a sequence in \mathbb{R} of nonnegative terms. Then $a_n \geq 0$ for all $n \in \mathbb{N}$. Let (s_n) be the sequence of partial sums of (a_n) . Suppose the series $\sum_{n=1}^{\infty} a_n$ is convergent. Then the sequence (s_n) is convergent, so (s_n) is bounded. Hence, there exists $M \in \mathbb{R}$ such that $|s_n| \leq M$ for all $n \in \mathbb{N}$. We first prove $s_n \geq 0$ for all $n \in \mathbb{N}$ by induction on n. Let $S = \{n \in \mathbb{N} : s_n \ge 0\}.$ Since $s_1 = a_1 \ge 0$, then $s_1 \ge 0$, so $1 \in S$. Suppose $k \in S$. Then $k \in \mathbb{N}$ and $s_k \geq 0$. Since $k + 1 \in \mathbb{N}$, then $a_{k+1} \ge 0$. Since $s_{k+1} = s_k + a_{k+1}$ and $s_k \ge 0$ and $a_{k+1} \ge 0$, then $s_{k+1} \ge 0$. Hence, $k + 1 \in S$. Therefore, by PMI, $S = \mathbb{N}$, so $s_n \ge 0$ for all $n \in \mathbb{N}$. Thus, $0 \leq |s_n| = s_n \leq M$ for all $n \in \mathbb{N}$, so $0 \leq s_n \leq M$ for all $n \in \mathbb{N}$. We next prove $a_n \leq M$ for all $n \in \mathbb{N}$ by induction on n. Let $T = \{n \in \mathbb{N} : a_n \leq M\}.$ Since $a_1 = s_1 \leq M$, then $a_1 \leq M$, so $1 \in T$. Suppose $m \in T$. Then $m \in \mathbb{N}$. Since $m + 1 \in \mathbb{N}$, then $s_{m+1} \leq M$, so $s_m + a_{m+1} \leq M$. Thus, $a_{m+1} \leq M - s_m$. Since $s_m \ge 0$, then $-s_m \le 0$, so $M - s_m \le M$. Hence, $a_{m+1} \leq M - s_m \leq M$, so $a_{m+1} \leq M$. Thus, $m + 1 \in T$. Therefore, by PMI, $T = \mathbb{N}$, so $a_n \leq M$ for all $n \in \mathbb{N}$. Since $0 \leq a_n$ for all $n \in \mathbb{N}$ and $a_n \leq M$ for all $n \in \mathbb{N}$, then $0 \leq a_n \leq M$ for all $n \in \mathbb{N}$.

Hence, $0 \le a_n^2 \le Ma_n$ for all $n \in \mathbb{N}$. Since $\sum_{n=1}^{\infty} Ma_n = M \sum_{n=1}^{\infty} a_n$ and the series $\sum_{n=1}^{\infty} a_n$ is convergent then by the scalar multiple rule, the series $\sum_{n=1}^{\infty} Ma_n$ is convergent. Therefore, by DCT, the series $\sum_{n=1}^{\infty} a_n^2$ is convergent.

Exercise 14. Give an example of a divergent series whose sequence of partial sums is bounded.

Solution. Consider the series $\sum_{n=1}^{\infty} (-1)^n$.

Since the sequence given by $a_n = (-1)^n$ for all $n \in \mathbb{N}$ oscillates between -1 and 1, then the sequence (a_n) is divergent.

Hence, (a_n) is not convergent, so in particular, (a_n) does not converge to 0. Therefore, by the n^{th} term test, the series diverges.

Let (s_n) be the sequence of partial sums of (a_n) .

Then the sequence (s_n) has terms -1, 0, -1, 0, -1, 0... so the set of all terms of (s_n) is $\{-1, 0\}$.

Therefore, $-1 \leq s_n \leq 0$ for all $n \in \mathbb{N}$, so the sequence (s_n) is bounded. \Box

Exercise 15. Let $\sum_{n=1}^{\infty} a_n$ be a series and let $\sum_{n=1}^{\infty} b_n$ be a series in which the terms are the same and in the same order as $\sum_{n=1}^{\infty} a_n$ except that all terms such that $a_n = 0$ are omitted. If $\sum_{n=1}^{\infty} a_n$ is convergent, then $\sum_{n=1}^{\infty} b_n$ is convergent.

Proof. Let (a_n) and (b_n) be sequences of real numbers.

Let (s_n) be the sequence of partial sums of (a_n) and let (t_n) be the sequence of partial sums of (b_n) .

Suppose the series $\sum_{n=1}^{\infty} a_n$ is convergent.

Then the sequence (s_n) is convergent.

Either there exists $n \in \mathbb{N}$ such that for all $N \in \mathbb{N}$, if $N \ge n$, then $a_N = 0$ or there does not.

We consider each case separately.

Case 1: Suppose there exists $n \in \mathbb{N}$ such that for all $N \in \mathbb{N}$, if $N \ge n$, then $a_N = 0$.

Then this case implies that the sequence (a_n) has only a finite number of nonzero terms.

So, this is the baseline case in which the series is just a finite sum + 0, so this should be easy to prove.

Case 2: Suppose there does not exist $n \in \mathbb{N}$ such that for all $N \in \mathbb{N}$, if $N \ge n$, then $a_N = 0$.

Then for each $n \in \mathbb{N}$ there exists $N \in \mathbb{N}$ such that $N \ge n$ and $a_N \ne 0$.

Let $n \in \mathbb{N}$ be given.

Then there exists $N \in \mathbb{N}$ such that $N \ge n$ and $a_N \ne 0$.

Let $T = \{k \in \mathbb{N} : k \ge n \land a_k \ne 0\}.$

Then $T \subset \mathbb{N}$ and $N \in T$, so T is not empty.

Hence, by WOP, T has a least element, so there exists a smallest natural number m such that $m \ge n$ and $a_m \ne 0$.

Thus, there exists a smallest natural number m such that $m \ge n$ and $a_m \ne 0$ for each $n \in \mathbb{N}$.

Since (b_n) consists of the terms of (a_n) in the same order with the zero terms omitted, then (b_n) is a subsequence of (a_n) .

Hence, there exists a strictly increasing function $g: \mathbb{N} \to \mathbb{N}$ such that $b_n = a_{q(n)}$ for all $n \in \mathbb{N}$.

Let g(n) be the smallest natural number such that $g(n) \ge n$ and $a_{g(n)} \ne 0$ for each $n \in \mathbb{N}$.

We prove $t_n = s_{g(n)}$ for all $n \in \mathbb{N}$ by induction on n.

Let $S = \{n \in \mathbb{N} : t_n = s_{g(n)}\}.$

Since $g(1) \ge 1$, then either g(1) > 1 or g(1) = 1.

If g(1) = 1, then $t_1 = b_1 = a_{g(1)} = a_1 = s_1 = s_{g(1)}$, so $t_1 = s_{g(1)}$.

If g(1) > 1, then the first g(1) - 1 terms of the sequence (a_n) are zero, so $a_i = 0$ for each $i \in \{1, ..., g(1) - 1\}$.

Observe that

$$t_{1} = b_{1}$$

$$= a_{g(1)}$$

$$= 0 + a_{g(1)}$$

$$= \sum_{i=1}^{g(1)-1} a_{i} + a_{g(1)}$$

$$= \sum_{i=1}^{g(1)} a_{i}$$

$$= s_{g(1)}.$$

Therefore, in either case, $t_1 = s_{g(1)}$, so $1 \in S$. Suppose $k \in S$. Then $k \in \mathbb{N}$ and $t_k = s_{g(k)}$. Observe that

Hence, $k + 1 \in S$.

Therefore, by PMI, $S = \mathbb{N}$, so $t_n = s_{g(n)}$ for all $n \in \mathbb{N}$.

Since g is a strictly increasing function and $t_n = s_{g(n)}$ for all $n \in \mathbb{N}$, then (t_n) is a subsequence of (s_n) .

Since (s_n) is convergent, then (t_n) is convergent, so $\sum_{n=1}^{\infty} b_n$ is convergent.

Exercise 16. Discuss the convergence behavior of the series $\sum_{n=1}^{\infty} \frac{(-1)^n (3n+2)}{n^3+1}$.

Solution. Since $\frac{3n+2}{n^3+1} > 0$ and $\frac{1}{n^2} > 0$ for all $n \in \mathbb{N}$ and $\lim_{n\to\infty} \frac{\frac{3n+2}{n^3+1}}{\frac{1}{n^2}} = \lim_{n\to\infty} \frac{n^2(3n+2)}{n^3+1} = \lim_{n\to\infty} \frac{3n^3+2n^2}{n^3+1} = 3 > 0$ and the series $\sum \frac{1}{n^2}$ is convergent, then by LCT, the series $\sum \frac{3n+2}{n^3+1}$ is convergent.

Since $\sum |\frac{(-1)^n (3n+2)}{n^3+1}| = \sum \frac{3n+2}{n^3+1}$, then the series $\sum_{n=1}^{\infty} \frac{(-1)^n (3n+2)}{n^3+1}$ is absolutely convergent, so the series $\sum_{n=1}^{\infty} \frac{(-1)^n (3n+2)}{n^3+1}$ is convergent.

Exercise 17. Discuss the convergence behavior of the series $\sum_{n=1}^{\infty} \frac{(-1)^n (2n+1)}{n^2+1}$.

Solution. Since $\frac{2n+1}{n^2+1} > 0$ and $\frac{1}{n} > 0$ for all $n \in \mathbb{N}$ and $\lim_{n\to\infty} \frac{\frac{2n+1}{n^2+1}}{\frac{1}{n}} = \lim_{n\to\infty} \frac{n(2n+1)}{n^2+1} = \lim_{n\to\infty} \frac{2n^2+n}{n^2+1} = 2 > 0$ and the series $\sum \frac{1}{n}$ is divergent, then by LCT, the series $\sum \frac{2n+1}{n^2+1}$ is divergent.

Let $a_n = \frac{2n+1}{n^2+1}$ for all $n \in \mathbb{N}$. Let $n \in \mathbb{N}$ be given. Then $n \ge 1$. Thus,

$$\begin{split} n \geq 1 &\Rightarrow n+2 \geq 3 \\ &\Rightarrow n(n+2) \geq 3 > \frac{1}{2} \\ &\Rightarrow n(n+2) > \frac{1}{2} \\ &\Rightarrow 2n(n+2) > 1 \\ &\Rightarrow 2n^2 + 4n > 1 \\ &\Rightarrow 2n^2 + 4n - 1 > 0. \end{split}$$

Hence, $2n^2 + 4n - 1 > 0$.

Since n > 0, then $n^2 + 1 > 0$ and $[(n+1)^2 + 1] > 0$, so $(n^2 + 1)[(n+1)^2 + 1] > 0$. Observe that

$$\begin{aligned} a_n - a_{n+1} &= \frac{2n+1}{n^2+1} - \frac{2(n+1)+1}{(n+1)^2+1} \\ &= \frac{(2n+1)[(n+1)^2+1] - (n^2+1)[2(n+1)+1]}{(n^2+1)[(n+1)^2+1]} \\ &= \frac{(2n+1)(n^2+2n+2) - (n^2+1)(2n+3)}{(n^2+1)[(n+1)^2+1]} \\ &= \frac{(2n^3+5n^2+6n+2) - (2n^3+3n^2+2n+3)}{(n^2+1)[(n+1)^2+1]} \\ &= \frac{2n^2+4n-1}{(n^2+1)[(n+1)^2+1]} \\ &= 0. \end{aligned}$$

Hence, $a_n - a_{n+1} > 0$, so $a_n > a_{n+1}$.

Thus, the sequence (a_n) is strictly decreasing, so (a_n) is monotonic decreasing.

Since $\frac{2n+1}{n^2+1} > 0$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} \frac{2n+1}{n^2+1} = 0$, then by AST, the series $\sum_{n=1}^{\infty} \frac{(-1)^n (2n+1)}{n^2+1}$ is convergent.

Since the series $\sum \left|\frac{(-1)^n(2n+1)}{n^2+1}\right| = \sum \frac{2n+1}{n^2+1}$ is divergent, then the series $\sum_{n=1}^{\infty} \frac{(-1)^n (2n+1)}{n^2+1}$ is conditionally convergent.

Exercise 18. Let (a_n) be a sequence of real numbers. Let S be a real number. Then $\lim_{n\to\infty} a_n = S$ iff the series $a_1 + \sum_{n=2}^{\infty} (a_n - a_{n-1})$ converges and has sum S.

Proof. Let (s_n) be the sequence of partial sums of the sequence $(a_n - a_{n-1})$. Then $s_n = \sum_{k=2}^n (a_k - a_{k-1})$ for each $n \ge 2$.

We first prove $s_n = a_n - a_1$ for each natural number $n \ge 2$ by induction on n.

Let $T = \{n \in \mathbb{N} : s_n = a_n - a_1, n \ge 2\}.$ Since 2 = 2 and $s_2 = \sum_{k=2}^{2} (a_k - a_{k-1}) = a_2 - a_1$, then $2 \in T$. Suppose $k \in T$. Then $k \in \mathbb{N}$ and $k \geq 2$ and $s_k = a_k - a_1$. Thus,

$$s_{k+1} = s_k + (a_{k+1} - a_k)$$

= $(a_k - a_1) + (a_{k+1} - a_k)$
= $a_{k+1} - a_1$.

Since $k \ge 2$ and $s_{k+1} = a_{k+1} - a_1$, then $k+1 \in T$. Therefore, by PMI, $s_n = a_n - a_1$ for each natural number $n \ge 2$. Suppose $\lim_{n\to\infty} a_n = S$. Then

$$S - a_1 = \lim_{n \to \infty} a_n - \lim_{n \to \infty} a_1$$
$$= \lim_{n \to \infty} (a_n - a_1)$$

Hence, $\sum_{n=2}^{\infty} (a_n - a_{n-1}) = \lim_{n \to \infty} s_n = S - a_1$. Therefore, $a_1 + \sum_{n=2}^{\infty} (a_n - a_{n-1}) = S$, as desired. Conversely, suppose the series $a_1 + \sum_{n=2}^{\infty} (a_n - a_{n-1})$ converges and has sum S.

 $= \lim_{n \to \infty} s_n.$

Then $\sum_{n=2}^{\infty} (a_n - a_{n-1}) = S - a_1.$ Observe that

,

$$S - a_1 = \lim_{n \to \infty} s_n$$

=
$$\lim_{n \to \infty} (a_n - a_1)$$

=
$$\lim_{n \to \infty} a_n - \lim_{n \to \infty} a_1$$

=
$$\lim_{n \to \infty} a_n - a_1.$$

Therefore, $S - a_1 = \lim_{n \to \infty} a_n - a_1$, so $S = \lim_{n \to \infty} a_n$, as desired.

Exercise 19. Let 0 < r < 1 be a real number. Then the series $\sum_{n=1}^{\infty} nr^n$ is convergent.

Proof. Let $n \in \mathbb{N}$.

Then n > 0.

Since 0 < r < 1, then 0 < r and r < 1.

Since r > 0 and n > 0, then $r^n > 0$, so $nr^n > 0$. Since n + 1 > n > 0, then $\frac{n+1}{n} > 0$ for all $n \in \mathbb{N}$. Observe that

$$\lim_{n \to \infty} \left| \frac{(n+1)r^{n+1}}{nr^n} \right| = \lim_{n \to \infty} \left| \frac{n+1}{n}r \right|$$
$$= \lim_{n \to \infty} \left| \frac{n+1}{n} \right| |r|$$
$$= |r| \lim_{n \to \infty} \left| \frac{n+1}{n} \right|$$
$$= r \lim_{n \to \infty} \frac{n+1}{n}$$
$$= r \cdot 1$$
$$= r$$
$$< 1.$$

Therefore, by the ratio test, the series $\sum_{n=1}^{\infty} nr^n$ is absolutely convergent, so the series $\sum_{n=1}^{\infty} nr^n$ is convergent.