Series in \mathbb{R} Exercises

Jason Sass

June 29, 2021

Infinite Series of Real Numbers

Exercise 1. Obtain a formula for $\sum_{k=1}^{n}(-1)^{k}$.
Solution. After various attempts, we have $\sum_{k=1}^{n}(-1)^{k}=\frac{-1}{2}+\frac{1}{2}(-1)^{n}$ for all $n \in \mathbb{N}$.

We shall prove $\sum_{k=1}^{n}(-1)^{k}=\frac{-1}{2}+\frac{1}{2}(-1)^{n}$ for all $n \in \mathbb{N}$ by induction on n.

Exercise 2. Show that $\sum_{n=1}^{\infty} \frac{1}{n+2}-\frac{1}{n+3}=\frac{1}{3}$.
Solution. Let $\left(a_{n}\right)$ be a sequence of real numbers defined by $a_{n}=\frac{1}{n+2}-\frac{1}{n+3}$ for all $n \in \mathbb{N}$.

Let $\left(s_{n}\right)$ be the sequence of partial sums of $\left(a_{n}\right)$.
We first prove $s_{n}=\frac{1}{3}-\frac{1}{n+3}$ for all $n \in \mathbb{N}$ by induction on n.
Let $S=\left\{n \in \mathbb{N}: s_{n}=\frac{1}{3}-\frac{1}{n+3}\right\}$.
Since $s_{1}=a_{1}=\frac{1}{3}-\frac{1}{4}=\frac{1}{3}-\frac{1}{1+3}$, then $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $s_{k}=\frac{1}{3}-\frac{1}{k+3}$.
Observe that

$$
\begin{aligned}
s_{k+1} & =s_{k}+a_{k+1} \\
& =\left(\frac{1}{3}-\frac{1}{k+3}\right)+\left(\frac{1}{[(k+1)+2]}-\frac{1}{[(k+1)+3]}\right) \\
& =\frac{1}{3}-\frac{1}{k+3}+\frac{1}{k+3}-\frac{1}{k+4} \\
& =\frac{1}{3}-\frac{1}{k+4} \\
& =\frac{1}{4}-\frac{1}{[(k+1)+3]}
\end{aligned}
$$

Thus, $k+1 \in S$.
Hence, by PMI, $S=\mathbb{N}$, so $s_{n}=\frac{1}{3}-\frac{1}{n+3}$ for all $n \in \mathbb{N}$.
Let $n \in \mathbb{N}$ be given.
Then $n \geq 1>0$, so $n>0$.

Since $n+3>n>0$, then $0<\frac{1}{n+3}<\frac{1}{n}$.
Hence, $0<\frac{1}{n+3}<\frac{1}{n}$ for all $n \in \mathbb{N}$.
Since $0 \leq \frac{1}{n+3} \leq \frac{1}{n}$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} 0=0$ and $\lim _{n \rightarrow \infty} \frac{1}{n}=0$, then by the squeeze rule, $\lim _{n \rightarrow \infty} \frac{1}{n+3}=0$.

Observe that

$$
\begin{aligned}
\frac{1}{3} & =\frac{1}{3}-0 \\
& =\lim _{n \rightarrow \infty} \frac{1}{3}-\lim _{n \rightarrow \infty} \frac{1}{n+3} \\
& =\lim _{n \rightarrow \infty}\left(\frac{1}{3}-\frac{1}{n+3}\right) \\
& =\lim _{n \rightarrow \infty} s_{n}
\end{aligned}
$$

Therefore, $\frac{1}{3}=\lim _{n \rightarrow \infty} s_{n}=\sum_{n=1}^{\infty} \frac{1}{n+2}-\frac{1}{n+3}$.
Exercise 3. Show that $\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}-\frac{1}{(n+2)^{2}}=\frac{1}{4}$.
Solution. Let $\left(a_{n}\right)$ be a sequence of real numbers defined by $a_{n}=\frac{1}{(n+1)^{2}}-$ $\frac{1}{(n+2)^{2}}$ for all $n \in \mathbb{N}$.

Let $\left(s_{n}\right)$ be the sequence of partial sums of $\left(a_{n}\right)$.
We first prove $s_{n}=\frac{1}{4}-\frac{1}{(n+2)^{2}}$ for all $n \in \mathbb{N}$ by induction on n.
Let $S=\left\{n \in \mathbb{N}: s_{n}=\frac{1}{4}-\frac{1}{(n+2)^{2}}\right\}$.
Since $s_{1}=a_{1}=\frac{1}{2^{2}}-\frac{1}{3^{2}}=\frac{1}{4}-\frac{1}{(1+2)^{2}}$, then $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $s_{k}=\frac{1}{4}-\frac{1}{(k+2)^{2}}$.
Observe that

$$
\begin{aligned}
s_{k+1} & =s_{k}+a_{k+1} \\
& =\left[\frac{1}{4}-\frac{1}{(k+2)^{2}}\right]+\left(\frac{1}{[(k+1)+1]^{2}}-\frac{1}{[(k+1)+2]^{2}}\right) \\
& =\frac{1}{4}-\frac{1}{(k+2)^{2}}+\frac{1}{(k+2)^{2}}-\frac{1}{(k+3)^{2}} \\
& =\frac{1}{4}-\frac{1}{(k+3)^{2}} \\
& =\frac{1}{4}-\frac{1}{[(k+1)+2]^{2}} .
\end{aligned}
$$

Thus, $k+1 \in S$.
Hence, by PMI, $S=\mathbb{N}$, so $s_{n}=\frac{1}{4}-\frac{1}{(n+2)^{2}}$ for all $n \in \mathbb{N}$.
Let $n \in \mathbb{N}$ be given.
Then $n \geq 1>0$, so $n>0$.
Since $n+2>n>0$, then $0<\frac{1}{n+2}<\frac{1}{n}$.
Hence, $0<\frac{1}{n+2}<\frac{1}{n}$ for all $n \in \mathbb{N}$.

Since $0 \leq \frac{1}{n+2} \leq \frac{1}{n}$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} 0=0$ and $\lim _{n \rightarrow \infty} \frac{1}{n}=0$, then by the squeeze rule, $\lim _{n \rightarrow \infty} \frac{1}{n+2}=0$.

Observe that

$$
\begin{aligned}
\frac{1}{4} & =\frac{1}{4}-0 \cdot 0 \\
& =\lim _{n \rightarrow \infty} \frac{1}{4}-\lim _{n \rightarrow \infty} \frac{1}{n+2} \cdot \lim _{n \rightarrow \infty} \frac{1}{n+2} \\
& =\lim _{n \rightarrow \infty} \frac{1}{4}-\lim _{n \rightarrow \infty} \frac{1}{(n+2)^{2}} \\
& =\lim _{n \rightarrow \infty}\left[\frac{1}{4}-\frac{1}{(n+2)^{2}}\right] \\
& =\lim _{n \rightarrow \infty} s_{n}
\end{aligned}
$$

Therefore, $\frac{1}{4}=\lim _{n \rightarrow \infty} s_{n}=\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}-\frac{1}{(n+2)^{2}}$.
Exercise 4. Show that $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}-\frac{1}{\sqrt{n+2}}=\frac{1}{\sqrt{2}}$.
Solution. Let $\left(a_{n}\right)$ be a sequence of real numbers defined by $a_{n}=\frac{1}{\sqrt{n+1}}-\frac{1}{\sqrt{n+2}}$ for all $n \in \mathbb{N}$.

Let $\left(s_{n}\right)$ be the sequence of partial sums of $\left(a_{n}\right)$.
We first prove $s_{n}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{n+2}}$ for all $n \in \mathbb{N}$ by induction on n.
Let $S=\left\{n \in \mathbb{N}: s_{n}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{n+2}}\right\}$.
Since $s_{1}=a_{1}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{1+2}}$, then $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $s_{k}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{k+2}}$.
Observe that

$$
\begin{aligned}
s_{k+1} & =s_{k}+a_{k+1} \\
& =\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{k+2}}\right)+\left(\frac{1}{\sqrt{(k+1)+1}}-\frac{1}{\sqrt{(k+1)+2}}\right) \\
& =\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{k+2}}+\frac{1}{\sqrt{k+2}}-\frac{1}{\sqrt{k+3}} \\
& =\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{k+3}} \\
& =\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{(k+1)+2}}
\end{aligned}
$$

Thus, $k+1 \in S$.
Hence, by PMI, $S=\mathbb{N}$, so $s_{n}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{n+2}}$ for all $n \in \mathbb{N}$.
Let $n \in \mathbb{N}$ be given.
Then $n \geq 1>0$, so $n>0$.
Since $n+2>n>0$, then $\sqrt{n+2}>\sqrt{n}>0$, so $0<\frac{1}{\sqrt{n+2}}<\frac{1}{\sqrt{n}}$.
Hence, $0<\frac{1}{\sqrt{n+2}}<\frac{1}{\sqrt{n}}$ for all $n \in \mathbb{N}$.

Since $\frac{1}{n}>0$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} \frac{1}{n}=0$, then by a previous exercise, $\lim _{n \rightarrow \infty} \sqrt{\frac{1}{n}}=0$, so $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$.

Since $0 \leq \frac{1}{\sqrt{n+2}} \leq \frac{1}{\sqrt{n}}$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} 0=0$ and $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$, then by the squeeze rule, $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n+2}}=0$.

Observe that

$$
\begin{aligned}
\frac{1}{\sqrt{2}} & =\frac{1}{\sqrt{2}}-0 \\
& =\lim _{n \rightarrow \infty} \frac{1}{\sqrt{2}}-\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n+2}} \\
& =\lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{n+2}}\right) \\
& =\lim _{n \rightarrow \infty} s_{n} .
\end{aligned}
$$

Therefore, $\frac{1}{\sqrt{2}}=\lim _{n \rightarrow \infty} s_{n}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}-\frac{1}{\sqrt{n+2}}$.
Exercise 5. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is convergent.
Solution. Let $\left(a_{n}\right)$ be a sequence of real numbers defined by $a_{n}=\frac{1}{n^{3}}$ for all $n \in \mathbb{N}$.

Let $\left(s_{n}\right)$ be the sequence of partial sums of $\left(a_{n}\right)$.
We first prove $\left(s_{n}\right)$ is strictly increasing.
Let $n \in \mathbb{N}$ be given.
Then $n \geq 1$, so $n+1 \geq 2>0$.
Thus, $n+1>0$, so $(n+1)^{3}>0$.
Hence, $\frac{1}{(n+1)^{3}}>0$.
Observe that $s_{n+1}-s_{n}=a_{n+1}=\frac{1}{(n+1)^{3}}>0$, so $s_{n+1}-s_{n}>0$.
Thus, $s_{n+1}>s_{n}$, so $s_{n}<s_{n+1}$.
Therefore, $\left(s_{n}\right)$ is strictly increasing, so $\left(s_{n}\right)$ is monotonic and $s_{1}=a_{1}=1$ is a lower bound of $\left(s_{n}\right)$.

We next prove $s_{n} \leq 2-\frac{1}{n}$ for all $n \in \mathbb{N}$ by induction on n.
Let $S=\left\{n \in \mathbb{N}: s_{n} \leq 2-\frac{1}{n}\right\}$.
Since $s_{1}=a_{1}=1=2-\frac{1}{1}$, then $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $s_{k} \leq 2-\frac{1}{k}$.
Since $k \in \mathbb{N}$, then $k \geq 1>0$, so $k>0$ and $k^{2}>0$.
Since $k^{2}>0$ and $k>0$, then $k^{2}+k+1>0$, so $(k+1)^{2}=k^{2}+2 k+1>k$.
Thus, $(k+1)^{2}>k$, so $(k+1)^{2}>k>0$.
Hence, $(k+1)^{3}>k(k+1)>0$, so $\frac{1}{(k+1)^{3}}<\frac{1}{k(k+1)}$.

Observe that

$$
\begin{aligned}
\frac{1}{(k+1)^{3}}<\frac{1}{k(k+1)} & \Rightarrow s_{k}+\frac{1}{(k+1)^{3}}<s_{k}+\frac{1}{k(k+1)} \\
& \Rightarrow s_{k}+a_{k+1}<s_{k}+\frac{1}{k(k+1)} \\
& \Rightarrow s_{k}+a_{k+1}<s_{k}+\frac{1}{k(k+1)} \leq 2-\frac{1}{k}+\frac{1}{k(k+1)} \\
& \Rightarrow s_{k}+a_{k+1}<2-\frac{1}{k}+\frac{1}{k(k+1)} \\
& \Rightarrow s_{k+1}<2-\frac{1}{k}\left(1-\frac{1}{k+1}\right) \\
& \Rightarrow s_{k+1}<2-\frac{1}{k}\left(\frac{k}{k+1}\right) \\
& \Rightarrow s_{k+1}<2-\frac{1}{k+1} \\
& \Rightarrow k+1 \in S .
\end{aligned}
$$

Thus, $k \in S$ implies $k+1 \in S$.
Hence, by PMI, $S=\mathbb{N}$, so $s_{n} \leq 2-\frac{1}{n}$ for all $n \in \mathbb{N}$.
We next prove $2-\frac{1}{n}<2$ for all $n \in \mathbb{N}$.
Let $n \in \mathbb{N}$ be given.
Then $n \geq 1>0$, so $n>0$.
Hence, $\frac{1}{n}>0$, so $\frac{1}{n}>2-2$.
Therefore, $2>2-\frac{1}{n}$, so $2-\frac{1}{n}<2$ for all $n \in \mathbb{N}$.
Since $s_{n} \leq 2-\frac{1}{n}$ for all $n \in \mathbb{N}$ and $2-\frac{1}{n}<2$ for all $n \in \mathbb{N}$, then $s_{n} \leq 2-\frac{1}{n}<2$ for all $n \in \mathbb{N}$, so $s_{n}<2$ for all $n \in \mathbb{N}$.

Since 1 is a lower bound of $\left(s_{n}\right)$, then $1 \leq s_{n}$ for all $n \in \mathbb{N}$.
Thus, $1 \leq s_{n}<2$ for all $n \in \mathbb{N}$, so $\left(s_{n}\right)$ is bounded.
Since $\left(s_{n}\right)$ is bounded and monotonic, then by MCT, $\left(s_{n}\right)$ is convergent.
Hence, $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is convergent.
Exercise 6. Show that the series $\sum_{n=1}^{\infty} \frac{n}{n+1}$ is divergent.
Solution. Since $\lim _{n \rightarrow \infty} \frac{n}{n+1}=1 \neq 0$, then by the $n^{\text {th }}$ term test for divergence, the series $\sum_{n=1}^{\infty} \frac{n}{n+1}$ is divergent.
Exercise 7. Find a sequence whose $n^{\text {th }}$ partial sum is $\frac{n-1}{n+1}$.
Solution. Let $\left(a_{n}\right)$ be a sequence of real numbers.
Let $\left(s_{n}\right)$ be the sequence of partial sums of $\left(a_{n}\right)$.
Then $s_{n}=\frac{n-1}{n+1}$ for all $n \in \mathbb{N}$.
Thus, $0=s_{1}=a_{1}$.
Since $\frac{1}{3}=s_{2}=a_{1}+a_{2}=0+a_{2}$, then $a_{2}=\frac{1}{3}$.
Since $\frac{1}{2}=s_{3}=a_{1}+a_{2}+a_{3}=0+\frac{1}{3}+a_{3}$, then $a_{3}=\frac{1}{6}$.
Since $\frac{3}{5}=s_{4}=a_{1}+a_{2}+a_{3}+a_{4}=0+\frac{1}{3}+\frac{1}{6}+a_{4}$, then $a_{4}=\frac{1}{10}$.

We can continue this process and see that the sequence has terms $a_{1}=$ $0, a_{2}=\frac{1}{3}, a_{3}=\frac{1}{6}, a_{4}=\frac{1}{10}, a_{5}=\frac{1}{15}, a_{6}=\frac{1}{21}, a_{7}=\frac{1}{28}, \ldots$.

The sequence is defined recursively by $a_{1}=0$ and $a_{2}=\frac{1}{3}$ and $a_{n+1}=$ $\frac{a_{n}}{1+(n+1) a_{n}}$ for $n>2$.

Equivalently, the sequence is $a_{1}=0$ and $a_{n}=\frac{2}{n(n+1)}$ for $n>1$.
Proof. Let the sequence $\left(a_{n}\right)$ be given by $a_{1}=0$ and $a_{n}=\frac{2}{n(n+1)}$ for $n>1$.
We prove the sequence of partial sums of $\left(a_{n}\right)$ is $\frac{n-1}{n+1}$.
Let $\left(s_{n}\right)$ be the sequence of partial sums of $\left(a_{n}\right)$.
Then for all $n \in \mathbb{N}$, we have $s_{n}=a_{1}+\left(a_{2}+a_{3}+\ldots+a_{n}\right)=0+\left(a_{2}+a_{3}+\right.$ $\left.\ldots+a_{n}\right)=a_{2}+a_{3}+\ldots+a_{n}=\sum_{k=2}^{n} a_{k}$.

To prove $s_{n}=\frac{n-1}{n+1}$ for all $n \in \mathbb{N}$, we must prove $\sum_{k=2}^{n} a_{k}=\frac{n-1}{n+1}$ for all $n \in \mathbb{N}$.

We prove by induction on n.
For $n=1$, observe that $\frac{1-1}{1+1}=0=\sum_{k=2}^{1} a_{k}$.
For $n=2$, observe that $\frac{2-1}{2+1}=\frac{1}{3}=\frac{2}{2 \cdot 3}=a_{2}=\sum_{k=2}^{2} a_{k}$.
Let $m \in \mathbb{N}$ such that $\sum_{k=2}^{m} a_{k}=\frac{m-1}{m+1}$.
We must prove $\sum_{k=2}^{m+1} a_{k}=\frac{m}{m+2}$.
Since $m \in \mathbb{N}$, then $m \geq 1$, so $m+1 \geq 2>1$.
Hence, $m+1>1$, so $a_{m+1}=\frac{2}{(m+1)(m+2)}$.
Observe that

$$
\begin{aligned}
\sum_{k=2}^{m+1} a_{k} & =\sum_{k=2}^{m} a_{k}+a_{m+1} \\
& =\frac{m-1}{m+1}+\frac{2}{(m+1)(m+2)} \\
& =\frac{(m-1)(m+2)+2}{(m+1)(m+2)} \\
& =\frac{m^{2}+m}{(m+1)(m+2)} \\
& =\frac{m(m+1)}{(m+1)(m+2)} \\
& =\frac{m}{m+2}
\end{aligned}
$$

Thus, by PMI, $\sum_{k=2}^{n} a_{k}=\frac{n-1}{n+1}$ for all $n \in \mathbb{N}$, so $s_{n}=\frac{n-1}{n+1}$ for all $n \in \mathbb{N}$, as desired.

Exercise 8. Determine if the series $\sum_{n=1}^{\infty} \frac{1}{n^{3}+1}$ is convergent.
Solution. Let $n \in \mathbb{N}$ be given.
Then $n>0$, so $n^{3}>0$.
Since $0<n^{3}<n^{3}+1$, then $0<\frac{1}{n^{3}+1}<\frac{1}{n^{3}}$.
Thus, $0<\frac{1}{n^{3}+1}<\frac{1}{n^{3}}$ for all $n \in \mathbb{N}$.

Since the series $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ converges, then by DCT, the series $\sum_{n=1}^{\infty} \frac{1}{n^{3}+1}$ converges.
Exercise 9. Determine if the series $\sum_{n=1}^{\infty} \frac{n+1}{n^{2}+1}$ is convergent.
Solution. Let $n \in \mathbb{N}$ be given.
Then $n \geq 1$.
Since $1 \leq n$, then $n^{2}+1 \leq n^{2}+n=n(n+1)$, so $0<n^{2}+1 \leq n(n+1)$.
Thus, $0<\frac{1}{n} \leq \frac{n+1}{n^{2}+1}$ for all $n \in \mathbb{N}$.
Since the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, then by DCT, the series $\sum_{n=1}^{\infty} \frac{n+1}{n^{2}+1}$ diverges.
Exercise 10. Determine if the series $\sum_{n=1}^{\infty} \frac{n+1}{n^{3}+1}$ is convergent.
Solution. Since $\frac{n+1}{n^{3}+1}>0$ for all $n \in \mathbb{N}$ and $\frac{1}{n^{2}}>0$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} \frac{\frac{n+1}{n^{3}+1}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{n^{3}+n^{2}}{n^{3}+1}=1>0$ and the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent, then by LCT, the series $\sum_{n=1}^{\infty} \frac{n+1}{n^{3}+1}$ is convergent.
Exercise 11. Determine if the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+1}}$ is convergent.
Solution. Observe that $\frac{1}{\sqrt{n^{2}+1}}>0$ for all $n \in \mathbb{N}$ and $\frac{1}{n}>0$ for all $n \in \mathbb{N}$.
Observe that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{\frac{1}{\sqrt{n^{2}+1}}} & =\lim _{n \rightarrow \infty} \frac{\sqrt{n^{2}+1}}{n} \\
& =\lim _{n \rightarrow \infty} \frac{\sqrt{n^{2}\left(1+\frac{1}{n^{2}}\right)}}{n} \\
& =\lim _{n \rightarrow \infty} \sqrt{1+\frac{1}{n^{2}}} \\
& =1 \\
& >0
\end{aligned}
$$

Since the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent, then by LCT, the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+1}}$ is divergent too.
Exercise 12. Determine if the series $\sum_{n=1}^{\infty}\left(\frac{5}{3}\right)^{-n}$ is convergent.
Solution. Observe that

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(\frac{5}{3}\right)^{-n} & =\sum_{n=1}^{\infty} \frac{1}{\left(\frac{5}{3}\right)^{n}} \\
& =\sum_{n=1}^{\infty} \frac{1}{\frac{5}{}^{3^{n}}} \\
& =\sum_{n=1}^{\infty} \frac{3^{n}}{5^{n}} \\
& =\sum_{n=1}^{\infty}\left(\frac{3}{5}\right)^{n}
\end{aligned}
$$

Thus, the series is a geometric series with common ratio $\frac{3}{5}$.
Since $\left|\frac{3}{5}\right|=\frac{3}{5}<1$, then the geometric series converges to $\frac{\frac{3}{5}}{1-\frac{3}{5}}=\frac{3}{2}$.
Therefore, $\sum_{n=1}^{\infty}\left(\frac{5}{3}\right)^{-n}=\frac{3}{2}$.
Exercise 13. Let $\sum_{n=1}^{\infty} a_{n}$ be a series of nonnegative terms.
If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}^{2}$ converges.
Proof. Let $\left(a_{n}\right)$ be a sequence in \mathbb{R} of nonnegative terms.
Then $a_{n} \geq 0$ for all $n \in \mathbb{N}$.
Let $\left(s_{n}\right)$ be the sequence of partial sums of $\left(a_{n}\right)$.
Suppose the series $\sum_{n=1}^{\infty} a_{n}$ is convergent.
Then the sequence $\left(s_{n}\right)$ is convergent, so $\left(s_{n}\right)$ is bounded.
Hence, there exists $M \in \mathbb{R}$ such that $\left|s_{n}\right| \leq M$ for all $n \in \mathbb{N}$.
We first prove $s_{n} \geq 0$ for all $n \in \mathbb{N}$ by induction on n.
Let $S=\left\{n \in \mathbb{N}: s_{n} \geq 0\right\}$.
Since $s_{1}=a_{1} \geq 0$, then $s_{1} \geq 0$, so $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $s_{k} \geq 0$.
Since $k+1 \in \mathbb{N}$, then $a_{k+1} \geq 0$.
Since $s_{k+1}=s_{k}+a_{k+1}$ and $s_{k} \geq 0$ and $a_{k+1} \geq 0$, then $s_{k+1} \geq 0$.
Hence, $k+1 \in S$.
Therefore, by PMI, $S=\mathbb{N}$, so $s_{n} \geq 0$ for all $n \in \mathbb{N}$.
Thus, $0 \leq\left|s_{n}\right|=s_{n} \leq M$ for all $n \in \mathbb{N}$, so $0 \leq s_{n} \leq M$ for all $n \in \mathbb{N}$.
We next prove $a_{n} \leq M$ for all $n \in \mathbb{N}$ by induction on n.
Let $T=\left\{n \in \mathbb{N}: a_{n} \leq M\right\}$.
Since $a_{1}=s_{1} \leq M$, then $a_{1} \leq M$, so $1 \in T$.
Suppose $m \in T$.
Then $m \in \mathbb{N}$.
Since $m+1 \in \mathbb{N}$, then $s_{m+1} \leq M$, so $s_{m}+a_{m+1} \leq M$.
Thus, $a_{m+1} \leq M-s_{m}$.
Since $s_{m} \geq 0$, then $-s_{m} \leq 0$, so $M-s_{m} \leq M$.
Hence, $a_{m+1} \leq M-s_{m} \leq M$, so $a_{m+1} \leq M$.
Thus, $m+1 \in T$.
Therefore, by PMI, $T=\mathbb{N}$, so $a_{n} \leq M$ for all $n \in \mathbb{N}$.
Since $0 \leq a_{n}$ for all $n \in \mathbb{N}$ and $a_{n} \leq M$ for all $n \in \mathbb{N}$, then $0 \leq a_{n} \leq M$ for all $n \in \mathbb{N}$.

Hence, $0 \leq a_{n}^{2} \leq M a_{n}$ for all $n \in \mathbb{N}$.
Since $\sum_{n=1}^{\infty} M a_{n}=M \sum_{n=1}^{\infty} a_{n}$ and the series $\sum_{n=1}^{\infty} a_{n}$ is convergent then by the scalar multiple rule, the series $\sum_{n=1}^{\infty} M a_{n}$ is convergent.

Therefore, by DCT, the series $\sum_{n=1}^{\infty} a_{n}^{2}$ is convergent.
Exercise 14. Give an example of a divergent series whose sequence of partial sums is bounded.

Solution. Consider the series $\sum_{n=1}^{\infty}(-1)^{n}$.
Since the sequence given by $a_{n}=(-1)^{n}$ for all $n \in \mathbb{N}$ oscillates between -1 and 1 , then the sequence $\left(a_{n}\right)$ is divergent.

Hence, $\left(a_{n}\right)$ is not convergent, so in particular, $\left(a_{n}\right)$ does not converge to 0 . Therefore, by the $n^{\text {th }}$ term test, the series diverges.
Let $\left(s_{n}\right)$ be the sequence of partial sums of $\left(a_{n}\right)$.
Then the sequence $\left(s_{n}\right)$ has terms $-1,0,-1,0,-1,0 \ldots$ so the set of all terms of $\left(s_{n}\right)$ is $\{-1,0\}$.

Therefore, $-1 \leq s_{n} \leq 0$ for all $n \in \mathbb{N}$, so the sequence $\left(s_{n}\right)$ is bounded.
Exercise 15. Let $\sum_{n=1}^{\infty} a_{n}$ be a series and let $\sum_{n=1}^{\infty} b_{n}$ be a series in which the terms are the same and in the same order as $\sum_{n=1}^{\infty} a_{n}$ except that all terms such that $a_{n}=0$ are omitted. If $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\sum_{n=1}^{\infty} b_{n}$ is convergent.

Proof. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be sequences of real numbers.
Let $\left(s_{n}\right)$ be the sequence of partial sums of $\left(a_{n}\right)$ and let $\left(t_{n}\right)$ be the sequence of partial sums of $\left(b_{n}\right)$.

Suppose the series $\sum_{n=1}^{\infty} a_{n}$ is convergent.
Then the sequence $\left(s_{n}\right)$ is convergent.
Either there exists $n \in \mathbb{N}$ such that for all $N \in \mathbb{N}$, if $N \geq n$, then $a_{N}=0$ or there does not.

We consider each case separately.
Case 1: Suppose there exists $n \in \mathbb{N}$ such that for all $N \in \mathbb{N}$, if $N \geq n$, then $a_{N}=0$.

Then this case implies that the sequence $\left(a_{n}\right)$ has only a finite number of nonzero terms.

So, this is the baseline case in which the series is just a finite sum +0 , so this should be easy to prove.

Case 2: Suppose there does not exist $n \in \mathbb{N}$ such that for all $N \in \mathbb{N}$, if $N \geq n$, then $a_{N}=0$.

Then for each $n \in \mathbb{N}$ there exists $N \in \mathbb{N}$ such that $N \geq n$ and $a_{N} \neq 0$.
Let $n \in \mathbb{N}$ be given.
Then there exists $N \in \mathbb{N}$ such that $N \geq n$ and $a_{N} \neq 0$.
Let $T=\left\{k \in \mathbb{N}: k \geq n \wedge a_{k} \neq 0\right\}$.
Then $T \subset \mathbb{N}$ and $N \in T$, so T is not empty.
Hence, by WOP, T has a least element, so there exists a smallest natural number m such that $m \geq n$ and $a_{m} \neq 0$.

Thus, there exists a smallest natural number m such that $m \geq n$ and $a_{m} \neq 0$ for each $n \in \mathbb{N}$.

Since $\left(b_{n}\right)$ consists of the terms of $\left(a_{n}\right)$ in the same order with the zero terms omitted, then $\left(b_{n}\right)$ is a subsequence of $\left(a_{n}\right)$.

Hence, there exists a strictly increasing function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that $b_{n}=$ $a_{g(n)}$ for all $n \in \mathbb{N}$.

Let $g(n)$ be the smallest natural number such that $g(n) \geq n$ and $a_{g(n)} \neq 0$ for each $n \in \mathbb{N}$.

We prove $t_{n}=s_{g(n)}$ for all $n \in \mathbb{N}$ by induction on n.
Let $S=\left\{n \in \mathbb{N}: t_{n}=s_{g(n)}\right\}$.
Since $g(1) \geq 1$, then either $g(1)>1$ or $g(1)=1$.
If $g(1)=1$, then $t_{1}=b_{1}=a_{g(1)}=a_{1}=s_{1}=s_{g(1)}$, so $t_{1}=s_{g(1)}$.

If $g(1)>1$, then the first $g(1)-1$ terms of the sequence $\left(a_{n}\right)$ are zero, so $a_{i}=0$ for each $i \in\{1, \ldots, g(1)-1\}$.

Observe that

$$
\begin{aligned}
t_{1} & =b_{1} \\
& =a_{g(1)} \\
& =0+a_{g(1)} \\
& =\sum_{i=1}^{g(1)-1} a_{i}+a_{g(1)} \\
& =\sum_{i=1}^{g(1)} a_{i} \\
& =s_{g(1)} .
\end{aligned}
$$

Therefore, in either case, $t_{1}=s_{g(1)}$, so $1 \in S$.
Suppose $k \in S$.
Then $k \in \mathbb{N}$ and $t_{k}=s_{g(k)}$.
Observe that

$$
\begin{aligned}
t_{k+1} & =t_{k}+b_{k+1} \\
& =s_{g(k)}+a_{g(k+1)} \\
& =\sum_{i=1}^{g(k)} a_{i}+a_{g(k+1)} \\
& =\sum_{i=1}^{g(k)} a_{i}+0+a_{g(k+1)} \\
& =\sum_{i=1}^{g(k)} a_{i}+\sum_{i=g(k)+1}^{g(k+1)-1} a_{i}+a_{g(k+1)} \\
& =\sum_{i=1}^{g(k+1)} a_{i} \\
& =s_{g(k+1)}
\end{aligned}
$$

Hence, $k+1 \in S$.
Therefore, by PMI, $S=\mathbb{N}$, so $t_{n}=s_{g(n)}$ for all $n \in \mathbb{N}$.
Since g is a strictly increasing function and $t_{n}=s_{g(n)}$ for all $n \in \mathbb{N}$, then $\left(t_{n}\right)$ is a subsequence of $\left(s_{n}\right)$.

Since $\left(s_{n}\right)$ is convergent, then $\left(t_{n}\right)$ is convergent, so $\sum_{n=1}^{\infty} b_{n}$ is convergent.
Exercise 16. Discuss the convergence behavior of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}(3 n+2)}{n^{3}+1}$.

Solution. Since $\frac{3 n+2}{n^{3}+1}>0$ and $\frac{1}{n^{2}}>0$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} \frac{\frac{3 n+2}{n^{3}+1}}{\frac{1}{n^{2}}}=$ $\lim _{n \rightarrow \infty} \frac{n^{2}(3 n+2)}{n^{3}+1}=\lim _{n \rightarrow \infty} \frac{3 n^{3}+2 n^{2}}{n^{3}+1}=3>0$ and the series $\sum \frac{1}{n^{2}}$ is convergent, then by LCT, the series $\sum \frac{3 n+2}{n^{3}+1}$ is convergent.

Since $\sum\left|\frac{(-1)^{n}(3 n+2)}{n^{3}+1}\right|=\sum \frac{3 n+2}{n^{3}+1}$, then the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}(3 n+2)}{n^{3}+1}$ is absolutely convergent, so the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}(3 n+2)}{n^{3}+1}$ is convergent.

Exercise 17. Discuss the convergence behavior of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}(2 n+1)}{n^{2}+1}$.
Solution. Since $\frac{2 n+1}{n^{2}+1}>0$ and $\frac{1}{n}>0$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} \frac{\frac{2 n+1}{n^{2}+1}}{\frac{1}{n}}=$ $\lim _{n \rightarrow \infty} \frac{n(2 n+1)}{n^{2}+1}=\lim _{n \rightarrow \infty} \frac{2 n^{2}+n}{n^{2}+1}=2>0$ and the series $\sum \frac{1}{n}$ is divergent, then by LCT, the series $\sum \frac{2 n+1}{n^{2}+1}$ is divergent.

Let $a_{n}=\frac{2 n+1}{n^{2}+1}$ for all $n \in \mathbb{N}$.
Let $n \in \mathbb{N}$ be given.
Then $n \geq 1$.
Thus,

$$
\begin{aligned}
n \geq 1 & \Rightarrow n+2 \geq 3 \\
& \Rightarrow n(n+2) \geq 3>\frac{1}{2} \\
& \Rightarrow n(n+2)>\frac{1}{2} \\
& \Rightarrow 2 n(n+2)>1 \\
& \Rightarrow 2 n^{2}+4 n>1 \\
& \Rightarrow 2 n^{2}+4 n-1>0
\end{aligned}
$$

Hence, $2 n^{2}+4 n-1>0$.
Since $n>0$, then $n^{2}+1>0$ and $\left[(n+1)^{2}+1\right]>0$, so $\left(n^{2}+1\right)\left[(n+1)^{2}+1\right]>0$.
Observe that

$$
\begin{aligned}
a_{n}-a_{n+1} & =\frac{2 n+1}{n^{2}+1}-\frac{2(n+1)+1}{(n+1)^{2}+1} \\
& =\frac{(2 n+1)\left[(n+1)^{2}+1\right]-\left(n^{2}+1\right)[2(n+1)+1]}{\left(n^{2}+1\right)\left[(n+1)^{2}+1\right]} \\
& =\frac{(2 n+1)\left(n^{2}+2 n+2\right)-\left(n^{2}+1\right)(2 n+3)}{\left(n^{2}+1\right)\left[(n+1)^{2}+1\right]} \\
& =\frac{\left(2 n^{3}+5 n^{2}+6 n+2\right)-\left(2 n^{3}+3 n^{2}+2 n+3\right)}{\left(n^{2}+1\right)\left[(n+1)^{2}+1\right]} \\
& =\frac{2 n^{2}+4 n-1}{\left(n^{2}+1\right)\left[(n+1)^{2}+1\right]} \\
& >0
\end{aligned}
$$

Hence, $a_{n}-a_{n+1}>0$, so $a_{n}>a_{n+1}$.

Thus, the sequence $\left(a_{n}\right)$ is strictly decreasing, so $\left(a_{n}\right)$ is monotonic decreasing.

Since $\frac{2 n+1}{n^{2}+1}>0$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} \frac{2 n+1}{n^{2}+1}=0$, then by AST, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}(2 n+1)}{n^{2}+1}$ is convergent.

Since the series $\sum\left|\frac{(-1)^{n}(2 n+1)}{n^{2}+1}\right|=\sum \frac{2 n+1}{n^{2}+1}$ is divergent, then the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}(2 n+1)}{n^{2}+1}$ is conditionally convergent.
Exercise 18. Let $\left(a_{n}\right)$ be a sequence of real numbers. Let S be a real number. Then $\lim _{n \rightarrow \infty} a_{n}=S$ iff the series $a_{1}+\sum_{n=2}^{\infty}\left(a_{n}-a_{n-1}\right)$ converges and has sum S.

Proof. Let $\left(s_{n}\right)$ be the sequence of partial sums of the sequence $\left(a_{n}-a_{n-1}\right)$.
Then $s_{n}=\sum_{k=2}^{n}\left(a_{k}-a_{k-1}\right)$ for each $n \geq 2$.
We first prove $s_{n}=a_{n}-a_{1}$ for each natural number $n \geq 2$ by induction on n.

Let $T=\left\{n \in \mathbb{N}: s_{n}=a_{n}-a_{1}, n \geq 2\right\}$.
Since $2=2$ and $s_{2}=\sum_{k=2}^{2}\left(a_{k}-a_{k-1}\right)=a_{2}-a_{1}$, then $2 \in T$.
Suppose $k \in T$.
Then $k \in \mathbb{N}$ and $k \geq 2$ and $s_{k}=a_{k}-a_{1}$.
Thus,

$$
\begin{aligned}
s_{k+1} & =s_{k}+\left(a_{k+1}-a_{k}\right) \\
& =\left(a_{k}-a_{1}\right)+\left(a_{k+1}-a_{k}\right) \\
& =a_{k+1}-a_{1}
\end{aligned}
$$

Since $k \geq 2$ and $s_{k+1}=a_{k+1}-a_{1}$, then $k+1 \in T$.
Therefore, by PMI, $s_{n}=a_{n}-a_{1}$ for each natural number $n \geq 2$.
Suppose $\lim _{n \rightarrow \infty} a_{n}=S$.
Then

$$
\begin{aligned}
S-a_{1} & =\lim _{n \rightarrow \infty} a_{n}-\lim _{n \rightarrow \infty} a_{1} \\
& =\lim _{n \rightarrow \infty}\left(a_{n}-a_{1}\right) \\
& =\lim _{n \rightarrow \infty} s_{n}
\end{aligned}
$$

Hence, $\sum_{n=2}^{\infty}\left(a_{n}-a_{n-1}\right)=\lim _{n \rightarrow \infty} s_{n}=S-a_{1}$.
Therefore, $a_{1}+\sum_{n=2}^{\infty}\left(a_{n}-a_{n-1}\right)=S$, as desired.
Conversely, suppose the series $a_{1}+\sum_{n=2}^{\infty}\left(a_{n}-a_{n-1}\right)$ converges and has sum S.

Then $\sum_{n=2}^{\infty}\left(a_{n}-a_{n-1}\right)=S-a_{1}$.
Observe that

$$
\begin{aligned}
S-a_{1} & =\lim _{n \rightarrow \infty} s_{n} \\
& =\lim _{n \rightarrow \infty}\left(a_{n}-a_{1}\right) \\
& =\lim _{n \rightarrow \infty} a_{n}-\lim _{n \rightarrow \infty} a_{1} \\
& =\lim _{n \rightarrow \infty} a_{n}-a_{1} .
\end{aligned}
$$

Therefore, $S-a_{1}=\lim _{n \rightarrow \infty} a_{n}-a_{1}$, so $S=\lim _{n \rightarrow \infty} a_{n}$, as desired.
Exercise 19. Let $0<r<1$ be a real number.
Then the series $\sum_{n=1}^{\infty} n r^{n}$ is convergent.
Proof. Let $n \in \mathbb{N}$.
Then $n>0$.
Since $0<r<1$, then $0<r$ and $r<1$.
Since $r>0$ and $n>0$, then $r^{n}>0$, so $n r^{n}>0$.
Since $n+1>n>0$, then $\frac{n+1}{n}>0$ for all $n \in \mathbb{N}$.
Observe that

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{(n+1) r^{n+1}}{n r^{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{n+1}{n} r\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{n+1}{n}\right||r| \\
& =|r| \lim _{n \rightarrow \infty}\left|\frac{n+1}{n}\right| \\
& =r \lim _{n \rightarrow \infty} \frac{n+1}{n} \\
& =r \cdot 1 \\
& =r \\
& <1 .
\end{aligned}
$$

Therefore, by the ratio test, the series $\sum_{n=1}^{\infty} n r^{n}$ is absolutely convergent, so the series $\sum_{n=1}^{\infty} n r^{n}$ is convergent.

