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Infinite Series of Real Numbers

Proposition 1. properties of finite sums
Let n ∈ N. Then
1.

∑n
k=1(ak + bk) =

∑n
k=1 ak +

∑n
k=1 bk.

2.
∑n
k=1(λak) = λ

∑n
k=1 ak for every λ ∈ R.

Definition 2. sequence of partial sums
Let (an) be a sequence of real numbers.
Let (sn) be a sequence of real numbers defined by s1 = a1 and sn+1 =

sn + an+1 for all n ∈ N.
Then (sn) is called the sequence of partial sums of (an).

Proposition 3. nth term of a sequence of partial sums
Let (an) be a sequence of real numbers.
Let (sn) be a sequence defined by s1 = a1 and sn+1 = sn + an+1 for all

n ∈ N.
The nth term of the sequence (sn) is sn = a1 + a2 + ...+ an.

Therefore, the nth term of (sn) is the sum of the first n terms of (an).
Hence, sn = a1 + a2 + a3 + ...+ an =

∑n
k=1 ak for all n ∈ N.

Observe that
s1 = a1
s2 = a1 + a2
s3 = a1 + a2 + a3
s4 = a1 + a2 + a3 + a4
...
sn = a1 + a2 + ...+ an
sn+1 = a1 + a2 + ...+ an + an+1 = sn + an+1.

Definition 4. summable sequence
Let (an) be a sequence of real numbers.
Let (sn) be the sequence of partial sums of (an).
If (sn) is convergent, then we say that (an) is summable.
We denote limn→∞ sn by

∑∞
n=1 an.



A series is the sum of the terms of a sequence.
Therefore, a series is a sum of an infinite number of terms.

Definition 5. infinite series
Let (an) be a sequence of real numbers.
The expression

∑∞
n=1 an is called an infinite series.

The number an is called the nth term of the series.

Therefore,
∑∞
n=1 an = a1 + a2 + a3 + ....

Definition 6. convergent/divergent series
Let (an) be a sequence of real numbers.
Let (sn) be the sequence of partial sums of (an).
If there exists a real number S such that limn→∞ sn = S, then the infinite

series
∑∞
n=1 an is said to be convergent.

We call S the sum of the series and write
∑∞
n=1 an = S.

If (sn) diverges, the infinite series is said to be divergent.

Thus, if the sequence of partial sums of a sequence (an) is convergent, then
the series

∑
an is convergent.

A series is either convergent or divergent.

Let
∑∞
n=1 an be a convergent series of real numbers.

Then there exists a real number S such that
∑∞
n=1 an = S.

Let (sn) be the sequence of partial sums of the sequence (an).
Then sn = a1+a2+a3+...+an =

∑n
k=1 ak for all n ∈ N and limn→∞ sn = S.

Therefore,
∑∞
n=1 an = a1+a2+a3+... = S = limn→∞ sn = limn→∞

∑n
k=1 ak.

Theorem 7. uniqueness of a sum of a convergent series
The sum of a convergent series of real numbers is unique.

Example 8. telescoping series
Show that

∑∞
n=1

1
n(n+1) = 1.

Definition 9. harmonic series
The series

∑∞
n=1

1
n is called the harmonic series.

Example 10. harmonic series is divergent
Let (an) be a sequence defined by an = 1

n .
Let (sn) be the sequence of partial sums defined by sn = 1 + 1

2 + 1
3 + 1

4 +
...+ 1

n =
∑n
k=1

1
k for all n ∈ N.

Then (sn) is divergent, so the sequence of terms (an) is not summable.
Therefore, the harmonic series

∑∞
n=1

1
n = 1 + 1

2 + 1
3 + 1

4 + ... diverges.

Example 11. The series
∑∞
n=1

1
n2 is convergent.

In fact, it can be shown that
∑∞
n=1

1
n2 = π2

6 .

Theorem 12. nth term test for divergence
If the series

∑∞
n=1 an is convergent, then limn→∞ an = 0.
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Therefore, if limn→∞ an 6= 0, then the series
∑∞
n=1 an is divergent.

Example 13. Since limn→∞
1
n = 0 and the series

∑∞
n=1

1
n is divergent, then

the converse is false.

Definition 14. geometric series
Let r ∈ R.
Let (rn) be a geometric sequence.
The series

∑∞
n=1 r

n is called a geometric series.

Example 15. Show that
∑∞
n=1

1
2n = 1.

Proposition 16. sum of n+ 1 terms of a geometric series formula
Let r ∈ R, r 6= 1.
Then

n∑
k=0

rk =
rn+1 − 1

r − 1
for all n ∈ Z+.

Proposition 17. sum of a convergent geometric series
Let r ∈ R.
Then

∑∞
n=1 r

n is convergent iff |r| < 1.

If |r| < 1, then
∑∞
n=1 r

n =
r

1− r
.

Therefore,
∑∞
n=1 r

n is divergent iff |r| ≥ 1.

Theorem 18. algebraic summation rules for convergent series
If

∑∞
n=1 an and

∑∞
n=1 bn are convergent series of real numbers, then

1. Scalar Multiple Rule∑∞
n=1(λan) = λ

∑∞
n=1 an for every λ ∈ R.

2. Sum Rule∑∞
n=1(an + bn) =

∑∞
n=1 an +

∑∞
n=1 bn.

3. Difference Rule∑∞
n=1(an − bn) =

∑∞
n=1 an −

∑∞
n=1 bn.

If
∑∞
n=1 an = A and

∑∞
n=1 bn = B, then

1. Scalar Multiple Rule∑∞
n=1 λan = λA for every λ ∈ R.

Therefore a scalar multiple of a convergent series is convergent.
2. Sum Rule∑∞
n=1(an + bn) = A+B.

Therefore the sum of two convergent series is convergent.
3. Difference Rule∑∞
n=1(an − bn) = A−B.

Therefore the difference of two convergent series is convergent.

Theorem 19. inequality rule for convergent series
If the series

∑∞
n=1 an and

∑∞
n=1 bn are convergent and an ≤ bn for all n ∈ N,

then
∑∞
n=1 an ≤

∑∞
n=1 bn.
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Theorem 20. tail of a series determines convergence of a series
Let M be any positive integer.
The series

∑∞
n=1 an is convergent iff the series

∑∞
n=1 aM+n is convergent.

Therefore, the convergence of a series is not affected by changing a finite
number of its initial terms.

Convergence Tests for Series of Real Numbers

Proposition 21. Cauchy convergence criterion for series
The infinite series of real numbers

∑
an is convergent iff for every ε > 0

there exists N ∈ N such that if n > m > N , then |
∑n
k=m+1 ak| < ε.

Theorem 22. Boundedness convergence criterion for series of non-
negative terms

If (an) is a sequence of nonnegative terms, then the series
∑
an is convergent

iff the sequence of partial sums of (an) is bounded.

Let (an) be a sequence of nonnegative terms.
Let (sn) be the sequence of partial sums of (an).
Then the series

∑
an is convergent iff (sn) is bounded.

Therefore the series
∑
an is divergent iff (sn) is unbounded.

Theorem 23. direct comparison test
Let (an) and (bn) be sequences such that 0 ≤ an ≤ bn for all n ∈ N.
If

∑
bn is convergent, then

∑
an is convergent.

Let (an) and (bn) be sequences such that 0 ≤ an ≤ bn for all n ∈ N.
If the series

∑
bn is convergent, then the series

∑
an is convergent.

Therefore, if the series
∑
an is divergent, then the series

∑
bn is divergent.

Let (an) and (bn) be sequences such that 0 ≤ an ≤ bn for all n ∈ N.
Then an ≤ bn for all n ∈ N.
Suppose the series

∑
bn is convergent.

Then, by DCT, the series
∑
an is convergent.

Since
∑
an is convergent and

∑
bn is convergent and an ≤ bn for all n ∈ N,

then by the inequality rule for convergent series,
∑
an ≤

∑
bn.

Example 24. applying the direct comparison test
a. The series

∑
1√
n

and
∑

n+1
n2+1 are divergent.

b. The series
∑

1
n2+1 and

∑
1
n3 are convergent.

Theorem 25. limit comparison test
Let (an) and (bn) be sequences of real numbers such that an > 0 and bn > 0

for all n ∈ N.
If there exists a positive real number L such that limn→∞

an
bn

= L, then the
series

∑
an is convergent iff the series

∑
bn is convergent.

Therefore, the series
∑
an is divergent iff the series

∑
bn is divergent.
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Example 26. applying the limit comparison test
The series

∑∞
n=2

1
n2−1 is convergent.

Lemma 27. Let (an) be a sequence in R.
If there exists a real number L such that limn→∞ a2n = L and limn→∞ a2n−1 =

L, then limn→∞ an = L.

Theorem 28. alternating series test
Let (an) be a sequence of positive terms in R.
If (an) is monotonic decreasing and limn→∞ an = 0, then the series

∑
(−1)nan

is convergent.

Example 29. alternating harmonic series is convergent

The series
∑ (−1)n

n is convergent.

Example 30. The series
∑ (−1)n

n2 converges.

Definition 31. absolute and conditional convergence
A series

∑
an is said to be absolutely convergent iff the series

∑
|an| is

convergent.
A series

∑
an is said to be conditionally convergent iff

∑
an is convergent

and
∑
|an| is divergent.

Let
∑
an be a convergent series.

The series
∑
|an| is either convergent or divergent.

If
∑
|an| is convergent, then

∑
an is absolutely convergent.

If
∑
|an| is divergent, then

∑
an is conditionally convergent.

Therefore, a convergent series is either absolutely convergent or conditionally
convergent (but not both).

Example 32. The series
∑ (−1)n

n2 is absolutely convergent since the series∑
| (−1)

n

n2 | =
∑

1
n2 is convergent.

Theorem 33. absolute convergence implies convergence
Let (an) be a sequence in R.
If the series

∑
|an| is convergent, then the series

∑
an is convergent.

Therefore, if a series
∑
an is absolutely convergent, then the series

∑
an is

convergent.

Example 34. The series
∑ sin(n)

n2 is absolutely convergent, so
∑ sin(n)

n2 is con-
vergent.

Example 35. convergence does not imply absolute convergence

The alternating harmonic series
∑ (−1)n

n is convergent, but the the harmonic

series
∑
| (−1)

n

n | =
∑

1
n is divergent, so the alternating harmonic series

∑ (−1)n
n

is not absolutely convergent.

In fact, the alternating harmonic series
∑ (−1)n

n is conditionally convergent.
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Theorem 36. ratio test
Let (an) be a sequence of nonzero real numbers.
a. If limn→∞ |an+1

an
| < 1, then the series

∑∞
n=1 an is absolutely convergent.

b. If limn→∞ |an+1

an
| > 1, then the series

∑∞
n=1 an is divergent.

c. If limn→∞ |an+1

an
| = 1, then the ratio test is inconclusive.
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