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Infinite Series of Real Numbers

Proposition 1. properties of finite sums
Let n € N. Then
13 o (an +be) = >0 ar + 300 b
2.3 0 (Nag) = A>"p_, ak for every A € R.

Definition 2. sequence of partial sums

Let (a,) be a sequence of real numbers.

Let (s,) be a sequence of real numbers defined by s; = a; and s,41 =
Sp + an41 for all n € N.

Then (s,,) is called the sequence of partial sums of (a,,).

Proposition 3. n'* term of a sequence of partial sums

Let (ay,) be a sequence of real numbers.

Let (s,) be a sequence defined by s1 = a1 and Sp41 = Sp + any1 for all
n € N.

The n'" term of the sequence (s,) is 8y, = a1 + as + ... + a,.

Therefore, the n** term of (s,,) is the sum of the first n terms of (a,,).
Hence, s, = a1 +az+az+...+a, =Y ., ar for all n € N.

Observe that

S1 = ay

So = aj + az

S3 =ai + a2+ as

Sq :a1+a2+a3+a4

Sp=a1+ a2+ ... +ay
Spn+1 = a1 taz + ...+ ap + AGpp1 = Sy + Apt1-

Definition 4. summable sequence
Let (a,) be a sequence of real numbers.
Let (s,,) be the sequence of partial sums of (ay,).
If (s,) is convergent, then we say that (a,) is summable.
We denote limy,_yo0 S5, by Yoo an.



A series is the sum of the terms of a sequence.
Therefore, a series is a sum of an infinite number of terms.

Definition 5. infinite series
Let (a,) be a sequence of real numbers.
The expression >~ a, is called an infinite series.
The number a,, is called the n'* term of the series.

Therefore, Y>> a, = a; + az + az + ....

n=1

Definition 6. convergent/divergent series

Let (a,) be a sequence of real numbers.

Let (s,,) be the sequence of partial sums of (a,).

If there exists a real number S such that lim,,_,o s, = S, then the infinite
series Y | a, is said to be convergent.

We call S the sum of the series and write Y~ a, = S.

If (s,) diverges, the infinite series is said to be divergent.

Thus, if the sequence of partial sums of a sequence (a,,) is convergent, then
the series > a,, is convergent.
A series is either convergent or divergent.

Let >°°° | a, be a convergent series of real numbers.
Then there exists a real number S such that > 2 a, = S.
Let (s,) be the sequence of partial sums of the sequence (a,,).
Then s, = a1 +as+as+...+a, = Zzzl ay for allm € N and lim,, o, 8, = S.
Therefore, Y07 | a, = a1+az+az+... =S = limy o0 S = limy 00 D ey k-

Theorem 7. uniqueness of a sum of a convergent series
The sum of a convergent series of real numbers is unique.

Example 8. telescoping series
Show that >°7 1 1.

n=1 n(n+1) =

Definition 9. harmonic series
The series " ; L is called the harmonic series.

Example 10. harmonic series is divergent
Let (a,) be a sequence defined by a,, = +.
Let (sy) be the sequence of partial sums defined by s, = 1+ % + % + i +
.+i=37  +forallneN.
Then (s,,) is divergent, so the sequence of terms (a,) is not summable.
Therefore, the harmonic series > o, % =1+ % + % + i + ... diverges.
Example 11. The series Y | # is convergent.
In fact, it can be shown that Y7 | 13 = %2.
Theorem 12. n'" term test for divergence
If the series 22021 an 18 convergent, then limy,_, . a, = 0.



Therefore, if lim,_,~ a, # 0, then the series 270111 an is divergent.

Example 13. Since limnﬁm% = 0 and the series 22021 % is divergent, then
the converse is false.

Definition 14. geometric series
Let r € R.
Let (r™) be a geometric sequence.
The series Y -, r™ is called a geometric series.

Example 15. Show that > ° =1

n=1 2”
Proposition 16. sum of n+ 1 terms of a geometric series formula
Letr e Rjr # 1.
Then
n n+1 -1
Zrk for allm € Z".
-1
k=0

Proposition 17. sum of a convergent geometric series

Let r € R.
Then Y " r™ is convergent zﬁ |r| < 1.

If |r| < 1, then > 00 | r™

1o
Therefore, >, r™ is divergent iff |r| > 1.

Theorem 18. algebraic summation rules for convergent series
If >0 L ay and >0~ by are convergent series of real numbers, then
1. Scalar Multiple Rule
Sl 1(Aay) =AD" ay for every X € R.
2. Sum Rule
Zn 1(0’“ + b ) Zzozl an + Z;L.O:l bn
3. Difference Rule

Zfll(an —bn) = EZL an — 220:1 bn.-

If>> a,=Aand Y >, b, = B, then

1. Scalar Multiple Rule

>0 Aa, = AA for every A € R.

Therefore a scalar multiple of a convergent series is convergent.
2. Sum Rule

Zle(an +b,) = A+ B.

Therefore the sum of two convergent series is convergent.

3. Difference Rule

> onei(@n —bn) = A—B.

Therefore the difference of two convergent series is convergent.

Theorem 19. inequality rule for convergent series
If the series y -, a, andy .- | b, are convergent and a, < b,, for alln € N,

then 07 1 an < D07 by.



Theorem 20. tail of a series determines convergence of a series
Let M be any positive integer.
The series Y ., an, is convergent iff the series Y | anjtn is convergent.

Therefore, the convergence of a series is not affected by changing a finite
number of its initial terms.

Convergence Tests for Series of Real Numbers

Proposition 21. Cauchy convergence criterion for series
The infinite series of real numbers Y a, is convergent iff for every e > 0
there exists N € N such that if n >m > N, then | Y p_ . ax| <e.

Theorem 22. Boundedness convergence criterion for series of non-
negative terms

If (an) is a sequence of nonnegative terms, then the seriesy . a, is convergent
iff the sequence of partial sums of (a,) is bounded.

Let (a,) be a sequence of nonnegative terms.

Let (s,,) be the sequence of partial sums of (ay,).

Then the series Y a,, is convergent iff (s,,) is bounded.
Therefore the series > a,, is divergent iff (s,,) is unbounded.

Theorem 23. direct comparison test
Let (ay,) and (by) be sequences such that 0 < a,, < b, for alln € N.
If > b, is convergent, then Y a,, is convergent.

Let (ay,) and (b,) be sequences such that 0 < a,, < b, for all n € N.
If the series Y b, is convergent, then the series 3 a,, is convergent.
Therefore, if the series Y a,, is divergent, then the series ) b, is divergent.

Let (ay,) and (b,) be sequences such that 0 < a,, <b, for all n € N.
Then a, < b, for all n € N.
Suppose the series > b, is convergent.
Then, by DCT, the series ) a,, is convergent.
Since > a,, is convergent and ) _ b, is convergent and a,, < b,, for all n € N,
then by the inequality rule for convergent series, > a, < > b,.

Example 24. applying the direct comparison test

a. The series > ﬁ and T:Ztll are divergent.

o _1 1
b. The series ) — —7 and >_ 53 are convergent.

Theorem 25. limit comparison test

Let (an,) and (by,) be sequences of real numbers such that a, > 0 and b, >0
for all n € N.

If there exists a positive real number L such that lim,, 'g—: = L, then the
series Y a, s convergent iff the series > b, is convergent.

Therefore, the series > a,, is divergent iff the series Y b, is divergent.



Example 26. applying the limit comparison test

The series Y, — is convergent.

Lemma 27. Let (a,) be a sequence in R.
If there exists a real number L such thatlim, .o ao, = L andlim,_, o asp—1 =
L, then lim,,_,,, a, = L.

Theorem 28. alternating series test

Let (ay,) be a sequence of positive terms in R.

If (ay,) is monotonic decreasing and lim,,_, o a,, = 0, then the series > (—1)"a,
18 convergent.

Example 29. alternating harmonic series is convergent
The series Y % is convergent.

Example 30. The series ) (_nlf converges.

Definition 31. absolute and conditional convergence

A series > a,, is said to be absolutely convergent iff the series > |a,| is
convergent.

A series Y a,, is said to be conditionally convergent iff > a,, is convergent
and Y |ay| is divergent.

Let > a, be a convergent series.

The series Y |ay,| is either convergent or divergent.

If > |an| is convergent, then > a,, is absolutely convergent.

If 3" |ay,| is divergent, then Y a, is conditionally convergent.

Therefore, a convergent series is either absolutely convergent or conditionally
convergent (but not both).

Example 32. The series Z(_n%)n is absolutely convergent since the series
> |( D' =% 2 -3 is convergent.

Theorem 33. absolute convergence implies convergence
Let (an,) be a sequence in R.
If the series Y |an| is convergent, then the series Y a, is convergent.

Therefore, if a series Y a,, is absolutely convergent, then the series > a,, is
convergent.

Example 34. The series > S‘“(;‘) is absolutely convergent, so > Sm(?") is con-

vergent.

Example 35. convergence does not imply absolute convergence

The alternatlng harmonic series > (G20l )n is convergent, but the the harmonic
series » \ | =Y L is divergent, so the alternating harmonic series » GO 1)ﬂ
is not absolutely convergent

In fact, the alternating harmonic series

(Zlf is conditionally convergent.



Theorem 36. ratio test
Let (a,,) be a sequence of nonzero real numbers.
a. If lim, o |a;:1 | <1, then the series Y .., a, is absolutely convergent.
b. If limy, o0 aa—:l\ > 1, then the series Y -, a, is divergent.

c. Iflim, |aZ—:1\ =1, then the ratio test is inconclusive.




