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Functions

Proposition 1. A function value is unique.
Let f be a function.
Let a,b € domf.

If a =b, then f(a) = f(b).

Proof. Suppose a = b.

Since a € domf and f is a relation, then (a, f(a)) € f.

Since b € domf and f is a relation, then (b, f(b)) € f.

Since b = a and (b, f(b)) € f, then (a, f(b)) € f.

Since f is a function and (a, f(a)) € f and (a, f(b)) € f, then f(a) =
f (). O

Theorem 2. equality of functions
Let f and g be functions.
Let domf be the domain of f.
Let domg be the domain of g.
Then f = g iff
1. domf = domyg.
2. f(x) = g(x) for all x € domf N domg.

Proof. We prove if domf = domg and f(x) = g(z) for all x € domf N domyg,
then f =g.
Suppose domf = domg and f(x) = g(z) for all z € domf N domg.

We first prove f C g.
Let x € domf.
Then (z, f(z)) € f.
Since x € domf and domf = domg, then x € domyg, so (z,g(x)) €
Since x € domf and x € domg, then x € domf Ndomg, so f(x) =
Hence, (z, f(z)) € g.
Thus, if (z, f(z)) € f, then (z, f(x)) € g,s0 f Cg.

g
9(z).



We prove g C f.
Let y € domg.
Then (y,9(y)) € g.
Since y € domg and domg = domf, then y € domf, so (y, f(y)) € f.
Since y € domf and y € domg, then y € domf Ndomg, so f(y) = g(y).
Hence, (y,9(y)) € f.
Thus, if (y,9(y)) € g, then (y,9(y)) € f,s0 g C f.

Since f C g and g C f, then f = g, as desired. O

Proof. Conversely, we prove if f = g, then domf = domg and f(z) = g(z) for
all z € dom f N domyg.
Suppose f = g.

We first prove domf = domg.
Let x € domf.
Then (z, f(z)) € f.
Since f = g, then (z, f(z)) € g, so x € domg.
Thus, domf C domg.

Let y € domg.
Then (y,9(y)) € g

Since g = f, then (y,9(y)) € f, so y € domf.
Thus, domg C domf.

Since dom f C domg and domg C domf, then domf = domg, as desired.

We next prove f(z) = g(x) for all x € domf N domyg.
Let x € domf N domg.
Then = € domf and x € domg, so (z, f(z)) € f and (x, g(z)) € g.
Since (z,g(x)) € g and g = f, then (z,g(x)) € f.
Since f is a function and (z, f(z)) € f and (z,g(x)) € f, then f(z) = g(z),
as desired. O

Theorem 3. equality of maps
The maps f: A— B and g : C — D are equal iff
1. A=C.
2. B=D.
3. f(z) = g(z) for all x € A.

Proof. Let f: A— B and g:C — D be maps.

Suppose f: A— B and g: C — D are equal.

Then f =g and B = D, by definition of equal maps.

Since f = g, then domf = domg, and f(x) = g(z) for all x € domf Ndomyg,
by theorem 2.

Since A = dom f and domf = domg and domg = C, then A = C.



Observe that domf Ndomg = domf Ndomf = domf = A.

Since domf Ndomg = A, and f(z) = g(x) for all z € domf N domg, then
f(z) = g(x) for all x € A.

Therefore, A = C, and B = D, and f(z) = g(z) for all x € A, as desired. 0O

Proof. Conversely, suppose A = C, and B = D, and f(x) = g(z) for all x € A.
Since f: A — B is a map, then f is a function, and domf = A.
Since g : C' — D is a map, then g is a function, and domg = C.
Since domf = A and A = C and C = domg, then domf = domyg.

Let x € domf N domg.

Then x € ANC,s0x € Aand z € C.

Thus, x € A, so f(z) = g(x).

Hence f(z) = g(x) for all x € domf N domyg.

Since f and g are functions and domf = domg and f(z) = g(z) for all
x € domf N domg, then f = g, by theorem 2.

Since f = g and B = D, then the maps f: A — Band g: C — D are equal,
as desired. O

Proposition 4. The restriction of a map is a map.
Let f: A— B be a map.
Let S C A.
Let f|s be the restriction of f to S.
Then fls : S — B is a map.

Proof. We prove f|g is a function.
Observe that f|s: S — B is a relation from S to B.
Let (a,b) € f|s and (a,b’) € fls.
Then a € S and f|s(a) = b and f|s(a) =b'.
Since a € S, then f|s(a) = f(a), so f(a) = f|s(a).
Since f(a) = f|s(a) and f|s(a) = b, then f(a) =, so (a,b) € f.
Since f(a) = fls(a) and f|s(a) =¥, then f(a) =¥, so (a,bV') € f.
Since f is a function and (a,b) € f and (a,b’) € f, then b=1V'.
Therefore, (a,b) € f|s and (a,b’) € f|s implies b =¥, so f|g is a function.

We prove domf|s = S.
Since f|g : S — B is a relation, then domf|s C S.
Let x € S.
Since S C A, then z € A.
Since f : A — B is a map, then there exists y € B such that f(z) =y.
Since z € S, then f|s(z) = f(x).
Since fls(z) = £(x) and f(z) = y, then f|s(z) =y, 50 (,) € ls.
Since = € S and there exists y € B such that (z,y) € f|s, then z € domf|s.
Hence, © € S implies « € domf|s, so S C domf|s.
Since domf|s C S and S C domf|g, then domf|s = S.



Since f|s : S — B is a relation, then rngf|s C B.

Since f|g is a function, and domf|s = S, and rngf|s C B, then f|s:S — B
is a map. O

Theorem 5. Composition of functions is a function.
Let f and g be functions. Then
1. go f is a function.
2. dom go f ={x € domf : f(x) € domg}.
3. (9o f)() = g(f(x)) for all z € dom go f.

Proof. We prove 1.
Since f and g are relations, then go f = {(a,d) : (3¢)((a,c) € f A(c,b) € g},
so g o f is a relation.
Let (a,b) € go f and (a,b') € go f.
Since (a,b) € g o f, then there exists ¢ such that (a,c) € f and (¢, b) € g.
Since (a,b’) € go f, then there exists d such that (a,d) € f and (d,V') € g.
Since f is a function and (a,c) € f and (a,d) € f, then ¢ = d.
Since (d,b’) € g, then (¢, b') € g.
Since g is a function and (¢, b) € g and (¢, V') € g, then b=10'.
Therefore, g o f is a function. O

Proof. We prove 2.
Observe that dom go f = {a: (Ib)((a,b) € go f}.
Let S = {x € domf : f(z) € domg}.
We must prove dom go f = S.

Suppose = € dom go f.
Then there exists y such that (z,y) € go f.
Thus, there exists z such that (z,2) € f and (z,y) € g.
Since (z,z) € f and f is a function, then x € domf and f(z) = z.
Since (z,y) € g, then z € domg, so f(x) € domg.
Since x € domf and f(x) € domg, then x € S, so dom go f C S.

Suppose = € S.
Then = € domf and f(x) € domyg.
Let z = f(x).
Since x € domf, then (x, f(x)) € f, so (z,2) € f.
Since f(x) € domg and f(z) = z, then z € domg, so there exists y such that
(2,9) € g.
Since (z,z) € f and (z,y) € g, then (z,y) € go f.
Thus, there exists y such that (z,y) € go f, so x € dom go f.
Therefore, S C dom go f.



Since dom go f C S and S C dom go f, then dom go f = S, as desired. O

Proof. We prove 3.
Let x € dom go f.
Since g o f is a function, then (g o f)(x) exists.
Let z = (g o f)(x).
Then (z,2) € go f, so there exists y such that (z,y) € f and (y,2) € g.
Since f and g are functions, then f(z) =y and g(y) = =.
Thus, (go f)(x) =2z =g(y) = g(f(z)), as desired. O

Theorem 6. Function composition is associative.
Let f, g, and h be functions.
Then (fog)oh=fo(goh).

Proof. Since f and g are functions, then f o g is a function.
Since h is a function, then (f o g) o h is a function.
Since g and h are functions, then g o h is a function.
Since f is a function, then f o (go h) is a function.

We first prove dom(f o g) o h =domf o(goh).

Let « € dom(f o g) o h.
Then = € domh and h(zx) € domf o g.
Since h(z) € domf o g, then h(z) € domg and g(h(z)) € domf.
Since x € domh and h(z) € domg, then x € domg o h.
Since g(h(z)) € domf, then (g o h)(x) € domf.
Since z € domg o h and (g o h)(z) € domf, then x € domf o (goh).
Thus, dom(f og) oh C domf o (goh).

Let y € domf o (goh).
Then y € domg o h and (g o h)(y) € domf.
Since y € domg o h, then y € domh and h(y) € domg.
Since (g o h)(y) € domf, then g(h(y)) € domf.
Since h(y) € domg and g(h(y)) € domf, then h(y) € domf o g.
Since y € domh and h(y) € domf o g, then y € dom(f o g) o h.
Thus, domf o (go h) C dom(f og)oh.

Since dom(f o g) o h C domf o (goh) and domf o (goh) C dom(fog)oh,
then dom(f o g) o h =domf o (goh).



Let € dom(f og)ohnNdomfo(goh).
Then x € dom(f o g) ohNdom(f og)oh=dom(fog)oh and

[(feg)ohl(z) = (fog)(h(x))
flg(h(z))]

= fllgoh)(z)]

= [folgoh)(z).

Therefore, [(f o g) o hl(x) = [f o (go h)](z) for all z in the common domain.

Since dom(f 0 g) o h = dom o (goh) and [(f 0 g) o h)(z) = [f o (g W)](x) for
all z in the common domain, then (f og)oh = fo(goh), as desired. O

Proposition 7. Composition of maps
Let f: A— B and g: B — C be maps.
Then go f: A— C is a map and (go f)(x) = g(f(x)) for all x € A.

Proof. Since f: A — B and g: B — C are maps, then f and ¢ are functions, so
go fis a function and dom go f = {z € domf : f(x) € domg} and (go f)(z) =
g(f(x)) for all x € dom go f.

Since domf = A and domg = B and dom gof = {z € domf : f(x) € domg},
then dom go f ={x € A: f(x) € B}, so dom go f C A.

Let x € A.
Since f: A — B is a map, then f(x) € B.
Since € A and f(z) € B, then « € dom go f.
Hence, A C dom go f.

Since dom go f C A and A C dom go f, then dom go f = A.

Since (go f)(z) = g(f(z)) for all x € dom go f, then (go f)(z) = g(f(x)) for
all x € A.

We prove rng go f C C.
Let y € rng go f.
Then there exists x such that (x,y) € go f.
Since (z,y) € go f, then € dom go f, so x € A.
Since g o f is a function and (z,y) € go f, then (go f)(x) = y, so y =
(90 )(x) = 9(f(x)).
Since f: A — Bis amap and z € A, then f(x) € B.
Since g : B — C'is a map, then g(f(z)) € C.
Thus, y € C, so rng go f C C.
Since g o f is a function and dom go f = A and rnggo f C C, then
gof:A— Cisamap. O



Proposition 8. Let f: A — B be a map.
Let T4 be the identity map on A and Ig be the identity map on B.
ThenfoIA :IBOfo.

Proof. We prove fols = f.

Since [4: A— Aisamap and f: A— Bisamap, then foly:A— Bis
amap and (folax)(z) = f(la(z)) for all z € A.

Since the domain of fol4 and f is A, then foI4 and f have the same
domain.

Since the codomain of fol4 and f is B, then f oI, and f have the same
codomain.

Let x € A.
Then (f o l4)(z) = f(Ia(x)) = f(x), s0 (fola)(z)= f(x) for all x € A.
Therefore, fols = f. O

Proof. We prove Igo f = f.

Since f: A — Bisamap and Ig: B — B is amap, then Igo f: A — Bis
a map and (Ig o f)(z) = Ig(f(z)) for all x € A.

Since the domain of Ig o f and f is A, then Ig o f and f have the same
domain.

Since the codomain of Ig o f and f is B, then Ip o f and f have the same
codomain.

Let z € A.

Then (Igo f)(z) = Ig(f(z)) = f(z), so (Ipo f)(z) = f(z) for all z € A.

Therefore, Igo f = f.

Since foly = fand Igpo f=f,then foly = f=1Ipo f, as desired. O

Theorem 9. Left cancellation property of injective maps

Let f: X =Y be a map.

Then f is injective iff for every set W and every map g : W — X and
h:W — X such that fog= foh we have g = h.

Proof. We prove if f is injective, then for every set W and every map g : W — X
and h : W — X such that fog = foh we have g = h.

Suppose f is injective.

Let W be aset and let g : W — X and h : W — X be maps such that
fog=foh.

We must prove g = h.

Since g : W — X is a map and h : W — X is a map, then domg = W =
domh.

Let z € W.

Since fog = f o h, then (f o g)(x) = (f o h)(x), s0 f(g(x)) = f(h(x)).

Since f is injective, then g(x) = h(z).

Thus, g(x) = h(x) for all x € W, so g = h, as desired. O



Proof. Conversely, we prove if for every set W and every map g : W — X and
h: W — X such that fog = foh implies g = h, then f is injective.

We prove by contrapositive.

Suppose f is not injective.

We must prove there exists a set W and there exist maps g : W — X and
h:W — X such that fog= foh and g # h.

Since f is not injective, then there exist a,b € X such that a # b and
f(a) = f(b):

Let W = {a, b}.

Let g = {(av a)a (ba a)}

Then g is a function and domg = {a,b} = W and rngg = {a} C X.

Thus, g : W — X is a map and g(a) = a = g(b).

Let h = {(a,b), (b,b)}.

Then h is a function and domh = {a,b} = W and rngh = {b} C X.

Thus, h: W — X is a map and h(a) = b= h(b).

Since (a,a) € h iff a = b and a # b, then (a,a) € h.

Since (a,a) € g, but (a,a) € h, then g # h.

Since g : W — X isamap and f: X — Y is a map, then fog: W — Y is
a map and (f o g)(z) = f(g(x)) for all x € W.

Since h: W — X isamap and f: X — Y is a map, then foh: W — Y is
a map and (f o h)(x) = f(h(z)) for all x € W.

Observe that dom(f o g) = W = dom(f o h).

Observe that (f o g)(a) = f(g(a)) = f(a) = f(b) = f(h(a)) = (f o h)(a).

Observe that (f o g)(b) = f(g(b)) = f(a) = f(b) = f(h(b)) = (f o h)(D).
Since dom(fog) = W = dom(foh) and (fog)(a) = (foh)(a) and (fog)(b) =
(foh)b), then fog= foh. O

Proposition 10. A map f: A — B is surjective iff (Vb € B)(Ja € A)(f(a) =
b).

Proof. Let f: A — B be a map.
We first prove if f is surjective, then (Vb € B)(Ja € A)(f(a) = b).
Suppose f is surjective.
Let b € B.
Since f is surjective, then rngf = B.
Since b € B, then b € rngf, so there exists a € A such that f(a) =

Conversely, we prove if (Vb € B)(Ja € A)(f(a) = b), then f is surjective.
Suppose (Vb € B)(Ja € A)(f(a) = D).
Since f : A — B is a map, then rngf C B.
We prove B C rngf.
Suppose b € B.
Then there exists a € A such that f(a) =
Hence, b € rngf, so B C rngf.
Since rngf C B and B C rngf, then rngf = B, so f is surjective. O



Theorem 11. Right cancellation property of surjective maps

Let X be a nonempty set.

Let f: X =Y be a map.

Then f is surjective iff for every set Z and every map g : Y — Z and
h:Y — Z such that go f = ho f we have g = h.

Proof. We prove if f is surjective, then for every set Z and every mapg:Y — Z
and h:Y — Z such that go f = ho f we have g = h.

Suppose f is surjective.

Let Z be aset and let g : Y — Z and h : Y — Z be maps such that
gof=hof.

We must prove g = h.

Sinceg: Y — Zisamapand h: Y — Z is a map, then g and h are functions
and domg =Y = domh and the codomain of g is Z which is the codomain of h.

Since X # () and f: X — Y is a map, then there exists z € X, so f(z) € Y.

Hence, Y # 0.

Letye Y.

Since f is surjective, then there exists € X such that f(z) = y.

Since go f = ho f and z € X, then (go f)(z) = (ho f)(x).

Observe that

9ly) = g(f(2))
= (g90f)(z)
= (ho f)(z)
= h(f(z))
h(y)
Therefore, g(y) = h(y) for all y € Y, so g = h, as desired. O

Proof. Conversely, we prove if for every set Z and every map g : ¥ — Z and
h:Y — Z such that go f = ho f implies g = h, then f is surjective.

We prove by contrapositive.

Suppose f is not surjective.

We must prove there exists a set Z and there exist maps g : ¥ — Z and
h:Y — Z such that go f = ho f and g # h.

Since f is not surjective, then there exists yg € Y such that for all x € X,
f(x) # yo.

Since X # (), then there exists o € X.

Since f: X — Y is a map, then f(z¢) €Y.

Let Z =Y.

Let g : Y — Z be the identity map on Y defined by ¢(y) = v.

Let h: Y — Z be a map defined by h(y) = y if y # yo and h(yo) = f(xo).

We prove g # h.
Since zg € X, then f(xg) # yo.

Since g(yo) = yo # f(w0) = h(yo), then g(yo) # h(yo), so g # h.



We prove go f = ho f.

Since f: X - Y isamapand g:Y — Z is amap, thengo f: X - Zisa
map and (g o f)(z) = g(f(x)) for all x € X.

Since f: X > Y isamapand h:Y — Z is amap, then ho f: X — Z isa
map and (ho f)(x) = h(f(z)) for all z € X.

Observe that dom(g o f) = X = dom(ho f).

Let x € X.

Since f: X — Y is a map, then f(z) €Y.

Since z € X, then f(x) # yo.

Observe that

(go fllx) =

(f())
()

(f(z))
o f)(x).

Hence, (go f)(x) = (ho f)(z) for all z € X.
Therefore, go f = h o f, as desired. U

Q

> =

h

—~

Proposition 12. identity map is bijective.
Let S be a set.
The identity map Ig : S — S on S is a bijection.

Proof. Let Is : S — S be the map defined by Is(x) =« for all x € S.

We prove Ig is injective.
Let a,b € S such that Is(a) = Is(b).
Then a = b.
Therefore, Is is injective.

We prove Ig is surjective.
Let b € S be arbitrary.
Let a =b.
Then a € S and I(a) = a =b.
Thus, there exists a € S such that Ig(a) = b.
Therefore, Ig is surjective.
Since Ig is injective and surjective, then Ig is bijective, as desired. O

Theorem 13. Let f: A — B and g : B — C be maps.
1. If f and g are injective, then g o f is injective.
A composition of injections is an injection.
2. If f and g are surjective, then g o f is surjective.
A composition of surjections is a surjection.
3. If go f is injective, then f is injective.
4. If go f is surjective, then g is surjective.
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Proof. We prove 1.

Suppose f and g are injective.

Since f: A— Bisamapand g: B— C is amap, then go f: A — Cis a
map.

Let a,b € A such that (go f)(a) = (go f)(b).

Then g(f(a)) = g(f(b)).

Since g is injective, then f(a) = f(b).

Since f is injective, then a = b.

Therefore, g o f is injective. U

Proof. We prove 2.

Suppose f and g are surjective.

Since f: A — Bisamap and g: B — C isamap, thengo f: A — Cisa
map.

Let ¢ € C be arbitrary.

Since g is surjective, then there exists b € B such that g(b) = c.

Since f is surjective, then there exists a € A such that f(a) = 0.

Observe that (go f)(a) = g(f(a)) = g(b) = c.
Therefore, there exists a € A such that (gof)(a) = ¢, so gof is surjective. [

Proof. We prove 3.

Suppose g o f is injective.

Since f: A— Bisamapand g: B— C is amap, then go f: A— Cis a
map.

Let a,b € A such that f(a) = f(b).

Then (go f)(a) = g(f(a)) = g(f(b)) = (g0 f)(b), so (g0 f)(a) = (g o f)(b).

Since g o f is injective, then a = b.

Therefore, f is injective. O

Proof. We prove 4.

Suppose g o f is surjective.

Since f: A — Bisamap and g: B— C isamap, thengo f: A — Cisa
map.

Let ¢ € C be arbitrary.

Since g o f is surjective, then there exists a € A such that (go f)(a) = c.

Since a € A and f: A — B is a map, then f(a) € B.

Observe that g(f(a)) = (go f)(a) =c.

Thus, there exists f(a) € B such that g(f(a)) =c.

Therefore, g is surjective. O

Corollary 14. Let f: A — B and g: B — C be maps.
1. If f and g are bijective, then g o f is bijective.
A composition of bijections is a bijection.
2. If go f is bijective, then f is injective and g is surjective.

11



Proof. We prove 1.

Suppose f and g are bijective.

Since f: A— Bisamapand g: B— C is amap, then go f: A — Cis a
map.

Since f is bijective, then f is injective and surjective.

Since g is bijective, then g is injective and surjective.

Since f and g are injective, then g o f is injective.

Since f and g are surjective, then g o f is surjective.

Since g o f is injective and surjective, then g o f is bijective. U

Proof. We prove 2.
Suppose g o f is bijective.
Then g o f is injective and surjective.
Since g o f is injective, then f is injective.
Since g o f is surjective, then ¢ is surjective. O

Theorem 15. existence of inverse function
Let f be a function.
Then the inverse relation f~1 is a function iff f is injective.

Proof. We prove if f~! is a function, then f is injective.
Suppose f~! is a function.
Let a1, as € domf such that f(a1) = f(az).
Since f is a relation, then (a1, f(a1)) € f and (a2, f(az2)) € f.
Since f~! is an inverse of f, then (f(a1),a1) € f~1 and (f(az),az) € f~1.
Since f~! is a function and f(a1) = f(as2), then a; = as.
Therefore, f is injective.

Conversely, we prove if f is injective, then f~! is a function.

Suppose f is injective.

Let (a,b1) € f~! and (a,b2) € f~1.

Since f~1 is an inverse of f, then (b1,a) € f and (ba,a) € f, so f(b1) = a
and f(by) = a.

Thus, f(b1) = a = f(b2).

Since f is injective, then b; = bs.

Therefore, f~! is a function. O

Theorem 16. The inverse of an invertible map is unique.
Let f: A — B be an invertible map.
Then the inverse map is unique.

Proof. Since f: A — B is an invertible map, then there exists a map that is an
inverse of f.

Let g: B— A and h: B — A be inverse maps of f.

To prove the inverse map is unique, we must prove g = h.

Observe that the domain of g equals B which equals the domain of h and
the codomain of g equals A which equals the codomain of h.
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Let = € B be arbitrary.

Since g : B — A is a map, then g(z) € A.

Since f is a relation, then (g(x),x) € f.

Since h and f are inverses, then (z, g(z)) € h, so h(z) = g(z).

Therefore, g = h, as desired. O

Theorem 17. Let f : A— B and g : B — A be maps.
Then g is an inverse of f iff
1. gof=14
2. fog=1Ig.

Proof. We prove if g is an inverse of f, then go f =14 and fog = Ip.

Since f : A — B and g: B — A are maps, then gof: A — A and fog:
B — B are maps and (go f)(a) = g(f(a)) for all a € A and (f o g)(b) = f(g(b))
for all b € B.

Suppose g is an inverse of f.

We prove go f = 14.
Let I4 be the identity map on A.
Then dom(go f) = A =domla.
Let a € A.
Since f is a function, then (a, f(a)) € f.
Since g is an inverse of f, then (f(a),a) € g, so g(f(a)) = a.
Observe that

(gofila) = g(f(a))
= IA(a).

Hence, (g o f)(a) = I(a) for every a € A.
Therefore, go f = 14.

We prove fog=1Ip.
Let Ip be the identity map on B.
Then dom(f o g) = B = domIp.
Let b € B.
Since g is a function, then (b, g(b)) € g.

Observe that

(feg)b) = flg(b)

Hence, (f o g)(b) = I(b) for every b € B.
Therefore, fog=Ip. U

13



Proof. Conversely, we prove if go f = I4 and fog = Ig, then g is an inverse of

f.
Suppose go f =14 and fog=Ip.

Let (a,b) € f.
Then a € Aand b € B and f(a) =
Since a € A, then a =14(a) = (go
Hence, if (a,b) € f, then (b,a) € ¢

Let (b,a) €
Then b € B and a € Aandg(b
Since b € B, then b = Ip(b) =
Hence, if (b,a) € g, then (a,b)
Since (b,a) € ¢ implies (a,b)
(b,a) € g iff (a,b) € f.
Therefore, g is an inverse of f. O

) =

(f; )(b) = f(g(b)) = f(a), so (a,]) € [.
S

€ f and (a,b) € f implies (b,a) € g, then

Corollary 18. Let f : A — B be an invertible map. Then
1. f_l o f =14
2. fofl=1Ig.

Proof. Since f : A — B is an invertible map, then the inverse map f~': B — A
exists, so f~! is an inverse of f.
Therefore, f 1o f=1I4and fof~!'=1Ig. O

Theorem 19. An invertible map is bijective.
Let f: A— B be a map.
Then f is invertible iff f is bijective.

Proof. We prove if f is bijective, then f is invertible.

Suppose f is bijective.

Then f is injective and surjective.

Since f is injective, then the inverse relation f~! is a function.

Since f~! is a relation, then domf~' = rngf and rngf~' = domf.

Since f is surjective, then rngf = B.

Thus, domf~! =rngf = B and rngf~* = domf = A C A.

Since f~1! is a function and domf~' = B and rngf~' C A, then f~!: B —
A is a map.

Since f~! is the inverse of f, then f is invertible. O

Proof. Conversely, we prove if f is invertible, then f is bijective.
Suppose f is invertible.
Then the inverse map f~!: B — A exists.
Hence, the inverse relation f~! is a function, so f is injective.
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Let b € B.
Since f~': B — A is a map, then f=1(b) € A.
Let a = f~1(b).
Then a € A.
Since f~! is the inverse of f and f~1(b) = a, then f(a) = b.
Therefore, there exists a € A such that f(a) = b, so f is surjective.
Since f is injective and surjective, then f is bijective. O

Lemma 20. Let f: A — B be a map.
If f : A — B is a bijection, then f~': B — A is a bijection.

Proof. Suppose the map f: A — B is a bijection.

Then f is bijective, so f is invertible.

Hence, the map f : A — B is invertible, so the inverse map f~!: B — A
exists.

We prove f~1 is injective.
Let by, by € B such that f=1(b1) = f~1(b2).
Let a = f~1(b1) = f~'(b2).
Then f~1(b;) = a and f~1(by) = a, so (b1,a) € f~! and (bg,a) € f~1.
Since f~! is the inverse of f, then (a,b;) € f and (a, b2) € f.
Since f is a function and (a,by) € f and (a,b2) € f, then by = bs.
Therefore, f~! is injective.

We prove f~! is surjective.
Let a € A.
Since f: A — B is a map, then f(a) € B.
Let b = f(a).
Then b € B.
Since f~! is the inverse of f and f(a)

= b, then f~1(b) = a.
Thus, there exists b € B such that f~1(b)

=a, so f~! is surjective.

Since f~! is injective and surjective, then f~! is bijective.
Since f~! : B — A is a map and f~! is bijective, then f~!: B — Ais a
bijection. O

Theorem 21. Let f: A — B be a bijection. Then
1. (f~YH71: A — B is a bijection.
2. (f7H =1

Proof. Since f : A — B is a bijection, then f=! : B — A is a bijection, so
(f~YH~1: A — B is a bijection.

Observe that (f71)"!: A — B and f : A — B have the same domain A and
same codomain B.

Let a € A be arbitrary.

Since f is a function, then there is a unique b € B such that f(a) = b.

Since f~! is the inverse of f, then f=1(b) = a.
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Since (f~1)~! is the inverse of =1, then (f~1)"!(a) = b.

Thus, (f~1)7"(a) =b = f(a).

Hence, (f~1)"!(a) = f(a) for all a € A.

Therefore, (f~1)~! = f. O

Theorem 22. Let f: A— B and g : B — C be bijections. Then
1. (go f)~1:C — A is a bijection.
2. f~tog=t:C — A is a bijection.
3. (gof)t=f"tog™h.

Proof. Since f : A — B and g : B — C are bijections, then the composition
go f: A— Cis a bijection, so (go f)~! : C — A is a bijection.

Since f : A — B is a bijection, then f~!: B — A is a bijection.

Since g : B — C is a bijection, then g~! : C — B is a bijection.

Thus, the composition f~'o g™ : C — A is a bijection.

Observe that (go f)™' : C — A and f~'og™! : C — A have the same
domain C' and same codomain A.

Let ¢ € C be arbitrary.

Since (g o f)~! is a function, then there exists a unique a € A such that
(g0 f)() = a

Since (g o f)~! is the inverse of g o f, then (go f)(a) = c.

Since f is a function and a € A, then there exists a unique b € B such that
f(a) =b.

Thus, ¢ = (g0 f)(a) = g(f(a)) = g(b).

Since g*1 is the inverse of g and g(b) = ¢, then g~ (c) = b.

Since f~!is the inverse of f and f(a) = b, then f=1(b) = a.

Observe that

(gof)H(e) = a
= )
= 7o (e)
= (fTlog (o)
Thus, (go f)~ (c):( “H(e) for all c € C.
Therefore, (go f)~! = g -1 O

Image and inverse image of functions

Proposition 23. Let f: A — B be a map.
1. Then f is injective iff every b € B has at most one pre-image.
2. Then f is surjective iff every b € B has at least one pre-image.
3. Then f is bijective iff every b € B has exactly one pre-image.
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Proof. We prove 1.

We prove if f is injective, then every b € B has at most one pre-image.

Suppose f is injective.

Let b € B.

Either there exists a € A such that f(a) = b or there does not exist a € A
such that f(a) = b.

We consider each case separately.

Case 1: Suppose there does not exist a € A such that f(a) = 0.

Then b has no pre-image.

Case 2: Suppose there exists a € A such that f(a) =b.

Then «a is a pre-image of b, so b has at least one pre-image.

Suppose a1, ay € A are pre-images of b.

Then f(a;) = b and f(as) = b, so f(ar) = f(az).

Since f is injective, then a; = a9, so there is at most one pre-image of b.

In either case, at most one pre-image of b exists. O

Proof. Conversely, we prove if every b € B has at most one pre-image, then f
is injective.

Suppose every b € B has at most one pre-image.

To prove f is injective, let aj,as € A such that f(a1) = f(az).

Let b= f(a1) = f(az).

Since f: A — B is a map, then b € B.

Hence, b has at most one pre-image, so there is at most one a € A such that
f(a) =b.

Therefore, a1 = as. O

Proof. We prove 2.
We prove if f is surjective, then every b € B has at least one pre-image.
Suppose f is surjective.
Let b € B be arbitrary.
Since f is surjective, then there exists a € A such that f(a) = 0.
Hence, a is a pre-image of b, so b has at least one pre-image. O

Proof. We prove 3.

We prove if f is bijective, then every b € B has exactly one pre-image.

Suppose f is bijective.

Then f is injective and surjective.

Let b € B.

Since f is surjective, then b has at least one pre-image.

Since f is injective, then b has at most one pre-image.

Since b has at least one pre-image and b has at most one pre-image, then b
has exactly one pre-image. O

Proposition 24. Let f: A — B be a map. Then

1. f(0) =0.
The image of the empty set is the empty set.
2. f7H0)=0.
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The inverse image of the empty set is the empty set.
3. f(A) =rngf.

The image of the domain of f is the range of f.

4 7H(B) = A.

The inverse image of the codomain of f is the domain of f.

Proof. We prove 1.
We prove f()) = 0 by contradiction.
Suppose f(1) # 0.
Then there exists b € f(0), so there exists x € () such that f(z) = .
Since ) is empty, then = & 0.
Thus, we have z € ) and = € (), a contradiction.
Therefore, f(0) = 0. O

Proof. We prove 2.
We prove f~1(()) = () by contradiction.
Suppose f~(0) # 0.
Then there exists z € f~1(0), so z € A and f(z) € 0.
Since () is empty, then f(x) & (.
Thus, we have f(z) € 0 and f(x) € 0, a contradiction.
Therefore, f=1(0) = 0. O

Proof. We prove 3.

We prove f(A) =rngf.

Since b € f(A) iff there exists a € A such that f(a) = b iff b € rngf, then
be f(A)iff berngf.

Therefore, f(A) =rngf. O

Proof. We prove 4.
We prove f~1(B) = A.
Since f~1(B) = {z € A: f(z) € B}, then f~1(B) C A.

Let z € A.
Since f: A — B is a map, then f(x) € B.
Since # € A and f(z) € B, then x € f~1(B).
Thus, A C f~1(B).
Since f~1(B) C A and A C f~!(B), then f~1(B) = A. O

Proposition 25. Let f: X =Y be a map.
1. For every subset A and B of X, if A C B, then f(A) C f(B).
2. f(AUB) = f(A)U f(B) for every subset A and B of X.
The image of a union equals the union of the images.
3. f(ANB) C f(A) N f(B) for every subset A and B of X.
The image of an intersection is a subset of the intersection of the images.
4. f(ANB) = f(A)N f(B) for every subset A and B of X iff f is injective.
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Proof. We prove 1.
Let A and B be subsets of X such that A C B.
We must prove f(A4) C f(B).
Let y € f(A).
Then there exists € A such that f(z) =y.
Since x € A and A C B, then x € B.
Thus, there exists @ € B such that f(z) =y, so y € f(B).
Therefore, f(A) C f(B). O

Proof. We prove 2.
Let A and B be subsets of X.
We must prove f(AU B) = f(A)U f(B).
Observe that

y € f(AUB) there exists x € AU B such that y = f(z)

=
< either there exists x € A or there exists € B and y = f(x)

& either there exists x € A and y = f(z) or there exists z € B and y = f(z)
& either y € f(A) ory € f(B)

& yef(A)USB).

Therefore, y € f(AUB) iff y € f(A)U f(B),so f(AUB) = f(A)Uf(B). O

Proof. We prove 2.
Let A and B be subsets of X.
We first prove f(AU B) C f(A)U f(B).
Let y € f(AU B).
Then there exists * € AU B such that f(z) =y.
Since x € AU B, then either z € A or x € B.
Case 1: Suppose z € A.
Since z € A and y = f(x), then y € f(A).
Case 2: Suppose = € B.
Since x € B and y = f(x), then y € f(B).
Thus, either y € f(A) or y € f(B),soy € f(A)U f(B).
Therefore, f(AU B) C f(A)U f(B).

We next prove f(A)U f(B) C f(AU B).
Let y € f(A) U f(B).
Then either y € f(A) or y € f(B).
Case 1: Suppose y € f(A).
Then there exists a € A such that f(a) = y.
Since a € A, then either a € Aora € B,soa € AU B.
Since a € AU B and f(a) =y, then y € f(AU B).
Case 2: Suppose y € f(B).
Then there exists b € B such that f(b) = y.
Since b € B, then either be Aorbe B,sobe AU B.
Since b € AU B and f(b) =y, then y € f(AU B).
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Hence, in either case, y € f(AU B).
Therefore, f(A)U f(B) C f(AU B).

Since f(AUB) C f(A)U f(B) and f(A)U f(B) C f(AUB), then f(AUB) =
f(A) U f(B). O

Proof. We prove 3.
Let A and B be subsets of X.
We prove f(ANB) C f(A)N f(B).
Let y € f(AN B).
Then there exists * € AN B such that f(z) = y.
Since x € AN B, then x € A and x € B.
Since x € A and f(z) =y, then y € f(A).
Since z € B and f(x) =y, then y € f(B).
Thus, y € f(A) and y € f(B),soy € f(A)N f(B).
Therefore, f(AN B) C f(A)N f(B). O

Proof. We prove 4.
We prove f(AN B) = f(A) N f(B) for every subset A and B of X iff f is
injective.

We first prove if f is injective, then f(AN B) = f(A) N f(B) for every subset
A and B of X.
Suppose f is injective.
Let A and B be subsets of X.
We prove f(A)N f(B) C f(AN B).

Let y € f(A)N f(B).
Then y € f(A) and y € f(B).
Since y € f(A), then y = f(a) for some a € A.
Since y € f(B), then y = f(b) for some b € B.
Hence, f(a) =y = f(b).
Since f is injective and f(a) = f(b), then a = b.
Since a = b and b € B, then a € B.
Since a € A and a € B, then a € AN B.
Since a € AN B and f(a) =y, then y € f(AN B).
Therefore, f(A) N f(B) C f(AN B).
Since f(ANB) C f(A)Nf(B) and f(A)Nf(B) C f(ANB), then f(ANB) =
F(A)N £(B).

Conversely, we prove if f(ANB) = f(A)N f(B) for every subset A and B of
X, then f is injective.
We prove by contrapositive.
Suppose f is not injective.
Then there exist x1, 29 € X such that x; # x2 and f(z1) = f(x2).
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We must prove there exist subsets A and B of X such that f(A N B) #
fFA) N f(B).

Let A= {z1} and B = {z2}.

Since z; € X and A = {1}, then A C X.

Since z2 € X and B = {x1}, then B C X.

We prove f(ANB) # f(A) N f(B).
If AN B # (), then there exists z such that z € AN B,sox € A and xz € B.
Hence, z € {z1} and z € {z2}, so z = x; and = = x.
Thus, z1 =z = 5.
Therefore, if AN B # (), then 1 = x4, so if x1 # x5, then AN B = 0.
Since 1 # z2, then we conclude AN B = (.
Since z1 € A, then f(z1) € f(A).
Since xo € B, then f(xz2) € f(B).
Since f(x1) = f(x2) and f(z2) € f(B), then f(x1) € f(B).
Thus, [(1) € f(A) and [(x1) € J(B), 50 f(a1) € f(A) N [(B).
Hence, f(A)N f(B) # 0.
Therefore, f(ANB) = f(0) =0 # f(A) N f(B), as desired. O

Proposition 26. Let f: X =Y be a map.

1. For every subset C and D of Y, if C C D, then f~1(C) C f~1(D).

2. f~(CUD)=fYCO)U f~Y(D) for every subset C and D of Y.

The inverse image of a union equals the union of the inverse images.

3. fY(CND)=fYC)N f~YD) for every subset C and D of Y.

The inverse image of an intersection equals the intersection of the inverse
1mages.

Proof. We prove 1.
Let C' and D be subsets of Y such that C' C D.
Let z € f~1(0).
Then x € X and f(z) € C.
Since f(z) € C and C C D, then f(x) € D
Hence, z € X and f(z) € D, so z € f~}(D).
Therefore, f~1(C) C f~*(D). O

Proof. We prove 2.
Let C and D be subsets of Y.
We must prove f~1(CUD) = f~C)u f~Y(D).
Observe that

r e f~1(CuD) x€X and f(r) e CUD

z € X and either f(z) € C or f(z) € D

either x € X and f(z) € Corz € X and f(x) € D
either x € f~1(C) or z € f~1(D)

re O U D).

to o
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Therefore, z € f~1(CU D) iff z € f~1(C)U f~Y(D), so f~1(C U D)
fFHC)ufHD).

Proof. We prove 3.
Let C and D be subsets of Y.
We must prove f~1(C N D)= f~1(C)n f~Y(D).
Observe that

oo

ze f~H(CnD) rzeX and f(r)eCND

x € X and f(z) € C and f(z) € D

x€ X and f(r) € Cand z € X and f(x) € D
z e fHC)and z € f~1(D)

e F1(C)N FUD).

Therefore, z € f~1(C N D) iff z € f~Y(C)N f~YD), so fY(CND) =
fHe)nfHD). O
Proposition 27. inverse image of the image of a subset of the domain
of a map

Let f: A— B be a map. Then

1. S C f7Y(f(9)) for every subset S of A.
2. f7YHf(S)) = S for every subset S of A iff f is injective.

te o

Proof. We prove 1.
We prove S C f~1(f(9)) for every subset S of A.
Let S C A.
Suppose z € S.
Then f(z) € f(5).
Since z € S and S C A, then z € A.
Since x € A and f(x) € f(S), then z € f=1(f(9)).
Therefore, S C f=1(f(S)). O

Proof. We prove 2.
We prove f~1(f(S)) = S for every subset S of A iff f is injective.

We first prove if f=1(f(S)) = S for every subset S of A, then f is injective.
Suppose f71(f(S)) = S for every subset S of A.
To prove f is injective, let a,b € A such that f(a) = f(b).
We must prove a = b.
Let S = {a}.
Since a € A, then S C A.
Hence, f~1(f(S)) = S.
Since a € S, then f(a) € f(5).
Since £(b) = f(a), then £(5) € f(S).
Since b € A and f(b) € f(S), then b € f=1(f(S)).
Thus, b€ S, so b € {a}.
Therefore, b = a, as desired.
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Conversely, we prove if f is injective, then f=1(f(S)) = S for every subset S
of A.
Suppose f is injective.
Let S C A.
We must prove f~1(f(S)) = S.
Let z € f71(f(9)).
Then z € A and f(z) € f(9).
Since f(z) € f(S), then there exists s € S such that f(s) = f(x).
Since f is injective, then s = .
Since s € S, then x € S.
Therefore, f~1(f(S)) C S.
Since f~1(f(S)) C S and S C f~1(f(S)), then f=1(f(S)) = S. O

Proposition 28. image of the inverse image of a subset of the codomain
of a map

Let f: A— B be a map. Then

1. f(f~YT)) C T for every subset T of B.

2. f(f~YT)) =T for every subset T of B iff f is surjective.

Proof. We prove 1.
Let T C B.
We prove f(f~1(T)) CT.

Let y € f(f~1(T)).
Then there exists x € f~(T) such that f(z) =y.
Since # € f~Y(T), then x € A and f(z) € T.
Thus, y e T.
Therefore, f(f~4(T)) C T. O

Proof. We prove 2.
We must prove f(f~1(T)) =T for every subset T of B iff f is surjective.

We first prove if f is surjective, then f(f~(T)) = T for every subset T of B.
Suppose f is surjective.
Let T C B.
LetyeT.
Since f is surjective, then there exists z € A such that f(z) = y.
Since x € A and f(x) € T, then x € f~1(T).
Since y = f(x) and x € f~1(T), then y € f(f~1(T)).
Therefore, T C f(f~1(T)).
Since f(f~Y(T)) C T and T C f(f~Y(T)), then f(f~X(T))=T.
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Conversely, we prove if f(f~1(T)) = T for every subset T of B, then f is
surjective.
Suppose f(f~1(T)) =T for every subset T of B.
Since B C B, then f(f~*(B)) = B.
Observe that

B = f(f71(B))
= f(4)
= rngf.
Therefore, rngf = B, so f is surjective, as desired. O

24



