Functions Theory

Jason Sass

May 10, 2025

Functions

Proposition 1. A function value is unique. Let f be a function. Let a, b \in domf. If a = b, then f(a) = f(b). Proof. Suppose a = b. Since $a \in$ domf and f is a relation, then $(a, f(a)) \in f$. Since $b \in$ domf and f is a relation, then $(b, f(b)) \in f$. Since b = a and $(b, f(b)) \in f$, then $(a, f(b)) \in f$. Since f is a function and $(a, f(a)) \in f$ and $(a, f(b)) \in f$, then f(a) = f(b).

Theorem 2. equality of functions

Let f and g be functions. Let domf be the domain of f. Let domg be the domain of g. Then f = g iff 1. domf = domg. 2. f(x) = g(x) for all $x \in domf \cap domg$.

Proof. We prove if dom f = dom g and f(x) = g(x) for all $x \in dom f \cap dom g$, then f = g.

Suppose dom f = dom g and f(x) = g(x) for all $x \in dom f \cap dom g$.

We first prove $f \subset g$. Let $x \in dom f$. Then $(x, f(x)) \in f$. Since $x \in dom f$ and dom f = dom g, then $x \in dom g$, so $(x, g(x)) \in g$. Since $x \in dom f$ and $x \in dom g$, then $x \in dom f \cap dom g$, so f(x) = g(x). Hence, $(x, f(x)) \in g$. Thus, if $(x, f(x)) \in f$, then $(x, f(x)) \in g$, so $f \subset g$. We prove $g \subset f$. Let $y \in domg$. Then $(y, g(y)) \in g$. Since $y \in domg$ and domg = domf, then $y \in domf$, so $(y, f(y)) \in f$. Since $y \in domf$ and $y \in domg$, then $y \in domf \cap domg$, so f(y) = g(y). Hence, $(y, g(y)) \in f$. Thus, if $(y, g(y)) \in g$, then $(y, g(y)) \in f$, so $g \subset f$.

Since $f \subset g$ and $g \subset f$, then f = g, as desired.

Proof. Conversely, we prove if f = g, then dom f = dom g and f(x) = g(x) for all $x \in dom f \cap dom g$. Suppose f = g.

We first prove dom f = dom g. Let $x \in dom f$. Then $(x, f(x)) \in f$. Since f = g, then $(x, f(x)) \in g$, so $x \in dom g$. Thus, $dom f \subset dom g$.

Let $y \in domg$. Then $(y, g(y)) \in g$. Since g = f, then $(y, g(y)) \in f$, so $y \in domf$. Thus, $domg \subset domf$.

Since $dom f \subset dom g$ and $dom g \subset dom f$, then dom f = dom g, as desired.

We next prove f(x) = g(x) for all $x \in dom f \cap dom g$. Let $x \in dom f \cap dom g$. Then $x \in dom f$ and $x \in dom g$, so $(x, f(x)) \in f$ and $(x, g(x)) \in g$. Since $(x, g(x)) \in g$ and g = f, then $(x, g(x)) \in f$. Since f is a function and $(x, f(x)) \in f$ and $(x, g(x)) \in f$, then f(x) = g(x), as desired.

Theorem 3. equality of maps

The maps $f : A \to B$ and $g : C \to D$ are equal iff 1. A = C. 2. B = D. 3. f(x) = g(x) for all $x \in A$.

Proof. Let $f: A \to B$ and $g: C \to D$ be maps.

Suppose $f : A \to B$ and $g : C \to D$ are equal.

Then f = g and B = D, by definition of equal maps.

Since f = g, then dom f = dom g, and f(x) = g(x) for all $x \in dom f \cap dom g$, by theorem 2.

Since A = domf and domf = domg and domg = C, then A = C.

Observe that $dom f \cap dom g = dom f \cap dom f = dom f = A$.

Since $dom f \cap dom g = A$, and f(x) = g(x) for all $x \in dom f \cap dom g$, then f(x) = g(x) for all $x \in A$.

Therefore, A = C, and B = D, and f(x) = g(x) for all $x \in A$, as desired. \Box

Proof. Conversely, suppose A = C, and B = D, and f(x) = g(x) for all $x \in A$. Since $f : A \to B$ is a map, then f is a function, and dom f = A. Since $g : C \to D$ is a map, then g is a function, and dom g = C. Since dom f = A and A = C and C = dom g, then dom f = dom g.

Let $x \in dom f \cap dom g$.

Then $x \in A \cap C$, so $x \in A$ and $x \in C$. Thus, $x \in A$, so f(x) = g(x). Hence f(x) = g(x) for all $x \in domf \cap domg$. Since f and g are functions and domf = domg and f(x) = g(x) for all $x \in domf \cap domg$, then f = g, by theorem 2.

Since f = g and B = D, then the maps $f : A \to B$ and $g : C \to D$ are equal, as desired.

Proposition 4. The restriction of a map is a map.

Let $f : A \to B$ be a map. Let $S \subset A$. Let $f|_S$ be the restriction of f to S. Then $f|_S : S \to B$ is a map.

Proof. We prove $f|_S$ is a function.

Observe that $f|_S : S \to B$ is a relation from S to B. Let $(a, b) \in f|_S$ and $(a, b') \in f|_S$. Then $a \in S$ and $f|_S(a) = b$ and $f|_S(a) = b'$. Since $a \in S$, then $f|_S(a) = f(a)$, so $f(a) = f|_S(a)$. Since $f(a) = f|_S(a)$ and $f|_S(a) = b$, then f(a) = b, so $(a, b) \in f$. Since $f(a) = f|_S(a)$ and $f|_S(a) = b'$, then f(a) = b', so $(a, b') \in f$. Since f is a function and $(a, b) \in f$ and $(a, b') \in f$, then b = b'. Therefore, $(a, b) \in f|_S$ and $(a, b') \in f|_S$ implies b = b', so $f|_S$ is a function.

We prove $dom f|_S = S$. Since $f|_S : S \to B$ is a relation, then $dom f|_S \subset S$. Let $x \in S$. Since $S \subset A$, then $x \in A$. Since $f : A \to B$ is a map, then there exists $y \in B$ such that f(x) = y. Since $x \in S$, then $f|_S(x) = f(x)$. Since $f|_S(x) = f(x)$ and f(x) = y, then $f|_S(x) = y$, so $(x, y) \in f|_S$. Since $x \in S$ and there exists $y \in B$ such that $(x, y) \in f|_S$, then $x \in dom f|_S$. Hence, $x \in S$ implies $x \in dom f|_S$, so $S \subset dom f|_S$. Since $dom f|_S \subset S$ and $S \subset dom f|_S$, then $dom f|_S = S$. Since $f|_S : S \to B$ is a relation, then $rngf|_S \subset B$.

Since $f|_S$ is a function, and $dom f|_S = S$, and $rngf|_S \subset B$, then $f|_S : S \to B$ is a map.

Theorem 5. Composition of functions is a function.

Let f and g be functions. Then 1. $g \circ f$ is a function. 2. $dom \ g \circ f = \{x \in dom f : f(x) \in domg\}.$ 3. $(g \circ f)(x) = g(f(x))$ for all $x \in dom \ g \circ f$. Proof. We prove 1.

Since f and g are relations, then $g \circ f = \{(a, b) : (\exists c)((a, c) \in f \land (c, b) \in g\},\$ so $g \circ f$ is a relation. Let $(a, b) \in g \circ f$ and $(a, b') \in g \circ f$. Since $(a, b) \in g \circ f$, then there exists c such that $(a, c) \in f$ and $(c, b) \in g$.

Since $(a, b') \in g \circ f$, then there exists d such that $(a, d) \in f$ and $(d, b') \in g$. Since f is a function and $(a, c) \in f$ and $(a, d) \in f$, then c = d. Since $(d, b') \in g$, then $(c, b') \in g$.

Since g is a function and $(c, b) \in g$ and $(c, b') \in g$, then b = b'. Therefore, $g \circ f$ is a function.

Proof. We prove 2.

Observe that $dom g \circ f = \{a : (\exists b)((a, b) \in g \circ f\}.$ Let $S = \{x \in domf : f(x) \in domg\}.$ We must prove $dom g \circ f = S.$

Suppose $x \in dom \ g \circ f$. Then there exists y such that $(x, y) \in g \circ f$. Thus, there exists z such that $(x, z) \in f$ and $(z, y) \in g$. Since $(x, z) \in f$ and f is a function, then $x \in domf$ and f(x) = z. Since $(z, y) \in g$, then $z \in domg$, so $f(x) \in domg$. Since $x \in domf$ and $f(x) \in domg$, then $x \in S$, so $dom \ g \circ f \subset S$.

Suppose $x \in S$.

Then $x \in domf$ and $f(x) \in domg$. Let z = f(x). Since $x \in domf$, then $(x, f(x)) \in f$, so $(x, z) \in f$. Since $f(x) \in domg$ and f(x) = z, then $z \in domg$, so there exists y such that $(z, y) \in g$. Since $(x, z) \in f$ and $(z, y) \in g$, then $(x, y) \in g \circ f$.

Thus, there exists y such that $(x, y) \in g \circ f$, so $x \in dom \ g \circ f$. Therefore, $S \subset dom \ g \circ f$. Since dom $g \circ f \subset S$ and $S \subset dom g \circ f$, then dom $g \circ f = S$, as desired. \Box

Proof. We prove 3.

Let $x \in dom \ g \circ f$. Since $g \circ f$ is a function, then $(g \circ f)(x)$ exists. Let $z = (g \circ f)(x)$. Then $(x, z) \in g \circ f$, so there exists y such that $(x, y) \in f$ and $(y, z) \in g$. Since f and g are functions, then f(x) = y and g(y) = z. Thus, $(g \circ f)(x) = z = g(y) = g(f(x))$, as desired.

Theorem 6. Function composition is associative. Let f, g, and h be functions. Then $(f \circ g) \circ h = f \circ (g \circ h)$.

Proof. Since f and g are functions, then $f \circ g$ is a function. Since h is a function, then $(f \circ g) \circ h$ is a function. Since g and h are functions, then $g \circ h$ is a function. Since f is a function, then $f \circ (g \circ h)$ is a function.

We first prove $dom(f \circ g) \circ h = dom f \circ (g \circ h)$.

Let $x \in dom(f \circ g) \circ h$. Then $x \in domh$ and $h(x) \in domf \circ g$. Since $h(x) \in domf \circ g$, then $h(x) \in domg$ and $g(h(x)) \in domf$. Since $x \in domh$ and $h(x) \in domg$, then $x \in domg \circ h$. Since $g(h(x)) \in domf$, then $(g \circ h)(x) \in domf$. Since $x \in domg \circ h$ and $(g \circ h)(x) \in domf$, then $x \in domf \circ (g \circ h)$. Thus, $dom(f \circ g) \circ h \subset domf \circ (g \circ h)$.

Let $y \in domf \circ (g \circ h)$. Then $y \in domg \circ h$ and $(g \circ h)(y) \in domf$. Since $y \in domg \circ h$, then $y \in domh$ and $h(y) \in domg$. Since $(g \circ h)(y) \in domf$, then $g(h(y)) \in domf$. Since $h(y) \in domg$ and $g(h(y)) \in domf$, then $h(y) \in domf \circ g$. Since $y \in domh$ and $h(y) \in domf \circ g$, then $y \in dom(f \circ g) \circ h$. Thus, $domf \circ (g \circ h) \subset dom(f \circ g) \circ h$.

Since $dom(f \circ g) \circ h \subset domf \circ (g \circ h)$ and $domf \circ (g \circ h) \subset dom(f \circ g) \circ h$, then $dom(f \circ g) \circ h = domf \circ (g \circ h)$. Let $x \in dom(f \circ g) \circ h \cap dom f \circ (g \circ h)$.

Then $x \in dom(f \circ g) \circ h \cap dom(f \circ g) \circ h = dom(f \circ g) \circ h$ and

$$\begin{array}{rcl} (f \circ g) \circ h](x) &=& (f \circ g)(h(x)) \\ &=& f[g(h(x))] \\ &=& f[(g \circ h)(x)] \\ &=& [f \circ (g \circ h)](x). \end{array}$$

Therefore, $[(f \circ g) \circ h](x) = [f \circ (g \circ h)](x)$ for all x in the common domain.

Since $dom(f \circ g) \circ h = domf \circ (g \circ h)$ and $[(f \circ g) \circ h](x) = [f \circ (g \circ h)](x)$ for all x in the common domain, then $(f \circ g) \circ h = f \circ (g \circ h)$, as desired.

Proposition 7. Composition of maps

Let $f : A \to B$ and $g : B \to C$ be maps. Then $g \circ f : A \to C$ is a map and $(g \circ f)(x) = g(f(x))$ for all $x \in A$.

Proof. Since $f : A \to B$ and $g : B \to C$ are maps, then f and g are functions, so $g \circ f$ is a function and $dom g \circ f = \{x \in dom f : f(x) \in dom g\}$ and $(g \circ f)(x) = g(f(x))$ for all $x \in dom g \circ f$.

Since dom f = A and dom g = B and $dom g \circ f = \{x \in dom f : f(x) \in dom g\}$, then $dom g \circ f = \{x \in A : f(x) \in B\}$, so $dom g \circ f \subset A$.

Let $x \in A$. Since $f : A \to B$ is a map, then $f(x) \in B$. Since $x \in A$ and $f(x) \in B$, then $x \in dom \ g \circ f$. Hence, $A \subset dom \ g \circ f$.

Since dom $g \circ f \subset A$ and $A \subset dom g \circ f$, then dom $g \circ f = A$.

Since $(g \circ f)(x) = g(f(x))$ for all $x \in dom \ g \circ f$, then $(g \circ f)(x) = g(f(x))$ for all $x \in A$.

We prove $rng g \circ f \subset C$. Let $y \in rng g \circ f$. Then there exists x such that $(x, y) \in g \circ f$. Since $(x, y) \in g \circ f$, then $x \in dom g \circ f$, so $x \in A$. Since $g \circ f$ is a function and $(x, y) \in g \circ f$, then $(g \circ f)(x) = y$, so $y = (g \circ f)(x) = g(f(x))$. Since $f : A \to B$ is a map and $x \in A$, then $f(x) \in B$. Since $g : B \to C$ is a map, then $g(f(x)) \in C$. Thus, $y \in C$, so $rng g \circ f \subset C$. Since $g \circ f$ is a function and $dom g \circ f = A$ and $rng g \circ f \subset C$, then $g \circ f : A \to C$ is a map.

Proposition 8. Let $f : A \to B$ be a map.

Let I_A be the identity map on A and I_B be the identity map on B. Then $f \circ I_A = I_B \circ f = f$.

Proof. We prove $f \circ I_A = f$.

Since $I_A : A \to A$ is a map and $f : A \to B$ is a map, then $f \circ I_A : A \to B$ is a map and $(f \circ I_A)(x) = f(I_A(x))$ for all $x \in A$.

Since the domain of $f \circ I_A$ and f is A, then $f \circ I_A$ and f have the same domain.

Since the codomain of $f \circ I_A$ and f is B, then $f \circ I_A$ and f have the same codomain.

Let $x \in A$.

Then $(f \circ I_A)(x) = f(I_A(x)) = f(x)$, so $(f \circ I_A)(x) = f(x)$ for all $x \in A$. Therefore, $f \circ I_A = f$.

Proof. We prove $I_B \circ f = f$.

Since $f: A \to B$ is a map and $I_B: B \to B$ is a map, then $I_B \circ f: A \to B$ is a map and $(I_B \circ f)(x) = I_B(f(x))$ for all $x \in A$.

Since the domain of $I_B \circ f$ and f is A, then $I_B \circ f$ and f have the same domain.

Since the codomain of $I_B \circ f$ and f is B, then $I_B \circ f$ and f have the same codomain.

Let $x \in A$.

Then $(I_B \circ f)(x) = I_B(f(x)) = f(x)$, so $(I_B \circ f)(x) = f(x)$ for all $x \in A$. Therefore, $I_B \circ f = f$.

Since $f \circ I_A = f$ and $I_B \circ f = f$, then $f \circ I_A = f = I_B \circ f$, as desired. \Box

Theorem 9. Left cancellation property of injective maps

Let $f: X \to Y$ be a map.

Then f is injective iff for every set W and every map $g: W \to X$ and $h: W \to X$ such that $f \circ g = f \circ h$ we have g = h.

Proof. We prove if f is injective, then for every set W and every map $g: W \to X$ and $h: W \to X$ such that $f \circ g = f \circ h$ we have g = h.

Suppose f is injective.

Let W be a set and let $g: W \to X$ and $h: W \to X$ be maps such that $f \circ g = f \circ h$.

We must prove g = h.

Since $g: W \to X$ is a map and $h: W \to X$ is a map, then domg = W = domh.

Let $x \in W$.

Since $f \circ g = f \circ h$, then $(f \circ g)(x) = (f \circ h)(x)$, so f(g(x)) = f(h(x)). Since f is injective, then g(x) = h(x).

Thus, g(x) = h(x) for all $x \in W$, so g = h, as desired.

Proof. Conversely, we prove if for every set W and every map $q: W \to X$ and $h: W \to X$ such that $f \circ g = f \circ h$ implies g = h, then f is injective.

We prove by contrapositive.

Suppose f is not injective.

We must prove there exists a set W and there exist maps $q: W \to X$ and $h: W \to X$ such that $f \circ g = f \circ h$ and $g \neq h$.

Since f is not injective, then there exist $a, b \in X$ such that $a \neq b$ and f(a) = f(b).

Let $W = \{a, b\}.$ Let $g = \{(a, a), (b, a)\}.$ Then g is a function and $domg = \{a, b\} = W$ and $rngg = \{a\} \subset X$. Thus, $g: W \to X$ is a map and g(a) = a = g(b). Let $h = \{(a, b), (b, b)\}.$ Then h is a function and $domh = \{a, b\} = W$ and $rngh = \{b\} \subset X$. Thus, $h: W \to X$ is a map and h(a) = b = h(b). Since $(a, a) \in h$ iff a = b and $a \neq b$, then $(a, a) \notin h$. Since $(a, a) \in g$, but $(a, a) \notin h$, then $g \neq h$. Since $g: W \to X$ is a map and $f: X \to Y$ is a map, then $f \circ g: W \to Y$ is a map and $(f \circ g)(x) = f(g(x))$ for all $x \in W$. Since $h: W \to X$ is a map and $f: X \to Y$ is a map, then $f \circ h: W \to Y$ is a map and $(f \circ h)(x) = f(h(x))$ for all $x \in W$. Observe that $dom(f \circ g) = W = dom(f \circ h)$. Observe that $(f \circ g)(a) = f(g(a)) = f(a) = f(b) = f(h(a)) = (f \circ h)(a)$. Observe that $(f \circ g)(b) = f(g(b)) = f(a) = f(b) = f(h(b)) = (f \circ h)(b).$ Since $dom(f \circ g) = W = dom(f \circ h)$ and $(f \circ g)(a) = (f \circ h)(a)$ and $(f \circ g)(b) =$ $(f \circ h)(b)$, then $f \circ q = f \circ h$.

Proposition 10. A map $f : A \to B$ is surjective iff $(\forall b \in B)(\exists a \in A)(f(a) =$ *b*).

Proof. Let $f: A \to B$ be a map.

We first prove if f is surjective, then $(\forall b \in B)(\exists a \in A)(f(a) = b)$. Suppose f is surjective. Let $b \in B$. Since f is surjective, then rnqf = B. Since $b \in B$, then $b \in rngf$, so there exists $a \in A$ such that f(a) = b.

Conversely, we prove if $(\forall b \in B)(\exists a \in A)(f(a) = b)$, then f is surjective. Suppose $(\forall b \in B) (\exists a \in A) (f(a) = b).$ Since $f: A \to B$ is a map, then $rngf \subset B$. We prove $B \subset rngf$. Suppose $b \in B$. Then there exists $a \in A$ such that f(a) = b. Hence, $b \in rngf$, so $B \subset rngf$. Since $rnqf \subset B$ and $B \subset rnqf$, then rnqf = B, so f is surjective.

Theorem 11. Right cancellation property of surjective maps

Let X be a nonempty set.

Let $f: X \to Y$ be a map.

Then f is surjective iff for every set Z and every map $g : Y \to Z$ and $h: Y \to Z$ such that $g \circ f = h \circ f$ we have g = h.

Proof. We prove if f is surjective, then for every set Z and every map $g: Y \to Z$ and $h: Y \to Z$ such that $g \circ f = h \circ f$ we have g = h.

Suppose f is surjective.

Let Z be a set and let $g: Y \to Z$ and $h: Y \to Z$ be maps such that $g \circ f = h \circ f$.

We must prove g = h.

Since $g: Y \to Z$ is a map and $h: Y \to Z$ is a map, then g and h are functions and domg = Y = domh and the codomain of g is Z which is the codomain of h.

Since $X \neq \emptyset$ and $f: X \to Y$ is a map, then there exists $x \in X$, so $f(x) \in Y$. Hence, $Y \neq \emptyset$.

Let $y \in Y$.

Since f is surjective, then there exists $x \in X$ such that f(x) = y. Since $g \circ f = h \circ f$ and $x \in X$, then $(g \circ f)(x) = (h \circ f)(x)$. Observe that

$$g(y) = g(f(x)) = (g \circ f)(x) = (h \circ f)(x) = h(f(x)) = h(y).$$

Therefore, g(y) = h(y) for all $y \in Y$, so g = h, as desired.

Proof. Conversely, we prove if for every set Z and every map $g: Y \to Z$ and $h: Y \to Z$ such that $g \circ f = h \circ f$ implies g = h, then f is surjective.

We prove by contrapositive.

Suppose f is not surjective.

We must prove there exists a set Z and there exist maps $g: Y \to Z$ and $h: Y \to Z$ such that $g \circ f = h \circ f$ and $g \neq h$.

Since f is not surjective, then there exists $y_0 \in Y$ such that for all $x \in X$, $f(x) \neq y_0$.

Since $X \neq \emptyset$, then there exists $x_0 \in X$. Since $f: X \to Y$ is a map, then $f(x_0) \in Y$. Let Z = Y. Let $g: Y \to Z$ be the identity map on Y defined by g(y) = y. Let $h: Y \to Z$ be a map defined by h(y) = y if $y \neq y_0$ and $h(y_0) = f(x_0)$.

We prove $g \neq h$. Since $x_0 \in X$, then $f(x_0) \neq y_0$. Since $g(y_0) = y_0 \neq f(x_0) = h(y_0)$, then $g(y_0) \neq h(y_0)$, so $g \neq h$. We prove $g \circ f = h \circ f$.

Since $f: X \to Y$ is a map and $g: Y \to Z$ is a map, then $g \circ f: X \to Z$ is a map and $(g \circ f)(x) = g(f(x))$ for all $x \in X$.

Since $f: X \to Y$ is a map and $h: Y \to Z$ is a map, then $h \circ f: X \to Z$ is a map and $(h \circ f)(x) = h(f(x))$ for all $x \in X$.

Observe that $dom(g \circ f) = X = dom(h \circ f)$. Let $x \in X$. Since $f : X \to Y$ is a map, then $f(x) \in Y$. Since $x \in X$, then $f(x) \neq y_0$.

Observe that

$$(g \circ f)(x) = g(f(x))$$

= $f(x)$
= $h(f(x))$
= $(h \circ f)(x)$.

Hence, $(g \circ f)(x) = (h \circ f)(x)$ for all $x \in X$. Therefore, $g \circ f = h \circ f$, as desired.

Proposition 12. identity map is bijective.

Let S be a set. The identity map $I_S: S \to S$ on S is a bijection.

Proof. Let $I_S : S \to S$ be the map defined by $I_S(x) = x$ for all $x \in S$.

We prove I_S is injective. Let $a, b \in S$ such that $I_S(a) = I_S(b)$. Then a = b. Therefore, I_S is injective.

We prove I_S is surjective. Let $b \in S$ be arbitrary. Let a = b. Then $a \in S$ and I(a) = a = b. Thus, there exists $a \in S$ such that $I_S(a) = b$. Therefore, I_S is surjective. Since I_S is injective and surjective, then I_S is bijective, as desired.

Theorem 13. Let $f : A \to B$ and $g : B \to C$ be maps.

1. If f and g are injective, then $g \circ f$ is injective.

A composition of injections is an injection.

2. If f and g are surjective, then $g \circ f$ is surjective.

A composition of surjections is a surjection.

3. If $g \circ f$ is injective, then f is injective.

4. If $g \circ f$ is surjective, then g is surjective.

Proof. We prove 1. Suppose f and g are injective. Since $f: A \to B$ is a map and $g: B \to C$ is a map, then $g \circ f: A \to C$ is a map. Let $a, b \in A$ such that $(g \circ f)(a) = (g \circ f)(b)$. Then g(f(a)) = g(f(b)). Since g is injective, then f(a) = f(b). Since f is injective, then a = b. Therefore, $g \circ f$ is injective. Proof. We prove 2. Suppose f and g are surjective. Since $f: A \to B$ is a map and $g: B \to C$ is a map, then $g \circ f: A \to C$ is a map. Let $c \in C$ be arbitrary. Since g is surjective, then there exists $b \in B$ such that g(b) = c. Since f is surjective, then there exists $a \in A$ such that f(a) = b. Observe that $(g \circ f)(a) = g(f(a)) = g(b) = c$. Therefore, there exists $a \in A$ such that $(q \circ f)(a) = c$, so $q \circ f$ is surjective. \Box Proof. We prove 3. Suppose $g \circ f$ is injective. Since $f:A \to B$ is a map and $g:B \to C$ is a map, then $g \circ f:A \to C$ is a map. Let $a, b \in A$ such that f(a) = f(b). Then $(g \circ f)(a) = g(f(a)) = g(f(b)) = (g \circ f)(b)$, so $(g \circ f)(a) = (g \circ f)(b)$. Since $g \circ f$ is injective, then a = b. Therefore, f is injective. Proof. We prove 4. Suppose $g \circ f$ is surjective. Since $f: A \to B$ is a map and $g: B \to C$ is a map, then $g \circ f: A \to C$ is a map. Let $c \in C$ be arbitrary. Since $g \circ f$ is surjective, then there exists $a \in A$ such that $(g \circ f)(a) = c$. Since $a \in A$ and $f : A \to B$ is a map, then $f(a) \in B$. Observe that $g(f(a)) = (g \circ f)(a) = c$. Thus, there exists $f(a) \in B$ such that g(f(a)) = c. Therefore, q is surjective. **Corollary 14.** Let $f : A \to B$ and $g : B \to C$ be maps. 1. If f and g are bijective, then $g \circ f$ is bijective.

A composition of bijections is a bijection.

2. If $g \circ f$ is bijective, then f is injective and g is surjective.

Proof. We prove 1. Suppose f and g are bijective. Since $f: A \to B$ is a map and $g: B \to C$ is a map, then $g \circ f: A \to C$ is a map. Since f is bijective, then f is injective and surjective. Since g is bijective, then g is injective and surjective. Since f and g are injective, then $g \circ f$ is injective. Since f and g are surjective, then $g \circ f$ is surjective. Since $q \circ f$ is injective and surjective, then $q \circ f$ is bijective. *Proof.* We prove 2. Suppose $g \circ f$ is bijective. Then $g \circ f$ is injective and surjective. Since $g \circ f$ is injective, then f is injective. Since $g \circ f$ is surjective, then g is surjective. Theorem 15. existence of inverse function Let f be a function. Then the inverse relation f^{-1} is a function iff f is injective. *Proof.* We prove if f^{-1} is a function, then f is injective. Suppose f^{-1} is a function. Let $a_1, a_2 \in dom f$ such that $f(a_1) = f(a_2)$. Since f is a relation, then $(a_1, f(a_1)) \in f$ and $(a_2, f(a_2)) \in f$. Since f^{-1} is an inverse of f, then $(f(a_1), a_1) \in f^{-1}$ and $(f(a_2), a_2) \in f^{-1}$. Since f^{-1} is a function and $f(a_1) = f(a_2)$, then $a_1 = a_2$. Therefore, f is injective. Conversely, we prove if f is injective, then f^{-1} is a function. Suppose f is injective. Let $(a, b_1) \in f^{-1}$ and $(a, b_2) \in f^{-1}$. Since f^{-1} is an inverse of f, then $(b_1, a) \in f$ and $(b_2, a) \in f$, so $f(b_1) = a$ and $f(b_2) = a$. Thus, $f(b_1) = a = f(b_2)$. Since f is injective, then $b_1 = b_2$. Therefore, f^{-1} is a function.

Theorem 16. The inverse of an invertible map is unique.

Let $f : A \to B$ be an invertible map. Then the inverse map is unique.

Proof. Since $f: A \to B$ is an invertible map, then there exists a map that is an inverse of f.

Let $g: B \to A$ and $h: B \to A$ be inverse maps of f.

To prove the inverse map is unique, we must prove g = h.

Observe that the domain of g equals B which equals the domain of h and the codomain of g equals A which equals the codomain of h.

Let $x \in B$ be arbitrary. Since $g: B \to A$ is a map, then $g(x) \in A$. Since f is a relation, then $(g(x), x) \in f$. Since h and f are inverses, then $(x, g(x)) \in h$, so h(x) = g(x). Therefore, g = h, as desired.

Theorem 17. Let $f : A \to B$ and $g : B \to A$ be maps. Then g is an inverse of f iff 1. $g \circ f = I_A$ 2. $f \circ g = I_B$.

Proof. We prove if g is an inverse of f, then $g \circ f = I_A$ and $f \circ g = I_B$. Since $f : A \to B$ and $g : B \to A$ are maps, then $g \circ f : A \to A$ and $f \circ g : B \to B$ are maps and $(g \circ f)(a) = g(f(a))$ for all $a \in A$ and $(f \circ g)(b) = f(g(b))$ for all $b \in B$.

Suppose g is an inverse of f.

We prove $g \circ f = I_A$. Let I_A be the identity map on A. Then $dom(g \circ f) = A = domI_A$. Let $a \in A$. Since f is a function, then $(a, f(a)) \in f$. Since g is an inverse of f, then $(f(a), a) \in g$, so g(f(a)) = a. Observe that

$$(g \circ f)(a) = g(f(a))$$

= a
= I_A(a).

Hence, $(g \circ f)(a) = I(a)$ for every $a \in A$. Therefore, $g \circ f = I_A$.

We prove $f \circ g = I_B$. Let I_B be the identity map on B. Then $dom(f \circ g) = B = dom I_B$. Let $b \in B$. Since g is a function, then $(b, g(b)) \in g$. Since f is an inverse of g, then $(g(b), b) \in f$, so f(g(b)) = b. Observe that

$$(f \circ g)(b) = f(g(b))$$

= b
= I(b).

Hence, $(f \circ g)(b) = I(b)$ for every $b \in B$. Therefore, $f \circ g = I_B$.

Proof. Conversely, we prove if $g \circ f = I_A$ and $f \circ g = I_B$, then g is an inverse of f.

Suppose $g \circ f = I_A$ and $f \circ g = I_B$.

Let $(a, b) \in f$. Then $a \in A$ and $b \in B$ and f(a) = b. Since $a \in A$, then $a = I_A(a) = (g \circ f)(a) = g(f(a)) = g(b)$, so $(b, a) \in g$. Hence, if $(a, b) \in f$, then $(b, a) \in g$.

Let $(b, a) \in g$. Then $b \in B$ and $a \in A$ and g(b) = a. Since $b \in B$, then $b = I_B(b) = (f \circ g)(b) = f(g(b)) = f(a)$, so $(a, b) \in f$. Hence, if $(b, a) \in g$, then $(a, b) \in f$. Since $(b, a) \in g$ implies $(a, b) \in f$ and $(a, b) \in f$ implies $(b, a) \in g$, then $(b, a) \in g$ iff $(a, b) \in f$. Therefore, g is an inverse of f.

Corollary 18. Let $f : A \to B$ be an invertible map. Then 1. $f^{-1} \circ f = I_A$ 2. $f \circ f^{-1} = I_B$.

Proof. Since $f: A \to B$ is an invertible map, then the inverse map $f^{-1}: B \to A$ exists, so f^{-1} is an inverse of f. Therefore, $f^{-1} \circ f = I_A$ and $f \circ f^{-1} = I_B$.

Theorem 19. An invertible map is bijective.

Let $f : A \to B$ be a map. Then f is invertible iff f is bijective.

Proof. We prove if f is bijective, then f is invertible. Suppose f is bijective. Then f is injective and surjective. Since f is injective, then the inverse relation f^{-1} is a function. Since f^{-1} is a relation, then $domf^{-1} = rngf$ and $rngf^{-1} = domf$. Since f is surjective, then rngf = B. Thus, $domf^{-1} = rngf = B$ and $rngf^{-1} = domf = A \subset A$. Since f^{-1} is a function and $domf^{-1} = B$ and $rngf^{-1} \subset A$, then $f^{-1} : B \to A$ is a map. Since f^{-1} is the inverse of f, then f is invertible. □

Proof. Conversely, we prove if f is invertible, then f is bijective. Suppose f is invertible. Then the inverse map $f^{-1}: B \to A$ exists. Hence, the inverse relation f^{-1} is a function, so f is injective. Let $b \in B$. Since $f^{-1}: B \to A$ is a map, then $f^{-1}(b) \in A$. Let $a = f^{-1}(b)$. Then $a \in A$. Since f^{-1} is the inverse of f and $f^{-1}(b) = a$, then f(a) = b. Therefore, there exists $a \in A$ such that f(a) = b, so f is surjective. Since f is injective and surjective, then f is bijective.

Lemma 20. Let $f : A \to B$ be a map.

If $f: A \to B$ is a bijection, then $f^{-1}: B \to A$ is a bijection.

Proof. Suppose the map $f: A \to B$ is a bijection.

Then f is bijective, so f is invertible.

Hence, the map $f:A\to B$ is invertible, so the inverse map $f^{-1}:B\to A$ exists.

We prove f^{-1} is injective. Let $b_1, b_2 \in B$ such that $f^{-1}(b_1) = f^{-1}(b_2)$. Let $a = f^{-1}(b_1) = f^{-1}(b_2)$. Then $f^{-1}(b_1) = a$ and $f^{-1}(b_2) = a$, so $(b_1, a) \in f^{-1}$ and $(b_2, a) \in f^{-1}$. Since f^{-1} is the inverse of f, then $(a, b_1) \in f$ and $(a, b_2) \in f$. Since f is a function and $(a, b_1) \in f$ and $(a, b_2) \in f$, then $b_1 = b_2$. Therefore, f^{-1} is injective.

We prove f^{-1} is surjective. Let $a \in A$. Since $f : A \to B$ is a map, then $f(a) \in B$. Let b = f(a). Then $b \in B$. Since f^{-1} is the inverse of f and f(a) = b, then $f^{-1}(b) = a$. Thus, there exists $b \in B$ such that $f^{-1}(b) = a$, so f^{-1} is surjective.

Since f^{-1} is injective and surjective, then f^{-1} is bijective. Since $f^{-1}: B \to A$ is a map and f^{-1} is bijective, then $f^{-1}: B \to A$ is a bijection.

Theorem 21. Let $f : A \to B$ be a bijection. Then 1. $(f^{-1})^{-1} : A \to B$ is a bijection. 2. $(f^{-1})^{-1} = f$.

Proof. Since $f : A \to B$ is a bijection, then $f^{-1} : B \to A$ is a bijection, so $(f^{-1})^{-1} : A \to B$ is a bijection.

Observe that $(f^{-1})^{-1} : A \to B$ and $f : A \to B$ have the same domain A and same codomain B.

Let $a \in A$ be arbitrary.

Since f is a function, then there is a unique $b \in B$ such that f(a) = b.

Since f^{-1} is the inverse of f, then $f^{-1}(b) = a$.

Since $(f^{-1})^{-1}$ is the inverse of f^{-1} , then $(f^{-1})^{-1}(a) = b$. Thus, $(f^{-1})^{-1}(a) = b = f(a)$. Hence, $(f^{-1})^{-1}(a) = f(a)$ for all $a \in A$. Therefore, $(f^{-1})^{-1} = f$.

Theorem 22. Let $f : A \to B$ and $g : B \to C$ be bijections. Then

1. $(g \circ f)^{-1} : C \to A$ is a bijection.

2. $f^{-1} \circ g^{-1} : C \to A \text{ is a bijection.}$ 3. $(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$

Proof. Since $f: A \to B$ and $g: B \to C$ are bijections, then the composition $g \circ f : A \to C$ is a bijection, so $(g \circ f)^{-1} : C \to A$ is a bijection.

Since $f: A \to B$ is a bijection, then $f^{-1}: B \to A$ is a bijection.

Since $g: B \to C$ is a bijection, then $g^{-1}: C \to B$ is a bijection. Thus, the composition $f^{-1} \circ g^{-1}: C \to A$ is a bijection.

Observe that $(g \circ f)^{-1} : C \to A$ and $f^{-1} \circ g^{-1} : C \to A$ have the same domain C and same codomain A.

Let $c \in C$ be arbitrary.

Since $(g \circ f)^{-1}$ is a function, then there exists a unique $a \in A$ such that $(g \circ f)^{-1}(c) = a.$

Since $(g \circ f)^{-1}$ is the inverse of $g \circ f$, then $(g \circ f)(a) = c$.

Since f is a function and $a \in A$, then there exists a unique $b \in B$ such that f(a) = b.

Thus, $c = (g \circ f)(a) = g(f(a)) = g(b)$. Since g^{-1} is the inverse of g and g(b) = c, then $g^{-1}(c) = b$. Since f^{-1} is the inverse of f and f(a) = b, then $f^{-1}(b) = a$. Observe that

$$(g \circ f)^{-1}(c) = a = f^{-1}(b) = f^{-1}(g^{-1}(c)) = (f^{-1} \circ g^{-1})(c).$$

Thus, $(g \circ f)^{-1}(c) = (f^{-1} \circ g^{-1})(c)$ for all $c \in C$. Therefore, $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Image and inverse image of functions

Proposition 23. Let $f : A \to B$ be a map.

- 1. Then f is injective iff every $b \in B$ has at most one pre-image.
- 2. Then f is surjective iff every $b \in B$ has at least one pre-image.
- 3. Then f is bijective iff every $b \in B$ has exactly one pre-image.

Proof. We prove 1. We prove if f is injective, then every $b \in B$ has at most one pre-image. Suppose f is injective. Let $b \in B$. Either there exists $a \in A$ such that f(a) = b or there does not exist $a \in A$ such that f(a) = b. We consider each case separately. **Case 1:** Suppose there does not exist $a \in A$ such that f(a) = b. Then *b* has no pre-image. **Case 2:** Suppose there exists $a \in A$ such that f(a) = b. Then a is a pre-image of b, so b has at least one pre-image. Suppose $a_1, a_2 \in A$ are pre-images of b. Then $f(a_1) = b$ and $f(a_2) = b$, so $f(a_1) = f(a_2)$. Since f is injective, then $a_1 = a_2$, so there is at most one pre-image of b. In either case, at most one pre-image of b exists.

Proof. Conversely, we prove if every $b \in B$ has at most one pre-image, then f is injective.

Suppose every $b \in B$ has at most one pre-image.

To prove f is injective, let $a_1, a_2 \in A$ such that $f(a_1) = f(a_2)$.

Let $b = f(a_1) = f(a_2)$.

Since $f : A \to B$ is a map, then $b \in B$.

Hence, b has at most one pre-image, so there is at most one $a \in A$ such that f(a) = b.

Therefore, $a_1 = a_2$.

Proof. We prove 2.

We prove if f is surjective, then every $b \in B$ has at least one pre-image. Suppose f is surjective. Let $b \in B$ be arbitrary.

Since f is surjective, then there exists $a \in A$ such that f(a) = b. Hence, a is a pre-image of b, so b has at least one pre-image.

Proof. We prove 3.

We prove if f is bijective, then every $b \in B$ has exactly one pre-image. Suppose f is bijective.

Then f is injective and surjective.

Let $b \in B$.

Since f is surjective, then b has at least one pre-image.

Since f is injective, then b has at most one pre-image.

Since b has at least one pre-image and b has at most one pre-image, then b has exactly one pre-image. \Box

Proposition 24. Let $f : A \to B$ be a map. Then

f(∅) = ∅.
The image of the empty set is the empty set.
f⁻¹(∅) = ∅.

The inverse image of the empty set is the empty set. 3. f(A) = rngf. The image of the domain of f is the range of f. 4. $f^{-1}(B) = A$. The inverse image of the codomain of f is the domain of f. *Proof.* We prove 1. We prove $f(\emptyset) = \emptyset$ by contradiction. Suppose $f(\emptyset) \neq \emptyset$. Then there exists $b \in f(\emptyset)$, so there exists $x \in \emptyset$ such that f(x) = b. Since \emptyset is empty, then $x \notin \emptyset$. Thus, we have $x \in \emptyset$ and $x \notin \emptyset$, a contradiction. Therefore, $f(\emptyset) = \emptyset$. *Proof.* We prove 2. We prove $f^{-1}(\emptyset) = \emptyset$ by contradiction. Suppose $f^{-1}(\emptyset) \neq \emptyset$. Then there exists $x \in f^{-1}(\emptyset)$, so $x \in A$ and $f(x) \in \emptyset$. Since \emptyset is empty, then $f(x) \notin \emptyset$. Thus, we have $f(x) \in \emptyset$ and $f(x) \notin \emptyset$, a contradiction. Therefore, $f^{-1}(\emptyset) = \emptyset$. *Proof.* We prove 3. We prove f(A) = rngf. Since $b \in f(A)$ iff there exists $a \in A$ such that f(a) = b iff $b \in rngf$, then $b \in f(A)$ iff $b \in rngf$. Therefore, f(A) = rngf. Proof. We prove 4. We prove $f^{-1}(B) = A$. Since $f^{-1}(B) = \{x \in A : f(x) \in B\}$, then $f^{-1}(B) \subset A$. Let $x \in A$. Since $f : A \to B$ is a map, then $f(x) \in B$. Since $x \in A$ and $f(x) \in B$, then $x \in f^{-1}(B)$. Thus, $A \subset f^{-1}(B)$. Since $f^{-1}(B) \subset A$ and $A \subset f^{-1}(B)$, then $f^{-1}(B) = A$. **Proposition 25.** Let $f : X \to Y$ be a map. 1. For every subset A and B of X, if $A \subset B$, then $f(A) \subset f(B)$. 2. $f(A \cup B) = f(A) \cup f(B)$ for every subset A and B of X. The image of a union equals the union of the images. 3. $f(A \cap B) \subset f(A) \cap f(B)$ for every subset A and B of X. The image of an intersection is a subset of the intersection of the images.

4. $f(A \cap B) = f(A) \cap f(B)$ for every subset A and B of X iff f is injective.

Proof. We prove 1. Let A and B be subsets of X such that $A \subset B$. We must prove $f(A) \subset f(B)$. Let $y \in f(A)$. Then there exists $x \in A$ such that f(x) = y. Since $x \in A$ and $A \subset B$, then $x \in B$. Thus, there exists $x \in B$ such that f(x) = y, so $y \in f(B)$. Therefore, $f(A) \subset f(B)$.

Proof. We prove 2. Let A and B be subsets of X. We must prove $f(A \cup B) = f(A) \cup f(B)$. Observe that

 $y \in f(A \cup B) \iff$ there exists $x \in A \cup B$ such that y = f(x)

- \Leftrightarrow either there exists $x \in A$ or there exists $x \in B$ and y = f(x)
- \Leftrightarrow either there exists $x \in A$ and y = f(x) or there exists $x \in B$ and y = f(x)
- $\Leftrightarrow \quad \text{either } y \in f(A) \text{ or } y \in f(B)$
- $\Leftrightarrow \quad y \in f(A) \cup f(B).$

Therefore, $y \in f(A \cup B)$ iff $y \in f(A) \cup f(B)$, so $f(A \cup B) = f(A) \cup f(B)$. \Box

Proof. We prove 2.

Let A and B be subsets of X. We first prove $f(A \cup B) \subset f(A) \cup f(B)$. Let $y \in f(A \cup B)$. Then there exists $x \in A \cup B$ such that f(x) = y. Since $x \in A \cup B$, then either $x \in A$ or $x \in B$. **Case 1:** Suppose $x \in A$. Since $x \in A$ and y = f(x), then $y \in f(A)$. **Case 2:** Suppose $x \in B$. Since $x \in B$ and y = f(x), then $y \in f(B)$. Thus, either $y \in f(A)$ or $y \in f(B)$, so $y \in f(A) \cup f(B)$. Therefore, $f(A \cup B) \subset f(A) \cup f(B)$.

We next prove $f(A) \cup f(B) \subset f(A \cup B)$. Let $y \in f(A) \cup f(B)$. Then either $y \in f(A)$ or $y \in f(B)$. **Case 1:** Suppose $y \in f(A)$. Then there exists $a \in A$ such that f(a) = y. Since $a \in A$, then either $a \in A$ or $a \in B$, so $a \in A \cup B$. Since $a \in A \cup B$ and f(a) = y, then $y \in f(A \cup B)$. **Case 2:** Suppose $y \in f(B)$. Then there exists $b \in B$ such that f(b) = y. Since $b \in B$, then either $b \in A$ or $b \in B$, so $b \in A \cup B$. Since $b \in A \cup B$ and f(b) = y, then $y \in f(A \cup B)$. Hence, in either case, $y \in f(A \cup B)$. Therefore, $f(A) \cup f(B) \subset f(A \cup B)$.

Since $f(A \cup B) \subset f(A) \cup f(B)$ and $f(A) \cup f(B) \subset f(A \cup B)$, then $f(A \cup B) = f(A) \cup f(B)$.

Proof. We prove 3.

Let A and B be subsets of X. We prove $f(A \cap B) \subset f(A) \cap f(B)$. Let $y \in f(A \cap B)$. Then there exists $x \in A \cap B$ such that f(x) = y. Since $x \in A \cap B$, then $x \in A$ and $x \in B$. Since $x \in A$ and f(x) = y, then $y \in f(A)$. Since $x \in B$ and f(x) = y, then $y \in f(B)$. Thus, $y \in f(A)$ and $y \in f(B)$, so $y \in f(A) \cap f(B)$. Therefore, $f(A \cap B) \subset f(A) \cap f(B)$.

Proof. We prove 4.

We prove $f(A \cap B) = f(A) \cap f(B)$ for every subset A and B of X iff f is injective.

We first prove if f is injective, then $f(A \cap B) = f(A) \cap f(B)$ for every subset A and B of X.

Suppose f is injective. Let A and B be subsets of X. We prove $f(A) \cap f(B) \subset f(A \cap B)$.

Let $y \in f(A) \cap f(B)$. Then $y \in f(A)$ and $y \in f(B)$. Since $y \in f(A)$, then y = f(a) for some $a \in A$. Since $y \in f(B)$, then y = f(b) for some $b \in B$. Hence, f(a) = y = f(b). Since f is injective and f(a) = f(b), then a = b. Since a = b and $b \in B$, then $a \in B$. Since $a \in A$ and $a \in B$, then $a \in A \cap B$. Since $a \in A \cap B$ and f(a) = y, then $y \in f(A \cap B)$. Therefore, $f(A) \cap f(B) \subset f(A \cap B)$. Since $f(A \cap B) \subset f(A) \cap f(B)$ and $f(A) \cap f(B) \subset f(A \cap B)$, then $f(A \cap B) = f(A) \cap f(B)$.

Conversely, we prove if $f(A \cap B) = f(A) \cap f(B)$ for every subset A and B of X, then f is injective. We prove by contrapositive.

Suppose f is not injective.

Then there exist $x_1, x_2 \in X$ such that $x_1 \neq x_2$ and $f(x_1) = f(x_2)$.

We must prove there exist subsets A and B of X such that $f(A \cap B) \neq f(A) \cap f(B)$.

Let $A = \{x_1\}$ and $B = \{x_2\}$. Since $x_1 \in X$ and $A = \{x_1\}$, then $A \subset X$. Since $x_2 \in X$ and $B = \{x_1\}$, then $B \subset X$.

We prove $f(A \cap B) \neq f(A) \cap f(B)$.

If $A \cap B \neq \emptyset$, then there exists x such that $x \in A \cap B$, so $x \in A$ and $x \in B$. Hence, $x \in \{x_1\}$ and $x \in \{x_2\}$, so $x = x_1$ and $x = x_2$. Thus, $x_1 = x = x_2$. Therefore, if $A \cap B \neq \emptyset$, then $x_1 = x_2$, so if $x_1 \neq x_2$, then $A \cap B = \emptyset$. Since $x_1 \neq x_2$, then we conclude $A \cap B = \emptyset$. Since $x_1 \in A$, then $f(x_1) \in f(A)$. Since $x_2 \in B$, then $f(x_2) \in f(B)$. Since $f(x_1) = f(x_2)$ and $f(x_2) \in f(B)$, then $f(x_1) \in f(B)$. Thus, $f(x_1) \in f(A)$ and $f(x_1) \in f(B)$, so $f(x_1) \in f(A) \cap f(B)$. Hence, $f(A) \cap f(B) \neq \emptyset$. Therefore, $f(A \cap B) = f(\emptyset) = \emptyset \neq f(A) \cap f(B)$, as desired.

Proposition 26. Let $f : X \to Y$ be a map.

1. For every subset C and D of Y, if $C \,\subset D$, then $f^{-1}(C) \,\subset f^{-1}(D)$. 2. $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$ for every subset C and D of Y. The inverse image of a union equals the union of the inverse images. 3. $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$ for every subset C and D of Y. The inverse image of an intersection equals the intersection of the inverse ages

images.

Proof. We prove 1. Let C and D be subsets of Y such that $C \subset D$. Let $x \in f^{-1}(C)$. Then $x \in X$ and $f(x) \in C$. Since $f(x) \in C$ and $C \subset D$, then $f(x) \in D$. Hence, $x \in X$ and $f(x) \in D$, so $x \in f^{-1}(D)$. Therefore, $f^{-1}(C) \subset f^{-1}(D)$.

Proof. We prove 2.

Let C and D be subsets of Y. We must prove $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$. Observe that

$$\begin{aligned} x \in f^{-1}(C \cup D) &\Leftrightarrow x \in X \text{ and } f(x) \in C \cup D \\ &\Leftrightarrow x \in X \text{ and either } f(x) \in C \text{ or } f(x) \in D \\ &\Leftrightarrow \text{ either } x \in X \text{ and } f(x) \in C \text{ or } x \in X \text{ and } f(x) \in D \\ &\Leftrightarrow \text{ either } x \in f^{-1}(C) \text{ or } x \in f^{-1}(D) \\ &\Leftrightarrow x \in f^{-1}(C) \cup f^{-1}(D). \end{aligned}$$

Therefore, $x \in f^{-1}(C \cup D)$ iff $x \in f^{-1}(C) \cup f^{-1}(D)$, so $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.

Proof. We prove 3.

Let C and D be subsets of Y. We must prove $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$. Observe that

$$\begin{aligned} x \in f^{-1}(C \cap D) &\Leftrightarrow x \in X \text{ and } f(x) \in C \cap D \\ &\Leftrightarrow x \in X \text{ and } f(x) \in C \text{ and } f(x) \in D \\ &\Leftrightarrow x \in X \text{ and } f(x) \in C \text{ and } x \in X \text{ and } f(x) \in D \\ &\Leftrightarrow x \in f^{-1}(C) \text{ and } x \in f^{-1}(D) \\ &\Leftrightarrow x \in f^{-1}(C) \cap f^{-1}(D). \end{aligned}$$

Therefore, $x \in f^{-1}(C \cap D)$ iff $x \in f^{-1}(C) \cap f^{-1}(D)$, so $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.

Proposition 27. inverse image of the image of a subset of the domain of a map

Let $f : A \to B$ be a map. Then 1. $S \subset f^{-1}(f(S))$ for every subset S of A. 2. $f^{-1}(f(S)) = S$ for every subset S of A iff f is injective. Proof. We prove 1. We prove $S \subset f^{-1}(f(S))$ for every subset S of A. Let $S \subset A$. Suppose $x \in S$. Then $f(x) \in f(S)$. Since $x \in S$ and $S \subset A$, then $x \in A$. Since $x \in A$ and $f(x) \in f(S)$, then $x \in f^{-1}(f(S))$. Therefore, $S \subset f^{-1}(f(S))$.

Proof. We prove 2.

We prove $f^{-1}(f(S)) = S$ for every subset S of A iff f is injective.

We first prove if $f^{-1}(f(S)) = S$ for every subset S of A, then f is injective. Suppose $f^{-1}(f(S)) = S$ for every subset S of A. To prove f is injective, let $a, b \in A$ such that f(a) = f(b). We must prove a = b. Let $S = \{a\}$. Since $a \in A$, then $S \subset A$. Hence, $f^{-1}(f(S)) = S$. Since $a \in S$, then $f(a) \in f(S)$. Since f(b) = f(a), then $f(b) \in f(S)$. Since $b \in A$ and $f(b) \in f(S)$, then $b \in f^{-1}(f(S))$. Thus, $b \in S$, so $b \in \{a\}$. Therefore, b = a, as desired. Conversely, we prove if f is injective, then $f^{-1}(f(S)) = S$ for every subset S of A.

Suppose f is injective. Let $S \subset A$. We must prove $f^{-1}(f(S)) = S$. Let $x \in f^{-1}(f(S))$. Then $x \in A$ and $f(x) \in f(S)$. Since $f(x) \in f(S)$, then there exists $s \in S$ such that f(s) = f(x). Since f is injective, then s = x. Since $s \in S$, then $x \in S$. Therefore, $f^{-1}(f(S)) \subset S$. Since $f^{-1}(f(S)) \subset S$ and $S \subset f^{-1}(f(S))$, then $f^{-1}(f(S)) = S$.

Proposition 28. image of the inverse image of a subset of the codomain of a map

Let $f : A \to B$ be a map. Then 1. $f(f^{-1}(T)) \subset T$ for every subset T of B. 2. $f(f^{-1}(T)) = T$ for every subset T of B iff f is surjective.

Proof. We prove 1. Let $T \subset B$. We prove $f(f^{-1}(T)) \subset T$.

Let $y \in f(f^{-1}(T))$. Then there exists $x \in f^{-1}(T)$ such that f(x) = y. Since $x \in f^{-1}(T)$, then $x \in A$ and $f(x) \in T$. Thus, $y \in T$. Therefore, $f(f^{-1}(T)) \subset T$.

Proof. We prove 2.

We must prove $f(f^{-1}(T)) = T$ for every subset T of B iff f is surjective.

We first prove if f is surjective, then $f(f^{-1}(T)) = T$ for every subset T of B. Suppose f is surjective. Let $T \subset B$. Let $y \in T$. Since f is surjective, then there exists $x \in A$ such that f(x) = y. Since $x \in A$ and $f(x) \in T$, then $x \in f^{-1}(T)$. Since y = f(x) and $x \in f^{-1}(T)$, then $y \in f(f^{-1}(T))$. Therefore, $T \subset f(f^{-1}(T))$. Since $f(f^{-1}(T)) \subset T$ and $T \subset f(f^{-1}(T))$, then $f(f^{-1}(T)) = T$. Conversely, we prove if $f(f^{-1}(T)) = T$ for every subset T of B, then f is surjective.

Suppose $f(f^{-1}(T)) = T$ for every subset T of B. Since $B \subset B$, then $f(f^{-1}(B)) = B$. Observe that

$$B = f(f^{-1}(B))$$

= f(A)
= rngf.

Therefore, rngf = B, so f is surjective, as desired.