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Functions

Proposition 1. A function value is unique.
Let f be a function.
Let a, b ∈ domf .
If a = b, then f(a) = f(b).

Proof. Suppose a = b.
Since a ∈ domf and f is a relation, then (a, f(a)) ∈ f .
Since b ∈ domf and f is a relation, then (b, f(b)) ∈ f .
Since b = a and (b, f(b)) ∈ f , then (a, f(b)) ∈ f .
Since f is a function and (a, f(a)) ∈ f and (a, f(b)) ∈ f , then f(a) =

f(b).

Theorem 2. equality of functions
Let f and g be functions.
Let domf be the domain of f .
Let domg be the domain of g.
Then f = g iff
1. domf = domg.
2. f(x) = g(x) for all x ∈ domf ∩ domg.

Proof. We prove if domf = domg and f(x) = g(x) for all x ∈ domf ∩ domg,
then f = g.

Suppose domf = domg and f(x) = g(x) for all x ∈ domf ∩ domg.

We first prove f ⊂ g.
Let x ∈ domf .
Then (x, f(x)) ∈ f .
Since x ∈ domf and domf = domg, then x ∈ domg, so (x, g(x)) ∈ g.
Since x ∈ domf and x ∈ domg, then x ∈ domf ∩ domg, so f(x) = g(x).
Hence, (x, f(x)) ∈ g.
Thus, if (x, f(x)) ∈ f , then (x, f(x)) ∈ g, so f ⊂ g.



We prove g ⊂ f .
Let y ∈ domg.
Then (y, g(y)) ∈ g.
Since y ∈ domg and domg = domf , then y ∈ domf , so (y, f(y)) ∈ f .
Since y ∈ domf and y ∈ domg, then y ∈ domf ∩ domg, so f(y) = g(y).
Hence, (y, g(y)) ∈ f .
Thus, if (y, g(y)) ∈ g, then (y, g(y)) ∈ f , so g ⊂ f .

Since f ⊂ g and g ⊂ f , then f = g, as desired.

Proof. Conversely, we prove if f = g, then domf = domg and f(x) = g(x) for
all x ∈ domf ∩ domg.

Suppose f = g.

We first prove domf = domg.
Let x ∈ domf .
Then (x, f(x)) ∈ f .
Since f = g, then (x, f(x)) ∈ g, so x ∈ domg.
Thus, domf ⊂ domg.

Let y ∈ domg.
Then (y, g(y)) ∈ g.
Since g = f , then (y, g(y)) ∈ f , so y ∈ domf .
Thus, domg ⊂ domf .

Since domf ⊂ domg and domg ⊂ domf , then domf = domg, as desired.

We next prove f(x) = g(x) for all x ∈ domf ∩ domg.
Let x ∈ domf ∩ domg.
Then x ∈ domf and x ∈ domg, so (x, f(x)) ∈ f and (x, g(x)) ∈ g.
Since (x, g(x)) ∈ g and g = f , then (x, g(x)) ∈ f .
Since f is a function and (x, f(x)) ∈ f and (x, g(x)) ∈ f , then f(x) = g(x),

as desired.

Theorem 3. equality of maps
The maps f : A→ B and g : C → D are equal iff
1. A = C.
2. B = D.
3. f(x) = g(x) for all x ∈ A.

Proof. Let f : A→ B and g : C → D be maps.
Suppose f : A→ B and g : C → D are equal.
Then f = g and B = D, by definition of equal maps.
Since f = g, then domf = domg, and f(x) = g(x) for all x ∈ domf ∩ domg,

by theorem 2.
Since A = domf and domf = domg and domg = C, then A = C.
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Observe that domf ∩ domg = domf ∩ domf = domf = A.
Since domf ∩ domg = A, and f(x) = g(x) for all x ∈ domf ∩ domg, then

f(x) = g(x) for all x ∈ A.
Therefore, A = C, and B = D, and f(x) = g(x) for all x ∈ A, as desired.

Proof. Conversely, suppose A = C, and B = D, and f(x) = g(x) for all x ∈ A.
Since f : A→ B is a map, then f is a function, and domf = A.
Since g : C → D is a map, then g is a function, and domg = C.
Since domf = A and A = C and C = domg, then domf = domg.

Let x ∈ domf ∩ domg.
Then x ∈ A ∩ C, so x ∈ A and x ∈ C.
Thus, x ∈ A, so f(x) = g(x).
Hence f(x) = g(x) for all x ∈ domf ∩ domg.
Since f and g are functions and domf = domg and f(x) = g(x) for all

x ∈ domf ∩ domg, then f = g, by theorem 2.
Since f = g and B = D, then the maps f : A→ B and g : C → D are equal,

as desired.

Proposition 4. The restriction of a map is a map.
Let f : A→ B be a map.
Let S ⊂ A.
Let f |S be the restriction of f to S.
Then f |S : S → B is a map.

Proof. We prove f |S is a function.
Observe that f |S : S → B is a relation from S to B.
Let (a, b) ∈ f |S and (a, b′) ∈ f |S .
Then a ∈ S and f |S(a) = b and f |S(a) = b′.
Since a ∈ S, then f |S(a) = f(a), so f(a) = f |S(a).
Since f(a) = f |S(a) and f |S(a) = b, then f(a) = b, so (a, b) ∈ f .
Since f(a) = f |S(a) and f |S(a) = b′, then f(a) = b′, so (a, b′) ∈ f .
Since f is a function and (a, b) ∈ f and (a, b′) ∈ f , then b = b′.
Therefore, (a, b) ∈ f |S and (a, b′) ∈ f |S implies b = b′, so f |S is a function.

We prove domf |S = S.
Since f |S : S → B is a relation, then domf |S ⊂ S.
Let x ∈ S.
Since S ⊂ A, then x ∈ A.
Since f : A→ B is a map, then there exists y ∈ B such that f(x) = y.
Since x ∈ S, then f |S(x) = f(x).
Since f |S(x) = f(x) and f(x) = y, then f |S(x) = y, so (x, y) ∈ f |S .
Since x ∈ S and there exists y ∈ B such that (x, y) ∈ f |S , then x ∈ domf |S .
Hence, x ∈ S implies x ∈ domf |S , so S ⊂ domf |S .
Since domf |S ⊂ S and S ⊂ domf |S , then domf |S = S.
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Since f |S : S → B is a relation, then rngf |S ⊂ B.

Since f |S is a function, and domf |S = S, and rngf |S ⊂ B, then f |S : S → B
is a map.

Theorem 5. Composition of functions is a function.
Let f and g be functions. Then
1. g ◦ f is a function.
2. dom g ◦ f = {x ∈ domf : f(x) ∈ domg}.
3. (g ◦ f)(x) = g(f(x)) for all x ∈ dom g ◦ f .

Proof. We prove 1.
Since f and g are relations, then g ◦ f = {(a, b) : (∃c)((a, c) ∈ f ∧ (c, b) ∈ g},

so g ◦ f is a relation.
Let (a, b) ∈ g ◦ f and (a, b′) ∈ g ◦ f .
Since (a, b) ∈ g ◦ f , then there exists c such that (a, c) ∈ f and (c, b) ∈ g.
Since (a, b′) ∈ g ◦ f , then there exists d such that (a, d) ∈ f and (d, b′) ∈ g.
Since f is a function and (a, c) ∈ f and (a, d) ∈ f , then c = d.
Since (d, b′) ∈ g, then (c, b′) ∈ g.
Since g is a function and (c, b) ∈ g and (c, b′) ∈ g, then b = b′.
Therefore, g ◦ f is a function.

Proof. We prove 2.
Observe that dom g ◦ f = {a : (∃b)((a, b) ∈ g ◦ f}.
Let S = {x ∈ domf : f(x) ∈ domg}.
We must prove dom g ◦ f = S.

Suppose x ∈ dom g ◦ f .
Then there exists y such that (x, y) ∈ g ◦ f .
Thus, there exists z such that (x, z) ∈ f and (z, y) ∈ g.
Since (x, z) ∈ f and f is a function, then x ∈ domf and f(x) = z.
Since (z, y) ∈ g, then z ∈ domg, so f(x) ∈ domg.
Since x ∈ domf and f(x) ∈ domg, then x ∈ S, so dom g ◦ f ⊂ S.

Suppose x ∈ S.
Then x ∈ domf and f(x) ∈ domg.
Let z = f(x).
Since x ∈ domf , then (x, f(x)) ∈ f , so (x, z) ∈ f .
Since f(x) ∈ domg and f(x) = z, then z ∈ domg, so there exists y such that

(z, y) ∈ g.
Since (x, z) ∈ f and (z, y) ∈ g, then (x, y) ∈ g ◦ f .
Thus, there exists y such that (x, y) ∈ g ◦ f , so x ∈ dom g ◦ f .
Therefore, S ⊂ dom g ◦ f .
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Since dom g ◦ f ⊂ S and S ⊂ dom g ◦ f , then dom g ◦ f = S, as desired.

Proof. We prove 3.
Let x ∈ dom g ◦ f .
Since g ◦ f is a function, then (g ◦ f)(x) exists.
Let z = (g ◦ f)(x).
Then (x, z) ∈ g ◦ f , so there exists y such that (x, y) ∈ f and (y, z) ∈ g.
Since f and g are functions, then f(x) = y and g(y) = z.
Thus, (g ◦ f)(x) = z = g(y) = g(f(x)), as desired.

Theorem 6. Function composition is associative.
Let f , g, and h be functions.
Then (f ◦ g) ◦ h = f ◦ (g ◦ h).

Proof. Since f and g are functions, then f ◦ g is a function.
Since h is a function, then (f ◦ g) ◦ h is a function.
Since g and h are functions, then g ◦ h is a function.
Since f is a function, then f ◦ (g ◦ h) is a function.

We first prove dom(f ◦ g) ◦ h = domf ◦ (g ◦ h).

Let x ∈ dom(f ◦ g) ◦ h.
Then x ∈ domh and h(x) ∈ domf ◦ g.
Since h(x) ∈ domf ◦ g, then h(x) ∈ domg and g(h(x)) ∈ domf .
Since x ∈ domh and h(x) ∈ domg, then x ∈ domg ◦ h.
Since g(h(x)) ∈ domf , then (g ◦ h)(x) ∈ domf .
Since x ∈ domg ◦ h and (g ◦ h)(x) ∈ domf , then x ∈ domf ◦ (g ◦ h).
Thus, dom(f ◦ g) ◦ h ⊂ domf ◦ (g ◦ h).

Let y ∈ domf ◦ (g ◦ h).
Then y ∈ domg ◦ h and (g ◦ h)(y) ∈ domf .
Since y ∈ domg ◦ h, then y ∈ domh and h(y) ∈ domg.
Since (g ◦ h)(y) ∈ domf , then g(h(y)) ∈ domf .
Since h(y) ∈ domg and g(h(y)) ∈ domf , then h(y) ∈ domf ◦ g.
Since y ∈ domh and h(y) ∈ domf ◦ g, then y ∈ dom(f ◦ g) ◦ h.
Thus, domf ◦ (g ◦ h) ⊂ dom(f ◦ g) ◦ h.

Since dom(f ◦ g) ◦ h ⊂ domf ◦ (g ◦ h) and domf ◦ (g ◦ h) ⊂ dom(f ◦ g) ◦ h,
then dom(f ◦ g) ◦ h = domf ◦ (g ◦ h).
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Let x ∈ dom(f ◦ g) ◦ h ∩ domf ◦ (g ◦ h).
Then x ∈ dom(f ◦ g) ◦ h ∩ dom(f ◦ g) ◦ h = dom(f ◦ g) ◦ h and

[(f ◦ g) ◦ h](x) = (f ◦ g)(h(x))

= f [g(h(x))]

= f [(g ◦ h)(x)]

= [f ◦ (g ◦ h)](x).

Therefore, [(f ◦ g) ◦ h](x) = [f ◦ (g ◦ h)](x) for all x in the common domain.

Since dom(f ◦ g) ◦ h = domf ◦ (g ◦ h) and [(f ◦ g) ◦ h](x) = [f ◦ (g ◦ h)](x) for
all x in the common domain, then (f ◦ g) ◦ h = f ◦ (g ◦ h), as desired.

Proposition 7. Composition of maps
Let f : A→ B and g : B → C be maps.
Then g ◦ f : A→ C is a map and (g ◦ f)(x) = g(f(x)) for all x ∈ A.

Proof. Since f : A→ B and g : B → C are maps, then f and g are functions, so
g ◦ f is a function and dom g ◦ f = {x ∈ domf : f(x) ∈ domg} and (g ◦ f)(x) =
g(f(x)) for all x ∈ dom g ◦ f .

Since domf = A and domg = B and dom g◦f = {x ∈ domf : f(x) ∈ domg},
then dom g ◦ f = {x ∈ A : f(x) ∈ B}, so dom g ◦ f ⊂ A.

Let x ∈ A.
Since f : A→ B is a map, then f(x) ∈ B.
Since x ∈ A and f(x) ∈ B, then x ∈ dom g ◦ f .
Hence, A ⊂ dom g ◦ f .

Since dom g ◦ f ⊂ A and A ⊂ dom g ◦ f , then dom g ◦ f = A.

Since (g ◦ f)(x) = g(f(x)) for all x ∈ dom g ◦ f , then (g ◦ f)(x) = g(f(x)) for
all x ∈ A.

We prove rng g ◦ f ⊂ C.
Let y ∈ rng g ◦ f .
Then there exists x such that (x, y) ∈ g ◦ f .
Since (x, y) ∈ g ◦ f , then x ∈ dom g ◦ f , so x ∈ A.
Since g ◦ f is a function and (x, y) ∈ g ◦ f , then (g ◦ f)(x) = y, so y =

(g ◦ f)(x) = g(f(x)).
Since f : A→ B is a map and x ∈ A, then f(x) ∈ B.
Since g : B → C is a map, then g(f(x)) ∈ C.
Thus, y ∈ C, so rng g ◦ f ⊂ C.
Since g ◦ f is a function and dom g ◦ f = A and rng g ◦ f ⊂ C, then

g ◦ f : A→ C is a map.
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Proposition 8. Let f : A→ B be a map.
Let IA be the identity map on A and IB be the identity map on B.
Then f ◦ IA = IB ◦ f = f .

Proof. We prove f ◦ IA = f .
Since IA : A→ A is a map and f : A→ B is a map, then f ◦ IA : A→ B is

a map and (f ◦ IA)(x) = f(IA(x)) for all x ∈ A.
Since the domain of f ◦ IA and f is A, then f ◦ IA and f have the same

domain.
Since the codomain of f ◦ IA and f is B, then f ◦ IA and f have the same

codomain.
Let x ∈ A.
Then (f ◦ IA)(x) = f(IA(x)) = f(x), so (f ◦ IA)(x) = f(x) for all x ∈ A.
Therefore, f ◦ IA = f .

Proof. We prove IB ◦ f = f .
Since f : A→ B is a map and IB : B → B is a map, then IB ◦ f : A→ B is

a map and (IB ◦ f)(x) = IB(f(x)) for all x ∈ A.
Since the domain of IB ◦ f and f is A, then IB ◦ f and f have the same

domain.
Since the codomain of IB ◦ f and f is B, then IB ◦ f and f have the same

codomain.
Let x ∈ A.
Then (IB ◦ f)(x) = IB(f(x)) = f(x), so (IB ◦ f)(x) = f(x) for all x ∈ A.
Therefore, IB ◦ f = f .

Since f ◦ IA = f and IB ◦ f = f , then f ◦ IA = f = IB ◦ f , as desired.

Theorem 9. Left cancellation property of injective maps
Let f : X → Y be a map.
Then f is injective iff for every set W and every map g : W → X and

h : W → X such that f ◦ g = f ◦ h we have g = h.

Proof. We prove if f is injective, then for every set W and every map g : W → X
and h : W → X such that f ◦ g = f ◦ h we have g = h.

Suppose f is injective.
Let W be a set and let g : W → X and h : W → X be maps such that

f ◦ g = f ◦ h.
We must prove g = h.
Since g : W → X is a map and h : W → X is a map, then domg = W =

domh.
Let x ∈W .
Since f ◦ g = f ◦ h, then (f ◦ g)(x) = (f ◦ h)(x), so f(g(x)) = f(h(x)).
Since f is injective, then g(x) = h(x).
Thus, g(x) = h(x) for all x ∈W , so g = h, as desired.
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Proof. Conversely, we prove if for every set W and every map g : W → X and
h : W → X such that f ◦ g = f ◦ h implies g = h, then f is injective.

We prove by contrapositive.
Suppose f is not injective.
We must prove there exists a set W and there exist maps g : W → X and

h : W → X such that f ◦ g = f ◦ h and g 6= h.
Since f is not injective, then there exist a, b ∈ X such that a 6= b and

f(a) = f(b).
Let W = {a, b}.
Let g = {(a, a), (b, a)}.
Then g is a function and domg = {a, b} = W and rngg = {a} ⊂ X.
Thus, g : W → X is a map and g(a) = a = g(b).
Let h = {(a, b), (b, b)}.
Then h is a function and domh = {a, b} = W and rngh = {b} ⊂ X.
Thus, h : W → X is a map and h(a) = b = h(b).
Since (a, a) ∈ h iff a = b and a 6= b, then (a, a) 6∈ h.
Since (a, a) ∈ g, but (a, a) 6∈ h, then g 6= h.
Since g : W → X is a map and f : X → Y is a map, then f ◦ g : W → Y is

a map and (f ◦ g)(x) = f(g(x)) for all x ∈W .
Since h : W → X is a map and f : X → Y is a map, then f ◦ h : W → Y is

a map and (f ◦ h)(x) = f(h(x)) for all x ∈W .
Observe that dom(f ◦ g) = W = dom(f ◦ h).
Observe that (f ◦ g)(a) = f(g(a)) = f(a) = f(b) = f(h(a)) = (f ◦ h)(a).
Observe that (f ◦ g)(b) = f(g(b)) = f(a) = f(b) = f(h(b)) = (f ◦ h)(b).
Since dom(f ◦g) = W = dom(f ◦h) and (f ◦g)(a) = (f ◦h)(a) and (f ◦g)(b) =

(f ◦ h)(b), then f ◦ g = f ◦ h.

Proposition 10. A map f : A → B is surjective iff (∀b ∈ B)(∃a ∈ A)(f(a) =
b).

Proof. Let f : A→ B be a map.
We first prove if f is surjective, then (∀b ∈ B)(∃a ∈ A)(f(a) = b).
Suppose f is surjective.
Let b ∈ B.
Since f is surjective, then rngf = B.
Since b ∈ B, then b ∈ rngf , so there exists a ∈ A such that f(a) = b.

Conversely, we prove if (∀b ∈ B)(∃a ∈ A)(f(a) = b), then f is surjective.
Suppose (∀b ∈ B)(∃a ∈ A)(f(a) = b).
Since f : A→ B is a map, then rngf ⊂ B.
We prove B ⊂ rngf .
Suppose b ∈ B.
Then there exists a ∈ A such that f(a) = b.
Hence, b ∈ rngf , so B ⊂ rngf .
Since rngf ⊂ B and B ⊂ rngf , then rngf = B, so f is surjective.
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Theorem 11. Right cancellation property of surjective maps
Let X be a nonempty set.
Let f : X → Y be a map.
Then f is surjective iff for every set Z and every map g : Y → Z and

h : Y → Z such that g ◦ f = h ◦ f we have g = h.

Proof. We prove if f is surjective, then for every set Z and every map g : Y → Z
and h : Y → Z such that g ◦ f = h ◦ f we have g = h.

Suppose f is surjective.
Let Z be a set and let g : Y → Z and h : Y → Z be maps such that

g ◦ f = h ◦ f .
We must prove g = h.
Since g : Y → Z is a map and h : Y → Z is a map, then g and h are functions

and domg = Y = domh and the codomain of g is Z which is the codomain of h.
Since X 6= ∅ and f : X → Y is a map, then there exists x ∈ X, so f(x) ∈ Y .
Hence, Y 6= ∅.
Let y ∈ Y .
Since f is surjective, then there exists x ∈ X such that f(x) = y.
Since g ◦ f = h ◦ f and x ∈ X, then (g ◦ f)(x) = (h ◦ f)(x).
Observe that

g(y) = g(f(x))

= (g ◦ f)(x)

= (h ◦ f)(x)

= h(f(x))

= h(y).

Therefore, g(y) = h(y) for all y ∈ Y , so g = h, as desired.

Proof. Conversely, we prove if for every set Z and every map g : Y → Z and
h : Y → Z such that g ◦ f = h ◦ f implies g = h, then f is surjective.

We prove by contrapositive.
Suppose f is not surjective.
We must prove there exists a set Z and there exist maps g : Y → Z and

h : Y → Z such that g ◦ f = h ◦ f and g 6= h.
Since f is not surjective, then there exists y0 ∈ Y such that for all x ∈ X,

f(x) 6= y0.
Since X 6= ∅, then there exists x0 ∈ X.
Since f : X → Y is a map, then f(x0) ∈ Y .
Let Z = Y .
Let g : Y → Z be the identity map on Y defined by g(y) = y.
Let h : Y → Z be a map defined by h(y) = y if y 6= y0 and h(y0) = f(x0).

We prove g 6= h.
Since x0 ∈ X, then f(x0) 6= y0.
Since g(y0) = y0 6= f(x0) = h(y0), then g(y0) 6= h(y0), so g 6= h.
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We prove g ◦ f = h ◦ f .
Since f : X → Y is a map and g : Y → Z is a map, then g ◦ f : X → Z is a

map and (g ◦ f)(x) = g(f(x)) for all x ∈ X.
Since f : X → Y is a map and h : Y → Z is a map, then h ◦ f : X → Z is a

map and (h ◦ f)(x) = h(f(x)) for all x ∈ X.
Observe that dom(g ◦ f) = X = dom(h ◦ f).
Let x ∈ X.
Since f : X → Y is a map, then f(x) ∈ Y .
Since x ∈ X, then f(x) 6= y0.
Observe that

(g ◦ f)(x) = g(f(x))

= f(x)

= h(f(x))

= (h ◦ f)(x).

Hence, (g ◦ f)(x) = (h ◦ f)(x) for all x ∈ X.
Therefore, g ◦ f = h ◦ f , as desired.

Proposition 12. identity map is bijective.
Let S be a set.
The identity map IS : S → S on S is a bijection.

Proof. Let IS : S → S be the map defined by IS(x) = x for all x ∈ S.

We prove IS is injective.
Let a, b ∈ S such that IS(a) = IS(b).
Then a = b.
Therefore, IS is injective.

We prove IS is surjective.
Let b ∈ S be arbitrary.
Let a = b.
Then a ∈ S and I(a) = a = b.
Thus, there exists a ∈ S such that IS(a) = b.
Therefore, IS is surjective.
Since IS is injective and surjective, then IS is bijective, as desired.

Theorem 13. Let f : A→ B and g : B → C be maps.
1. If f and g are injective, then g ◦ f is injective.
A composition of injections is an injection.
2. If f and g are surjective, then g ◦ f is surjective.
A composition of surjections is a surjection.
3. If g ◦ f is injective, then f is injective.
4. If g ◦ f is surjective, then g is surjective.

10



Proof. We prove 1.
Suppose f and g are injective.
Since f : A→ B is a map and g : B → C is a map, then g ◦ f : A→ C is a

map.
Let a, b ∈ A such that (g ◦ f)(a) = (g ◦ f)(b).
Then g(f(a)) = g(f(b)).
Since g is injective, then f(a) = f(b).
Since f is injective, then a = b.
Therefore, g ◦ f is injective.

Proof. We prove 2.
Suppose f and g are surjective.
Since f : A→ B is a map and g : B → C is a map, then g ◦ f : A→ C is a

map.
Let c ∈ C be arbitrary.
Since g is surjective, then there exists b ∈ B such that g(b) = c.
Since f is surjective, then there exists a ∈ A such that f(a) = b.
Observe that (g ◦ f)(a) = g(f(a)) = g(b) = c.
Therefore, there exists a ∈ A such that (g◦f)(a) = c, so g◦f is surjective.

Proof. We prove 3.
Suppose g ◦ f is injective.
Since f : A→ B is a map and g : B → C is a map, then g ◦ f : A→ C is a

map.
Let a, b ∈ A such that f(a) = f(b).
Then (g ◦ f)(a) = g(f(a)) = g(f(b)) = (g ◦ f)(b), so (g ◦ f)(a) = (g ◦ f)(b).
Since g ◦ f is injective, then a = b.
Therefore, f is injective.

Proof. We prove 4.
Suppose g ◦ f is surjective.
Since f : A→ B is a map and g : B → C is a map, then g ◦ f : A→ C is a

map.
Let c ∈ C be arbitrary.
Since g ◦ f is surjective, then there exists a ∈ A such that (g ◦ f)(a) = c.
Since a ∈ A and f : A→ B is a map, then f(a) ∈ B.
Observe that g(f(a)) = (g ◦ f)(a) = c.
Thus, there exists f(a) ∈ B such that g(f(a)) = c.
Therefore, g is surjective.

Corollary 14. Let f : A→ B and g : B → C be maps.
1. If f and g are bijective, then g ◦ f is bijective.
A composition of bijections is a bijection.
2. If g ◦ f is bijective, then f is injective and g is surjective.
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Proof. We prove 1.
Suppose f and g are bijective.
Since f : A→ B is a map and g : B → C is a map, then g ◦ f : A→ C is a

map.
Since f is bijective, then f is injective and surjective.
Since g is bijective, then g is injective and surjective.
Since f and g are injective, then g ◦ f is injective.
Since f and g are surjective, then g ◦ f is surjective.
Since g ◦ f is injective and surjective, then g ◦ f is bijective.

Proof. We prove 2.
Suppose g ◦ f is bijective.
Then g ◦ f is injective and surjective.
Since g ◦ f is injective, then f is injective.
Since g ◦ f is surjective, then g is surjective.

Theorem 15. existence of inverse function
Let f be a function.
Then the inverse relation f−1 is a function iff f is injective.

Proof. We prove if f−1 is a function, then f is injective.
Suppose f−1 is a function.
Let a1, a2 ∈ domf such that f(a1) = f(a2).
Since f is a relation, then (a1, f(a1)) ∈ f and (a2, f(a2)) ∈ f .
Since f−1 is an inverse of f , then (f(a1), a1) ∈ f−1 and (f(a2), a2) ∈ f−1.
Since f−1 is a function and f(a1) = f(a2), then a1 = a2.
Therefore, f is injective.

Conversely, we prove if f is injective, then f−1 is a function.
Suppose f is injective.
Let (a, b1) ∈ f−1 and (a, b2) ∈ f−1.
Since f−1 is an inverse of f , then (b1, a) ∈ f and (b2, a) ∈ f , so f(b1) = a

and f(b2) = a.
Thus, f(b1) = a = f(b2).
Since f is injective, then b1 = b2.
Therefore, f−1 is a function.

Theorem 16. The inverse of an invertible map is unique.
Let f : A→ B be an invertible map.
Then the inverse map is unique.

Proof. Since f : A→ B is an invertible map, then there exists a map that is an
inverse of f .

Let g : B → A and h : B → A be inverse maps of f .
To prove the inverse map is unique, we must prove g = h.
Observe that the domain of g equals B which equals the domain of h and

the codomain of g equals A which equals the codomain of h.
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Let x ∈ B be arbitrary.
Since g : B → A is a map, then g(x) ∈ A.
Since f is a relation, then (g(x), x) ∈ f .
Since h and f are inverses, then (x, g(x)) ∈ h, so h(x) = g(x).
Therefore, g = h, as desired.

Theorem 17. Let f : A→ B and g : B → A be maps.
Then g is an inverse of f iff
1. g ◦ f = IA
2. f ◦ g = IB.

Proof. We prove if g is an inverse of f , then g ◦ f = IA and f ◦ g = IB .
Since f : A → B and g : B → A are maps, then g ◦ f : A → A and f ◦ g :

B → B are maps and (g ◦ f)(a) = g(f(a)) for all a ∈ A and (f ◦ g)(b) = f(g(b))
for all b ∈ B.

Suppose g is an inverse of f .

We prove g ◦ f = IA.
Let IA be the identity map on A.
Then dom(g ◦ f) = A = domIA.
Let a ∈ A.
Since f is a function, then (a, f(a)) ∈ f .
Since g is an inverse of f , then (f(a), a) ∈ g, so g(f(a)) = a.
Observe that

(g ◦ f)(a) = g(f(a))

= a

= IA(a).

Hence, (g ◦ f)(a) = I(a) for every a ∈ A.
Therefore, g ◦ f = IA.

We prove f ◦ g = IB .
Let IB be the identity map on B.
Then dom(f ◦ g) = B = domIB .
Let b ∈ B.
Since g is a function, then (b, g(b)) ∈ g.
Since f is an inverse of g, then (g(b), b) ∈ f , so f(g(b)) = b.
Observe that

(f ◦ g)(b) = f(g(b))

= b

= I(b).

Hence, (f ◦ g)(b) = I(b) for every b ∈ B.
Therefore, f ◦ g = IB .
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Proof. Conversely, we prove if g ◦ f = IA and f ◦ g = IB , then g is an inverse of
f .

Suppose g ◦ f = IA and f ◦ g = IB .

Let (a, b) ∈ f .
Then a ∈ A and b ∈ B and f(a) = b.
Since a ∈ A, then a = IA(a) = (g ◦ f)(a) = g(f(a)) = g(b), so (b, a) ∈ g.
Hence, if (a, b) ∈ f , then (b, a) ∈ g.

Let (b, a) ∈ g.
Then b ∈ B and a ∈ A and g(b) = a.
Since b ∈ B, then b = IB(b) = (f ◦ g)(b) = f(g(b)) = f(a), so (a, b) ∈ f .
Hence, if (b, a) ∈ g, then (a, b) ∈ f .
Since (b, a) ∈ g implies (a, b) ∈ f and (a, b) ∈ f implies (b, a) ∈ g, then

(b, a) ∈ g iff (a, b) ∈ f .
Therefore, g is an inverse of f .

Corollary 18. Let f : A→ B be an invertible map. Then
1. f−1 ◦ f = IA
2. f ◦ f−1 = IB.

Proof. Since f : A→ B is an invertible map, then the inverse map f−1 : B → A
exists, so f−1 is an inverse of f .

Therefore, f−1 ◦ f = IA and f ◦ f−1 = IB .

Theorem 19. An invertible map is bijective.
Let f : A→ B be a map.
Then f is invertible iff f is bijective.

Proof. We prove if f is bijective, then f is invertible.
Suppose f is bijective.
Then f is injective and surjective.
Since f is injective, then the inverse relation f−1 is a function.
Since f−1 is a relation, then domf−1 = rngf and rngf−1 = domf .
Since f is surjective, then rngf = B.
Thus, domf−1 = rngf = B and rngf−1 = domf = A ⊂ A.
Since f−1 is a function and domf−1 = B and rngf−1 ⊂ A, then f−1 : B →

A is a map.
Since f−1 is the inverse of f , then f is invertible.

Proof. Conversely, we prove if f is invertible, then f is bijective.
Suppose f is invertible.
Then the inverse map f−1 : B → A exists.
Hence, the inverse relation f−1 is a function, so f is injective.
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Let b ∈ B.
Since f−1 : B → A is a map, then f−1(b) ∈ A.
Let a = f−1(b).
Then a ∈ A.
Since f−1 is the inverse of f and f−1(b) = a, then f(a) = b.
Therefore, there exists a ∈ A such that f(a) = b, so f is surjective.
Since f is injective and surjective, then f is bijective.

Lemma 20. Let f : A→ B be a map.
If f : A→ B is a bijection, then f−1 : B → A is a bijection.

Proof. Suppose the map f : A→ B is a bijection.
Then f is bijective, so f is invertible.
Hence, the map f : A → B is invertible, so the inverse map f−1 : B → A

exists.

We prove f−1 is injective.
Let b1, b2 ∈ B such that f−1(b1) = f−1(b2).
Let a = f−1(b1) = f−1(b2).
Then f−1(b1) = a and f−1(b2) = a, so (b1, a) ∈ f−1 and (b2, a) ∈ f−1.
Since f−1 is the inverse of f , then (a, b1) ∈ f and (a, b2) ∈ f .
Since f is a function and (a, b1) ∈ f and (a, b2) ∈ f , then b1 = b2.
Therefore, f−1 is injective.

We prove f−1 is surjective.
Let a ∈ A.
Since f : A→ B is a map, then f(a) ∈ B.
Let b = f(a).
Then b ∈ B.
Since f−1 is the inverse of f and f(a) = b, then f−1(b) = a.
Thus, there exists b ∈ B such that f−1(b) = a, so f−1 is surjective.

Since f−1 is injective and surjective, then f−1 is bijective.
Since f−1 : B → A is a map and f−1 is bijective, then f−1 : B → A is a

bijection.

Theorem 21. Let f : A→ B be a bijection. Then
1. (f−1)−1 : A→ B is a bijection.
2. (f−1)−1 = f .

Proof. Since f : A → B is a bijection, then f−1 : B → A is a bijection, so
(f−1)−1 : A→ B is a bijection.

Observe that (f−1)−1 : A→ B and f : A→ B have the same domain A and
same codomain B.

Let a ∈ A be arbitrary.
Since f is a function, then there is a unique b ∈ B such that f(a) = b.
Since f−1 is the inverse of f , then f−1(b) = a.
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Since (f−1)−1 is the inverse of f−1, then (f−1)−1(a) = b.
Thus, (f−1)−1(a) = b = f(a).
Hence, (f−1)−1(a) = f(a) for all a ∈ A.
Therefore, (f−1)−1 = f .

Theorem 22. Let f : A→ B and g : B → C be bijections. Then
1. (g ◦ f)−1 : C → A is a bijection.
2. f−1 ◦ g−1 : C → A is a bijection.
3. (g ◦ f)−1 = f−1 ◦ g−1.

Proof. Since f : A → B and g : B → C are bijections, then the composition
g ◦ f : A→ C is a bijection, so (g ◦ f)−1 : C → A is a bijection.

Since f : A→ B is a bijection, then f−1 : B → A is a bijection.
Since g : B → C is a bijection, then g−1 : C → B is a bijection.
Thus, the composition f−1 ◦ g−1 : C → A is a bijection.
Observe that (g ◦ f)−1 : C → A and f−1 ◦ g−1 : C → A have the same

domain C and same codomain A.

Let c ∈ C be arbitrary.
Since (g ◦ f)−1 is a function, then there exists a unique a ∈ A such that

(g ◦ f)−1(c) = a.
Since (g ◦ f)−1 is the inverse of g ◦ f , then (g ◦ f)(a) = c.
Since f is a function and a ∈ A, then there exists a unique b ∈ B such that

f(a) = b.
Thus, c = (g ◦ f)(a) = g(f(a)) = g(b).
Since g−1 is the inverse of g and g(b) = c, then g−1(c) = b.
Since f−1 is the inverse of f and f(a) = b, then f−1(b) = a.
Observe that

(g ◦ f)−1(c) = a

= f−1(b)

= f−1(g−1(c))

= (f−1 ◦ g−1)(c).

Thus, (g ◦ f)−1(c) = (f−1 ◦ g−1)(c) for all c ∈ C.
Therefore, (g ◦ f)−1 = f−1 ◦ g−1.

Image and inverse image of functions

Proposition 23. Let f : A→ B be a map.
1. Then f is injective iff every b ∈ B has at most one pre-image.
2. Then f is surjective iff every b ∈ B has at least one pre-image.
3. Then f is bijective iff every b ∈ B has exactly one pre-image.
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Proof. We prove 1.
We prove if f is injective, then every b ∈ B has at most one pre-image.
Suppose f is injective.
Let b ∈ B.
Either there exists a ∈ A such that f(a) = b or there does not exist a ∈ A

such that f(a) = b.
We consider each case separately.
Case 1: Suppose there does not exist a ∈ A such that f(a) = b.
Then b has no pre-image.
Case 2: Suppose there exists a ∈ A such that f(a) = b.
Then a is a pre-image of b, so b has at least one pre-image.
Suppose a1, a2 ∈ A are pre-images of b.
Then f(a1) = b and f(a2) = b, so f(a1) = f(a2).
Since f is injective, then a1 = a2, so there is at most one pre-image of b.
In either case, at most one pre-image of b exists.

Proof. Conversely, we prove if every b ∈ B has at most one pre-image, then f
is injective.

Suppose every b ∈ B has at most one pre-image.
To prove f is injective, let a1, a2 ∈ A such that f(a1) = f(a2).
Let b = f(a1) = f(a2).
Since f : A→ B is a map, then b ∈ B.
Hence, b has at most one pre-image, so there is at most one a ∈ A such that

f(a) = b.
Therefore, a1 = a2.

Proof. We prove 2.
We prove if f is surjective, then every b ∈ B has at least one pre-image.
Suppose f is surjective.
Let b ∈ B be arbitrary.
Since f is surjective, then there exists a ∈ A such that f(a) = b.
Hence, a is a pre-image of b, so b has at least one pre-image.

Proof. We prove 3.
We prove if f is bijective, then every b ∈ B has exactly one pre-image.
Suppose f is bijective.
Then f is injective and surjective.
Let b ∈ B.
Since f is surjective, then b has at least one pre-image.
Since f is injective, then b has at most one pre-image.
Since b has at least one pre-image and b has at most one pre-image, then b

has exactly one pre-image.

Proposition 24. Let f : A→ B be a map. Then
1. f(∅) = ∅.
The image of the empty set is the empty set.
2. f−1(∅) = ∅.
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The inverse image of the empty set is the empty set.
3. f(A) = rngf .
The image of the domain of f is the range of f .
4. f−1(B) = A.
The inverse image of the codomain of f is the domain of f .

Proof. We prove 1.
We prove f(∅) = ∅ by contradiction.
Suppose f(∅) 6= ∅.
Then there exists b ∈ f(∅), so there exists x ∈ ∅ such that f(x) = b.
Since ∅ is empty, then x 6∈ ∅.
Thus, we have x ∈ ∅ and x 6∈ ∅, a contradiction.
Therefore, f(∅) = ∅.

Proof. We prove 2.
We prove f−1(∅) = ∅ by contradiction.
Suppose f−1(∅) 6= ∅.
Then there exists x ∈ f−1(∅), so x ∈ A and f(x) ∈ ∅.
Since ∅ is empty, then f(x) 6∈ ∅.
Thus, we have f(x) ∈ ∅ and f(x) 6∈ ∅, a contradiction.
Therefore, f−1(∅) = ∅.

Proof. We prove 3.
We prove f(A) = rngf .
Since b ∈ f(A) iff there exists a ∈ A such that f(a) = b iff b ∈ rngf , then

b ∈ f(A) iff b ∈ rngf .
Therefore, f(A) = rngf .

Proof. We prove 4.
We prove f−1(B) = A.
Since f−1(B) = {x ∈ A : f(x) ∈ B}, then f−1(B) ⊂ A.

Let x ∈ A.
Since f : A→ B is a map, then f(x) ∈ B.
Since x ∈ A and f(x) ∈ B, then x ∈ f−1(B).
Thus, A ⊂ f−1(B).
Since f−1(B) ⊂ A and A ⊂ f−1(B), then f−1(B) = A.

Proposition 25. Let f : X → Y be a map.
1. For every subset A and B of X, if A ⊂ B, then f(A) ⊂ f(B).
2. f(A ∪B) = f(A) ∪ f(B) for every subset A and B of X.
The image of a union equals the union of the images.
3. f(A ∩B) ⊂ f(A) ∩ f(B) for every subset A and B of X.
The image of an intersection is a subset of the intersection of the images.
4. f(A∩B) = f(A)∩ f(B) for every subset A and B of X iff f is injective.
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Proof. We prove 1.
Let A and B be subsets of X such that A ⊂ B.
We must prove f(A) ⊂ f(B).
Let y ∈ f(A).
Then there exists x ∈ A such that f(x) = y.
Since x ∈ A and A ⊂ B, then x ∈ B.
Thus, there exists x ∈ B such that f(x) = y, so y ∈ f(B).
Therefore, f(A) ⊂ f(B).

Proof. We prove 2.
Let A and B be subsets of X.
We must prove f(A ∪B) = f(A) ∪ f(B).
Observe that

y ∈ f(A ∪B) ⇔ there exists x ∈ A ∪B such that y = f(x)

⇔ either there exists x ∈ A or there exists x ∈ B and y = f(x)

⇔ either there exists x ∈ A and y = f(x) or there exists x ∈ B and y = f(x)

⇔ either y ∈ f(A) or y ∈ f(B)

⇔ y ∈ f(A) ∪ f(B).

Therefore, y ∈ f(A∪B) iff y ∈ f(A)∪f(B), so f(A∪B) = f(A)∪f(B).

Proof. We prove 2.
Let A and B be subsets of X.
We first prove f(A ∪B) ⊂ f(A) ∪ f(B).
Let y ∈ f(A ∪B).
Then there exists x ∈ A ∪B such that f(x) = y.
Since x ∈ A ∪B, then either x ∈ A or x ∈ B.
Case 1: Suppose x ∈ A.
Since x ∈ A and y = f(x), then y ∈ f(A).
Case 2: Suppose x ∈ B.
Since x ∈ B and y = f(x), then y ∈ f(B).
Thus, either y ∈ f(A) or y ∈ f(B), so y ∈ f(A) ∪ f(B).
Therefore, f(A ∪B) ⊂ f(A) ∪ f(B).

We next prove f(A) ∪ f(B) ⊂ f(A ∪B).
Let y ∈ f(A) ∪ f(B).
Then either y ∈ f(A) or y ∈ f(B).
Case 1: Suppose y ∈ f(A).
Then there exists a ∈ A such that f(a) = y.
Since a ∈ A, then either a ∈ A or a ∈ B, so a ∈ A ∪B.
Since a ∈ A ∪B and f(a) = y, then y ∈ f(A ∪B).
Case 2: Suppose y ∈ f(B).
Then there exists b ∈ B such that f(b) = y.
Since b ∈ B, then either b ∈ A or b ∈ B, so b ∈ A ∪B.
Since b ∈ A ∪B and f(b) = y, then y ∈ f(A ∪B).
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Hence, in either case, y ∈ f(A ∪B).
Therefore, f(A) ∪ f(B) ⊂ f(A ∪B).

Since f(A∪B) ⊂ f(A)∪f(B) and f(A)∪f(B) ⊂ f(A∪B), then f(A∪B) =
f(A) ∪ f(B).

Proof. We prove 3.
Let A and B be subsets of X.
We prove f(A ∩B) ⊂ f(A) ∩ f(B).
Let y ∈ f(A ∩B).
Then there exists x ∈ A ∩B such that f(x) = y.
Since x ∈ A ∩B, then x ∈ A and x ∈ B.
Since x ∈ A and f(x) = y, then y ∈ f(A).
Since x ∈ B and f(x) = y, then y ∈ f(B).
Thus, y ∈ f(A) and y ∈ f(B), so y ∈ f(A) ∩ f(B).
Therefore, f(A ∩B) ⊂ f(A) ∩ f(B).

Proof. We prove 4.
We prove f(A ∩ B) = f(A) ∩ f(B) for every subset A and B of X iff f is

injective.

We first prove if f is injective, then f(A∩B) = f(A)∩ f(B) for every subset
A and B of X.

Suppose f is injective.
Let A and B be subsets of X.
We prove f(A) ∩ f(B) ⊂ f(A ∩B).

Let y ∈ f(A) ∩ f(B).
Then y ∈ f(A) and y ∈ f(B).
Since y ∈ f(A), then y = f(a) for some a ∈ A.
Since y ∈ f(B), then y = f(b) for some b ∈ B.
Hence, f(a) = y = f(b).
Since f is injective and f(a) = f(b), then a = b.
Since a = b and b ∈ B, then a ∈ B.
Since a ∈ A and a ∈ B, then a ∈ A ∩B.
Since a ∈ A ∩B and f(a) = y, then y ∈ f(A ∩B).
Therefore, f(A) ∩ f(B) ⊂ f(A ∩B).
Since f(A∩B) ⊂ f(A)∩f(B) and f(A)∩f(B) ⊂ f(A∩B), then f(A∩B) =

f(A) ∩ f(B).

Conversely, we prove if f(A ∩B) = f(A) ∩ f(B) for every subset A and B of
X, then f is injective.

We prove by contrapositive.
Suppose f is not injective.
Then there exist x1, x2 ∈ X such that x1 6= x2 and f(x1) = f(x2).
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We must prove there exist subsets A and B of X such that f(A ∩ B) 6=
f(A) ∩ f(B).

Let A = {x1} and B = {x2}.
Since x1 ∈ X and A = {x1}, then A ⊂ X.
Since x2 ∈ X and B = {x1}, then B ⊂ X.

We prove f(A ∩B) 6= f(A) ∩ f(B).
If A ∩B 6= ∅, then there exists x such that x ∈ A ∩B, so x ∈ A and x ∈ B.
Hence, x ∈ {x1} and x ∈ {x2}, so x = x1 and x = x2.
Thus, x1 = x = x2.
Therefore, if A ∩B 6= ∅, then x1 = x2, so if x1 6= x2, then A ∩B = ∅.
Since x1 6= x2, then we conclude A ∩B = ∅.
Since x1 ∈ A, then f(x1) ∈ f(A).
Since x2 ∈ B, then f(x2) ∈ f(B).
Since f(x1) = f(x2) and f(x2) ∈ f(B), then f(x1) ∈ f(B).
Thus, f(x1) ∈ f(A) and f(x1) ∈ f(B), so f(x1) ∈ f(A) ∩ f(B).
Hence, f(A) ∩ f(B) 6= ∅.
Therefore, f(A ∩B) = f(∅) = ∅ 6= f(A) ∩ f(B), as desired.

Proposition 26. Let f : X → Y be a map.
1. For every subset C and D of Y , if C ⊂ D, then f−1(C) ⊂ f−1(D).
2. f−1(C ∪D) = f−1(C) ∪ f−1(D) for every subset C and D of Y .
The inverse image of a union equals the union of the inverse images.
3. f−1(C ∩D) = f−1(C) ∩ f−1(D) for every subset C and D of Y .
The inverse image of an intersection equals the intersection of the inverse

images.

Proof. We prove 1.
Let C and D be subsets of Y such that C ⊂ D.
Let x ∈ f−1(C).
Then x ∈ X and f(x) ∈ C.
Since f(x) ∈ C and C ⊂ D, then f(x) ∈ D.
Hence, x ∈ X and f(x) ∈ D, so x ∈ f−1(D).
Therefore, f−1(C) ⊂ f−1(D).

Proof. We prove 2.
Let C and D be subsets of Y .
We must prove f−1(C ∪D) = f−1(C) ∪ f−1(D).
Observe that

x ∈ f−1(C ∪D) ⇔ x ∈ X and f(x) ∈ C ∪D

⇔ x ∈ X and either f(x) ∈ C or f(x) ∈ D

⇔ either x ∈ X and f(x) ∈ C or x ∈ X and f(x) ∈ D

⇔ either x ∈ f−1(C) or x ∈ f−1(D)

⇔ x ∈ f−1(C) ∪ f−1(D).
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Therefore, x ∈ f−1(C ∪ D) iff x ∈ f−1(C) ∪ f−1(D), so f−1(C ∪ D) =
f−1(C) ∪ f−1(D).

Proof. We prove 3.
Let C and D be subsets of Y .
We must prove f−1(C ∩D) = f−1(C) ∩ f−1(D).
Observe that

x ∈ f−1(C ∩D) ⇔ x ∈ X and f(x) ∈ C ∩D

⇔ x ∈ X and f(x) ∈ C and f(x) ∈ D

⇔ x ∈ X and f(x) ∈ C and x ∈ X and f(x) ∈ D

⇔ x ∈ f−1(C) and x ∈ f−1(D)

⇔ x ∈ f−1(C) ∩ f−1(D).

Therefore, x ∈ f−1(C ∩ D) iff x ∈ f−1(C) ∩ f−1(D), so f−1(C ∩ D) =
f−1(C) ∩ f−1(D).

Proposition 27. inverse image of the image of a subset of the domain
of a map

Let f : A→ B be a map. Then
1. S ⊂ f−1(f(S)) for every subset S of A.
2. f−1(f(S)) = S for every subset S of A iff f is injective.

Proof. We prove 1.
We prove S ⊂ f−1(f(S)) for every subset S of A.
Let S ⊂ A.
Suppose x ∈ S.
Then f(x) ∈ f(S).
Since x ∈ S and S ⊂ A, then x ∈ A.
Since x ∈ A and f(x) ∈ f(S), then x ∈ f−1(f(S)).
Therefore, S ⊂ f−1(f(S)).

Proof. We prove 2.
We prove f−1(f(S)) = S for every subset S of A iff f is injective.

We first prove if f−1(f(S)) = S for every subset S of A, then f is injective.
Suppose f−1(f(S)) = S for every subset S of A.
To prove f is injective, let a, b ∈ A such that f(a) = f(b).
We must prove a = b.
Let S = {a}.
Since a ∈ A, then S ⊂ A.
Hence, f−1(f(S)) = S.
Since a ∈ S, then f(a) ∈ f(S).
Since f(b) = f(a), then f(b) ∈ f(S).
Since b ∈ A and f(b) ∈ f(S), then b ∈ f−1(f(S)).
Thus, b ∈ S, so b ∈ {a}.
Therefore, b = a, as desired.
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Conversely, we prove if f is injective, then f−1(f(S)) = S for every subset S
of A.

Suppose f is injective.
Let S ⊂ A.
We must prove f−1(f(S)) = S.
Let x ∈ f−1(f(S)).
Then x ∈ A and f(x) ∈ f(S).
Since f(x) ∈ f(S), then there exists s ∈ S such that f(s) = f(x).
Since f is injective, then s = x.
Since s ∈ S, then x ∈ S.
Therefore, f−1(f(S)) ⊂ S.
Since f−1(f(S)) ⊂ S and S ⊂ f−1(f(S)), then f−1(f(S)) = S.

Proposition 28. image of the inverse image of a subset of the codomain
of a map

Let f : A→ B be a map. Then
1. f(f−1(T )) ⊂ T for every subset T of B.
2. f(f−1(T )) = T for every subset T of B iff f is surjective.

Proof. We prove 1.
Let T ⊂ B.
We prove f(f−1(T )) ⊂ T .

Let y ∈ f(f−1(T )).
Then there exists x ∈ f−1(T ) such that f(x) = y.
Since x ∈ f−1(T ), then x ∈ A and f(x) ∈ T .
Thus, y ∈ T .
Therefore, f(f−1(T )) ⊂ T .

Proof. We prove 2.
We must prove f(f−1(T )) = T for every subset T of B iff f is surjective.

We first prove if f is surjective, then f(f−1(T )) = T for every subset T of B.
Suppose f is surjective.
Let T ⊂ B.
Let y ∈ T .
Since f is surjective, then there exists x ∈ A such that f(x) = y.
Since x ∈ A and f(x) ∈ T , then x ∈ f−1(T ).
Since y = f(x) and x ∈ f−1(T ), then y ∈ f(f−1(T )).
Therefore, T ⊂ f(f−1(T )).
Since f(f−1(T )) ⊂ T and T ⊂ f(f−1(T )), then f(f−1(T )) = T .
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Conversely, we prove if f(f−1(T )) = T for every subset T of B, then f is
surjective.

Suppose f(f−1(T )) = T for every subset T of B.
Since B ⊂ B, then f(f−1(B)) = B.
Observe that

B = f(f−1(B))

= f(A)

= rngf.

Therefore, rngf = B, so f is surjective, as desired.
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