Functions Examples

Jason Sass

May 12, 2025

Functions

Example 1. A function specified by listing its ordered pairs. Let $f_1 = \{(2,3), (3,5), (4,7), (5,9)\}$. Let $f_2 = \{(1,5), (1,-1), (4,7), (5,9)\}$.

Since f_1 is a set of ordered pairs, then f_1 is a relation. Since no two distinct ordered pairs of f_1 have the same first element, then is a function

 f_1 is a function.

The domain of f_1 is the set $\{2, 3, 4, 5\}$. The range of f_1 is the set $\{3, 5, 7, 9\}$.

Since f_2 is a set of ordered pairs, then f_2 is a relation. The domain of f_2 is the set $\{1, 4, 5\}$. The range of f_2 is the set $\{-1, 5, 7, 9\}$. Since $(1,5) \in f_2$ and $(1,-1) \in f_2$, but $5 \neq -1$, then f_2 is not a function.

Example 2. A function specified by its domain and a rule of correspondence

Let f be defined by $dom f = \{x \in \mathbb{R} : x \ge 0\}$ and $f(x) = x^2$. Then f is a function.

Example 3. equal functions

Let $f = \{(1, 2), (2, 4), (3, 6)\}$. Let g be a function such that g = f. Then the domain of g is $domg = domf = \{1, 2, 3\}$. Observe that g(1) = f(1) = 2, and g(2) = f(2) = 4, and g(3) = f(3) = 6.

Example 4. identity function

Let S be a set.

The **identity function on** S, denoted I_S , is defined by the rule $I_S(x) = x$ for all $x \in S$.

Example 5. constant function

Let S be a set. Let $k \in S$.

The constant function defined on S, denoted C_S , is defined by the rule $C_S(x) = k$ for all $x \in S$.

Example 6. map

Let $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R}$ be defined by $f(x) = \sin x$ for all $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Then $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R}$ is a map. The function f is the sin function. The domain of f is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. The codomain of f is \mathbb{R} . The range of f is the closed interval [-1, 1], a subset of the codomain.

Example 7. distinct maps can specify the same function

Let $f_1 : \mathbb{R} \to \mathbb{R}$ be defined by $f_1(x) = x^2$. Let $f_2 : \mathbb{R} \to [0, \infty)$ be defined by $f_2(x) = x^2$. Observe that f_1 and f_2 specify the same function, the square function. Since $\mathbb{R} \neq [0,\infty)$, then the co-domain of f_1 and f_2 are not equal, so f_1 and

f_2 are distinct maps.

Example 8. equal maps

Let $f : \{1, 2, 3, \} \to \mathbb{Z}^+$ be defined by f(n) = 2n for all $n \in \{1, 2, 3\}$. Let $g: \{1, 2, 3\} \to \mathbb{Z}^+$ be defined by g(1) = 2 and g(2) = 4 and g(3) = 6. Then $f: \{1, 2, 3, \} \to \mathbb{Z}^+$ and $g: \{1, 2, 3, \} \to \mathbb{Z}^+$ are equal.

Proof. Since $f = \{(1, 2), (2, 4), (3, 6)\}$, then f is a relation. The domain of f is the set $\{1, 2, 3\}$, so $dom f = \{1, 2, 3\}$. The range of f is the set $\{2, 4, 6\}$, so $rngf = \{2, 4, 6\}$. Since $rngf = \{2, 4, 6\}$ and $\{2, 4, 6\} \subset \mathbb{Z}^+$, then $rngf \subset \mathbb{Z}^+$. Since no two distinct ordered pairs of f have the same first element, then f

is a function.

Since f is a function and $dom f = \{1, 2, 3\}$ and $rng f \subset \mathbb{Z}^+$, then f : $\{1, 2, 3,\} \rightarrow \mathbb{Z}^+$ is a map.

Since $g = \{(1, 2), (2, 4), (3, 6)\}$, then g is a relation.

The domain of g is the set $\{1, 2, 3\}$, so $domg = \{1, 2, 3\}$.

The range of q is the set $\{2, 4, 6\}$, so $rnqq = \{2, 4, 6\}$.

Since $rngg = \{2, 4, 6\}$ and $\{2, 4, 6\} \subset \mathbb{Z}^+$, then $rngg \subset \mathbb{Z}^+$.

Since no two distinct ordered pairs of q have the same first element, then qis a function.

Since g is a function and $domg = \{1, 2, 3\}$ and $rngg \subset \mathbb{Z}^+$, then g : $\{1, 2, 3,\} \rightarrow \mathbb{Z}^+$ is a map.

Since $f = \{(1,2), (2,4), (3,6)\}$ and $g = \{(1,2), (2,4), (3,6)\}$, then f = g. The codomain of f and g is \mathbb{Z}^+ , so f and g have the same codomain.

Since f = g, and f and g have the same codomain, then the maps f: $\{1, 2, 3, \} \to \mathbb{Z}^+$ and $g: \{1, 2, 3, \} \to \mathbb{Z}^+$ are equal.

Example 9. identity map on a set

Let S be a set. Let $I_S : S \to S$ be a map defined by $I_S(x) = x$ for all $x \in S$. We call I_S the **identity map on** S.

Let S be a set. Let $I_S : S \to S$ be the identity map on S. Then $I_S(x) = x$ for all $x \in S$. The domain of I_S is S. The codomain of I_S is S. The range of I_S is S.

Therefore, I_S maps each element of S onto itself. Since I_S is a bijective function on S, then I_S is a permutation map on S.

Example 10. constant map

Let S be a set. Let $k \in S$. Let $C_S : S \to S$ be a map defined by $C_S(x) = k$ for all $x \in S$. We call C_S the **constant map on** S.

Let S be a set. Let $k \in S$. Let $C_S : S \to S$ be the constant map. The domain of C_S is S. The codomain of C_S is S. The range of C_S is the set $\{k\}$, a subset of the codomain S.

Example 11. constant map on \mathbb{R}

Let $k \in \mathbb{R}$. Let $C : \mathbb{R} \to \mathbb{R}$ be defined by C(x) = k for all $x \in \mathbb{R}$. Then $C : \mathbb{R} \to \mathbb{R}$ is the constant map defined on \mathbb{R} . The domain of C is \mathbb{R} . The codomain of C is \mathbb{R} . The range of C is the set $\{k\}$, a subset of the codomain \mathbb{R} .

Example 12. restriction of a map

Let $f : \mathbb{R} \to \mathbb{R}$ be the map defined by $f(x) = x^2$. Let $f|_S$ be the restriction of f to the interval $[0, \infty)$. Then $f|_{[0,\infty)} : [0,\infty) \to \mathbb{R}$ is a map defined by $f|_{[0,\infty)}(x) = x^2$ for all $x \in [0,\infty)$. The interval $[0,\infty)$ is a subset of \mathbb{R} the density of f.

The interval $[0,\infty)$ is a subset of \mathbb{R} , the domain of f.

Definition 13. inclusion map

Let $I_A : A \to A$ be the identity map on set A. Let $S \subset A$. Let $i_S : S \to A$ be the map defined by $i_S = (I_A)|_S$. We call i_S the **inclusion map of** S **into** A. Let $i_S: S \to A$ be the inclusion map of S into A.

Then $i_S = (I_A)|_S$, so the inclusion map is a restriction of the identity map. Hence, $i_S(x) = x$ for all $x \in S$.

Therefore, i_S assigns to each element of S the same element, now in A.

Composition of functions

Example 14. Function composition is not commutative.

Let $f = \{(1,2), (2,3), (3,4), (4,5), (5,6), (6,7)\}.$

Let $g = \{(2,4), (3,5), (4,6), (5,7), (7,2)\}.$

Then f and g are functions, so $f \circ g$ and $g \circ f$ are functions.

Since $f \circ g = \{(2,5), (3,6), (4,7), (7,3)\}$ and $g \circ f = \{(1,4), (2,5), (3,6), (4,7), (6,2)\}$, then $f \circ g \neq g \circ f$.

Inverse functions

Example 15. inverse function as a set of ordered pairs Let $f = \{(3,5), (5,8), (7,11), (9,14), (11,17)\}$. Then f is a function and the inverse of f is $f^{-1} = \{(5,3), (8,5), (11,7), (14,9), (17,11)\}$.

Example 16. inverse of a map

Let $f: [0, \infty) \to \mathbb{R}$ be defined by $f(x) = x^2$. Let $g: [0, \infty) \to \mathbb{R}$ by defined by $g(x) = \sqrt{x}$. The map $g: [0, \infty) \to \mathbb{R}$ is the inverse of the map $f: [0, \infty) \to \mathbb{R}$.

Example 17. The inverse of the identity map on a set is the identity map on the set.

Let I_S be the identity map on a set S. Then $I_S^{-1} = I_S$.

Proof. Let $g: S \to S$ be the map defined by g(x) = x for all $x \in S$. Then $g = I_S$. Since $g \circ I_S = g = I_S$ and $I_S \circ g = g = I_S$, then g is the inverse of I_S . Since $g = I_S$, then I_S is the inverse of I_S . Therefore, $I_S^{-1} = I_S$.

Image and inverse image of functions