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Functions

Exercise 1. Let f : Q→ Z be defined by f(a/b) = a.
What can we deduce about f?

Solution. We know f is a binary relation since f ⊂ Q× Z.
Is f a function?
We observe that 1/2 = 2/4, but f(1/2) = 1 and f(2/4) = 2.
Thus, f is not a function, by definition of function.

Exercise 2. Let f : Q→ Q be a relation defined by f(pq ) = p+1
p−2 .

Then f is not a function(map).

Proof. Since division by zero is not defined, then f( 2
3 ) is undefined, so f is not

a function.

Exercise 3. Let f : Q→ Q be a relation defined by f(pq ) = 3p
3q .

Then f is a function.

Proof. Let p
q ,

r
s ∈ Q such that p

q = r
s .

Then f(pq ) = 3p
3q = p

q = r
s = 3r

3s = f( rs ), so f(pq ) = f( rs ).
Therefore, f is a function.

Exercise 4. Let f : Q→ Q be a relation defined by f(pq ) = p+q
q2 .

Then f is not a function.

Proof. Since f( 1
2 ) = 1+2

22 = 3
4 and f( 2

4 ) = 2+4
42 = 3

8 , then f( 1
2 ) 6= f( 2

4 ), even
though 1

2 = 2
4 .

Therefore, f is not a function.

Exercise 5. Let f : Q→ Q be a relation defined by f(pq ) = 3p2

7q2 −
p
q .

Then f is a function.

Proof. Let a
b ,

c
d ∈ Q such that a

b = c
d .

Then



f(
a

b
) =

3a2

7b2
− a

b

=
3

7
(
a

b
)2 − a

b

=
3

7
(
c

d
)2 − c

d

=
3c2

7d2
− c

d

= f(
c

d
).

Therefore, f is a function.

Exercise 6. Let f : R→ R be the function defined by f(x) = ex.
Then f is injective, but not surjective.

Proof. Let a, b ∈ R such that f(a) = f(b).
Then ea = f(a) = f(b) = eb, so a = b.
Therefore, f is injective.

Since ex > 0 for all x ∈ R, then ex 6= 0 for all x ∈ R, so f(x) 6= 0 for all
x ∈ R.

Since 0 is a real number and f(x) 6= 0 for all x ∈ R, then f is not surjective.

The range of f is the set {f(x) : x ∈ R} = {ex : x ∈ R} = (0,∞).
Therefore, the range of f is the interval (0,∞).

Exercise 7. Let f : Z→ Z be the function defined by f(n) = n2 + 3.
Then f is not injective and not surjective.

Proof. Observe that f(−1) = (−1)2 + 3 = 4 = 12 + 3 = f(1), so f(−1) = f(1).
Since −1 ∈ Z and 1 ∈ Z and −1 6= 1 and f(−1) = f(1), then f is not

injective.

Proof. We next prove f is not surjective.
Suppose there is an integer n such that f(n) = 5.
Then 5 = f(n) = n2 + 3, so 2 = n2.
But, there is no integer whose square is 2, so we conclude there is no integer

n such that f(n) = 5.
Hence, f(n) 6= 5 for all n ∈ Z.
Since 5 ∈ Z and f(n) 6= 5 for all n ∈ Z, then f is not surjective.
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The range of f is the set {f(n) : n ∈ Z} = {n2+3 : n ∈ Z} = {3, 4, 7, 12, 19, 28, ...}.

Exercise 8. Let f : R→ R be a function defined by f(x) = sinx.
Then f is not injective and not surjective.

Proof. Since f(π) = sinπ = 0 = sin 0 = f(0), then f(π) = f(0).
Since π ∈ R and 0 ∈ R and π 6= 0 and f(π) = f(0), then f is not injective.

The range of f is the set {f(x) : x ∈ R} = {sinx : x ∈ R} = [−1, 1].
Therefore, the range of f is the interval [−1, 1] and f is not surjective.

Exercise 9. Let f : Z→ Z be a function defined by f(n) = n2.
Then f is not injective and not surjective.

Proof. Since 1 ∈ Z and −1 ∈ Z and 1 6= −1 and f(1) = 12 = 1 = (−1)2 =
f(−1), then f is not injective.

Since n2 ≥ 0 for all n ∈ Z, then n2 > −1 for all n ∈ Z, so n2 6= −1 for all
n ∈ Z.

Hence, f(n) 6= −1 for all n ∈ Z.
Since −1 ∈ Z and f(n) 6= −1 for all n ∈ Z, then f is not surjective.

Exercise 10. Let f : Z→ Q be a relation defined by f(n) = n
1 .

Then f is a function and f is injective, but f is not surjective.

Proof. We first prove the relation f is actually a function.

Let a, b ∈ Z such that a = b.
Then f(a) = a

1 = a = b = b
1 = f(b), so f(a) = f(b).

Therefore, f is a function.

We next prove f is injective.
Let a, b ∈ Z such that f(a) = f(b).
Then a = a

1 = f(a) = f(b) = b
1 = b, so a = b.

Therefore, f is injective.

We next prove f is not surjective.
Let b = 1

2 ∈ Q.
Let a ∈ Z be arbitrary.
Then f(a) = a

1 = a 6= 1
2 = b, so f(a) 6= b.

Therefore, f is not surjective.

Exercise 11. Let g : Q → Z be defined by g(pq ) = p for p
q expressed in lowest

terms with a positive denominator.
Then the function g is surjective, but g is not injective.

Proof. Let b ∈ Z be arbitrary.
Since b

1 ∈ Q and g( b1 ) = b, then g is surjective.
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Observe that 1
2 ∈ Q and 1

3 ∈ Q and 1
2 6=

1
3 , but g( 1

2 ) = 1 = g( 1
3 ).

Therefore, g is not injective.

Exercise 12. Let f : R→ R be a map defined by f(x) = x3.
Then f is injective.

Proof. Let x, y ∈ R such that x 6= y.
To prove f is injective, we must prove x3 6= y3.
Since x 6= y, then either x < y or x > y.
Without loss of generality, assume x < y.
Then either 0 < x < y or 0 = x < y or x < 0 < y or x < 0 = y or x < y < 0.
We consider these cases separately.
Case 1: Suppose 0 < x < y.
Then 0 < x2 < y2, so 0 < x3 < y3.
Hence, x3 < y3.
Case 2: Suppose 0 = x < y.
Since y > 0, then y3 > 0 = x3, so x3 < y3.
Case 3: Suppose x < 0 < y.
Then x < 0 and y > 0, so x3 < 0 and y3 > 0.
Thus, x3 < 0 < y3, so x3 < y3.
Case 4: Suppose x < 0 = y.
Since x < 0, then x3 < 0 = y3, so x3 < y3.
Case 5: Suppose x < y < 0.
Then −x > −y > 0, so x2 > y2 > 0.
Hence, −x3 > −y3 > 0, so −x3 > −y3.
Thus, x3 < y3.
In all cases, x3 < y3, so x3 6= y3, as desired.

Exercise 13. Let f : [0,∞)→ R be defined by f(x) = x4 + 5x2.
Then f is injective.

Proof. Let a, b ∈ [0,∞) such that f(a) = f(b).
Then a ≥ 0 and b ≥ 0 and a4 + 5a2 = b4 + 5b2.
Since a4 + 5a2 = b4 + 5b2, then a4 − b4 + 5a2 − 5b2 = 0, so (a2 − b2)(a2 +

b2) + 5(a2 − b2) = 0.
Hence, (a2 − b2)(a2 + b2 + 5) = 0, so either a2 − b2 = 0 or a2 + b2 + 5 = 0.
Since a ≥ 0 and b ≥ 0, then a2 ≥ 0 and b2 ≥ 0, so a2 + b2 ≥ 0.
Thus, a2 + b2 + 5 ≥ 5 > 0, so a2 + b2 + 5 > 0.
Hence, a2 + b2 + 5 6= 0, so a2 − b2 = 0.
Therefore, a2 = b2, so |a| = |b|.
Since a ≥ 0 and b ≥ 0, then a = b, as desired.

Exercise 14. Let f : R→ R be defined by f(x) = x3 − x.
Then f is not injective.

Solution. Since 0 6= 1 and f(0) = 03 − 0 = 0 = 13 − 1 = f(1), then f is not
injective.
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Exercise 15. Let f : A→ B and g : B → C be functions.
If g ◦ f is onto, then g is onto.

Proof. Suppose g ◦ f is onto.
To prove g is onto, let c ∈ C.
We must prove there exists b ∈ B such that g(b) = c.
Since g ◦ f is onto, then there exists a ∈ A such that (g ◦ f)(a) = c.
Since f is a function, then there exists b ∈ B such that f(a) = b.
Thus,

c = (g ◦ f)(a)

= g(f(a))

= g(b).

Therefore, g(b) = c, so g is onto.

Exercise 16. Let f : A→ B and g : B → C be functions.
If g ◦ f is one to one, then f is one to one.

Proof. Suppose g ◦ f is one to one.
To prove f is one to one, let a1, a2 ∈ A such that f(a1) = f(a2).
Then g(f(a1)) = g(f(a2)), so (g ◦ f)(a1) = (g ◦ f)(a2).
Since g ◦ f is one to one, then this implies a1 = a2.
Therefore, f is one to one.

Exercise 17. Let f : A→ B and g : B → C be functions.
If g ◦ f is one to one and f is onto, then g is one to one.

Proof. Suppose g ◦ f is one to one and f is onto.
To prove g is one to one, let b1, b2 ∈ B such that g(b1) = g(b2).
We must prove b1 = b2.
Since f is onto, then there exist a1, a2 ∈ A such that f(a1) = b1 and f(a2) =

b2.
Thus,

(g ◦ f)(a1) = g(f(a1))

= g(b1)

= g(b2)

= g(f(a2))

= (g ◦ f)(a2).

Since g ◦ f is one to one, then this implies a1 = a2.
Hence,

b1 = f(a1)

= f(a2)

= b2.
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Therefore, b1 = b2, so g is one to one, as desired.

Exercise 18. Let f : A→ B and g : B → C be functions.
If g ◦ f is onto and g is one to one, then f is onto.

Proof. Suppose g ◦ f is onto and g is one to one.
To prove f is onto, let b ∈ B.
We must prove there exists a ∈ A such that f(a) = b.
Since g is a function, then there is a unique c ∈ C such that g(b) = c.
Since g◦f is onto, then there exists at least one a ∈ A such that (g◦f)(a) = c.
Thus,

g(b) = c

= (g ◦ f)(a)

= g(f(a)).

Hence, g(b) = g(f(a)).
Since g is one to one, then this implies b = f(a).
Thus, there exists a ∈ A such that f(a) = b.
Therefore, f is onto.

Exercise 19. Devise a bijection from S × T to T × S.

Solution. Observe that S × T = {(s, t) : s ∈ S, t ∈ T} and T ×S = {(t, s) : t ∈
T, s ∈ S}.

Let φ : S × T 7→ T × S be a function defined by φ(x, y) = (y, x).
We can prove that φ is both 1-1 and onto.

We prove φ is injective.
Let (a, b), (c, d) ∈ S × T .
Suppose φ(a, b) = φ(c, d).
Then (b, a) = (d, c).
Hence b = d and a = c so (a, b) = (c, d).
Therefore φ(a, b) = φ(c, d)→ (a, b) = (c, d) so φ is injective.

We prove φ is surjective.
Let (a, b) ∈ T × S.
Then a ∈ T and b ∈ S so (b, a) ∈ S × T .
Observe that φ(b, a) = (a, b).
Hence φ is surjective.
Since φ is injective and surjective then φ is bijective.
Therefore φ is a one to one correspondence from S × T to T × S.

Exercise 20. Let A = {a, b, c}.
Let f : A → Z be the function defined by f(a) = 1 and f(b) = 5 and

f(c) = 5.
1. The image of f is the set {1, 5}.
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2. The pre-image of 5 is the set {b, c}.
3. The function f is not one to one.

Proof. The image of f is the set {f(x) ∈ Z : x ∈ A} = {1, 5}.
The pre-image of 5 is the set {x ∈ A : f(x) = 5} = {b, c}.
Since b 6= c and f(b) = 5 = f(c), then f is not one to one.

Exercise 21. Let f : S → T be a surjective function.
Let {Pa}a∈I be a partition of T .
Then {f−1(Pa) : a ∈ I} is a partition of S.

Proof. Let T ′ = {Pa}a∈I for some index set I.
Then T ′ is a partition of T .
Thus, T ′ is a collection of nonempty subsets of T such that T = ∪(Pa)a∈I

and if Pa 6= Pb for a, b ∈ I, then Pa ∩ Pb = ∅.
Since T ′ is a partition of T , then there exists a subset of T in T ′.
Hence, there exists a ∈ I such that Pa ∈ T ′.
Since Pa ∈ T ′, then Pa ⊂ T and Pa 6= ∅.
Since Pa is not empty, then there exists y ∈ Pa.
Since Pa ⊂ T , then y ∈ T .
Since f is surjective, then there exists x ∈ S such that f(x) = y.
Hence, x ∈ S and f(x) ∈ Pa, so x ∈ f−1(Pa).
Therefore, f−1(Pa) 6= ∅.
Let S′ = {f−1(Pa) : a ∈ I}.
Then S′ is a collection of nonempty sets f−1(Pa) for some a ∈ I.
We prove S′ is a partition of S.
We first prove ∪f−1(Pa) = S.
Let x ∈ ∪f−1(Pa).
Then there exists a ∈ I such that x ∈ f−1(Pa).
Thus, x ∈ S.
Hence, x ∈ ∪f−1(Pa) implies x ∈ S, so ∪f−1(Pa) ⊂ S.
Let y ∈ S.
Then f(y) ∈ T .
Since T ′ is a partition of T , then every element of T is contained in some

set in T ′.
In particular, f(y) is contained in some set in T ′.
Hence, there exists a ∈ I such that f(y) ∈ Pa and Pa ∈ T ′.
Since y ∈ S and f(y) ∈ Pa, then y ∈ f−1(Pa).
Thus, there exists a ∈ I such that y ∈ f−1(Pa), so y ∈ ∪f−1(Pa).
Therefore, y ∈ S implies y ∈ ∪f−1(Pa), so S ⊂ ∪f−1(Pa).
Since ∪f−1(Pa) ⊂ S and S ⊂ ∪f−1(Pa), then S = ∪f−1(Pa).
Let a, b ∈ I such that a 6= b.
Since T ′ is a partition of T and Pa, Pb ∈ T ′, then Pa 6= Pb.
Hence, Pa ∩ Pb = ∅.
Since Pa 6= Pb, then f−1Pa 6= f−1Pb.
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Observe that

f−1(Pa) ∩ f−1(Pb) = f−1(Pa ∩ Pb)
= f−1(∅)
= ∅.

Therefore, if f−1Pa and f−1Pb are distinct, then f−1Pa and f−1Pb are disjoint.
Hence, S′ is a partition of S.

Exercise 22. If f : A → B is a bijective function, then f−1 : B → A is a
bijective function.

Proof. Let f : A→ B be a bijective function.
Since f is bijective, then the inverse function f−1 : B → A exists.
Hence, f ◦ f−1 = f−1 ◦ f = id.

We prove f−1 is injective.
Let a, b ∈ B such that f−1(a) = f−1(b).
Since f ◦ f−1 = id, then (f ◦ f−1)(x) = x for all x ∈ B.
In particular, (f ◦ f−1)(a) = a.
Thus,

a = (f ◦ f−1)(a)

= f(f−1(a))

= f(f−1(b))

= (f ◦ f−1)(b)

= id(b)

= b.

Hence, f−1(a) = f−1(b) implies a = b, so f−1 is injective.

We prove f−1 is surjective.
Let a ∈ A.
Since f is a function, then there exists b ∈ B such that f(a) = b.
Observe that

f−1(b) = f−1(f(a))

= (f−1 ◦ f)(a)

= id(a)

= a.

Therefore, f−1 is surjective.
Hence, f−1 is bijective.

Exercise 23. Let f : R→ R be defined by f(x) = x3 + x.
Then f is injective.
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Proof. Let a, b ∈ R such that f(a) = f(b).
Then a3 + a = b3 + b, so a3 − b3 + a− b = 0.
Hence, (a− b)(a2 + ab+ b2) + a− b = 0, so (a− b)(a2 + ab+ b2 + 1) = 0.
Thus, either a− b = 0 or a2 + ab+ b2 + 1 = 0.
Suppose a2 + ab+ b2 + 1 = 0.
Then a2 + ab+ b2 = −1.
Since a, b ∈ R, then either a 6= 0 or a = 0 and either b 6= 0 or b = 0.
Thus, either a 6= 0 and b 6= 0 or a 6= 0 and b = 0 or a = 0 and b 6= 0 or a = 0

and b = 0.
Since a 6= 0 and b 6= 0 iff a > 0 or a < 0 and b > 0 or b < 0, then either

a > 0 and b > 0 or a > 0 and b < 0 or a < 0 and b > 0 or a < 0 and b < 0.
We consider these cases separately.
Case 1: Suppose a > 0 and b > 0.
Then a2 > 0 and b2 > 0 and ab > 0, so a2 + ab+ b2 > 0.
Hence, −1 > 0, a contradiction.
Case 2: Suppose a > 0 and b < 0.
Since a > 0, then a2 > 0, so a2 + 1 > 0.
Hence, f(a) = a3 + a = a(a2 + 1) > 0.
Since b < 0, then b2 > 0, so b2 + 1 > 0.
Thus, f(b) = b3 + b = b(b2 + 1) < 0, so f(b) < 0 < f(a).
Hence, f(b) < f(a), so f(b) 6= f(a).
Thus, we have f(a) 6= f(b) and f(a) = f(b), a contradiction.
Case 3: Suppose a < 0 and b > 0.
Since a < 0, then a2 > 0, so a2 + 1 > 0.
Hence, f(a) = a3 + a = a(a2 + 1) < 0.
Since b > 0, then b2 > 0, so b2 + 1 > 0.
Thus, f(b) = b3 + b = b(b2 + 1) > 0, so f(a) < 0 < f(b).
Hence, f(a) < f(b), so f(a) 6= f(b).
Thus, we have f(a) 6= f(b) and f(a) = f(b), a contradiction.
Case 4: Suppose a < 0 and b < 0.
Then a2 > 0 and b2 > 0 and ab > 0, so a2 + ab+ b2 > 0.
Hence, −1 > 0, a contradiction.
Case 5: Suppose a 6= 0 and b = 0.
Then −1 = a2 + ab+ b2 = a2 + a0 + 02 = a2 + 0 + 0 = a2 > 0, so −1 > 0, a

contradiction.
Case 6: Suppose a = 0 and b 6= 0.
Then −1 = a2 + ab+ b2 = 02 + 0b+ b2 = 0 + 0 + b2 = b2 > 0, so −1 > 0, a

contradiction.
Case 7: Suppose a = 0 and b = 0.
Then −1 = a2 + ab + b2 = 02 + 00 + 02 = 0 + 0 + 0 = 0, so −1 = 0, a

contradiction.
Since a contradiction is reached in all cases, then a2 + ab+ b2 + 1 6= 0.
Therefore, a− b = 0, so a = b, as desired.

Exercise 24. Let f : A→ B and g : B → C be maps.
If g ◦ f is injective and f is surjective, then g is injective.
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Proof. Let g ◦ f : A → C be the map such that g ◦ f is injective and f is
surjective.

To prove g is injective, let b1, b2 ∈ B such that g(b1) = g(b2).
Since f is surjective and b1 ∈ B, then there exists a1 ∈ A such that f(a1) =

b1.
Since f is surjective and b2 ∈ B, then there exists a2 ∈ A such that f(a2) =

b2.
Observe that

(g ◦ f)(a1) = g(f(a1))

= g(b1)

= g(b2)

= g(f(a2))

= (g ◦ f)(a2).

Since g ◦ f is injective and (g ◦ f)(a1) = (g ◦ f)(a2), then a1 = a2.
Since f is a function, then this implies f(a1) = f(a2).
Thus, b1 = f(a1) = f(a2) = b2, so b1 = b2.
Therefore, g is injective.

Exercise 25. Let f : A→ B and g : B → C be maps
If g ◦ f is surjective and g is injective, then f is surjective.

Proof. Let g ◦ f : A → C be the map such that g ◦ f is surjective and g is
injective.

To prove f is surjective, let b ∈ B be arbitrary.
Since g ◦ f is surjective and g(b) ∈ C, then there exists a ∈ A such that

(g ◦ f)(a) = g(b).
Thus, g(b) = (g ◦ f)(a) = g(f(a)).
Since g is injective and g(f(a)) = g(b), then f(a) = b.
Therefore, there exists a ∈ A such that f(a) = b, so f is surjective.

Exercise 26. Let f : N → N be a function defined by f(n) = 2n − 1 for each
n ∈ N.

Analyze f .

Proof. The domain of f is the set N.
The range of f is f(N) = {2n−1 : n ∈ N}, the set of all odd natural numbers.

We prove f is not surjective.
Suppose there exists a ∈ N such that f(a) = 2.
Then a ∈ N and 2a− 1 = 2, so 2a = 3.
This implies 3 is even which contradicts the fact that 3 is odd.
Therefore, there is no a ∈ N such that f(a) = 2, so f(a) 6= 2 for each a ∈ N.
Since 2 ∈ N and f(a) 6= 2 for each a ∈ N, then f is not surjective.
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We prove f is injective.
Let a, b ∈ N such that f(a) = f(b).
Then 2a− 1 = 2b− 1, so 2a = 2b.
Hence, a = b, so f is injective.

Since f is injective, then the inverse relation f−1 is a function and domf−1 =
rngf = {2n− 1 : n ∈ N}.

Since f−1 is the inverse of f , then f(x) = y iff f−1(y) = x.
Hence, 2x− 1 = y iff f−1(y) = x, so x = y+1

2 iff f−1(y) = x.
Let (x, y) ∈ f .
Then f(x) = y, so f−1(y) = x.
Thus, f−1(y) = x = y+1

2 .
Therefore, f−1(n) = n+1

2 for each odd natural number n.

Exercise 27. Define a function f : N→ N that is surjective but not injective.

Proof. Let f : N→ N be a function defined by

f(n) =

{
n+1
2 if n is odd

n
2 if n is even

.

We prove f is surjective.
Let b ∈ N.
Then either b is even or b is odd.
If b is even, then f(b) = b

2 .

If b is odd, then f(b) = b+1
2 .

Therefore, f is surjective.

We prove f is not injective.
Observe that f(1) = 1+1

2 = 1 = 2
2 = f(2).

Since 1 ∈ N and 2 ∈ N and 1 6= 2 and f(1) = f(2), then f is not injective.

Exercise 28. Let f be a function defined on R by f(x) = x+1
x−1 .

Analyze f .
That is, compute the domain of f , the range of f and inverse of f and f ◦f−1

and f−1 ◦ f .

Solution. Since division by zero is not allowed, then the domain of f is the set
domf = R− {1} and the range of f is the set rngf = R− {1}.
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We prove f is injective.
Let a, b ∈ domf such that f(a) = f(b).
Then a, b ∈ R and a 6= 1 and b 6= 1 and a+1

a−1 = b+1
b−1 .

Thus, (a+ 1)(b− 1) = (a− 1)(b+ 1), so ab− a+ b− 1 = ab+ a− b− 1.
Hence, −a+ b = a− b, so 2b = 2a.
Therefore, b = a, so a = b.
Consequently, f is injective, so the inverse relation f−1 is a function.
The domain of f−1 is the set domf−1 = rngf = R − {1} and the range of

f−1 is the set rngf−1 = domf = R− {1}.

We determine the formula for f−1.
Since f and f−1 are inverses, then f(x) = y iff f−1(y) = x.
Let x ∈ domf and y = f(x).
Then x ∈ R and x 6= 1 and y ∈ R and y 6= 1 and y = f(x) = x+1

x−1 , so
y(x− 1) = x+ 1.

Hence, yx− y = x+ 1, so yx− x = y + 1.
Thus, x(y − 1) = y + 1, so x = y+1

y−1 .

Since f(x) = y and f(x) = y iff f−1(y) = x, then f−1(y) = x = y+1
y−1 .

Therefore, f−1(x) = x+1
x−1 .

Let x ∈ dom(f ◦ f−1).
Then (f ◦ f−1)(x) = f(f−1(x)) = f(x+1

x−1 ) = x.

Therefore, f ◦ f−1 is the identity function I(x) = x on R− {1}.
Similarly, f−1 ◦ f is the identity function I(x) = x on R− {1}.

Proposition 29. When is function composition commutative?

Solution. We need to determine necessary and sufficient conditions to guaran-
tee g ◦ f = f ◦ g.

Let f : A 7→ B and g : B 7→ C be functions.
Suppose g ◦ f = f ◦ g.
Then g ◦ f : A 7→ C and f ◦ g are functions.
By definition of equal functions we have domain(g ◦ f) = domain (f ◦ g) and

codomain(g ◦ f) = codomain (f ◦ g) and (g ◦ f)(x) = (f ◦ g)(x) for each x ∈ A.
Since domain(g ◦ f) = domain (f ◦ g) then domain of f ◦ g is A.
Since codomain(g ◦ f) = codomain (f ◦ g) then codomain of f ◦ g is C.
By definition of function composition for f ◦ g, the domain of f is the

codomain of g.
Thus, A = C.
Hence, the codomain of g is A and the codomain of f is A.
By definition of function composition for g ◦ f , the domain of g is the

codomain of f .
Thus, B = A.
Since A = B = C then function f is f : A 7→ A and function g is g : A 7→ A.
Hence, function g ◦ f is g ◦ f : A 7→ A and function f ◦ g is f ◦ g : A 7→ A.
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Assume f and g are inverse functions.
Then (g ◦ f)(x) = (f ◦ g)(x) = I(x) = x for all x ∈ A by definition of inverse

function.
Thus, g ◦ f = f ◦ g.
Moreover, every invertible function is bijective, so f and g are bijections.
Since f : A 7→ A and g : A 7→ A are bijective functions, then f and g are

permutation maps on A, by definition of permutation map. Hence, if f and g
are permutation maps such that g = f−1 then g ◦ f = f ◦ g.

Exercise 30. Let f : Z 7→ Q be defined by f(n) = n/1.
What can we deduce about f? Is f a function? If so, is f one to one or

onto?

Solution. We know f is a binary relation from Z to Q since f ⊆ Z×Q.
For each n ∈ Z, f(n) exists, so each element in the domain has at least one

image.
Let a ∈ Z such that f(a) = b1 ∧ f(a) = b2 with b1, b2 ∈ Q.
Then a/1 = b1 and a/1 = b2, so b1 = b2.
Hence, each element in the domain has at most one image.
Since each element in the domain has at least one image and each element in

the domain has at most one image, then each element in the domain has exactly
one image.

Thus, f is a function, by definition of function.
Let a1, a2 ∈ Z such that f(a1) = f(a2).
Then a1/1 = a2/1, so a1 = a2.
Hence f(a1) = f(a2) implies a1 = a2.
Therefore, f is one to one(injective).
There is no integer k such that f(k) = 1/2, so f is not onto Q.
Thus, f is not surjective.

Exercise 31. Let f be the function defined on R by f(x) = x
x+2 .

Analyze f .

Solution. Since x ∈ R, then f(x) ∈ R iff x
x+2 ∈ R iff x+ 2 6= 0 iff x 6= −2.

Since f is a function, then f(x) ∈ R iff x 6= −2.
Thus, if x 6= −2, then f(x) ∈ R, so for every x ∈ R with x 6= −2, f(x) ∈ R.
Therefore, the domain of f is the set domf = R− {−2}.

We prove the range of f is the set R− {1}.
Let y ∈ rngf .
Then y = f(x) = x

x+2 and x ∈ R− {−2}, so x ∈ R and x 6= −2.
Since x 6= −2, then x+ 2 6= 0, so x

x+2 = y ∈ R.
Suppose y = 1.
Then 1 = x

x+2 .
Since x+ 2 6= 0, then x+ 2 = x, so 2 = 0, a contradiction.
Therefore, y 6= 1.
Since y ∈ R and y 6= 1, then y ∈ R− {1}.
Hence, if y ∈ rngf , then y ∈ R− {1}, so rngf ⊂ R− {1}.
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Suppose t ∈ R− {1}.
Then t ∈ R and t 6= 1.
Since t 6= 1, then t− 1 6= 0, so −2tt−1 ∈ R.

Let x = −2t
t−1 .

Then x ∈ R.
Since t− 1 6= 0, then x(t− 1) = −2t, so xt− x = −2t.
Hence, xt+ 2t = x, so t(x+ 2) = x.
Suppose x+ 2 = 0.
Then x = −2 and x = t · 0 = 0, so x = −2 and x = 0, a contradiction.
Thus, x+ 2 6= 0.
Since t(x+ 2) = x and x+ 2 6= 0, then t = x

x+2 .
Since x+ 2 6= 0, then x 6= −2.
Since x ∈ R and x 6= −2, then x ∈ R− {−2}.
Therefore, there exists x ∈ R− {−2} such that t = x

x+2 , so t ∈ rngf .
Hence, if t ∈ R− {1}, then t ∈ rngf , so R− {1} ⊂ rngf .
Since rngf ⊂ R− {1} and R− {1} ⊂ rngf , then rngf = R− {1}.
Therefore, rngf = R− {1}.

We prove f is injective.
Let a, b ∈ R− {−2} such that f(a) = f(b).
Then a ∈ R and a 6= −2 and b ∈ R and b 6= −2 and a

a+2 = b
b+2 .

Since a 6= −2, then a+ 2 6= 0, so a = (a+2)b
b+2 .

Since b 6= −2, then b+ 2 6= 0, so a(b+ 2) = (a+ 2)b.
Hence, ab+ 2a = ab+ 2b, so 2a = 2b.
Therefore, a = b, so f is injective.

Since f is injective, then the inverse relation f−1 is a function and domf−1 =
rngf = R− {1}.

Since f−1 is the inverse of f , then f(x) = y iff f−1(y) = x.
Hence, x

x+2 = y iff f−1(y) = x.
Let x ∈ domf .
Then x ∈ R and x 6= −2 and f(x) ∈ rngf .
Let y = f(x).
Then y ∈ rngf , so y = x

x+2 and y 6= 1.
Since x 6= −2, then x+ 2 6= 0.
Since y = x

x+2 , then (x+ 2)y = x, so xy + 2y = x.
Hence, 2y = x− xy = x(1− y).
Since y 6= 1, then 1 6= y, so 1− y 6= 0.
Thus, 2y

1−y = x.

Since x
x+2 = y, then f−1(y) = x = 2y

1−y .

Thus, f−1(y) = 2y
1−y and y 6= 1.

Therefore, f−1(x) = 2x
1−x for each x 6= 1.
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Exercise 32. Let π be a permutation defined on the set {1, 2, 3} by

π =

(
1 2 3
2 3 1

)
.

What is the inverse permutation π−1?

Solution. The inverse permutation π−1 is given by

π−1 =

(
1 2 3
3 1 2

)
.

Exercise 33. If f : A → B is an injective map, then f−1 : rngf → A is an
injective map.

Proof. Suppose f : A→ B is an injective map.
Then f is an injective function.
Hence, the inverse relation f−1 is a function.
To prove f−1 : rngf → A is a map, we must prove domf−1 = rngf and

rngf−1 ⊂ A.

We first prove domf−1 = rngf .
Either f = ∅ or f 6= ∅.
Case 1: Suppose f = ∅.
Then f is the empty relation, so domf = ∅ = rngf .
Thus, f−1 is empty, so f−1 = ∅.
Hence, domf−1 = ∅ = rngf .
Case 2: Suppose f 6= ∅.
Then f is a nonempty relation, so domf−1 = rngf .
Therefore, in either case, domf−1 = rngf .

We next prove rngf−1 ⊂ A.
Suppose b ∈ rngf−1.
Then there exists a ∈ domf−1 such that (a, b) ∈ f−1.
Since f−1 is the inverse of f , then (b, a) ∈ f , so b ∈ domf .
Since domf = A, then b ∈ A.
Hence, rngf−1 ⊂ A.

Since f−1 is a function and domf−1 = rngf and rngf−1 ⊂ A, then f−1 :
rngf → A is a map.
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To prove f−1 is injective, let b1, b2 ∈ domf−1 such that f−1(b1) = f−1(b2).
Since b1, b2 ∈ domf−1 and domf−1 = rngf , then b1, b2 ∈ rngf , so there

exist a1, a2 ∈ domf such that f(a1) = b1 and f(a2) = b2.
Since f−1 is the inverse of f , then f−1(b1) = a1 and f−1(b2) = a2.
Hence, a1 = f−1(b1) = f−1(b2) = a2, so a1 = a2.
Since f is a function and a1 = a2 and f(a1) = b1 and f(a2) = b2, then

b1 = b2.
Therefore, f−1 is injective.

Exercise 34. Let A be a set and X ⊂ A.
Then the inclusion map i : X → A is injective.

Proof. Let a, b ∈ X such that i(a) = i(b).
Since i(x) = x for all x ∈ X and a, b ∈ X, then i(a) = a and i(b) = b.
Therefore, a = b, so i is injective.

Exercise 35. Restriction of an injective map is injective.
Let f : A→ B be a map and S ⊂ A.
If f is injective, then the restriction f |S : S → B is injective.

Proof. Suppose f is injective.
Let a, b ∈ S such that f |S(a) = f |S(b).
Since a, b ∈ S, then f |S(a) = f(a) and f |S(b) = f(b).
Thus, f(a) = f |S(a) = f |S(b) = f(b).
Since f is injective and f(a) = f(b), then a = b, so f |S is injective.

Exercise 36. Provide an example of two functions f and g such that f◦g = g◦f .

Solution. Let f = {(1, 3), (4, 7), (9, 8)} and g = {(1, 9), (3, 8), (4, 1), (7, 3)}.
Then f and g are functions and f ◦ g = {(1, 8), (4, 3)} = g ◦ f .

Exercise 37. Composition of linear functions is a linear function
Let M,B,N,C ∈ R.
Let f : R→ R be a map defined by f(x) = Mx+B.
Let g : R→ R be a map defined by g(x) = Nx+ C.
I. Then g ◦ f is a linear map with slope MN and f ◦ g is a linear map with

slope MN .
II. If B(N − 1) = C(M − 1), then f ◦ g = g ◦ f .
III. Provide an example of two linear functions f and g such that f ◦g = g◦f .

Proof. We prove I.
Since f : R → R and g : R → R are maps, then g ◦ f : R → R is a

map and (g ◦ f)(x) = g(f(x)) for all x ∈ R and f ◦ g : R → R is a map and
(f ◦ g)(x) = f(g(x)) for all x ∈ R.

Let x ∈ R.
Then (g ◦f)(x) = g(f(x)) = g(Mx+B) = N(Mx+B)+C = NMx+NB+

C = MNx+ (NB + C).
Hence, (g ◦ f)(x) = MNx + (NB + C), so g ◦ f is a linear map with slope

MN .
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Let x ∈ R.
Then (f ◦g)(x) = f(g(x)) = f(Nx+C) = M(Nx+C)+B = MNx+MC+

B = MNx+ (MC +B).
Hence, (f ◦ g)(x) = MNx+ (MC + B), so f ◦ g is a linear map with slope

MN .

Proof. We prove II.
Suppose B(N − 1) = C(M − 1).
Then BN −B = CM − C, so BN + C = CM +B.
Thus, NB + C = MC +B.
The domain of g ◦ f is R which is the same as the domain of f ◦ g and the

codomain of g ◦ f is R which is the codomain of f ◦ g.
Let x ∈ R.
Then

(f ◦ g)(x) = MNx+ (MC +B)

= MNx+ (NB + C)

= (g ◦ f)(x).

Thus, (f ◦ g)(x) = (g ◦ f)(x) for all x ∈ R, so f ◦ g = g ◦ f .

Solution. III.
Let f : R→ R by given by f(x) = 3x+ 5.
Let g : R→ R by given by g(x) = 7x+ 15.
Let x ∈ R.
Then (g ◦ f)(x) = g(f(x)) = g(3x+ 5) = 7(3x+ 5) + 15 = 21x+ 35 + 15 =

21x+50 and (f ◦g)(x) = f(g(x)) = f(7x+15) = 3(7x+15)+5 = 21x+45+5 =
21x+ 50.

Thus, (g ◦ f)(x) = 21x+ 50 = (f ◦ g)(x).

Exercise 38. Let f and g be functions such that f 6= ∅ and g 6= ∅.
If rngf ∩ domg = ∅, then g ◦ f = ∅.

Proof. Suppose rngf ∩ domg = ∅.
Since f and g are functions, then g ◦ f is a function.
We prove g ◦ f = ∅ by contradiction.
Suppose g ◦ f 6= ∅.
Then there exists an ordered pair (a, b) ∈ g ◦ f .
Since f 6= ∅ and g 6= ∅, then there exists c such that (a, c) ∈ f and (c, b) ∈ g.
Since (a, c) ∈ f , then c ∈ rngf .
Since (c, b) ∈ g, then c ∈ domg.
Thus, c ∈ rngf and c ∈ domg, so c ∈ rngf ∩ domg.
Hence, rngf ∩ domg 6= ∅.
Thus, we have rngf ∩ domg = ∅ and rngf ∩ domg 6= ∅, a contradiction.
Therefore, g ◦ f = ∅.
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Exercise 39. Let f and g be functions such that rngf ⊂ domg.
Let E ⊂ domf .
Then (g ◦ f)(E) = g(f(E)).

Proof. We prove g(f(E)) ⊂ (g ◦ f)(E).
Let b ∈ g(f(E)).
Then b = g(a) for some a ∈ f(E).
Since a ∈ f(E), then a = f(x) for some x ∈ E.
Thus, b = g(a) = g(f(x)) = (g ◦ f)(x) for some x ∈ E, so b ∈ (g ◦ f)(E).
Hence, g(f(E)) ⊂ (g ◦ f)(E).

We prove (g ◦ f)(E) ⊂ g(f(E)).
Let x ∈ (g ◦ f)(E).
Then x = (g ◦ f)(y) for some y ∈ E.
Since y ∈ E and E ⊂ domf , then y ∈ domf , so f(y) ∈ f(E).
Since E ⊂ domf , then f(E) ⊂ rngf , so f(y) ∈ rngf .
Since rngf ⊂ domg, then f(y) ∈ domg.
Thus, g(f(y)) ∈ g(f(E)), so (g ◦ f)(y) ∈ g(f(E)).
Hence, x ∈ g(f(E)), so (g ◦ f)(E) ⊂ g(f(E)).
Since g(f(E)) ⊂ (g ◦ f)(E) and (g ◦ f)(E) ⊂ g(f(E)), then (g ◦ f)(E) =

g(f(E)).

Exercise 40. Let f : A→ B be a map.
Let IA be the identity map on A and IB be the identity map on B.
1. If f is injective, then f−1 ◦ f = IA.
2. Let X ⊂ A.
Let i be the inclusion map of X into A.
Let f |X be the restriction of f to X.
Then f ◦ iX = f |X .

Proof. We prove 1.
Suppose f is injective.
Then the inverse relation f−1 is a function.
Since f is a function, then f−1 ◦ f is a function and domf−1 ◦ f = {x ∈

domf : f(x) ∈ domf−1} and (f−1 ◦ f)(x) = f−1(f(x)) for all x ∈ domf−1 ◦ f .
We prove domf−1 ◦ f = A.
Since domf = A, then domf−1◦f = {x ∈ A : f(x) ∈ domf−1}, so domf−1◦

f ⊂ A.
Let a ∈ A.
Then a ∈ domf , so f(a) ∈ rngf .
Since rngf = domf−1, then f(a) ∈ domf−1.
Since a ∈ domf and f(a) ∈ domf−1, then a ∈ domf−1 ◦f , so A ⊂ domf−1 ◦

f .
Thus, domf−1 ◦ f ⊂ A and A ⊂ domf−1 ◦ f , so domf−1 ◦ f = A.
Hence, (f−1 ◦ f)(x) = f−1(f(x)) for all x ∈ A.
Let x ∈ A.
Let b = (f−1 ◦ f)(x) = f−1(f(x)).
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Since f−1 is the inverse of f , then f−1(f(x)) = b iff f(b) = f(x).
Thus, f(b) = f(x).
Since f is injective, then b = x.
Hence, IA(x) = x = b = (f−1 ◦ f)(x), so IA(x) = (f−1 ◦ f)(x) for all x ∈ A.
Therefore, IA = f−1 ◦ f .

Proof. We prove 2.
Since i is the inclusion map of X into A, then i : X → A is a map defined

by i(x) = x for all x ∈ X.
Since f |X is the restriction of f to X, then f |X : X → B is a map defined

by f |X(x) = f(x) for all x ∈ X.
Since i : X → A is a map and f : A→ B is a map, then f ◦ i : X → B is a

map and (f ◦ i)(x) = f(i(x)) for all x ∈ X.
We prove the maps f ◦ i and f |X are equal.
Observe that domf ◦ i = X = domf |X and the codomain of f ◦ i is B which

is the codomain of f |X .
Let x ∈ X.
Then (f ◦ i)(x) = f(i(x)) = f(x) = f |X(x), so (f ◦ i)(x) = f |X(x) for all

x ∈ X.
Therefore, f ◦ i = f |X .

Exercise 41. i. Give an example of maps f : A→ B and g : B → C such that
g ◦ f is injective, but g is not injective.

ii. Give an example of maps f : A → B and g : B → C such that f is
injective, but g ◦ f is not injective.

Solution. Let A = {1, 2, 3, 7} and B = {3, 4, 5, 8, 9} and C = {5, 6, 7, 10}.
i. Here is an example such that g ◦ f is injective, but g is not injective.
Let f : A→ B be a map given by f = {(1, 3), (2, 5), (3, 4), (7, 8)}.
Let g : B → C be a map given by g = {(3, 6), (4, 7), (5, 10), (8, 5), (9, 6)}.
Since g(3) = 6 and g(9) = 6, then g is not injective.
Observe that g ◦ f = {(1, 6), (2, 10), (3, 7), (7, 5)} is injective.
ii. Here is an example such that f is injective, but g ◦ f is not injective.
Let f : A→ B be a map given by f = {(1, 3), (2, 5), (3, 4), (7, 8)}.
Then f is injective.
Let g : B → C be a map given by g = {(3, 6), (4, 7), (5, 10), (8, 6), (9, 2)}.
Then g ◦ f = {(1, 6), (2, 10), (3, 7), (7, 6)} is not injective since (g ◦ f)(1) = 6

and (g ◦ f)(7) = 6.

Exercise 42. Let f : A→ B and g : C → D be maps.
If rngf ⊂ C, then dom(g ◦ f) = A and rng(g ◦ f) ⊂ D.

Proof. Suppose rngf ⊂ C.
Since f : A→ B and g : C → D are maps, then f and g are functions, so g◦f

is a function and domg◦f = {x ∈ domf : f(x) ∈ domg} and (g◦f)(x) = g(f(x))
for all x ∈ domg ◦ f .

Since domf = A and domg = C, then domg ◦ f = {x ∈ A : f(x) ∈ C}, so
domg ◦ f ⊂ A.
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Let a ∈ A.
Then a ∈ domf , so f(a) ∈ rngf .
Since rngf ⊂ C, then f(a) ∈ C.
Since a ∈ A and f(a) ∈ C, then a ∈ domg ◦ f , so A ⊂ domg ◦ f .
Since domg ◦ f ⊂ A and A ⊂ domg ◦ f , then dom(g ◦ f) = A, so (g ◦ f)(x) =

g(f(x)) for all x ∈ A.
Let y ∈ rng(g ◦ f).
Then there exists x ∈ domg ◦ f such that (g ◦ f)(x) = y.
Thus, there exists x ∈ A such that g(f(x)) = y.
Since x ∈ A, then f(x) ∈ rngf .
Since rngf ⊂ C, then f(x) ∈ C.
Since g : C → D is a map, then g(f(x)) ∈ D, so y ∈ D.
Therefore, rng(g ◦ f) ⊂ D, as desired.

Exercise 43. Let f : R→ R and g : R→ R be maps.
Let f ∨ g be a map from R into R defined by (f ∨ g)(x) = max{f(x), g(x)}

for all x ∈ R.
Let f ∧ g be a map from R into R defined by (f ∧ g)(x) = min{f(x), g(x)}

for all x ∈ R.
Provide an example to show that f and g can be one to one, yet f ∨ g is not

one to one.
Provide an example to show that f and g can be one to one, yet f ∧ g is not

one to one.

Solution. Let f(x) = ex and g(x) = e−x for all x ∈ R.
Then f and g are one to one functions.
Since e > 1, then 1 > 1

e , so e > 1 > 1
e .

Thus, e > 1
e , so 1

e < e.

Since f(−1) = e−1 = 1
e < e = e1 = e−(−1) = g(−1), then f(−1) < g(−1),

so (f ∨ g)(−1) = max{f(−1), g(−1)} = g(−1) = e.
Since f(1) = e > 1

e = e−1 = g(1), then f(1) > g(1), so (f ∨ g)(1) =
max{f(1), g(1)} = f(1) = e.

Thus, (f ∨ g)(−1) = e = (f ∨ g)(1), so f ∨ g is not one to one.
Since f(−1) = e−1 = 1

e < e = e1 = e−(−1) = g(−1), then f(−1) < g(−1),
so (f ∧ g)(−1) = min{f(−1), g(−1)} = f(−1) = 1

e .
Since f(1) = e > 1

e = e−1 = g(1), then f(1) > g(1), so (f ∧ g)(1) =
min{f(1), g(1)} = g(1) = 1

e .
Thus, (f ∧ g)(−1) = 1

e = (f ∧ g)(1), so f ∧ g is not one to one.

Exercise 44. Let f : A→ B and g : C → D be maps.
a. If A ∩ C = ∅, then f ∪ g : A ∪ C → B ∪D is a map.
b. If A ∩ C = B ∩D = ∅ and f and g are injective, then f ∪ g is injective.
c. If A ∩ C = ∅, then (f ∪ g)|A = f and (f ∪ g)|C = g.

Proof. We prove a.
Suppose A ∩ C = ∅.
To prove f ∪ g : A∪C → B ∪D is a map, we must prove f ∪ g is a function

and dom(f ∪ g) = A ∪ C and rng(f ∪ g) ⊂ B ∪D.
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Since f : A → B and g : C → D are maps, then f and g are functions, so f
and g are relations.

Thus, f ∪ g is a relation.
To prove f ∪ g is a function, let (a, b) ∈ f ∪ g and (a, b′) ∈ f ∪ g.
Then either (a, b) ∈ f or (a, b) ∈ g, and either (a, b′) ∈ f or (a, b′) ∈ g.
Hence, either (a, b) ∈ f and (a, b′) ∈ f or (a, b) ∈ f and (a, b′) ∈ g or

(a, b) ∈ g and (a, b′) ∈ f or (a, b) ∈ g and (a, b′) ∈ g.
Suppose (a, b) ∈ f and (a, b′) ∈ g or (a, b) ∈ g and (a, b′) ∈ f .
Then a ∈ domf and a ∈ domg, so a ∈ A and a ∈ C.
Hence, a ∈ A ∩ C, so A ∩ C 6= ∅.
This contradicts the assumption A ∩ C = ∅.
Thus, it cannot be the case that (a, b) ∈ f and (a, b′) ∈ g or (a, b) ∈ g and

(a, b′) ∈ f .
Hence, either (a, b) ∈ f and (a, b′) ∈ f or (a, b) ∈ g and (a, b′) ∈ g.
We consider these cases separately.
Case 1: Suppose (a, b) ∈ f and (a, b′) ∈ f .
Since f is a function, then b = b′.
Case 2: Suppose (a, b) ∈ g and (a, b′) ∈ g.
Since g is a function, then b = b′.
Thus, in all cases, b = b′, so f ∪ g is a function, as desired.

We prove dom(f ∪ g) = A ∪ C.
Let x ∈ dom(f ∪ g).
Then there exists y such that (x, y) ∈ f ∪g, so either (x, y) ∈ f or (x, y) ∈ g.
Hence, either x ∈ domf or x ∈ domg, so x ∈ domf ∪ domg.
Thus, x ∈ A ∪ C, so dom(f ∪ g) ⊂ A ∪ C.
Let y ∈ A ∪ C.
Then either y ∈ A or y ∈ C, so either y ∈ domf or y ∈ domg.
We consider these cases separately.
Case 1: Suppose y ∈ domf .
Then there exists z1 such that (y, z1) ∈ f .
Since f ⊂ f ∪ g, then (y, z1) ∈ f ∪ g.
Thus, there exists z1 such that (y, z1) ∈ f ∪ g.
Case 2: Suppose y ∈ domg.
Then there exists z2 such that (y, z2) ∈ g.
Since g ⊂ f ∪ g, then (y, z2) ∈ f ∪ g.
Thus, there exists z2 such that (y, z2) ∈ f ∪ g.
Hence, in all cases, there exists z such that (y, z) ∈ f ∪ g, so y ∈ dom(f ∪ g).
Hence, A ∪ C ⊂ dom(f ∪ g).
Since dom(f ∪g) ⊂ A∪C and A∪C ⊂ dom(f ∪g), then dom(f ∪g) = A∪C,

as desired.

We prove rng(f ∪ g) ⊂ B ∪D.
Let b ∈ rng(f ∪ g).
Then there exists a such that (a, b) ∈ f ∪ g, so either (a, b) ∈ f or (a, b) ∈ g.
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We consider these cases separately.
Case 1: Suppose (a, b) ∈ f .
Since f : A→ B is a map, then b ∈ B.
Case 2: Suppose (a, b) ∈ g.
Since g : C → D is a map, then b ∈ D.
Thus, either b ∈ B or b ∈ D, so b ∈ B ∪D.
Therefore, rng(f ∪ g) ⊂ B ∪D, as desired.

Proof. We prove b.
Suppose A ∩ C = B ∩D = ∅ and f and g are injective.
We must prove f ∪ g is injective.
Since A ∩ C = ∅, then f ∪ g : A ∪ C → B ∪D is a map.
To prove f ∪ g is injective, let a, b ∈ A∪C such that (f ∪ g)(a) = (f ∪ g)(b).
We must prove a = b.
Let y = (f ∪ g)(a).
Then (a, y) ∈ f ∪ g, so either (a, y) ∈ f or (a, y) ∈ g.
Since a ∈ A ∪ C, then either a ∈ A or a ∈ C.
We consider these cases separately.
Case 1: Suppose a ∈ A.
Since A ∩ C = ∅, then a 6∈ C, so a 6∈ domg.
Hence, (a, y) 6∈ g.
Since either (a, y) ∈ f or (a, y) ∈ g, then this implies (a, y) ∈ f .
Thus, f(a) = y = (f ∪ g)(a) = (f ∪ g)(b), so y = (f ∪ g)(b).
Hence, (b, y) ∈ f ∪ g, so either (b, y) ∈ f or (b, y) ∈ g.
Since b ∈ A ∪ C, then either b ∈ A or b ∈ C.
Case 1a: Suppose b ∈ C.
Since A ∩ C = ∅, then b 6∈ A, so b 6∈ domf .
Thus, (b, y) 6∈ f .
Since either (b, y) ∈ f or (b, y) ∈ g, then this implies (b, y) ∈ g.
Since (a, y) ∈ f and f : A→ B is a map, then y ∈ B.
Since (b, y) ∈ g and g : C → D is a map, then y ∈ D.
Thus, y ∈ B and y ∈ D, so y ∈ B ∩D.
Hence, B ∩D 6= ∅.
But, this contradicts the hypothesis B ∩D = ∅.
Therefore, it is not possible that a ∈ A and b ∈ C.
Case 1b: Suppose b ∈ A.
Since A ∩ C = ∅, then b 6∈ C, so b 6∈ domg.
Thus, (b, y) 6∈ g.
Since either (b, y) ∈ f or (b, y) ∈ g, then this implies (b, y) ∈ f .
Hence, f(b) = y = f(a).
Since f(a) = f(b) and f is injective, then a = b.
Case 2: Suppose a ∈ C.
Since A ∩ C = ∅, then a 6∈ A, so a 6∈ domf .
Hence, (a, y) 6∈ f .
Since either (a, y) ∈ f or (a, y) ∈ g, then this implies (a, y) ∈ g.
Thus, g(a) = y = (f ∪ g)(a) = (f ∪ g)(b), so y = (f ∪ g)(b).
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Hence, (b, y) ∈ f ∪ g, so either (b, y) ∈ f or (b, y) ∈ g.
Since b ∈ A ∪ C, then either b ∈ A or b ∈ C.
Case 2a: Suppose b ∈ A.
Since A ∩ C = ∅, then b 6∈ C, so b 6∈ domg.
Thus, (b, y) 6∈ g.
Since either (b, y) ∈ f or (b, y) ∈ g, then this implies (b, y) ∈ f .
Since (a, y) ∈ g and g : C → D is a map, then y ∈ D.
Since (b, y) ∈ f and f : A→ B is a map, then y ∈ B.
Thus, y ∈ B and y ∈ D, so y ∈ B ∩D.
Hence, B ∩D 6= ∅.
But, this contradicts the hypothesis B ∩D = ∅.
Therefore, it is not possible that a ∈ C and b ∈ A.
Case 2b: Suppose b ∈ C.
Since A ∩ C = ∅, then b 6∈ A, so b 6∈ domf .
Thus, (b, y) 6∈ f .
Since either (b, y) ∈ f or (b, y) ∈ g, then this implies (b, y) ∈ g.
Hence, g(b) = y = g(a).
Since g(a) = g(b) and g is injective, then a = b.
Thus, we conclude a = b, so f ∪ g is injective, as desired.

Proof. We prove c.
Suppose A ∩ C = ∅.
Then f ∪ g : A ∪ C → B ∪D is a map.
Since f ∪ g : A ∪ C → B ∪D is a map and A ⊂ A ∪ C, then the restriction

(f ∪ g)|A : A→ B ∪D is a map, so (f ∪ g)|A is a function.

We prove (f ∪ g)|A = f .
Since the domain of (f ∪ g)|A is A and the domain of f is A, then the

functions (f ∪ g)|A and f have the same domain.
Let x ∈ A.
Let y = (f ∪ g)|A(x).
Since x ∈ A, then (f ∪ g)|A(x) = (f ∪ g)(x), so y = (f ∪ g)(x).
Hence, (x, y) ∈ f ∪ g, so either (x, y) ∈ f or (x, y) ∈ g.
Since x ∈ A and A ∩ C = ∅, then x 6∈ C, so x 6∈ domg.
Thus, (x, y) 6∈ g, so (x, y) ∈ f .
Since f is a function, then f(x) = y.
Hence, (f ∪ g)|A(x) = (f ∪ g)(x) = y = f(x), so (f ∪ g)|A = f .

Since f ∪ g : A ∪ C → B ∪D is a map and C ⊂ A ∪ C, then the restriction
(f ∪ g)|C : C → B ∪D is a map, so (f ∪ g)|C is a function.

We prove (f ∪ g)|C = g.
Since the domain of (f ∪ g)|C is C and the domain of g is C, then the

functions (f ∪ g)|C and g have the same domain.
Let x ∈ C.
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Let y = (f ∪ g)|C(x).
Since x ∈ C, then (f ∪ g)|C(x) = (f ∪ g)(x), so y = (f ∪ g)(x).
Hence, (x, y) ∈ f ∪ g, so either (x, y) ∈ f or (x, y) ∈ g.
Since x ∈ C and A ∩ C = ∅, then x 6∈ A, so x 6∈ domf .
Thus, (x, y) 6∈ f , so (x, y) ∈ g.
Since g is a function, then g(x) = y.
Hence, (f ∪ g)|C(x) = (f ∪ g)(x) = y = g(x), so (f ∪ g)|C = g.

Exercise 45. A map g : C → B is an extension of a map f : A→ B iff f ⊂ g.
a. If a map g : C → B is an extension of a map f : A→ B, then A ⊂ C.
b. If f : A → B and g : C → D are maps such that A ∩ C = ∅, then

f ∪ g : A ∪ C → B ∪D is an extension of both f and g.
c. If a map g : C → B is an extension of a map f : A→ B, then g|A = f .

d. Find an extension of the map f : R − {−5} → R given by f(x) = x2−25
x+5

whose domain is R and that is continuous on R.
e. Let f : R→ C be a map defined by f(x) = ex.
Let z = x+ yi for x, y ∈ R.
Let g : C→ C be defined by g(z) = ex(cos y + i sin y) for all z ∈ C.
Then g is an extension of f .

Proof. We prove a.
Suppose a map g : C → B is an extension of a map f : A→ B.
Then f ⊂ g.
Let a ∈ A.
Since A = domf , then a ∈ domf , so (a, f(a)) ∈ f .
Since f ⊂ g, then (a, f(a)) ∈ g, so a ∈ domg.
Since domg = C, then a ∈ C, so A ⊂ C, as desired.

Proof. We prove b.
Suppose f : A→ B and g : C → D are maps such that A ∩ C = ∅.
Then, by a previous exercise, f ∪ g : A ∪ C → B ∪D is a map.
Since f : A→ B is a map, then f is a function, so f is a relation.
Hence, f is a set.
Since g : C → D is a map, then g is a function, so g is a relation.
Hence, g is a set.
Since f ⊂ f ∪ g, then f ∪ g is an extension of f .
Since g ⊂ f ∪ g, then f ∪ g is an extension of g.

Proof. We prove c.
Suppose a map g : C → B is an extension of a map f : A→ B.
Then f ⊂ g and A ⊂ C.
Since f : A→ B is a map, then f is a function.
Since g : C → B is a map, then g is a function.
Since g : C → B is a map and A ⊂ C, then the restriction g|A : A→ B is a

map.
Observe that dom g|A = A = domf .
Let a ∈ A be arbitrary.
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Then (g|A)(a) = g(a).
Since a ∈ A and f is a function, then (a, f(a)) ∈ f .
Since f ⊂ g, then (a, f(a)) ∈ g.
Since g is a function, then g(a) = f(a).
Thus, (g|A)(a) = g(a) = f(a), so (g|A)(a) = f(a) for all a ∈ A.
Therefore, g|A = f , as desired.

Proof. We solve d.
Let g : R→ R be a map defined by g(x) = x− 5.
Then g is a function and domg = R.
Since g is a polynomial function, then g is continuous, so g is continuous on

R.
We prove g is an extension of f .
Let x ∈ domf be arbitrary.
Then (x, f(x)) ∈ f .
Since x ∈ domf and domf = R − {−5}, then x ∈ R − {−5}, so x ∈ R and

x 6= −5.
Since x+ 5 = 0 iff x = −5 and x 6= −5, then x+ 5 6= 0.

Thus, g(x) = x− 5 = (x− 5) · x+5
x+5 = x2−25

x+5 = f(x), so g(x) = f(x).
Since g is a function, then (x, g(x)) ∈ g, so (x, f(x)) ∈ g.
Hence, f ⊂ g.
Therefore, g is an extension of f .

Proof. We prove e.
Let r ∈ domf .
Then r ∈ R and f(r) = er.
Since f is a function, then (r, f(r)) ∈ f .
Since r ∈ R, then r = r + 0 = r + i · 0, so g(r) = er(cos 0 + i sin 0) =

er(1 + 0) = er · 1 = er = f(r).
Thus, g(r) = f(r), so r ∈ domg.
Since g is a function, then (r, g(r)) ∈ g, so (r, f(r)) ∈ g.
Thus, (r, f(r)) ∈ f implies (r, f(r)) ∈ g, so f ⊂ g.
Therefore, g is an extension of f .

Exercise 46. a. Give an example of maps f : A→ B and g : B → C such that
g ◦ f is surjective, but f is not surjective.

b. Give an example of maps f : A → B and g : B → C such that g is
surjective, but g ◦ f is not surjective.

c. Give an example of maps f : A → B and g : B → C such that f is
surjective, but g ◦ f is not surjective.

Solution. Let A = {1, 2, 3, 4} and B = {5, 6, 7, 8, 9} and C = {10, 11, 12, 13}.
a. Let f = {(1, 5), (2, 6), (3, 7), (4, 8)} and g = {(5, 10), (6, 11), (7, 12), (8, 13), (9, 10)}.
Then f and g are functions.
Since f is a function and domf = A and rngf = {5, 6, 7, 8} ⊂ B, then

f : A→ B is a map.
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Since g is a function and domg = B and rngg = C ⊂ C, then g : B → C is
a map.

Since f : A→ B and g : B → C are maps, then g ◦ f : A→ C is a map and
g ◦ f = {(1, 10), (2, 11), (3, 12), (4, 13)}.

Since rng(g ◦ f) = C, then g ◦ f is surjective.
Since 9 ∈ B, but 9 6∈ rngf , then rngf 6= B, so f is not surjective.
We know that if g ◦ f is surjective, then g is surjective.
Since g ◦ f is surjective, then g is surjective.
Since rngg = C, then g is surjective, as predicted by theory.

b. Let f = {(1, 5), (2, 6), (3, 7), (4, 8)} and g = {(5, 10), (6, 11), (7, 12), (8, 12), (9, 13)}.
Then f and g are functions.
Since f is a function and domf = A and rngf = {5, 6, 7, 8} ⊂ B, then

f : A→ B is a map.
Since g is a function and domg = B and rngg = C ⊂ C, then g : B → C is

a map.
Since f : A→ B and g : B → C are maps, then g ◦ f : A→ C is a map and

g ◦ f = {(1, 10), (2, 11), (3, 12), (4, 12)}.
Since rngg = C, then g is surjective.
Observe that rng(g ◦ f) = {10, 11, 12}.
Since 13 ∈ C, but 13 6∈ rng(g ◦ f), then rng(g ◦ f) 6= C, so g ◦ f is not

surjective.
We know that if f and g are surjective, then g ◦ f is surjective, so if g ◦ f is

not surjective, then either f is not surjective or g is not surjective.
Since g ◦ f is not surjective, then either f is not surjective or g is not sur-

jective.
Since g is surjective, then this implies f is not surjective.
Since 9 ∈ B, but 9 6∈ rngf , then rngg 6= B, so f is not surjective, as

predicted by theory.

Let A = {1, 2, 3, 4} and B = {5, 6, 7, 8} and C = {10, 11, 12, 13}.
c. Let f = {(1, 5), (2, 6), (3, 7), (4, 8)} and g = {(5, 10), (6, 11), (7, 12), (8, 12)}.
Then f and g are functions.
Since f is a function and domf = A and rngf = B ⊂ B, then f : A→ B is

a map.
Since g is a function and domg = B and rngg = {10, 11, 12} ⊂ C, then

g : B → C is a map.
Since f : A→ B and g : B → C are maps, then g ◦ f : A→ C is a map and

g ◦ f = {(1, 10), (2, 11), (3, 12), (4, 12)}.
Since rngf = B, then f is surjective.
Observe that rng(g ◦ f) = {10, 11, 12}.
Since 13 ∈ C, but 13 6∈ rng(g ◦ f), then rng(g ◦ f) 6= C, so g ◦ f is not

surjective.
We know that if f and g are surjective, then g ◦ f is surjective, so if g ◦ f is

not surjective, then either f is not surjective or g is not surjective.
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Since g ◦ f is not surjective, then either f is not surjective or g is not sur-
jective.

Since f is surjective, then this implies g is not surjective.
Since 13 ∈ C, but 13 6∈ rngg, then rngg 6= C, so g is not surjective, as

predicted by theory.

Exercise 47. Let f : A→ B and g : B → C be maps such that f is surjective.
Then g ◦ f : A→ C is a surjection iff g is surjective.

Proof. Since f : A→ B and g : B → C are maps, then g ◦ f : A→ C is a map.
We must prove g ◦ f is surjective iff g is surjective.
Suppose g ◦ f is surjective.
Then g is surjective.

Conversely, suppose g is surjective.
Since f is surjective and g is surjective, then the composition g ◦ f is surjec-

tive.

Exercise 48. Let f : A→ B and g : B → C be maps such that g is injective.
Then g ◦ f : A→ C is an injection iff f is injective.

Proof. Since f : A→ B and g : B → C are maps, then g ◦ f : A→ C is a map.
We must prove g ◦ f is injective iff f is injective.
Suppose g ◦ f is injective.
Then f is injective.

Conversely, suppose f is injective.
Since f is injective and g is injective, then the composition g ◦ f is injective.

Exercise 49. Give an example of maps f : A→ B and g : B → C such that:
1. g ◦ f : A→ C is a bijection, but f is not onto and g is not one to one.
2. f is bijective, but g ◦ f is not bijective.
3. g is bijective, but g ◦ f is not bijective.

Solution. 1. We give an example such that g ◦ f is bijective and f is not onto
and g is not one to one.

Let A = {1, 2, 3, 4} and B = {10, 20, 30, 40, 50} and C = {3, 5, 7, 9}.
Let f = {(1, 10), (2, 20), (3, 30), (4, 40)}.
Let g = {(10, 3), (20, 5), (30, 7), (40, 9), (50, 9)}.
Since f is a function and domf = A and rngf = {10, 20, 30, 40} ⊂ B, then

f : A→ B is a map.
Since 50 ∈ B, but 50 6∈ rngf , then rngf 6= B, so f is not onto B.
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Since g is a function and domg = B and rngg = C ⊂ C, then g : B → C is a
map.

Since g(40) = 9 = g(50), but 40 6= 50, then g is not one to one.
Since f : A → B is a map and g : B → C is a map, then the composition

g ◦ f : A→ C is a map and g ◦ f = {(1, 3), (2, 5), (3, 7), (4, 9)}.
Clearly, g ◦ f is one to one and onto, so g ◦ f is bijective.

Solution. 2. We give an example such that f is bijective and g ◦ f is not
bijective:

Let A = {1, 2, 3, 4} and B = {10, 20, 30, 40} and C = {3, 5, 7, 9}.
Let f = {(1, 10), (2, 20), (3, 30), (4, 40)}.
Let g = {(10, 3), (20, 5), (30, 7), (40, 7)}.
Since f is a function and domf = A and rngf = B ⊂ B, then f : A→ B is

a map.
Clearly, f is one to one.
Since rngf = B, then f is onto, so f is bijective.

Since g is a function and domg = B and rngg = {3, 5, 7} ⊂ C, then g : B → C
is a map.

Since f : A → B is a map and g : B → C is a map, then the composition
g ◦ f : A→ C is a map and g ◦ f = {(1, 3), (2, 5), (3, 7), (4, 7)}.

Since (g ◦ f)(3) = 7 = (g ◦ f)(4), but 3 6= 4, then g ◦ f is not one to one, so
g ◦ f is not bijective.
Solution. 3. We give an example such that g is bijective and g ◦ f is not
bijective:

Let A = {1, 2, 3, 4} and B = {10, 20, 30, 40} and C = {3, 5, 7, 9}.
Let f = {(1, 10), (2, 20), (3, 30), (4, 30)}.
Let g = {(10, 3), (20, 5), (30, 7), (40, 9)}.
Since f is a function and domf = A and rngf = {10, 20, 30} ⊂ B, then

f : A→ B is a map.

Since g is a function and domg = B and rngg = C ⊂ C, then g : B → C is a
map.

Clearly, g is one to one.
Since rngg = C, then g is onto.
Hence, g is bijective.
Since f : A → B is a map and g : B → C is a map, then the composition

g ◦ f : A→ C is a map and g ◦ f = {(1, 3), (2, 5), (3, 7), (4, 7)}.
Since (g ◦ f)(3) = 7 = (g ◦ f)(4), but 3 6= 4, then g ◦ f is not one to one, so

g ◦ f is not bijective.

Exercise 50. Let f : X → Y and g : Y → Z be maps.
If g ◦ f is injective, then f is injective.
Prove this statement using the left cancellation property of injective maps.

Proof. Suppose g ◦ f is injective.
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To prove f is injective using the left cancellation property of injective maps,
let W be a set and let h : W → X and k : W → X be maps such that
f ◦ h = f ◦ k.

We must prove h = k.
Since g ◦ f is injective, then by the left cancellation property of injective

maps, if h : W → X and k : W → X are maps such that (g ◦ f) ◦h = (g ◦ f) ◦ k,
then h = k.

Since f, g, h are functions, then (g◦f)◦h = g◦(f ◦h) = g◦(f ◦k) = (g◦f)◦k.
Since h : W → X and k : W → X are maps and (g ◦ f) ◦ h = (g ◦ f) ◦ k,

then we conclude h = k, as desired.

Exercise 51. Let f : X → Y and g : Y → Z be maps.
If g ◦ f is surjective, then g is surjective.
Prove this statement using the right cancellation property of surjective maps.

Proof. Suppose g ◦ f is surjective.
To prove g is surjective using the right cancellation property of surjective

maps, let W be a set and let h : Z → W and k : Z → W be maps such that
h ◦ g = k ◦ g.

We must prove h = k.
Since g ◦ f is surjective, then by the right cancellation property of surjective

maps, if h : Z →W and k : Z →W are maps such that h ◦ (g ◦ f) = k ◦ (g ◦ f),
then h = k.

Since f, g, h are functions, then h◦(g◦f) = (h◦g)◦f = (k◦g)◦f = k◦(g◦f).
Since h : Z →W and k : Z →W are maps and h ◦ (g ◦ f) = k ◦ (g ◦ f), then

we conclude h = k, as desired.

Exercise 52. Let f : X → Y and g : Y → Z be maps.
If f and g are injective, then g ◦ f is injective.
Prove this statement using the left cancellation property of injective maps.

Proof. Suppose f and g are injective.
Since f : X → Y and g : Y → Z are maps, then g ◦ f : X → Z is a map.
To prove g ◦ f is injective using the left cancellation property of injective

maps, let W be a set and let h : W → X and k : W → X be maps such that
(g ◦ f) ◦ h = (g ◦ f) ◦ k.

We must prove h = k.
Since g is injective, then by the left cancellation property of injective maps,

if f ◦h : W → Y and f ◦ k : W → Y are maps such that g ◦ (f ◦h) = g ◦ (f ◦ k),
then f ◦ h = f ◦ k.

Since h : W → X and f : X → Y are maps, then f ◦ h : W → Y is a map.
Since k : W → X and f : X → Y are maps, then f ◦ k : W → Y is a map.
Since f, g, h are functions, then g◦(f ◦h) = (g◦f)◦h = (g◦f)◦k = g◦(f ◦k).
Since f ◦ h : W → Y is a map and f ◦ k : W → Y is a map and g ◦ (f ◦ h) =

g ◦ (f ◦ k), then we conclude f ◦ h = f ◦ k.
Since f is injective, then by the left cancellation property of injective maps,

if h : W → X and k : W → X are maps such that f ◦ h = f ◦ k, then h = k.
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Since h : W → X and k : W → X are maps and f ◦ h = f ◦ k, then we
conclude h = k, as desired.

Exercise 53. Give an example of a map f : X → Y and subsets A,B of X
such that A ⊂ B, but f(A) = f(B).

Solution. Let f : R→ R be the map defined by f(x) = sinx.
Let A = [0, π2 ] and B = [0, π].
Then A ⊂ B.
Observe that

f(A) = {f(x) : x ∈ A}

= {sinx : x ∈ [0,
π

2
]}

= {sinx : 0 ≤ x ≤ π

2
}

= [0, 1]

= {sinx : 0 ≤ x ≤ π}
= {f(x) : x ∈ [0, π]}
= {f(x) : x ∈ B}
= f(B).

Exercise 54. Let f : X → Y be a map.
Let A and B be subsets of X.
If f(A) = f(B) and f is one to one, then A = B.

Proof. Suppose f(A) = f(B) and f is one to one.

We first prove A ⊂ B.
Let a ∈ A.
Then f(a) ∈ f(A).
Since f(A) = f(B), then f(a) ∈ f(B).
Hence, there exists b ∈ B such that f(a) = f(b).
Since f is one to one, then a = b.
Since b ∈ B, then a ∈ B.
Thus, A ⊂ B.

We next prove B ⊂ A.
Let b ∈ B.
Then f(b) ∈ f(B).
Since f(B) = f(A), then f(b) ∈ f(A).
Hence, there exists a ∈ A such that f(b) = f(a).
Since f is one to one, then b = a.
Since a ∈ A, then b ∈ A.
Thus, B ⊂ A.
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Since A ⊂ B and B ⊂ A, then A = B, as desired.

Exercise 55. Let f : A→ B be a map.
Let Y ⊂ B.
Then f(f−1(Y )) = Y iff Y ⊂ rngf .

Proof. We must prove f(f−1(Y )) = Y iff Y ⊂ rngf .

We first prove if f(f−1(Y )) = Y , then Y ⊂ rngf .
Suppose f(f−1(Y )) = Y .
To prove Y ⊂ rngf , let b ∈ Y .
Since Y = f(f−1(Y )), then y ∈ f(f−1(Y )).
Hence, y = f(x) for some x ∈ f−1(Y ).
Since x ∈ f−1(Y ), then x ∈ A and f(x) ∈ Y .
Thus, there exists x ∈ A such that f(x) = y, so y ∈ rngf , as desired.

Conversely, we prove if Y ⊂ rngf , then f(f−1(Y )) = Y .
Suppose Y ⊂ rngf .
We first prove Y ⊂ f(f−1(Y )).
Let y ∈ Y .
Since Y ⊂ rngf , then y ∈ rngf , so there exists x ∈ A such that f(x) = y.
Thus, there exists x ∈ A such that f(x) ∈ Y , so x ∈ f−1(Y ).
Hence, there exists x ∈ f−1(Y ) such that y = f(x), so y ∈ f(f−1(Y )).
Therefore, Y ⊂ f(f−1(Y )).
Since f(f−1(Y )) ⊂ Y and Y ⊂ f(f−1(Y )), then f(f−1(Y )) = Y , as desired.

Exercise 56. Let f : A→ B be a map.
Let X ⊂ A.
Then f−1(f(X)) = X iff the restriction of f to the subset f−1(f(X)) of A

is one to one.

Proof. We must prove f−1(f(X)) = X iff the restriction of f to the subset
f−1(f(X)) of A is one to one.

We first prove if f−1(f(X)) = X, then the restriction of f to the subset
f−1(f(X)) of A is one to one.

Suppose f−1(f(X)) = X.
Then f is one to one.
Let f |X : X → B be the restriction of f to X defined by f |X(x) = f(x) for

all x ∈ X.
To prove f |X is one to one, let a, b ∈ X such that f |X(a) = f |X(b).
Then f(a) = f(b).
Since f is one to one, then a = b.
Therefore, f |X is one to one, as desired.
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Conversely, we prove if the restriction of f to the subset f−1(f(X)) of A is
one to one, then f−1(f(X)) = X.

Suppose the restriction of f to the subset f−1(f(X)) of A is one to one.
Let g : f−1(f(X)) → B be the restriction of f to f−1(f(X)) defined by

g(x) = f(x) for all x ∈ f−1(f(X)).
Then g is one to one.
We first prove f−1(f(X)) ⊂ X.
Let a ∈ f−1(f(X)).
Then a ∈ A and f(a) ∈ f(X).
Since f(a) ∈ f(X), then f(a) = f(b) for some b ∈ X.
Since b ∈ X and X ⊂ A, then b ∈ A.
Since f(b) = f(a) and f(a) ∈ f(X), then f(b) ∈ f(X).
Thus, b ∈ A and f(b) ∈ f(X), so b ∈ f−1(f(X)).
Hence, g(a) = f(a) = f(b) = g(b).
Since g is one to one and g(a) = g(b), then a = b.
Since b ∈ X, then a ∈ X.
Therefore, f−1(f(X)) ⊂ X.
Since f−1(f(X)) ⊂ X and X ⊂ f−1(f(X)), then f−1(f(X)) = X, as de-

sired.

Exercise 57. Let f : A→ B be a map.
Let X ⊂ A and Y ⊂ B. Then
1. f−1(B − Y ) = A− f−1(Y ).
2. f(X) ⊂ Y iff X ⊂ f−1(Y ).
3. If f is bijective, then f(X) = Y iff f−1(Y ) = X.

Proof. We prove 1.
We must prove f−1(B − Y ) = A− f−1(Y ).

We first prove f−1(B − Y ) ⊂ A− f−1(Y ).
Let x ∈ f−1(B − Y ).
Then x ∈ A and f(x) ∈ B − Y .
Since f(x) ∈ B − Y , then f(x) ∈ B and f(x) 6∈ Y .
Since x ∈ A and f(x) 6∈ Y , then x 6∈ f−1(Y ).
Since x ∈ A and x 6∈ f−1(Y ), then x ∈ A− f−1(Y ).
Thus, f−1(B − Y ) ⊂ A− f−1(Y ).

We next prove A− f−1(Y ) ⊂ f−1(B − Y ).
Let y ∈ A− f−1(Y ).
Then y ∈ A and y 6∈ f−1(Y ), so f(y) 6∈ Y .
Since y ∈ A and f : A→ B is a map, then f(y) ∈ B.
Since f(y) ∈ B and f(y) 6∈ Y , then f(y) ∈ B − Y .
Hence, y ∈ A and f(y) ∈ B − Y , so y ∈ f−1(B − Y ).
Thus, A− f−1(Y ) ⊂ f−1(B − Y ).
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Since f−1(B − Y ) ⊂ A − f−1(Y ) and A − f−1(Y ) ⊂ f−1(B − Y ), then
f−1(B − Y ) = A− f−1(Y ).

Proof. We prove 2.
We must prove f(X) ⊂ Y iff X ⊂ f−1(Y ).

We first prove if f(X) ⊂ Y , then X ⊂ f−1(Y ).
Suppose f(X) ⊂ Y .
To prove X ⊂ f−1(Y ), let x ∈ X.
Then f(x) ∈ f(X).
Since f(X) ⊂ Y , then f(x) ∈ Y .
Since x ∈ X and f(x) ∈ Y , then x ∈ f−1(Y ).
Thus, X ⊂ f−1(Y ).

Conversely, we prove if X ⊂ f−1(Y ), then f(X) ⊂ Y .
Suppose X ⊂ f−1(Y ).
To prove f(X) ⊂ Y , let y ∈ f(X).
Then there exists x ∈ X such that y = f(x).
Since x ∈ X and X ⊂ f−1(Y ), then x ∈ f−1(Y ), so f(x) ∈ Y .
Thus, y ∈ Y , so f(X) ⊂ Y .

Proof. We prove 3.
We prove if f is bijective, then f(X) = Y iff f−1(Y ) = X.
Suppose f is bijective.
Then f is injective and surjective.
We must prove f(X) = Y iff f−1(Y ) = X.

We first prove if f(X) = Y , then f−1(Y ) = X.
Suppose f(X) = Y .
Then f(X) ⊂ Y , so X ⊂ f−1(Y ).
Let x ∈ f−1(Y ).
Then x ∈ A and f(x) ∈ Y .
Since Y = f(X), then f(x) ∈ f(X).
Hence, there exists a ∈ X such that f(x) = f(a).
Since f is injective, then x = a.
Thus, x ∈ X, so f−1(Y ) ⊂ X.
Since f−1(Y ) ⊂ X and X ⊂ f−1(Y ), then f−1(Y ) = X, as desired.

Conversely, we prove if f−1(Y ) = X, then f(X) = Y .
Suppose f−1(Y ) = X.
Then X ⊂ f−1(Y ), so f(X) ⊂ Y .
Let y ∈ Y .
Since Y ⊂ B, then y ∈ B.
Since f is surjective, then there exists x ∈ A such that f(x) = y, so f(x) ∈ Y .
Since x ∈ A and f(x) ∈ Y , then x ∈ f−1(Y ).
Since f−1(Y ) = X, then x ∈ X, so f(x) ∈ f(X).
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Hence, y ∈ f(X), so Y ⊂ f(X).
Since f(X) ⊂ Y and Y ⊂ f(X), then f(X) = Y , as desired.

Exercise 58. image of a difference
Let f : X → Y be a map with A,B ⊂ X. Then
1. f(A)− f(B) ⊂ f(A−B).
2. If f is injective, then f(A−B) = f(A)− f(B).

Proof. We prove 1.
We prove f(A)− f(B) ⊂ f(A−B).
Let y ∈ f(A)− f(B).
Then y ∈ f(A) and y 6∈ f(B).
Since y ∈ f(A), then y = f(a) for some a ∈ A.
Since y ∈ f(B) iff a ∈ B and f(a) = y, then y 6∈ f(B) iff either a 6∈ B or

f(a) 6= y.
Since y 6∈ f(B), then either a 6∈ B or f(a) 6= y.
Since f(a) = y, then we conclude a 6∈ B.
Since a ∈ A and a 6∈ B, then a ∈ A−B.
Thus, there exists a ∈ A−B such that f(a) = y, so y ∈ f(A−B).
Therefore, f(A)− f(B) ⊂ f(A−B).

Proof. We prove 2.
We prove if f is injective, then f(A−B) = f(A)− f(B).
Suppose f is injective.

We first prove f(A−B) ⊂ f(A)− f(B).
Let y ∈ f(A−B).
Then there exists a ∈ A−B such that f(a) = y.
Since a ∈ A−B, then a ∈ A and a 6∈ B.
Since y = f(a) and a ∈ A, then y ∈ f(A).
Suppose for the sake of contradiction y ∈ f(B).
Then there exists b ∈ B such that f(b) = y.
Thus, f(a) = y = f(b).
Since f is injective and f(a) = f(b), then a = b.
Since b ∈ B and b = a, then a ∈ B.
Thus, we have a ∈ B and a 6∈ B, a contradiction.
Hence, y 6∈ f(B).
Since y ∈ f(A) and y 6∈ f(B), then y ∈ f(A)− f(B).
Therefore, f(A−B) ⊂ f(A)− f(B).

Since f(A−B) ⊂ f(A)−f(B) and f(A)−f(B) ⊂ f(A−B), then f(A−B) =
f(A)− f(B).

Exercise 59. inverse image of a difference equals difference of inverse
images

Let f : X → Y be a map with C,D ⊂ Y .
Then f−1(C −D) = f−1(C)− f−1(D).
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Proof. We must prove f−1(C −D) = f−1(C)− f−1(D).

We first prove f−1(C −D) ⊂ f−1(C)− f−1(D).
Let x ∈ f−1(C −D).
Then x ∈ X and f(x) ∈ (C −D).
Since f(x) ∈ (C −D), then f(x) ∈ C and f(x) 6∈ D.
Since x ∈ X and f(x) ∈ C, then x ∈ f−1(C).
Since x ∈ X and f(x) 6∈ D, then x 6∈ f−1(D).
Thus, x ∈ f−1(C) and x 6∈ f−1(D), so x ∈ f−1(C)− f−1(D).
Hence, f−1(C −D) ⊂ f−1(C)− f−1(D).

We next prove f−1(C)− f−1(D) ⊂ f−1(C −D).
Let a ∈ f−1(C)− f−1(D).
Then a ∈ f−1(C) and a 6∈ f−1(D).
Since a ∈ f−1(C), then a ∈ X and f(a) ∈ C.
Since a ∈ X and a 6∈ f−1(D), then f(a) 6∈ D.
Thus, f(a) ∈ C and f(a) 6∈ D, so f(a) ∈ (C −D).
Since a ∈ X and f(a) ∈ (C −D), then a ∈ f−1(C −D).
Hence, f−1(C)− f−1(D) ⊂ f−1(C −D).

Since f−1(C −D) ⊂ f−1(C)− f−1(D) and f−1(C)− f−1(D) ⊂ f−1(C −D),
then f−1(C −D) = f−1(C)− f−1(D).

Exercise 60. Let f : A→ B and g : B → C be maps.
Let S ⊂ C.
Then (g ◦ f)−1(S) = f−1(g−1(S)).

Proof. Since f : A→ B and g : B → C are maps, then g ◦ f : A→ C is a map.
Let x ∈ (g ◦ f)−1(S).
Then x ∈ A and (g ◦ f)(x) ∈ S.
Since x ∈ A and f : A→ B is a map, then f(x) ∈ B.
Since (g ◦ f)(x) = g(f(x)) and (g ◦ f)(x) ∈ S, then g(f(x)) ∈ S.
Since f(x) ∈ B and g(f(x)) ∈ S, then f(x) ∈ g−1(S).
Since x ∈ A and f(x) ∈ g−1(S), then x ∈ f−1(g−1(S)).
Therefore, (g ◦ f)−1(S) ⊂ f−1(g−1(S)).

Let y ∈ f−1(g−1(S)).
Then y ∈ A and f(y) ∈ g−1(S).
Since f(y) ∈ g−1(S), then f(y) ∈ B and g(f(y)) ∈ S.
Since g(f(y)) = (g ◦ f)(y) and g(f(y)) ∈ S, then (g ◦ f)(y) ∈ S.
Since y ∈ A and (g ◦ f)(y) ∈ S, then y ∈ (g ◦ f)−1(S).
Therefore, f−1(g−1(S)) ⊂ (g ◦ f)−1(S).
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Since (g ◦ f)−1(S) ⊂ f−1(g−1(S)) and f−1(g−1(S)) ⊂ (g ◦ f)−1(S), then
(g ◦ f)−1(S) = f−1(g−1(S)), as desired.

Proposition 61. Let f : X 7→ Y be a function with A1, A2 ⊆ X and B1, B2 ⊆
Y .

Then f−1(Y −B1) = X − f−1(B1).

Solution. We can use the definition of pre-image under a function.
We know for any B ⊆ Y , the pre-image of B under f is the set f−1(B) =

{a ∈ X : f(a) ∈ B} ⊆ X.
Thus,
f−1(B1) = {a ∈ X : f(a) ∈ B1}
f−1(Y −B1) = {a ∈ X : f(a) ∈ Y −B1}
We use the definition of set equality to prove this.

Proof. We know that f−1(B1) = {a ∈ X : f(a) ∈ B1} and f−1(Y −B1) = {a ∈
X : f(a) ∈ Y −B1}.

Observe that

f−1(Y −B1) = {a ∈ X : f(a) ∈ Y −B1}
= {a ∈ X : f(a) ∈ Y ∧ f(a) 6∈ B1}
= {a ∈ X : T ∧ f(a) 6∈ B1}
= {a ∈ X : f(a) 6∈ B1}
= {a ∈ X : a 6∈ f−1(B1)}
= {a : a ∈ X ∧ a 6∈ f−1(B1)}
= X − f−1(B1)
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