Functions Theory Notes

Jason Sass

May 12, 2025

Functions

Definition 1. function

A function is a relation f such that if $(a, b) \in f$ and $(a, b') \in f$, then b = b'.

Let f be a function.

Then f is a relation such that if $(a, b) \in f$ and $(a, b') \in f$, then b = b'. Since f is a relation, then f is a set of ordered pairs. Let domf be the domain of f and let rngf be the range of f. Then $domf = \{a : (\exists b)(a, b) \in f\} = \{a : (\exists b)(f(a) = b)\} = \{a : f(a) \text{ exists}\}.$ Then $rngf = \{b : (\exists a)(a, b) \in f\} = \{b : (\exists a)(f(a) = b)\} = \{f(a) : a \text{ exists}\} = \{f(a) : a \in domf\}.$

Since f is a relation, then for each $a \in domf$, there exists $b \in rngf$ such that $(a, b) \in f$.

Let $a \in dom f$.

Then there exists at least one $b \in rngf$ such that $(a, b) \in f$. Suppose there exists b' such that $(a, b') \in f$. Since f is a function and $(a, b) \in f$ and $(a, b') \in f$, then b = b'.

Hence, there exists at most one $b \in rngf$ such that $(a, b) \in f$.

Thus, there exists exactly one $b \in rngf$ such that $(a, b) \in f$, so there is a unique $b \in rngf$ such that $(a, b) \in f$.

Define the statement 'b is the value of the function f at a' by f(a) = b iff $(a,b) \in f$.

Then there is a unique $b \in rngf$ such that f(a) = b.

Thus, if $a \in dom f$, then there is a unique $b \in rngf$ such that f(a) = b.

Therefore, if f is a function, then for each $a \in domf$, there is a unique $b \in rngf$ such that f(a) = b.

A relation specified by a listing of its ordered pairs is a function iff no two distinct ordered pairs in the list have the same first element.

A function may be described by specifying its domain and a rule of correspondence y = f(x) for all x in the domain of f.

If $x \in dom f$, we say that y is the value of the function f at x and write y = f(x).

A relation f is not a function iff there exists $(a,b) \in f$ and $(a,b') \in f$ and $b \neq b'$.

Proposition 2. A function value is unique.

Let f be a function. Let $a, b \in dom f$. If a = b, then f(a) = f(b).

Let f be a function. If $a \in domf$, then f(a) is unique.

The negation of $(\forall a, b \in dom f)(a = b \to f(a) = f(b))$ is $(\exists a, b \in dom f)(a = b \land f(a) \neq f(b))$.

Hence, a relation f is not a function iff there exists $a \in domf$ and there exists $b \in domf$ such that a = b and $f(a) \neq f(b)$.

Let $f: A \to B$ be a relation.

To prove f is a function we must show f is well defined. Thus we must prove: 1. Existence $(\forall a \in A)(\exists b \in B)[f(a) = b].$ 2. Uniqueness $(\forall a, b \in A)(a = b \rightarrow f(a) = f(b)).$

If either condition is not satisfied by f, then f is not a function.

Definition 3. image of a function

Let f be a function. The range of f is called the **image of** f.

Definition 4. equal functions

Let f and g be functions. Then f = g iff f and g are the same set of ordered pairs.

Theorem 5. equality of functions

Let f and g be functions. Let domf be the domain of f. Let domg be the domain of g. Then f = g iff 1. domf = domg. 2. f(x) = g(x) for all $x \in domf \cap domg$.

Let f and g be functions.
Then f = g iff
1. domain of f equals the domain of g.
2. f(x) = g(x) for all x in the common domain.

Definition 6. map from set A to set B

A map from set A to set B, denoted $f : A \to B$, consists of a function f such that dom f = A and $rngf \subset B$.

The set A is called the **domain** of f.

The set B is called the **codomain** of f.

Let $f : A \to B$ be a map from set A to set B.

We say that " $f : A \to B$ is a map from A to B" or "f is a function that maps A to B".

Let $f : A \to B$ be a map from set A to set B.

Then f is a function such that dom f = A and $rngf \subset B$.

Since f is a function, then for each $a \in domf$, there is a unique $b \in rngf$ such that f(a) = b.

Thus, for each $a \in A$, there is a unique $b \in rngf$ such that f(a) = b.

Since $rngf \subset B$, then for each $a \in A$, there is a unique $b \in B$ such that f(a) = b.

Therefore, if $f: A \to B$ is a map from set A to set B, then

1. f is a function.

2. A is the domain of f.

3. B is the codomain of f.

4. $rngf \subset B$.

5. For each $a \in A$, there is a unique $b \in B$ such that f(a) = b.

A map $f : A \to B$ assigns a unique $b \in B$ to each $a \in A$.

Definition 7. equal maps

The maps $f: A \to B$ and $g: C \to D$ are equal iff f = g and B = D.

Theorem 8. equality of maps

The maps $f : A \to B$ and $g : C \to D$ are equal iff 1. A = C. 2. B = D. 3. f(x) = g(x) for all $x \in A$.

Maps $f: A \to B$ and $g: C \to D$ are equal iff 1. A = C (same domain)

2. B = D (same codomain)

3. f(x) = g(x) for all x in the common domain A.

The restriction of a map is a restriction to some subset of its domain.

Definition 9. restriction of a map

Let $f : A \to B$ be a map. Let $S \subset A$. Let $f|_S : S \to B$ be defined by $f|_S(x) = f(x)$ for all $x \in S$. We call $f|_S$ the **restriction of** f **to** S. Proposition 10. The restriction of a map is a map.

Let $f : A \to B$ be a map. Let $S \subset A$. Let $f|_S$ be the restriction of f to S. Then $f|_S : S \to B$ is a map.

Composition of functions

If f and g are functions, then f and g are relations, so the composition of f and g is a relation.

Definition 11. composition of functions

Let f and g be functions.

The composition of f and g is the relation $g \circ f = \{(a, b) : (\exists c) ((a, c) \in f \land (c, b) \in g\}.$

Theorem 12. Composition of functions is a function.

Let f and g be functions. Then 1. $g \circ f$ is a function. 2. $dom \ g \circ f = \{x \in dom f : f(x) \in domg\}.$ 3. $(g \circ f)(x) = g(f(x))$ for all $x \in dom \ g \circ f$.

Theorem 13. Function composition is associative.

Let f, g, and h be functions. Then $(f \circ g) \circ h = f \circ (g \circ h)$.

Proposition 14. Composition of maps Let $f : A \to B$ and $g : B \to C$ be maps. Then $g \circ f : A \to C$ is a map and $(g \circ f)(x) = g(f(x))$ for all $x \in A$.

Proposition 15. Let $f : A \to B$ be a map. Let I_A be the identity map on A and I_B be the identity map on B. Then $f \circ I_A = I_B \circ f = f$.

An injective map preserves distinctness; an injective map maps distinct elements in the domain to distinct elements in the range.

Therefore, a map is injective iff no two distinct ordered pairs have the same second element.

Definition 16. injective map (one to one)

A map $f : A \to B$ is said to be **one to one**, or **injective**, iff the function f is a one to one function; that is, for every $a, b \in A$ if f(a) = f(b), then a = b. Such a map is said to be an **injection** of A into B.

Let $f : A \to B$ be a map. Then f is injective iff the function f is one to one iff $(\forall a, b \in A)(f(a) = f(b) \to a = b)$ iff $(\forall a, b \in A)(a \neq b \to f(a) \neq f(b)).$ Therefore, f is not injective iff the function f is not one to one iff $(\exists a, b \in A)(a \neq b \land f(a) = f(b)).$

Theorem 17. Left cancellation property of injective maps

Let $f: X \to Y$ be a map.

Then f is injective iff for every set W and every map $g : W \to X$ and $h: W \to X$ such that $f \circ g = f \circ h$ we have g = h.

A surjective map is a map whose range equals its codomain.

Definition 18. surjective map (onto)

A map $f : A \to B$ is said to be **onto**, or a **function that maps** A **onto** B iff rngf = B.

We say that such a map is **surjective**, or a **surjection**.

Let $f : A \to B$ be a surjective map. Then $f(A) = rngf = \{f(a) \in B : a \in A\} = B$.

Proposition 19. A map $f : A \to B$ is surjective iff $(\forall b \in B)(\exists a \in A)(f(a) = b)$.

Let $f : A \to B$ be a map. Then f is surjective iff $(\forall b \in B)(\exists a \in A)[f(a) = b]$. Therefore, f is not surjective iff $(\exists b \in B)(\forall a \in A)[f(a) \neq b]$.

Theorem 20. Right cancellation property of surjective maps

Let X be a nonempty set. Let $f : X \to Y$ be a map. Then f is surjective iff for every set Z and every map $g : Y \to Z$ and $h: Y \to Z$ such that $g \circ f = h \circ f$ we have g = h.

Definition 21. bijective map (one to one correspondence)

Let $f : A \to B$ be a map. Then f is **bijective** iff f is injective and surjective. A **bijection** is a bijective function.

Let $f : A \to B$ be a map. Then f is not bijective iff either f is not injective or f is not surjective.

Proposition 22. *identity map is bijective.* Let S be a set. The identity map $I_S : S \to S$ on S is a bijection.

Theorem 23. Let $f : A \to B$ and $g : B \to C$ be maps.

1. If f and g are injective, then $g \circ f$ is injective.

A composition of injections is an injection.

2. If f and g are surjective, then $g \circ f$ is surjective.

A composition of surjections is a surjection.

3. If $g \circ f$ is injective, then f is injective.

4. If $g \circ f$ is surjective, then g is surjective.

Corollary 24. Let $f : A \to B$ and $g : B \to C$ be maps.

1. If f and g are bijective, then $g \circ f$ is bijective.

A composition of bijections is a bijection.

2. If $g \circ f$ is bijective, then f is injective and g is surjective.

Let f be a function.

Since f is a relation, then the inverse relation f^{-1} exists and is unique.

Inverse functions

Definition 25. inverse of a function

Let f be a function.

The inverse of f is the inverse relation $f^{-1} = \{(b, a) : (a, b) \in f\}.$

Let f be a function.

Then f^{-1} is the inverse of f and $f^{-1} = \{(b, a) : (a, b) \in f\}$, so $(b, a) \in f^{-1}$ iff $(a, b) \in f$.

Therefore, $f^{-1}(b) = a$ iff f(a) = b for all $a \in dom f$.

Since f is a relation, then $dom f^{-1} = rngf$ and $rngf^{-1} = dom f$ and $(f^{-1})^{-1} = f$.

Theorem 26. existence of inverse function

Let f be a function. Then the inverse relation f^{-1} is a function iff f is injective.

Definition 27. invertible map

A map $f : A \to B$ is said to be **invertible** iff there exists a map $g : B \to A$ such that g is an inverse of f.

Theorem 28. The inverse of an invertible map is unique.

Let $f : A \to B$ be an invertible map. Then the inverse map is unique.

Let $f: A \to B$ be an invertible map. Then there exists a unique map $g: B \to A$ such that g is an inverse of f. Since g is the unique inverse of f, we denote g by f^{-1} . Thus, the inverse map of f is $f^{-1}: B \to A$.

Therefore, $f^{-1}(b) = a$ iff f(a) = b for every $a \in A$ and $b \in B$. Therefore, a map $f: A \to B$ is invertible iff the inverse map $f^{-1}: B \to A$

exists.

Theorem 29. Let $f : A \to B$ and $g : B \to A$ be maps.

Then g is an inverse of f iff 1. $g \circ f = I_A$ 2. $f \circ g = I_B$. Let $f: A \to B$ and $g: B \to A$ be maps such that g is an inverse of f. Then $g \circ f: A \to A$ and $f \circ g: B \to B$ are maps and $g \circ f = I_A$ and

 $f \circ g = I_B.$

Since $g \circ f = I_A$, then $(\forall a \in A)[(g \circ f)(a) = a]$. Since $f \circ g = I_B$, then $(\forall b \in B)[(f \circ g)(b) = b]$.

Corollary 30. Let $f : A \to B$ be an invertible map. Then

1. $f^{-1} \circ f = I_A$ 2. $f \circ f^{-1} = I_B$.

Let $f: A \to B$ be an invertible map.

Then the inverse map $f^{-1}: B \to A$ exists, so $f^{-1} \circ f: A \to A$ and $f \circ f^{-1}: B \to B$ are maps and $f^{-1} \circ f = I_A$ and $f \circ f^{-1} = I_B$.

Since $f^{-1} \circ f = I_A$, then $(\forall a \in A)[(f^{-1} \circ f)(a) = a]$. Since $f \circ f^{-1} = I_B$, then $(\forall b \in B)[(f \circ f^{-1})(b) = b]$.

Theorem 31. An invertible map is bijective.

Let $f : A \to B$ be a map. Then f is invertible iff f is bijective.

Lemma 32. Let $f : A \to B$ be a map.

If $f: A \to B$ is a bijection, then $f^{-1}: B \to A$ is a bijection.

Let $f: A \to B$ be a bijective map.

Since f is bijective, then f is invertible, so the inverse map $f^{-1}: B \to A$ exists.

Therefore, 1) $f^{-1} \circ f = I_A$. 2) $f \circ f^{-1} = I_B$.

Theorem 33. Let $f : A \to B$ be a bijection. Then 1. $(f^{-1})^{-1} : A \to B$ is a bijection. 2. $(f^{-1})^{-1} = f$.

Theorem 34. Let $f: A \to B$ and $g: B \to C$ be bijections. Then 1. $(g \circ f)^{-1}: C \to A$ is a bijection. 2. $f^{-1} \circ g^{-1}: C \to A$ is a bijection. 3. $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Image and inverse image of functions

Definition 35. image of an element of a map

Let $f : A \to B$ be a map. Let $(a, b) \in f$. Then $a \in A$ and $b \in B$ and f(a) = b. f(a) = b means f maps a to bb is the **image** of a under f. a is the **pre-image** of b under f. Since f is a function, then 1) $(\forall a \in A)(\exists b \in B)[f(a) = b].$ Every element in the domain has at least one image. 2) $(\forall a \in A)[f(a) \text{ is unique}].$ The image of every element in the domain is unique.

Definition 36. preimage of an element in the codomain of a map

Let $f : A \to B$ be a map. Let $b \in B$. The **pre-image of** b is the set $f^{-1}(b) = \{a \in A : f(a) = b\}$. Therefore $f^{-1}(b) \subset A$.

Proposition 37. Let $f : A \to B$ be a map.

1. Then f is injective iff every $b \in B$ has at most one pre-image.

2. Then f is surjective iff every $b \in B$ has at least one pre-image.

3. Then f is bijective iff every $b \in B$ has exactly one pre-image.

Definition 38. image of a subset of the domain of a map

Let $f : A \to B$ be a map. Let $S \subset A$. The **image of** S **under** f is the set $f(S) = \{f(x) : x \in S\}$. Let $f : A \to B$ be a map. Let $S \subset A$. Suppose $f(x) \in f(S)$. Then $x \in S$. Since $S \subset A$, then $x \in A$.

Since
$$f : A \to B$$
 is a map, then $f(x) \in B$.

Hence,
$$f(S) \subset B$$
.

Therefore, the image of a subset of the domain of a map is a subset of the codomain of the map.

Let $b \in B$. Then $b \in f(S)$ iff b = f(x) for some $x \in S$.

Definition 39. inverse image of a subset of the codomain of a map

Let $f : A \to B$ be a map. Let $T \subset B$. The **inverse image of** T **under** f is the set $f^{-1}(T) = \{x \in A : f(x) \in T\}$. Let $f : A \to B$ be a map.

Let $T \subset B$.

Since $f^{-1}(T) = \{x \in A : f(x) \in T\}$, then $f^{-1}(T) \subset A$.

Therefore, the inverse image of a subset of the codomain of a map is a subset of the domain of the map.

Let $x \in A$. Then $x \in f^{-1}(T)$ iff $f(x) \in T$.

Proposition 40. Let $f : A \to B$ be a map. Then

f(Ø) = Ø.
 The image of the empty set is the empty set.
 f⁻¹(Ø) = Ø.
 The inverse image of the empty set is the empty set.
 f(A) = rngf.
 The image of the domain of f is the range of f.
 f⁻¹(B) = A.
 The inverse image of the codomain of f is the domain of f.

Definition 41. image of a map(function)

Let $f : A \to B$ be a map.

The **image of** f is the set $f(A) = \{f(x) : x \in A\}$.

Proposition 42. Let $f : X \to Y$ be a map.

For every subset A and B of X, if A ⊂ B, then f(A) ⊂ f(B).
 f(A ∪ B) = f(A) ∪ f(B) for every subset A and B of X.
 The image of a union equals the union of the images.
 f(A ∩ B) ⊂ f(A) ∩ f(B) for every subset A and B of X.
 The image of an intersection is a subset of the intersection of the images.
 f(A ∩ B) = f(A) ∩ f(B) for every subset A and B of X iff f is injective.

Proposition 43. Let $f : X \to Y$ be a map.

1. For every subset C and D of Y, if $C \subset D$, then $f^{-1}(C) \subset f^{-1}(D)$. 2. $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$ for every subset C and D of Y. The inverse image of a union equals the union of the inverse images. 3. $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$ for every subset C and D of Y. The inverse image of an intersection equals the intersection of the inverse

images.

Proposition 44. inverse image of the image of a subset of the domain of a map

Let $f : A \to B$ be a map. Then 1. $S \subset f^{-1}(f(S))$ for every subset S of A. 2. $f^{-1}(f(S)) = S$ for every subset S of A iff f is injective.

Proposition 45. image of the inverse image of a subset of the codomain of a map

Let $f : A \to B$ be a map. Then 1. $f(f^{-1}(T)) \subset T$ for every subset T of B. 2. $f(f^{-1}(T)) = T$ for every subset T of B iff f is surjective. Let A, B be finite sets, |A| = m and |B| = n. Let $B^A =$ the set of all functions from A to B. Then $B^A = \{f : A \to B | f \text{ is a function.}\}$. Then $|B^A| = |B|^{|A|}$. Thus, there are n^m different functions from A to B. There are $P(n,m) = \frac{n!}{(n-m)!}$ different 1-1 functions from A to B.