Relations and Functions Theory

Jason Sass

July 16, 2023

Relations

Proposition 1. Let R be a nonempty relation from set A to set B. Then

dom R⁻¹ = range R.
range R⁻¹ = dom R.
(R⁻¹)⁻¹ = R.

Proof. We prove domR⁻¹ = rangeR.
Since R is not empty, then there is at least one ordered pair in R.
Let x be an arbitrary object in the domain of discourse.
We prove dom R⁻¹ = range R.

Observe that

$$\begin{array}{ll} x \in dom R^{-1} & \Leftrightarrow & x \in B \land (\exists y \in A)((x,y) \in R^{-1}) \\ & \Leftrightarrow & x \in B \land (\exists y \in A)((y,x) \in R) \\ & \Leftrightarrow & x \in range R. \end{array}$$

Therefore, $dom R^{-1} = range R$.

Proof. We prove range $R^{-1} = \text{dom } R$. Observe that

$$\begin{aligned} x \in rangeR^{-1} &\Leftrightarrow x \in A \land (\exists y \in B)((y, x) \in R^{-1}) \\ &\Leftrightarrow x \in A \land (\exists y \in B)((x, y) \in R) \\ &\Leftrightarrow x \in domR. \end{aligned}$$

Therefore, range $R^{-1} = \text{dom } R$.

Proof. We prove $(R^{-1})^{-1} = R$. Let (a, b) be arbitrary. Then

$$(a,b) \in (R^{-1})^{-1} \quad \Leftrightarrow \quad (b,a) \in R^{-1} \\ \Leftrightarrow \quad (a,b) \in R.$$

Therefore, $(R^{-1})^{-1} = R$.

Proposition 2. A relation R on a nonempty set S is reflexive iff $I_S \subset R$.

Proof. Let S be a nonempty set.

Since S is not empty, then there is an element in S, so let a be an element of S.

Let R be a relation on S. We must prove R is reflexive iff $I_S \subset R$. We first prove if R is reflexive, then $I_S \subset R$.

Suppose R is reflexive. Let $(a, a) \in I_S$ be arbitrary. Since R is reflexive and $a \in S$, then $(a, a) \in R$. Hence, $(a, a) \in I_S$ implies $(a, a) \in R$, so $I_S \subset R$.

Conversely, we prove if $I_S \subset R$, then R is reflexive. Suppose $I_S \subset R$. Let $x \in S$ be arbitrary. Then $(x, x) \in S \times S$. Since there is an element $x \in S$ such that $(x, x) \in S \times S$, then $(x, x) \in I_S$. Since $I_S \subset R$, then $(x, x) \in R$. Therefore, R is reflexive.

Proposition 3. A relation R on a set S is symmetric iff $R = R^{-1}$.

Proof. Let R be a relation on a set S. We must prove R is symmetric iff $R = R^{-1}$. We prove if R is symmetric, then $R = R^{-1}$.

Suppose R is symmetric. Let $(a, b) \in R$. Since R is symmetric and $(a, b) \in R$, then $(b, a) \in R$. Since $(b, a) \in R$ iff $(a, b) \in R^{-1}$, then $(a, b) \in R^{-1}$. Hence, $(a, b) \in R$ implies $(a, b) \in R^{-1}$, so $R \subset R^{-1}$. Let $(c, d) \in R^{-1}$. Then, by definition of R^{-1} , $(d, c) \in R$. Since R is symmetric and $(d, c) \in R$, then $(c, d) \in R$. Hence, $(c, d) \in R^{-1}$ implies $(c, d) \in R$, so $R^{-1} \subset R$. Since $R \subset R^{-1}$ and $R^{-1} \subset R$, then $R = R^{-1}$.

Conversely, we prove if $R = R^{-1}$, then R is symmetric. Suppose $R = R^{-1}$. Let $(a, b) \in R$. Since $R = R^{-1}$, then $(a, b) \in R^{-1}$. Since $(a, b) \in R^{-1}$ iff $(b, a) \in R$, then $(b, a) \in R$. Hence, $(a, b) \in R$ implies $(b, a) \in R$, so R is symmetric.

Proposition 4. Let r and s be relations. Then $r \circ s \subset dom \ s \times rng \ r$.

 $\begin{array}{l} \textit{Proof. Suppose } (a,b) \in r \circ s. \\ \text{Then there exists } c \text{ such that } (a,c) \in s \text{ and } (c,b) \in r. \\ \text{Since } (a,c) \in s, \text{ then } a \in dom \text{ s.} \\ \text{Since } (c,b) \in r, \text{ then } b \in rng \text{ r.} \\ \text{Since } a \in dom \text{ s and } b \in rng \text{ r.} \text{ then } (a,b) \in dom \text{ s} \times rng \text{ r.} \\ \text{Therefore, } r \circ s \subset dom \text{ s} \times rng \text{ r.} \end{array}$

Equivalence Relations

Theorem 5. Let ~ be an equivalence relation on a set S. Then 1. $a \in [a]$ for all $a \in S$. 2. $a \in [b]$ iff $a \sim b$ for all $a, b \in S$. 3. [a] = [b] iff $a \sim b$ for all $a, b \in S$. 4. for all $a, b \in S$, either [a] = [b] or $[a] \cap [b] = \emptyset$. 5. $\cup ([a] : a \in S) = S$. Proof. We prove 1.

Let $a \in S$. Since \sim is an equivalence relation, then \sim is reflexive, so $a \sim a$. Since $a \in S$ and $a \sim a$, then by definition of equivalence class, $a \in [a]$. \Box

Proof. We prove 2.

Let $a, b \in S$. Observe that

$$\begin{array}{ll} a \in [b] & \Leftrightarrow & a \in S \wedge a \sim b \\ & \Leftrightarrow & a \sim b. \end{array}$$

Proof. We prove 3. Let $a, b \in S$. We prove if [a] = [b], then $a \sim b$. Suppose [a] = [b]. By statement 1, we know that $a \in [a]$. Since $a \in [a]$ and [a] = [b], then $a \in [b]$. Therefore, by statement 2 of the theorem, we conclude $a \sim b$. Conversely, we prove if $a \sim b$, then [a] = [b]. Suppose $a \sim b$. We first prove $[a] \subset [b]$. Let $x \in [a]$. Then $x \in S$ and $x \sim a$. Since $x \sim a$ and $a \sim b$, then $x \sim b$. Since $x \in S$ and $x \sim b$, then $x \in [b]$. Therefore, $x \in [a]$ implies $x \in [b]$, so $[a] \subset [b]$. We next prove $[b] \subset [a]$. Let $y \in [b]$. Then $y \in S$ and $y \sim b$. Since $a \sim b$, then $b \sim a$. Since $y \sim b$ and $b \sim a$, then $y \sim a$. Since $y \in S$ and $y \sim a$, then $y \in [a]$. Therefore, $y \in [b]$ implies $y \in [a]$, so $[b] \subset [a]$. Since $[a] \subset [b]$ and $[b] \subset [a]$, then [a] = [b], as desired. Proof. We prove 4. Let $a, b \in S$. To prove either [a] = [b] or $[a] \cap [b] = \emptyset$, we prove $[a] \cap [b] \neq \emptyset$ implies [a] = [b]. Suppose $[a] \cap [b] \neq \emptyset$. Then $[a] \cap [b]$ is not empty, so there exists an element in $[a] \cap [b]$. Let c be some element in $[a] \cap [b]$. Then $c \in [a]$ and $c \in [b]$. Since $c \in [a]$, then by statement 2, we know that $c \sim a$. Since $c \in [b]$, then b y statement 2, we know that $c \sim b$. Since $c \sim a$, then $a \sim c$. Since $a \sim c$ and $c \sim b$, then $a \sim b$. By statement 3 we conclude [a] = [b], as desired. Proof. We prove 5. Let $x \in \cup ([a] : a \in S)$. Then there exists $a \in S$ such that $x \in [a]$. Since $[a] = \{s \in S : s \sim a\}$, then $[a] \subset S$. Since $x \in [a]$ and $[a] \subset S$, then $x \in S$. Hence, $x \in \cup([a] : a \in S)$ implies $x \in S$, so $\cup([a] : a \in S) \subset S$. Let $y \in S$. By statement one, we know that $y \in [y]$. Hence, there exists some $a \in S$ such that $y \in [a]$, so $y \in \cup([a] : a \in S)$. Thus, $y \in S$ implies $y \in \cup([a] : a \in S)$, so $S \subset \cup([a] : a \in S)$. Since $\cup([a]: a \in S) \subset S$ and $S \subset \cup([a]: a \in S)$, then $\cup([a]: a \in S) = S$. \Box

Corollary 6. Let \sim be an equivalence relation on set S.

Then each element of S is an element of exactly one equivalence class.

Proof. Let x be an arbitrary element of S.

Since \sim is an equivalence relation, then by the previous theorem, $x \in [x]$. Therefore, x is in at least one equivalence class.

Suppose there exist equivalence classes [a] and [b] such that $x \in [a]$ and $x \in [b]$. Since $x \in [a]$, then $x \sim a$. Since $x \in [b]$, then $x \sim b$. Since $x \sim a$, then $a \sim x$. Since $a \sim x$ and $x \sim b$, then $a \sim b$. By the previous theorem, we conclude [a] = [b]. Therefore, x is in at most one equivalence class.

Since x is in at least one equivalence class and x is in at most one equivalence class, then x is in exactly one equivalence class. \Box

Theorem 7. Any partition of a set yields a corresponding equivalence relation

Let S be a nonempty set. Let P be a partition of S. Define a relation \sim on S by $a \sim b$ iff there exists a cell $T \in P$ such that $a \in T$ and $b \in T$ for all $a, b \in S$. Then \sim is an equivalence relation on S. Proof. We prove \sim is an equivalence relation on S. Let $a \in S$. Then by condition 3 in the definition of partition, there exists $T \in P$ such

then by condition 5 in the definition of partition, there exists $T \in P$ suct that $a \in T$.

Hence, there exists $T \in P$ such that $a \in T$ and $a \in T$, so $a \sim a$. Therefore, \sim is reflexive.

Let $a, b \in S$ such that $a \sim b$. Then there exists $T \in P$ such that $a \in T$ and $b \in T$. Hence, there exists $T \in P$ such that $b \in T$ and $a \in T$. Thus, $b \sim a$. Hence, $a \sim b$ implies $b \sim a$, so \sim is symmetric. Let $a, b, c \in S$ such that $a \sim b$ and $b \sim c$. Then there exists $V \in P$ such that $a \in V$ and $b \in V$ and there exists $W \in P$ such that $b \in W$ and $c \in W$.

To prove $a \sim c$, we must prove there exists $T \in P$ such that $a \in T$ and $c \in T$.

Since $b \in V$ and $b \in W$, then $b \in V \cap W$, so $V \cap W \neq \emptyset$.

By condition 2 in the definition of partition of a set, either V = W or $V \cap W = \emptyset$. Hence, V = W.

Let T be the set V = W. Then T = V = W. Since $a \in V$ and V = T, then $a \in T$. Since $c \in W$ and W = T, then $c \in T$. Hence, there exists $T \in P$ such that $a \in T$ and $c \in T$, so $a \sim c$. Thus, $a \sim b$ and $b \sim c$ imply $a \sim c$, so \sim is transitive. Therefore, \sim is an equivalence relation on S.

Theorem 8. Any equivalence relation on a set yields a corresponding partition

Let \sim be an equivalence relation on a nonempty set S. Then the collection $\frac{S}{\sim} = \{ [x] : x \in S \}$ of equivalence classes induced by \sim is a partition of S.

a partition of

Solution.

Our hypothesis is 1. S is a nonempty set. 2. ~ is an equivalence relation on S. Our conclusion is $\frac{S}{\sim} = \{[x] : x \in S\}$ is a partition of S. To prove $\frac{S}{\sim}$ is a partition of S, we must prove: 1. $(\forall T \in \frac{S}{\sim})(T \subset S)$. 2. $(\forall T \in \frac{S}{\sim})(T \neq \emptyset)$. 3. for all $T_1, T_2 \in \frac{S}{\sim}$, either $T_1 = T_2$ or $T_1 \cap T_2 = \emptyset$. 4. $(\forall x \in S)(\exists T \in \frac{S}{\sim})(x \in T)$. By hypothesis ~ is an equivalence relation, so ~ is reflexive, symmetric, and

transitive. \Box *Proof.* Let $\frac{S}{\sim}$ be the collection of all equivalence classes of \sim . Then $\frac{S}{\sim} = \{[x] :$

$x \in S$.

Since S is not empty, then there is an element of S. Let a be some element of S. Since $a \in S$ and \sim is an equivalence relation on S, then $a \in [a]$. Thus, $[a] \in \frac{S}{\sim}$, so $\frac{S}{\sim}$ is not empty. Let $T \in \frac{S}{\sim}$. Then there exists $a \in S$ such that T = [a]. Since $[a] = \{x \in S : a \sim x\}$, then $[a] \subset S$, so $T \subset S$. Since $a \in S$ and \sim is an equivalence relation on S, then $a \in [a]$. Hence, $[a] \neq \emptyset$, so $T \neq \emptyset$. Therefore, T is a nonempty subset of S, so every element of $\frac{S}{\sim}$ is a nonempty

Therefore, T is a nonempty subset of S, so every element of \approx is a f subset of S.

We prove for all $T_1, T_2 \in \frac{S}{\sim}$, either $T_1 = T_2$ or $T_1 \cap T_2 = \emptyset$. Let $T_1, T_2 \in \frac{S}{\sim}$. Then there exists $a \in S$ such that $T_1 = [a]$ and there exists $b \in S$ such that

 $T_2 = [b].$

Since \sim is an equivalence relation on S and $a \in S$ and $b \in S$, then either [a] = [b] or $[a] \cap [b] = \emptyset$. Hence, either $T_1 = T_2$ or $T_1 \cap T_2 = \emptyset$.

We prove for every $x \in S$, there exists $T \in \frac{S}{\sim}$ such that $x \in T$. Let $x \in S$. Since \sim is an equivalence relation on S, then $x \in [x]$. Let T = [x]Then $x \in T$. Since $x \in S$, then $[x] \in \frac{S}{\sim}$, so $T \in \frac{S}{\sim}$. Thus, there exists $T \in \frac{S}{\sim}$ such that $x \in T$. Hence, each element of S lies in at least one element of $\frac{S}{\sim}$. Therefore, $\frac{S}{N}$ is a partition of S.

Theorem 9. If R is an equivalence relation on a set S, then $\frac{S}{\underline{S}} = R$.

If P is a partition of a set S, then $\frac{S}{S} = P$.

Proof. Suppose R is an equivalence relation on a set S.

Then $\frac{S}{R}$, the collection of all equivalence classes induced by R, is a partition of S.

Therefore, $\frac{S}{\frac{S}{2}}$ is an equivalence relation on S defined by $(a,b) \in \frac{S}{\frac{S}{2}}$ iff there exists a cell $T \in \frac{S}{R}$ such that $a \in T$ and $b \in T$ for all $a, b \in S$. To prove $\frac{S}{\frac{S}{R}} = R$, we prove $\frac{S}{\frac{S}{R}} \subset R$ and $R \subset \frac{S}{\frac{S}{R}}$.

Let $(x, y) \in \frac{S}{\frac{S}{B}}$.

Then $x \in S$ and $y \in S$ and there exists a cell $T \in \frac{S}{R}$ such that $x \in T$ and $y \in T$.

Each element of $\frac{S}{R}$ is an equivalence class of R, so T is an equivalence class of R.

Since x is in exactly one equivalence class of R and $x \in [x]$ and $x \in T$, then [x] = T.

Since y is in exactly one equivalence class of R and $y \in [y]$ and $y \in T$, then [y] = T.

Therefore, [x] = T = [y], so xRy. Hence, $(x, y) \in \mathbb{R}$. Thus, $(x, y) \in \frac{S}{\frac{S}{2}}$ implies $(x, y) \in R$, so $\frac{S}{\frac{S}{2}} \subset R$.

Let $(x, y) \in R$. Then xRy, so [x] = [y]. Let T = [x] = [y]. Then $T \in \frac{S}{R}$ and $x \in [x]$ and $y \in [y]$.

Thus, there exists a cell T in the partition $\frac{S}{R}$ such that $x \in T$ and $y \in T$, so $(x,y) \in \frac{S}{\frac{S}{2}}.$

Hence,
$$(x, y) \in R$$
 implies $(x, y) \in \frac{S}{\frac{S}{R}}$, so $R \subset \frac{S}{\frac{S}{R}}$.
Since $\frac{S}{\frac{S}{R}} \subset R$ and $R \subset \frac{S}{\frac{S}{R}}$, then $\frac{S}{\frac{S}{R}} = R$.

Proof. We prove if P is a partition of set S, then $\frac{S}{\frac{S}{D}} = P$.

Suppose P is a partition of S.

Then $\frac{S}{P}$ defined by $(a,b) \in \frac{S}{P}$ iff there exists a cell $T \in P$ such that $a \in T$ and $b \in T$ for all $a, b \in S$ is an equivalence relation on S.

Thus, $\frac{S}{\frac{S}{P}} = \{[x] : x \in S\}$, the collection of all equivalence classes induced by $\frac{S}{P}$, is a partition of S.

To prove $\frac{S}{\frac{S}{P}} = P$, we prove $\frac{S}{\frac{S}{P}} \subset P$ and $P \subset \frac{S}{\frac{S}{P}}$.

We first prove $P \subset \frac{S}{\frac{S}{P}}$.

Let $T \in P$.

To prove $T \in \frac{S}{\frac{S}{2}}$, we must show there exists $x \in S$ such that T = [x].

Since $T \in P$, then $T \subset S$ and by condition 1 in the definition of partition, $T \neq \emptyset$.

Thus, T is not empty, so there is an element in T.

Let x be an element of T.

Since $x \in T$ and $T \subset S$, then $x \in S$.

To prove T = [x], we prove $T \subset [x]$ and $[x] \subset T$.

Observe that $[x] = \{s \in S : (x, s) \in \frac{S}{P}\} = \{s \in S : (\exists T' \in P) (x \in T' \land s \in T')\}.$

We prove $T \subset [x]$. Let $t \in T$. To prove $t \in [x]$, we must prove $t \in S$ and there exists a cell T' such that $x \in T'$ and $t \in T'$. Since $t \in T$ and $T \subset S$, then $t \in S$. Let T' = T. Then $x \in T'$ since $x \in T$ and $t \in T'$ since $t \in T$. Hence, $t \in [x]$. Thus, $t \in T$ implies $t \in [x]$, so $T \subset [x]$.

We prove $[x] \subset T$. Let $s \in [x]$. We must prove $s \in T$. Since $s \in [x]$, then $s \in S$ and there exists a cell $T' \in P$ such that $x \in T'$ and $s \in T'$. Since $x \in T$ and $x \in T'$, then $x \in T \cap T'$. Thus, $T \cap T' \neq \emptyset$. By condition 2 in the definition of partition, either T = T' or $T \cap T' = \emptyset$. Hence, T = T'. Since $s \in T'$ and T' = T, then $s \in T$. Thus, $s \in [x]$ implies $s \in T$, so $[x] \subset T$. Since $T \subset [x]$ and $[x] \subset T$, then T = [x]. Therefore, there exists $x \in S$ such that T = [x], so $T \in \frac{S}{\frac{S}{P}}$. Thus, $T \in P$ implies $T \in \frac{S}{\frac{S}{2}}$, so $P \subset \frac{S}{\frac{S}{2}}$.

We now prove $\frac{S}{\frac{S}{p}} \subset P$. Let $T \in \frac{S}{\frac{S}{p}}$. Then there exists $x \in S$ such that T = [x]. We must prove $T \in P$. Since $x \in [x]$ and [x] = T, then $x \in T$. Since $x \in [x]$, then by definition of [x], there exists $T' \in P$ such that $x \in T'$. Thus, $x \in T$ and $x \in T'$, so $x \in T \cap T'$. Hence, $T \cap T' \neq \emptyset$. By condition 2 in the definition of partition, either T = T' or $T \cap T' = \emptyset$. Thus, T = T'. Since T = T' and $T' \in P$, then $T \in P$. Hence, $T \in \frac{S}{\frac{S}{p}}$ implies $T \in P$, so $\frac{S}{\frac{S}{p}} \subset P$. Since $\frac{S}{\frac{S}{p}} \subset P$ and $P \subset \frac{S}{\frac{S}{p}}$, then $\frac{S}{\frac{S}{p}} = P$.

Proposition 10. If E_1 and E_2 are equivalence relations on a set S, then $E_1 \cap E_2$ is an equivalence relation on S.

Proof. Suppose E_1 and E_2 are equivalence relations on a set S. Let $R = E_1 \cap E_2$. Since $E_1 \cap E_2 \subset E_1$ and $E_1 \subset S \times S$, then $E_1 \cap E_2 \subset S \times S$. Thus, $R \subset S \times S$, so R is a relation on S.

Reflexive:

Let $x \in S$. Since E_1 is reflexive, then $(x, x) \in E_1$. Since E_2 is reflexive, then $(x, x) \in E_2$. Thus, $(x, x) \in E_1$ and $(x, x) \in E_2$, so $(x, x) \in E_1 \cap E_2$. Hence, $(x, x) \in R$. Therefore, R is reflexive.

Symmetric:

Let $x, y \in S$ such that $(x, y) \in R$. Since $R = E_1 \cap E_2$, then $(x, y) \in E_1$ and $(x, y) \in E_2$. Since E_1 is symmetric and $(x, y) \in E_1$, then $(y, x) \in E_1$. Since E_2 is symmetric and $(x, y) \in E_2$, then $(y, x) \in E_2$. Thus, $(y, x) \in E_1$ and $(y, x) \in E_2$, so $(y, x) \in E_1 \cap E_2$. Hence, $(y, x) \in R$. Therefore, $(x, y) \in R$ implies $(y, x) \in R$, so R is symmetric. Transitive:

Let $x, y, z \in S$ such that $(x, y) \in R$ and $(y, z) \in R$. Since $R = E_1 \cap E_2$, then $(x, y) \in E_1$ and $(x, y) \in E_2$ and $(y, z) \in E_1$ and

 $(y,z)\in E_2.$

Since E_1 is transitive and $(x, y) \in E_1$ and $(y, z) \in E_1$, then $(x, z) \in E_1$. Since E_2 is transitive and $(x, y) \in E_2$ and $(y, z) \in E_2$, then $(x, z) \in E_2$. Thus, $(x, z) \in E_1$ and $(x, z) \in E_2$, so $(x, z) \in E_1 \cap E_2 = R$.

Therefore, $(x, y) \in R$ and $(y, z) \in R$ implies $(x, z) \in R$, so R is transitive. Since R is reflexive, symmetric, and transitive, then R is an equivalence relation on S.

Therefore, $E_1 \cap E_2$ is an equivalence relation on S.

Theorem 11. Let \sim be an equivalence relation on a set S.

Let $\frac{S}{\sim} = \{[a] : a \in S\}.$

Let $f: S \to \frac{S}{\sim}$ be a binary relation from S to $\frac{S}{\sim}$ defined by f(a) = [a] for all $a \in S$.

Then f is a surjective function.

Solution. We must prove f is a function and f is surjective.

To prove f is a function, we must prove:

1. Existence: $f(a) \in \frac{S}{\sim}$.

2. Uniqueness: if $a_1, a_2 \in S$ such that $a_1 = a_2$, then $f(a_1) = f(a_2)$.

Proof. Let $a \in S$. Then f(a) = [a]. Hence, there exists $a \in S$ such that f(a) = [a]. Therefore, $f(a) \in \frac{S}{2}$.

Let $a_1, a_2 \in S$ such that $a_1 = a_2$. Since \sim is an equivalence relation on S, then \sim is reflexive. Thus, $a_1 \sim a_1$. Hence, $a_1 \sim a_2$. Therefore, $[a_1] = [a_2]$. Observe that

$$f(a_1) = [a_1]$$

= [a_2]
= f(a_2).

Thus, $a_1 = a_2$ implies $f(a_1) = f(a_2)$, so f is well defined. Therefore, f is a function. Let $[b] \in \frac{S}{\sim}$. Then $b \in S$. Thus, f(b) = [b]. Hence, there exists $b \in S$ such that f(b) = [b]. Therefore, f is surjective.

Theorem 12. Let \sim be an equivalence relation over a set S. Let f be the natural projection of S onto $\frac{S}{\sim}$. Then $x_1 \sim x_2$ iff $f(x_1) = f(x_2)$ for all $x_1, x_2 \in S$.

Proof. Let $x_1, x_2 \in S$.

Since f is the natural projection of S onto $\frac{S}{\sim}$, then $f(x_1) = [x_1]$ and $f(x_2) = [x_2]$.

Observe that

$$\begin{aligned} x_1 \sim x_2 & \Leftrightarrow \quad [x_1] = [x_2] \\ & \Leftrightarrow \quad f(x_1) = f(x_2). \end{aligned}$$

Proposition 13. Let $f : A \to B$ be a function.

Let ~ be a relation defined on A by $x_1 \sim x_2$ iff $f(x_1) = f(x_2)$ for all $x_1, x_2 \in A$.

Then \sim is an equivalence relation on A.

Proof. Let $a \in A$. Then f(a) = f(a). Since f(a) = f(a) iff $a \sim a$, then $a \sim a$. Hence, \sim is reflexive.

Let $a, b \in A$ such that $a \sim b$. Then f(a) = f(b), so f(b) = f(a). Since f(b) = f(a) iff $b \sim a$, then $b \sim a$. Hence, $a \sim b$ implies $b \sim a$, so \sim is symmetric.

Let $a, b, c \in A$ such that $a \sim b$ and $b \sim c$. Then f(a) = f(b) and f(b) = f(c). Thus, f(a) = f(b) = f(c), so f(a) = f(c). Since f(a) = f(c) iff $a \sim c$, then $a \sim c$. Therefore, $a \sim b$ and $b \sim c$ imply $a \sim c$, so \sim is transitive. Since \sim is reflexive, symmetric, and transitive, then \sim is an equivalence relation on A.

Theorem 14. Let $f : A \to B$ be a function. Let ker f be the kernel of f. Then there is a bijection from $\frac{A}{\ker f}$ to f(A). Moreover, $f^{-1}(b)$ is an equivalence class of A under ker f for every $b \in f(A)$. *Proof.* Since the kernel of f is an equivalence relation on A, then the quotient set of A under ker f exists.

Let $\frac{A}{\ker f}$ be the quotient set of A under ker f. Then $\frac{A}{\ker f} = \{[x] : x \in A\}$. Since f is a function, then the image of A under f exists. Let f(A) be the image of A under f. Then $f(A) = \{f(x) \in B : x \in A\}$.

Let $g: \frac{A}{\ker f} \to f(A)$ be a binary relation from $\frac{A}{\ker f}$ to f(A) defined by g([x]) = f(x) for all $[x] \in \frac{A}{\ker f}$. We prove g is a function. Let $[x] \in \frac{A}{\ker f}$. Then $x \in A$ and g([x]) = f(x). Since f is a function, then $f(x) \in B$. Thus, there exists $x \in A$ such that $f(x) \in B$, so $f(x) \in f(A)$. Hence, $g([x]) \in f(A)$. Let $[x_1], [x_2] \in \frac{A}{\ker f}$ such that $[x_1] = [x_2]$. Then $x_1, x_2 \in A$. Since ker f is an equivalence relation on A, then $[x_1] = [x_2]$ iff $x_1 \sim x_2$ and $x_1 \sim x_2$ iff $f(x_1) = f(x_2)$. Thus, $[x_1] = [x_2]$ iff $f(x_1) = f(x_2)$. Hence, $f(x_1) = f(x_2)$. Observe that

$$g([x_1]) = f(x_1) = f(x_2) = g([x_2]).$$

Therefore, $[x_1] = [x_2]$ implies $g([x_1]) = g([x_2])$, so g is well defined. Therefore, g is a function.

Let $f(x) \in f(A)$. Then there exists $x \in A$ such that $f(x) \in B$. Since $x \in A$, then $[x] \in \frac{A}{\ker f}$. Thus, g([x]) = f(x). Hence, there exists $[x] \in \frac{A}{\ker f}$ such that g([x]) = f(x). Therefore, g is surjective.

Let $[a], [b] \in \frac{A}{\ker f}$ such that g([a]) = g([b]). Then $a, b \in A$ and f(a) = f(b). Since f(a) = f(b) iff $a \sim b$ and $a \sim b$ iff [a] = [b], then f(a) = f(b) iff [a] = [b]. Thus, [a] = [b]. Hence, g([a]) = g([b]) implies [a] = [b], so g is injective. Since g is a surjective and injective, then g is bijective. Therefore, g is a bijection from $\frac{A}{\ker f}$ to f(A).

We prove the pre image of each element in f(A) is an equivalence class of A under ker f.

Let $b \in f(A)$. Then there exists $a \in A$ such that f(a) = b. Let $f^{-1}(b)$ be the preimage of b. Then $f^{-1}(b) = \{a \in A : f(a) = b\}$.

Let $x \in [a]$. Then $x \in A$ and $x \sim a$. Since $x \sim a$ iff f(x) = f(a), then f(x) = f(a). Thus, f(x) = f(a) = b. Hence, there exists $x \in A$ such that f(x) = b, so $x \in f^{-1}(b)$. Therefore, $x \in [a]$ implies $x \in f^{-1}(b)$, so $[a] \subset f^{-1}(b)$.

Let $y \in f^{-1}(b)$. Then $y \in A$ and f(y) = b. Since f(y) = b = f(a), then f(y) = f(a). Since f(y) = f(a) iff $y \sim a$, then $y \sim a$. Hence, $y \in A$ and $y \sim a$, so $y \in [a]$. Thus, $y \in f^{-1}(b)$ implies $y \in [a]$, so $f^{-1}(b) \subset [a]$. Since $[a] \subset f^{-1}(b)$ and $f^{-1}(b) \subset [a]$, then $[a] = f^{-1}(b)$.

Therefore, there exists $a \in A$ such that $[a] = f^{-1}(b)$. Hence, $f^{-1}(b) \in \frac{A}{\ker f}$. Thus, $f^{-1}(b)$ is an equivalence class of A under ker f.

Partial Orders

Proposition 15. Any element of a partially ordered set is an upper and lower bound of \emptyset .

Proof. Let (S, \leq) be a partially ordered set.

Since the empty set is a subset of any set, then $\emptyset \subset S$. Since (S, \leq) is a poset, then S is not empty.

Let $s \in S$.

To prove s is an upper bound of \emptyset , we must prove $x \leq s$ for all $x \in \emptyset$.

Since there is no element in \emptyset , then the statement there exists $x \in \emptyset$ such that $x \not\leq s$ is false. Hence, the statement $x \leq s$ for all $x \in \emptyset$ is true. Therefore, s is an upper bound of \emptyset , as desired.

To prove s is a lower bound of \emptyset , we must prove $s \leq x$ for all $x \in \emptyset$.

Since there is no element in \emptyset , then the statement there exists $x \in \emptyset$ such that $s \not\leq x$ is false. Hence, the statement $s \leq x$ for all $x \in \emptyset$ is true. Therefore, s is a lower bound of \emptyset , as desired.

Theorem 16. uniqueness of maximum of a poset

Let (P, \leq) be a poset. Let $S \subset P$. The greatest element of S, if it exists, is unique.

Proof. Suppose there is a greatest element of S. Let M be a greatest element of S.

To prove M is unique, suppose M_1 and M_2 are greatest elements of S. We must prove $M_1 = M_2$.

Since M_1 is a greatest element of S, then $M_1 \in S$ and $x \leq M_1$ for all $x \in S$. Since M_2 is a greatest element of S, then $M_2 \in S$ and $x \leq M_2$ for all $x \in S$. Since $M_2 \in S$ and $x \leq M_1$ for all $x \in S$, then $M_2 \leq M_1$. Since $M_1 \in S$ and $x \leq M_2$ for all $x \in S$, then $M_1 \leq M_2$. Since \leq is antisymmetric and $M_1 \leq M_2$ and $M_2 \leq M_1$, then $M_1 = M_2$.

Therefore, M is unique.

Theorem 17. uniqueness of minimum of a poset

Let (P, \leq) be a poset. Let $S \subset P$. The least element of S, if it exists, is unique.

Proof. Suppose there is a least element of S. Let m be a least element of S.

To prove m is unique, suppose m_1 and m_2 are least elements of S. We must prove $m_1 = m_2$.

Since m_1 is a least element of S, then $m_1 \in S$ and $m_1 \leq x$ for all $x \in S$. Since m_2 is a least element of S, then $m_2 \in S$ and $m_2 \leq x$ for all $x \in S$. Since $m_2 \in S$ and $m_1 \leq x$ for all $x \in S$, then $m_1 \leq m_2$. Since $m_1 \in S$ and $m_2 \leq x$ for all $x \in S$, then $m_2 \leq m_1$. Since \leq is antisymmetric and $m_1 \leq m_2$ and $m_2 \leq m_1$, then $m_1 = m_2$.

Therefore, m is unique.

Theorem 18. uniqueness of least upper bound of a poset

Let (P, \leq) be a poset. Let $S \subset P$. The least upper bound of S, if it exists, is unique.

Proof. Suppose there is a least upper bound of S in P.

Let U be a least upper bound of S in P.

Let B be the set of all upper bounds of S in P.

Then $B = \{u \in P : u \text{ is an upper bound of } S\}.$

Since $B \subset P$ and U is the least element of B, then U is unique.

Theorem 19. uniqueness of greatest lower bound of a poset

Let (P, \leq) be a poset. Let $S \subset P$. The greatest lower bound of S in P, if it exists, is unique.

Proof. Suppose there is a greatest lower bound of S in P.

Let L be a greatest lower bound of S in P.

Let B be the set of all lower bounds of S in P.

Then $B = \{u \in P : u \text{ is a lower bound of } S\}.$

Since $B \subset P$ and L is the greatest element of B, then L is unique.

Theorem 20. sufficient conditions for existence of supremum and infimum of a poset

Let S be a subset of a partially ordered set P.

1. If max S exists, then sup $S = \max S$.

2. If min S exists, then inf $S = \min S$.

Proof. We prove 1.

Suppose $\max S$ exists in P.

Since $\max S$ is an upper bound of S in P, then S has at least one upper bound in P.

Let M be an arbitrary upper bound of S in P. Since M is an upper bound of S and max $S \in S$, then max $S \leq M$. Hence, max S is the least upper bound of S in P. Therefore, max $S = \sup S$.

Proof. We prove 2.

Suppose $\min S$ exists in P.

Since min S is a lower bound of S in P, then S has at least one lower bound in P.

Let M be an arbitrary lower bound of S in P.

Since M is a lower bound of S and min $S \in S$, then $M \leq \min S$. Hence, min S is the greatest lower bound of S in P.

Therefore, $\min S = \inf S$.

Functions

Proposition 21. A function value is unique.

Let f be a function. Let $a, b \in dom f$. If a = b, then f(a) = f(b).

Proof. Suppose a = b. Since $a \in domf$ and f is a relation, then $(a, f(a)) \in f$. Since $b \in domf$ and f is a relation, then $(b, f(b)) \in f$. Since b = a and $(b, f(b)) \in f$, then $(a, f(b)) \in f$. Since f is a function and $(a, f(a)) \in f$ and $(a, f(b)) \in f$, then f(a) = f(b).

Theorem 22. equality of functions

Let f and g be functions. Let domf be the domain of f. Let domg be the domain of g. Then f = g iff 1. domf = domg. 2. f(x) = g(x) for all $x \in dom f \cap domg$.

Proof. We prove if dom f = dom g and f(x) = g(x) for all $x \in dom f \cap dom g$, then f = g.

Suppose dom f = dom g and f(x) = g(x) for all $x \in dom f \cap dom g$.

We first prove $f \subset g$. Let $x \in domf$. Then $(x, f(x)) \in f$. Since $x \in domf$ and domf = domg, then $x \in domg$, so $(x, g(x)) \in g$. Since $x \in domf$ and $x \in domg$, then $x \in domf \cap domg$, so f(x) = g(x). Hence, $(x, f(x)) \in g$. Thus, if $(x, f(x)) \in f$, then $(x, f(x)) \in g$, so $f \subset g$.

We prove $g \subset f$. Let $y \in domg$. Then $(y, g(y)) \in g$. Since $y \in domg$ and domg = domf, then $y \in domf$, so $(y, f(y)) \in f$. Since $y \in domf$ and $y \in domg$, then $y \in domf \cap domg$, so f(y) = g(y). Hence, $(y, g(y)) \in f$. Thus, if $(y, g(y)) \in g$, then $(y, g(y)) \in f$, so $g \subset f$.

Since $f \subset g$ and $g \subset f$, then f = g, as desired.

Proof. Conversely, we prove if f = g, then dom f = dom g and f(x) = g(x) for all $x \in dom f \cap dom g$.

Suppose f = g.

We first prove dom f = dom g. Let $x \in dom f$. Then $(x, f(x)) \in f$. Since f = g, then $(x, f(x)) \in g$, so $x \in dom g$. Thus, $dom f \subset dom g$.

Let $y \in domg$. Then $(y, g(y)) \in g$. Since g = f, then $(y, g(y)) \in f$, so $y \in domf$. Thus, $domg \subset domf$.

Since $dom f \subset dom g$ and $dom g \subset dom f$, then dom f = dom g, as desired.

We next prove f(x) = g(x) for all $x \in domf \cap domg$. Let $x \in domf \cap domg$. Then $x \in domf$ and $x \in domg$, so $(x, f(x)) \in f$ and $(x, g(x)) \in g$. Since $(x, g(x)) \in g$ and g = f, then $(x, g(x)) \in f$. Since f is a function and $(x, f(x)) \in f$ and $(x, g(x)) \in f$, then f(x) = g(x), as desired.

Proposition 23. equality of maps

The maps $f : A \to B$ and $g : C \to D$ are equal iff 1. A = C. 2. B = D.

3. f(x) = g(x) for all $x \in A$.

Proof. We prove if the maps $f : A \to B$ and $g : C \to D$ are equal, then A = Cand B = D and f(x) = g(x) for all $x \in A$. Let $f : A \to B$ and $g : C \to D$ be equal maps. Then f = g and B = D. Since f = g, then dom f = dom g and f(x) = g(x) for all $x \in dom f \cap dom g$. Since dom f = dom g and dom f = A and dom g = C, then A = C. Thus, f(x) = g(x) for all $x \in A \cap C = A \cap A = A$. Therefore, A = C and B = D and f(x) = g(x) for all $x \in A$, as desired. \Box

Proof. Conversely, we prove if A = C and B = D and f(x) = g(x) for all $x \in A$, then the maps $f : A \to B$ and $g : C \to D$ are equal.

Suppose A = C and B = D and f(x) = g(x) for all $x \in A$. Let $f: A \to B$ and $g: C \to D$ be maps. Then f and g are functions and dom f = A and dom g = C. Since dom f = A = C = dom g, then dom f = dom g.

Let $x \in dom f \cap dom g$. Then $x \in A \cap C$, so $x \in A$ and $x \in C$.

Then $x \in A \cap C$, so $x \in A$ and $x \in C$. Thus, $x \in A$, so f(x) = g(x).

Hence f(x) = g(x) for all $x \in dom f \cap dom g$.

Since f and g are functions and dom f = dom g and f(x) = g(x) for all $x \in dom f \cap dom g$, then f = g.

Since f = g and B = D, then the maps $f : A \to B$ and $g : C \to D$ are equal, as desired.

Proposition 24. restriction of a map is a map

Let $f : A \to B$ be a map. Let $S \subset A$. Let $f|_S : S \to B$ be defined by $f|_S(x) = f(x)$ for all $x \in S$. Then $f|_S : S \to B$ is a map.

Proof. Observe that $f|_S : S \to B$ is a relation. Since $f : A \to B$ is a map, then f is a function. Let $a \in S$ and $b, b' \in B$ such that $(a, b) \in f|_S$ and $(a, b') \in f|_S$. Then $f|_S(a) = b$ and $f|_S(a) = b'$. Since $a \in S$, then f(a) = b and f(a) = b'. Since f is a function, then b = b'. Therefore, $f|_S$ is a function.

We prove $dom f|_S = S$. Since $f|_S : S \to B$ is a relation, then $dom f|_S \subset S$. Let $s \in S$. Since $S \subset A$, then $s \in A$. Since $f : A \to B$ is a map, then there exists $t \in B$ such that f(s) = t. Since $s \in S$, then $f|_S(s) = f(s)$, so $f|_S(s) = t$. Since $s \in S$ and there exists t such that $f|_S(s) = t$, then $s \in dom f|_S$, so $S \subset dom f|_S$. Since $dom f|_S \subset S$ and $S \subset dom f|_S$, then $dom f|_S = S$.

We prove $rngf|_S \subset B$. Let $y \in rngf|_S$. Then there exists $x \in S$ such that $f|_S(x) = y$. Since $x \in S$, then $f|_S(x) = f(x)$, so f(x) = y. Since $x \in S$ and $S \subset A$, then $x \in A$. Since $f : A \to B$ is a map, then $f(x) \in B$, so $y \in B$. Hence, $rngf|_S \subset B$.

Since $f|_S$ is a function and $dom f|_S = S$ and $rngf|_S \subset B$, then $f|_S : S \to B$ is a map.

Theorem 25. Composition of functions is a function.

Let f and g be functions. Then 1. $g \circ f$ is a function. 2. $dom \ g \circ f = \{x \in dom f : f(x) \in domg\}.$ 3. $(g \circ f)(x) = g(f(x))$ for all $x \in dom \ g \circ f$. Proof. We prove 1. Since f and g are relations, then $g \circ f = \{(a,b) : (\exists c)((a,c) \in f \land (c,b) \in g\},$ so $g \circ f$ is a relation. Let $(a,b) \in g \circ f$ and $(a,b') \in g \circ f$. Since $(a,b) \in g \circ f$, then there exists c such that $(a,c) \in f$ and $(c,b) \in g$. Since $(a,b') \in g \circ f$, then there exists d such that $(a,d) \in f$ and $(d,b') \in g$. Since $(d,b') \in g$, then $(c,b') \in g$. Since g is a function and $(c,b) \in g$ and $(c,b') \in g$, then b = b'. Therefore, $g \circ f$ is a function.

Proof. We prove 2.

Observe that $dom g \circ f = \{a : (\exists b)((a, b) \in g \circ f\}.$ Let $S = \{x \in domf : f(x) \in domg\}.$ We must prove $dom g \circ f = S.$ Suppose $x \in dom \ g \circ f$. Then there exists y such that $(x, y) \in g \circ f$. Thus, there exists z such that $(x, z) \in f$ and $(z, y) \in g$. Since $(x, z) \in f$ and f is a function, then $x \in domf$ and f(x) = z. Since $(z, y) \in g$, then $z \in domg$, so $f(x) \in domg$. Since $x \in domf$ and $f(x) \in domg$, then $x \in S$, so $dom \ g \circ f \subset S$.

 $\begin{array}{l} \text{Suppose } x \in S.\\ \text{Then } x \in domf \text{ and } f(x) \in domg.\\ \text{Let } z = f(x).\\ \text{Since } x \in domf, \text{ then } (x,f(x)) \in f, \text{ so } (x,z) \in f.\\ \text{Since } f(x) \in domg \text{ and } f(x) = z, \text{ then } z \in domg, \text{ so there exists } y \text{ such that } (z,y) \in g.\\ \text{Since } (x,z) \in f \text{ and } (z,y) \in g, \text{ then } (x,y) \in g \circ f.\\ \text{Thus, there exists } y \text{ such that } (x,y) \in g \circ f, \text{ so } x \in dom \text{ g} \circ f.\\ \text{Therefore, } S \subset dom \text{ g} \circ f. \end{array}$

Since dom $g \circ f \subset S$ and $S \subset dom g \circ f$, then dom $g \circ f = S$, as desired. \Box

Proof. We prove 3.

Let $x \in dom \ g \circ f$. Since $g \circ f$ is a function, then $(g \circ f)(x)$ exists. Let $z = (g \circ f)(x)$. Then $(x, z) \in g \circ f$, so there exists y such that $(x, y) \in f$ and $(y, z) \in g$. Since f and g are functions, then f(x) = y and g(y) = z. Thus, $(g \circ f)(x) = z = g(y) = g(f(x))$, as desired.

Theorem 26. Function composition is associative.

Let f, g, h be functions. Then $(f \circ g) \circ h = f \circ (g \circ h)$.

Proof. Since f and g are functions, then $f \circ g$ is a function. Since h is a function, then $(f \circ g) \circ h$ is a function. Since g and h are functions, then $g \circ h$ is a function. Since f is a function, then $f \circ (g \circ h)$ is a function.

We first prove $dom(f \circ g) \circ h = dom f \circ (g \circ h)$.

Let $x \in dom(f \circ g) \circ h$. Then $x \in domh$ and $h(x) \in domf \circ g$. Since $h(x) \in domf \circ g$, then $h(x) \in domg$ and $g(h(x)) \in domf$. Since $x \in domh$ and $h(x) \in domg$, then $x \in domg \circ h$. Since $g(h(x)) \in domf$, then $(g \circ h)(x) \in domf$. Since $x \in domg \circ h$ and $(g \circ h)(x) \in domf$, then $x \in domf \circ (g \circ h)$. Thus, $dom(f \circ g) \circ h \subset domf \circ (g \circ h)$. Let $y \in domf \circ (g \circ h)$. Then $y \in domg \circ h$ and $(g \circ h)(y) \in domf$. Since $y \in domg \circ h$, then $y \in domh$ and $h(y) \in domg$. Since $(g \circ h)(y) \in domf$, then $g(h(y)) \in domf$. Since $h(y) \in domg$ and $g(h(y)) \in domf$, then $h(y) \in domf \circ g$. Since $y \in domh$ and $h(y) \in domf \circ g$, then $y \in dom(f \circ g) \circ h$. Thus, $domf \circ (g \circ h) \subset dom(f \circ g) \circ h$.

Since $dom(f \circ g) \circ h \subset domf \circ (g \circ h)$ and $domf \circ (g \circ h) \subset dom(f \circ g) \circ h$, then $dom(f \circ g) \circ h = domf \circ (g \circ h)$.

Let $x \in dom(f \circ g) \circ h \cap domf \circ (g \circ h)$. Then $x \in dom(f \circ g) \circ h \cap dom(f \circ g) \circ h = dom(f \circ g) \circ h$ and

$$\begin{array}{rcl} [(f \circ g) \circ h](x) &=& (f \circ g)(h(x)) \\ &=& f[g(h(x))] \\ &=& f[(g \circ h)(x)] \\ &=& [f \circ (g \circ h)](x) \end{array}$$

Therefore, $[(f \circ g) \circ h](x) = [f \circ (g \circ h)](x)$ for all x in the common domain.

Since $dom(f \circ g) \circ h = dom f \circ (g \circ h)$ and $[(f \circ g) \circ h](x) = [f \circ (g \circ h)](x)$ for all x in the common domain, then $(f \circ g) \circ h = f \circ (g \circ h)$, as desired.

Proposition 27. Composition of maps

Let $f : A \to B$ and $g : B \to C$ be maps. Then $g \circ f : A \to C$ is a map and $(g \circ f)(x) = g(f(x))$ for all $x \in A$.

Proof. Since $f : A \to B$ and $g : B \to C$ are maps, then f and g are functions, so $g \circ f$ is a function and dom $g \circ f = \{x \in domf : f(x) \in domg\}$ and $(g \circ f)(x) = g(f(x))$ for all $x \in dom g \circ f$.

Since dom f = A and dom g = B and $dom g \circ f = \{x \in dom f : f(x) \in dom g\}$, then $dom g \circ f = \{x \in A : f(x) \in B\}$, so $dom g \circ f \subset A$.

Let $x \in A$. Since $f : A \to B$ is a map, then $f(x) \in B$. Since $x \in A$ and $f(x) \in B$, then $x \in dom \text{ g} \circ f$. Hence, $A \subset dom \text{ g} \circ f$.

Since dom $g \circ f \subset A$ and $A \subset dom g \circ f$, then dom $g \circ f = A$.

Since $(g \circ f)(x) = g(f(x))$ for all $x \in dom \ g \circ f$, then $(g \circ f)(x) = g(f(x))$ for all $x \in A$.

We prove $rng g \circ f \subset C$. Let $y \in rng g \circ f$. Then there exists x such that $(x, y) \in g \circ f$. Since $(x, y) \in g \circ f$, then $x \in dom g \circ f$, so $x \in A$. Since $g \circ f$ is a function and $(x, y) \in g \circ f$, then $(g \circ f)(x) = y$, so $y = (g \circ f)(x) = g(f(x))$. Since $f : A \to B$ is a map and $x \in A$, then $f(x) \in B$. Since $g : B \to C$ is a map, then $g(f(x)) \in C$. Thus, $y \in C$, so $rng g \circ f \subset C$. Since $g \circ f$ is a function and $dom g \circ f = A$ and $rng g \circ f \subset C$, then $g \circ f : A \to C$ is a map.

Proposition 28. Let $f : A \to B$ be a map.

Let I_A be the identity map on A and I_B be the identity map on B. Then $f \circ I_A = I_B \circ f = f$.

Proof. We prove $f \circ I_A = f$.

Since $I_A : A \to A$ is a map and $f : A \to B$ is a map, then $f \circ I_A : A \to B$ is a map and $(f \circ I_A)(x) = f(I_A(x))$ for all $x \in A$.

Since the domain of $f \circ I_A$ and f is A, then $f \circ I_A$ and f have the same domain.

Since the codomain of $f \circ I_A$ and f is B, then $f \circ I_A$ and f have the same codomain.

Let $x \in A$.

Then $(f \circ I_A)(x) = f(I_A(x)) = f(x)$, so $(f \circ I_A)(x) = f(x)$ for all $x \in A$. Therefore, $f \circ I_A = f$.

Proof. We prove $I_B \circ f = f$.

Since $f: A \to B$ is a map and $I_B: B \to B$ is a map, then $I_B \circ f: A \to B$ is a map and $(I_B \circ f)(x) = I_B(f(x))$ for all $x \in A$.

Since the domain of $I_B \circ f$ and f is A, then $I_B \circ f$ and f have the same domain.

Since the codomain of $I_B \circ f$ and f is B, then $I_B \circ f$ and f have the same codomain.

Let $x \in A$.

Then $(I_B \circ f)(x) = I_B(f(x)) = f(x)$, so $(I_B \circ f)(x) = f(x)$ for all $x \in A$. Therefore, $I_B \circ f = f$.

Since $f \circ I_A = f$ and $I_B \circ f = f$, then $f \circ I_A = f = I_B \circ f$, as desired. \Box

Theorem 29. Left cancellation property of injective maps

Let $f: X \to Y$ be a map.

Then f is injective iff for every set W and every map $g : W \to X$ and $h: W \to X$ such that $f \circ g = f \circ h$ we have g = h.

Proof. We prove if f is injective, then for every set W and every map $g: W \to X$ and $h: W \to X$ such that $f \circ g = f \circ h$ we have g = h.

Suppose f is injective.

Let W be a set and let $g: W \to X$ and $h: W \to X$ be maps such that $f \circ g = f \circ h$.

We must prove g = h.

Since $g: W \to X$ is a map and $h: W \to X$ is a map, then domg = W = domh.

Let $x \in W$.

Since $f \circ g = f \circ h$, then $(f \circ g)(x) = (f \circ h)(x)$, so f(g(x)) = f(h(x)). Since f is injective, then g(x) = h(x). Thus, g(x) = h(x) for all $x \in W$, so g = h, as desired.

Proof. Conversely, we prove if for every set W and every map $g: W \to X$ and $h: W \to X$ such that $f \circ g = f \circ h$ implies g = h, then f is injective.

We prove by contrapositive.

Suppose f is not injective.

We must prove there exists a set W and there exist maps $g: W \to X$ and $h: W \to X$ such that $f \circ g = f \circ h$ and $g \neq h$.

Since f is not injective, then there exist $a, b \in X$ such that $a \neq b$ and f(a) = f(b).

Let $W = \{a, b\}.$ Let $g = \{(a, a), (b, a)\}.$ Then q is a function and $domq = \{a, b\} = W$ and $rnqq = \{a\} \subset X$. Thus, $q: W \to X$ is a map and q(a) = a = q(b). Let $h = \{(a, b), (b, b)\}.$ Then h is a function and $domh = \{a, b\} = W$ and $rngh = \{b\} \subset X$. Thus, $h: W \to X$ is a map and h(a) = b = h(b). Since $(a, a) \in h$ iff a = b and $a \neq b$, then $(a, a) \notin h$. Since $(a, a) \in g$, but $(a, a) \notin h$, then $g \neq h$. Since $g: W \to X$ is a map and $f: X \to Y$ is a map, then $f \circ g: W \to Y$ is a map and $(f \circ g)(x) = f(g(x))$ for all $x \in W$. Since $h: W \to X$ is a map and $f: X \to Y$ is a map, then $f \circ h: W \to Y$ is a map and $(f \circ h)(x) = f(h(x))$ for all $x \in W$. Observe that $dom(f \circ g) = W = dom(f \circ h)$. Observe that $(f \circ g)(a) = f(g(a)) = f(a) = f(b) = f(h(a)) = (f \circ h)(a)$. Observe that $(f \circ g)(b) = f(g(b)) = f(a) = f(b) = f(h(b)) = (f \circ h)(b)$. Since $dom(f \circ g) = W = dom(f \circ h)$ and $(f \circ g)(a) = (f \circ h)(a)$ and $(f \circ g)(b) =$

 $(f \circ h)(b)$, then $f \circ g = f \circ h$.

Proposition 30. A map $f : A \to B$ is surjective iff $(\forall b \in B)(\exists a \in A)(f(a) = b)$.

Proof. Let $f: A \to B$ be a map.

We first prove if f is surjective, then $(\forall b \in B)(\exists a \in A)(f(a) = b)$. Suppose f is surjective. Let $b \in B$. Since f is surjective, then rngf = B. Since $b \in B$, then $b \in rngf$, so there exists $a \in A$ such that f(a) = b.

Conversely, we prove if $(\forall b \in B)(\exists a \in A)(f(a) = b)$, then f is surjective. Suppose $(\forall b \in B)(\exists a \in A)(f(a) = b)$. Since $f : A \to B$ is a map, then $rngf \subset B$. We prove $B \subset rngf$. Suppose $b \in B$. Then there exists $a \in A$ such that f(a) = b. Hence, $b \in rngf$, so $B \subset rngf$. Since $rngf \subset B$ and $B \subset rngf$, then rngf = B, so f is surjective.

Theorem 31. Right cancellation property of surjective maps

Let X be a nonempty set. Let $f : X \to Y$ be a map. Then f is surjective iff for every set Z and every map $g : Y \to Z$ and $h: Y \to Z$ such that $g \circ f = h \circ f$ we have g = h.

Proof. We prove if f is surjective, then for every set Z and every map $g: Y \to Z$ and $h: Y \to Z$ such that $g \circ f = h \circ f$ we have g = h.

Suppose f is surjective.

Let Z be a set and let $g:Y\to Z$ and $h:Y\to Z$ be maps such that $g\circ f=h\circ f.$

We must prove g = h.

Since $g: Y \to Z$ is a map and $h: Y \to Z$ is a map, then g and h are functions and domg = Y = domh and the codomain of g is Z which is the codomain of h. Since $X \neq \emptyset$ and $f: X \to Y$ is a map, then there exists $x \in X$, so $f(x) \in Y$. Hence, $Y \neq \emptyset$. Let $y \in Y$.

Since f is surjective, then there exists $x \in X$ such that f(x) = y. Since $g \circ f = h \circ f$ and $x \in X$, then $(g \circ f)(x) = (h \circ f)(x)$. Observe that

$$g(y) = g(f(x)) = (g \circ f)(x) = (h \circ f)(x) = h(f(x)) = h(y).$$

Therefore, g(y) = h(y) for all $y \in Y$, so g = h, as desired.

Proof. Conversely, we prove if for every set Z and every map $g: Y \to Z$ and $h: Y \to Z$ such that $g \circ f = h \circ f$ implies g = h, then f is surjective.

We prove by contrapositive.

Suppose f is not surjective.

We must prove there exists a set Z and there exist maps $g: Y \to Z$ and $h: Y \to Z$ such that $g \circ f = h \circ f$ and $g \neq h$. Since f is not surjective, then there exists $y_0 \in Y$ such that for all $x \in X$,

Since f is not surjective, then there exists $g_0 \in T$ such that for all $x \in X$, $f(x) \neq y_0$. Since $X \neq \emptyset$, then there exists $x_0 \in X$. Since $f: X \to Y$ is a map, then $f(x_0) \in Y$. Let Z = Y. Let $g: Y \to Z$ be the identity map on Y defined by g(y) = y.

Let $h: Y \to Z$ be a map defined by h(y) = y if $y \neq y_0$ and $h(y_0) = f(x_0)$.

We prove $g \neq h$. Since $x_0 \in X$, then $f(x_0) \neq y_0$. Since $g(y_0) = y_0 \neq f(x_0) = h(y_0)$, then $g(y_0) \neq h(y_0)$, so $g \neq h$.

We prove $g \circ f = h \circ f$.

Since $f: X \to Y$ is a map and $g: Y \to Z$ is a map, then $g \circ f: X \to Z$ is a map and $(g \circ f)(x) = g(f(x))$ for all $x \in X$.

Since $f: X \to Y$ is a map and $h: Y \to Z$ is a map, then $h \circ f: X \to Z$ is a map and $(h \circ f)(x) = h(f(x))$ for all $x \in X$.

Observe that $dom(g \circ f) = X = dom(h \circ f)$. Let $x \in X$. Since $f : X \to Y$ is a map, then $f(x) \in Y$. Since $x \in X$, then $f(x) \neq y_0$. Observe that

$$(g \circ f)(x) = g(f(x))$$

= $f(x)$
= $h(f(x))$
= $(h \circ f)(x)$.

Hence, $(g \circ f)(x) = (h \circ f)(x)$ for all $x \in X$. Therefore, $g \circ f = h \circ f$, as desired.

Proposition 32. identity map is bijective.

Let S be a set. The identity map $I_S: S \to S$ on S is a bijection.

Proof. Let $I_S: S \to S$ be the map defined by $I_S(x) = x$ for all $x \in S$.

We prove I_S is injective. Let $a, b \in S$ such that $I_S(a) = I_S(b)$. Then a = b. Therefore, I_S is injective. We prove I_S is surjective. Let $b \in S$ be arbitrary. Let a = b. Then $a \in S$ and I(a) = a = b. Thus, there exists $a \in S$ such that $I_S(a) = b$. Therefore, I_S is surjective. Since I_S is injective and surjective, then I_S is bijective, as desired.

Theorem 33. Let $f : A \to B$ and $g : B \to C$ be maps.

1. If f and g are injective, then $g \circ f$ is injective. A composition of injections is an injection. 2. If f and g are surjective, then $g \circ f$ is surjective. A composition of surjections is a surjection. 3. If $g \circ f$ is injective, then f is injective. 4. If $g \circ f$ is surjective, then g is surjective. *Proof.* We prove 1. Suppose f and q are injective. Since $f: A \to B$ is a map and $g: B \to C$ is a map, then $g \circ f: A \to C$ is a map. Let $a, b \in A$ such that $(g \circ f)(a) = (g \circ f)(b)$. Then g(f(a)) = g(f(b)). Since g is injective, then f(a) = f(b). Since f is injective, then a = b. Therefore, $g \circ f$ is injective. *Proof.* We prove 2. Suppose f and q are surjective. Since $f: A \to B$ is a map and $g: B \to C$ is a map, then $g \circ f: A \to C$ is a map. Let $c \in C$ be arbitrary. Since g is surjective, then there exists $b \in B$ such that g(b) = c. Since f is surjective, then there exists $a \in A$ such that f(a) = b. Observe that $(q \circ f)(a) = q(f(a)) = q(b) = c$. Therefore, there exists $a \in A$ such that $(g \circ f)(a) = c$, so $g \circ f$ is surjective. \Box *Proof.* We prove 3. Suppose $g \circ f$ is injective. Since $f: A \to B$ is a map and $g: B \to C$ is a map, then $g \circ f: A \to C$ is a map. Let $a, b \in A$ such that f(a) = f(b).

Then $(g \circ f)(a) = g(f(a)) = g(f(b)) = (g \circ f)(b)$, so $(g \circ f)(a) = (g \circ f)(b)$. Since $g \circ f$ is injective, then a = b. Therefore, f is injective.

Proof. We prove 4. Suppose $g \circ f$ is surjective. Since $f: A \to B$ is a map and $g: B \to C$ is a map, then $g \circ f: A \to C$ is a map. Let $c \in C$ be arbitrary. Since $g \circ f$ is surjective, then there exists $a \in A$ such that $(g \circ f)(a) = c$. Since $a \in A$ and $f : A \to B$ is a map, then $f(a) \in B$. Observe that $g(f(a)) = (g \circ f)(a) = c$. Thus, there exists $f(a) \in B$ such that g(f(a)) = c. Therefore, g is surjective. **Corollary 34.** Let $f : A \to B$ and $g : B \to C$ be maps. 1. If f and g are bijective, then $g \circ f$ is bijective. A composition of bijections is a bijection. 2. If $g \circ f$ is bijective, then f is injective and g is surjective. *Proof.* We prove 1. Suppose f and q are bijective. Since $f: A \to B$ is a map and $g: B \to C$ is a map, then $g \circ f: A \to C$ is a map. Since f is bijective, then f is injective and surjective. Since q is bijective, then q is injective and surjective. Since f and g are injective, then $g \circ f$ is injective. Since f and g are surjective, then $g \circ f$ is surjective. Since $g \circ f$ is injective and surjective, then $g \circ f$ is bijective. *Proof.* We prove 2. Suppose $g \circ f$ is bijective. Then $g \circ f$ is injective and surjective. Since $g \circ f$ is injective, then f is injective. Since $g \circ f$ is surjective, then g is surjective. Theorem 35. existence of inverse function Let f be a function. Then the inverse relation f^{-1} is a function iff f is injective. *Proof.* We prove if f^{-1} is a function, then f is injective. Suppose f^{-1} is a function. Let $a_1, a_2 \in domf$ such that $f(a_1) = f(a_2)$. Since f is a relation, then $(a_1, f(a_1)) \in f$ and $(a_2, f(a_2)) \in f$. Since f^{-1} is an inverse of f, then $(f(a_1), a_1) \in f^{-1}$ and $(f(a_2), a_2) \in f^{-1}$.

Since f^{-1} is a function and $f(a_1) = f(a_2)$, then $a_1 = a_2$.

Therefore, f is injective.

Conversely, we prove if f is injective, then f^{-1} is a function. Suppose f is injective. Let $(a, b_1) \in f^{-1}$ and $(a, b_2) \in f^{-1}$. Since f^{-1} is an inverse of f, then $(b_1, a) \in f$ and $(b_2, a) \in f$, so $f(b_1) = a$ and $f(b_2) = a$. Thus, $f(b_1) = a = f(b_2)$. Since f is injective, then $b_1 = b_2$. Therefore, f^{-1} is a function.

Theorem 36. The inverse of an invertible map is unique.

Let $f : A \to B$ be an invertible map. Then the inverse map is unique.

Proof. Since $f : A \to B$ is an invertible map, then there exists a map that is an inverse of f.

Let $g: B \to A$ and $h: B \to A$ be inverse maps of f.

To prove the inverse map is unique, we must prove g = h.

Observe that the domain of g equals B which equals the domain of h and the codomain of g equals A which equals the codomain of h.

Let $x \in B$ be arbitrary. Since $g: B \to A$ is a map, then $g(x) \in A$. Since f is a relation, then $(g(x), x) \in f$. Since h and f are inverses, then $(x, g(x)) \in h$, so h(x) = g(x). Therefore, g = h, as desired.

Theorem 37. Let $f : A \to B$ and $g : B \to A$ be maps.

Then g is an inverse of f iff 1. $g \circ f = I_A$ 2. $f \circ g = I_B$.

Proof. We prove if g is an inverse of f, then $g \circ f = I_A$ and $f \circ g = I_B$.

Since $f : A \to B$ and $g : B \to A$ are maps, then $g \circ f : A \to A$ and $f \circ g : B \to B$ are maps and $(g \circ f)(a) = g(f(a))$ for all $a \in A$ and $(f \circ g)(b) = f(g(b))$ for all $b \in B$.

Suppose g is an inverse of f.

We prove $g \circ f = I_A$. Let I_A be the identity map on A. Then $dom(g \circ f) = A = dom I_A$. Let $a \in A$. Since f is a function, then $(a, f(a)) \in f$. Since g is an inverse of f, then $(f(a), a) \in g$, so g(f(a)) = a. Observe that

$$(g \circ f)(a) = g(f(a))$$

= a
= I_A(a).

Hence, $(g \circ f)(a) = I(a)$ for every $a \in A$. Therefore, $g \circ f = I_A$.

We prove $f \circ g = I_B$. Let I_B be the identity map on B. Then $dom(f \circ g) = B = dom I_B$. Let $b \in B$. Since g is a function, then $(b, g(b)) \in g$. Since f is an inverse of g, then $(g(b), b) \in f$, so f(g(b)) = b. Observe that

$$(f \circ g)(b) = f(g(b))$$

= b
= I(b).

Hence, $(f \circ g)(b) = I(b)$ for every $b \in B$. Therefore, $f \circ g = I_B$.

Proof. Conversely, we prove if $g \circ f = I_A$ and $f \circ g = I_B$, then g is an inverse of f.

Suppose $g \circ f = I_A$ and $f \circ g = I_B$.

Let $(a, b) \in f$. Then $a \in A$ and $b \in B$ and f(a) = b. Since $a \in A$, then $a = I_A(a) = (g \circ f)(a) = g(f(a)) = g(b)$, so $(b, a) \in g$. Hence, if $(a, b) \in f$, then $(b, a) \in g$.

Let $(b, a) \in g$. Then $b \in B$ and $a \in A$ and g(b) = a. Since $b \in B$, then $b = I_B(b) = (f \circ g)(b) = f(g(b)) = f(a)$, so $(a, b) \in f$. Hence, if $(b, a) \in g$, then $(a, b) \in f$. Since $(b, a) \in g$ implies $(a, b) \in f$ and $(a, b) \in f$ implies $(b, a) \in g$, then $(b, a) \in g$ iff $(a, b) \in f$. Therefore, g is an inverse of f.

Corollary 38. Let $f : A \to B$ be an invertible map. Then 1. $f^{-1} \circ f = I_A$ 2. $f \circ f^{-1} = I_B$.

Proof. Since $f: A \to B$ is an invertible map, then the inverse map $f^{-1}: B \to A$ exists, so f^{-1} is an inverse of f. Therefore, $f^{-1} \circ f = I_A$ and $f \circ f^{-1} = I_B$.

Theorem 39. An invertible map is bijective.

Let $f : A \to B$ be a map. Then f is invertible iff f is bijective.

Proof. We prove if f is bijective, then f is invertible. Suppose f is bijective. Then f is injective and surjective. Since f is injective, then the inverse relation f^{-1} is a function. Since f^{-1} is a relation, then $dom f^{-1} = rngf$ and $rngf^{-1} = dom f$. Since f is surjective, then rngf = B. Thus, $dom f^{-1} = rngf = B$ and $rngf^{-1} = dom f = A \subset A$. Since f^{-1} is a function and $dom f^{-1} = B$ and $rngf^{-1} \subset A$, then $f^{-1} : B \to B$ A is a map. Since f^{-1} is the inverse of f, then f is invertible. *Proof.* Conversely, we prove if f is invertible, then f is bijective. Suppose f is invertible. Then the inverse map $f^{-1}: B \to A$ exists. Hence, the inverse relation f^{-1} is a function, so f is injective. Let $b \in B$. Since $f^{-1}: B \to A$ is a map, then $f^{-1}(b) \in A$. Let $a = f^{-1}(b)$. Then $a \in A$. Since f^{-1} is the inverse of f and $f^{-1}(b) = a$, then f(a) = b. Therefore, there exists $a \in A$ such that f(a) = b, so f is surjective. Since f is injective and surjective, then f is bijective. **Lemma 40.** Let $f : A \to B$ be a map. If $f: A \to B$ is a bijection, then $f^{-1}: B \to A$ is a bijection. *Proof.* Suppose the map $f: A \to B$ is a bijection. Then f is bijective, so f is invertible. Hence, the map $f: A \to B$ is invertible, so the inverse map $f^{-1}: B \to A$ exists. We prove f^{-1} is injective. Let $b_1, b_2 \in B$ such that $f^{-1}(b_1) = f^{-1}(b_2)$. Let $a = f^{-1}(b_1) = f^{-1}(b_2)$. Then $f^{-1}(b_1) = a$ and $f^{-1}(b_2) = a$, so $(b_1, a) \in f^{-1}$ and $(b_2, a) \in f^{-1}$. Since f^{-1} is the inverse of f, then $(a, b_1) \in f$ and $(a, b_2) \in f$. Since f is a function and $(a, b_1) \in f$ and $(a, b_2) \in f$, then $b_1 = b_2$.

Therefore, f^{-1} is injective.

We prove f^{-1} is surjective. Let $a \in A$. Since $f : A \to B$ is a map, then $f(a) \in B$. Let b = f(a). Then $b \in B$. Since f^{-1} is the inverse of f and f(a) = b, then $f^{-1}(b) = a$. Thus, there exists $b \in B$ such that $f^{-1}(b) = a$, so f^{-1} is surjective. Since f^{-1} is injective and surjective, then f^{-1} is bijective.

Since $f^{-1}: B \to A$ is a map and f^{-1} is bijective, then $f^{-1}: B \to A$ is a bijection.

Theorem 41. Let $f : A \to B$ be a bijection. Then 1. $(f^{-1})^{-1}: A \to B$ is a bijection. 2. $(f^{-1})^{-1} = f$.

Proof. Since $f: A \to B$ is a bijection, then $f^{-1}: B \to A$ is a bijection, so $(f^{-1})^{-1}: A \to B$ is a bijection.

Observe that $(f^{-1})^{-1}: A \to B$ and $f: A \to B$ have the same domain A and same codomain B.

Let $a \in A$ be arbitrary.

Since f is a function, then there is a unique $b \in B$ such that f(a) = b. Since f^{-1} is the inverse of f, then $f^{-1}(b) = a$. Since $(f^{-1})^{-1}$ is the inverse of f^{-1} , then $(f^{-1})^{-1}(a) = b$. Thus, $(f^{-1})^{-1}(a) = b = f(a)$. Hence, $(f^{-1})^{-1}(a) = f(a)$ for all $a \in A$. Therefore, $(f^{-1})^{-1} = f$.

Theorem 42. Let $f : A \to B$ and $g : B \to C$ be bijections. Then

1. $(g \circ f)^{-1} : C \to A$ is a bijection. 2. $f^{-1} \circ g^{-1} : C \to A$ is a bijection. 3. $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof. Since $f: A \to B$ and $g: B \to C$ are bijections, then the composition $g \circ f : A \to C$ is a bijection, so $(g \circ f)^{-1} : C \to A$ is a bijection.

Since $f: A \to B$ is a bijection, then $f^{-1}: B \to A$ is a bijection.

Since $g: B \to C$ is a bijection, then $g^{-1}: C \to B$ is a bijection.

Thus, the composition $f^{-1} \circ g^{-1} : C \to A$ is a bijection. Observe that $(g \circ f)^{-1} : C \to A$ and $f^{-1} \circ g^{-1} : C \to A$ have the same domain C and same codomain A.

Let $c \in C$ be arbitrary.

Since $(g \circ f)^{-1}$ is a function, then there exists a unique $a \in A$ such that $(g \circ f)^{-1}(c) = a.$

Since $(g \circ f)^{-1}$ is the inverse of $g \circ f$, then $(g \circ f)(a) = c$.

Since f is a function and $a \in A$, then there exists a unique $b \in B$ such that f(a) = b.

Thus, $c = (g \circ f)(a) = g(f(a)) = g(b)$.

Since g^{-1} is the inverse of g and g(b) = c, then $g^{-1}(c) = b$. Since f^{-1} is the inverse of f and f(a) = b, then $f^{-1}(b) = a$. Observe that

$$(g \circ f)^{-1}(c) = a$$

= $f^{-1}(b)$
= $f^{-1}(g^{-1}(c))$
= $(f^{-1} \circ g^{-1})(c).$

Thus, $(g \circ f)^{-1}(c) = (f^{-1} \circ g^{-1})(c)$ for all $c \in C$. Therefore, $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Image and inverse image of functions

Proposition 43. Let $f : A \to B$ be a map.

- 1. Then f is injective iff every $b \in B$ has at most one pre-image.
- 2. Then f is surjective iff every $b \in B$ has at least one pre-image.
- 3. Then f is bijective iff every $b \in B$ has exactly one pre-image.

Proof. We prove 1.

We prove if f is injective, then every $b \in B$ has at most one preimage. Suppose f is injective. Let $b \in B$. Either there exists $a \in A$ such that f(a) = b or there does not exist $a \in A$.

such that f(a) = b.

We consider each case separately.

Case 1: Suppose there does not exist $a \in A$ such that f(a) = b. Then b has no preimage.

Case 2: Suppose there exists $a \in A$ such that f(a) = b.

Then a is a pre-image of b, so b has at least one pre-image.

Suppose $a_1, a_2 \in A$ are pre-images of b.

Then $f(a_1) = b$ and $f(a_2) = b$, so $f(a_1) = f(a_2)$.

Since f is injective, then $a_1 = a_2$, so there is at most one pre-image of b. In either case, at most one preimage of b exists.

Proof. Conversely, we prove if every $b \in B$ has at most one preimage, then f is injective.

Suppose every $b \in B$ has at most one preimage. To prove f is injective, let $a_1, a_2 \in A$ such that $f(a_1) = f(a_2)$. Let $b = f(a_1) = f(a_2)$. Since $f : A \to B$ is a map, then $b \in B$. Hence, b has at most one preimage, so there is at most one $a \in A$ such that

f(a) = b.Therefore, $a_1 = a_2$.

Proof. We prove 2.

We prove if f is surjective, then every $b \in B$ has at least one pre-image. Suppose f is surjective. Let $b \in B$ be arbitrary. Since f is surjective, then there exists $a \in A$ such that f(a) = b.

Hence, a is a pre-image of b, so b has at least one pre-image.

Proof. We prove 3.

We prove if f is bijective, then every $b \in B$ has exactly one pre-image. Suppose f is bijective. Then f is injective and surjective. Let $b \in B$.

Since f is surjective, then b has at least one pre-image.

Since f is injective, then b has at most one pre-image.

Since b has at least one pre-image and b has at most one pre-image, then b has exactly one pre-image. $\hfill \Box$

Proposition 44. Let $f : A \rightarrow B$ be a map. Then

f(∅) = ∅.
 The image of the empty set is the empty set.
 f⁻¹(∅) = ∅.
 The inverse image of the empty set is the empty set.
 f(A) = rngf.
 The image of the domain of f is the range of f.
 f⁻¹(B) = A.
 The inverse image of the codomain of f is the domain of f.

Proof. We prove 1.

We prove $f(\emptyset) = \emptyset$ by contradiction. Suppose $f(\emptyset) \neq \emptyset$. Then there exists $b \in f(\emptyset)$, so there exists $x \in \emptyset$ such that f(x) = b. Since \emptyset is empty, then $x \notin \emptyset$. Thus, we have $x \in \emptyset$ and $x \notin \emptyset$, a contradiction. Therefore, $f(\emptyset) = \emptyset$.

Proof. We prove 2.

We prove $f^{-1}(\emptyset) = \emptyset$ by contradiction. Suppose $f^{-1}(\emptyset) \neq \emptyset$. Then there exists $x \in f^{-1}(\emptyset)$, so $x \in A$ and $f(x) \in \emptyset$. Since \emptyset is empty, then $f(x) \notin \emptyset$. Thus, we have $f(x) \in \emptyset$ and $f(x) \notin \emptyset$, a contradiction. Therefore, $f^{-1}(\emptyset) = \emptyset$.

Proof. We prove 3. We prove f(A) = rngf. Since $b \in f(A)$ iff there exists $a \in A$ such that f(a) = b iff $b \in rngf$, then $b \in f(A)$ iff $b \in rngf$. Therefore, f(A) = rngf.

Proof. We prove 4. We prove $f^{-1}(B) = A$. Since $f^{-1}(B) = \{x \in A : f(x) \in B\}$, then $f^{-1}(B) \subset A$.

Let $x \in A$. Since $f : A \to B$ is a map, then $f(x) \in B$. Since $x \in A$ and $f(x) \in B$, then $x \in f^{-1}(B)$. Thus, $A \subset f^{-1}(B)$. Since $f^{-1}(B) \subset A$ and $A \subset f^{-1}(B)$, then $f^{-1}(B) = A$. **Proposition 45.** Let $f : X \to Y$ be a map. 1. For every subset A and B of X, if $A \subset B$, then $f(A) \subset f(B)$. 2. $f(A \cup B) = f(A) \cup f(B)$ for every subset A and B of X. The image of a union equals the union of the images. 3. $f(A \cap B) \subset f(A) \cap f(B)$ for every subset A and B of X. The image of an intersection is a subset of the intersection of the images. 4. $f(A \cap B) = f(A) \cap f(B)$ for every subset A and B of X iff f is injective. Proof. We prove 1. Let A and B be subsets of X such that $A \subset B$. We must prove $f(A) \subset f(B)$. Let $y \in f(A)$. Then there exists $x \in A$ such that f(x) = y. Since $x \in A$ and $A \subset B$, then $x \in B$. Thus, there exists $x \in B$ such that f(x) = y, so $y \in f(B)$. Therefore, $f(A) \subset f(B)$. *Proof.* We prove 2. Let A and B be subsets of X. We must prove $f(A \cup B) = f(A) \cup f(B)$. Observe that $y \in f(A \cup B) \iff$ there exists $x \in A \cup B$ such that y = f(x) \Leftrightarrow either there exists $x \in A$ or there exists $x \in B$ and y = f(x)either there exists $x \in A$ and y = f(x) or there exists $x \in B$ and y = f(x) \Leftrightarrow \Leftrightarrow either $y \in f(A)$ or $y \in f(B)$ $\Leftrightarrow \quad y \in f(A) \cup f(B).$ Therefore, $y \in f(A \cup B)$ iff $y \in f(A) \cup f(B)$, so $f(A \cup B) = f(A) \cup f(B)$. \Box Proof. We prove 2. Let A and B be subsets of X. We first prove $f(A \cup B) \subset f(A) \cup f(B)$. Let $y \in f(A \cup B)$. Then there exists $x \in A \cup B$ such that f(x) = y. Since $x \in A \cup B$, then either $x \in A$ or $x \in B$. **Case 1:** Suppose $x \in A$. Since $x \in A$ and y = f(x), then $y \in f(A)$. **Case 2:** Suppose $x \in B$. Since $x \in B$ and y = f(x), then $y \in f(B)$. Thus, either $y \in f(A)$ or $y \in f(B)$, so $y \in f(A) \cup f(B)$.

Therefore, $f(A \cup B) \subset f(A) \cup f(B)$.

We next prove $f(A) \cup f(B) \subset f(A \cup B)$. Let $y \in f(A) \cup f(B)$. Then either $y \in f(A)$ or $y \in f(B)$. **Case 1:** Suppose $y \in f(A)$. Then there exists $a \in A$ such that f(a) = y. Since $a \in A$, then either $a \in A$ or $a \in B$, so $a \in A \cup B$. Since $a \in A \cup B$ and f(a) = y, then $y \in f(A \cup B)$. **Case 2:** Suppose $y \in f(B)$. Then there exists $b \in B$ such that f(b) = y. Since $b \in B$, then either $b \in A$ or $b \in B$, so $b \in A \cup B$. Since $b \in A \cup B$ and f(b) = y, then $y \in f(A \cup B)$. Hence, in either case, $y \in f(A \cup B)$. Therefore, $f(A) \cup f(B) \subset f(A \cup B)$.

Since $f(A \cup B) \subset f(A) \cup f(B)$ and $f(A) \cup f(B) \subset f(A \cup B)$, then $f(A \cup B) = f(A) \cup f(B)$.

Proof. We prove 3.

Let A and B be subsets of X. We prove $f(A \cap B) \subset f(A) \cap f(B)$. Let $y \in f(A \cap B)$. Then there exists $x \in A \cap B$ such that f(x) = y. Since $x \in A \cap B$, then $x \in A$ and $x \in B$. Since $x \in A$ and f(x) = y, then $y \in f(A)$. Since $x \in B$ and f(x) = y, then $y \in f(B)$. Thus, $y \in f(A)$ and $y \in f(B)$, so $y \in f(A) \cap f(B)$. Therefore, $f(A \cap B) \subset f(A) \cap f(B)$.

Proof. We prove 4.

We prove $f(A \cap B) = f(A) \cap f(B)$ for every subset A and B of X iff f is injective.

We first prove if f is injective, then $f(A \cap B) = f(A) \cap f(B)$ for every subset A and B of X. Suppose f is injective.

Let A and B be subsets of X. We prove $f(A) \cap f(B) \subset f(A \cap B)$.

Let $y \in f(A) \cap f(B)$. Then $y \in f(A)$ and $y \in f(B)$. Since $y \in f(A)$, then y = f(a) for some $a \in A$. Since $y \in f(B)$, then y = f(b) for some $b \in B$. Hence, f(a) = y = f(b). Since f is injective and f(a) = f(b), then a = b. Since a = b and $b \in B$, then $a \in B$. Since $a \in A$ and $a \in B$, then $a \in A \cap B$. Since $a \in A \cap B$ and f(a) = y, then $y \in f(A \cap B)$. Therefore, $f(A) \cap f(B) \subset f(A \cap B)$. Since $f(A \cap B) \subset f(A) \cap f(B)$ and $f(A) \cap f(B) \subset f(A \cap B)$, then $f(A \cap B) = f(A) \cap f(B)$.

Conversely, we prove if $f(A \cap B) = f(A) \cap f(B)$ for every subset A and B of X, then f is injective.

We prove by contrapositive. Suppose f is not injective. Then there exist $x_1, x_2 \in X$ such that $x_1 \neq x_2$ and $f(x_1) = f(x_2)$. We must prove there exist subsets A and B of X such that $f(A \cap B) \neq A$ $f(A) \cap f(B).$ Let $A = \{x_1\}$ and $B = \{x_2\}$. Since $x_1 \in X$ and $A = \{x_1\}$, then $A \subset X$. Since $x_2 \in X$ and $B = \{x_1\}$, then $B \subset X$. We prove $f(A \cap B) \neq f(A) \cap f(B)$. If $A \cap B \neq \emptyset$, then there exists x such that $x \in A \cap B$, so $x \in A$ and $x \in B$. Hence, $x \in \{x_1\}$ and $x \in \{x_2\}$, so $x = x_1$ and $x = x_2$. Thus, $x_1 = x = x_2$. Therefore, if $A \cap B \neq \emptyset$, then $x_1 = x_2$, so if $x_1 \neq x_2$, then $A \cap B = \emptyset$. Since $x_1 \neq x_2$, then we conclude $A \cap B = \emptyset$. Since $x_1 \in A$, then $f(x_1) \in f(A)$. Since $x_2 \in B$, then $f(x_2) \in f(B)$. Since $f(x_1) = f(x_2)$ and $f(x_2) \in f(B)$, then $f(x_1) \in f(B)$. Thus, $f(x_1) \in f(A)$ and $f(x_1) \in f(B)$, so $f(x_1) \in f(A) \cap f(B)$. Hence, $f(A) \cap f(B) \neq \emptyset$. Therefore, $f(A \cap B) = f(\emptyset) = \emptyset \neq f(A) \cap f(B)$, as desired.

Proposition 46. Let $f : X \to Y$ be a map.

For every subset C and D of Y, if C ⊂ D, then f⁻¹(C) ⊂ f⁻¹(D).
 f⁻¹(C ∪ D) = f⁻¹(C) ∪ f⁻¹(D) for every subset C and D of Y.
 The inverse image of a union equals the union of the inverse images.
 f⁻¹(C ∩ D) = f⁻¹(C) ∩ f⁻¹(D) for every subset C and D of Y.
 The inverse image of an intersection equals the intersection of the inverse

images.

Proof. We prove 1.

Let C and D be subsets of Y such that $C \subset D$. Let $x \in f^{-1}(C)$. Then $x \in X$ and $f(x) \in C$. Since $f(x) \in C$ and $C \subset D$, then $f(x) \in D$. Hence, $x \in X$ and $f(x) \in D$, so $x \in f^{-1}(D)$. Therefore, $f^{-1}(C) \subset f^{-1}(D)$.

35

Proof. We prove 2. Let C and D be subsets of Y. We must prove $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$. Observe that

$$\begin{aligned} x \in f^{-1}(C \cup D) &\Leftrightarrow x \in X \text{ and } f(x) \in C \cup D \\ &\Leftrightarrow x \in X \text{ and either } f(x) \in C \text{ or } f(x) \in D \\ &\Leftrightarrow \text{ either } x \in X \text{ and } f(x) \in C \text{ or } x \in X \text{ and } f(x) \in D \\ &\Leftrightarrow \text{ either } x \in f^{-1}(C) \text{ or } x \in f^{-1}(D) \\ &\Leftrightarrow x \in f^{-1}(C) \cup f^{-1}(D). \end{aligned}$$

Therefore, $x \in f^{-1}(C \cup D)$ iff $x \in f^{-1}(C) \cup f^{-1}(D)$, so $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.

Proof. We prove 3.

Let C and D be subsets of Y. We must prove $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$. Observe that

$$\begin{aligned} x \in f^{-1}(C \cap D) &\Leftrightarrow x \in X \text{ and } f(x) \in C \cap D \\ &\Leftrightarrow x \in X \text{ and } f(x) \in C \text{ and } f(x) \in D \\ &\Leftrightarrow x \in X \text{ and } f(x) \in C \text{ and } x \in X \text{ and } f(x) \in D \\ &\Leftrightarrow x \in f^{-1}(C) \text{ and } x \in f^{-1}(D) \\ &\Leftrightarrow x \in f^{-1}(C) \cap f^{-1}(D). \end{aligned}$$

Therefore, $x \in f^{-1}(C \cap D)$ iff $x \in f^{-1}(C) \cap f^{-1}(D)$, so $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.

Proposition 47. inverse image of the image of a subset of the domain of a map

Let $f: A \to B$ be a map. Then 1. $S \subset f^{-1}(f(S))$ for every subset S of A. 2. $f^{-1}(f(S)) = S$ for every subset S of A iff f is injective. Proof. We prove 1. We prove $S \subset f^{-1}(f(S))$ for every subset S of A. Let $S \subset A$. Suppose $x \in S$. Then $f(x) \in f(S)$. Since $x \in S$ and $S \subset A$, then $x \in A$. Since $x \in A$ and $f(x) \in f(S)$, then $x \in f^{-1}(f(S))$. Therefore, $S \subset f^{-1}(f(S))$.

Proof. We prove 2.

We prove $f^{-1}(f(S)) = S$ for every subset S of A iff f is injective.

We first prove if $f^{-1}(f(S)) = S$ for every subset S of A, then f is injective. Suppose $f^{-1}(f(S)) = S$ for every subset S of A. To prove f is injective, let $a, b \in A$ such that f(a) = f(b). We must prove a = b. Let $S = \{a\}$. Since $a \in A$, then $S \subset A$. Hence, $f^{-1}(f(S)) = S$. Since $a \in S$, then $f(a) \in f(S)$. Since f(b) = f(a), then $f(b) \in f(S)$. Since $b \in A$ and $f(b) \in f(S)$, then $b \in f^{-1}(f(S))$. Thus, $b \in S$, so $b \in \{a\}$. Therefore, b = a, as desired.

Conversely, we prove if f is injective, then $f^{-1}(f(S)) = S$ for every subset S of A.

Suppose f is injective. Let $S \subset A$. We must prove $f^{-1}(f(S)) = S$. Let $x \in f^{-1}(f(S))$. Then $x \in A$ and $f(x) \in f(S)$. Since $f(x) \in f(S)$, then there exists $s \in S$ such that f(s) = f(x). Since f is injective, then s = x. Since $s \in S$, then $x \in S$. Therefore, $f^{-1}(f(S)) \subset S$. Since $f^{-1}(f(S)) \subset S$ and $S \subset f^{-1}(f(S))$, then $f^{-1}(f(S)) = S$.

Proposition 48. image of the inverse image of a subset of the codomain of a map

Let $f : A \to B$ be a map. Then 1. $f(f^{-1}(T)) \subset T$ for every subset T of B. 2. $f(f^{-1}(T)) = T$ for every subset T of B iff f is surjective.

Proof. We prove 1. Let $T \subset B$. We prove $f(f^{-1}(T)) \subset T$.

Let $y \in f(f^{-1}(T))$. Then there exists $x \in f^{-1}(T)$ such that f(x) = y. Since $x \in f^{-1}(T)$, then $x \in A$ and $f(x) \in T$. Thus, $y \in T$. Therefore, $f(f^{-1}(T)) \subset T$.

We must prove $f(f^{-1}(T)) = T$ for every subset T of B iff f is surjective.

We first prove if f is surjective, then $f(f^{-1}(T)) = T$ for every subset T of B. Suppose f is surjective. Let $T \subset B$. Let $y \in T$. Since f is surjective, then there exists $x \in A$ such that f(x) = y. Since $x \in A$ and $f(x) \in T$, then $x \in f^{-1}(T)$. Since y = f(x) and $x \in f^{-1}(T)$, then $y \in f(f^{-1}(T))$. Therefore, $T \subset f(f^{-1}(T))$. Since $f(f^{-1}(T)) \subset T$ and $T \subset f(f^{-1}(T))$, then $f(f^{-1}(T)) = T$.

Conversely, we prove if $f(f^{-1}(T)) = T$ for every subset T of B, then f is surjective.

Suppose $f(f^{-1}(T)) = T$ for every subset T of B. Since $B \subset B$, then $f(f^{-1}(B)) = B$. Observe that

$$B = f(f^{-1}(B))$$
$$= f(A)$$
$$= rngf.$$

Therefore, rngf = B, so f is surjective, as desired.