Relations and Functions Theory

Jason Sass

July 16, 2023

Relations

Proposition 1. Let R be a nonempty relation from set A to set B. Then

1. $\operatorname{dom} R^{-1}=$ range R.
2. range $R^{-1}=\operatorname{dom} R$.
3. $\left(R^{-1}\right)^{-1}=R$.

Proof. We prove dom $R^{-1}=$ range R.
Since R is not empty, then there is at least one ordered pair in R.
Let x be an arbitrary object in the domain of discourse.
We prove dom $R^{-1}=$ range R.
Observe that

$$
\begin{aligned}
x \in \operatorname{dom} R^{-1} & \Leftrightarrow x \in B \wedge(\exists y \in A)\left((x, y) \in R^{-1}\right) \\
& \Leftrightarrow x \in B \wedge(\exists y \in A)((y, x) \in R) \\
& \Leftrightarrow x \in \text { rangeR. }
\end{aligned}
$$

Therefore, dom $R^{-1}=$ range R.
Proof. We prove range $R^{-1}=\operatorname{dom} R$.
Observe that

$$
\begin{aligned}
x \in \operatorname{range} R^{-1} & \Leftrightarrow x \in A \wedge(\exists y \in B)\left((y, x) \in R^{-1}\right) \\
& \Leftrightarrow x \in A \wedge(\exists y \in B)((x, y) \in R) \\
& \Leftrightarrow x \in \operatorname{dom} R .
\end{aligned}
$$

Therefore, range $R^{-1}=\operatorname{dom} R$.
Proof. We prove $\left(R^{-1}\right)^{-1}=R$.
Let (a, b) be arbitrary.
Then

$$
\begin{aligned}
(a, b) \in\left(R^{-1}\right)^{-1} & \Leftrightarrow(b, a) \in R^{-1} \\
& \Leftrightarrow(a, b) \in R .
\end{aligned}
$$

Therefore, $\left(R^{-1}\right)^{-1}=R$.

Proposition 2. A relation R on a nonempty set S is reflexive iff $I_{S} \subset R$.
Proof. Let S be a nonempty set.
Since S is not empty, then there is an element in S, so let a be an element of S.

Let R be a relation on S.
We must prove R is reflexive iff $I_{S} \subset R$.
We first prove if R is reflexive, then $I_{S} \subset R$.

Suppose R is reflexive.
Let $(a, a) \in I_{S}$ be arbitrary.
Since R is reflexive and $a \in S$, then $(a, a) \in R$.
Hence, $(a, a) \in I_{S}$ implies $(a, a) \in R$, so $I_{S} \subset R$.

Conversely, we prove if $I_{S} \subset R$, then R is reflexive.
Suppose $I_{S} \subset R$.
Let $x \in S$ be arbitrary.
Then $(x, x) \in S \times S$.
Since there is an element $x \in S$ such that $(x, x) \in S \times S$, then $(x, x) \in I_{S}$.
Since $I_{S} \subset R$, then $(x, x) \in R$.
Therefore, R is reflexive.
Proposition 3. A relation R on a set S is symmetric iff $R=R^{-1}$.
Proof. Let R be a relation on a set S.
We must prove R is symmetric iff $R=R^{-1}$.
We prove if R is symmetric, then $R=R^{-1}$.

Suppose R is symmetric.
Let $(a, b) \in R$.
Since R is symmetric and $(a, b) \in R$, then $(b, a) \in R$.
Since $(b, a) \in R$ iff $(a, b) \in R^{-1}$, then $(a, b) \in R^{-1}$.
Hence, $(a, b) \in R$ implies $(a, b) \in R^{-1}$, so $R \subset R^{-1}$.
Let $(c, d) \in R^{-1}$.
Then, by definition of $R^{-1},(d, c) \in R$.
Since R is symmetric and $(d, c) \in R$, then $(c, d) \in R$.
Hence, $(c, d) \in R^{-1}$ implies $(c, d) \in R$, so $R^{-1} \subset R$.
Since $R \subset R^{-1}$ and $R^{-1} \subset R$, then $R=R^{-1}$.

Conversely, we prove if $R=R^{-1}$, then R is symmetric.
Suppose $R=R^{-1}$.
Let $(a, b) \in R$.
Since $R=R^{-1}$, then $(a, b) \in R^{-1}$.
Since $(a, b) \in R^{-1}$ iff $(b, a) \in R$, then $(b, a) \in R$.
Hence, $(a, b) \in R$ implies $(b, a) \in R$, so R is symmetric.

Proposition 4. Let r and s be relations.
Then $r \circ s \subset$ dom $s \times r n g r$.
Proof. Suppose $(a, b) \in r \circ s$.
Then there exists c such that $(a, c) \in s$ and $(c, b) \in r$.
Since $(a, c) \in s$, then $a \in d o m$ s.
Since $(c, b) \in r$, then $b \in r n g \mathrm{r}$.
Since $a \in d o m \mathrm{~s}$ and $b \in r n g \mathrm{r}$, then $(a, b) \in d o m \mathrm{~s} \times r n g \mathrm{r}$.
Therefore, $r \circ s \subset \operatorname{dom} \mathrm{~s} \times r n g \mathrm{r}$.

Equivalence Relations

Theorem 5. Let \sim be an equivalence relation on a set S.
Then

1. $a \in[a]$ for all $a \in S$.
2. $a \in[b]$ iff $a \sim b$ for all $a, b \in S$.
3. $[a]=[b]$ iff $a \sim b$ for all $a, b \in S$.
4. for all $a, b \in S$, either $[a]=[b]$ or $[a] \cap[b]=\emptyset$.
5. $\cup([a]: a \in S)=S$.

Proof. We prove 1.
Let $a \in S$.
Since \sim is an equivalence relation, then \sim is reflexive, so $a \sim a$.
Since $a \in S$ and $a \sim a$, then by definition of equivalence class, $a \in[a]$.
Proof. We prove 2.
Let $a, b \in S$.
Observe that

$$
\begin{aligned}
a \in[b] & \Leftrightarrow a \in S \wedge a \sim b \\
& \Leftrightarrow a \sim b .
\end{aligned}
$$

Proof. We prove 3.
Let $a, b \in S$.
We prove if $[a]=[b]$, then $a \sim b$.
Suppose $[a]=[b]$.
By statement 1 , we know that $a \in[a]$.
Since $a \in[a]$ and $[a]=[b]$, then $a \in[b]$.
Therefore, by statement 2 of the theorem, we conclude $a \sim b$.

Conversely, we prove if $a \sim b$, then $[a]=[b]$.
Suppose $a \sim b$.
We first prove $[a] \subset[b]$.
Let $x \in[a]$.
Then $x \in S$ and $x \sim a$.
Since $x \sim a$ and $a \sim b$, then $x \sim b$.
Since $x \in S$ and $x \sim b$, then $x \in[b]$.
Therefore, $x \in[a]$ implies $x \in[b]$, so $[a] \subset[b]$.
We next prove $[b] \subset[a]$.
Let $y \in[b]$.
Then $y \in S$ and $y \sim b$.
Since $a \sim b$, then $b \sim a$.
Since $y \sim b$ and $b \sim a$, then $y \sim a$.
Since $y \in S$ and $y \sim a$, then $y \in[a]$.
Therefore, $y \in[b]$ implies $y \in[a]$, so $[b] \subset[a]$.
Since $[a] \subset[b]$ and $[b] \subset[a]$, then $[a]=[b]$, as desired.
Proof. We prove 4.
Let $a, b \in S$.
To prove either $[a]=[b]$ or $[a] \cap[b]=\emptyset$, we prove $[a] \cap[b] \neq \emptyset$ implies $[a]=[b]$.
Suppose $[a] \cap[b] \neq \emptyset$.
Then $[a] \cap[b]$ is not empty, so there exists an element in $[a] \cap[b]$.
Let c be some element in $[a] \cap[b]$.
Then $c \in[a]$ and $c \in[b]$.
Since $c \in[a]$, then by statement 2 , we know that $c \sim a$.
Since $c \in[b]$, then b y statement 2 , we know that $c \sim b$.
Since $c \sim a$, then $a \sim c$.
Since $a \sim c$ and $c \sim b$, then $a \sim b$.
By statement 3 we conclude $[a]=[b]$, as desired.
Proof. We prove 5.
Let $x \in \cup([a]: a \in S)$.
Then there exists $a \in S$ such that $x \in[a]$.
Since $[a]=\{s \in S: s \sim a\}$, then $[a] \subset S$.
Since $x \in[a]$ and $[a] \subset S$, then $x \in S$.
Hence, $x \in \cup([a]: a \in S)$ implies $x \in S$, so $\cup([a]: a \in S) \subset S$.
Let $y \in S$.
By statement one, we know that $y \in[y]$.
Hence, there exists some $a \in S$ such that $y \in[a]$, so $y \in \cup([a]: a \in S)$.
Thus, $y \in S$ implies $y \in \cup([a]: a \in S)$, so $S \subset \cup([a]: a \in S)$.
Since $\cup([a]: a \in S) \subset S$ and $S \subset \cup([a]: a \in S)$, then $\cup([a]: a \in S)=S$.

Corollary 6. Let \sim be an equivalence relation on set S.
Then each element of S is an element of exactly one equivalence class.
Proof. Let x be an arbitrary element of S.
Since \sim is an equivalence relation, then by the previous theorem, $x \in[x]$.
Therefore, x is in at least one equivalence class.

Suppose there exist equivalence classes $[a]$ and $[b]$ such that $x \in[a]$ and $x \in[b]$. Since $x \in[a]$, then $x \sim a$.
Since $x \in[b]$, then $x \sim b$.
Since $x \sim a$, then $a \sim x$.
Since $a \sim x$ and $x \sim b$, then $a \sim b$.
By the previous theorem, we conclude $[a]=[b]$.
Therefore, x is in at most one equivalence class.

Since x is in at least one equivalence class and x is in at most one equivalence class, then x is in exactly one equivalence class.

Theorem 7. Any partition of a set yields a corresponding equivalence relation

Let S be a nonempty set.
Let P be a partition of S.
Define a relation \sim on S by $a \sim b$ iff there exists a cell $T \in P$ such that $a \in T$ and $b \in T$ for all $a, b \in S$.

Then \sim is an equivalence relation on S.
Proof. We prove \sim is an equivalence relation on S.
Let $a \in S$.
Then by condition 3 in the definition of partition, there exists $T \in P$ such that $a \in T$.

Hence, there exists $T \in P$ such that $a \in T$ and $a \in T$, so $a \sim a$.
Therefore, \sim is reflexive.

Let $a, b \in S$ such that $a \sim b$.
Then there exists $T \in P$ such that $a \in T$ and $b \in T$.
Hence, there exists $T \in P$ such that $b \in T$ and $a \in T$.
Thus, $b \sim a$.
Hence, $a \sim b$ implies $b \sim a$, so \sim is symmetric.
Let $a, b, c \in S$ such that $a \sim b$ and $b \sim c$.
Then there exists $V \in P$ such that $a \in V$ and $b \in V$ and there exists $W \in P$ such that $b \in W$ and $c \in W$.

To prove $a \sim c$, we must prove there exists $T \in P$ such that $a \in T$ and $c \in T$.

Since $b \in V$ and $b \in W$, then $b \in V \cap W$, so $V \cap W \neq \emptyset$.
By condition 2 in the definition of partition of a set, either $V=W$ or $V \cap W=\emptyset$. Hence, $V=W$.

Let T be the set $V=W$.
Then $T=V=W$.
Since $a \in V$ and $V=T$, then $a \in T$.
Since $c \in W$ and $W=T$, then $c \in T$.
Hence, there exists $T \in P$ such that $a \in T$ and $c \in T$, so $a \sim c$.
Thus, $a \sim b$ and $b \sim c$ imply $a \sim c$, so \sim is transitive.
Therefore, \sim is an equivalence relation on S.
Theorem 8. Any equivalence relation on a set yields a corresponding partition

Let \sim be an equivalence relation on a nonempty set S.
Then the collection $\frac{S}{\sim}=\{[x]: x \in S\}$ of equivalence classes induced by \sim is a partition of S.

Solution.

Our hypothesis is

1. S is a nonempty set.
$2 . \sim$ is an equivalence relation on S.
Our conclusion is $\frac{S}{\sim}=\{[x]: x \in S\}$ is a partition of S.
To prove $\frac{S}{\sim}$ is a partition of S, we must prove:
2. $\left(\forall T \in \frac{S}{\sim}\right)(T \subset S)$.
3. $\left(\forall T \in \frac{S}{\sim}\right)(T \neq \emptyset)$.
4. for all $\widetilde{T}_{1}, T_{2} \in \frac{S}{\sim}$, either $T_{1}=T_{2}$ or $T_{1} \cap T_{2}=\emptyset$.
5. $(\forall x \in S)\left(\exists T \in \frac{S}{\sim}\right)(x \in T)$.

By hypothesis \sim is an equivalence relation, so \sim is reflexive, symmetric, and transitive.

Proof. Let $\frac{S}{\sim}$ be the collection of all equivalence classes of \sim. Then $\frac{S}{\sim}=\{[x]$: $x \in S\}$.

Since S is not empty, then there is an element of S.
Let a be some element of S.
Since $a \in S$ and \sim is an equivalence relation on S, then $a \in[a]$.
Thus, $[a] \in \frac{S}{\sim}$, so $\frac{S}{\sim}$ is not empty.
Let $T \in \frac{S}{\sim}$.
Then there exists $a \in S$ such that $T=[a]$.
Since $[a]=\{x \in S: a \sim x\}$, then $[a] \subset S$, so $T \subset S$.
Since $a \in S$ and \sim is an equivalence relation on S, then $a \in[a]$.
Hence, $[a] \neq \emptyset$, so $T \neq \emptyset$.
Therefore, T is a nonempty subset of S, so every element of $\frac{S}{\sim}$ is a nonempty subset of S.

We prove for all $T_{1}, T_{2} \in \frac{S}{\sim}$, either $T_{1}=T_{2}$ or $T_{1} \cap T_{2}=\emptyset$.
Let $T_{1}, T_{2} \in \frac{S}{\sim}$.
Then there exists $a \in S$ such that $T_{1}=[a]$ and there exists $b \in S$ such that $T_{2}=[b]$.

Since \sim is an equivalence relation on S and $a \in S$ and $b \in S$, then either $[a]=[b]$ or $[a] \cap[b]=\emptyset$.

Hence, either $T_{1}=T_{2}$ or $T_{1} \cap T_{2}=\emptyset$.
We prove for every $x \in S$, there exists $T \in \frac{S}{\sim}$ such that $x \in T$.
Let $x \in S$.
Since \sim is an equivalence relation on S, then $x \in[x]$.
Let $T=[x]$.
Then $x \in T$.
Since $x \in S$, then $[x] \in \frac{S}{\sim}$, so $T \in \frac{S}{\sim}$.
Thus, there exists $T \in \frac{S}{\sim}$ such that $x \in T$.
Hence, each element of S lies in at least one element of $\frac{S}{\sim}$.
Therefore, $\underset{\sim}{S}$ is a partition of S.
Theorem 9. If R is an equivalence relation on a set S, then $\frac{S}{\frac{S}{R}}=R$.
If P is a partition of a set S, then $\frac{S}{\frac{S}{P}}=P$.
Proof. Suppose R is an equivalence relation on a set S.
Then $\frac{S}{R}$, the collection of all equivalence classes induced by R, is a partition of S.

Therefore, $\frac{S}{\frac{S}{R}}$ is an equivalence relation on S defined by $(a, b) \in \frac{S}{\frac{S}{R}}$ iff there exists a cell $T \in \frac{S}{R}$ such that $a \in T$ and $b \in T$ for all $a, b \in S$.

To prove $\frac{S}{\frac{S}{R}}=R$, we prove $\frac{S}{\frac{S}{R}} \subset R$ and $R \subset \frac{S}{\frac{S}{R}}$.
Let $(x, y) \in \frac{S}{\frac{S}{R}}$.
Then $x \in S^{R}$ and $y \in S$ and there exists a cell $T \in \frac{S}{R}$ such that $x \in T$ and $y \in T$.

Each element of $\frac{S}{R}$ is an equivalence class of R, so T is an equivalence class of R.

Since x is in exactly one equivalence class of R and $x \in[x]$ and $x \in T$, then $[x]=T$.

Since y is in exactly one equivalence class of R and $y \in[y]$ and $y \in T$, then $[y]=T$.

Therefore, $[x]=T=[y]$, so $x R y$.
Hence, $(x, y) \in R$.
Thus, $(x, y) \in \frac{S}{\frac{S}{R}}$ implies $(x, y) \in R$, so $\frac{S}{\frac{S}{R}} \subset R$.
Let $(x, y) \in R$.
Then $x R y$, so $[x]=[y]$.
Let $T=[x]=[y]$.
Then $T \in \frac{S}{R}$ and $x \in[x]$ and $y \in[y]$.
Thus, there exists a cell T in the partition $\frac{S}{R}$ such that $x \in T$ and $y \in T$, so $(x, y) \in \frac{S}{\frac{S}{R}}$.

Hence, $(x, y) \in R$ implies $(x, y) \in \frac{S}{\frac{S}{R}}$, so $R \subset \frac{S}{\frac{S}{R}}$.
Since $\frac{S}{\frac{S}{R}} \subset R$ and $R \subset \frac{S}{\frac{S}{R}}$, then $\frac{S}{\frac{S}{R}}=R$.
Proof. We prove if P is a partition of set S, then $\frac{S}{\frac{S}{P}}=P$.
Suppose P is a partition of S.
Then $\frac{S}{P}$ defined by $(a, b) \in \frac{S}{P}$ iff there exists a cell $T \in P$ such that $a \in T$ and $b \in T$ for all $a, b \in S$ is an equivalence relation on S.

Thus, $\frac{S}{\frac{S}{P}}=\{[x]: x \in S\}$, the collection of all equivalence classes induced by $\frac{S}{P}$, is a partition of S.

To prove $\frac{S}{\frac{S}{P}}=P$, we prove $\frac{S}{\frac{S}{P}} \subset P$ and $P \subset \frac{S}{\frac{S}{P}}$.
We first prove $P \subset \frac{S}{\frac{S}{P}}$.
Let $T \in P$.
To prove $T \in \frac{S}{\frac{S}{P}}$, we must show there exists $x \in S$ such that $T=[x]$.
Since $T \in P$, then $T \subset S$ and by condition 1 in the definition of partition, $T \neq \emptyset$.

Thus, T is not empty, so there is an element in T.
Let x be an element of T.
Since $x \in T$ and $T \subset S$, then $x \in S$.
To prove $T=[x]$, we prove $T \subset[x]$ and $[x] \subset T$.
Observe that $[x]=\left\{s \in S:(x, s) \in \frac{S}{P}\right\}=\left\{s \in S:\left(\exists T^{\prime} \in P\right)\left(x \in T^{\prime} \wedge s \in\right.\right.$ $\left.\left.T^{\prime}\right)\right\}$.

We prove $T \subset[x]$.
Let $t \in T$.
To prove $t \in[x]$, we must prove $t \in S$ and there exists a cell T^{\prime} such that $x \in T^{\prime}$ and $t \in T^{\prime}$.

Since $t \in T$ and $T \subset S$, then $t \in S$.
Let $T^{\prime}=T$.
Then $x \in T^{\prime}$ since $x \in T$ and $t \in T^{\prime}$ since $t \in T$.
Hence, $t \in[x]$.
Thus, $t \in T$ implies $t \in[x]$, so $T \subset[x]$.

We prove $[x] \subset T$.
Let $s \in[x]$. We must prove $s \in T$.
Since $s \in[x]$, then $s \in S$ and there exists a cell $T^{\prime} \in P$ such that $x \in T^{\prime}$ and $s \in T^{\prime}$.

Since $x \in T$ and $x \in T^{\prime}$, then $x \in T \cap T^{\prime}$.
Thus, $T \cap T^{\prime} \neq \emptyset$.
By condition 2 in the definition of partition, either $T=T^{\prime}$ or $T \cap T^{\prime}=\emptyset$.
Hence, $T=T^{\prime}$.
Since $s \in T^{\prime}$ and $T^{\prime}=T$, then $s \in T$.
Thus, $s \in[x]$ implies $s \in T$, so $[x] \subset T$.

Since $T \subset[x]$ and $[x] \subset T$, then $T=[x]$.
Therefore, there exists $x \in S$ such that $T=[x]$, so $T \in \frac{S}{\frac{S}{P}}$.
Thus, $T \in P$ implies $T \in \frac{S}{\frac{S}{P}}$, so $P \subset \frac{S}{\frac{S}{P}}$.
We now prove $\frac{S}{\frac{S}{P}} \subset P$.
Let $T \in \frac{S}{\frac{S}{P}}$.
Then there exists $x \in S$ such that $T=[x]$.
We must prove $T \in P$.
Since $x \in[x]$ and $[x]=T$, then $x \in T$.
Since $x \in[x]$, then by definition of $[x]$, there exists $T^{\prime} \in P$ such that $x \in T^{\prime}$.
Thus, $x \in T$ and $x \in T^{\prime}$, so $x \in T \cap T^{\prime}$.
Hence, $T \cap T^{\prime} \neq \emptyset$.
By condition 2 in the definition of partition, either $T=T^{\prime}$ or $T \cap T^{\prime}=\emptyset$.
Thus, $T=T^{\prime}$.
Since $T=T^{\prime}$ and $T^{\prime} \in P$, then $T \in P$.
Hence, $T \in \frac{S}{\frac{S}{P}}$ implies $T \in P$, so $\frac{S}{\frac{S}{P}} \subset P$.
Since $\frac{S}{\frac{S}{P}} \subset P$ and $P \subset \frac{S}{\frac{S}{P}}$, then $\frac{S}{\frac{S}{P}}=P$.
Proposition 10. If E_{1} and E_{2} are equivalence relations on a set S, then $E_{1} \cap E_{2}$ is an equivalence relation on S.

Proof. Suppose E_{1} and E_{2} are equivalence relations on a set S.
Let $R=E_{1} \cap E_{2}$.
Since $E_{1} \cap E_{2} \subset E_{1}$ and $E_{1} \subset S \times S$, then $E_{1} \cap E_{2} \subset S \times S$.
Thus, $R \subset S \times S$, so R is a relation on S.

Reflexive:

Let $x \in S$.
Since E_{1} is reflexive, then $(x, x) \in E_{1}$.
Since E_{2} is reflexive, then $(x, x) \in E_{2}$.
Thus, $(x, x) \in E_{1}$ and $(x, x) \in E_{2}$, so $(x, x) \in E_{1} \cap E_{2}$.
Hence, $(x, x) \in R$.
Therefore, R is reflexive.
Symmetric:
Let $x, y \in S$ such that $(x, y) \in R$.
Since $R=E_{1} \cap E_{2}$, then $(x, y) \in E_{1}$ and $(x, y) \in E_{2}$.
Since E_{1} is symmetric and $(x, y) \in E_{1}$, then $(y, x) \in E_{1}$.
Since E_{2} is symmetric and $(x, y) \in E_{2}$, then $(y, x) \in E_{2}$.
Thus, $(y, x) \in E_{1}$ and $(y, x) \in E_{2}$, so $(y, x) \in E_{1} \cap E_{2}$.
Hence, $(y, x) \in R$.
Therefore, $(x, y) \in R$ implies $(y, x) \in R$, so R is symmetric.

Transitive:
Let $x, y, z \in S$ such that $(x, y) \in R$ and $(y, z) \in R$.
Since $R=E_{1} \cap E_{2}$, then $(x, y) \in E_{1}$ and $(x, y) \in E_{2}$ and $(y, z) \in E_{1}$ and $(y, z) \in E_{2}$.

Since E_{1} is transitive and $(x, y) \in E_{1}$ and $(y, z) \in E_{1}$, then $(x, z) \in E_{1}$.
Since E_{2} is transitive and $(x, y) \in E_{2}$ and $(y, z) \in E_{2}$, then $(x, z) \in E_{2}$.
Thus, $(x, z) \in E_{1}$ and $(x, z) \in E_{2}$, so $(x, z) \in E_{1} \cap E_{2}=R$.
Therefore, $(x, y) \in R$ and $(y, z) \in R$ implies $(x, z) \in R$, so R is transitive.
Since R is reflexive, symmetric, and transitive, then R is an equivalence relation on S.

Therefore, $E_{1} \cap E_{2}$ is an equivalence relation on S.
Theorem 11. Let \sim be an equivalence relation on a set S.
Let $\frac{S}{\sim}=\{[a]: a \in S\}$.
Let $\tilde{f}: S \rightarrow \frac{S}{\sim}$ be a binary relation from S to $\frac{S}{\sim}$ defined by $f(a)=[a]$ for all $a \in S$.

Then f is a surjective function.
Solution. We must prove f is a function and f is surjective.
To prove f is a function, we must prove:

1. Existence: $f(a) \in \frac{S}{\sim}$.
2. Uniqueness: if $a_{1}, a_{2} \in S$ such that $a_{1}=a_{2}$, then $f\left(a_{1}\right)=f\left(a_{2}\right)$.

Proof. Let $a \in S$.
Then $f(a)=[a]$.
Hence, there exists $a \in S$ such that $f(a)=[a]$.
Therefore, $f(a) \in \frac{S}{\sim}$.

Let $a_{1}, a_{2} \in S$ such that $a_{1}=a_{2}$.
Since \sim is an equivalence relation on S, then \sim is reflexive.
Thus, $a_{1} \sim a_{1}$.
Hence, $a_{1} \sim a_{2}$.
Therefore, $\left[a_{1}\right]=\left[a_{2}\right]$.
Observe that

$$
\begin{aligned}
f\left(a_{1}\right) & =\left[a_{1}\right] \\
& =\left[a_{2}\right] \\
& =f\left(a_{2}\right) .
\end{aligned}
$$

Thus, $a_{1}=a_{2}$ implies $f\left(a_{1}\right)=f\left(a_{2}\right)$, so f is well defined.
Therefore, f is a function.

Let $[b] \in \frac{S}{\sim}$.
Then $b \in S$.
Thus, $f(b)=[b]$.
Hence, there exists $b \in S$ such that $f(b)=[b]$.
Therefore, f is surjective.
Theorem 12. Let \sim be an equivalence relation over a set S.
Let f be the natural projection of S onto $\frac{S}{\sim}$.
Then $x_{1} \sim x_{2}$ iff $f\left(x_{1}\right)=f\left(x_{2}\right)$ for all $x_{1}, x_{2} \in S$.
Proof. Let $x_{1}, x_{2} \in S$.
Since f is the natural projection of S onto $\frac{S}{\sim}$, then $f\left(x_{1}\right)=\left[x_{1}\right]$ and $f\left(x_{2}\right)=$ $\left[x_{2}\right]$.

Observe that

$$
\begin{aligned}
x_{1} \sim x_{2} & \Leftrightarrow\left[x_{1}\right]=\left[x_{2}\right] \\
& \Leftrightarrow f\left(x_{1}\right)=f\left(x_{2}\right) .
\end{aligned}
$$

Proposition 13. Let $f: A \rightarrow B$ be a function.
Let \sim be a relation defined on A by $x_{1} \sim x_{2}$ iff $f\left(x_{1}\right)=f\left(x_{2}\right)$ for all $x_{1}, x_{2} \in A$.

Then \sim is an equivalence relation on A.
Proof. Let $a \in A$.
Then $f(a)=f(a)$.
Since $f(a)=f(a)$ iff $a \sim a$, then $a \sim a$.
Hence, \sim is reflexive.

Let $a, b \in A$ such that $a \sim b$.
Then $f(a)=f(b)$, so $f(b)=f(a)$.
Since $f(b)=f(a)$ iff $b \sim a$, then $b \sim a$.
Hence, $a \sim b$ implies $b \sim a$, so \sim is symmetric.

Let $a, b, c \in A$ such that $a \sim b$ and $b \sim c$.
Then $f(a)=f(b)$ and $f(b)=f(c)$.
Thus, $f(a)=f(b)=f(c)$, so $f(a)=f(c)$.
Since $f(a)=f(c)$ iff $a \sim c$, then $a \sim c$.
Therefore, $a \sim b$ and $b \sim c$ imply $a \sim c$, so \sim is transitive.
Since \sim is reflexive, symmetric, and transitive, then \sim is an equivalence relation on A.

Theorem 14. Let $f: A \rightarrow B$ be a function.
Let $\operatorname{ker} f$ be the kernel of f.
Then there is a bijection from $\frac{A}{\operatorname{ker} f}$ to $f(A)$.
Moreover, $f^{-1}(b)$ is an equivalence class of A under $\operatorname{ker} f$ for every $b \in f(A)$.

Proof. Since the kernel of f is an equivalence relation on A, then the quotient set of A under ker f exists.

Let $\frac{A}{\operatorname{ker} f}$ be the quotient set of A under $\operatorname{ker} f$.
Then $\frac{A}{\operatorname{ker} f}=\{[x]: x \in A\}$.
Since f is a function, then the image of A under f exists.
Let $f(A)$ be the image of A under f.
Then $f(A)=\{f(x) \in B: x \in A\}$.

Let $g: \frac{A}{\operatorname{ker} f} \rightarrow f(A)$ be a binary relation from $\frac{A}{\operatorname{ker} f}$ to $f(A)$ defined by $g([x])=f(x)$ for all $[x] \in \frac{A}{\operatorname{ker} f}$.

We prove g is a function.
Let $[x] \in \frac{A}{\operatorname{ker} f}$.
Then $x \in A$ and $g([x])=f(x)$.
Since f is a function, then $f(x) \in B$.
Thus, there exists $x \in A$ such that $f(x) \in B$, so $f(x) \in f(A)$.
Hence, $g([x]) \in f(A)$.
Let $\left[x_{1}\right],\left[x_{2}\right] \in \frac{A}{\operatorname{ker} f}$ such that $\left[x_{1}\right]=\left[x_{2}\right]$.
Then $x_{1}, x_{2} \in A$.
Since ker f is an equivalence relation on A, then $\left[x_{1}\right]=\left[x_{2}\right]$ iff $x_{1} \sim x_{2}$ and $x_{1} \sim x_{2}$ iff $f\left(x_{1}\right)=f\left(x_{2}\right)$.

Thus, $\left[x_{1}\right]=\left[x_{2}\right]$ iff $f\left(x_{1}\right)=f\left(x_{2}\right)$.
Hence, $f\left(x_{1}\right)=f\left(x_{2}\right)$.
Observe that

$$
\begin{aligned}
g\left(\left[x_{1}\right]\right) & =f\left(x_{1}\right) \\
& =f\left(x_{2}\right) \\
& =g\left(\left[x_{2}\right]\right) .
\end{aligned}
$$

Therefore, $\left[x_{1}\right]=\left[x_{2}\right]$ implies $g\left(\left[x_{1}\right]\right)=g\left(\left[x_{2}\right]\right)$, so g is well defined.
Therefore, g is a function.
Let $f(x) \in f(A)$.
Then there exists $x \in A$ such that $f(x) \in B$.
Since $x \in A$, then $[x] \in \frac{A}{\operatorname{ker} f}$.
Thus, $g([x])=f(x)$.
Hence, there exists $[x] \in \frac{A}{\text { ker } f}$ such that $g([x])=f(x)$.
Therefore, g is surjective.

Let $[a],[b] \in \frac{A}{\operatorname{ker} f}$ such that $g([a])=g([b])$.
Then $a, b \in A$ and $f(a)=f(b)$.
Since $f(a)=f(b)$ iff $a \sim b$ and $a \sim b$ iff $[a]=[b]$, then $f(a)=f(b)$ iff $[a]=[b]$.

Thus, $[a]=[b]$.
Hence, $g([a])=g([b])$ implies $[a]=[b]$, so g is injective.

Since g is a surjective and injective, then g is bijective.
Therefore, g is a bijection from $\frac{A}{\operatorname{ker} f}$ to $f(A)$.
We prove the pre image of each element in $f(A)$ is an equivalence class of A under ker f.

Let $b \in f(A)$.
Then there exists $a \in A$ such that $f(a)=b$.
Let $f^{-1}(b)$ be the preimage of b.
Then $f^{-1}(b)=\{a \in A: f(a)=b\}$.
Let $x \in[a]$.
Then $x \in A$ and $x \sim a$.
Since $x \sim a$ iff $f(x)=f(a)$, then $f(x)=f(a)$.
Thus, $f(x)=f(a)=b$.
Hence, there exists $x \in A$ such that $f(x)=b$, so $x \in f^{-1}(b)$.
Therefore, $x \in[a]$ implies $x \in f^{-1}(b)$, so $[a] \subset f^{-1}(b)$.
Let $y \in f^{-1}(b)$.
Then $y \in A$ and $f(y)=b$.
Since $f(y)=b=f(a)$, then $f(y)=f(a)$.
Since $f(y)=f(a)$ iff $y \sim a$, then $y \sim a$.
Hence, $y \in A$ and $y \sim a$, so $y \in[a]$.
Thus, $y \in f^{-1}(b)$ implies $y \in[a]$, so $f^{-1}(b) \subset[a]$.
Since $[a] \subset f^{-1}(b)$ and $f^{-1}(b) \subset[a]$, then $[a]=f^{-1}(b)$.
Therefore, there exists $a \in A$ such that $[a]=f^{-1}(b)$.
Hence, $f^{-1}(b) \in \frac{A}{\operatorname{ker} f}$.
Thus, $f^{-1}(b)$ is an equivalence class of A under ker f.

Partial Orders

Proposition 15. Any element of a partially ordered set is an upper and lower bound of \emptyset.

Proof. Let (S, \leq) be a partially ordered set.
Since the empty set is a subset of any set, then $\emptyset \subset S$. Since (S, \leq) is a poset, then S is not empty.

Let $s \in S$.
To prove s is an upper bound of \emptyset, we must prove $x \leq s$ for all $x \in \emptyset$.
Since there is no element in \emptyset, then the statement there exists $x \in \emptyset$ such that $x \not \leq s$ is false. Hence, the statement $x \leq s$ for all $x \in \emptyset$ is true. Therefore, s is an upper bound of \emptyset, as desired.

To prove s is a lower bound of \emptyset, we must prove $s \leq x$ for all $x \in \emptyset$.

Since there is no element in \emptyset, then the statement there exists $x \in \emptyset$ such that $s \not \leq x$ is false. Hence, the statement $s \leq x$ for all $x \in \emptyset$ is true. Therefore, s is a lower bound of \emptyset, as desired.

Theorem 16. uniqueness of maximum of a poset
Let (P, \leq) be a poset. Let $S \subset P$. The greatest element of S, if it exists, is unique.

Proof. Suppose there is a greatest element of S. Let M be a greatest element of S.

To prove M is unique, suppose M_{1} and M_{2} are greatest elements of S. We must prove $M_{1}=M_{2}$.

Since M_{1} is a greatest element of S, then $M_{1} \in S$ and $x \leq M_{1}$ for all $x \in S$. Since M_{2} is a greatest element of S, then $M_{2} \in S$ and $x \leq M_{2}$ for all $x \in S$. Since $M_{2} \in S$ and $x \leq M_{1}$ for all $x \in S$, then $M_{2} \leq M_{1}$. Since $M_{1} \in S$ and $x \leq M_{2}$ for all $x \in S$, then $M_{1} \leq M_{2}$. Since \leq is antisymmetric and $M_{1} \leq M_{2}$ and $M_{2} \leq M_{1}$, then $M_{1}=M_{2}$.

Therefore, M is unique.
Theorem 17. uniqueness of minimum of a poset
Let (P, \leq) be a poset. Let $S \subset P$. The least element of S, if it exists, is unique.

Proof. Suppose there is a least element of S. Let m be a least element of S.
To prove m is unique, suppose m_{1} and m_{2} are least elements of S. We must prove $m_{1}=m_{2}$.

Since m_{1} is a least element of S, then $m_{1} \in S$ and $m_{1} \leq x$ for all $x \in S$. Since m_{2} is a least element of S, then $m_{2} \in S$ and $m_{2} \leq x$ for all $x \in S$. Since $m_{2} \in S$ and $m_{1} \leq x$ for all $x \in S$, then $m_{1} \leq m_{2}$. Since $m_{1} \in S$ and $m_{2} \leq x$ for all $x \in S$, then $m_{2} \leq m_{1}$. Since \leq is antisymmetric and $m_{1} \leq m_{2}$ and $m_{2} \leq m_{1}$, then $m_{1}=m_{2}$.

Therefore, m is unique.
Theorem 18. uniqueness of least upper bound of a poset
Let (P, \leq) be a poset. Let $S \subset P$. The least upper bound of S, if it exists, is unique.

Proof. Suppose there is a least upper bound of S in P.
Let U be a least upper bound of S in P.
Let B be the set of all upper bounds of S in P.
Then $B=\{u \in P: u$ is an upper bound of $S\}$.
Since $B \subset P$ and U is the least element of B, then U is unique.
Theorem 19. uniqueness of greatest lower bound of a poset
Let (P, \leq) be a poset. Let $S \subset P$. The greatest lower bound of S in P, if it exists, is unique.

Proof. Suppose there is a greatest lower bound of S in P.
Let L be a greatest lower bound of S in P.
Let B be the set of all lower bounds of S in P.
Then $B=\{u \in P: u$ is a lower bound of $S\}$.
Since $B \subset P$ and L is the greatest element of B, then L is unique.
Theorem 20. sufficient conditions for existence of supremum and infimum of a poset

Let S be a subset of a partially ordered set P.

1. If $\max S$ exists, then $\sup S=\max S$.
2. If $\min S$ exists, then $\inf S=\min S$.

Proof. We prove 1.
Suppose max S exists in P.
Since max S is an upper bound of S in P, then S has at least one upper bound in P.

Let M be an arbitrary upper bound of S in P.
Since M is an upper bound of S and $\max S \in S$, then $\max S \leq M$.
Hence, $\max S$ is the least upper bound of S in P.
Therefore, $\max S=\sup S$.
Proof. We prove 2.
Suppose min S exists in P.
Since $\min S$ is a lower bound of S in P, then S has at least one lower bound in P.

Let M be an arbitrary lower bound of S in P.
Since M is a lower bound of S and $\min S \in S$, then $M \leq \min S$.
Hence, $\min S$ is the greatest lower bound of S in P.
Therefore, $\min S=\inf S$.

Functions

Proposition 21. A function value is unique.
Let f be a function.
Let $a, b \in \operatorname{domf}$.
If $a=b$, then $f(a)=f(b)$.
Proof. Suppose $a=b$.
Since $a \in \operatorname{domf}$ and f is a relation, then $(a, f(a)) \in f$.
Since $b \in \operatorname{dom} f$ and f is a relation, then $(b, f(b)) \in f$.
Since $b=a$ and $(b, f(b)) \in f$, then $(a, f(b)) \in f$.
Since f is a function and $(a, f(a)) \in f$ and $(a, f(b)) \in f$, then $f(a)=$ $f(b)$.

Theorem 22. equality of functions
Let f and g be functions.
Let domf be the domain of f.

Let domg be the domain of g.
Then $f=g$ iff

1. $\operatorname{dom} f=\operatorname{domg}$.
2. $f(x)=g(x)$ for all $x \in \operatorname{dom} f \cap \operatorname{domg}$.

Proof. We prove if $\operatorname{dom} f=\operatorname{domg}$ and $f(x)=g(x)$ for all $x \in \operatorname{dom} f \cap \operatorname{domg}$, then $f=g$.

Suppose $\operatorname{dom} f=\operatorname{domg}$ and $f(x)=g(x)$ for all $x \in \operatorname{dom} f \cap \operatorname{domg}$.

We first prove $f \subset g$.
Let $x \in \operatorname{dom} f$.
Then $(x, f(x)) \in f$.
Since $x \in \operatorname{domf}$ and $\operatorname{dom} f=\operatorname{domg}$, then $x \in \operatorname{domg}$, so $(x, g(x)) \in g$.
Since $x \in \operatorname{domf}$ and $x \in \operatorname{domg}$, then $x \in \operatorname{dom} f \cap \operatorname{domg}$, so $f(x)=g(x)$.
Hence, $(x, f(x)) \in g$.
Thus, if $(x, f(x)) \in f$, then $(x, f(x)) \in g$, so $f \subset g$.
We prove $g \subset f$.
Let $y \in$ domg.
Then $(y, g(y)) \in g$.
Since $y \in \operatorname{domg}$ and $\operatorname{domg}=\operatorname{domf}$, then $y \in \operatorname{domf}$, so $(y, f(y)) \in f$.
Since $y \in \operatorname{domf}$ and $y \in \operatorname{domg}$, then $y \in \operatorname{dom} f \cap \operatorname{domg}$, so $f(y)=g(y)$.
Hence, $(y, g(y)) \in f$.
Thus, if $(y, g(y)) \in g$, then $(y, g(y)) \in f$, so $g \subset f$.
Since $f \subset g$ and $g \subset f$, then $f=g$, as desired.
Proof. Conversely, we prove if $f=g$, then $\operatorname{dom} f=\operatorname{domg}$ and $f(x)=g(x)$ for all $x \in \operatorname{dom} f \cap \operatorname{domg}$.

Suppose $f=g$.

We first prove $\operatorname{domf}=d o m g$.
Let $x \in \operatorname{dom} f$.
Then $(x, f(x)) \in f$.
Since $f=g$, then $(x, f(x)) \in g$, so $x \in d o m g$.
Thus, $\operatorname{dom} f \subset \operatorname{domg}$.

Let $y \in d o m g$.
Then $(y, g(y)) \in g$.
Since $g=f$, then $(y, g(y)) \in f$, so $y \in \operatorname{dom} f$.
Thus, $d o m g \subset \operatorname{dom} f$.

Since $\operatorname{dom} f \subset \operatorname{domg}$ and $\operatorname{domg} \subset \operatorname{dom} f$, then $\operatorname{dom} f=\operatorname{domg}$, as desired.

We next prove $f(x)=g(x)$ for all $x \in \operatorname{dom} f \cap \operatorname{domg}$.
Let $x \in \operatorname{dom} f \cap \operatorname{domg}$.
Then $x \in \operatorname{dom} f$ and $x \in d o m g$, so $(x, f(x)) \in f$ and $(x, g(x)) \in g$.
Since $(x, g(x)) \in g$ and $g=f$, then $(x, g(x)) \in f$.
Since f is a function and $(x, f(x)) \in f$ and $(x, g(x)) \in f$, then $f(x)=g(x)$, as desired.

Proposition 23. equality of maps

The maps $f: A \rightarrow B$ and $g: C \rightarrow D$ are equal iff

1. $A=C$.
2. $B=D$.
3. $f(x)=g(x)$ for all $x \in A$.

Proof. We prove if the maps $f: A \rightarrow B$ and $g: C \rightarrow D$ are equal, then $A=C$ and $B=D$ and $f(x)=g(x)$ for all $x \in A$.

Let $f: A \rightarrow B$ and $g: C \rightarrow D$ be equal maps.
Then $f=g$ and $B=D$.
Since $f=g$, then $\operatorname{dom} f=\operatorname{domg}$ and $f(x)=g(x)$ for all $x \in \operatorname{dom} f \cap \operatorname{domg}$.
Since $\operatorname{domf}=\operatorname{domg}$ and $\operatorname{dom} f=A$ and $\operatorname{domg}=C$, then $A=C$.
Thus, $f(x)=g(x)$ for all $x \in A \cap C=A \cap A=A$.
Therefore, $A=C$ and $B=D$ and $f(x)=g(x)$ for all $x \in A$, as desired.
Proof. Conversely, we prove if $A=C$ and $B=D$ and $f(x)=g(x)$ for all $x \in A$, then the maps $f: A \rightarrow B$ and $g: C \rightarrow D$ are equal.

Suppose $A=C$ and $B=D$ and $f(x)=g(x)$ for all $x \in A$.
Let $f: A \rightarrow B$ and $g: C \rightarrow D$ be maps.
Then f and g are functions and $d o m f=A$ and $d o m g=C$.
Since $\operatorname{domf}=A=C=\operatorname{domg}$, then $\operatorname{domf}=\operatorname{domg}$.

Let $x \in \operatorname{domf} \cap \operatorname{domg}$.
Then $x \in A \cap C$, so $x \in A$ and $x \in C$.
Thus, $x \in A$, so $f(x)=g(x)$.
Hence $f(x)=g(x)$ for all $x \in \operatorname{dom} f \cap \operatorname{domg}$.
Since f and g are functions and $\operatorname{dom} f=\operatorname{domg}$ and $f(x)=g(x)$ for all $x \in \operatorname{dom} f \cap \operatorname{domg}$, then $f=g$.

Since $f=g$ and $B=D$, then the maps $f: A \rightarrow B$ and $g: C \rightarrow D$ are equal, as desired.

Proposition 24. restriction of a map is a map

Let $f: A \rightarrow B$ be a map.
Let $S \subset A$.
Let $\left.f\right|_{S}: S \rightarrow B$ be defined by $\left.f\right|_{S}(x)=f(x)$ for all $x \in S$.
Then $\left.f\right|_{S}: S \rightarrow B$ is a map.
Proof. Observe that $\left.f\right|_{S}: S \rightarrow B$ is a relation.
Since $f: A \rightarrow B$ is a map, then f is a function.
Let $a \in S$ and $b, b^{\prime} \in B$ such that $\left.(a, b) \in f\right|_{S}$ and $\left.\left(a, b^{\prime}\right) \in f\right|_{S}$.

Then $\left.f\right|_{S}(a)=b$ and $\left.f\right|_{S}(a)=b^{\prime}$.
Since $a \in S$, then $f(a)=b$ and $f(a)=b^{\prime}$.
Since f is a function, then $b=b^{\prime}$.
Therefore, $\left.f\right|_{S}$ is a function.

We prove $\left.\operatorname{domf}\right|_{S}=S$.
Since $\left.f\right|_{S}: S \rightarrow B$ is a relation, then $\left.\operatorname{domf}\right|_{S} \subset S$.
Let $s \in S$.
Since $S \subset A$, then $s \in A$.
Since $f: A \rightarrow B$ is a map, then there exists $t \in B$ such that $f(s)=t$.
Since $s \in S$, then $\left.f\right|_{S}(s)=f(s)$, so $\left.f\right|_{S}(s)=t$.
Since $s \in S$ and there exists t such that $\left.f\right|_{S}(s)=t$, then $\left.s \in \operatorname{dom} f\right|_{S}$, so $\left.S \subset \operatorname{domf}\right|_{S}$.

Since $\left.\operatorname{domf}\right|_{S} \subset S$ and $\left.S \subset \operatorname{domf}\right|_{S}$, then $\left.\operatorname{domf}\right|_{S}=S$.
We prove $\left.r n g f\right|_{S} \subset B$.
Let $\left.y \in r n g f\right|_{S}$.
Then there exists $x \in S$ such that $\left.f\right|_{S}(x)=y$.
Since $x \in S$, then $\left.f\right|_{S}(x)=f(x)$, so $f(x)=y$.
Since $x \in S$ and $S \subset A$, then $x \in A$.
Since $f: A \rightarrow B$ is a map, then $f(x) \in B$, so $y \in B$.
Hence, $\left.r n g f\right|_{S} \subset B$.
Since $\left.f\right|_{S}$ is a function and $\left.\operatorname{dom} f\right|_{S}=S$ and $\left.\operatorname{rng} f\right|_{S} \subset B$, then $\left.f\right|_{S}: S \rightarrow B$ is a map.

Theorem 25. Composition of functions is a function.

Let f and g be functions. Then

1. $g \circ f$ is a function.
2. dom $g \circ f=\{x \in \operatorname{dom} f: f(x) \in \operatorname{domg}\}$.
3. $(g \circ f)(x)=g(f(x))$ for all $x \in \operatorname{dom} g \circ f$.

Proof. We prove 1.
Since f and g are relations, then $g \circ f=\{(a, b):(\exists c)((a, c) \in f \wedge(c, b) \in g\}$, so $g \circ f$ is a relation.

Let $(a, b) \in g \circ f$ and $\left(a, b^{\prime}\right) \in g \circ f$.
Since $(a, b) \in g \circ f$, then there exists c such that $(a, c) \in f$ and $(c, b) \in g$.
Since $\left(a, b^{\prime}\right) \in g \circ f$, then there exists d such that $(a, d) \in f$ and $\left(d, b^{\prime}\right) \in g$.
Since f is a function and $(a, c) \in f$ and $(a, d) \in f$, then $c=d$.
Since $\left(d, b^{\prime}\right) \in g$, then $\left(c, b^{\prime}\right) \in g$.
Since g is a function and $(c, b) \in g$ and $\left(c, b^{\prime}\right) \in g$, then $b=b^{\prime}$.
Therefore, $g \circ f$ is a function.
Proof. We prove 2.
Observe that dom $\mathrm{g} \circ f=\{a:(\exists b)((a, b) \in g \circ f\}$.
Let $S=\{x \in \operatorname{dom} f: f(x) \in \operatorname{domg}\}$.
We must prove dom $\mathrm{g} \circ f=S$.

Suppose $x \in \operatorname{dom} \mathrm{~g} \circ f$.
Then there exists y such that $(x, y) \in g \circ f$.
Thus, there exists z such that $(x, z) \in f$ and $(z, y) \in g$.
Since $(x, z) \in f$ and f is a function, then $x \in \operatorname{dom} f$ and $f(x)=z$.
Since $(z, y) \in g$, then $z \in d o m g$, so $f(x) \in d o m g$.
Since $x \in \operatorname{domf}$ and $f(x) \in d o m g$, then $x \in S$, so dom $\mathrm{g} \circ f \subset S$.
Suppose $x \in S$.
Then $x \in \operatorname{dom} f$ and $f(x) \in$ domg.
Let $z=f(x)$.
Since $x \in \operatorname{dom} f$, then $(x, f(x)) \in f$, so $(x, z) \in f$.
Since $f(x) \in d o m g$ and $f(x)=z$, then $z \in d o m g$, so there exists y such that $(z, y) \in g$.

Since $(x, z) \in f$ and $(z, y) \in g$, then $(x, y) \in g \circ f$.
Thus, there exists y such that $(x, y) \in g \circ f$, so $x \in d o m \mathrm{~g} \circ f$.
Therefore, $S \subset \operatorname{dom} \mathrm{~g} \circ f$.

Since dom $\mathrm{g} \circ f \subset S$ and $S \subset \operatorname{dom} \mathrm{~g} \circ f$, then $\operatorname{dom} \mathrm{g} \circ f=S$, as desired.
Proof. We prove 3.
Let $x \in d o m \mathrm{~g} \circ f$.
Since $g \circ f$ is a function, then $(g \circ f)(x)$ exists.
Let $z=(g \circ f)(x)$.
Then $(x, z) \in g \circ f$, so there exists y such that $(x, y) \in f$ and $(y, z) \in g$.
Since f and g are functions, then $f(x)=y$ and $g(y)=z$.
Thus, $(g \circ f)(x)=z=g(y)=g(f(x))$, as desired.
Theorem 26. Function composition is associative.
Let f, g, h be functions.
Then $(f \circ g) \circ h=f \circ(g \circ h)$.
Proof. Since f and g are functions, then $f \circ g$ is a function.
Since h is a function, then $(f \circ g) \circ h$ is a function.
Since g and h are functions, then $g \circ h$ is a function.
Since f is a function, then $f \circ(g \circ h)$ is a function.
We first prove $\operatorname{dom}(f \circ g) \circ h=\operatorname{dom} f \circ(g \circ h)$.
Let $x \in \operatorname{dom}(f \circ g) \circ h$.
Then $x \in \operatorname{domh}$ and $h(x) \in \operatorname{domf} \circ g$.
Since $h(x) \in \operatorname{dom} f \circ g$, then $h(x) \in \operatorname{domg}$ and $g(h(x)) \in \operatorname{dom} f$.
Since $x \in$ domh and $h(x) \in d o m g$, then $x \in d o m g \circ h$.
Since $g(h(x)) \in \operatorname{dom} f$, then $(g \circ h)(x) \in \operatorname{dom} f$.
Since $x \in \operatorname{domg} \circ h$ and $(g \circ h)(x) \in \operatorname{dom} f$, then $x \in \operatorname{dom} f \circ(g \circ h)$.
Thus, $\operatorname{dom}(f \circ g) \circ h \subset \operatorname{dom} f \circ(g \circ h)$.

Let $y \in \operatorname{dom} f \circ(g \circ h)$.
Then $y \in d o m g \circ h$ and $(g \circ h)(y) \in \operatorname{domf}$.
Since $y \in d o m g \circ h$, then $y \in d o m h$ and $h(y) \in d o m g$.
Since $(g \circ h)(y) \in \operatorname{domf}$, then $g(h(y)) \in \operatorname{dom} f$.
Since $h(y) \in \operatorname{domg}$ and $g(h(y)) \in \operatorname{dom} f$, then $h(y) \in \operatorname{dom} f \circ g$.
Since $y \in \operatorname{domh}$ and $h(y) \in \operatorname{dom} f \circ g$, then $y \in \operatorname{dom}(f \circ g) \circ h$.
Thus, $\operatorname{dom} f \circ(g \circ h) \subset \operatorname{dom}(f \circ g) \circ h$.
Since $\operatorname{dom}(f \circ g) \circ h \subset \operatorname{dom} f \circ(g \circ h)$ and $\operatorname{dom} f \circ(g \circ h) \subset \operatorname{dom}(f \circ g) \circ h$, then $\operatorname{dom}(f \circ g) \circ h=\operatorname{dom} f \circ(g \circ h)$.

Let $x \in \operatorname{dom}(f \circ g) \circ h \cap \operatorname{dom} f \circ(g \circ h)$.
Then $x \in \operatorname{dom}(f \circ g) \circ h \cap \operatorname{dom}(f \circ g) \circ h=\operatorname{dom}(f \circ g) \circ h$ and

$$
\begin{aligned}
{[(f \circ g) \circ h](x) } & =(f \circ g)(h(x)) \\
& =f[g(h(x))] \\
& =f[(g \circ h)(x)] \\
& =[f \circ(g \circ h)](x)
\end{aligned}
$$

Therefore, $[(f \circ g) \circ h](x)=[f \circ(g \circ h)](x)$ for all x in the common domain.
Since $\operatorname{dom}(f \circ g) \circ h=\operatorname{dom} f \circ(g \circ h)$ and $[(f \circ g) \circ h](x)=[f \circ(g \circ h)](x)$ for all x in the common domain, then $(f \circ g) \circ h=f \circ(g \circ h)$, as desired.

Proposition 27. Composition of maps

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be maps.
Then $g \circ f: A \rightarrow C$ is a map and $(g \circ f)(x)=g(f(x))$ for all $x \in A$.
Proof. Since $f: A \rightarrow B$ and $g: B \rightarrow C$ are maps, then f and g are functions, so $g \circ f$ is a function and $\operatorname{dom} \mathrm{g} \circ f=\{x \in \operatorname{dom} f: f(x) \in d o m g\}$ and $(g \circ f)(x)=$ $g(f(x))$ for all $x \in \operatorname{dom} \mathrm{~g} \circ f$.

Since $\operatorname{dom} f=A$ and $d o m g=B$ and dom go $f=\{x \in \operatorname{dom} f: f(x) \in \operatorname{domg}\}$, then dom $\mathrm{g} \circ f=\{x \in A: f(x) \in B\}$, so dom $\mathrm{g} \circ f \subset A$.

Let $x \in A$.
Since $f: A \rightarrow B$ is a map, then $f(x) \in B$.
Since $x \in A$ and $f(x) \in B$, then $x \in \operatorname{dom} \mathrm{~g} \circ f$.
Hence, $A \subset d o m \mathrm{~g} \circ f$.
Since dom $\mathrm{g} \circ f \subset A$ and $A \subset d o m \mathrm{~g} \circ f$, then $\operatorname{dom} \mathrm{g} \circ f=A$.

Since $(g \circ f)(x)=g(f(x))$ for all $x \in \operatorname{dom} \mathrm{~g} \circ f$, then $(g \circ f)(x)=g(f(x))$ for all $x \in A$.

We prove $r n g \mathrm{~g} \circ f \subset C$.
Let $y \in r n g \mathrm{~g} \circ f$.
Then there exists x such that $(x, y) \in g \circ f$.
Since $(x, y) \in g \circ f$, then $x \in d o m \mathrm{~g} \circ f$, so $x \in A$.
Since $g \circ f$ is a function and $(x, y) \in g \circ f$, then $(g \circ f)(x)=y$, so $y=$ $(g \circ f)(x)=g(f(x))$.

Since $f: A \rightarrow B$ is a map and $x \in A$, then $f(x) \in B$.
Since $g: B \rightarrow C$ is a map, then $g(f(x)) \in C$.
Thus, $y \in C$, so $r n g \mathrm{~g} \circ f \subset C$.
Since $g \circ f$ is a function and dom $\mathrm{g} \circ f=A$ and $r n g \mathrm{~g} \circ f \subset C$, then $g \circ f: A \rightarrow C$ is a map.
Proposition 28. Let $f: A \rightarrow B$ be a map.
Let I_{A} be the identity map on A and I_{B} be the identity map on B.
Then $f \circ I_{A}=I_{B} \circ f=f$.
Proof. We prove $f \circ I_{A}=f$.
Since $I_{A}: A \rightarrow A$ is a map and $f: A \rightarrow B$ is a map, then $f \circ I_{A}: A \rightarrow B$ is a map and $\left(f \circ I_{A}\right)(x)=f\left(I_{A}(x)\right)$ for all $x \in A$.

Since the domain of $f \circ I_{A}$ and f is A, then $f \circ I_{A}$ and f have the same domain.

Since the codomain of $f \circ I_{A}$ and f is B, then $f \circ I_{A}$ and f have the same codomain.

Let $x \in A$.
Then $\left(f \circ I_{A}\right)(x)=f\left(I_{A}(x)\right)=f(x)$, so $\left(f \circ I_{A}\right)(x)=f(x)$ for all $x \in A$.
Therefore, $f \circ I_{A}=f$.
Proof. We prove $I_{B} \circ f=f$.
Since $f: A \rightarrow B$ is a map and $I_{B}: B \rightarrow B$ is a map, then $I_{B} \circ f: A \rightarrow B$ is a map and $\left(I_{B} \circ f\right)(x)=I_{B}(f(x))$ for all $x \in A$.

Since the domain of $I_{B} \circ f$ and f is A, then $I_{B} \circ f$ and f have the same domain.

Since the codomain of $I_{B} \circ f$ and f is B, then $I_{B} \circ f$ and f have the same codomain.

Let $x \in A$.
Then $\left(I_{B} \circ f\right)(x)=I_{B}(f(x))=f(x)$, so $\left(I_{B} \circ f\right)(x)=f(x)$ for all $x \in A$.
Therefore, $I_{B} \circ f=f$.

Since $f \circ I_{A}=f$ and $I_{B} \circ f=f$, then $f \circ I_{A}=f=I_{B} \circ f$, as desired.

Theorem 29. Left cancellation property of injective maps

Let $f: X \rightarrow Y$ be a map.
Then f is injective iff for every set W and every map $g: W \rightarrow X$ and $h: W \rightarrow X$ such that $f \circ g=f \circ h$ we have $g=h$.

Proof. We prove if f is injective, then for every set W and every map $g: W \rightarrow X$ and $h: W \rightarrow X$ such that $f \circ g=f \circ h$ we have $g=h$.

Suppose f is injective.
Let W be a set and let $g: W \rightarrow X$ and $h: W \rightarrow X$ be maps such that $f \circ g=f \circ h$.

We must prove $g=h$.
Since $g: W \rightarrow X$ is a map and $h: W \rightarrow X$ is a map, then $d o m g=W=$ domh.

Let $x \in W$.
Since $f \circ g=f \circ h$, then $(f \circ g)(x)=(f \circ h)(x)$, so $f(g(x))=f(h(x))$.
Since f is injective, then $g(x)=h(x)$.
Thus, $g(x)=h(x)$ for all $x \in W$, so $g=h$, as desired.
Proof. Conversely, we prove if for every set W and every map $g: W \rightarrow X$ and $h: W \rightarrow X$ such that $f \circ g=f \circ h$ implies $g=h$, then f is injective.

We prove by contrapositive.
Suppose f is not injective.
We must prove there exists a set W and there exist maps $g: W \rightarrow X$ and $h: W \rightarrow X$ such that $f \circ g=f \circ h$ and $g \neq h$.

Since f is not injective, then there exist $a, b \in X$ such that $a \neq b$ and $f(a)=f(b)$.

Let $W=\{a, b\}$.
Let $g=\{(a, a),(b, a)\}$.
Then g is a function and $d o m g=\{a, b\}=W$ and $r n g g=\{a\} \subset X$.
Thus, $g: W \rightarrow X$ is a map and $g(a)=a=g(b)$.
Let $h=\{(a, b),(b, b)\}$.
Then h is a function and $\operatorname{domh}=\{a, b\}=W$ and rngh $=\{b\} \subset X$.
Thus, $h: W \rightarrow X$ is a map and $h(a)=b=h(b)$.
Since $(a, a) \in h$ iff $a=b$ and $a \neq b$, then $(a, a) \notin h$.
Since $(a, a) \in g$, but $(a, a) \notin h$, then $g \neq h$.
Since $g: W \rightarrow X$ is a map and $f: X \rightarrow Y$ is a map, then $f \circ g: W \rightarrow Y$ is a map and $(f \circ g)(x)=f(g(x))$ for all $x \in W$.

Since $h: W \rightarrow X$ is a map and $f: X \rightarrow Y$ is a map, then $f \circ h: W \rightarrow Y$ is a map and $(f \circ h)(x)=f(h(x))$ for all $x \in W$.

Observe that $\operatorname{dom}(f \circ g)=W=\operatorname{dom}(f \circ h)$.
Observe that $(f \circ g)(a)=f(g(a))=f(a)=f(b)=f(h(a))=(f \circ h)(a)$.
Observe that $(f \circ g)(b)=f(g(b))=f(a)=f(b)=f(h(b))=(f \circ h)(b)$.
Since $\operatorname{dom}(f \circ g)=W=\operatorname{dom}(f \circ h)$ and $(f \circ g)(a)=(f \circ h)(a)$ and $(f \circ g)(b)=$ $(f \circ h)(b)$, then $f \circ g=f \circ h$.

Proposition 30. A map $f: A \rightarrow B$ is surjective iff $(\forall b \in B)(\exists a \in A)(f(a)=$ b).

Proof. Let $f: A \rightarrow B$ be a map.
We first prove if f is surjective, then $(\forall b \in B)(\exists a \in A)(f(a)=b)$.
Suppose f is surjective.
Let $b \in B$.

Since f is surjective, then $r n g f=B$.
Since $b \in B$, then $b \in \operatorname{rng} f$, so there exists $a \in A$ such that $f(a)=b$.

Conversely, we prove if $(\forall b \in B)(\exists a \in A)(f(a)=b)$, then f is surjective.
Suppose $(\forall b \in B)(\exists a \in A)(f(a)=b)$.
Since $f: A \rightarrow B$ is a map, then $r n g f \subset B$.
We prove $B \subset r n g f$.
Suppose $b \in B$.
Then there exists $a \in A$ such that $f(a)=b$.
Hence, $b \in \operatorname{rng} f$, so $B \subset r n g f$.
Since $r n g f \subset B$ and $B \subset r n g f$, then $r n g f=B$, so f is surjective.
Theorem 31. Right cancellation property of surjective maps
Let X be a nonempty set.
Let $f: X \rightarrow Y$ be a map.
Then f is surjective iff for every set Z and every map $g: Y \rightarrow Z$ and $h: Y \rightarrow Z$ such that $g \circ f=h \circ f$ we have $g=h$.

Proof. We prove if f is surjective, then for every set Z and every map $g: Y \rightarrow Z$ and $h: Y \rightarrow Z$ such that $g \circ f=h \circ f$ we have $g=h$.

Suppose f is surjective.
Let Z be a set and let $g: Y \rightarrow Z$ and $h: Y \rightarrow Z$ be maps such that $g \circ f=h \circ f$.

We must prove $g=h$.
Since $g: Y \rightarrow Z$ is a map and $h: Y \rightarrow Z$ is a map, then g and h are functions and domg $=Y=$ domh and the codomain of g is Z which is the codomain of h.

Since $X \neq \emptyset$ and $f: X \rightarrow Y$ is a map, then there exists $x \in X$, so $f(x) \in Y$.
Hence, $Y \neq \emptyset$.
Let $y \in Y$.
Since f is surjective, then there exists $x \in X$ such that $f(x)=y$.
Since $g \circ f=h \circ f$ and $x \in X$, then $(g \circ f)(x)=(h \circ f)(x)$.
Observe that

$$
\begin{aligned}
g(y) & =g(f(x)) \\
& =(g \circ f)(x) \\
& =(h \circ f)(x) \\
& =h(f(x)) \\
& =h(y) .
\end{aligned}
$$

Therefore, $g(y)=h(y)$ for all $y \in Y$, so $g=h$, as desired.
Proof. Conversely, we prove if for every set Z and every map $g: Y \rightarrow Z$ and $h: Y \rightarrow Z$ such that $g \circ f=h \circ f$ implies $g=h$, then f is surjective.

We prove by contrapositive.
Suppose f is not surjective.

We must prove there exists a set Z and there exist maps $g: Y \rightarrow Z$ and $h: Y \rightarrow Z$ such that $g \circ f=h \circ f$ and $g \neq h$.

Since f is not surjective, then there exists $y_{0} \in Y$ such that for all $x \in X$, $f(x) \neq y_{0}$.

Since $X \neq \emptyset$, then there exists $x_{0} \in X$.
Since $f: X \rightarrow Y$ is a map, then $f\left(x_{0}\right) \in Y$.
Let $Z=Y$.
Let $g: Y \rightarrow Z$ be the identity map on Y defined by $g(y)=y$.
Let $h: Y \rightarrow Z$ be a map defined by $h(y)=y$ if $y \neq y_{0}$ and $h\left(y_{0}\right)=f\left(x_{0}\right)$.
We prove $g \neq h$.
Since $x_{0} \in X$, then $f\left(x_{0}\right) \neq y_{0}$.
Since $g\left(y_{0}\right)=y_{0} \neq f\left(x_{0}\right)=h\left(y_{0}\right)$, then $g\left(y_{0}\right) \neq h\left(y_{0}\right)$, so $g \neq h$.
We prove $g \circ f=h \circ f$.
Since $f: X \rightarrow Y$ is a map and $g: Y \rightarrow Z$ is a map, then $g \circ f: X \rightarrow Z$ is a map and $(g \circ f)(x)=g(f(x))$ for all $x \in X$.

Since $f: X \rightarrow Y$ is a map and $h: Y \rightarrow Z$ is a map, then $h \circ f: X \rightarrow Z$ is a map and $(h \circ f)(x)=h(f(x))$ for all $x \in X$.

Observe that $\operatorname{dom}(g \circ f)=X=\operatorname{dom}(h \circ f)$.
Let $x \in X$.
Since $f: X \rightarrow Y$ is a map, then $f(x) \in Y$.
Since $x \in X$, then $f(x) \neq y_{0}$.
Observe that

$$
\begin{aligned}
(g \circ f)(x) & =g(f(x)) \\
& =f(x) \\
& =h(f(x)) \\
& =(h \circ f)(x)
\end{aligned}
$$

Hence, $(g \circ f)(x)=(h \circ f)(x)$ for all $x \in X$.
Therefore, $g \circ f=h \circ f$, as desired.

Proposition 32. identity map is bijective.

Let S be a set.
The identity map $I_{S}: S \rightarrow S$ on S is a bijection.
Proof. Let $I_{S}: S \rightarrow S$ be the map defined by $I_{S}(x)=x$ for all $x \in S$.

We prove I_{S} is injective.
Let $a, b \in S$ such that $I_{S}(a)=I_{S}(b)$.
Then $a=b$.
Therefore, I_{S} is injective.

We prove I_{S} is surjective.
Let $b \in S$ be arbitrary.
Let $a=b$.
Then $a \in S$ and $I(a)=a=b$.
Thus, there exists $a \in S$ such that $I_{S}(a)=b$.
Therefore, I_{S} is surjective.
Since I_{S} is injective and surjective, then I_{S} is bijective, as desired.
Theorem 33. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be maps.

1. If f and g are injective, then $g \circ f$ is injective.

A composition of injections is an injection.
2. If f and g are surjective, then $g \circ f$ is surjective.

A composition of surjections is a surjection.
3. If $g \circ f$ is injective, then f is injective.
4. If $g \circ f$ is surjective, then g is surjective.

Proof. We prove 1.
Suppose f and g are injective.
Since $f: A \rightarrow B$ is a map and $g: B \rightarrow C$ is a map, then $g \circ f: A \rightarrow C$ is a map.

Let $a, b \in A$ such that $(g \circ f)(a)=(g \circ f)(b)$.
Then $g(f(a))=g(f(b))$.
Since g is injective, then $f(a)=f(b)$.
Since f is injective, then $a=b$.
Therefore, $g \circ f$ is injective.
Proof. We prove 2.
Suppose f and g are surjective.
Since $f: A \rightarrow B$ is a map and $g: B \rightarrow C$ is a map, then $g \circ f: A \rightarrow C$ is a map.

Let $c \in C$ be arbitrary.
Since g is surjective, then there exists $b \in B$ such that $g(b)=c$.
Since f is surjective, then there exists $a \in A$ such that $f(a)=b$.
Observe that $(g \circ f)(a)=g(f(a))=g(b)=c$.
Therefore, there exists $a \in A$ such that $(g \circ f)(a)=c$, so $g \circ f$ is surjective.
Proof. We prove 3.
Suppose $g \circ f$ is injective.
Since $f: A \rightarrow B$ is a map and $g: B \rightarrow C$ is a map, then $g \circ f: A \rightarrow C$ is a map.

Let $a, b \in A$ such that $f(a)=f(b)$.
Then $(g \circ f)(a)=g(f(a))=g(f(b))=(g \circ f)(b)$, so $(g \circ f)(a)=(g \circ f)(b)$.
Since $g \circ f$ is injective, then $a=b$.
Therefore, f is injective.

Proof. We prove 4.
Suppose $g \circ f$ is surjective.
Since $f: A \rightarrow B$ is a map and $g: B \rightarrow C$ is a map, then $g \circ f: A \rightarrow C$ is a map.

Let $c \in C$ be arbitrary.
Since $g \circ f$ is surjective, then there exists $a \in A$ such that $(g \circ f)(a)=c$.
Since $a \in A$ and $f: A \rightarrow B$ is a map, then $f(a) \in B$.
Observe that $g(f(a))=(g \circ f)(a)=c$.
Thus, there exists $f(a) \in B$ such that $g(f(a))=c$.
Therefore, g is surjective.
Corollary 34. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be maps.

1. If f and g are bijective, then $g \circ f$ is bijective.

A composition of bijections is a bijection.
2. If $g \circ f$ is bijective, then f is injective and g is surjective.

Proof. We prove 1.
Suppose f and g are bijective.
Since $f: A \rightarrow B$ is a map and $g: B \rightarrow C$ is a map, then $g \circ f: A \rightarrow C$ is a map.

Since f is bijective, then f is injective and surjective.
Since g is bijective, then g is injective and surjective.
Since f and g are injective, then $g \circ f$ is injective.
Since f and g are surjective, then $g \circ f$ is surjective.
Since $g \circ f$ is injective and surjective, then $g \circ f$ is bijective.
Proof. We prove 2.
Suppose $g \circ f$ is bijective.
Then $g \circ f$ is injective and surjective.
Since $g \circ f$ is injective, then f is injective.
Since $g \circ f$ is surjective, then g is surjective.
Theorem 35. existence of inverse function
Let f be a function.
Then the inverse relation f^{-1} is a function iff f is injective.
Proof. We prove if f^{-1} is a function, then f is injective.
Suppose f^{-1} is a function.
Let $a_{1}, a_{2} \in \operatorname{dom} f$ such that $f\left(a_{1}\right)=f\left(a_{2}\right)$.
Since f is a relation, then $\left(a_{1}, f\left(a_{1}\right)\right) \in f$ and $\left(a_{2}, f\left(a_{2}\right)\right) \in f$.
Since f^{-1} is an inverse of f, then $\left(f\left(a_{1}\right), a_{1}\right) \in f^{-1}$ and $\left(f\left(a_{2}\right), a_{2}\right) \in f^{-1}$.
Since f^{-1} is a function and $f\left(a_{1}\right)=f\left(a_{2}\right)$, then $a_{1}=a_{2}$.
Therefore, f is injective.

Conversely, we prove if f is injective, then f^{-1} is a function.
Suppose f is injective.
Let $\left(a, b_{1}\right) \in f^{-1}$ and $\left(a, b_{2}\right) \in f^{-1}$.
Since f^{-1} is an inverse of f, then $\left(b_{1}, a\right) \in f$ and $\left(b_{2}, a\right) \in f$, so $f\left(b_{1}\right)=a$ and $f\left(b_{2}\right)=a$.

Thus, $f\left(b_{1}\right)=a=f\left(b_{2}\right)$.
Since f is injective, then $b_{1}=b_{2}$.
Therefore, f^{-1} is a function.
Theorem 36. The inverse of an invertible map is unique.
Let $f: A \rightarrow B$ be an invertible map.
Then the inverse map is unique.
Proof. Since $f: A \rightarrow B$ is an invertible map, then there exists a map that is an inverse of f.

Let $g: B \rightarrow A$ and $h: B \rightarrow A$ be inverse maps of f.
To prove the inverse map is unique, we must prove $g=h$.
Observe that the domain of g equals B which equals the domain of h and the codomain of g equals A which equals the codomain of h.

Let $x \in B$ be arbitrary.
Since $g: B \rightarrow A$ is a map, then $g(x) \in A$.
Since f is a relation, then $(g(x), x) \in f$.
Since h and f are inverses, then $(x, g(x)) \in h$, so $h(x)=g(x)$.
Therefore, $g=h$, as desired.
Theorem 37. Let $f: A \rightarrow B$ and $g: B \rightarrow A$ be maps.
Then g is an inverse of f iff

1. $g \circ f=I_{A}$
2. $f \circ g=I_{B}$.

Proof. We prove if g is an inverse of f, then $g \circ f=I_{A}$ and $f \circ g=I_{B}$.
Since $f: A \rightarrow B$ and $g: B \rightarrow A$ are maps, then $g \circ f: A \rightarrow A$ and $f \circ g:$ $B \rightarrow B$ are maps and $(g \circ f)(a)=g(f(a))$ for all $a \in A$ and $(f \circ g)(b)=f(g(b))$ for all $b \in B$.

Suppose g is an inverse of f.

We prove $g \circ f=I_{A}$.
Let I_{A} be the identity map on A.
Then $\operatorname{dom}(g \circ f)=A=\operatorname{dom}_{A}$.
Let $a \in A$.
Since f is a function, then $(a, f(a)) \in f$.
Since g is an inverse of f, then $(f(a), a) \in g$, so $g(f(a))=a$.
Observe that

$$
\begin{aligned}
(g \circ f)(a) & =g(f(a)) \\
& =a \\
& =I_{A}(a)
\end{aligned}
$$

Hence, $(g \circ f)(a)=I(a)$ for every $a \in A$.
Therefore, $g \circ f=I_{A}$.

We prove $f \circ g=I_{B}$.
Let I_{B} be the identity map on B.
Then $\operatorname{dom}(f \circ g)=B=\operatorname{dom} I_{B}$.
Let $b \in B$.
Since g is a function, then $(b, g(b)) \in g$.
Since f is an inverse of g, then $(g(b), b) \in f$, so $f(g(b))=b$.
Observe that

$$
\begin{aligned}
(f \circ g)(b) & =f(g(b)) \\
& =b \\
& =I(b) .
\end{aligned}
$$

Hence, $(f \circ g)(b)=I(b)$ for every $b \in B$.
Therefore, $f \circ g=I_{B}$.
Proof. Conversely, we prove if $g \circ f=I_{A}$ and $f \circ g=I_{B}$, then g is an inverse of f.

Suppose $g \circ f=I_{A}$ and $f \circ g=I_{B}$.

Let $(a, b) \in f$.
Then $a \in A$ and $b \in B$ and $f(a)=b$.
Since $a \in A$, then $a=I_{A}(a)=(g \circ f)(a)=g(f(a))=g(b)$, so $(b, a) \in g$.
Hence, if $(a, b) \in f$, then $(b, a) \in g$.

Let $(b, a) \in g$.
Then $b \in B$ and $a \in A$ and $g(b)=a$.
Since $b \in B$, then $b=I_{B}(b)=(f \circ g)(b)=f(g(b))=f(a)$, so $(a, b) \in f$.
Hence, if $(b, a) \in g$, then $(a, b) \in f$.
Since $(b, a) \in g$ implies $(a, b) \in f$ and $(a, b) \in f$ implies $(b, a) \in g$, then $(b, a) \in g$ iff $(a, b) \in f$.

Therefore, g is an inverse of f.
Corollary 38. Let $f: A \rightarrow B$ be an invertible map. Then

1. $f^{-1} \circ f=I_{A}$
2. $f \circ f^{-1}=I_{B}$.

Proof. Since $f: A \rightarrow B$ is an invertible map, then the inverse map $f^{-1}: B \rightarrow A$ exists, so f^{-1} is an inverse of f.

Therefore, $f^{-1} \circ f=I_{A}$ and $f \circ f^{-1}=I_{B}$.
Theorem 39. An invertible map is bijective.
Let $f: A \rightarrow B$ be a map.
Then f is invertible iff f is bijective.

Proof. We prove if f is bijective, then f is invertible.
Suppose f is bijective.
Then f is injective and surjective.
Since f is injective, then the inverse relation f^{-1} is a function.
Since f^{-1} is a relation, then $\operatorname{dom} f^{-1}=r n g f$ and $r n g f^{-1}=\operatorname{domf}$.
Since f is surjective, then $r n g f=B$.
Thus, $\operatorname{dom} f^{-1}=r n g f=B$ and $r n g f^{-1}=\operatorname{domf}=A \subset A$.
Since f^{-1} is a function and $\operatorname{dom} f^{-1}=B$ and $r n g f^{-1} \subset A$, then $f^{-1}: B \rightarrow$
A is a map.
Since f^{-1} is the inverse of f, then f is invertible.
Proof. Conversely, we prove if f is invertible, then f is bijective.
Suppose f is invertible.
Then the inverse map $f^{-1}: B \rightarrow A$ exists.
Hence, the inverse relation f^{-1} is a function, so f is injective.

Let $b \in B$.
Since $f^{-1}: B \rightarrow A$ is a map, then $f^{-1}(b) \in A$.
Let $a=f^{-1}(b)$.
Then $a \in A$.
Since f^{-1} is the inverse of f and $f^{-1}(b)=a$, then $f(a)=b$.
Therefore, there exists $a \in A$ such that $f(a)=b$, so f is surjective.
Since f is injective and surjective, then f is bijective.
Lemma 40. Let $f: A \rightarrow B$ be a map.
If $f: A \rightarrow B$ is a bijection, then $f^{-1}: B \rightarrow A$ is a bijection.
Proof. Suppose the map $f: A \rightarrow B$ is a bijection.
Then f is bijective, so f is invertible.
Hence, the map $f: A \rightarrow B$ is invertible, so the inverse map $f^{-1}: B \rightarrow A$ exists.

We prove f^{-1} is injective.
Let $b_{1}, b_{2} \in B$ such that $f^{-1}\left(b_{1}\right)=f^{-1}\left(b_{2}\right)$.
Let $a=f^{-1}\left(b_{1}\right)=f^{-1}\left(b_{2}\right)$.
Then $f^{-1}\left(b_{1}\right)=a$ and $f^{-1}\left(b_{2}\right)=a$, so $\left(b_{1}, a\right) \in f^{-1}$ and $\left(b_{2}, a\right) \in f^{-1}$.
Since f^{-1} is the inverse of f, then $\left(a, b_{1}\right) \in f$ and $\left(a, b_{2}\right) \in f$.
Since f is a function and $\left(a, b_{1}\right) \in f$ and $\left(a, b_{2}\right) \in f$, then $b_{1}=b_{2}$.
Therefore, f^{-1} is injective.
We prove f^{-1} is surjective.
Let $a \in A$.
Since $f: A \rightarrow B$ is a map, then $f(a) \in B$.
Let $b=f(a)$.
Then $b \in B$.
Since f^{-1} is the inverse of f and $f(a)=b$, then $f^{-1}(b)=a$.
Thus, there exists $b \in B$ such that $f^{-1}(b)=a$, so f^{-1} is surjective.

Since f^{-1} is injective and surjective, then f^{-1} is bijective.
Since $f^{-1}: B \rightarrow A$ is a map and f^{-1} is bijective, then $f^{-1}: B \rightarrow A$ is a bijection.

Theorem 41. Let $f: A \rightarrow B$ be a bijection. Then

1. $\left(f^{-1}\right)^{-1}: A \rightarrow B$ is a bijection.
2. $\left(f^{-1}\right)^{-1}=f$.

Proof. Since $f: A \rightarrow B$ is a bijection, then $f^{-1}: B \rightarrow A$ is a bijection, so $\left(f^{-1}\right)^{-1}: A \rightarrow B$ is a bijection.

Observe that $\left(f^{-1}\right)^{-1}: A \rightarrow B$ and $f: A \rightarrow B$ have the same domain A and same codomain B.

Let $a \in A$ be arbitrary.
Since f is a function, then there is a unique $b \in B$ such that $f(a)=b$.
Since f^{-1} is the inverse of f, then $f^{-1}(b)=a$.
Since $\left(f^{-1}\right)^{-1}$ is the inverse of f^{-1}, then $\left(f^{-1}\right)^{-1}(a)=b$.
Thus, $\left(f^{-1}\right)^{-1}(a)=b=f(a)$.
Hence, $\left(f^{-1}\right)^{-1}(a)=f(a)$ for all $a \in A$.
Therefore, $\left(f^{-1}\right)^{-1}=f$.
Theorem 42. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be bijections. Then

1. $(g \circ f)^{-1}: C \rightarrow A$ is a bijection.
2. $f^{-1} \circ g^{-1}: C \rightarrow A$ is a bijection.
3. $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.

Proof. Since $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijections, then the composition $g \circ f: A \rightarrow C$ is a bijection, so $(g \circ f)^{-1}: C \rightarrow A$ is a bijection.

Since $f: A \rightarrow B$ is a bijection, then $f^{-1}: B \rightarrow A$ is a bijection.
Since $g: B \rightarrow C$ is a bijection, then $g^{-1}: C \rightarrow B$ is a bijection.
Thus, the composition $f^{-1} \circ g^{-1}: C \rightarrow A$ is a bijection.
Observe that $(g \circ f)^{-1}: C \rightarrow A$ and $f^{-1} \circ g^{-1}: C \rightarrow A$ have the same domain C and same codomain A.

Let $c \in C$ be arbitrary.
Since $(g \circ f)^{-1}$ is a function, then there exists a unique $a \in A$ such that $(g \circ f)^{-1}(c)=a$.

Since $(g \circ f)^{-1}$ is the inverse of $g \circ f$, then $(g \circ f)(a)=c$.
Since f is a function and $a \in A$, then there exists a unique $b \in B$ such that $f(a)=b$.

Thus, $c=(g \circ f)(a)=g(f(a))=g(b)$.
Since g^{-1} is the inverse of g and $g(b)=c$, then $g^{-1}(c)=b$.
Since f^{-1} is the inverse of f and $f(a)=b$, then $f^{-1}(b)=a$.
Observe that

$$
\begin{aligned}
(g \circ f)^{-1}(c) & =a \\
& =f^{-1}(b) \\
& =f^{-1}\left(g^{-1}(c)\right) \\
& =\left(f^{-1} \circ g^{-1}\right)(c)
\end{aligned}
$$

Thus, $(g \circ f)^{-1}(c)=\left(f^{-1} \circ g^{-1}\right)(c)$ for all $c \in C$.
Therefore, $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.

Image and inverse image of functions

Proposition 43. Let $f: A \rightarrow B$ be a map.

1. Then f is injective iff every $b \in B$ has at most one pre-image.
2. Then f is surjective iff every $b \in B$ has at least one pre-image.
3. Then f is bijective iff every $b \in B$ has exactly one pre-image.

Proof. We prove 1.
We prove if f is injective, then every $b \in B$ has at most one preimage.
Suppose f is injective.
Let $b \in B$.
Either there exists $a \in A$ such that $f(a)=b$ or there does not exist $a \in A$ such that $f(a)=b$.

We consider each case separately.
Case 1: Suppose there does not exist $a \in A$ such that $f(a)=b$.
Then b has no preimage.
Case 2: Suppose there exists $a \in A$ such that $f(a)=b$.
Then a is a pre-image of b, so b has at least one pre-image.
Suppose $a_{1}, a_{2} \in A$ are pre-images of b.
Then $f\left(a_{1}\right)=b$ and $f\left(a_{2}\right)=b$, so $f\left(a_{1}\right)=f\left(a_{2}\right)$.
Since f is injective, then $a_{1}=a_{2}$, so there is at most one pre-image of b.
In either case, at most one preimage of b exists.
Proof. Conversely, we prove if every $b \in B$ has at most one preimage, then f is injective.

Suppose every $b \in B$ has at most one preimage.
To prove f is injective, let $a_{1}, a_{2} \in A$ such that $f\left(a_{1}\right)=f\left(a_{2}\right)$.
Let $b=f\left(a_{1}\right)=f\left(a_{2}\right)$.
Since $f: A \rightarrow B$ is a map, then $b \in B$.
Hence, b has at most one preimage, so there is at most one $a \in A$ such that $f(a)=b$.

Therefore, $a_{1}=a_{2}$.
Proof. We prove 2.
We prove if f is surjective, then every $b \in B$ has at least one pre-image.
Suppose f is surjective.
Let $b \in B$ be arbitrary.
Since f is surjective, then there exists $a \in A$ such that $f(a)=b$.
Hence, a is a pre-image of b, so b has at least one pre-image.
Proof. We prove 3.
We prove if f is bijective, then every $b \in B$ has exactly one pre-image.
Suppose f is bijective.
Then f is injective and surjective.

Let $b \in B$.
Since f is surjective, then b has at least one pre-image.
Since f is injective, then b has at most one pre-image.
Since b has at least one pre-image and b has at most one pre-image, then b has exactly one pre-image.

Proposition 44. Let $f: A \rightarrow B$ be a map. Then

1. $f(\emptyset)=\emptyset$.

The image of the empty set is the empty set.
2. $f^{-1}(\emptyset)=\emptyset$.

The inverse image of the empty set is the empty set.
3. $f(A)=r n g f$.

The image of the domain of f is the range of f.
4. $f^{-1}(B)=A$.

The inverse image of the codomain of f is the domain of f.
Proof. We prove 1.
We prove $f(\emptyset)=\emptyset$ by contradiction.
Suppose $f(\emptyset) \neq \emptyset$.
Then there exists $b \in f(\emptyset)$, so there exists $x \in \emptyset$ such that $f(x)=b$.
Since \emptyset is empty, then $x \notin \emptyset$.
Thus, we have $x \in \emptyset$ and $x \notin \emptyset$, a contradiction.
Therefore, $f(\emptyset)=\emptyset$.
Proof. We prove 2.
We prove $f^{-1}(\emptyset)=\emptyset$ by contradiction.
Suppose $f^{-1}(\emptyset) \neq \emptyset$.
Then there exists $x \in f^{-1}(\emptyset)$, so $x \in A$ and $f(x) \in \emptyset$.
Since \emptyset is empty, then $f(x) \notin \emptyset$.
Thus, we have $f(x) \in \emptyset$ and $f(x) \notin \emptyset$, a contradiction.
Therefore, $f^{-1}(\emptyset)=\emptyset$.
Proof. We prove 3.
We prove $f(A)=r n g f$.
Since $b \in f(A)$ iff there exists $a \in A$ such that $f(a)=b$ iff $b \in r n g f$, then $b \in f(A)$ iff $b \in r n g f$.

Therefore, $f(A)=r n g f$.
Proof. We prove 4.
We prove $f^{-1}(B)=A$.
Since $f^{-1}(B)=\{x \in A: f(x) \in B\}$, then $f^{-1}(B) \subset A$.

Let $x \in A$.
Since $f: A \rightarrow B$ is a map, then $f(x) \in B$.
Since $x \in A$ and $f(x) \in B$, then $x \in f^{-1}(B)$.
Thus, $A \subset f^{-1}(B)$.
Since $f^{-1}(B) \subset A$ and $A \subset f^{-1}(B)$, then $f^{-1}(B)=A$.
Proposition 45. Let $f: X \rightarrow Y$ be a map.

1. For every subset A and B of X, if $A \subset B$, then $f(A) \subset f(B)$.
2. $f(A \cup B)=f(A) \cup f(B)$ for every subset A and B of X.

The image of a union equals the union of the images.
3. $f(A \cap B) \subset f(A) \cap f(B)$ for every subset A and B of X.

The image of an intersection is a subset of the intersection of the images.
4. $f(A \cap B)=f(A) \cap f(B)$ for every subset A and B of X iff f is injective.

Proof. We prove 1.
Let A and B be subsets of X such that $A \subset B$.
We must prove $f(A) \subset f(B)$.
Let $y \in f(A)$.
Then there exists $x \in A$ such that $f(x)=y$.
Since $x \in A$ and $A \subset B$, then $x \in B$.
Thus, there exists $x \in B$ such that $f(x)=y$, so $y \in f(B)$.
Therefore, $f(A) \subset f(B)$.
Proof. We prove 2.
Let A and B be subsets of X.
We must prove $f(A \cup B)=f(A) \cup f(B)$.
Observe that

$$
\begin{aligned}
y \in f(A \cup B) & \Leftrightarrow \text { there exists } x \in A \cup B \text { such that } y=f(x) \\
& \Leftrightarrow \text { either there exists } x \in A \text { or there exists } x \in B \text { and } y=f(x) \\
& \Leftrightarrow \text { either there exists } x \in A \text { and } y=f(x) \text { or there exists } x \in B \text { and } y=f(x) \\
& \Leftrightarrow \text { either } y \in f(A) \text { or } y \in f(B) \\
& \Leftrightarrow y \in f(A) \cup f(B) .
\end{aligned}
$$

Therefore, $y \in f(A \cup B)$ iff $y \in f(A) \cup f(B)$, so $f(A \cup B)=f(A) \cup f(B)$.
Proof. We prove 2.
Let A and B be subsets of X.
We first prove $f(A \cup B) \subset f(A) \cup f(B)$.
Let $y \in f(A \cup B)$.
Then there exists $x \in A \cup B$ such that $f(x)=y$.
Since $x \in A \cup B$, then either $x \in A$ or $x \in B$.
Case 1: Suppose $x \in A$.
Since $x \in A$ and $y=f(x)$, then $y \in f(A)$.
Case 2: Suppose $x \in B$.
Since $x \in B$ and $y=f(x)$, then $y \in f(B)$.
Thus, either $y \in f(A)$ or $y \in f(B)$, so $y \in f(A) \cup f(B)$.
Therefore, $f(A \cup B) \subset f(A) \cup f(B)$.

We next prove $f(A) \cup f(B) \subset f(A \cup B)$.
Let $y \in f(A) \cup f(B)$.
Then either $y \in f(A)$ or $y \in f(B)$.
Case 1: Suppose $y \in f(A)$.
Then there exists $a \in A$ such that $f(a)=y$.
Since $a \in A$, then either $a \in A$ or $a \in B$, so $a \in A \cup B$.
Since $a \in A \cup B$ and $f(a)=y$, then $y \in f(A \cup B)$.
Case 2: Suppose $y \in f(B)$.
Then there exists $b \in B$ such that $f(b)=y$.
Since $b \in B$, then either $b \in A$ or $b \in B$, so $b \in A \cup B$.
Since $b \in A \cup B$ and $f(b)=y$, then $y \in f(A \cup B)$.
Hence, in either case, $y \in f(A \cup B)$.
Therefore, $f(A) \cup f(B) \subset f(A \cup B)$.
Since $f(A \cup B) \subset f(A) \cup f(B)$ and $f(A) \cup f(B) \subset f(A \cup B)$, then $f(A \cup B)=$ $f(A) \cup f(B)$.

Proof. We prove 3.
Let A and B be subsets of X.
We prove $f(A \cap B) \subset f(A) \cap f(B)$.
Let $y \in f(A \cap B)$.
Then there exists $x \in A \cap B$ such that $f(x)=y$.
Since $x \in A \cap B$, then $x \in A$ and $x \in B$.
Since $x \in A$ and $f(x)=y$, then $y \in f(A)$.
Since $x \in B$ and $f(x)=y$, then $y \in f(B)$.
Thus, $y \in f(A)$ and $y \in f(B)$, so $y \in f(A) \cap f(B)$.
Therefore, $f(A \cap B) \subset f(A) \cap f(B)$.
Proof. We prove 4.
We prove $f(A \cap B)=f(A) \cap f(B)$ for every subset A and B of X iff f is injective.

We first prove if f is injective, then $f(A \cap B)=f(A) \cap f(B)$ for every subset A and B of X.

Suppose f is injective.
Let A and B be subsets of X.
We prove $f(A) \cap f(B) \subset f(A \cap B)$.
Let $y \in f(A) \cap f(B)$.
Then $y \in f(A)$ and $y \in f(B)$.
Since $y \in f(A)$, then $y=f(a)$ for some $a \in A$.
Since $y \in f(B)$, then $y=f(b)$ for some $b \in B$.
Hence, $f(a)=y=f(b)$.
Since f is injective and $f(a)=f(b)$, then $a=b$.
Since $a=b$ and $b \in B$, then $a \in B$.
Since $a \in A$ and $a \in B$, then $a \in A \cap B$.

Since $a \in A \cap B$ and $f(a)=y$, then $y \in f(A \cap B)$.
Therefore, $f(A) \cap f(B) \subset f(A \cap B)$.
Since $f(A \cap B) \subset f(A) \cap f(B)$ and $f(A) \cap f(B) \subset f(A \cap B)$, then $f(A \cap B)=$ $f(A) \cap f(B)$.

Conversely, we prove if $f(A \cap B)=f(A) \cap f(B)$ for every subset A and B of X, then f is injective.

We prove by contrapositive.
Suppose f is not injective.
Then there exist $x_{1}, x_{2} \in X$ such that $x_{1} \neq x_{2}$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$.
We must prove there exist subsets A and B of X such that $f(A \cap B) \neq$ $f(A) \cap f(B)$.

Let $A=\left\{x_{1}\right\}$ and $B=\left\{x_{2}\right\}$.
Since $x_{1} \in X$ and $A=\left\{x_{1}\right\}$, then $A \subset X$.
Since $x_{2} \in X$ and $B=\left\{x_{1}\right\}$, then $B \subset X$.

We prove $f(A \cap B) \neq f(A) \cap f(B)$.
If $A \cap B \neq \emptyset$, then there exists x such that $x \in A \cap B$, so $x \in A$ and $x \in B$.
Hence, $x \in\left\{x_{1}\right\}$ and $x \in\left\{x_{2}\right\}$, so $x=x_{1}$ and $x=x_{2}$.
Thus, $x_{1}=x=x_{2}$.
Therefore, if $A \cap B \neq \emptyset$, then $x_{1}=x_{2}$, so if $x_{1} \neq x_{2}$, then $A \cap B=\emptyset$.
Since $x_{1} \neq x_{2}$, then we conclude $A \cap B=\emptyset$.
Since $x_{1} \in A$, then $f\left(x_{1}\right) \in f(A)$.
Since $x_{2} \in B$, then $f\left(x_{2}\right) \in f(B)$.
Since $f\left(x_{1}\right)=f\left(x_{2}\right)$ and $f\left(x_{2}\right) \in f(B)$, then $f\left(x_{1}\right) \in f(B)$.
Thus, $f\left(x_{1}\right) \in f(A)$ and $f\left(x_{1}\right) \in f(B)$, so $f\left(x_{1}\right) \in f(A) \cap f(B)$.
Hence, $f(A) \cap f(B) \neq \emptyset$.
Therefore, $f(A \cap B)=f(\emptyset)=\emptyset \neq f(A) \cap f(B)$, as desired.
Proposition 46. Let $f: X \rightarrow Y$ be a map.

1. For every subset C and D of Y, if $C \subset D$, then $f^{-1}(C) \subset f^{-1}(D)$.
2. $f^{-1}(C \cup D)=f^{-1}(C) \cup f^{-1}(D)$ for every subset C and D of Y.

The inverse image of a union equals the union of the inverse images.
3. $f^{-1}(C \cap D)=f^{-1}(C) \cap f^{-1}(D)$ for every subset C and D of Y.

The inverse image of an intersection equals the intersection of the inverse images.

Proof. We prove 1.
Let C and D be subsets of Y such that $C \subset D$.
Let $x \in f^{-1}(C)$.
Then $x \in X$ and $f(x) \in C$.
Since $f(x) \in C$ and $C \subset D$, then $f(x) \in D$.
Hence, $x \in X$ and $f(x) \in D$, so $x \in f^{-1}(D)$.
Therefore, $f^{-1}(C) \subset f^{-1}(D)$.

Proof. We prove 2.
Let C and D be subsets of Y.
We must prove $f^{-1}(C \cup D)=f^{-1}(C) \cup f^{-1}(D)$.
Observe that

$$
\begin{aligned}
x \in f^{-1}(C \cup D) & \Leftrightarrow x \in X \text { and } f(x) \in C \cup D \\
& \Leftrightarrow x \in X \text { and either } f(x) \in C \text { or } f(x) \in D \\
& \Leftrightarrow \text { either } x \in X \text { and } f(x) \in C \text { or } x \in X \text { and } f(x) \in D \\
& \Leftrightarrow \text { either } x \in f^{-1}(C) \text { or } x \in f^{-1}(D) \\
& \Leftrightarrow x \in f^{-1}(C) \cup f^{-1}(D) .
\end{aligned}
$$

Therefore, $x \in f^{-1}(C \cup D)$ iff $x \in f^{-1}(C) \cup f^{-1}(D)$, so $f^{-1}(C \cup D)=$ $f^{-1}(C) \cup f^{-1}(D)$.

Proof. We prove 3.
Let C and D be subsets of Y.
We must prove $f^{-1}(C \cap D)=f^{-1}(C) \cap f^{-1}(D)$.
Observe that

$$
\begin{aligned}
x \in f^{-1}(C \cap D) & \Leftrightarrow x \in X \text { and } f(x) \in C \cap D \\
& \Leftrightarrow x \in X \text { and } f(x) \in C \text { and } f(x) \in D \\
& \Leftrightarrow x \in X \text { and } f(x) \in C \text { and } x \in X \text { and } f(x) \in D \\
& \Leftrightarrow x \in f^{-1}(C) \text { and } x \in f^{-1}(D) \\
& \Leftrightarrow x \in f^{-1}(C) \cap f^{-1}(D) .
\end{aligned}
$$

Therefore, $x \in f^{-1}(C \cap D)$ iff $x \in f^{-1}(C) \cap f^{-1}(D)$, so $f^{-1}(C \cap D)=$ $f^{-1}(C) \cap f^{-1}(D)$.

Proposition 47. inverse image of the image of a subset of the domain of a map

Let $f: A \rightarrow B$ be a map. Then

1. $S \subset f^{-1}(f(S))$ for every subset S of A.
2. $f^{-1}(f(S))=S$ for every subset S of A iff f is injective.

Proof. We prove 1.
We prove $S \subset f^{-1}(f(S))$ for every subset S of A.
Let $S \subset A$.
Suppose $x \in S$.
Then $f(x) \in f(S)$.
Since $x \in S$ and $S \subset A$, then $x \in A$.
Since $x \in A$ and $f(x) \in f(S)$, then $x \in f^{-1}(f(S))$.
Therefore, $S \subset f^{-1}(f(S))$.
Proof. We prove 2.
We prove $f^{-1}(f(S))=S$ for every subset S of A iff f is injective.

We first prove if $f^{-1}(f(S))=S$ for every subset S of A, then f is injective.
Suppose $f^{-1}(f(S))=S$ for every subset S of A.
To prove f is injective, let $a, b \in A$ such that $f(a)=f(b)$.
We must prove $a=b$.
Let $S=\{a\}$.
Since $a \in A$, then $S \subset A$.
Hence, $f^{-1}(f(S))=S$.
Since $a \in S$, then $f(a) \in f(S)$.
Since $f(b)=f(a)$, then $f(b) \in f(S)$.
Since $b \in A$ and $f(b) \in f(S)$, then $b \in f^{-1}(f(S))$.
Thus, $b \in S$, so $b \in\{a\}$.
Therefore, $b=a$, as desired.
Conversely, we prove if f is injective, then $f^{-1}(f(S))=S$ for every subset S of A.

Suppose f is injective.
Let $S \subset A$.
We must prove $f^{-1}(f(S))=S$.
Let $x \in f^{-1}(f(S))$.
Then $x \in A$ and $f(x) \in f(S)$.
Since $f(x) \in f(S)$, then there exists $s \in S$ such that $f(s)=f(x)$.
Since f is injective, then $s=x$.
Since $s \in S$, then $x \in S$.
Therefore, $f^{-1}(f(S)) \subset S$.
Since $f^{-1}(f(S)) \subset S$ and $S \subset f^{-1}(f(S))$, then $f^{-1}(f(S))=S$.
Proposition 48. image of the inverse image of a subset of the codomain of a map

Let $f: A \rightarrow B$ be a map. Then

1. $f\left(f^{-1}(T)\right) \subset T$ for every subset T of B.
2. $f\left(f^{-1}(T)\right)=T$ for every subset T of B iff f is surjective.

Proof. We prove 1.
Let $T \subset B$.
We prove $f\left(f^{-1}(T)\right) \subset T$.
Let $y \in f\left(f^{-1}(T)\right)$.
Then there exists $x \in f^{-1}(T)$ such that $f(x)=y$.
Since $x \in f^{-1}(T)$, then $x \in A$ and $f(x) \in T$.
Thus, $y \in T$.
Therefore, $f\left(f^{-1}(T)\right) \subset T$.
Proof. We prove 2.
We must prove $f\left(f^{-1}(T)\right)=T$ for every subset T of B iff f is surjective.

We first prove if f is surjective, then $f\left(f^{-1}(T)\right)=T$ for every subset T of B.
Suppose f is surjective.
Let $T \subset B$.
Let $y \in T$.
Since f is surjective, then there exists $x \in A$ such that $f(x)=y$.
Since $x \in A$ and $f(x) \in T$, then $x \in f^{-1}(T)$.
Since $y=f(x)$ and $x \in f^{-1}(T)$, then $y \in f\left(f^{-1}(T)\right)$.
Therefore, $T \subset f\left(f^{-1}(T)\right)$.
Since $f\left(f^{-1}(T)\right) \subset T$ and $T \subset f\left(f^{-1}(T)\right)$, then $f\left(f^{-1}(T)\right)=T$.
Conversely, we prove if $f\left(f^{-1}(T)\right)=T$ for every subset T of B, then f is surjective.

Suppose $f\left(f^{-1}(T)\right)=T$ for every subset T of B.
Since $B \subset B$, then $f\left(f^{-1}(B)\right)=B$.
Observe that

$$
\begin{aligned}
B & =f\left(f^{-1}(B)\right) \\
& =f(A) \\
& =r n g f
\end{aligned}
$$

Therefore, $r n g f=B$, so f is surjective, as desired.

