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Relations

Proposition 1. Let R be a nonempty relation from set A to set B. Then
1. dom R−1 = range R.
2. range R−1 = dom R.
3. (R−1)−1 = R.

Proof. We prove domR−1 = rangeR.
Since R is not empty, then there is at least one ordered pair in R.
Let x be an arbitrary object in the domain of discourse.
We prove dom R−1 = range R.
Observe that

x ∈ domR−1 ⇔ x ∈ B ∧ (∃y ∈ A)((x, y) ∈ R−1)

⇔ x ∈ B ∧ (∃y ∈ A)((y, x) ∈ R)

⇔ x ∈ rangeR.

Therefore, domR−1 = rangeR.

Proof. We prove range R−1 = dom R.
Observe that

x ∈ rangeR−1 ⇔ x ∈ A ∧ (∃y ∈ B)((y, x) ∈ R−1)

⇔ x ∈ A ∧ (∃y ∈ B)((x, y) ∈ R)

⇔ x ∈ domR.

Therefore, range R−1 = dom R.

Proof. We prove (R−1)−1 = R.
Let (a, b) be arbitrary.
Then

(a, b) ∈ (R−1)−1 ⇔ (b, a) ∈ R−1

⇔ (a, b) ∈ R.

Therefore, (R−1)−1 = R.



Proposition 2. A relation R on a nonempty set S is reflexive iff IS ⊂ R.

Proof. Let S be a nonempty set.
Since S is not empty, then there is an element in S, so let a be an element

of S.
Let R be a relation on S.
We must prove R is reflexive iff IS ⊂ R.
We first prove if R is reflexive, then IS ⊂ R.

Suppose R is reflexive.
Let (a, a) ∈ IS be arbitrary.
Since R is reflexive and a ∈ S, then (a, a) ∈ R.
Hence, (a, a) ∈ IS implies (a, a) ∈ R, so IS ⊂ R.

Conversely, we prove if IS ⊂ R, then R is reflexive.
Suppose IS ⊂ R.
Let x ∈ S be arbitrary.
Then (x, x) ∈ S × S.
Since there is an element x ∈ S such that (x, x) ∈ S × S, then (x, x) ∈ IS .
Since IS ⊂ R, then (x, x) ∈ R.
Therefore, R is reflexive.

Proposition 3. A relation R on a set S is symmetric iff R = R−1.

Proof. Let R be a relation on a set S.
We must prove R is symmetric iff R = R−1.
We prove if R is symmetric, then R = R−1.

Suppose R is symmetric.
Let (a, b) ∈ R.
Since R is symmetric and (a, b) ∈ R, then (b, a) ∈ R.
Since (b, a) ∈ R iff (a, b) ∈ R−1, then (a, b) ∈ R−1.
Hence, (a, b) ∈ R implies (a, b) ∈ R−1, so R ⊂ R−1.
Let (c, d) ∈ R−1.
Then, by definition of R−1, (d, c) ∈ R.
Since R is symmetric and (d, c) ∈ R, then (c, d) ∈ R.
Hence, (c, d) ∈ R−1 implies (c, d) ∈ R, so R−1 ⊂ R.
Since R ⊂ R−1 and R−1 ⊂ R, then R = R−1.

Conversely, we prove if R = R−1, then R is symmetric.
Suppose R = R−1.
Let (a, b) ∈ R.
Since R = R−1, then (a, b) ∈ R−1.
Since (a, b) ∈ R−1 iff (b, a) ∈ R, then (b, a) ∈ R.
Hence, (a, b) ∈ R implies (b, a) ∈ R, so R is symmetric.
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Proposition 4. Let r and s be relations.
Then r ◦ s ⊂ dom s× rng r.

Proof. Suppose (a, b) ∈ r ◦ s.
Then there exists c such that (a, c) ∈ s and (c, b) ∈ r.
Since (a, c) ∈ s, then a ∈ dom s.
Since (c, b) ∈ r, then b ∈ rng r.
Since a ∈ dom s and b ∈ rng r, then (a, b) ∈ dom s× rng r.
Therefore, r ◦ s ⊂ dom s× rng r.

Equivalence Relations

Theorem 5. Let ∼ be an equivalence relation on a set S.
Then
1. a ∈ [a] for all a ∈ S.
2. a ∈ [b] iff a ∼ b for all a, b ∈ S.
3. [a] = [b] iff a ∼ b for all a, b ∈ S.
4. for all a, b ∈ S, either [a] = [b] or [a] ∩ [b] = ∅.
5. ∪([a] : a ∈ S) = S.

Proof. We prove 1.
Let a ∈ S.
Since ∼ is an equivalence relation, then ∼ is reflexive, so a ∼ a.
Since a ∈ S and a ∼ a, then by definition of equivalence class, a ∈ [a].

Proof. We prove 2.
Let a, b ∈ S.
Observe that

a ∈ [b] ⇔ a ∈ S ∧ a ∼ b

⇔ a ∼ b.

Proof. We prove 3.
Let a, b ∈ S.
We prove if [a] = [b], then a ∼ b.
Suppose [a] = [b].
By statement 1, we know that a ∈ [a].
Since a ∈ [a] and [a] = [b], then a ∈ [b].
Therefore, by statement 2 of the theorem, we conclude a ∼ b.
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Conversely, we prove if a ∼ b, then [a] = [b].
Suppose a ∼ b.
We first prove [a] ⊂ [b].
Let x ∈ [a].
Then x ∈ S and x ∼ a.
Since x ∼ a and a ∼ b, then x ∼ b.
Since x ∈ S and x ∼ b, then x ∈ [b].
Therefore, x ∈ [a] implies x ∈ [b], so [a] ⊂ [b].

We next prove [b] ⊂ [a].
Let y ∈ [b].
Then y ∈ S and y ∼ b.
Since a ∼ b, then b ∼ a.
Since y ∼ b and b ∼ a, then y ∼ a.
Since y ∈ S and y ∼ a, then y ∈ [a].
Therefore, y ∈ [b] implies y ∈ [a], so [b] ⊂ [a].
Since [a] ⊂ [b] and [b] ⊂ [a], then [a] = [b], as desired.

Proof. We prove 4.
Let a, b ∈ S.
To prove either [a] = [b] or [a]∩ [b] = ∅, we prove [a]∩ [b] 6= ∅ implies [a] = [b].

Suppose [a] ∩ [b] 6= ∅.
Then [a] ∩ [b] is not empty, so there exists an element in [a] ∩ [b].
Let c be some element in [a] ∩ [b].
Then c ∈ [a] and c ∈ [b].
Since c ∈ [a], then by statement 2, we know that c ∼ a.
Since c ∈ [b], then b y statement 2, we know that c ∼ b.
Since c ∼ a, then a ∼ c.
Since a ∼ c and c ∼ b, then a ∼ b.
By statement 3 we conclude [a] = [b], as desired.

Proof. We prove 5.
Let x ∈ ∪([a] : a ∈ S).
Then there exists a ∈ S such that x ∈ [a].
Since [a] = {s ∈ S : s ∼ a}, then [a] ⊂ S.
Since x ∈ [a] and [a] ⊂ S, then x ∈ S.
Hence, x ∈ ∪([a] : a ∈ S) implies x ∈ S, so ∪([a] : a ∈ S) ⊂ S.

Let y ∈ S.
By statement one, we know that y ∈ [y].
Hence, there exists some a ∈ S such that y ∈ [a], so y ∈ ∪([a] : a ∈ S).
Thus, y ∈ S implies y ∈ ∪([a] : a ∈ S), so S ⊂ ∪([a] : a ∈ S).
Since ∪([a] : a ∈ S) ⊂ S and S ⊂ ∪([a] : a ∈ S), then ∪([a] : a ∈ S) = S.
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Corollary 6. Let ∼ be an equivalence relation on set S.
Then each element of S is an element of exactly one equivalence class.

Proof. Let x be an arbitrary element of S.
Since ∼ is an equivalence relation, then by the previous theorem, x ∈ [x].
Therefore, x is in at least one equivalence class.

Suppose there exist equivalence classes [a] and [b] such that x ∈ [a] and x ∈ [b].
Since x ∈ [a], then x ∼ a.
Since x ∈ [b], then x ∼ b.
Since x ∼ a, then a ∼ x.
Since a ∼ x and x ∼ b, then a ∼ b.
By the previous theorem, we conclude [a] = [b].
Therefore, x is in at most one equivalence class.

Since x is in at least one equivalence class and x is in at most one equivalence
class, then x is in exactly one equivalence class.

Theorem 7. Any partition of a set yields a corresponding equivalence
relation

Let S be a nonempty set.
Let P be a partition of S.
Define a relation ∼ on S by a ∼ b iff there exists a cell T ∈ P such that

a ∈ T and b ∈ T for all a, b ∈ S.
Then ∼ is an equivalence relation on S.

Proof. We prove ∼ is an equivalence relation on S.
Let a ∈ S.
Then by condition 3 in the definition of partition, there exists T ∈ P such

that a ∈ T .
Hence, there exists T ∈ P such that a ∈ T and a ∈ T , so a ∼ a.
Therefore, ∼ is reflexive.

Let a, b ∈ S such that a ∼ b.
Then there exists T ∈ P such that a ∈ T and b ∈ T .
Hence, there exists T ∈ P such that b ∈ T and a ∈ T .
Thus, b ∼ a.
Hence, a ∼ b implies b ∼ a, so ∼ is symmetric.
Let a, b, c ∈ S such that a ∼ b and b ∼ c.
Then there exists V ∈ P such that a ∈ V and b ∈ V and there exists W ∈ P

such that b ∈W and c ∈W .
To prove a ∼ c, we must prove there exists T ∈ P such that a ∈ T and

c ∈ T .
Since b ∈ V and b ∈W , then b ∈ V ∩W , so V ∩W 6= ∅.
By condition 2 in the definition of partition of a set, either V = W or

V ∩W = ∅. Hence, V = W .
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Let T be the set V = W .
Then T = V = W .
Since a ∈ V and V = T , then a ∈ T .
Since c ∈W and W = T , then c ∈ T .
Hence, there exists T ∈ P such that a ∈ T and c ∈ T , so a ∼ c.
Thus, a ∼ b and b ∼ c imply a ∼ c, so ∼ is transitive.
Therefore, ∼ is an equivalence relation on S.

Theorem 8. Any equivalence relation on a set yields a corresponding
partition

Let ∼ be an equivalence relation on a nonempty set S.
Then the collection S

∼ = {[x] : x ∈ S} of equivalence classes induced by ∼ is
a partition of S.

Solution.
Our hypothesis is
1. S is a nonempty set.
2. ∼ is an equivalence relation on S.
Our conclusion is S

∼ = {[x] : x ∈ S} is a partition of S.

To prove S
∼ is a partition of S, we must prove:

1. (∀T ∈ S
∼ )(T ⊂ S).

2. (∀T ∈ S
∼ )(T 6= ∅).

3. for all T1, T2 ∈ S
∼ , either T1 = T2 or T1 ∩ T2 = ∅.

4. (∀x ∈ S)(∃T ∈ S
∼ )(x ∈ T ).

By hypothesis ∼ is an equivalence relation, so ∼ is reflexive, symmetric, and
transitive.

Proof. Let S
∼ be the collection of all equivalence classes of ∼. Then S

∼ = {[x] :
x ∈ S}.

Since S is not empty, then there is an element of S.
Let a be some element of S.
Since a ∈ S and ∼ is an equivalence relation on S, then a ∈ [a].
Thus, [a] ∈ S

∼ , so S
∼ is not empty.

Let T ∈ S
∼ .

Then there exists a ∈ S such that T = [a].
Since [a] = {x ∈ S : a ∼ x}, then [a] ⊂ S, so T ⊂ S.
Since a ∈ S and ∼ is an equivalence relation on S, then a ∈ [a].
Hence, [a] 6= ∅, so T 6= ∅.
Therefore, T is a nonempty subset of S, so every element of S

∼ is a nonempty
subset of S.

We prove for all T1, T2 ∈ S
∼ , either T1 = T2 or T1 ∩ T2 = ∅.

Let T1, T2 ∈ S
∼ .

Then there exists a ∈ S such that T1 = [a] and there exists b ∈ S such that
T2 = [b].
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Since ∼ is an equivalence relation on S and a ∈ S and b ∈ S, then either
[a] = [b] or [a] ∩ [b] = ∅.

Hence, either T1 = T2 or T1 ∩ T2 = ∅.

We prove for every x ∈ S, there exists T ∈ S
∼ such that x ∈ T .

Let x ∈ S.
Since ∼ is an equivalence relation on S, then x ∈ [x].
Let T = [x].
Then x ∈ T .
Since x ∈ S, then [x] ∈ S

∼ , so T ∈ S
∼ .

Thus, there exists T ∈ S
∼ such that x ∈ T .

Hence, each element of S lies in at least one element of S
∼ .

Therefore, S
∼ is a partition of S.

Theorem 9. If R is an equivalence relation on a set S, then S
S
R

= R.

If P is a partition of a set S, then S
S
P

= P .

Proof. Suppose R is an equivalence relation on a set S.
Then S

R , the collection of all equivalence classes induced by R, is a partition
of S.

Therefore, S
S
R

is an equivalence relation on S defined by (a, b) ∈ S
S
R

iff there

exists a cell T ∈ S
R such that a ∈ T and b ∈ T for all a, b ∈ S.

To prove S
S
R

= R, we prove S
S
R

⊂ R and R ⊂ S
S
R

.

Let (x, y) ∈ S
S
R

.

Then x ∈ S and y ∈ S and there exists a cell T ∈ S
R such that x ∈ T and

y ∈ T .
Each element of S

R is an equivalence class of R, so T is an equivalence class
of R.

Since x is in exactly one equivalence class of R and x ∈ [x] and x ∈ T , then
[x] = T .

Since y is in exactly one equivalence class of R and y ∈ [y] and y ∈ T , then
[y] = T .

Therefore, [x] = T = [y], so xRy.
Hence, (x, y) ∈ R.
Thus, (x, y) ∈ S

S
R

implies (x, y) ∈ R, so S
S
R

⊂ R.

Let (x, y) ∈ R.
Then xRy, so [x] = [y].
Let T = [x] = [y].
Then T ∈ S

R and x ∈ [x] and y ∈ [y].

Thus, there exists a cell T in the partition S
R such that x ∈ T and y ∈ T , so

(x, y) ∈ S
S
R

.
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Hence, (x, y) ∈ R implies (x, y) ∈ S
S
R

, so R ⊂ S
S
R

.

Since S
S
R

⊂ R and R ⊂ S
S
R

, then S
S
R

= R.

Proof. We prove if P is a partition of set S, then S
S
P

= P .

Suppose P is a partition of S.
Then S

P defined by (a, b) ∈ S
P iff there exists a cell T ∈ P such that a ∈ T

and b ∈ T for all a, b ∈ S is an equivalence relation on S.
Thus, S

S
P

= {[x] : x ∈ S}, the collection of all equivalence classes induced by
S
P , is a partition of S.

To prove S
S
P

= P , we prove S
S
P

⊂ P and P ⊂ S
S
P

.

We first prove P ⊂ S
S
P

.

Let T ∈ P .
To prove T ∈ S

S
P

, we must show there exists x ∈ S such that T = [x].

Since T ∈ P , then T ⊂ S and by condition 1 in the definition of partition,
T 6= ∅.

Thus, T is not empty, so there is an element in T .
Let x be an element of T .
Since x ∈ T and T ⊂ S, then x ∈ S.
To prove T = [x], we prove T ⊂ [x] and [x] ⊂ T .
Observe that [x] = {s ∈ S : (x, s) ∈ S

P } = {s ∈ S : (∃T ′ ∈ P )(x ∈ T ′ ∧ s ∈
T ′)}.

We prove T ⊂ [x].
Let t ∈ T .
To prove t ∈ [x], we must prove t ∈ S and there exists a cell T ′ such that

x ∈ T ′ and t ∈ T ′.
Since t ∈ T and T ⊂ S, then t ∈ S.
Let T ′ = T .
Then x ∈ T ′ since x ∈ T and t ∈ T ′ since t ∈ T .
Hence, t ∈ [x].
Thus, t ∈ T implies t ∈ [x], so T ⊂ [x].

We prove [x] ⊂ T .
Let s ∈ [x]. We must prove s ∈ T .
Since s ∈ [x], then s ∈ S and there exists a cell T ′ ∈ P such that x ∈ T ′ and

s ∈ T ′.
Since x ∈ T and x ∈ T ′, then x ∈ T ∩ T ′.
Thus, T ∩ T ′ 6= ∅.
By condition 2 in the definition of partition, either T = T ′ or T ∩ T ′ = ∅.
Hence, T = T ′.
Since s ∈ T ′ and T ′ = T , then s ∈ T .
Thus, s ∈ [x] implies s ∈ T , so [x] ⊂ T .
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Since T ⊂ [x] and [x] ⊂ T , then T = [x].
Therefore, there exists x ∈ S such that T = [x], so T ∈ S

S
P

.

Thus, T ∈ P implies T ∈ S
S
P

, so P ⊂ S
S
P

.

We now prove S
S
P

⊂ P .

Let T ∈ S
S
P

.

Then there exists x ∈ S such that T = [x].
We must prove T ∈ P .
Since x ∈ [x] and [x] = T , then x ∈ T .
Since x ∈ [x], then by definition of [x], there exists T ′ ∈ P such that x ∈ T ′.
Thus, x ∈ T and x ∈ T ′, so x ∈ T ∩ T ′.
Hence, T ∩ T ′ 6= ∅.
By condition 2 in the definition of partition, either T = T ′ or T ∩ T ′ = ∅.
Thus, T = T ′.
Since T = T ′ and T ′ ∈ P , then T ∈ P .
Hence, T ∈ S

S
P

implies T ∈ P , so S
S
P

⊂ P .

Since S
S
P

⊂ P and P ⊂ S
S
P

, then S
S
P

= P .

Proposition 10. If E1 and E2 are equivalence relations on a set S, then E1∩E2

is an equivalence relation on S.

Proof. Suppose E1 and E2 are equivalence relations on a set S.
Let R = E1 ∩ E2.
Since E1 ∩ E2 ⊂ E1 and E1 ⊂ S × S, then E1 ∩ E2 ⊂ S × S.
Thus, R ⊂ S × S, so R is a relation on S.

Reflexive:
Let x ∈ S.
Since E1 is reflexive, then (x, x) ∈ E1.
Since E2 is reflexive, then (x, x) ∈ E2.
Thus, (x, x) ∈ E1 and (x, x) ∈ E2, so (x, x) ∈ E1 ∩ E2.
Hence, (x, x) ∈ R.
Therefore, R is reflexive.

Symmetric:
Let x, y ∈ S such that (x, y) ∈ R.
Since R = E1 ∩ E2, then (x, y) ∈ E1 and (x, y) ∈ E2.
Since E1 is symmetric and (x, y) ∈ E1, then (y, x) ∈ E1.
Since E2 is symmetric and (x, y) ∈ E2, then (y, x) ∈ E2.
Thus, (y, x) ∈ E1 and (y, x) ∈ E2, so (y, x) ∈ E1 ∩ E2.
Hence, (y, x) ∈ R.
Therefore, (x, y) ∈ R implies (y, x) ∈ R, so R is symmetric.
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Transitive:
Let x, y, z ∈ S such that (x, y) ∈ R and (y, z) ∈ R.
Since R = E1 ∩ E2, then (x, y) ∈ E1 and (x, y) ∈ E2 and (y, z) ∈ E1 and

(y, z) ∈ E2.
Since E1 is transitive and (x, y) ∈ E1 and (y, z) ∈ E1, then (x, z) ∈ E1.
Since E2 is transitive and (x, y) ∈ E2 and (y, z) ∈ E2, then (x, z) ∈ E2.
Thus, (x, z) ∈ E1 and (x, z) ∈ E2, so (x, z) ∈ E1 ∩ E2 = R.
Therefore, (x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R, so R is transitive.
Since R is reflexive, symmetric, and transitive, then R is an equivalence

relation on S.
Therefore, E1 ∩ E2 is an equivalence relation on S.

Theorem 11. Let ∼ be an equivalence relation on a set S.
Let S

∼ = {[a] : a ∈ S}.
Let f : S → S

∼ be a binary relation from S to S
∼ defined by f(a) = [a] for all

a ∈ S.
Then f is a surjective function.

Solution. We must prove f is a function and f is surjective.
To prove f is a function, we must prove:
1. Existence: f(a) ∈ S

∼ .
2. Uniqueness: if a1, a2 ∈ S such that a1 = a2, then f(a1) = f(a2).

Proof. Let a ∈ S.
Then f(a) = [a].
Hence, there exists a ∈ S such that f(a) = [a].
Therefore, f(a) ∈ S

∼ .

Let a1, a2 ∈ S such that a1 = a2.
Since ∼ is an equivalence relation on S, then ∼ is reflexive.
Thus, a1 ∼ a1.
Hence, a1 ∼ a2.
Therefore, [a1] = [a2].
Observe that

f(a1) = [a1]

= [a2]

= f(a2).

Thus, a1 = a2 implies f(a1) = f(a2), so f is well defined.
Therefore, f is a function.
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Let [b] ∈ S
∼ .

Then b ∈ S.
Thus, f(b) = [b].
Hence, there exists b ∈ S such that f(b) = [b].
Therefore, f is surjective.

Theorem 12. Let ∼ be an equivalence relation over a set S.
Let f be the natural projection of S onto S

∼ .
Then x1 ∼ x2 iff f(x1) = f(x2) for all x1, x2 ∈ S.

Proof. Let x1, x2 ∈ S.
Since f is the natural projection of S onto S

∼ , then f(x1) = [x1] and f(x2) =
[x2].

Observe that

x1 ∼ x2 ⇔ [x1] = [x2]

⇔ f(x1) = f(x2).

Proposition 13. Let f : A→ B be a function.
Let ∼ be a relation defined on A by x1 ∼ x2 iff f(x1) = f(x2) for all

x1, x2 ∈ A.
Then ∼ is an equivalence relation on A.

Proof. Let a ∈ A.
Then f(a) = f(a).
Since f(a) = f(a) iff a ∼ a, then a ∼ a.
Hence, ∼ is reflexive.

Let a, b ∈ A such that a ∼ b.
Then f(a) = f(b), so f(b) = f(a).
Since f(b) = f(a) iff b ∼ a, then b ∼ a.
Hence, a ∼ b implies b ∼ a, so ∼ is symmetric.

Let a, b, c ∈ A such that a ∼ b and b ∼ c.
Then f(a) = f(b) and f(b) = f(c).
Thus, f(a) = f(b) = f(c), so f(a) = f(c).
Since f(a) = f(c) iff a ∼ c, then a ∼ c.
Therefore, a ∼ b and b ∼ c imply a ∼ c, so ∼ is transitive.
Since ∼ is reflexive, symmetric, and transitive, then ∼ is an equivalence

relation on A.

Theorem 14. Let f : A→ B be a function.
Let ker f be the kernel of f .
Then there is a bijection from A

ker f to f(A).

Moreover, f−1(b) is an equivalence class of A under ker f for every b ∈ f(A).
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Proof. Since the kernel of f is an equivalence relation on A, then the quotient
set of A under ker f exists.

Let A
ker f be the quotient set of A under ker f .

Then A
ker f = {[x] : x ∈ A}.

Since f is a function, then the image of A under f exists.
Let f(A) be the image of A under f .
Then f(A) = {f(x) ∈ B : x ∈ A}.

Let g : A
ker f → f(A) be a binary relation from A

ker f to f(A) defined by

g([x]) = f(x) for all [x] ∈ A
ker f .

We prove g is a function.
Let [x] ∈ A

ker f .

Then x ∈ A and g([x]) = f(x).
Since f is a function, then f(x) ∈ B.
Thus, there exists x ∈ A such that f(x) ∈ B, so f(x) ∈ f(A).
Hence, g([x]) ∈ f(A).
Let [x1], [x2] ∈ A

ker f such that [x1] = [x2].
Then x1, x2 ∈ A.
Since ker f is an equivalence relation on A, then [x1] = [x2] iff x1 ∼ x2 and

x1 ∼ x2 iff f(x1) = f(x2).
Thus, [x1] = [x2] iff f(x1) = f(x2).
Hence, f(x1) = f(x2).
Observe that

g([x1]) = f(x1)

= f(x2)

= g([x2]).

Therefore, [x1] = [x2] implies g([x1]) = g([x2]), so g is well defined.
Therefore, g is a function.

Let f(x) ∈ f(A).
Then there exists x ∈ A such that f(x) ∈ B.
Since x ∈ A, then [x] ∈ A

ker f .

Thus, g([x]) = f(x).
Hence, there exists [x] ∈ A

ker f such that g([x]) = f(x).
Therefore, g is surjective.

Let [a], [b] ∈ A
ker f such that g([a]) = g([b]).

Then a, b ∈ A and f(a) = f(b).
Since f(a) = f(b) iff a ∼ b and a ∼ b iff [a] = [b], then f(a) = f(b) iff

[a] = [b].
Thus, [a] = [b].
Hence, g([a]) = g([b]) implies [a] = [b], so g is injective.
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Since g is a surjective and injective, then g is bijective.
Therefore, g is a bijection from A

ker f to f(A).

We prove the pre image of each element in f(A) is an equivalence class of A
under ker f .

Let b ∈ f(A).
Then there exists a ∈ A such that f(a) = b.
Let f−1(b) be the preimage of b.
Then f−1(b) = {a ∈ A : f(a) = b}.

Let x ∈ [a].
Then x ∈ A and x ∼ a.
Since x ∼ a iff f(x) = f(a), then f(x) = f(a).
Thus, f(x) = f(a) = b.
Hence, there exists x ∈ A such that f(x) = b, so x ∈ f−1(b).
Therefore, x ∈ [a] implies x ∈ f−1(b), so [a] ⊂ f−1(b).

Let y ∈ f−1(b).
Then y ∈ A and f(y) = b.
Since f(y) = b = f(a), then f(y) = f(a).
Since f(y) = f(a) iff y ∼ a, then y ∼ a.
Hence, y ∈ A and y ∼ a, so y ∈ [a].
Thus, y ∈ f−1(b) implies y ∈ [a], so f−1(b) ⊂ [a].
Since [a] ⊂ f−1(b) and f−1(b) ⊂ [a], then [a] = f−1(b).

Therefore, there exists a ∈ A such that [a] = f−1(b).
Hence, f−1(b) ∈ A

ker f .

Thus, f−1(b) is an equivalence class of A under ker f .

Partial Orders

Proposition 15. Any element of a partially ordered set is an upper and lower
bound of ∅.

Proof. Let (S,≤) be a partially ordered set.
Since the empty set is a subset of any set, then ∅ ⊂ S. Since (S,≤) is a

poset, then S is not empty.
Let s ∈ S.
To prove s is an upper bound of ∅, we must prove x ≤ s for all x ∈ ∅.
Since there is no element in ∅, then the statement there exists x ∈ ∅ such

that x 6≤ s is false. Hence, the statement x ≤ s for all x ∈ ∅ is true. Therefore,
s is an upper bound of ∅, as desired.

To prove s is a lower bound of ∅, we must prove s ≤ x for all x ∈ ∅.
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Since there is no element in ∅, then the statement there exists x ∈ ∅ such
that s 6≤ x is false. Hence, the statement s ≤ x for all x ∈ ∅ is true. Therefore,
s is a lower bound of ∅, as desired.

Theorem 16. uniqueness of maximum of a poset
Let (P,≤) be a poset. Let S ⊂ P . The greatest element of S, if it exists, is

unique.

Proof. Suppose there is a greatest element of S. Let M be a greatest element
of S.

To prove M is unique, suppose M1 and M2 are greatest elements of S. We
must prove M1 = M2.

Since M1 is a greatest element of S, then M1 ∈ S and x ≤M1 for all x ∈ S.
Since M2 is a greatest element of S, then M2 ∈ S and x ≤ M2 for all x ∈ S.
Since M2 ∈ S and x ≤ M1 for all x ∈ S, then M2 ≤ M1. Since M1 ∈ S and
x ≤ M2 for all x ∈ S, then M1 ≤ M2. Since ≤ is antisymmetric and M1 ≤ M2

and M2 ≤M1, then M1 = M2.
Therefore, M is unique.

Theorem 17. uniqueness of minimum of a poset
Let (P,≤) be a poset. Let S ⊂ P . The least element of S, if it exists, is

unique.

Proof. Suppose there is a least element of S. Let m be a least element of S.
To prove m is unique, suppose m1 and m2 are least elements of S. We must

prove m1 = m2.
Since m1 is a least element of S, then m1 ∈ S and m1 ≤ x for all x ∈ S.

Since m2 is a least element of S, then m2 ∈ S and m2 ≤ x for all x ∈ S. Since
m2 ∈ S and m1 ≤ x for all x ∈ S, then m1 ≤ m2. Since m1 ∈ S and m2 ≤ x
for all x ∈ S, then m2 ≤ m1. Since ≤ is antisymmetric and m1 ≤ m2 and
m2 ≤ m1, then m1 = m2.

Therefore, m is unique.

Theorem 18. uniqueness of least upper bound of a poset
Let (P,≤) be a poset. Let S ⊂ P . The least upper bound of S, if it exists, is

unique.

Proof. Suppose there is a least upper bound of S in P .
Let U be a least upper bound of S in P .
Let B be the set of all upper bounds of S in P .
Then B = {u ∈ P : u is an upper bound of S}.
Since B ⊂ P and U is the least element of B, then U is unique.

Theorem 19. uniqueness of greatest lower bound of a poset
Let (P,≤) be a poset. Let S ⊂ P . The greatest lower bound of S in P , if it

exists, is unique.
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Proof. Suppose there is a greatest lower bound of S in P .
Let L be a greatest lower bound of S in P .
Let B be the set of all lower bounds of S in P .
Then B = {u ∈ P : u is a lower bound of S}.
Since B ⊂ P and L is the greatest element of B, then L is unique.

Theorem 20. sufficient conditions for existence of supremum and in-
fimum of a poset

Let S be a subset of a partially ordered set P .
1. If maxS exists, then supS = maxS.
2. If minS exists, then inf S = minS.

Proof. We prove 1.
Suppose maxS exists in P .
Since maxS is an upper bound of S in P , then S has at least one upper

bound in P .
Let M be an arbitrary upper bound of S in P .
Since M is an upper bound of S and maxS ∈ S, then maxS ≤M .
Hence, maxS is the least upper bound of S in P .
Therefore, maxS = supS.

Proof. We prove 2.
Suppose minS exists in P .
Since minS is a lower bound of S in P , then S has at least one lower bound

in P .
Let M be an arbitrary lower bound of S in P .
Since M is a lower bound of S and minS ∈ S, then M ≤ minS.
Hence, minS is the greatest lower bound of S in P .
Therefore, minS = inf S.

Functions

Proposition 21. A function value is unique.
Let f be a function.
Let a, b ∈ domf .
If a = b, then f(a) = f(b).

Proof. Suppose a = b.
Since a ∈ domf and f is a relation, then (a, f(a)) ∈ f .
Since b ∈ domf and f is a relation, then (b, f(b)) ∈ f .
Since b = a and (b, f(b)) ∈ f , then (a, f(b)) ∈ f .
Since f is a function and (a, f(a)) ∈ f and (a, f(b)) ∈ f , then f(a) =

f(b).

Theorem 22. equality of functions
Let f and g be functions.
Let domf be the domain of f .
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Let domg be the domain of g.
Then f = g iff
1. domf = domg.
2. f(x) = g(x) for all x ∈ domf ∩ domg.

Proof. We prove if domf = domg and f(x) = g(x) for all x ∈ domf ∩ domg,
then f = g.

Suppose domf = domg and f(x) = g(x) for all x ∈ domf ∩ domg.

We first prove f ⊂ g.
Let x ∈ domf .
Then (x, f(x)) ∈ f .
Since x ∈ domf and domf = domg, then x ∈ domg, so (x, g(x)) ∈ g.
Since x ∈ domf and x ∈ domg, then x ∈ domf ∩ domg, so f(x) = g(x).
Hence, (x, f(x)) ∈ g.
Thus, if (x, f(x)) ∈ f , then (x, f(x)) ∈ g, so f ⊂ g.

We prove g ⊂ f .
Let y ∈ domg.
Then (y, g(y)) ∈ g.
Since y ∈ domg and domg = domf , then y ∈ domf , so (y, f(y)) ∈ f .
Since y ∈ domf and y ∈ domg, then y ∈ domf ∩ domg, so f(y) = g(y).
Hence, (y, g(y)) ∈ f .
Thus, if (y, g(y)) ∈ g, then (y, g(y)) ∈ f , so g ⊂ f .

Since f ⊂ g and g ⊂ f , then f = g, as desired.

Proof. Conversely, we prove if f = g, then domf = domg and f(x) = g(x) for
all x ∈ domf ∩ domg.

Suppose f = g.

We first prove domf = domg.
Let x ∈ domf .
Then (x, f(x)) ∈ f .
Since f = g, then (x, f(x)) ∈ g, so x ∈ domg.
Thus, domf ⊂ domg.

Let y ∈ domg.
Then (y, g(y)) ∈ g.
Since g = f , then (y, g(y)) ∈ f , so y ∈ domf .
Thus, domg ⊂ domf .

Since domf ⊂ domg and domg ⊂ domf , then domf = domg, as desired.
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We next prove f(x) = g(x) for all x ∈ domf ∩ domg.
Let x ∈ domf ∩ domg.
Then x ∈ domf and x ∈ domg, so (x, f(x)) ∈ f and (x, g(x)) ∈ g.
Since (x, g(x)) ∈ g and g = f , then (x, g(x)) ∈ f .
Since f is a function and (x, f(x)) ∈ f and (x, g(x)) ∈ f , then f(x) = g(x),

as desired.

Proposition 23. equality of maps
The maps f : A→ B and g : C → D are equal iff
1. A = C.
2. B = D.
3. f(x) = g(x) for all x ∈ A.

Proof. We prove if the maps f : A→ B and g : C → D are equal, then A = C
and B = D and f(x) = g(x) for all x ∈ A.

Let f : A→ B and g : C → D be equal maps.
Then f = g and B = D.
Since f = g, then domf = domg and f(x) = g(x) for all x ∈ domf ∩ domg.
Since domf = domg and domf = A and domg = C, then A = C.
Thus, f(x) = g(x) for all x ∈ A ∩ C = A ∩A = A.
Therefore, A = C and B = D and f(x) = g(x) for all x ∈ A, as desired.

Proof. Conversely, we prove if A = C and B = D and f(x) = g(x) for all x ∈ A,
then the maps f : A→ B and g : C → D are equal.

Suppose A = C and B = D and f(x) = g(x) for all x ∈ A.
Let f : A→ B and g : C → D be maps.
Then f and g are functions and domf = A and domg = C.
Since domf = A = C = domg, then domf = domg.

Let x ∈ domf ∩ domg.
Then x ∈ A ∩ C, so x ∈ A and x ∈ C.
Thus, x ∈ A, so f(x) = g(x).
Hence f(x) = g(x) for all x ∈ domf ∩ domg.
Since f and g are functions and domf = domg and f(x) = g(x) for all

x ∈ domf ∩ domg, then f = g.
Since f = g and B = D, then the maps f : A→ B and g : C → D are equal,

as desired.

Proposition 24. restriction of a map is a map
Let f : A→ B be a map.
Let S ⊂ A.
Let f |S : S → B be defined by f |S(x) = f(x) for all x ∈ S.
Then f |S : S → B is a map.

Proof. Observe that f |S : S → B is a relation.
Since f : A→ B is a map, then f is a function.
Let a ∈ S and b, b′ ∈ B such that (a, b) ∈ f |S and (a, b′) ∈ f |S .
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Then f |S(a) = b and f |S(a) = b′.
Since a ∈ S, then f(a) = b and f(a) = b′.
Since f is a function, then b = b′.
Therefore, f |S is a function.

We prove domf |S = S.
Since f |S : S → B is a relation, then domf |S ⊂ S.
Let s ∈ S.
Since S ⊂ A, then s ∈ A.
Since f : A→ B is a map, then there exists t ∈ B such that f(s) = t.
Since s ∈ S, then f |S(s) = f(s), so f |S(s) = t.
Since s ∈ S and there exists t such that f |S(s) = t, then s ∈ domf |S , so

S ⊂ domf |S .
Since domf |S ⊂ S and S ⊂ domf |S , then domf |S = S.

We prove rngf |S ⊂ B.
Let y ∈ rngf |S .
Then there exists x ∈ S such that f |S(x) = y.
Since x ∈ S, then f |S(x) = f(x), so f(x) = y.
Since x ∈ S and S ⊂ A, then x ∈ A.
Since f : A→ B is a map, then f(x) ∈ B, so y ∈ B.
Hence, rngf |S ⊂ B.

Since f |S is a function and domf |S = S and rngf |S ⊂ B, then f |S : S → B
is a map.

Theorem 25. Composition of functions is a function.
Let f and g be functions. Then
1. g ◦ f is a function.
2. dom g ◦ f = {x ∈ domf : f(x) ∈ domg}.
3. (g ◦ f)(x) = g(f(x)) for all x ∈ dom g ◦ f .

Proof. We prove 1.
Since f and g are relations, then g ◦ f = {(a, b) : (∃c)((a, c) ∈ f ∧ (c, b) ∈ g},

so g ◦ f is a relation.
Let (a, b) ∈ g ◦ f and (a, b′) ∈ g ◦ f .
Since (a, b) ∈ g ◦ f , then there exists c such that (a, c) ∈ f and (c, b) ∈ g.
Since (a, b′) ∈ g ◦ f , then there exists d such that (a, d) ∈ f and (d, b′) ∈ g.
Since f is a function and (a, c) ∈ f and (a, d) ∈ f , then c = d.
Since (d, b′) ∈ g, then (c, b′) ∈ g.
Since g is a function and (c, b) ∈ g and (c, b′) ∈ g, then b = b′.
Therefore, g ◦ f is a function.

Proof. We prove 2.
Observe that dom g ◦ f = {a : (∃b)((a, b) ∈ g ◦ f}.
Let S = {x ∈ domf : f(x) ∈ domg}.
We must prove dom g ◦ f = S.
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Suppose x ∈ dom g ◦ f .
Then there exists y such that (x, y) ∈ g ◦ f .
Thus, there exists z such that (x, z) ∈ f and (z, y) ∈ g.
Since (x, z) ∈ f and f is a function, then x ∈ domf and f(x) = z.
Since (z, y) ∈ g, then z ∈ domg, so f(x) ∈ domg.
Since x ∈ domf and f(x) ∈ domg, then x ∈ S, so dom g ◦ f ⊂ S.

Suppose x ∈ S.
Then x ∈ domf and f(x) ∈ domg.
Let z = f(x).
Since x ∈ domf , then (x, f(x)) ∈ f , so (x, z) ∈ f .
Since f(x) ∈ domg and f(x) = z, then z ∈ domg, so there exists y such that

(z, y) ∈ g.
Since (x, z) ∈ f and (z, y) ∈ g, then (x, y) ∈ g ◦ f .
Thus, there exists y such that (x, y) ∈ g ◦ f , so x ∈ dom g ◦ f .
Therefore, S ⊂ dom g ◦ f .

Since dom g ◦ f ⊂ S and S ⊂ dom g ◦ f , then dom g ◦ f = S, as desired.

Proof. We prove 3.
Let x ∈ dom g ◦ f .
Since g ◦ f is a function, then (g ◦ f)(x) exists.
Let z = (g ◦ f)(x).
Then (x, z) ∈ g ◦ f , so there exists y such that (x, y) ∈ f and (y, z) ∈ g.
Since f and g are functions, then f(x) = y and g(y) = z.
Thus, (g ◦ f)(x) = z = g(y) = g(f(x)), as desired.

Theorem 26. Function composition is associative.
Let f, g, h be functions.
Then (f ◦ g) ◦ h = f ◦ (g ◦ h).

Proof. Since f and g are functions, then f ◦ g is a function.
Since h is a function, then (f ◦ g) ◦ h is a function.
Since g and h are functions, then g ◦ h is a function.
Since f is a function, then f ◦ (g ◦ h) is a function.

We first prove dom(f ◦ g) ◦ h = domf ◦ (g ◦ h).

Let x ∈ dom(f ◦ g) ◦ h.
Then x ∈ domh and h(x) ∈ domf ◦ g.
Since h(x) ∈ domf ◦ g, then h(x) ∈ domg and g(h(x)) ∈ domf .
Since x ∈ domh and h(x) ∈ domg, then x ∈ domg ◦ h.
Since g(h(x)) ∈ domf , then (g ◦ h)(x) ∈ domf .
Since x ∈ domg ◦ h and (g ◦ h)(x) ∈ domf , then x ∈ domf ◦ (g ◦ h).
Thus, dom(f ◦ g) ◦ h ⊂ domf ◦ (g ◦ h).
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Let y ∈ domf ◦ (g ◦ h).
Then y ∈ domg ◦ h and (g ◦ h)(y) ∈ domf .
Since y ∈ domg ◦ h, then y ∈ domh and h(y) ∈ domg.
Since (g ◦ h)(y) ∈ domf , then g(h(y)) ∈ domf .
Since h(y) ∈ domg and g(h(y)) ∈ domf , then h(y) ∈ domf ◦ g.
Since y ∈ domh and h(y) ∈ domf ◦ g, then y ∈ dom(f ◦ g) ◦ h.
Thus, domf ◦ (g ◦ h) ⊂ dom(f ◦ g) ◦ h.

Since dom(f ◦ g) ◦ h ⊂ domf ◦ (g ◦ h) and domf ◦ (g ◦ h) ⊂ dom(f ◦ g) ◦ h,
then dom(f ◦ g) ◦ h = domf ◦ (g ◦ h).

Let x ∈ dom(f ◦ g) ◦ h ∩ domf ◦ (g ◦ h).
Then x ∈ dom(f ◦ g) ◦ h ∩ dom(f ◦ g) ◦ h = dom(f ◦ g) ◦ h and

[(f ◦ g) ◦ h](x) = (f ◦ g)(h(x))

= f [g(h(x))]

= f [(g ◦ h)(x)]

= [f ◦ (g ◦ h)](x).

Therefore, [(f ◦ g) ◦ h](x) = [f ◦ (g ◦ h)](x) for all x in the common domain.

Since dom(f ◦ g) ◦ h = domf ◦ (g ◦ h) and [(f ◦ g) ◦ h](x) = [f ◦ (g ◦ h)](x) for
all x in the common domain, then (f ◦ g) ◦ h = f ◦ (g ◦ h), as desired.

Proposition 27. Composition of maps
Let f : A→ B and g : B → C be maps.
Then g ◦ f : A→ C is a map and (g ◦ f)(x) = g(f(x)) for all x ∈ A.

Proof. Since f : A→ B and g : B → C are maps, then f and g are functions, so
g ◦ f is a function and dom g ◦ f = {x ∈ domf : f(x) ∈ domg} and (g ◦ f)(x) =
g(f(x)) for all x ∈ dom g ◦ f .

Since domf = A and domg = B and dom g◦f = {x ∈ domf : f(x) ∈ domg},
then dom g ◦ f = {x ∈ A : f(x) ∈ B}, so dom g ◦ f ⊂ A.

Let x ∈ A.
Since f : A→ B is a map, then f(x) ∈ B.
Since x ∈ A and f(x) ∈ B, then x ∈ dom g ◦ f .
Hence, A ⊂ dom g ◦ f .

Since dom g ◦ f ⊂ A and A ⊂ dom g ◦ f , then dom g ◦ f = A.

Since (g ◦ f)(x) = g(f(x)) for all x ∈ dom g ◦ f , then (g ◦ f)(x) = g(f(x)) for
all x ∈ A.
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We prove rng g ◦ f ⊂ C.
Let y ∈ rng g ◦ f .
Then there exists x such that (x, y) ∈ g ◦ f .
Since (x, y) ∈ g ◦ f , then x ∈ dom g ◦ f , so x ∈ A.
Since g ◦ f is a function and (x, y) ∈ g ◦ f , then (g ◦ f)(x) = y, so y =

(g ◦ f)(x) = g(f(x)).
Since f : A→ B is a map and x ∈ A, then f(x) ∈ B.
Since g : B → C is a map, then g(f(x)) ∈ C.
Thus, y ∈ C, so rng g ◦ f ⊂ C.
Since g ◦ f is a function and dom g ◦ f = A and rng g ◦ f ⊂ C, then

g ◦ f : A→ C is a map.

Proposition 28. Let f : A→ B be a map.
Let IA be the identity map on A and IB be the identity map on B.
Then f ◦ IA = IB ◦ f = f .

Proof. We prove f ◦ IA = f .
Since IA : A→ A is a map and f : A→ B is a map, then f ◦ IA : A→ B is

a map and (f ◦ IA)(x) = f(IA(x)) for all x ∈ A.
Since the domain of f ◦ IA and f is A, then f ◦ IA and f have the same

domain.
Since the codomain of f ◦ IA and f is B, then f ◦ IA and f have the same

codomain.
Let x ∈ A.
Then (f ◦ IA)(x) = f(IA(x)) = f(x), so (f ◦ IA)(x) = f(x) for all x ∈ A.
Therefore, f ◦ IA = f .

Proof. We prove IB ◦ f = f .
Since f : A→ B is a map and IB : B → B is a map, then IB ◦ f : A→ B is

a map and (IB ◦ f)(x) = IB(f(x)) for all x ∈ A.
Since the domain of IB ◦ f and f is A, then IB ◦ f and f have the same

domain.
Since the codomain of IB ◦ f and f is B, then IB ◦ f and f have the same

codomain.
Let x ∈ A.
Then (IB ◦ f)(x) = IB(f(x)) = f(x), so (IB ◦ f)(x) = f(x) for all x ∈ A.
Therefore, IB ◦ f = f .

Since f ◦ IA = f and IB ◦ f = f , then f ◦ IA = f = IB ◦ f , as desired.

Theorem 29. Left cancellation property of injective maps
Let f : X → Y be a map.
Then f is injective iff for every set W and every map g : W → X and

h : W → X such that f ◦ g = f ◦ h we have g = h.
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Proof. We prove if f is injective, then for every set W and every map g : W → X
and h : W → X such that f ◦ g = f ◦ h we have g = h.

Suppose f is injective.
Let W be a set and let g : W → X and h : W → X be maps such that

f ◦ g = f ◦ h.
We must prove g = h.
Since g : W → X is a map and h : W → X is a map, then domg = W =

domh.
Let x ∈W .
Since f ◦ g = f ◦ h, then (f ◦ g)(x) = (f ◦ h)(x), so f(g(x)) = f(h(x)).
Since f is injective, then g(x) = h(x).
Thus, g(x) = h(x) for all x ∈W , so g = h, as desired.

Proof. Conversely, we prove if for every set W and every map g : W → X and
h : W → X such that f ◦ g = f ◦ h implies g = h, then f is injective.

We prove by contrapositive.
Suppose f is not injective.
We must prove there exists a set W and there exist maps g : W → X and

h : W → X such that f ◦ g = f ◦ h and g 6= h.
Since f is not injective, then there exist a, b ∈ X such that a 6= b and

f(a) = f(b).
Let W = {a, b}.
Let g = {(a, a), (b, a)}.
Then g is a function and domg = {a, b} = W and rngg = {a} ⊂ X.
Thus, g : W → X is a map and g(a) = a = g(b).
Let h = {(a, b), (b, b)}.
Then h is a function and domh = {a, b} = W and rngh = {b} ⊂ X.
Thus, h : W → X is a map and h(a) = b = h(b).
Since (a, a) ∈ h iff a = b and a 6= b, then (a, a) 6∈ h.
Since (a, a) ∈ g, but (a, a) 6∈ h, then g 6= h.
Since g : W → X is a map and f : X → Y is a map, then f ◦ g : W → Y is

a map and (f ◦ g)(x) = f(g(x)) for all x ∈W .
Since h : W → X is a map and f : X → Y is a map, then f ◦ h : W → Y is

a map and (f ◦ h)(x) = f(h(x)) for all x ∈W .
Observe that dom(f ◦ g) = W = dom(f ◦ h).
Observe that (f ◦ g)(a) = f(g(a)) = f(a) = f(b) = f(h(a)) = (f ◦ h)(a).
Observe that (f ◦ g)(b) = f(g(b)) = f(a) = f(b) = f(h(b)) = (f ◦ h)(b).
Since dom(f ◦g) = W = dom(f ◦h) and (f ◦g)(a) = (f ◦h)(a) and (f ◦g)(b) =

(f ◦ h)(b), then f ◦ g = f ◦ h.

Proposition 30. A map f : A → B is surjective iff (∀b ∈ B)(∃a ∈ A)(f(a) =
b).

Proof. Let f : A→ B be a map.
We first prove if f is surjective, then (∀b ∈ B)(∃a ∈ A)(f(a) = b).
Suppose f is surjective.
Let b ∈ B.
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Since f is surjective, then rngf = B.
Since b ∈ B, then b ∈ rngf , so there exists a ∈ A such that f(a) = b.

Conversely, we prove if (∀b ∈ B)(∃a ∈ A)(f(a) = b), then f is surjective.
Suppose (∀b ∈ B)(∃a ∈ A)(f(a) = b).
Since f : A→ B is a map, then rngf ⊂ B.
We prove B ⊂ rngf .
Suppose b ∈ B.
Then there exists a ∈ A such that f(a) = b.
Hence, b ∈ rngf , so B ⊂ rngf .
Since rngf ⊂ B and B ⊂ rngf , then rngf = B, so f is surjective.

Theorem 31. Right cancellation property of surjective maps
Let X be a nonempty set.
Let f : X → Y be a map.
Then f is surjective iff for every set Z and every map g : Y → Z and

h : Y → Z such that g ◦ f = h ◦ f we have g = h.

Proof. We prove if f is surjective, then for every set Z and every map g : Y → Z
and h : Y → Z such that g ◦ f = h ◦ f we have g = h.

Suppose f is surjective.
Let Z be a set and let g : Y → Z and h : Y → Z be maps such that

g ◦ f = h ◦ f .
We must prove g = h.
Since g : Y → Z is a map and h : Y → Z is a map, then g and h are functions

and domg = Y = domh and the codomain of g is Z which is the codomain of h.
Since X 6= ∅ and f : X → Y is a map, then there exists x ∈ X, so f(x) ∈ Y .
Hence, Y 6= ∅.
Let y ∈ Y .
Since f is surjective, then there exists x ∈ X such that f(x) = y.
Since g ◦ f = h ◦ f and x ∈ X, then (g ◦ f)(x) = (h ◦ f)(x).
Observe that

g(y) = g(f(x))

= (g ◦ f)(x)

= (h ◦ f)(x)

= h(f(x))

= h(y).

Therefore, g(y) = h(y) for all y ∈ Y , so g = h, as desired.

Proof. Conversely, we prove if for every set Z and every map g : Y → Z and
h : Y → Z such that g ◦ f = h ◦ f implies g = h, then f is surjective.

We prove by contrapositive.
Suppose f is not surjective.

23



We must prove there exists a set Z and there exist maps g : Y → Z and
h : Y → Z such that g ◦ f = h ◦ f and g 6= h.

Since f is not surjective, then there exists y0 ∈ Y such that for all x ∈ X,
f(x) 6= y0.

Since X 6= ∅, then there exists x0 ∈ X.
Since f : X → Y is a map, then f(x0) ∈ Y .
Let Z = Y .
Let g : Y → Z be the identity map on Y defined by g(y) = y.
Let h : Y → Z be a map defined by h(y) = y if y 6= y0 and h(y0) = f(x0).

We prove g 6= h.
Since x0 ∈ X, then f(x0) 6= y0.
Since g(y0) = y0 6= f(x0) = h(y0), then g(y0) 6= h(y0), so g 6= h.

We prove g ◦ f = h ◦ f .
Since f : X → Y is a map and g : Y → Z is a map, then g ◦ f : X → Z is a

map and (g ◦ f)(x) = g(f(x)) for all x ∈ X.
Since f : X → Y is a map and h : Y → Z is a map, then h ◦ f : X → Z is a

map and (h ◦ f)(x) = h(f(x)) for all x ∈ X.
Observe that dom(g ◦ f) = X = dom(h ◦ f).
Let x ∈ X.
Since f : X → Y is a map, then f(x) ∈ Y .
Since x ∈ X, then f(x) 6= y0.
Observe that

(g ◦ f)(x) = g(f(x))

= f(x)

= h(f(x))

= (h ◦ f)(x).

Hence, (g ◦ f)(x) = (h ◦ f)(x) for all x ∈ X.
Therefore, g ◦ f = h ◦ f , as desired.

Proposition 32. identity map is bijective.
Let S be a set.
The identity map IS : S → S on S is a bijection.

Proof. Let IS : S → S be the map defined by IS(x) = x for all x ∈ S.

We prove IS is injective.
Let a, b ∈ S such that IS(a) = IS(b).
Then a = b.
Therefore, IS is injective.
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We prove IS is surjective.
Let b ∈ S be arbitrary.
Let a = b.
Then a ∈ S and I(a) = a = b.
Thus, there exists a ∈ S such that IS(a) = b.
Therefore, IS is surjective.
Since IS is injective and surjective, then IS is bijective, as desired.

Theorem 33. Let f : A→ B and g : B → C be maps.
1. If f and g are injective, then g ◦ f is injective.
A composition of injections is an injection.
2. If f and g are surjective, then g ◦ f is surjective.
A composition of surjections is a surjection.
3. If g ◦ f is injective, then f is injective.
4. If g ◦ f is surjective, then g is surjective.

Proof. We prove 1.
Suppose f and g are injective.
Since f : A→ B is a map and g : B → C is a map, then g ◦ f : A→ C is a

map.
Let a, b ∈ A such that (g ◦ f)(a) = (g ◦ f)(b).
Then g(f(a)) = g(f(b)).
Since g is injective, then f(a) = f(b).
Since f is injective, then a = b.
Therefore, g ◦ f is injective.

Proof. We prove 2.
Suppose f and g are surjective.
Since f : A→ B is a map and g : B → C is a map, then g ◦ f : A→ C is a

map.
Let c ∈ C be arbitrary.
Since g is surjective, then there exists b ∈ B such that g(b) = c.
Since f is surjective, then there exists a ∈ A such that f(a) = b.
Observe that (g ◦ f)(a) = g(f(a)) = g(b) = c.
Therefore, there exists a ∈ A such that (g◦f)(a) = c, so g◦f is surjective.

Proof. We prove 3.
Suppose g ◦ f is injective.
Since f : A→ B is a map and g : B → C is a map, then g ◦ f : A→ C is a

map.
Let a, b ∈ A such that f(a) = f(b).
Then (g ◦ f)(a) = g(f(a)) = g(f(b)) = (g ◦ f)(b), so (g ◦ f)(a) = (g ◦ f)(b).
Since g ◦ f is injective, then a = b.
Therefore, f is injective.
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Proof. We prove 4.
Suppose g ◦ f is surjective.
Since f : A→ B is a map and g : B → C is a map, then g ◦ f : A→ C is a

map.
Let c ∈ C be arbitrary.
Since g ◦ f is surjective, then there exists a ∈ A such that (g ◦ f)(a) = c.
Since a ∈ A and f : A→ B is a map, then f(a) ∈ B.
Observe that g(f(a)) = (g ◦ f)(a) = c.
Thus, there exists f(a) ∈ B such that g(f(a)) = c.
Therefore, g is surjective.

Corollary 34. Let f : A→ B and g : B → C be maps.
1. If f and g are bijective, then g ◦ f is bijective.
A composition of bijections is a bijection.
2. If g ◦ f is bijective, then f is injective and g is surjective.

Proof. We prove 1.
Suppose f and g are bijective.
Since f : A→ B is a map and g : B → C is a map, then g ◦ f : A→ C is a

map.
Since f is bijective, then f is injective and surjective.
Since g is bijective, then g is injective and surjective.
Since f and g are injective, then g ◦ f is injective.
Since f and g are surjective, then g ◦ f is surjective.
Since g ◦ f is injective and surjective, then g ◦ f is bijective.

Proof. We prove 2.
Suppose g ◦ f is bijective.
Then g ◦ f is injective and surjective.
Since g ◦ f is injective, then f is injective.
Since g ◦ f is surjective, then g is surjective.

Theorem 35. existence of inverse function
Let f be a function.
Then the inverse relation f−1 is a function iff f is injective.

Proof. We prove if f−1 is a function, then f is injective.
Suppose f−1 is a function.
Let a1, a2 ∈ domf such that f(a1) = f(a2).
Since f is a relation, then (a1, f(a1)) ∈ f and (a2, f(a2)) ∈ f .
Since f−1 is an inverse of f , then (f(a1), a1) ∈ f−1 and (f(a2), a2) ∈ f−1.
Since f−1 is a function and f(a1) = f(a2), then a1 = a2.
Therefore, f is injective.
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Conversely, we prove if f is injective, then f−1 is a function.
Suppose f is injective.
Let (a, b1) ∈ f−1 and (a, b2) ∈ f−1.
Since f−1 is an inverse of f , then (b1, a) ∈ f and (b2, a) ∈ f , so f(b1) = a

and f(b2) = a.
Thus, f(b1) = a = f(b2).
Since f is injective, then b1 = b2.
Therefore, f−1 is a function.

Theorem 36. The inverse of an invertible map is unique.
Let f : A→ B be an invertible map.
Then the inverse map is unique.

Proof. Since f : A→ B is an invertible map, then there exists a map that is an
inverse of f .

Let g : B → A and h : B → A be inverse maps of f .
To prove the inverse map is unique, we must prove g = h.
Observe that the domain of g equals B which equals the domain of h and

the codomain of g equals A which equals the codomain of h.
Let x ∈ B be arbitrary.
Since g : B → A is a map, then g(x) ∈ A.
Since f is a relation, then (g(x), x) ∈ f .
Since h and f are inverses, then (x, g(x)) ∈ h, so h(x) = g(x).
Therefore, g = h, as desired.

Theorem 37. Let f : A→ B and g : B → A be maps.
Then g is an inverse of f iff
1. g ◦ f = IA
2. f ◦ g = IB.

Proof. We prove if g is an inverse of f , then g ◦ f = IA and f ◦ g = IB .
Since f : A → B and g : B → A are maps, then g ◦ f : A → A and f ◦ g :

B → B are maps and (g ◦ f)(a) = g(f(a)) for all a ∈ A and (f ◦ g)(b) = f(g(b))
for all b ∈ B.

Suppose g is an inverse of f .

We prove g ◦ f = IA.
Let IA be the identity map on A.
Then dom(g ◦ f) = A = domIA.
Let a ∈ A.
Since f is a function, then (a, f(a)) ∈ f .
Since g is an inverse of f , then (f(a), a) ∈ g, so g(f(a)) = a.
Observe that

(g ◦ f)(a) = g(f(a))

= a

= IA(a).
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Hence, (g ◦ f)(a) = I(a) for every a ∈ A.
Therefore, g ◦ f = IA.

We prove f ◦ g = IB .
Let IB be the identity map on B.
Then dom(f ◦ g) = B = domIB .
Let b ∈ B.
Since g is a function, then (b, g(b)) ∈ g.
Since f is an inverse of g, then (g(b), b) ∈ f , so f(g(b)) = b.
Observe that

(f ◦ g)(b) = f(g(b))

= b

= I(b).

Hence, (f ◦ g)(b) = I(b) for every b ∈ B.
Therefore, f ◦ g = IB .

Proof. Conversely, we prove if g ◦ f = IA and f ◦ g = IB , then g is an inverse of
f .

Suppose g ◦ f = IA and f ◦ g = IB .

Let (a, b) ∈ f .
Then a ∈ A and b ∈ B and f(a) = b.
Since a ∈ A, then a = IA(a) = (g ◦ f)(a) = g(f(a)) = g(b), so (b, a) ∈ g.
Hence, if (a, b) ∈ f , then (b, a) ∈ g.

Let (b, a) ∈ g.
Then b ∈ B and a ∈ A and g(b) = a.
Since b ∈ B, then b = IB(b) = (f ◦ g)(b) = f(g(b)) = f(a), so (a, b) ∈ f .
Hence, if (b, a) ∈ g, then (a, b) ∈ f .
Since (b, a) ∈ g implies (a, b) ∈ f and (a, b) ∈ f implies (b, a) ∈ g, then

(b, a) ∈ g iff (a, b) ∈ f .
Therefore, g is an inverse of f .

Corollary 38. Let f : A→ B be an invertible map. Then
1. f−1 ◦ f = IA
2. f ◦ f−1 = IB.

Proof. Since f : A→ B is an invertible map, then the inverse map f−1 : B → A
exists, so f−1 is an inverse of f .

Therefore, f−1 ◦ f = IA and f ◦ f−1 = IB .

Theorem 39. An invertible map is bijective.
Let f : A→ B be a map.
Then f is invertible iff f is bijective.
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Proof. We prove if f is bijective, then f is invertible.
Suppose f is bijective.
Then f is injective and surjective.
Since f is injective, then the inverse relation f−1 is a function.
Since f−1 is a relation, then domf−1 = rngf and rngf−1 = domf .
Since f is surjective, then rngf = B.
Thus, domf−1 = rngf = B and rngf−1 = domf = A ⊂ A.
Since f−1 is a function and domf−1 = B and rngf−1 ⊂ A, then f−1 : B →

A is a map.
Since f−1 is the inverse of f , then f is invertible.

Proof. Conversely, we prove if f is invertible, then f is bijective.
Suppose f is invertible.
Then the inverse map f−1 : B → A exists.
Hence, the inverse relation f−1 is a function, so f is injective.

Let b ∈ B.
Since f−1 : B → A is a map, then f−1(b) ∈ A.
Let a = f−1(b).
Then a ∈ A.
Since f−1 is the inverse of f and f−1(b) = a, then f(a) = b.
Therefore, there exists a ∈ A such that f(a) = b, so f is surjective.
Since f is injective and surjective, then f is bijective.

Lemma 40. Let f : A→ B be a map.
If f : A→ B is a bijection, then f−1 : B → A is a bijection.

Proof. Suppose the map f : A→ B is a bijection.
Then f is bijective, so f is invertible.
Hence, the map f : A → B is invertible, so the inverse map f−1 : B → A

exists.

We prove f−1 is injective.
Let b1, b2 ∈ B such that f−1(b1) = f−1(b2).
Let a = f−1(b1) = f−1(b2).
Then f−1(b1) = a and f−1(b2) = a, so (b1, a) ∈ f−1 and (b2, a) ∈ f−1.
Since f−1 is the inverse of f , then (a, b1) ∈ f and (a, b2) ∈ f .
Since f is a function and (a, b1) ∈ f and (a, b2) ∈ f , then b1 = b2.
Therefore, f−1 is injective.

We prove f−1 is surjective.
Let a ∈ A.
Since f : A→ B is a map, then f(a) ∈ B.
Let b = f(a).
Then b ∈ B.
Since f−1 is the inverse of f and f(a) = b, then f−1(b) = a.
Thus, there exists b ∈ B such that f−1(b) = a, so f−1 is surjective.
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Since f−1 is injective and surjective, then f−1 is bijective.
Since f−1 : B → A is a map and f−1 is bijective, then f−1 : B → A is a

bijection.

Theorem 41. Let f : A→ B be a bijection. Then
1. (f−1)−1 : A→ B is a bijection.
2. (f−1)−1 = f .

Proof. Since f : A → B is a bijection, then f−1 : B → A is a bijection, so
(f−1)−1 : A→ B is a bijection.

Observe that (f−1)−1 : A→ B and f : A→ B have the same domain A and
same codomain B.

Let a ∈ A be arbitrary.
Since f is a function, then there is a unique b ∈ B such that f(a) = b.
Since f−1 is the inverse of f , then f−1(b) = a.
Since (f−1)−1 is the inverse of f−1, then (f−1)−1(a) = b.
Thus, (f−1)−1(a) = b = f(a).
Hence, (f−1)−1(a) = f(a) for all a ∈ A.
Therefore, (f−1)−1 = f .

Theorem 42. Let f : A→ B and g : B → C be bijections. Then
1. (g ◦ f)−1 : C → A is a bijection.
2. f−1 ◦ g−1 : C → A is a bijection.
3. (g ◦ f)−1 = f−1 ◦ g−1.

Proof. Since f : A → B and g : B → C are bijections, then the composition
g ◦ f : A→ C is a bijection, so (g ◦ f)−1 : C → A is a bijection.

Since f : A→ B is a bijection, then f−1 : B → A is a bijection.
Since g : B → C is a bijection, then g−1 : C → B is a bijection.
Thus, the composition f−1 ◦ g−1 : C → A is a bijection.
Observe that (g ◦ f)−1 : C → A and f−1 ◦ g−1 : C → A have the same

domain C and same codomain A.
Let c ∈ C be arbitrary.
Since (g ◦ f)−1 is a function, then there exists a unique a ∈ A such that

(g ◦ f)−1(c) = a.
Since (g ◦ f)−1 is the inverse of g ◦ f , then (g ◦ f)(a) = c.
Since f is a function and a ∈ A, then there exists a unique b ∈ B such that

f(a) = b.
Thus, c = (g ◦ f)(a) = g(f(a)) = g(b).
Since g−1 is the inverse of g and g(b) = c, then g−1(c) = b.
Since f−1 is the inverse of f and f(a) = b, then f−1(b) = a.
Observe that

(g ◦ f)−1(c) = a

= f−1(b)

= f−1(g−1(c))

= (f−1 ◦ g−1)(c).
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Thus, (g ◦ f)−1(c) = (f−1 ◦ g−1)(c) for all c ∈ C.
Therefore, (g ◦ f)−1 = f−1 ◦ g−1.

Image and inverse image of functions

Proposition 43. Let f : A→ B be a map.
1. Then f is injective iff every b ∈ B has at most one pre-image.
2. Then f is surjective iff every b ∈ B has at least one pre-image.
3. Then f is bijective iff every b ∈ B has exactly one pre-image.

Proof. We prove 1.
We prove if f is injective, then every b ∈ B has at most one preimage.
Suppose f is injective.
Let b ∈ B.
Either there exists a ∈ A such that f(a) = b or there does not exist a ∈ A

such that f(a) = b.
We consider each case separately.
Case 1: Suppose there does not exist a ∈ A such that f(a) = b.
Then b has no preimage.
Case 2: Suppose there exists a ∈ A such that f(a) = b.
Then a is a pre-image of b, so b has at least one pre-image.
Suppose a1, a2 ∈ A are pre-images of b.
Then f(a1) = b and f(a2) = b, so f(a1) = f(a2).
Since f is injective, then a1 = a2, so there is at most one pre-image of b.
In either case, at most one preimage of b exists.

Proof. Conversely, we prove if every b ∈ B has at most one preimage, then f is
injective.

Suppose every b ∈ B has at most one preimage.
To prove f is injective, let a1, a2 ∈ A such that f(a1) = f(a2).
Let b = f(a1) = f(a2).
Since f : A→ B is a map, then b ∈ B.
Hence, b has at most one preimage, so there is at most one a ∈ A such that

f(a) = b.
Therefore, a1 = a2.

Proof. We prove 2.
We prove if f is surjective, then every b ∈ B has at least one pre-image.
Suppose f is surjective.
Let b ∈ B be arbitrary.
Since f is surjective, then there exists a ∈ A such that f(a) = b.
Hence, a is a pre-image of b, so b has at least one pre-image.

Proof. We prove 3.
We prove if f is bijective, then every b ∈ B has exactly one pre-image.
Suppose f is bijective.
Then f is injective and surjective.
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Let b ∈ B.
Since f is surjective, then b has at least one pre-image.
Since f is injective, then b has at most one pre-image.
Since b has at least one pre-image and b has at most one pre-image, then b

has exactly one pre-image.

Proposition 44. Let f : A→ B be a map. Then
1. f(∅) = ∅.
The image of the empty set is the empty set.
2. f−1(∅) = ∅.
The inverse image of the empty set is the empty set.
3. f(A) = rngf .
The image of the domain of f is the range of f .
4. f−1(B) = A.
The inverse image of the codomain of f is the domain of f .

Proof. We prove 1.
We prove f(∅) = ∅ by contradiction.
Suppose f(∅) 6= ∅.
Then there exists b ∈ f(∅), so there exists x ∈ ∅ such that f(x) = b.
Since ∅ is empty, then x 6∈ ∅.
Thus, we have x ∈ ∅ and x 6∈ ∅, a contradiction.
Therefore, f(∅) = ∅.

Proof. We prove 2.
We prove f−1(∅) = ∅ by contradiction.
Suppose f−1(∅) 6= ∅.
Then there exists x ∈ f−1(∅), so x ∈ A and f(x) ∈ ∅.
Since ∅ is empty, then f(x) 6∈ ∅.
Thus, we have f(x) ∈ ∅ and f(x) 6∈ ∅, a contradiction.
Therefore, f−1(∅) = ∅.

Proof. We prove 3.
We prove f(A) = rngf .
Since b ∈ f(A) iff there exists a ∈ A such that f(a) = b iff b ∈ rngf , then

b ∈ f(A) iff b ∈ rngf .
Therefore, f(A) = rngf .

Proof. We prove 4.
We prove f−1(B) = A.
Since f−1(B) = {x ∈ A : f(x) ∈ B}, then f−1(B) ⊂ A.
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Let x ∈ A.
Since f : A→ B is a map, then f(x) ∈ B.
Since x ∈ A and f(x) ∈ B, then x ∈ f−1(B).
Thus, A ⊂ f−1(B).
Since f−1(B) ⊂ A and A ⊂ f−1(B), then f−1(B) = A.

Proposition 45. Let f : X → Y be a map.
1. For every subset A and B of X, if A ⊂ B, then f(A) ⊂ f(B).
2. f(A ∪B) = f(A) ∪ f(B) for every subset A and B of X.
The image of a union equals the union of the images.
3. f(A ∩B) ⊂ f(A) ∩ f(B) for every subset A and B of X.
The image of an intersection is a subset of the intersection of the images.
4. f(A∩B) = f(A)∩ f(B) for every subset A and B of X iff f is injective.

Proof. We prove 1.
Let A and B be subsets of X such that A ⊂ B.
We must prove f(A) ⊂ f(B).
Let y ∈ f(A).
Then there exists x ∈ A such that f(x) = y.
Since x ∈ A and A ⊂ B, then x ∈ B.
Thus, there exists x ∈ B such that f(x) = y, so y ∈ f(B).
Therefore, f(A) ⊂ f(B).

Proof. We prove 2.
Let A and B be subsets of X.
We must prove f(A ∪B) = f(A) ∪ f(B).
Observe that

y ∈ f(A ∪B) ⇔ there exists x ∈ A ∪B such that y = f(x)

⇔ either there exists x ∈ A or there exists x ∈ B and y = f(x)

⇔ either there exists x ∈ A and y = f(x) or there exists x ∈ B and y = f(x)

⇔ either y ∈ f(A) or y ∈ f(B)

⇔ y ∈ f(A) ∪ f(B).

Therefore, y ∈ f(A∪B) iff y ∈ f(A)∪f(B), so f(A∪B) = f(A)∪f(B).

Proof. We prove 2.
Let A and B be subsets of X.
We first prove f(A ∪B) ⊂ f(A) ∪ f(B).
Let y ∈ f(A ∪B).
Then there exists x ∈ A ∪B such that f(x) = y.
Since x ∈ A ∪B, then either x ∈ A or x ∈ B.
Case 1: Suppose x ∈ A.
Since x ∈ A and y = f(x), then y ∈ f(A).
Case 2: Suppose x ∈ B.
Since x ∈ B and y = f(x), then y ∈ f(B).
Thus, either y ∈ f(A) or y ∈ f(B), so y ∈ f(A) ∪ f(B).
Therefore, f(A ∪B) ⊂ f(A) ∪ f(B).
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We next prove f(A) ∪ f(B) ⊂ f(A ∪B).
Let y ∈ f(A) ∪ f(B).
Then either y ∈ f(A) or y ∈ f(B).
Case 1: Suppose y ∈ f(A).
Then there exists a ∈ A such that f(a) = y.
Since a ∈ A, then either a ∈ A or a ∈ B, so a ∈ A ∪B.
Since a ∈ A ∪B and f(a) = y, then y ∈ f(A ∪B).
Case 2: Suppose y ∈ f(B).
Then there exists b ∈ B such that f(b) = y.
Since b ∈ B, then either b ∈ A or b ∈ B, so b ∈ A ∪B.
Since b ∈ A ∪B and f(b) = y, then y ∈ f(A ∪B).
Hence, in either case, y ∈ f(A ∪B).
Therefore, f(A) ∪ f(B) ⊂ f(A ∪B).

Since f(A∪B) ⊂ f(A)∪f(B) and f(A)∪f(B) ⊂ f(A∪B), then f(A∪B) =
f(A) ∪ f(B).

Proof. We prove 3.
Let A and B be subsets of X.
We prove f(A ∩B) ⊂ f(A) ∩ f(B).
Let y ∈ f(A ∩B).
Then there exists x ∈ A ∩B such that f(x) = y.
Since x ∈ A ∩B, then x ∈ A and x ∈ B.
Since x ∈ A and f(x) = y, then y ∈ f(A).
Since x ∈ B and f(x) = y, then y ∈ f(B).
Thus, y ∈ f(A) and y ∈ f(B), so y ∈ f(A) ∩ f(B).
Therefore, f(A ∩B) ⊂ f(A) ∩ f(B).

Proof. We prove 4.
We prove f(A ∩ B) = f(A) ∩ f(B) for every subset A and B of X iff f is

injective.

We first prove if f is injective, then f(A∩B) = f(A)∩ f(B) for every subset
A and B of X.

Suppose f is injective.
Let A and B be subsets of X.
We prove f(A) ∩ f(B) ⊂ f(A ∩B).

Let y ∈ f(A) ∩ f(B).
Then y ∈ f(A) and y ∈ f(B).
Since y ∈ f(A), then y = f(a) for some a ∈ A.
Since y ∈ f(B), then y = f(b) for some b ∈ B.
Hence, f(a) = y = f(b).
Since f is injective and f(a) = f(b), then a = b.
Since a = b and b ∈ B, then a ∈ B.
Since a ∈ A and a ∈ B, then a ∈ A ∩B.
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Since a ∈ A ∩B and f(a) = y, then y ∈ f(A ∩B).
Therefore, f(A) ∩ f(B) ⊂ f(A ∩B).
Since f(A∩B) ⊂ f(A)∩f(B) and f(A)∩f(B) ⊂ f(A∩B), then f(A∩B) =

f(A) ∩ f(B).

Conversely, we prove if f(A ∩B) = f(A) ∩ f(B) for every subset A and B of
X, then f is injective.

We prove by contrapositive.
Suppose f is not injective.
Then there exist x1, x2 ∈ X such that x1 6= x2 and f(x1) = f(x2).
We must prove there exist subsets A and B of X such that f(A ∩ B) 6=

f(A) ∩ f(B).
Let A = {x1} and B = {x2}.
Since x1 ∈ X and A = {x1}, then A ⊂ X.
Since x2 ∈ X and B = {x1}, then B ⊂ X.

We prove f(A ∩B) 6= f(A) ∩ f(B).
If A ∩B 6= ∅, then there exists x such that x ∈ A ∩B, so x ∈ A and x ∈ B.
Hence, x ∈ {x1} and x ∈ {x2}, so x = x1 and x = x2.
Thus, x1 = x = x2.
Therefore, if A ∩B 6= ∅, then x1 = x2, so if x1 6= x2, then A ∩B = ∅.
Since x1 6= x2, then we conclude A ∩B = ∅.
Since x1 ∈ A, then f(x1) ∈ f(A).
Since x2 ∈ B, then f(x2) ∈ f(B).
Since f(x1) = f(x2) and f(x2) ∈ f(B), then f(x1) ∈ f(B).
Thus, f(x1) ∈ f(A) and f(x1) ∈ f(B), so f(x1) ∈ f(A) ∩ f(B).
Hence, f(A) ∩ f(B) 6= ∅.
Therefore, f(A ∩B) = f(∅) = ∅ 6= f(A) ∩ f(B), as desired.

Proposition 46. Let f : X → Y be a map.
1. For every subset C and D of Y , if C ⊂ D, then f−1(C) ⊂ f−1(D).
2. f−1(C ∪D) = f−1(C) ∪ f−1(D) for every subset C and D of Y .
The inverse image of a union equals the union of the inverse images.
3. f−1(C ∩D) = f−1(C) ∩ f−1(D) for every subset C and D of Y .
The inverse image of an intersection equals the intersection of the inverse

images.

Proof. We prove 1.
Let C and D be subsets of Y such that C ⊂ D.
Let x ∈ f−1(C).
Then x ∈ X and f(x) ∈ C.
Since f(x) ∈ C and C ⊂ D, then f(x) ∈ D.
Hence, x ∈ X and f(x) ∈ D, so x ∈ f−1(D).
Therefore, f−1(C) ⊂ f−1(D).

35



Proof. We prove 2.
Let C and D be subsets of Y .
We must prove f−1(C ∪D) = f−1(C) ∪ f−1(D).
Observe that

x ∈ f−1(C ∪D) ⇔ x ∈ X and f(x) ∈ C ∪D

⇔ x ∈ X and either f(x) ∈ C or f(x) ∈ D

⇔ either x ∈ X and f(x) ∈ C or x ∈ X and f(x) ∈ D

⇔ either x ∈ f−1(C) or x ∈ f−1(D)

⇔ x ∈ f−1(C) ∪ f−1(D).

Therefore, x ∈ f−1(C ∪ D) iff x ∈ f−1(C) ∪ f−1(D), so f−1(C ∪ D) =
f−1(C) ∪ f−1(D).

Proof. We prove 3.
Let C and D be subsets of Y .
We must prove f−1(C ∩D) = f−1(C) ∩ f−1(D).
Observe that

x ∈ f−1(C ∩D) ⇔ x ∈ X and f(x) ∈ C ∩D

⇔ x ∈ X and f(x) ∈ C and f(x) ∈ D

⇔ x ∈ X and f(x) ∈ C and x ∈ X and f(x) ∈ D

⇔ x ∈ f−1(C) and x ∈ f−1(D)

⇔ x ∈ f−1(C) ∩ f−1(D).

Therefore, x ∈ f−1(C ∩ D) iff x ∈ f−1(C) ∩ f−1(D), so f−1(C ∩ D) =
f−1(C) ∩ f−1(D).

Proposition 47. inverse image of the image of a subset of the domain
of a map

Let f : A→ B be a map. Then
1. S ⊂ f−1(f(S)) for every subset S of A.
2. f−1(f(S)) = S for every subset S of A iff f is injective.

Proof. We prove 1.
We prove S ⊂ f−1(f(S)) for every subset S of A.
Let S ⊂ A.
Suppose x ∈ S.
Then f(x) ∈ f(S).
Since x ∈ S and S ⊂ A, then x ∈ A.
Since x ∈ A and f(x) ∈ f(S), then x ∈ f−1(f(S)).
Therefore, S ⊂ f−1(f(S)).

Proof. We prove 2.
We prove f−1(f(S)) = S for every subset S of A iff f is injective.
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We first prove if f−1(f(S)) = S for every subset S of A, then f is injective.
Suppose f−1(f(S)) = S for every subset S of A.
To prove f is injective, let a, b ∈ A such that f(a) = f(b).
We must prove a = b.
Let S = {a}.
Since a ∈ A, then S ⊂ A.
Hence, f−1(f(S)) = S.
Since a ∈ S, then f(a) ∈ f(S).
Since f(b) = f(a), then f(b) ∈ f(S).
Since b ∈ A and f(b) ∈ f(S), then b ∈ f−1(f(S)).
Thus, b ∈ S, so b ∈ {a}.
Therefore, b = a, as desired.

Conversely, we prove if f is injective, then f−1(f(S)) = S for every subset S
of A.

Suppose f is injective.
Let S ⊂ A.
We must prove f−1(f(S)) = S.
Let x ∈ f−1(f(S)).
Then x ∈ A and f(x) ∈ f(S).
Since f(x) ∈ f(S), then there exists s ∈ S such that f(s) = f(x).
Since f is injective, then s = x.
Since s ∈ S, then x ∈ S.
Therefore, f−1(f(S)) ⊂ S.
Since f−1(f(S)) ⊂ S and S ⊂ f−1(f(S)), then f−1(f(S)) = S.

Proposition 48. image of the inverse image of a subset of the codomain
of a map

Let f : A→ B be a map. Then
1. f(f−1(T )) ⊂ T for every subset T of B.
2. f(f−1(T )) = T for every subset T of B iff f is surjective.

Proof. We prove 1.
Let T ⊂ B.
We prove f(f−1(T )) ⊂ T .

Let y ∈ f(f−1(T )).
Then there exists x ∈ f−1(T ) such that f(x) = y.
Since x ∈ f−1(T ), then x ∈ A and f(x) ∈ T .
Thus, y ∈ T .
Therefore, f(f−1(T )) ⊂ T .

Proof. We prove 2.
We must prove f(f−1(T )) = T for every subset T of B iff f is surjective.
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We first prove if f is surjective, then f(f−1(T )) = T for every subset T of B.
Suppose f is surjective.
Let T ⊂ B.
Let y ∈ T .
Since f is surjective, then there exists x ∈ A such that f(x) = y.
Since x ∈ A and f(x) ∈ T , then x ∈ f−1(T ).
Since y = f(x) and x ∈ f−1(T ), then y ∈ f(f−1(T )).
Therefore, T ⊂ f(f−1(T )).
Since f(f−1(T )) ⊂ T and T ⊂ f(f−1(T )), then f(f−1(T )) = T .

Conversely, we prove if f(f−1(T )) = T for every subset T of B, then f is
surjective.

Suppose f(f−1(T )) = T for every subset T of B.
Since B ⊂ B, then f(f−1(B)) = B.
Observe that

B = f(f−1(B))

= f(A)

= rngf.

Therefore, rngf = B, so f is surjective, as desired.
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