Relations and Functions Examples

Jason Sass

April 29, 2023

Equivalence Relations

Example 1. Equality relation on a set is an equivalence relation Let S be a set.

Let $\{(s,s): s \in S\} = \{(a,b) \in S \times S : a = b\}$ be the equality relation on S. The equality relation is an equivalence relation on S.

Proof. Since every element of a set equals itself, then if $a \in S$, then a = a, so the equality relation is reflexive.

Let $a, b \in S$ such that a = b. Then b = a, so the equality relation is symmetric.

Let $a, b, c \in S$ such that a = b and b = c. Then a = c, so the equality relation is transitive.

Since the equality relation is reflexive, symmetric, and transitive, then the equality relation is an equivalence relation on S.

Example 2. total relation on a set is an equivalence relation

Let S be a set. Let $S \times S = \{(a, b) : a, b \in S\}$ be the total relation relation on S.

Then $S \times S$ is an equivalence relation on S.

Proof. Let $a \in S$. Then $(a, a) \in S \times S$. Hence, $S \times S$ is reflexive.

Let $(a, b) \in S \times S$. Then $a \in S$ and $b \in S$. Since $b \in S$ and $a \in S$, then $(b, a) \in S \times S$. Since $(a, b) \in S \times S$ implies $(b, a) \in S \times S$, then $S \times S$ is symmetric. Let $(a, b) \in S \times S$ and $(b, c) \in S \times S$. Then $a \in S$ and $b \in S$ and $c \in S$. Since $a \in S$ and $c \in S$, then $(a, c) \in S \times S$. Since $(a, b) \in S \times S$ and $(b, c) \in S \times S$ implies $(a, c) \in S \times S$, then $S \times S$ is transitive. Since $S \times S$ is reflering summetric, and transitive, then $S \times S$ is an equipa

Since $S \times S$ is reflexive, symmetric, and transitive, then $S \times S$ is an equivalence relation on S.

Example 3. cardinality relation on the power set of a finite set

Let S be a finite set.

Let \mathscr{P} be the power set of S. Let $R = \{(A, B) \in \mathscr{P} \times \mathscr{P} : A \text{ and } B \text{ contain the same number of elements} \} = \{(A, B) \in \mathscr{P} \times \mathscr{P} : |A| = |B|\}.$ Then R is an equivalence relation on \mathscr{P} .

Solution. Since $R \subset \mathscr{P} \times \mathscr{P}$, then R is a relation on \mathscr{P} .

We prove $dom R = range R = \mathscr{P}$. Let $A \in dom R$. Then, by definition of domain, $A \in \mathscr{P}$. Hence, $A \in dom R$ implies $A \in \mathscr{P}$, so $dom R \subset \mathscr{P}$. Let $A \in \mathscr{P}$. To prove $\mathscr{P} \subset dom R$, we must prove there is a set $B \in \mathscr{P}$ such that A contains the same number of elements as B. Let B = A. Since $A \in \mathscr{P}$, then $B \in \mathscr{P}$. Each set contains the same number of elements as itself, so A contains the same number of elements as A. Hence, A contains the same number of elements as B. Thus, $\mathscr{P} \subset dom R$. Therefore, $dom R \subset \mathscr{P}$ and $\mathscr{P} \subset dom R$, so $dom R = \mathscr{P}$.

Let $B \in rangeR$. Then, by definition of range, $B \in \mathscr{P}$. Hence, $B \in rangeR$ implies $B \in \mathscr{P}$, so $rangeR \subset \mathscr{P}$. Let $B \in \mathscr{P}$. To prove $\mathscr{P} \subset rangeR$, we must prove there is a set $A \in \mathscr{P}$ such that Aand B contain the same number of elements. Let A = B. Since $B \in \mathscr{P}$, then $A \in \mathscr{P}$.

Each set contains the same number of elements as itself, so B contains the same number of elements as B.

Hence, B and B contain the same number of elements, so A and B contain the same number of elements.

Thus, $\mathscr{P} \subset rangeR$.

Therefore, $range R \subset \mathscr{P}$ and $\mathscr{P} \subset range R$, so $range R = \mathscr{P}$.

Hence, $dom R = \mathscr{P} = range R$.

We prove R is reflexive.

Let $A \in \mathscr{P}$.

Then $A \subset S$, so A is a set.

Each set contains the same number of elements as itself, so A contains the same number of elements as itself.

Thus, A contains the same number of elements as A, so A and A contain the same number of elements.

Since $(A, A) \in \mathscr{P} \times \mathscr{P}$ and A and A contain the same number of elements, then $(A, A) \in R$.

Therefore, R is reflexive.

We prove R is symmetric.

Let $A, B \in \mathscr{P}$ such that $(A, B) \in R$.

Then A and B contain the same number of elements.

Thus, B and A contain the same number of elements.

Since $(B, A) \in \mathscr{P} \times \mathscr{P}$ and B and A contain the same number of elements, then $(B, A) \in R$.

Therefore, $(A, B) \in R$ implies $(B, A) \in R$, so R is symmetric.

We prove R is transitive.

Let $A, B, C \in \mathscr{P}$ such that $(A, B) \in R$ and $(B, C) \in R$.

Then A and B contain the same number of elements and B and C contain the same number of elements.

Thus, A and C contain the same number of elements.

Since $A \in \mathscr{P}$ and $C \in \mathscr{P}$, then $(A, C) \in \mathscr{P} \times \mathscr{P}$.

Since $(A, C) \in \mathscr{P} \times \mathscr{P}$ and A and C contain the same number of elements, then $(A, C) \in R$.

Therefore, $(A, B) \in R$ and $(B, C) \in R$ implies $(A, C) \in R$, so R is transitive. Since R is reflexive, symmetric, and transitive, then R is an equivalence relation on \mathscr{P} .

Therefore, R is an equivalence relation on the power set of a finite set S.

Let S be a finite set of at least two elements.

Then there exist distinct elements a and b in S.

Hence, $a \in S$ and $b \in S$ and $a \neq b$.

To prove R is not antisymmetric, we must prove there exist sets $A, B \in \mathscr{P}$ such that $(A, B) \in R$ and $(B, A) \in R$ and $A \neq B$.

Thus, we must find sets $A \subset S$ and $B \subset S$ such that A and B contain the same number of elements and B and A contain the same number of elements and $A \neq B$.

Hence, we must find subsets of S, A and B that contain the same number of elements and $A \neq B$.

Let $A = \{a\}$ and $B = \{b\}$.

Then $A \subset S$ and $B \subset S$ and A and B contain 1 element, but $A \neq B$. Therefore, R is not antisymmetric.

Let $X = \{1, 2, ..., 9, 10\}.$ Then |X| = 10 and $R = \{(M, N) \in 2^X \times 2^X : |M| = |N|\}$ is an equivalence relation on 2^X . Hence, $\frac{2^X}{R} = \{[S] : S \in 2^X\} = \{[S] : S \subset X\}$ is a partition of 2^X . Since $|2^X| = 2^{10} = 1024$, then there are 1024 subsets of X. Consider the equivalence class of the subset $S = \{1, 2, 5\} \subset X$. We have

$$\begin{split} \begin{split} [S] &= & \{Y \in 2^X : SRY\} \\ &= & \{Y \in 2^X : |S| = |Y|\} \\ &= & \{Y \subset X : 3 = |Y|\}. \end{split}$$

Thus, [S] consists of all subsets of X that have 3 elements. The number of subsets of X that have 3 elements is $\binom{10}{3} = \frac{10!}{7!3!}$ Let k be an integer between 0 and |X| = 10.

Let S be a subset of X that contains k elements. Then the partition $\frac{2^X}{R}$ consists of 11 cells - a cell consisting of all subsets of X that have k = 0, 1, 2, ..., 10 elements.

The number of subsets of X that have k elements is $\binom{10}{k} = \frac{10!}{(10-k)!k!}$.

Thus, $\frac{2^X}{R} = \{[S] : S \in 2^X\} = \{[S] : S \subset X\}$ is a 11 celled partition of 2^X , where $[S] = \{Y \subset X : |S| = |Y|\}$ consists of all subsets of X that have the same number of elements as S and $|[S]| = \binom{10}{k} = \frac{10!}{(10-k)!k!}$ where k is an integer between 0 and 10, inclusive.

Partial Orderings

Example 4. The interval (0,1) is bounded in \mathbb{R} .

Proof. Let I = (0, 1).

To prove I is bounded in \mathbb{R} , we must prove I is bounded above and below in \mathbb{R} .

We first prove I is bounded below in \mathbb{R} . Let $x \in I$. Then $x \in \mathbb{R}$ and 0 < x < 1. Since 0 < x < 1, then 0 < x. Since -0.5 < 0 and 0 < x, then -0.5 < x, so $-0.5 \le x$. Thus, $-0.5 \leq x$ for all $x \in I$. Since $-0.5 \in \mathbb{R}$ and $-0.5 \leq x$ for all $x \in I$, then -0.5 is a lower bound for I in \mathbb{R} . Therefore, I is bounded below in \mathbb{R} .

To prove I is bounded above in \mathbb{R} , we must prove there is an upper bound for I in \mathbb{R} .

Thus, we must show there exists a real number U such that $x \leq U$ for all $x \in I$.

Let U be the real number 1.02. Let $x \in I$. Then $x \in \mathbb{R}$ and 0 < x < 1, so x < 1. Since x < 1 and 1 < 1.02, then x < 1.02, so $x \le 1.02$. Thus, $x \le 1.02$ for all $x \in I$. Since $1.02 \in \mathbb{R}$ and $x \le 1.02$ for all $x \in I$, then 1.02 is an upper bound for I in \mathbb{R} .

Therefore, I is bounded above in \mathbb{R} .

Since I is bounded below and above in \mathbb{R} , then I is bounded in \mathbb{R} .

Example 5. The interval (0, 1] is bounded below in \mathbb{R} , but not bounded below in \mathbb{R}^+ .

Proof. Let I = (0, 1]. We must prove I is bounded below in \mathbb{R} and not bounded below in \mathbb{R}^+ . We first prove I is bounded below in \mathbb{R} . Let $x \in I$. Then $x \in \mathbb{R}$ and $0 < x \leq 1$. Since $0 < x \le 1$, then 0 < x. Thus, 0 < x or 0 = x, so $0 \le x$. Hence, $0 \leq x$ for all $x \in I$. Since $0 \in \mathbb{R}$ and $0 \leq x$ for all $x \in I$, then 0 is a lower bound for I in \mathbb{R} . Therefore, I is bounded below in \mathbb{R} . To prove I is not bounded below in \mathbb{R}^+ , we must prove there is no lower bound for I in \mathbb{R}^+ . Suppose there is a lower bound for I in \mathbb{R}^+ . Let L be a lower bound for I in \mathbb{R}^+ . Then $L \in \mathbb{R}^+$ and $L \leq x$ for all $x \in I$. Since $L \in \mathbb{R}^+$, then $L \in \mathbb{R}$ and L > 0. To derive a contradiction, we show the statement $L \leq x$ for all $x \in I$ is false. Thus, we show there exists $a \in I$ such that $L \not\leq a$. Hence, we show there exists $a \in I$ such that a < L. Let $a = \frac{L}{2}$. Since $L \in \mathbb{R}$, then $\frac{L}{2} \in \mathbb{R}$, so $a \in \mathbb{R}$. Since 0 < L, then $0 < \frac{L}{2}$, so 0 < a. Since $1 \in I$ and $L \leq x$ for all $x \in I$, then $L \leq 1$. Hence, $\frac{L}{2} \leq \frac{1}{2}$, so $a \leq \frac{1}{2}$. Since $a \leq \frac{1}{2}$ and $\frac{1}{2} < 1$, then a < 1, so $a \leq 1$. Thus, $0 < \overline{a}$ and $\overline{a} \leq 1$, so $0 < \overline{a} \leq 1$. Since $a \in \mathbb{R}$ and $0 < a \leq 1$, then $a \in I$. Since $1 > \frac{1}{2}$ and L > 0, then we multiply by L to get $L > \frac{L}{2}$. Hence, L > a, so a < L. Thus, there exists $a \in I$ such that a < L.

Therefore, there is no lower bound for I in \mathbb{R}^+ , so I is not bounded below in \mathbb{R}^+ .

Example 6. In the poset (\mathbb{R}, \leq) , 0 is a lower bound for the intervals [0, 1] and (0, 1].

Proof. Let I = [0, 1]. To prove 0 is a lower bound for I, we must prove $0 \le x$ for all $x \in I$. Let $x \in I$. Then $x \in \mathbb{R}$ and $0 \le x \le 1$. Since $0 \le x \le 1$, then $0 \le x$. Hence, $0 \leq x$ for all $x \in I$. Since $0 \in \mathbb{R}$ and $0 \leq x$ for all $x \in I$, then 0 is a lower bound for I in \mathbb{R} . Let I = (0, 1]. To prove 0 is a lower bound for I, we must prove $0 \le x$ for all $x \in I$. Let $x \in I$. Then $x \in \mathbb{R}$ and 0 < x < 1. Since 0 < x < 1, then 0 < x. Thus, 0 < x or 0 = x, so $0 \le x$. Hence, $0 \le x$ for all $x \in I$. Since $0 \in \mathbb{R}$ and $0 \leq x$ for all $x \in I$, then 0 is a lower bound for I in \mathbb{R} .

Example 7. poset bounded above need not have a greatest element

In the poset (\mathbb{R}, \leq) , the intervals [0, 1] and (0, 1) are bounded above and [0, 1] has a greatest element, but (0, 1) does not have a greatest element.

Proof. To prove [0,1] is bounded above in \mathbb{R} , we will show that the real number 1 is an upper bound for [0,1] in \mathbb{R} .

Let $x \in [0, 1]$. Then $x \in \mathbb{R}$ and $0 \le x \le 1$, so $x \le 1$. Since x is arbitrary, then $x \leq 1$ for all $x \in [0, 1]$. Hence, 1 is an upper bound for [0, 1] in \mathbb{R} , so [0, 1] is bounded above in \mathbb{R} . Since $1 \in [0,1]$ and 1 is an upper bound for [0,1], then 1 is the greatest element in [0, 1]. To prove (0,1) is bounded above in \mathbb{R} , we will show that the real number 1 is an upper bound for (0, 1) in \mathbb{R} . Let $x \in (0, 1)$. Then $x \in \mathbb{R}$ and 0 < x < 1, so x < 1. Hence, x < 1 or x = 1, so x < 1. Since x is arbitrary, then $x \leq 1$ for all $x \in (0, 1)$. Hence, 1 is an upper bound for (0, 1) in \mathbb{R} , so (0, 1) is bounded above in \mathbb{R} . We prove (0, 1) does not have a greatest element. Suppose (0, 1) has a greatest element. Let M be a greatest element of (0, 1). Then $M \in (0, 1)$ and x < M for all $x \in (0, 1)$. Since $M \in (0, 1)$, then $M \in \mathbb{R}$ and 0 < M < 1, so 0 < M and M < 1. To derive a contradiction, we will show that $x \leq M$ for all $x \in (0, 1)$ is false.

That is, we will show that there exists a real number in (0, 1) that is not less than or equal to M.

By trichotomy of \mathbb{R} , this means we will show there exists a real number in (0,1) that is greater than M.

Since $M \in \mathbb{R}$, then $\frac{M+1}{2} \in \mathbb{R}$. We show $\frac{M+1}{2} \in (0,1)$. Since -1 < 0 and 0 < M, then -1 < M. Hence, 0 < M + 1, so $0 < \frac{M+1}{2}$. Since M < 1, then M + 1 < 2, so $\frac{M+1}{2} < 1$. Thus, $0 < \frac{M+1}{2}$ and $\frac{M+1}{2} < 1$, so $0 < \frac{M+1}{2} < 1$. Since $\frac{M+1}{2} \in \mathbb{R}$ and $0 < \frac{M+1}{2} < 1$, then $\frac{M+1}{2} \in (0, 1)$. Since M < 1, then 2M < M + 1, so $M < \frac{M+1}{2}$. Therefore, $\frac{M+1}{2} > M$. Thus, $\frac{M+1}{2} \in (0,1)$ and $\frac{M+1}{2} > M$, so there exists a real number in (0,1) that is greater than M. Hence (0, 1) does not have a greatest element

Hence, (0, 1) does not have a greatest element.

Example 8. Let $S = \{1 - \frac{1}{n} : n \in \mathbb{N}\}$. In the poset (\mathbb{R}, \leq) , 1 is an upper bound for S, but S has no greatest element.

Proof. We prove 1 is an upper bound for S in \mathbb{R} . Let $x \in S$. Then there is a natural number n such that $x = 1 - \frac{1}{n}$. Since $n \in \mathbb{N}$, then n > 0, so $\frac{1}{n} > 0$. Hence, $\frac{-1}{n} < 0$, so $1 - \frac{1}{n} < 1$. Thus, x < 1, so $x \le 1$. Since x is arbitrary, then $x \leq 1$ for all $x \in S$. Therefore, 1 is an upper bound for S in \mathbb{R} , so S is bounded above in \mathbb{R} . We prove S does not have a greatest element. Suppose S has a greatest element. Let M be a greatest element of S. Then $M \in S$ and x < M for all $x \in S$. To derive a contradiction, we must show there exists an element of S that is not less than or equal to M. Thus by trichotomy, we must show there exists an element of S that is greater than M. Since $M \in S$, then there exists a natural number k such that $M = 1 - \frac{1}{k}$. Since $k \in \mathbb{N}$, then $k + 1 \in \mathbb{N}$. Hence, $1 - \frac{1}{k+1} \in S$. Since $k \in \mathbb{N}$, then k > 0, so k + 1 > 0. Thus, $k \neq 0$ and $k + 1 \neq 0$, so $\frac{1}{k} \in \mathbb{R}$ and $\frac{1}{k+1} \in \mathbb{R}$. Observe that $\frac{1}{k} - \frac{1}{k+1} = \frac{1}{k(k+1)}$. Since k > 0 and k+1 > 0, then k(k+1) > 0, so $\frac{1}{k(k+1)} > 0$. Hence, $\frac{1}{k} - \frac{1}{k+1} > 0$, so $\frac{1}{k} > \frac{1}{k+1}$. Thus, $\frac{-1}{k} < \frac{-1}{k+1}$, so $1 - \frac{1}{k} < 1 - \frac{1}{k+1}$.

Therefore, $M < 1 - \frac{1}{k+1}$, so $1 - \frac{1}{k+1} > M$. Thus, $1 - \frac{1}{k+1} \in S$ and $1 - \frac{1}{k+1} > M$, so there exists an element of S that is greater than M.

Hence, S does not have a greatest element.

Example 9. Let S be a set.

In the poset $(2^S, \subset)$ S is the greatest element and \emptyset is the least element.

Proof. We prove S is the greatest element of 2^S . Since every set is a subset of itself, then $S \subset S$. Hence, $S \in 2^S$. Let $X \in 2^S$. Then $X \subset S$. Since X is arbitrary, then $X \subset S$ for all $X \in 2^S$. Hence, S is an upper bound for S. Since $S \in 2^S$ and S is an upper bound for 2^S , then S is the greatest element of 2^S . We prove \emptyset is the least element of 2^S . Since the empty set is a subset of every set, then $\emptyset \subset S$. Hence, $\emptyset \in 2^{\bar{S}}$. Let $X \in 2^S$. Then $X \subset S$. Since the empty set is a subset of every set, then in particular, $\emptyset \subset X$. Since X is arbitrary, then $\emptyset \subset X$ for all $X \in 2^S$. Hence, \emptyset is a lower bound for 2^S . Since $\emptyset \in 2^S$ and \emptyset is a lower bound for 2^S , then \emptyset is the least element of 2^S

Example 10. In the poset $(\mathbb{Z}^+ \cup \{0\}, |)$ 0 is the greatest element and 1 is the least element.

Proof. Let $S = \mathbb{Z}^+ \cup \{0\}$. Then (S, |) is a poset. We prove 0 is the greatest element of S. Clearly, $0 \in S$. Let $n \in S$. Since $S \subset \mathbb{Z}$, then $n \in \mathbb{Z}$. Every integer divides zero, so n|0. Since n is arbitrary, then n|0 for all $n \in S$. Hence, 0 is an upper bound for S. Since $0 \in S$ and 0 is an upper bound for S, then 0 is the greatest element of S. We prove 1 is the least element of S. Clearly, $1 \in S$. Let $n \in S$. Since $S \subset \mathbb{Z}$, then $n \in \mathbb{Z}$. The number 1 divides every integer, so 1|n.

Since n is arbitrary, then 1|n for all $n \in S$.

Hence, 1 is a lower bound for S.

Since $1 \in S$ and 1 is a lower bound for S, then 1 is the least element of S.

Example 11. In the poset (\mathbb{R}, \leq) let S = (0, 1) and T = [0, 1].

Then $\sup(S) = 1 = \sup(T)$ and $\sup(S) \notin S$ and $\sup(T) \in T$ and there is no greatest element in S and 1 is the greatest element of T.

Solution. We sketch the intervals on the real number line.

We proved in a previous example that there is no greatest element of (0, 1). Let B be the set of all upper bounds of S in \mathbb{R} . Then $B = \{u \in \mathbb{R} : u \text{ is an upper bound of } S\}$ and $B \subset \mathbb{R}$. Clearly, $B = [1, \infty) = \{x \in \mathbb{R} : 1 \le x\}.$ We formally prove $B = [1, \infty) = \{x \in \mathbb{R} : 1 \le x\}.$ Let $x \in [1, \infty)$. Then $x \in \mathbb{R}$ and $1 \leq x$. Let $s \in S$. Then $s \in \mathbb{R}$ and 0 < s < 1, so s < 1. Hence, s < 1. Since $s \leq 1$ and $1 \leq x$, then $s \leq x$. Thus, s < x for all $s \in S$, so x is an upper bound for S in \mathbb{R} . Since $x \in \mathbb{R}$ and x is an upper bound for S, then $x \in B$. Therefore, $x \in [1, \infty)$ implies $x \in B$, so $[1, \infty) \subset B$. Let $b \in B$. Then $b \in \mathbb{R}$ and b is an upper bound of S. Hence, $x \leq b$ for all $x \in S$. Let $x \in S$. Then $x \in \mathbb{R}$ and 0 < x < 1 and $x \leq b$. Thus, 0 < x and x < 1 and $x \le b$. Since 0 < x and $x \leq b$, then 0 < b. To prove $b \in [1, \infty)$, we must prove $b \in \mathbb{R}$ and $1 \leq b$. To prove $1 \le b$, we must prove either 1 < b or 1 = b. Suppose $1 \neq b$. We must prove 1 < b. Since $1 \neq b$, then by trichotomy, either 1 < b or 1 > b. Suppose for the sake of contradiction 1 > b. Then b < 1. To derive a contradiction, we prove there exists $c \in S$ such that $c \not\leq b$. I.e, we prove there exists $c \in S$ such that c > b. Let $c = \frac{b+1}{2}$. Since $b \in \mathbb{R}$, then $\frac{b+1}{2} \in \mathbb{R}$, so $c \in \mathbb{R}$. Since -1 < 0 and 0 < b, then -1 < b, so 0 < b + 1. Hence, $0 < \frac{b+1}{2}$, so 0 < c. Since b < 1, then b + 1 < 2, so $\frac{b+1}{2} < 1$. Hence, c < 1.

Since 0 < c and c < 1, then 0 < c < 1. Since $c \in \mathbb{R}$ and 0 < c < 1, then $c \in S$. Since 1 > b, then b + 1 > 2b, so $\frac{b+1}{2} > b$. Therefore, c > b. Thus, there exists $c \in S$ such that c > b, so not every element of S is less than or equal to b. Therefore, 1 > b is false. Since either 1 < b or 1 > b and $1 \not\ge b$, then 1 < b. Since $1 \neq b$ implies 1 < b, then either 1 = b or 1 < b, so 1 < b. Since $b \in \mathbb{R}$ and $1 \leq b$, then $b \in [1, \infty)$. Thus, $b \in B$ implies $b \in [1, \infty)$, so $B \subset [1, \infty)$. Since $B \subset [1, \infty)$ and $[1, \infty) \subset B$, then $B = [1, \infty)$, as desired. The least element of B is the least upper bound of S. Since $1 \in B$ and for all $x \in B, 1 \leq x$, then 1 is the least element of S. Therefore, $lub(S) = \sup(S) = 1$. Since $1 \notin S$, then $\sup(S) \notin S$. Let B' be the set of all upper bounds of T in \mathbb{R} . Then $B' = \{u \in \mathbb{R} : u \text{ is an upper bound of } T\}$ and $B' \subset \mathbb{R}$. Clearly, all real numbers greater than 1 are upper bounds of T. Is 1 an upper bound of T? Let $x \in T$. Then $0 \le x \le 1$, so $x \le 1$. Hence, $x \leq 1$ for all $x \in T$. Therefore, 1 is an upper bound for T. Thus, $B' = [1, \infty) = B$. The least element of B' is the least upper bound of T. Since $1 \in B'$ and $1 \le x$ for all $x \in B'$, then 1 is the least element of T. Therefore, $lub(T) = \sup(T) = 1$. Since $1 \in T$, then $\sup(T) \in T$. We proved in a previous example that the greatest element of [0, 1] is 1. \Box

Example 12. Let $S \subset \mathbb{R}$.

Then (S, \leq) is a total order. Therefore, any subset of \mathbb{R} is linearly ordered under the relation \leq .

Proof. Since (\mathbb{R}, \leq) is a total order, then \leq is reflexive, antisymmetric, transitive and any two elements are comparable.

Thus, for any $x \in \mathbb{R}$, $x \le x$ and for any $x, y \in \mathbb{R}$, if $x \le y$ and $y \le x$, then x = y and for any $x, y, z \in \mathbb{R}$, if $x \le y$ and $y \le z$, then $x \le z$ and for any $x, y \in \mathbb{R}$, either $x \le y$ or $y \le x$. Let $a, b, c \in S$.

Then $a \leq a$ and if $a \leq b$ and $b \leq a$, then a = b and if $a \leq b$ and $b \leq c$, then $a \leq c$ and either $a \leq b$ or $b \leq a$.

Therefore, \leq is reflexive, antisymmetric, transitive, and any two elements of S are comparable.

Hence, (S, \leq) is a total order.

Functions

Example 13. The inverse of the identity map on a set is the identity map on the set.

Let I_S be the identity map on a set S. Then $I_S^{-1} = I_S$.

Proof. Let $g: S \to S$ be the map defined by g(x) = x for all $x \in S$. Then $g = I_S$. Since $g \circ I_S = g = I_S$ and $I_S \circ g = g = I_S$, then g is the inverse of I_S . Since $g = I_S$, then I_S is the inverse of I_S . Therefore, $I_S^{-1} = I_S$.