Relations and Functions Examples

Jason Sass

April 29, 2023

Equivalence Relations

Example 1. Equality relation on a set is an equivalence relation

Let S be a set.
Let $\{(s, s): s \in S\}=\{(a, b) \in S \times S: a=b\}$ be the equality relation on S. The equality relation is an equivalence relation on S.

Proof. Since every element of a set equals itself, then if $a \in S$, then $a=a$, so the equality relation is reflexive.

Let $a, b \in S$ such that $a=b$.
Then $b=a$, so the equality relation is symmetric.

Let $a, b, c \in S$ such that $a=b$ and $b=c$.
Then $a=c$, so the equality relation is transitive.

Since the equality relation is reflexive, symmetric, and transitive, then the equality relation is an equivalence relation on S.

Example 2. total relation on a set is an equivalence relation
Let S be a set.
Let $S \times S=\{(a, b): a, b \in S\}$ be the total relation relation on S.
Then $S \times S$ is an equivalence relation on S.
Proof. Let $a \in S$.
Then $(a, a) \in S \times S$.
Hence, $S \times S$ is reflexive.

Let $(a, b) \in S \times S$.
Then $a \in S$ and $b \in S$.
Since $b \in S$ and $a \in S$, then $(b, a) \in S \times S$.
Since $(a, b) \in S \times S$ implies $(b, a) \in S \times S$, then $S \times S$ is symmetric.

Let $(a, b) \in S \times S$ and $(b, c) \in S \times S$.
Then $a \in S$ and $b \in S$ and $c \in S$.
Since $a \in S$ and $c \in S$, then $(a, c) \in S \times S$.
Since $(a, b) \in S \times S$ and $(b, c) \in S \times S$ implies $(a, c) \in S \times S$, then $S \times S$ is transitive.

Since $S \times S$ is reflexive, symmetric, and transitive, then $S \times S$ is an equivalence relation on S.

Example 3. cardinality relation on the power set of a finite set
Let S be a finite set.
Let \mathscr{P} be the power set of S.
Let $R=\{(A, B) \in \mathscr{P} \times \mathscr{P}: A$ and B contain the same number of elements $\}=\{(A, B) \in \mathscr{P} \times \mathscr{P}:|A|=|B|\}$.

Then R is an equivalence relation on \mathscr{P}.
Solution. Since $R \subset \mathscr{P} \times \mathscr{P}$, then R is a relation on \mathscr{P}.

We prove $\operatorname{dom} R=$ range $R=\mathscr{P}$.
Let $A \in \operatorname{dom} R$.
Then, by definition of domain, $A \in \mathscr{P}$.
Hence, $A \in \operatorname{dom} R$ implies $A \in \mathscr{P}$, so $\operatorname{dom} R \subset \mathscr{P}$.
Let $A \in \mathscr{P}$.
To prove $\mathscr{P} \subset \operatorname{dom} R$, we must prove there is a set $B \in \mathscr{P}$ such that A contains the same number of elements as B.

Let $B=A$.
Since $A \in \mathscr{P}$, then $B \in \mathscr{P}$.
Each set contains the same number of elements as itself, so A contains the same number of elements as A.

Hence, A contains the same number of elements as B.
Thus, $\mathscr{P} \subset \operatorname{domR}$.
Therefore, $\operatorname{dom} R \subset \mathscr{P}$ and $\mathscr{P} \subset \operatorname{dom} R$, so $\operatorname{dom} R=\mathscr{P}$.

Let $B \in$ range R.
Then, by definition of range, $B \in \mathscr{P}$.
Hence, $B \in$ range R implies $B \in \mathscr{P}$, so range $R \subset \mathscr{P}$.
Let $B \in \mathscr{P}$.
To prove $\mathscr{P} \subset$ range R, we must prove there is a set $A \in \mathscr{P}$ such that A and B contain the same number of elements.

Let $A=B$.
Since $B \in \mathscr{P}$, then $A \in \mathscr{P}$.
Each set contains the same number of elements as itself, so B contains the same number of elements as B.

Hence, B and B contain the same number of elements, so A and B contain the same number of elements.

Thus, $\mathscr{P} \subset$ range R.
Therefore, range $R \subset \mathscr{P}$ and $\mathscr{P} \subset$ range R, so range $R=\mathscr{P}$.

Hence, $\operatorname{dom} R=\mathscr{P}=$ range R.

We prove R is reflexive.
Let $A \in \mathscr{P}$.
Then $A \subset S$, so A is a set.
Each set contains the same number of elements as itself, so A contains the same number of elements as itself.

Thus, A contains the same number of elements as A, so A and A contain the same number of elements.

Since $(A, A) \in \mathscr{P} \times \mathscr{P}$ and A and A contain the same number of elements, then $(A, A) \in R$.

Therefore, R is reflexive.

We prove R is symmetric.
Let $A, B \in \mathscr{P}$ such that $(A, B) \in R$.
Then A and B contain the same number of elements.
Thus, B and A contain the same number of elements.
Since $(B, A) \in \mathscr{P} \times \mathscr{P}$ and B and A contain the same number of elements, then $(B, A) \in R$.

Therefore, $(A, B) \in R$ implies $(B, A) \in R$, so R is symmetric.

We prove R is transitive.
Let $A, B, C \in \mathscr{P}$ such that $(A, B) \in R$ and $(B, C) \in R$.
Then A and B contain the same number of elements and B and C contain the same number of elements.

Thus, A and C contain the same number of elements.
Since $A \in \mathscr{P}$ and $C \in \mathscr{P}$, then $(A, C) \in \mathscr{P} \times \mathscr{P}$.
Since $(A, C) \in \mathscr{P} \times \mathscr{P}$ and A and C contain the same number of elements, then $(A, C) \in R$.

Therefore, $(A, B) \in R$ and $(B, C) \in R$ implies $(A, C) \in R$, so R is transitive.
Since R is reflexive, symmetric, and transitive, then R is an equivalence relation on \mathscr{P}.

Therefore, R is an equivalence relation on the power set of a finite set S.

Let S be a finite set of at least two elements.
Then there exist distinct elements a and b in S.
Hence, $a \in S$ and $b \in S$ and $a \neq b$.
To prove R is not antisymmetric, we must prove there exist sets $A, B \in \mathscr{P}$ such that $(A, B) \in R$ and $(B, A) \in R$ and $A \neq B$.

Thus, we must find sets $A \subset S$ and $B \subset S$ such that A and B contain the same number of elements and B and A contain the same number of elements and $A \neq B$.

Hence, we must find subsets of S, A and B that contain the same number of elements and $A \neq B$.

Let $A=\{a\}$ and $B=\{b\}$.

Then $A \subset S$ and $B \subset S$ and A and B contain 1 element, but $A \neq B$. Therefore, R is not antisymmetric.

Let $X=\{1,2, \ldots, 9,10\}$.
Then $|X|=10$ and $R=\left\{(M, N) \in 2^{X} \times 2^{X}:|M|=|N|\right\}$ is an equivalence relation on 2^{X}.

Hence, $\frac{2^{X}}{B}=\left\{[S]: S \in 2^{X}\right\}=\{[S]: S \subset X\}$ is a partition of 2^{X}.
Since $\left|2^{X}\right|=2^{10}=1024$, then there are 1024 subsets of X.
Consider the equivalence class of the subset $S=\{1,2,5\} \subset X$.
We have

$$
\begin{aligned}
{[S] } & =\left\{Y \in 2^{X}: S R Y\right\} \\
& =\left\{Y \in 2^{X}:|S|=|Y|\right\} \\
& =\{Y \subset X: 3=|Y|\}
\end{aligned}
$$

Thus, $[S]$ consists of all subsets of X that have 3 elements.
The number of subsets of X that have 3 elements is $\binom{10}{3}=\frac{10!}{7!3!}$.
Let k be an integer between 0 and $|X|=10$.
Let S be a subset of X that contains k elements.
Then the partition $\frac{2^{X}}{R}$ consists of 11 cells - a cell consisting of all subsets of X that have $k=0,1,2, \ldots, 10$ elements.

The number of subsets of X that have k elements is $\binom{10}{k}=\frac{10!}{(10-k)!k!}$.
Thus, $\frac{2^{x}}{R}=\left\{[S]: S \in 2^{X}\right\}=\{[S]: S \subset X\}$ is a 11 celled partition of 2^{X}, where $[S]=\{Y \subset X:|S|=|Y|\}$ consists of all subsets of X that have the same number of elements as S and $|[S]|=\binom{10}{k}=\frac{10!}{(10-k)!k!}$ where k is an integer between 0 and 10, inclusive.

Partial Orderings

Example 4. The interval $(0,1)$ is bounded in \mathbb{R}.
Proof. Let $I=(0,1)$.
To prove I is bounded in \mathbb{R}, we must prove I is bounded above and below in \mathbb{R}.

We first prove I is bounded below in \mathbb{R}.
Let $x \in I$.
Then $x \in \mathbb{R}$ and $0<x<1$.
Since $0<x<1$, then $0<x$.
Since $-0.5<0$ and $0<x$, then $-0.5<x$, so $-0.5 \leq x$.
Thus, $-0.5 \leq x$ for all $x \in I$.
Since $-0.5 \in \mathbb{R}$ and $-0.5 \leq x$ for all $x \in I$, then -0.5 is a lower bound for I in \mathbb{R}.

Therefore, I is bounded below in \mathbb{R}.
To prove I is bounded above in \mathbb{R}, we must prove there is an upper bound for I in \mathbb{R}.

Thus, we must show there exists a real number U such that $x \leq U$ for all $x \in I$.

Let U be the real number 1.02.
Let $x \in I$.
Then $x \in \mathbb{R}$ and $0<x<1$, so $x<1$.
Since $x<1$ and $1<1.02$, then $x<1.02$, so $x \leq 1.02$.
Thus, $x \leq 1.02$ for all $x \in I$.
Since $1.02 \in \mathbb{R}$ and $x \leq 1.02$ for all $x \in I$, then 1.02 is an upper bound for I in \mathbb{R}.

Therefore, I is bounded above in \mathbb{R}.
Since I is bounded below and above in \mathbb{R}, then I is bounded in \mathbb{R}.
Example 5. The interval $(0,1]$ is bounded below in \mathbb{R}, but not bounded below in \mathbb{R}^{+}.

Proof. Let $I=(0,1]$.
We must prove I is bounded below in \mathbb{R} and not bounded below in \mathbb{R}^{+}.
We first prove I is bounded below in \mathbb{R}.
Let $x \in I$.
Then $x \in \mathbb{R}$ and $0<x \leq 1$.
Since $0<x \leq 1$, then $0<x$.
Thus, $0<x$ or $0=x$, so $0 \leq x$.
Hence, $0 \leq x$ for all $x \in I$.
Since $0 \in \mathbb{R}$ and $0 \leq x$ for all $x \in I$, then 0 is a lower bound for I in \mathbb{R}.
Therefore, I is bounded below in \mathbb{R}.
To prove I is not bounded below in \mathbb{R}^{+}, we must prove there is no lower bound for I in \mathbb{R}^{+}.

Suppose there is a lower bound for I in \mathbb{R}^{+}.
Let L be a lower bound for I in \mathbb{R}^{+}.
Then $L \in \mathbb{R}^{+}$and $L \leq x$ for all $x \in I$.
Since $L \in \mathbb{R}^{+}$, then $L \in \mathbb{R}$ and $L>0$.
To derive a contradiction, we show the statement $L \leq x$ for all $x \in I$ is false.
Thus, we show there exists $a \in I$ such that $L \not \leq a$.
Hence, we show there exists $a \in I$ such that $a<L$.
Let $a=\frac{L}{2}$.
Since $L \in \mathbb{R}$, then $\frac{L}{2} \in \mathbb{R}$, so $a \in \mathbb{R}$.
Since $0<L$, then $0<\frac{L}{2}$, so $0<a$.
Since $1 \in I$ and $L \leq x$ for all $x \in I$, then $L \leq 1$.
Hence, $\frac{L}{2} \leq \frac{1}{2}$, so $a \leq \frac{1}{2}$.
Since $a \leq \frac{1}{2}$ and $\frac{1}{2}<1$, then $a<1$, so $a \leq 1$.
Thus, $0<a$ and $a \leq 1$, so $0<a \leq 1$.
Since $a \in \mathbb{R}$ and $0<a \leq 1$, then $a \in I$.
Since $1>\frac{1}{2}$ and $L>0$, then we multiply by L to get $L>\frac{L}{2}$.
Hence, $L>a$, so $a<L$.
Thus, there exists $a \in I$ such that $a<L$.

Therefore, there is no lower bound for I in \mathbb{R}^{+}, so I is not bounded below in \mathbb{R}^{+}.

Example 6. In the poset $(\mathbb{R}, \leq), 0$ is a lower bound for the intervals $[0,1]$ and $(0,1]$.

Proof. Let $I=[0,1]$.
To prove 0 is a lower bound for I, we must prove $0 \leq x$ for all $x \in I$.
Let $x \in I$.
Then $x \in \mathbb{R}$ and $0 \leq x \leq 1$.
Since $0 \leq x \leq 1$, then $0 \leq x$.
Hence, $0 \leq x$ for all $x \in I$.
Since $0 \in \mathbb{R}$ and $0 \leq x$ for all $x \in I$, then 0 is a lower bound for I in \mathbb{R}.
Let $I=(0,1]$.
To prove 0 is a lower bound for I, we must prove $0 \leq x$ for all $x \in I$.
Let $x \in I$.
Then $x \in \mathbb{R}$ and $0<x \leq 1$.
Since $0<x \leq 1$, then $0<x$.
Thus, $0<x$ or $0=x$, so $0 \leq x$.
Hence, $0 \leq x$ for all $x \in I$.
Since $0 \in \mathbb{R}$ and $0 \leq x$ for all $x \in I$, then 0 is a lower bound for I in \mathbb{R}.
Example 7. poset bounded above need not have a greatest element
In the poset (\mathbb{R}, \leq), the intervals $[0,1]$ and $(0,1)$ are bounded above and $[0,1]$ has a greatest element, but $(0,1)$ does not have a greatest element.

Proof. To prove $[0,1]$ is bounded above in \mathbb{R}, we will show that the real number 1 is an upper bound for $[0,1]$ in \mathbb{R}.

Let $x \in[0,1]$.
Then $x \in \mathbb{R}$ and $0 \leq x \leq 1$, so $x \leq 1$.
Since x is arbitrary, then $x \leq 1$ for all $x \in[0,1]$.
Hence, 1 is an upper bound for $[0,1]$ in \mathbb{R}, so $[0,1]$ is bounded above in \mathbb{R}.
Since $1 \in[0,1]$ and 1 is an upper bound for $[0,1]$, then 1 is the greatest element in $[0,1]$.

To prove $(0,1)$ is bounded above in \mathbb{R}, we will show that the real number 1 is an upper bound for $(0,1)$ in \mathbb{R}.

Let $x \in(0,1)$.
Then $x \in \mathbb{R}$ and $0<x<1$, so $x<1$.
Hence, $x<1$ or $x=1$, so $x \leq 1$.
Since x is arbitrary, then $x \leq 1$ for all $x \in(0,1)$.
Hence, 1 is an upper bound for $(0,1)$ in \mathbb{R}, so $(0,1)$ is bounded above in \mathbb{R}.
We prove $(0,1)$ does not have a greatest element.
Suppose $(0,1)$ has a greatest element.
Let M be a greatest element of $(0,1)$.
Then $M \in(0,1)$ and $x \leq M$ for all $x \in(0,1)$.
Since $M \in(0,1)$, then $M \in \mathbb{R}$ and $0<M<1$, so $0<M$ and $M<1$.
To derive a contradiction, we will show that $x \leq M$ for all $x \in(0,1)$ is false.

That is, we will show that there exists a real number in $(0,1)$ that is not less than or equal to M.

By trichotomy of \mathbb{R}, this means we will show there exists a real number in $(0,1)$ that is greater than M.

Since $M \in \mathbb{R}$, then $\frac{M+1}{2} \in \mathbb{R}$.
We show $\frac{M+1}{2} \in(0,1)$.
Since $-1<0$ and $0<M$, then $-1<M$.
Hence, $0<M+1$, so $0<\frac{M+1}{2}$.
Since $M<1$, then $M+1<2$, so $\frac{M+1}{2}<1$.
Thus, $0<\frac{M+1}{2}$ and $\frac{M+1}{2}<1$, so $0<\frac{M+1}{2}<1$.
Since $\frac{M+1}{2} \in \mathbb{R}$ and $0<\frac{M+1}{2}<1$, then $\frac{M+1}{2} \in(0,1)$.
Since $M<1$, then $2 M<M+1$, so $M<\frac{M+1}{2}$.
Therefore, $\frac{M+1}{2}>M$.
Thus, $\frac{M+1}{2} \in(0,1)$ and $\frac{M+1}{2}>M$, so there exists a real number in $(0,1)$ that is greater than M.

Hence, $(0,1)$ does not have a greatest element.
Example 8. Let $S=\left\{1-\frac{1}{n}: n \in \mathbb{N}\right\}$.
In the poset $(\mathbb{R}, \leq), 1$ is an upper bound for S, but S has no greatest element.
Proof. We prove 1 is an upper bound for S in \mathbb{R}.
Let $x \in S$.
Then there is a natural number n such that $x=1-\frac{1}{n}$.
Since $n \in \mathbb{N}$, then $n>0$, so $\frac{1}{n}>0$.
Hence, $\frac{-1}{n}<0$, so $1-\frac{1}{n}<1$.
Thus, $x<1$, so $x \leq 1$.
Since x is arbitrary, then $x \leq 1$ for all $x \in S$.
Therefore, 1 is an upper bound for S in \mathbb{R}, so S is bounded above in \mathbb{R}.
We prove S does not have a greatest element.
Suppose S has a greatest element.
Let M be a greatest element of S.
Then $M \in S$ and $x \leq M$ for all $x \in S$.
To derive a contradiction, we must show there exists an element of S that is not less than or equal to M.

Thus by trichotomy, we must show there exists an element of S that is greater than M.

Since $M \in S$, then there exists a natural number k such that $M=1-\frac{1}{k}$.
Since $k \in \mathbb{N}$, then $k+1 \in \mathbb{N}$.
Hence, $1-\frac{1}{k+1} \in S$.
Since $k \in \mathbb{N}$, then $k>0$, so $k+1>0$.
Thus, $k \neq 0$ and $k+1 \neq 0$, so $\frac{1}{k} \in \mathbb{R}$ and $\frac{1}{k+1} \in \mathbb{R}$.
Observe that $\frac{1}{k}-\frac{1}{k+1}=\frac{1}{k(k+1)}$.
Since $k>0$ and $k+1>0$, then $k(k+1)>0$, so $\frac{1}{k(k+1)}>0$.
Hence, $\frac{1}{k}-\frac{1}{k+1}>0$, so $\frac{1}{k}>\frac{1}{k+1}$.
Thus, $\frac{-1}{k}<\frac{-1}{k+1}$, so $1-\frac{1}{k}<1-\frac{1}{k+1}$.

Therefore, $M<1-\frac{1}{k+1}$, so $1-\frac{1}{k+1}>M$.
Thus, $1-\frac{1}{k+1} \in S$ and $1-\frac{1}{k+1}>M$, so there exists an element of S that is greater than M.

Hence, S does not have a greatest element.
Example 9. Let S be a set.
In the poset $\left(2^{S}, \subset\right) S$ is the greatest element and \emptyset is the least element.
Proof. We prove S is the greatest element of 2^{S}.
Since every set is a subset of itself, then $S \subset S$.
Hence, $S \in 2^{S}$.
Let $X \in 2^{S}$.
Then $X \subset S$.
Since X is arbitrary, then $X \subset S$ for all $X \in 2^{S}$.
Hence, S is an upper bound for S.
Since $S \in 2^{S}$ and S is an upper bound for 2^{S}, then S is the greatest element of 2^{S}.

We prove \emptyset is the least element of 2^{S}.
Since the empty set is a subset of every set, then $\emptyset \subset S$.
Hence, $\emptyset \in 2^{S}$.
Let $X \in 2^{S}$.
Then $X \subset S$.
Since the empty set is a subset of every set, then in particular, $\emptyset \subset X$.
Since X is arbitrary, then $\emptyset \subset X$ for all $X \in 2^{S}$.
Hence, \emptyset is a lower bound for 2^{S}.
Since $\emptyset \in 2^{S}$ and \emptyset is a lower bound for 2^{S}, then \emptyset is the least element of 2^{S}.

Example 10. In the poset $\left(\mathbb{Z}^{+} \cup\{0\}, \mid\right) 0$ is the greatest element and 1 is the least element.

Proof. Let $S=\mathbb{Z}^{+} \cup\{0\}$.
Then (S, \mid) is a poset.
We prove 0 is the greatest element of S.
Clearly, $0 \in S$.
Let $n \in S$.
Since $S \subset \mathbb{Z}$, then $n \in \mathbb{Z}$.
Every integer divides zero, so $n \mid 0$.
Since n is arbitrary, then $n \mid 0$ for all $n \in S$.
Hence, 0 is an upper bound for S.
Since $0 \in S$ and 0 is an upper bound for S, then 0 is the greatest element of S.

We prove 1 is the least element of S.
Clearly, $1 \in S$.
Let $n \in S$.
Since $S \subset \mathbb{Z}$, then $n \in \mathbb{Z}$.
The number 1 divides every integer, so $1 \mid n$.

Since n is arbitrary, then $1 \mid n$ for all $n \in S$.
Hence, 1 is a lower bound for S.
Since $1 \in S$ and 1 is a lower bound for S, then 1 is the least element of S.

Example 11. In the poset (\mathbb{R}, \leq) let $S=(0,1)$ and $T=[0,1]$.
Then $\sup (S)=1=\sup (T)$ and $\sup (S) \notin S$ and $\sup (T) \in T$ and there is no greatest element in S and 1 is the greatest element of T.

Solution. We sketch the intervals on the real number line.
We proved in a previous example that there is no greatest element of $(0,1)$.
Let B be the set of all upper bounds of S in \mathbb{R}.
Then $B=\{u \in \mathbb{R}: u$ is an upper bound of $S\}$ and $B \subset \mathbb{R}$.
Clearly, $B=[1, \infty)=\{x \in \mathbb{R}: 1 \leq x\}$.
We formally prove $B=[1, \infty)=\{x \in \mathbb{R}: 1 \leq x\}$.
Let $x \in[1, \infty)$.
Then $x \in \mathbb{R}$ and $1 \leq x$.
Let $s \in S$.
Then $s \in \mathbb{R}$ and $0<s<1$, so $s<1$.
Hence, $s \leq 1$.
Since $s \leq 1$ and $1 \leq x$, then $s \leq x$.
Thus, $s \leq x$ for all $s \in S$, so x is an upper bound for S in \mathbb{R}.
Since $x \in \mathbb{R}$ and x is an upper bound for S, then $x \in B$.
Therefore, $x \in[1, \infty)$ implies $x \in B$, so $[1, \infty) \subset B$.
Let $b \in B$.
Then $b \in \mathbb{R}$ and b is an upper bound of S.
Hence, $x \leq b$ for all $x \in S$.
Let $x \in S$.
Then $x \in \mathbb{R}$ and $0<x<1$ and $x \leq b$.
Thus, $0<x$ and $x<1$ and $x \leq b$.
Since $0<x$ and $x \leq b$, then $0<b$.
To prove $b \in[1, \infty)$, we must prove $b \in \mathbb{R}$ and $1 \leq b$.
To prove $1 \leq b$, we must prove either $1<b$ or $1=b$.
Suppose $1 \neq b$.
We must prove $1<b$.
Since $1 \neq b$, then by trichotomy, either $1<b$ or $1>b$.
Suppose for the sake of contradiction $1>b$.
Then $b<1$.
To derive a contradiction, we prove there exists $c \in S$ such that $c \not \leq b$.
I.e, we prove there exists $c \in S$ such that $c>b$.

Let $c=\frac{b+1}{2}$.
Since $b \in \mathbb{R}$, then $\frac{b+1}{2} \in \mathbb{R}$, so $c \in \mathbb{R}$.
Since $-1<0$ and $0<b$, then $-1<b$, so $0<b+1$.
Hence, $0<\frac{b+1}{2}$, so $0<c$.
Since $b<1$, then $b+1<2$, so $\frac{b+1}{2}<1$.
Hence, $c<1$.

Since $0<c$ and $c<1$, then $0<c<1$.
Since $c \in \mathbb{R}$ and $0<c<1$, then $c \in S$.
Since $1>b$, then $b+1>2 b$, so $\frac{b+1}{2}>b$.
Therefore, $c>b$.
Thus, there exists $c \in S$ such that $c>b$, so not every element of S is less than or equal to b.

Therefore, $1>b$ is false.
Since either $1<b$ or $1>b$ and $1 \ngtr b$, then $1<b$.
Since $1 \neq b$ implies $1<b$, then either $1=b$ or $1<b$, so $1 \leq b$.
Since $b \in \mathbb{R}$ and $1 \leq b$, then $b \in[1, \infty)$.
Thus, $b \in B$ implies $b \in[1, \infty)$, so $B \subset[1, \infty)$.
Since $B \subset[1, \infty)$ and $[1, \infty) \subset B$, then $B=[1, \infty)$, as desired.
The least element of B is the least upper bound of S.
Since $1 \in B$ and for all $x \in B, 1 \leq x$, then 1 is the least element of S.
Therefore, $\operatorname{lub}(S)=\sup (S)=1$.
Since $1 \notin S$, then $\sup (S) \notin S$.
Let B^{\prime} be the set of all upper bounds of T in \mathbb{R}.
Then $B^{\prime}=\{u \in \mathbb{R}: u$ is an upper bound of $T\}$ and $B^{\prime} \subset \mathbb{R}$.
Clearly, all real numbers greater than 1 are upper bounds of T.
Is 1 an upper bound of T ?
Let $x \in T$.
Then $0 \leq x \leq 1$, so $x \leq 1$.
Hence, $x \leq 1$ for all $x \in T$.
Therefore, 1 is an upper bound for T.
Thus, $B^{\prime}=[1, \infty)=B$.
The least element of B^{\prime} is the least upper bound of T.
Since $1 \in B^{\prime}$ and $1 \leq x$ for all $x \in B^{\prime}$, then 1 is the least element of T.
Therefore, $\operatorname{lub}(T)=\sup (T)=1$.
Since $1 \in T$, then $\sup (T) \in T$.
We proved in a previous example that the greatest element of $[0,1]$ is 1 .
Example 12. Let $S \subset \mathbb{R}$.
Then (S, \leq) is a total order.
Therefore, any subset of \mathbb{R} is linearly ordered under the relation \leq.
Proof. Since (\mathbb{R}, \leq) is a total order, then \leq is reflexive, antisymmetric, transitive and any two elements are comparable.

Thus, for any $x \in \mathbb{R}, x \leq x$ and for any $x, y \in \mathbb{R}$, if $x \leq y$ and $y \leq x$, then $x=y$ and for any $x, y, z \in \mathbb{R}$, if $x \leq y$ and $y \leq z$, then $x \leq z$ and for any $x, y \in \mathbb{R}$, either $x \leq y$ or $y \leq x$.

Let $a, b, c \in S$.
Then $a \leq a$ and if $a \leq b$ and $b \leq a$, then $a=b$ and if $a \leq b$ and $b \leq c$, then $a \leq c$ and either $a \leq b$ or $b \leq a$.

Therefore, \leq is reflexive, antisymmetric, transitive, and any two elements of S are comparable.

Hence, (S, \leq) is a total order.

Functions

Example 13. The inverse of the identity map on a set is the identity map on the set.

Let I_{S} be the identity map on a set S.
Then $I_{S}^{-1}=I_{S}$.
Proof. Let $g: S \rightarrow S$ be the map defined by $g(x)=x$ for all $x \in S$.
Then $g=I_{S}$.
Since $g \circ I_{S}=g=I_{S}$ and $I_{S} \circ g=g=I_{S}$, then g is the inverse of I_{S}.
Since $g=I_{S}$, then I_{S} is the inverse of I_{S}.
Therefore, $I_{S}^{-1}=I_{S}$.

