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Equivalence Relations

Example 1. Equality relation on a set is an equivalence relation
Let S be a set.
Let {(s, s) : s ∈ S} = {(a, b) ∈ S × S : a = b} be the equality relation on S.
The equality relation is an equivalence relation on S.

Proof. Since every element of a set equals itself, then if a ∈ S, then a = a, so
the equality relation is reflexive.

Let a, b ∈ S such that a = b.
Then b = a, so the equality relation is symmetric.

Let a, b, c ∈ S such that a = b and b = c.
Then a = c, so the equality relation is transitive.

Since the equality relation is reflexive, symmetric, and transitive, then the
equality relation is an equivalence relation on S.

Example 2. total relation on a set is an equivalence relation
Let S be a set.
Let S × S = {(a, b) : a, b ∈ S} be the total relation relation on S.
Then S × S is an equivalence relation on S.

Proof. Let a ∈ S.
Then (a, a) ∈ S × S.
Hence, S × S is reflexive.

Let (a, b) ∈ S × S.
Then a ∈ S and b ∈ S.
Since b ∈ S and a ∈ S, then (b, a) ∈ S × S.
Since (a, b) ∈ S × S implies (b, a) ∈ S × S, then S × S is symmetric.



Let (a, b) ∈ S × S and (b, c) ∈ S × S.
Then a ∈ S and b ∈ S and c ∈ S.
Since a ∈ S and c ∈ S, then (a, c) ∈ S × S.
Since (a, b) ∈ S × S and (b, c) ∈ S × S implies (a, c) ∈ S × S, then S × S is

transitive.
Since S × S is reflexive, symmetric, and transitive, then S × S is an equiva-

lence relation on S.

Example 3. cardinality relation on the power set of a finite set
Let S be a finite set.
Let P be the power set of S.
Let R = {(A,B) ∈P ×P : A and B contain the same number of elements

} = {(A,B) ∈P ×P : |A| = |B|}.
Then R is an equivalence relation on P.

Solution. Since R ⊂P ×P, then R is a relation on P.

We prove domR = rangeR = P.
Let A ∈ domR.
Then, by definition of domain, A ∈P.
Hence, A ∈ domR implies A ∈P, so domR ⊂P.
Let A ∈P.
To prove P ⊂ domR, we must prove there is a set B ∈ P such that A

contains the same number of elements as B.
Let B = A.
Since A ∈P, then B ∈P.
Each set contains the same number of elements as itself, so A contains the

same number of elements as A.
Hence, A contains the same number of elements as B.
Thus, P ⊂ domR.
Therefore, domR ⊂P and P ⊂ domR, so domR = P.

Let B ∈ rangeR.
Then, by definition of range, B ∈P.
Hence, B ∈ rangeR implies B ∈P, so rangeR ⊂P.
Let B ∈P.
To prove P ⊂ rangeR, we must prove there is a set A ∈ P such that A

and B contain the same number of elements.
Let A = B.
Since B ∈P, then A ∈P.
Each set contains the same number of elements as itself, so B contains the

same number of elements as B.
Hence, B and B contain the same number of elements, so A and B contain

the same number of elements.
Thus, P ⊂ rangeR.
Therefore, rangeR ⊂P and P ⊂ rangeR, so rangeR = P.
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Hence, domR = P = rangeR.

We prove R is reflexive.
Let A ∈P.
Then A ⊂ S, so A is a set.
Each set contains the same number of elements as itself, so A contains the

same number of elements as itself.
Thus, A contains the same number of elements as A, so A and A contain

the same number of elements.
Since (A,A) ∈P ×P and A and A contain the same number of elements,

then (A,A) ∈ R.
Therefore, R is reflexive.

We prove R is symmetric.
Let A,B ∈P such that (A,B) ∈ R.
Then A and B contain the same number of elements.
Thus, B and A contain the same number of elements.
Since (B,A) ∈P ×P and B and A contain the same number of elements,

then (B,A) ∈ R.
Therefore, (A,B) ∈ R implies (B,A) ∈ R, so R is symmetric.

We prove R is transitive.
Let A,B,C ∈P such that (A,B) ∈ R and (B,C) ∈ R.
Then A and B contain the same number of elements and B and C contain

the same number of elements.
Thus, A and C contain the same number of elements.
Since A ∈P and C ∈P, then (A,C) ∈P ×P.
Since (A,C) ∈P ×P and A and C contain the same number of elements,

then (A,C) ∈ R.
Therefore, (A,B) ∈ R and (B,C) ∈ R implies (A,C) ∈ R, so R is transitive.
Since R is reflexive, symmetric, and transitive, then R is an equivalence

relation on P.
Therefore, R is an equivalence relation on the power set of a finite set S.

Let S be a finite set of at least two elements.
Then there exist distinct elements a and b in S.
Hence, a ∈ S and b ∈ S and a 6= b.
To prove R is not antisymmetric, we must prove there exist sets A,B ∈ P

such that (A,B) ∈ R and (B,A) ∈ R and A 6= B.
Thus, we must find sets A ⊂ S and B ⊂ S such that A and B contain the

same number of elements and B and A contain the same number of elements
and A 6= B.

Hence, we must find subsets of S, A and B that contain the same number
of elements and A 6= B.

Let A = {a} and B = {b}.

3



Then A ⊂ S and B ⊂ S and A and B contain 1 element, but A 6= B.
Therefore, R is not antisymmetric.

Let X = {1, 2, ..., 9, 10}.
Then |X| = 10 and R = {(M,N) ∈ 2X × 2X : |M | = |N |} is an equivalence

relation on 2X .
Hence, 2X

R = {[S] : S ∈ 2X} = {[S] : S ⊂ X} is a partition of 2X .
Since |2X | = 210 = 1024, then there are 1024 subsets of X.
Consider the equivalence class of the subset S = {1, 2, 5} ⊂ X.
We have

[S] = {Y ∈ 2X : SRY }
= {Y ∈ 2X : |S| = |Y |}
= {Y ⊂ X : 3 = |Y |}.

Thus, [S] consists of all subsets of X that have 3 elements.
The number of subsets of X that have 3 elements is

(
10
3

)
= 10!

7!3! .
Let k be an integer between 0 and |X| = 10.
Let S be a subset of X that contains k elements.
Then the partition 2X

R consists of 11 cells - a cell consisting of all subsets of
X that have k = 0, 1, 2, ..., 10 elements.

The number of subsets of X that have k elements is
(
10
k

)
= 10!

(10−k)!k! .

Thus, 2X

R = {[S] : S ∈ 2X} = {[S] : S ⊂ X} is a 11 celled partition of 2X ,
where [S] = {Y ⊂ X : |S| = |Y |} consists of all subsets of X that have the
same number of elements as S and |[S]| =

(
10
k

)
= 10!

(10−k)!k! where k is an integer

between 0 and 10, inclusive.

Partial Orderings

Example 4. The interval (0, 1) is bounded in R.

Proof. Let I = (0, 1).
To prove I is bounded in R, we must prove I is bounded above and below

in R.
We first prove I is bounded below in R.
Let x ∈ I.
Then x ∈ R and 0 < x < 1.
Since 0 < x < 1, then 0 < x.
Since −0.5 < 0 and 0 < x, then −0.5 < x, so −0.5 ≤ x.
Thus, −0.5 ≤ x for all x ∈ I.
Since −0.5 ∈ R and −0.5 ≤ x for all x ∈ I, then −0.5 is a lower bound for

I in R.
Therefore, I is bounded below in R.
To prove I is bounded above in R, we must prove there is an upper bound

for I in R.
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Thus, we must show there exists a real number U such that x ≤ U for all
x ∈ I.

Let U be the real number 1.02.
Let x ∈ I.
Then x ∈ R and 0 < x < 1, so x < 1.
Since x < 1 and 1 < 1.02, then x < 1.02, so x ≤ 1.02.
Thus, x ≤ 1.02 for all x ∈ I.
Since 1.02 ∈ R and x ≤ 1.02 for all x ∈ I, then 1.02 is an upper bound for I

in R.
Therefore, I is bounded above in R.
Since I is bounded below and above in R, then I is bounded in R.

Example 5. The interval (0, 1] is bounded below in R, but not bounded below
in R+.

Proof. Let I = (0, 1].
We must prove I is bounded below in R and not bounded below in R+.
We first prove I is bounded below in R.
Let x ∈ I.
Then x ∈ R and 0 < x ≤ 1.
Since 0 < x ≤ 1, then 0 < x.
Thus, 0 < x or 0 = x, so 0 ≤ x.
Hence, 0 ≤ x for all x ∈ I.
Since 0 ∈ R and 0 ≤ x for all x ∈ I, then 0 is a lower bound for I in R.
Therefore, I is bounded below in R.
To prove I is not bounded below in R+, we must prove there is no lower

bound for I in R+.
Suppose there is a lower bound for I in R+.
Let L be a lower bound for I in R+.
Then L ∈ R+ and L ≤ x for all x ∈ I.
Since L ∈ R+, then L ∈ R and L > 0.
To derive a contradiction, we show the statement L ≤ x for all x ∈ I is false.
Thus, we show there exists a ∈ I such that L 6≤ a.
Hence, we show there exists a ∈ I such that a < L.
Let a = L

2 .

Since L ∈ R, then L
2 ∈ R, so a ∈ R.

Since 0 < L, then 0 < L
2 , so 0 < a.

Since 1 ∈ I and L ≤ x for all x ∈ I, then L ≤ 1.
Hence, L

2 ≤
1
2 , so a ≤ 1

2 .
Since a ≤ 1

2 and 1
2 < 1, then a < 1, so a ≤ 1.

Thus, 0 < a and a ≤ 1, so 0 < a ≤ 1.
Since a ∈ R and 0 < a ≤ 1, then a ∈ I.
Since 1 > 1

2 and L > 0, then we multiply by L to get L > L
2 .

Hence, L > a, so a < L.
Thus, there exists a ∈ I such that a < L.
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Therefore, there is no lower bound for I in R+, so I is not bounded below
in R+.

Example 6. In the poset (R,≤), 0 is a lower bound for the intervals [0, 1] and
(0, 1].

Proof. Let I = [0, 1].
To prove 0 is a lower bound for I, we must prove 0 ≤ x for all x ∈ I.
Let x ∈ I.
Then x ∈ R and 0 ≤ x ≤ 1.
Since 0 ≤ x ≤ 1, then 0 ≤ x.
Hence, 0 ≤ x for all x ∈ I.
Since 0 ∈ R and 0 ≤ x for all x ∈ I, then 0 is a lower bound for I in R.
Let I = (0, 1].
To prove 0 is a lower bound for I, we must prove 0 ≤ x for all x ∈ I.
Let x ∈ I.
Then x ∈ R and 0 < x ≤ 1.
Since 0 < x ≤ 1, then 0 < x.
Thus, 0 < x or 0 = x, so 0 ≤ x.
Hence, 0 ≤ x for all x ∈ I.
Since 0 ∈ R and 0 ≤ x for all x ∈ I, then 0 is a lower bound for I in R.

Example 7. poset bounded above need not have a greatest element
In the poset (R,≤), the intervals [0, 1] and (0, 1) are bounded above and

[0, 1] has a greatest element, but (0, 1) does not have a greatest element.

Proof. To prove [0, 1] is bounded above in R, we will show that the real number
1 is an upper bound for [0, 1] in R.

Let x ∈ [0, 1].
Then x ∈ R and 0 ≤ x ≤ 1, so x ≤ 1.
Since x is arbitrary, then x ≤ 1 for all x ∈ [0, 1].
Hence, 1 is an upper bound for [0, 1] in R, so [0, 1] is bounded above in R.
Since 1 ∈ [0, 1] and 1 is an upper bound for [0, 1], then 1 is the greatest

element in [0, 1].
To prove (0, 1) is bounded above in R, we will show that the real number 1

is an upper bound for (0, 1) in R.
Let x ∈ (0, 1).
Then x ∈ R and 0 < x < 1, so x < 1.
Hence, x < 1 or x = 1, so x ≤ 1.
Since x is arbitrary, then x ≤ 1 for all x ∈ (0, 1).
Hence, 1 is an upper bound for (0, 1) in R, so (0, 1) is bounded above in R.
We prove (0, 1) does not have a greatest element.
Suppose (0, 1) has a greatest element.
Let M be a greatest element of (0, 1).
Then M ∈ (0, 1) and x ≤M for all x ∈ (0, 1).
Since M ∈ (0, 1), then M ∈ R and 0 < M < 1, so 0 < M and M < 1.
To derive a contradiction, we will show that x ≤M for all x ∈ (0, 1) is false.
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That is, we will show that there exists a real number in (0, 1) that is not less
than or equal to M .

By trichotomy of R, this means we will show there exists a real number in
(0, 1) that is greater than M .

Since M ∈ R, then M+1
2 ∈ R.

We show M+1
2 ∈ (0, 1).

Since −1 < 0 and 0 < M , then −1 < M .
Hence, 0 < M + 1, so 0 < M+1

2 .

Since M < 1, then M + 1 < 2, so M+1
2 < 1.

Thus, 0 < M+1
2 and M+1

2 < 1, so 0 < M+1
2 < 1.

Since M+1
2 ∈ R and 0 < M+1

2 < 1, then M+1
2 ∈ (0, 1).

Since M < 1, then 2M < M + 1, so M < M+1
2 .

Therefore, M+1
2 > M .

Thus, M+1
2 ∈ (0, 1) and M+1

2 > M , so there exists a real number in (0, 1)
that is greater than M .

Hence, (0, 1) does not have a greatest element.

Example 8. Let S = {1− 1
n : n ∈ N}.

In the poset (R,≤), 1 is an upper bound for S, but S has no greatest element.

Proof. We prove 1 is an upper bound for S in R.
Let x ∈ S.
Then there is a natural number n such that x = 1− 1

n .
Since n ∈ N, then n > 0, so 1

n > 0.
Hence, −1n < 0, so 1− 1

n < 1.
Thus, x < 1, so x ≤ 1.
Since x is arbitrary, then x ≤ 1 for all x ∈ S.
Therefore, 1 is an upper bound for S in R, so S is bounded above in R.
We prove S does not have a greatest element.
Suppose S has a greatest element.
Let M be a greatest element of S.
Then M ∈ S and x ≤M for all x ∈ S.
To derive a contradiction, we must show there exists an element of S that is

not less than or equal to M .
Thus by trichotomy, we must show there exists an element of S that is

greater than M .
Since M ∈ S, then there exists a natural number k such that M = 1− 1

k .
Since k ∈ N, then k + 1 ∈ N.
Hence, 1− 1

k+1 ∈ S.
Since k ∈ N, then k > 0, so k + 1 > 0.
Thus, k 6= 0 and k + 1 6= 0, so 1

k ∈ R and 1
k+1 ∈ R.

Observe that 1
k −

1
k+1 = 1

k(k+1) .

Since k > 0 and k + 1 > 0, then k(k + 1) > 0, so 1
k(k+1) > 0.

Hence, 1
k −

1
k+1 > 0, so 1

k > 1
k+1 .

Thus, −1k < −1
k+1 , so 1− 1

k < 1− 1
k+1 .
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Therefore, M < 1− 1
k+1 , so 1− 1

k+1 > M .

Thus, 1 − 1
k+1 ∈ S and 1 − 1

k+1 > M , so there exists an element of S that
is greater than M .

Hence, S does not have a greatest element.

Example 9. Let S be a set.
In the poset (2S ,⊂) S is the greatest element and ∅ is the least element.

Proof. We prove S is the greatest element of 2S .
Since every set is a subset of itself, then S ⊂ S.
Hence, S ∈ 2S .
Let X ∈ 2S .
Then X ⊂ S.
Since X is arbitrary, then X ⊂ S for all X ∈ 2S .
Hence, S is an upper bound for S.
Since S ∈ 2S and S is an upper bound for 2S , then S is the greatest element

of 2S .
We prove ∅ is the least element of 2S .
Since the empty set is a subset of every set, then ∅ ⊂ S.
Hence, ∅ ∈ 2S .
Let X ∈ 2S .
Then X ⊂ S.
Since the empty set is a subset of every set, then in particular, ∅ ⊂ X.
Since X is arbitrary, then ∅ ⊂ X for all X ∈ 2S .
Hence, ∅ is a lower bound for 2S .
Since ∅ ∈ 2S and ∅ is a lower bound for 2S , then ∅ is the least element of

2S .

Example 10. In the poset (Z+ ∪ {0}, |) 0 is the greatest element and 1 is the
least element.

Proof. Let S = Z+ ∪ {0}.
Then (S, |) is a poset.
We prove 0 is the greatest element of S.
Clearly, 0 ∈ S.
Let n ∈ S.
Since S ⊂ Z, then n ∈ Z.
Every integer divides zero, so n|0.
Since n is arbitrary, then n|0 for all n ∈ S.
Hence, 0 is an upper bound for S.
Since 0 ∈ S and 0 is an upper bound for S, then 0 is the greatest element of

S.
We prove 1 is the least element of S.
Clearly, 1 ∈ S.
Let n ∈ S.
Since S ⊂ Z, then n ∈ Z.
The number 1 divides every integer, so 1|n.
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Since n is arbitrary, then 1|n for all n ∈ S.
Hence, 1 is a lower bound for S.
Since 1 ∈ S and 1 is a lower bound for S, then 1 is the least element of

S.

Example 11. In the poset (R,≤) let S = (0, 1) and T = [0, 1].
Then sup(S) = 1 = sup(T ) and sup(S) 6∈ S and sup(T ) ∈ T and there is no

greatest element in S and 1 is the greatest element of T .

Solution. We sketch the intervals on the real number line.
We proved in a previous example that there is no greatest element of (0, 1).
Let B be the set of all upper bounds of S in R.
Then B = {u ∈ R : u is an upper bound of S} and B ⊂ R.
Clearly, B = [1,∞) = {x ∈ R : 1 ≤ x}.
We formally prove B = [1,∞) = {x ∈ R : 1 ≤ x}.
Let x ∈ [1,∞).
Then x ∈ R and 1 ≤ x.
Let s ∈ S.
Then s ∈ R and 0 < s < 1, so s < 1.
Hence, s ≤ 1.
Since s ≤ 1 and 1 ≤ x, then s ≤ x.
Thus, s ≤ x for all s ∈ S, so x is an upper bound for S in R.
Since x ∈ R and x is an upper bound for S, then x ∈ B.
Therefore, x ∈ [1,∞) implies x ∈ B, so [1,∞) ⊂ B.
Let b ∈ B.
Then b ∈ R and b is an upper bound of S.
Hence, x ≤ b for all x ∈ S.
Let x ∈ S.
Then x ∈ R and 0 < x < 1 and x ≤ b.
Thus, 0 < x and x < 1 and x ≤ b.
Since 0 < x and x ≤ b, then 0 < b.
To prove b ∈ [1,∞), we must prove b ∈ R and 1 ≤ b.
To prove 1 ≤ b, we must prove either 1 < b or 1 = b.
Suppose 1 6= b.
We must prove 1 < b.
Since 1 6= b, then by trichotomy, either 1 < b or 1 > b.
Suppose for the sake of contradiction 1 > b.
Then b < 1.
To derive a contradiction, we prove there exists c ∈ S such that c 6≤ b.
I.e, we prove there exists c ∈ S such that c > b.
Let c = b+1

2 .

Since b ∈ R, then b+1
2 ∈ R, so c ∈ R.

Since −1 < 0 and 0 < b, then −1 < b, so 0 < b + 1.
Hence, 0 < b+1

2 , so 0 < c.

Since b < 1, then b + 1 < 2, so b+1
2 < 1.

Hence, c < 1.
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Since 0 < c and c < 1, then 0 < c < 1.
Since c ∈ R and 0 < c < 1, then c ∈ S.
Since 1 > b, then b + 1 > 2b, so b+1

2 > b.
Therefore, c > b.
Thus, there exists c ∈ S such that c > b, so not every element of S is less

than or equal to b.
Therefore, 1 > b is false.
Since either 1 < b or 1 > b and 1 6> b, then 1 < b.
Since 1 6= b implies 1 < b, then either 1 = b or 1 < b, so 1 ≤ b.
Since b ∈ R and 1 ≤ b, then b ∈ [1,∞).
Thus, b ∈ B implies b ∈ [1,∞), so B ⊂ [1,∞).
Since B ⊂ [1,∞) and [1,∞) ⊂ B, then B = [1,∞), as desired.
The least element of B is the least upper bound of S.
Since 1 ∈ B and for all x ∈ B, 1 ≤ x, then 1 is the least element of S.
Therefore, lub(S) = sup(S) = 1.
Since 1 6∈ S, then sup(S) 6∈ S.
Let B′ be the set of all upper bounds of T in R.
Then B′ = {u ∈ R : u is an upper bound of T} and B′ ⊂ R.
Clearly, all real numbers greater than 1 are upper bounds of T .
Is 1 an upper bound of T?
Let x ∈ T .
Then 0 ≤ x ≤ 1, so x ≤ 1.
Hence, x ≤ 1 for all x ∈ T .
Therefore, 1 is an upper bound for T .
Thus, B′ = [1,∞) = B.
The least element of B′ is the least upper bound of T .
Since 1 ∈ B′ and 1 ≤ x for all x ∈ B′, then 1 is the least element of T .
Therefore, lub(T ) = sup(T ) = 1.
Since 1 ∈ T , then sup(T ) ∈ T .
We proved in a previous example that the greatest element of [0, 1] is 1.

Example 12. Let S ⊂ R.
Then (S,≤) is a total order.
Therefore, any subset of R is linearly ordered under the relation ≤.

Proof. Since (R,≤) is a total order, then ≤ is reflexive, antisymmetric, transitive
and any two elements are comparable.

Thus, for any x ∈ R, x ≤ x and for any x, y ∈ R, if x ≤ y and y ≤ x, then
x = y and for any x, y, z ∈ R, if x ≤ y and y ≤ z, then x ≤ z and for any
x, y ∈ R, either x ≤ y or y ≤ x.

Let a, b, c ∈ S.
Then a ≤ a and if a ≤ b and b ≤ a, then a = b and if a ≤ b and b ≤ c, then

a ≤ c and either a ≤ b or b ≤ a.
Therefore, ≤ is reflexive, antisymmetric, transitive, and any two elements of

S are comparable.
Hence, (S,≤) is a total order.
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Functions

Example 13. The inverse of the identity map on a set is the identity
map on the set.

Let IS be the identity map on a set S.
Then I−1S = IS .

Proof. Let g : S → S be the map defined by g(x) = x for all x ∈ S.
Then g = IS .
Since g ◦ IS = g = IS and IS ◦ g = g = IS , then g is the inverse of IS .
Since g = IS , then IS is the inverse of IS .
Therefore, I−1S = IS .
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